Royal River, Yarmouth, Maine Section206, Aquatic Ecosystem Restoration

Appendix C: Hydrology & Hydraulics Appendix (Part 1)

PREPARED BY: Hydrology, Hydraulics & Coastal Geotechnical & Water Resources Branch Engineering Division

June 24, 2024 Rev. 02SEP24

US Army Corps of Engineers. New England District

Table of Contents

1.	Purpose and Scope1						
2.	Aut	thori	ty	1			
3.	De	scrip	tion of the Study Area	2			
З	8.1.	Ger	neral	2			
З	8.2.	Pro	ject Areas	4			
	3.2	.1.	Bridge Street Dam	4			
	3.2	.2.	East Elm Street Dam	7			
	3.2	.3.	Middle Falls	9			
З	8.3.	Loc	ations of Interest	12			
	3.3	.1.	Federal Navigation Project	12			
	3.3	.2.	Baston Park / Route 9	13			
З	8.4.	Clir	natology	13			
З	8.5.	His	torical Storms	14			
Э	8.6.	Pric	or Studies	15			
	3.6	.1.	Studies Completed by USACE	15			
	3.6	.2.	Studies Completed by Others	15			
4.	Alte	erna	tives	18			
5.	Мо	delir	ng	22			
5	5.1.	Hyd	Irology	22			
	5.1	.1.	Daily Flows	23			
	5.1	.2.	Flood Flows	27			
5	5.2.	Hyd	Iraulics	29			
	5.2	.1.	Model Development	29			
	5.2	.2.	Existing Information	39			
	5.2	.3.	Calibration/Validation	39			
	5.2	.4.	Results	44			
5	5.3.	Ass	umptions & Simplifications	51			
5	5.4.	Ser	sitivity Analysis	56			
6.	Co	nclu	sions	57			
7.			Efforts				
8.	Ret	ferei	nces	61			
9.	List	t of A	Acronyms and Abbreviations	64			

LIST OF FIGURES

Figure 1: Royal River Watershed. Study Area Circled in Red.	
Figure 2: Royal River Study Area	3
Figure 3: Aerial view of the Bridge Street Dam	
Figure 4: Bridge Street Dam, Royal River, Yarmouth, Maine	
Figure 5: Denil-Type Fish Ladder at the Bridge Street Dam.	
Figure 6: Aerial View of the East Elm Street Dam at Royal River Park	
Figure 7: East Elm Street Dam, Royal River, Yarmouth, Maine	
Figure 8: Denil-type Fish Ladder Near the East Elm Street Dam	
Figure 9: The Forest Paper Company Mill Formerly at Middle Falls	
Figure 10: Aerial View of the Middle Falls	. 11
Figure 11: The Middle Falls Site with the Remnants of the Forest Paper Company	™III . 11
Figure 12: Royal River Federal Navigation Project	
Figure 13: Baston Park and Memorial Highway (Route 9)	.13
Figure 14: Annual Peak Streamflow USGS 01060000 Royal River	
Figure 15: Royal River May 12, 1989 Flooding (8,190 cfs)	
Figure 16: Stantec 2013 HEC-RAS Model and Topographic workmap	
Figure 17: Effective FEMA Regulatory HEC-2 Model and Topographic workmap	. 18
Figure 18: Royal River Aquatic organism Passage. Study Area Circled in Red	.23
Figure 19: Royal River 1-Day Averaged Flows 1949-2023	. 24
Figure 20: Annualized Daily Average Flow Statistics	.25
Figure 21: Flow Duration Curve Royal River	.25
Figure 22: Flood Frequency Analysis Results	. 27
Figure 23: Royal River 2D Model Domain	. 30
Figure 24: Royal River Bridge Data Example	.33
Figure 25: Royal River Final Roughness Coefficients	.35
Figure 26: Royal River 2D Computational Mesh Settings Geometry:	
Existing_2D_19JUL24 & TSP_2D_19JUL24	.36
Figure 27: Royal River Breaklines	. 37
Figure 28: Royal River Computation Settings	. 38
Figure 29: Royal River Rating Curve Comparison at USGS Gage	
Figure 30: NOAA Tide Stations Near Royal River	
Figure 31: Tide Stage for 10-22DEC2019 Storm Event Royal River	.42
Figure 32: Upstream Flow Hydrograph for 10-22DEC2019 Storm Event Royal River .	.42
Figure 33: Modeled & Observed Flow Hydrograph at USGS Gage - 10-22DEC2019	
Figure 34: Modeled & Observed Stage Hydrograph at USGS Gage - 10-22DEC2019	
Figure 35: Modeled & Published Rating Curve at USGS Gage - 10-22DEC2019	
Figure 36: Approximated Upstream Model Extension	
Figure 37: Exaggerated Vertical Scale Terrain Model Showing Some Erroneous LiD	
Points Near Gooch Island (yellow circle)	.55

LIST OF TABLES

Table 1: Array of Modeled Alternatives & Measures	. 19
Table 2: USFWS Design Guidelines for Nature-Like Fish Passage (USFWS, 2019)	. 21
Table 3: Peak Upriver Migration Flow Duration Statistics — Mid-May to Mid-June	. 26
Table 4: Flood Frequency Analysis Results	. 28
Table 5: Summary of Peak Discharges	. 28
Table 6: Royal River Model Terrain Sources	. 31
Table 7: Royal River Model Hydraulic Structure Information	. 32
Table 8: Royal River Roughness Coefficients based on Land Cover	. 34
Table 9: Royal River 2D Computational Mesh Properties	. 36
Table 10: Royal River Summary of Site Specific Fish Passage Parameters	. 46
Table 11: Royal River Predicted Water Surface Elevation Changes	. 48

LIST OF ATTACHMENTS

Attachment A: Selections from the Effective FEMA HEC-2 Hydraulic Study.	20
Attachment B: Select As-Built Plans	26
Attachment C: RoyalRiver_Appendix_C_HydraulicsResults_30AUG24	29

1.0 PURPOSE AND SCOPE

The purpose of this study is to assess feasibility-level Continuing Authorities Program (CAP) Section 206 aquatic ecosystem restoration alternatives in the Royal River. This entails the assessment of two low head dams (Bridge Street and East Elm Street Dams) and one natural fall (Middle Falls) on the river and 7.01 miles of the waterway, from the head-of-tide to the upstream limit of the East Elm Street Dam impoundment. Both dams have nonfunctioning/minimally functioning fishways. The project has the potential to restore access to approximately 32 miles of river habitat on the mainstem Royal River for migratory fish species, providing the fish with upstream access to historic reproductive habitat for adults and nursery habitat for the development of eggs and juvenile life stages. The project could also restore access to aquatic organisms along many additional miles of habitat within the tributaries of the Royal River. A cost effectiveness and incremental cost analysis is contained in the main report.

This appendix presents hydrologic information, feasibility-level hydraulic analyses of aquatic organism passage modifications (including with- and without-dam conditions), and discussion of the results of the dam removal alternatives. The analyses include an evaluation of the study reach, including historical storms and previous studies, flow development, hydraulic modeling of existing conditions, and modeling to support evaluation of alternatives. Sections included in the report are: a description of the study area, study procedures including aquatic organism passage/dam removal alternatives and results, and a summary.

2.0 AUTHORITY

This aquatic ecosystem restoration study was conducted under the authority of Section 206 of the Water Resources Development Act (WRDA) of 1996. This authority allows the U.S. Army Corps of Engineers (USACE), in cooperation with its project sponsor and partners, to develop aquatic ecosystem restoration and protection projects that improve the quality of the environment, and that are in the public's interest while being cost effective. The Aquatic Ecosystem Restoration Program focuses on restoration of ecosystem structure and function necessary to support aquatic organism and wildlife habitat.

Section 206 of the Water Resources Development Act of 1996 PL 104-303 entitled Aquatic Ecosystem Restoration, states in part,

"The Secretary [of the Army] may carry out an aquatic ecosystem restoration and protection project if the secretary determines that the project – will restore the quality of the environment and is in the public interest; and is cost-effective."

3.0 DESCRIPTION OF THE STUDY AREA

3.1 GENERAL

The study area (shown in **Figure 1**) is located on the Royal River in the town of Yarmouth, Maine, at approximately latitude 43° 45' N., and longitude 70° 11' W. in Cumberland County. The Royal River is in the Presumpscot Basin (HUC-8 watershed 01060001) which is in the Saco River Basin (HUC-4 watershed 0106). The Hydrologic Unit is located entirely in Water Resource Region (i.e., HUC-2 watershed) number 01, the New England Region. The entire Royal River watershed drains an area of 143 square miles and flows 39 miles predominately north to south from headwaters at Sabbathday Lake in New Gloucester, ME to its mouth near Parker Point in Casco Bay (Atlantic Ocean).

Figure 1: Royal River Watershed. Study Area Circled in Red.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

The watershed is sparsely developed woodland and contains some hilly terrain. The watershed includes many bodies, including lakes and ponds (e.g., Crystal Lake, Runaround Pond and Sabbathday Lake) and tributaries such as Chandler Brook, Collyer Brook and Collins Brook. The total fall in the Royal River from Sabbathday Lake to the ocean is approximately 300 feet, or an overall average of 7.7 feet per mile, however approximately 70 feet of the drop is accounted for in the mile above the head-of-tide.

There are four sets of rapids along the Royal River in the mile of its course upstream of the head-of -tide. These are numbered First through Fourth, with the Fourth being the farthest upstream and the First being the closest to the ocean as shown in **Figure 2**.

Figure 2: Royal River Study Area

At the **First Falls** of the Royal River, at Grist Mill Park, is located at the approximate **Head-of-Tide**. The river falls approximately 10 feet over a distance of 200 feet. Historically, the river power had been used at this location for mills since 1674, and later for hydroelectric power, however no damming surface remains at the site.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study At **Bridge Street**, there is a run-of-river dam in Yarmouth at the **Second Falls** of the Royal River. The location has provided power for the material industry since 1847Under normal conditions, the impoundment is approximately 1,800-feet in length, with a maximum depth of 25 feet, with a normal impounded volume of approximately 100 acrefeet. There is a fish ladder structure at the dam, designed to promote fish passage by allowing for fish passage of 25 feet vertically over a distance of 90 feet. Additionally, there is a non-functional hydroelectric facility at the dam.

The **Third Falls** (**Middle Falls**) at Factory Island has historically powered a grist mill, carding mill, nail mill, soda pulp-and-paper mill. Following a fire in 1931, the complex fell into disuse and the remains of the buildings existed until they were removed by the Marine Corps in 1971.

The **Fourth Falls** of the Royal River is located 900 feet upstream of the Third Falls, at Gooch Island and **East Elm Street**. A dam at this location has been historically used to supply water and power for local industries. A historic mill race, **Foundry Channel**, is in this vicinity allowing some of the Royal River flows to bypass the dam.

3.2 PROJECT AREAS

3.2.1 Bridge Street Dam

The Bridge Street Dam is located approximately 2000 feet upstream from the head-oftide in the Royal River, near East Main Street and the State Route 88 Bridge (**Figure 3**). This site is known as the Second Falls of the Royal River in Yarmouth, Maine. The dam is constructed on visible metamorphic bedrock 250 ft upstream from Bridge Street.

The dam is a gravity type run-of-river structure spanning the full width of the river. It is constructed of masonry and reinforced concrete. The structure is approximately 275 feet in length and is 10-feet in height. In the most recent inspection report, the dam is described from left to right as being comprised of "a 102 foot-long non-flow section, an approximately 10-foot-wide by 8-foot-high right sluice bay section with stoplogs, an approximately 130-foot-long ungated spillway section and a 7.5-foot-wide by 10-foot-high left sluice bay section with stoplogs" (Johnson 2014). The dam has a sloped upstream face and a vertical downstream face. The spillway is located near the center of the dam, approximately 75 feet long. Low-flow sluiceways are cast into either end of the spillway and are controlled by removable weir planks.

The Bridge Street Dam was originally constructed in 1870 to provided low-head water to the adjacent Sparhawk Mill through a metal penstock (**Figure 4**). The Sparhawk Mill Hydropower plant was a FERC operated dam until 2019. The intake structure and 200-foot-long welded steel penstock from the original hydroelectric plant, are still in place.

Figure 3: Aerial View of the Bridge Street Dam

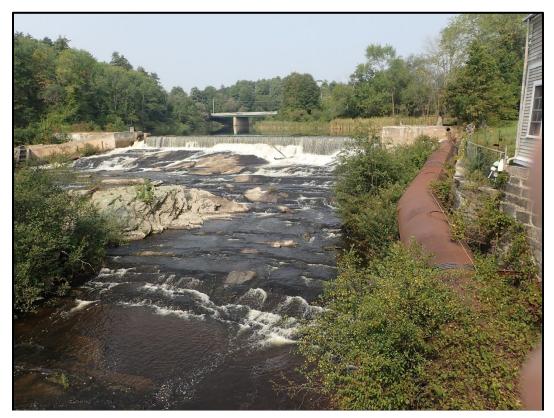


Figure 4: Bridge Street Dam, Royal River, Yarmouth, Maine

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

In an effort to improve fish passage, a concrete Denil-type fish ladder was built into the southwest end of the dam's spillway in 1974 (**Figure 5**). The fishway consists of two 3-foot wide concrete segments with 19 baffles each and "a 13-foot long, 120 degree turning pool" that separates the two segments The design of the fish ladder does not match current design recommendations. It is suitable for alewife but is problematic for other native anadromous species (Interfluve, 2018).

The effectiveness of the structure is dependent on many conditions including water flow, regular maintenance, and debris removal. For many years, the fish passage structure was inoperable due to damage and lack of maintenance. In recent years, a local group of volunteers have repaired the fish ladder. Their efforts have shown some success, as they have filmed fish moving through the fish ladder in 2024, though individual fish passage is measured in tens of fish (Royal River Fish Passage, 2024).

Figure 5: Denil-type fish ladder at the Bridge Street Dam

The dam and fish ladder are currently owned by the town of Yarmouth.

The impoundment above the Bridge Street Dam Impoundment extends from the dam upstream to the Middle Falls 2000 feet upstream. The overall length of the impoundment is 2,000 ft. The surface area of the impoundment at normal pool level is approximately 9 acres, with a maximum depth of 15 ft (Stantec, 2015).

3.2.2 East Elm Street Dam

The East Elm Street Dam is located approximately a-half mile upstream of the Bridge Street Dam and 0.23 miles upstream of Middle Falls. The area is also known as the Fourth Falls and Gooch's Falls. The Dam is a stone, run-of-river, gravity-type structure approximately 250 feet in length (including abutments), with a 12-foot structural height (**Figure 6**). The dam is built on a bedrock outcropping that is an extension of Gooch Island, immediately east of the dam (**Figure 7**). The structure of the dam consists of "a loose-laid, large-granite-block structure, a sloping concrete overlay on the upstream side, and a concrete overlay on portions of the downstream side." (Powers, 2009)

Figure 6: Aerial view of the East Elm Street Dam at Royal River Park

Figure 7: East Elm Street Dam, Royal River, Yarmouth, Maine

Gooch Island splits the Royal into a main channel (west of Gooch Island), and a narrower back channel (east of Gooch Island). The entire length of the dam serves as a spillway, which has a granite block crest (Stantec 2010).

In 1979, a concrete Denil-type fishway was built by the Maine Department of Marine Resources at the southern end of the dam (**Figure 8**). The fishway has a 1:6 slope and includes a concrete chute with slanted wooden baffles, trash racks and a slide control gate at the upstream inlet (Petrovsky, 2019). The structure is 3-foot wide with three segments. The first and second segments are separated by "a 16-foot long, 90 degree turning pool", while the second and third segments are separated by a 180-degree turning pool. The structure allows an 11ft rise from entrance to exit.

Similar to the Bridge Street fish passage structure, the structure at East Elm Street Dam eventually fell into disrepair and was not functional. In recent years, a local group of volunteers have repaired the fish ladder.

The dam and fish ladder are currently owned by the town of Yarmouth.

Figure 8: Denil-type Fish Ladder near the East Elm Street Dam

3.2.3 Middle Falls

Middle Falls is a natural barrier to aquatic organism passage that is located between the Bridge Street and East Elm Street Dam. This feature is 2000 ft upstream of Bridge Street Dam. The area was formerly the site of the Forest Paper Company mill, which spanned the river from the south shore to Factory Island (**Figure 9**).

"At this site, the river bifurcates around Factory Island with the main channel (and falls) on river right and a small side channel on the east side of Factory Island that also connects the head and tailwaters of the falls" (USFWS 2017).

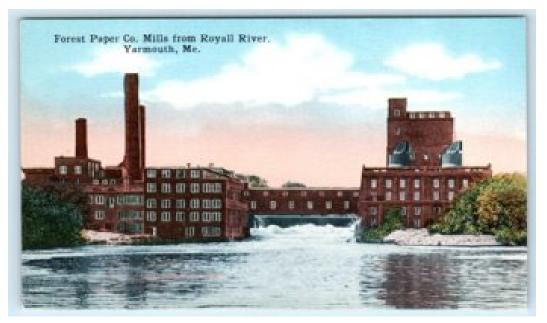


Figure 9: The Forest Paper Company Mill formerly at Middle Falls

Prior to 2012, remnants of the mill complex encroached into the river channel, including a stone structure spanning the channel to the north of Factory Island and large granite blocks in the side channel. In the 2010 report written by Stantec, it was suggested that this encroachment into the river channel likely impacts fish passage at this site.

In 2012, the town of Yarmouth led an effort to clear the remnants for the mill structure from the side channel to partially or substantially improved passage through that section of the river. Dozens of granite blocks, weighing approximately 6,000 lbs., were pulled out of the river channel. In all approximately 70 tons of rock were removed from the river channel, improving fish passed in a 0.9 miles section of the Royal River (Maine Rivers, 2012)

Figure 10 and Figure 11 show current conditions at the Middle Falls.

Figure 10: Aerial view of the Middle Falls

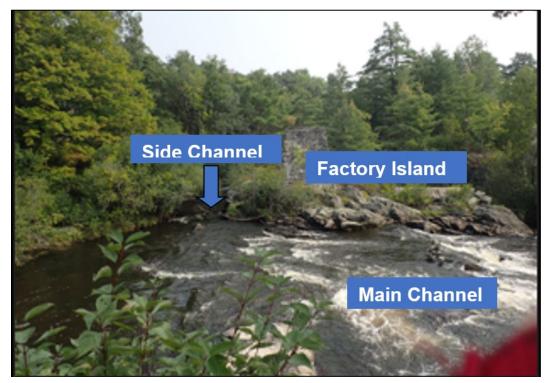


Figure 11: The Middle Falls Site with the remnants of the Forest Paper Company Mill

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study During the summer of 2017, the U.S. Fish and Wildlife Service (USFWS) surveyed the bypass to assess potential for passage in this side channel. In a letter written by the agency describing their finding, the agency indicated that "the side channel appears passable over most of its length though water depths were shallow at the time of this survey. Two locations that may hinder fish movement were identified." The agency suggested that these impediments could be removed and that "Significant improvements to the passage conditions at these sites might be accomplished through alternations to the ledge outcroppings and/or movement of large rocks. This work might be accomplished in 3 to 5 days by a small crew with access to a generator, compressor, pneumatic hammer, and grip hoists. These enhancements would be relatively low cost and should be considered viable alternative." (USFWS 2017)

3.3 LOCATIONS OF INTEREST

3.3.1 Federal Navigation Project

At the downstream end of the study area, downstream of the Head-of-Tide and the northbound Interstate-295 bridge, is a 2-mile-long estuary that ranges from 300 feet to 1,200 feet in width. A federal channel has ensured navigation access from Casco Bay to this vicinity since at least the 1870's. This channel was enlarged in the 1960's along with creation of an 8-acre anchorage, collectively identified as the Federal Navigation Project (FNP) (**Figure 12**). Private interests also operate several commercial marinas in the estuary.

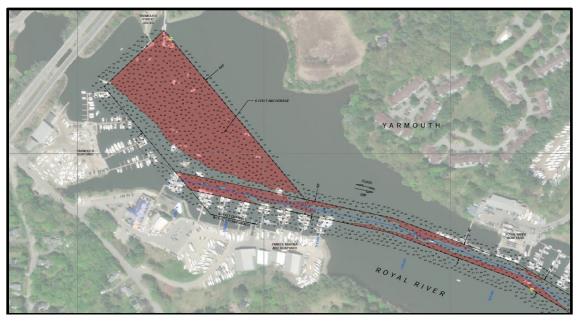


Figure 12: Royal River Federal Navigation Project

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

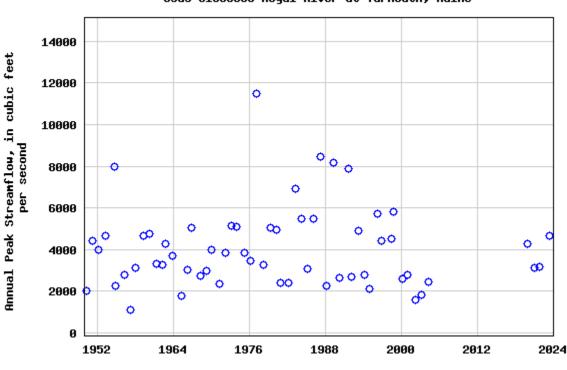
3.3.2 Baston Park / Route 9

Near the upstream limits of the Elm Street Dam impoundment in North Yarmouth, Baston Park and the Memorial Highway (Route 9) bridge effectively represent the upstream study limits (**Figure 13**). Situated at an oxbow of the Royal River, Baston Park provides recreational opportunities along with the nearby Old Town House Park. Potentially, Baston Park could be sensitive to changes in water levels as conceptual plans are being developed for hand-carry boat access after site improvements.

Figure 13: Baston Park and Memorial Highway (Route 9)

Additionally, the Route 9 bridge infrastructure includes a dry hydrant for rural fire fighting. The dry hydrant allows fire crews to draw water directly from Royal River and potentially could also be sensitive to changes in water levels.

3.4 CLIMATOLOGY


The area has a variable climate, and frequently experiences periods of heavy precipitation produced by local thunderstorms, and larger weather systems of tropical and extratropical origin. The area lies in the path of the prevailing "westerlies" which generally travel across the country in an easterly or northeasterly direction, producing frequent weather changes. The climate is characterized as moderate, and the mean annual temperature is 48 degrees Fahrenheit (°F). Temperatures range from an

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

average 24°F in January to an average of 70°F in July. The average yearly rainfall is about 48 inches and the average yearly snowfall is approximately 69 inches.

3.5 HISTORICAL STORMS

The flood of record occurred on March 13, 1977, and had a peak discharge of 11,500 cfs and an estimated recurrence interval in excess of 1-percent annual chance (FEMA, 2024). Other notable floods on Royal River were March 1936, September 1954, March 1977, March 1983, May 1989, April 1990, and August 1991 (**Figure 14**).

USGS 01060000 Royal River at Yarmouth, Maine

Figure 14: Annual Peak Streamflow USGS 01060000 Royal River

In general, high-water marks from the historical storms are not available for model calibration/validation. A high water mark was approximated from historic photograph of the May 1989 flood event (**Figure 15**) however it is a poor quality reference point because it was not surveyed or memorialized, the downstream bridge has changed during the interim, and it is unknown if the photo was taken during the peak of the storm.

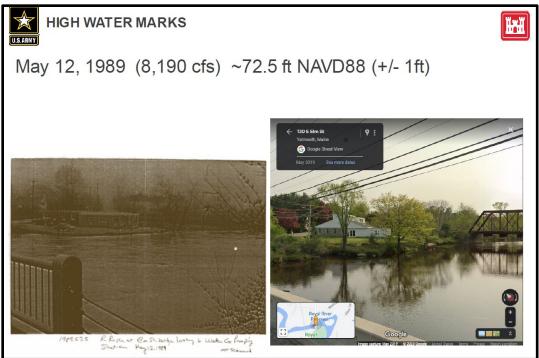


Figure 15: Royal River May 12, 1989 Flooding (8,190 cfs)

3.6 PRIOR STUDIES

3.6.1 Studies Completed by USACE

Federal Interest Determination Report (2020): The New England District, USACE completed a report that investigated the federal interested in pursuing an aquatic ecosystem restoration study on the Royal River. USACE conducted an initial appraisal and determined there is a Federal interest for an Aquatic Ecosystem Restoration project at this location along the Royal River. The purpose of the proposed project was identified as assessing the first two dams above the head of tide on the Royal River owned by the Town of Yarmouth: the Bridge Street Dam and the East Elm Street Dam.

Sediment Sampling and Testing in Support of Project Feasibility Study (January 2024): In October of 2023, the New England District collected sediment samples from the Royal River downstream of the Bridge Street Dam and upstream of the East Elm Street Dam. This study presents the results of this sediment sampling.

3.6.2 Studies Completed by Others

Considerable historical information and scientific data has been collected in the Royal River watershed since 1958. This list provides a summary of recent studies that provided key hydrologic and hydraulic information within the study area.

Fisheries & Aquatic Habitat Restoration Feasibility Study, Royal River Restoration Project Yarmouth, Maine (2010): Stantec Consulting Services Inc. completed this study

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study for the town of Yarmouth, ME. This report describes the feasibility study designed to evaluate the potential of fisheries and Aquatic habitat restoration of the Royal River. The 2010 report provides opportunities and constraints associated with the restoration of fisheries and aquatic habitat.

Royal River Restoration Project: Phase II Analysis and Reporting (September 2013): Stantec Consulting Services Inc. completed this study for the town of Yarmouth, ME. The Phase II report presents the potential changes in the Royal River upstream from the East Elm Street Dam if the dam was removed, based on hydraulic modeling. The report addressed changes in water surface levels, recreational opportunities, sediment delivery to Yarmouth Harbor resulting from dam removal. The one-dimensional steady flow hydraulic model (HEC-RAS version 4.1.0) includes bathymetric and topographic data, hydrologic information, as well as channel and structure information based on data collected in Phases I & II. The report also provided the results of sediment sampling that occurred in 2010 to assess the presence of environmental contaminants in sediment in the East Elm Street Dam Impoundment. An excerpt of this model is displayed in **Figure 16**.

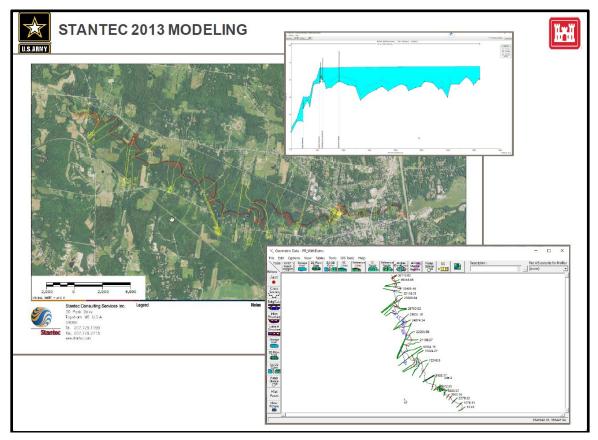


Figure 16: Stantec 2013 HEC-RAS Model and Topographic Workmap

Potential Impacts of Dam Removal on Sediment Production and Sediment Transport on the Royal River, ME (Field Geological Services, May 2013): Commissioned for and

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

included as an appendix in the Stantec 2013 report, Field Geological Services (FGS) provides an evaluation of sediment transportation on the Royal River and noted that "dam removal is unlikely to significantly increase sediment transport through the impoundment area and sediment delivery to the harbor." In addition, FGS provides fluvial geomorphological assessment of Royal River in the reach between East Elm Street Dam and the upstream end of the study area.

Estimated Sediment Volume: Bridge Street Dam Impoundment (June 2015): Stantec Consulting Services Inc. completed this study for the town of Yarmouth, ME. This report presented information on the composition, volume, and potential mobility of sediment accumulated upstream of the Bridge Street Dam on the Royal River. This report estimated the volume of accumulated sediment in the impoundment was 5,040 CY which included a 20% contingency to account for observed localized sediment deposits observed upstream from the Sparhawk Mill hydroelectric facility trash racks and adjacent to the stormwater outfalls. The study concluded that the volume of accumulate sediment found the Bridge Street Dam impoundment would not change due to highwater events and was representative of the typical volume of sediment that would be found behind the dam.

Sediment Sampling and Analysis, Bridge Street Dam Impoundment, Royal River, Yarmouth, Maine (March 2016): Stantec Consulting Services Inc. completed this study for the Nature Conservancy. This report presents methods and results of a sediment sampling study in the impoundment formed by the Bridge Street Dam. The study investigates the potential for remobilization of sediment and environmental contaminants in the impoundment if the dam is removed.

Fishway Assessment and Cost Analysis Report, Royal River, Yarmouth ME (January 2018): This report was completed by Interfluve for The Nature Conservancy. The report describes a detailed assessment of the potential for fish passage at the Bridge Street and East Elm Street dams on the Royal River. It identified four alternative approaches to enhance fish passage and assesses the cost of each alternative. These alternatives include no action, retrofit/rebuilt technical fishway, nature-like fishway, and dam removal.

Royal River Fish Passage Studies Summary Report. Royal River Watershed, Yarmouth, North Yarmouth, New Gloucester, Pownal, Durham, Gray, and Auburn, Maine (January 2018): This report was prepared by GZA GeoEnvironmental, Inc. for the Nature Conservancy. This document provides a review of prior project reports and work completed in the Royal River Watershed, with the objective to identify key points from historical studies and to evaluate restoration of fish passage between Casco Bay and the upper Royal River watershed.

Flood Insurance Study for Cumberland County, Maine (All Jurisdictions) (2024): This update by FEMA for the National Flood Insurance Program includes information for the Royal River. A scan of the effective Royal River hydraulic model was obtained from the

FEMA Engineering Library along with a topographic workmap. The FEMA hydraulic modeling was developed by FEMA in September 1979 utilizing HEC-2, which is a predecessor to the HEC-RAS software. Due to the shallow bedrock of the Royal River streambed, the FEMA study provided valuable channel survey information for this study despite being more than 40-years old. An excerpt of this study is shown in **Figure 17**, with more selections of the FEMA study provided in **Attachment A**.

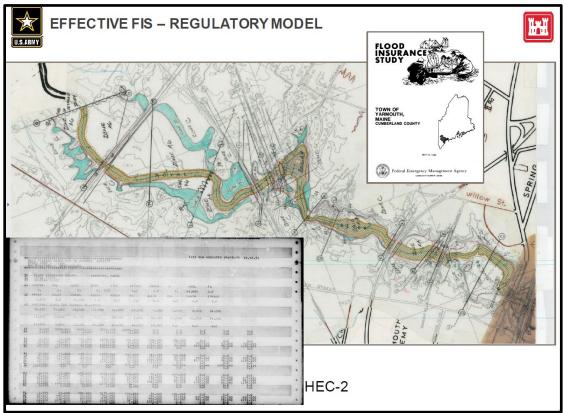


Figure 17: Effective FEMA Regulatory HEC-2 Model and Topographic workmap

4.0 ALTERNATIVES

As described more fully in the main report, full and partial dam removal measures were evaluated at both the Bridge Street Dam and the East Elm Street Dam sites. The hydraulic performance of these measures were deemed similar in many aspects, with only localized differences at the dam sites, leading to a generally neutral hydraulic basis for Tentatively Selected Plan (TSP). Specifically, alternatives and measures that were modeled are shown in **Table 1** below.

Alternative	Description	Model Plans		
Alternative 1	No Action Alternative – Existing Conditions	Ex_7Q10 - 25cfs_0ftTW' (p32) EX_MeanQ_120cfs_0ft_TW' (p18) EX_USGS2yr_3643cfs_0ft_TW' (p38) EX_10yr_6480cfs_0ft_TW' (p22) EX_10DEC_23DECC19' (p25) EX_100yr_10419cfs' (p42) EX_UpRiverPk_0ft_TW' (p31)		
Alternative 2	East Elm Street and Bridge Street Dam Demolition + Middle Falls Side Channel Modification • Removal of a 120 linear feet (LF) section of the East Elm Street Dam and the Denil-type fish passage structure located on the right descending bank of the Royal River. • Removal of Bridge Street Dam across the entire width of the river, which includes 275 LF structure and the Denil-type fish passage structure located on the right descending bank of the Royal River. • Modification of the Middle Falls side channel, which includes the placement of large boulders in the main river channel and chipping of rock ledges located in the side channel.	'TSP_7Q10-25cfs_0TW' (p27) 'TSP_MeanQ_120cfs_0ft_TW' (p28) 'TSP_2yr_3643cfs_0ft_TW' (p29) 'TSP_10yr_6480cfs_0ft_TW' (p19) 'TSP_10DEC_23DECC19' (p40) 'TSP_100yr_10419cfs' (p41) 'TSP_UpRiverPk_0ft_TW' (p30)		
Alternative 3	East Elm Street and Bridge Street Dam Demolition • Removal of a 120 linear feet (LF) section of the East Elm Street Dam and the Denil-type fish passage structure located on the right descending bank of the Royal River. • Removal of Bridge Street Dam across the entire width of the river, which includes 275 LF structure and the Denil-type fish passage structure located on the right descending bank of the Royal River. • No action at the Middle Falls	[Model plans of this alternative were removed to avoid confusion and archived. May be made available upon request.]		
Measure: Full Dam Removal	East Elm Street and Bridge Street Dam Full Demolition • Removal of the East Elm Street Dam across the entire width of the river including the Denil-type fish passage structure. • Removal full section of Bridge Street Dam	[Model plans of this measure were removed to avoid confusion and archived. May be made available upon request.]		
Measure: Partial Dam Removal	East Elm Street and Bridge Street Dam Partial Demolition • Removal of a 120 linear feet (LF) section of the	[Model plans of this measure were removed to avoid confusion and archived. May be made available upon request.]		

Table 1: Array of Modeled Alternatives & Measures

Alternative	Description	Model Plans
	East Elm Street Dam and the Denil-type fish passage structure located on the right descending bank of the Royal River • Removal of ~150-ft spillway section of Bridge Street Dam, including the Denil-type fish passage structure. • No action at the Middle Falls	
Measures: Middle Falls	rock diversion structures to promote flow in the bypass; modeled iteratively in conjunction with	[Model plans of this measure were removed to avoid confusion and archived. May be made available upon request.]
Sensitivity: Tailwater	Sensitivity of Alternative 2 (TSP) Conditions varying downstream boundary tailwater	'TSP_UpRiverPk_9_6ft_TW' (p49) 'TSP_UpRiverPk9ft_TW' (p50)
Sensitivity: Manning's n roughness	Sensitivity of Existing Conditions varying roughness coefficients	['] EX_UpRiverPk_0ft_TW_Low_n_sens' (p02) 'EX_UpRiverPk_0ft_TW_High_n_sens' (p03)
Sensitivity: Manning's n roughness	varying roughness coefficients	'TSP_UpRiverPk_0ft_TW_Low_n_sens' (p26)' 'TSP_UpRiverPk_0ft_TW_High_n_sens' (p01)
Sensitivity: "All Muck"	varying bathymetry immediately upstream / under the East Elm Street Dam	[Model plans of this measure were removed to avoid confusion and archived. May be made available upon request.]

Flow diversion measures were also more generally evaluated at Middle Falls to improve aquatic organism passage, however lack of detailed topography/bathymetry and finalized design from USFWS at time of this appendix have limited its applicability. **Table 2** presents a USFWS summary of design guidelines for nature-like fish passage and related to swimming capabilities and safe, timely and efficient passage for Atlantic Coast diadromous fish species. Note: units are expressed in both metric (cm) and English units (feet or feet/sec). Refer to the source USFWS report "Fish Passage Engineering Design Criteria"(USFWS, 2019) for more information. This table establishes the hydraulic parameters and estimated metrics which can be used to design fish passage for the target species.

Species	Minimum TL (cm)	Maximum TL (cm)	Body Depth/ TL Ratio	Maximum Body Depth (cm)	Minimum Pool/Channel Width (ft)	Minimum Pool/Channel Depth (ft)	Minimum Pool/Channel Length (ft)	Minimum Weir Opening Width (ft)	Minimum Weir Opening Depth (ft)	Maximum Weir Opening Water Velocity (ft/sec)	Maximum Fishway Channel Slope
	TL _{min}	TLmax	BD/TL	BD _{max}	Wp	d _P	եր	WN	d _N	Vmax	S ₀
Sea Lamprey	60	86	0.072	6.2	10.0	2.00	20.0	0.75	0.75	6.00	1:30
Shortnose Sturgeon	52	143	0.148	21.2	30.0	4.00	30.0	2.75	2.25	5.00	1:50
Atlantic Sturgeon	88	300	0.150	45.0	50.0	7.00	75.0	5.50	4.50	8.50	1:50
American Eel ≤ 15 cm TL	5	15	0.068	1.0	3.0	1.25	5.0	0.25	0.25	0.75	1:20
American Eel >15 cm TL	15	116	0.068	7.9	6.0	2.00	10.0	0.75	1.00	1.00	1:20
Blueback Herring	20	31	0.252	7.8	5.0	2.00	10.0	2.25	1.00	6.00	1:20
Alewife	22	38	0.233	8.9	5.0	2.25	10.0	2.50	1.00	6.00	1:20
Hickory Shad	28	60	0.221	13.3	20.0	2.75	40.0	4.00	1.50	4.50	1:30
American Shad	36	76	0.292	22.2	20.0	4.00	30.0	5.00	2.25	8.25 (1:30
Gizzard Shad	25	50	0.323	16.2	20.0	3.25	40.0	3.50	1.75	4.00	1:30
Rainbow Smelt	12	28	0.129	3.6	5.0	1.50	10.0	1.00	0.50	3.25	1:30
Atlantic Salmon	70	95	0.215	20.4	20.0	3.75	40.0	6.25	2.25	13.75	1:20
Sea Run Brook Trout	10	45	0.255	11.5	5.0	2.50	10.0	1.50	1.25	3.25	1:20
Juvenile Salmonid ≤ 20 cm TL	5	20	0.250	5.0	5.0	1.75	10.0	1.25	0.50	2.25	1:20
Atlantic Tomcod	15	30	0.202	6.1	5.0	2.00	10.0	2.00	0.75	0.75	1:30
Striped Bass	40	140	0.225	31.5	20.0	5.25	30.0	9.25	3.25	5.25	1:30

Table 2: USFWS Design Guidelines for Nature-Like Fish Passage (USFWS, 2019)

As described more fully in the main report, the estuary supports a broad range of fish species, including shellfish, anadromous and catadromous fish species such as blueback herring (Alosa aestivalis), alewife (A. pseudoharengus), American shad (A. sapidissima), and American eel (Anguilla rostrata), and a strong recreational fishery including bluefish (Pomatomus saltatrix) and striped bass (Morone saxatilis). For evaluation purposes, this report utilized Alewife as the target species for upriver migration design flow development.

5.0 MODELING

This section discusses the methods and assumptions used in the study of the removal of all or part of the Bridge Street Dam and the East Elm Street Dam. The existing dams and river were hydraulically modeled using multiple flows to determine peak water surface elevations and velocities for a range of events. Two removal alternatives for each dam were then modeled to determine corresponding water elevations and velocities. The results of each of the removal alternatives were compared to the results of the existing dam conditions to determine the effects that dam removals will have on the peak water surfaces and velocities along the river.

5.1 HYDROLOGY

Royal River flows generally north to south from Sabbathday Lake in New Gloucester, ME until it flows into Casco Bay and eventually the Atlantic Ocean. There are eight dams within the Royal River watershed that restrict aquatic organism passage. Royal River receives input from several natural springs such as in northern New Gloucester, bordering on Poland ME, partly regulated by Jordan Mill Dam, approximately 24 miles upstream of East Elm Street in Yarmouth; Meadow Brook, 19.7 miles upstream of East Elm Street in Yarmouth; Meadow Brook, 19.7 miles upstream of East Elm Street (inflows from Stevens Brook, approximately 19 miles upstream of East Elm Street (inflows from Stevens Brook are regulated at one unnamed dam); Bear Brook, 16.6 miles upstream of East Elm Street; Collyer Brook, 11.9 miles upstream of East Elm Street, partly regulated by the Pownal State School Dam, and by an unnamed dam on the Eddy Brook tributary; and Chandler River, 6.0 miles upstream of East Elm Street, partly regulated by Florida Lake on the Collins Brook tributary, and partly regulated by Runaround Pond Dam on the Alder Brook tributary. The Royal River tributaries and dam locations in the watershed are shown in **Figure 18**.

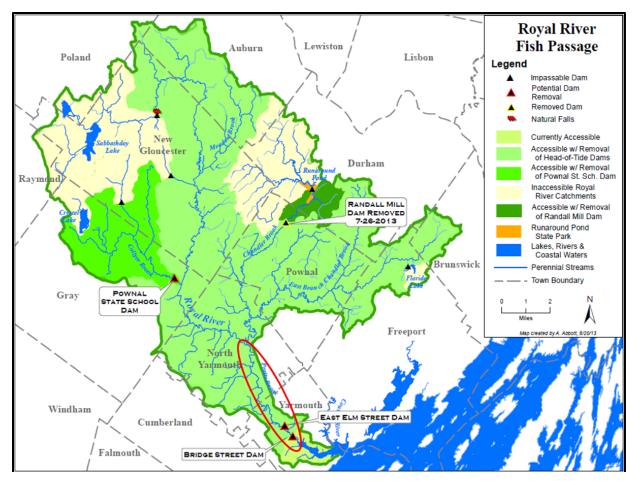


Figure 18: Royal River Aquatic organism Passage. Study area circled in red (Source: Gulf of Maine Coastal Program, U.S. Fish and Wildlife Service, 2013)

For input to the hydraulic modeling described later in this report, it was necessary to determine stream flows over the range of natural variability for the Royal River through the reach of interest near Bridge Street Dam and the East Elm Street Dam. The U.S. Geological Survey (USGS) has recorded flows on the Royal River at a gage (gage #01060000) at Yarmouth, Maine, from 1949 to 2023, with a gap from 2004-2019. The gage has been located at, or near, the head-of-tide at First Falls for this period of record. Given the minimal decrease in contributory drainage area between the Yarmouth USGS gage and the estimated upstream limits of the study area near Route 9 (141 sq. mi. vs. 133 sq. mi., respectively, or less than 6 percent reduction), and lack of significant tributary inputs, flow data was used directly from the gage, without adjustment, for further analysis.

5.1.1 Daily Flows

Daily stream flow data for USGS gage 0106000 from the previous 59 years (October 1949-September 2004; October 2019-September 2023) (**Figure 19**) were assessed to determine flow-duration statistics for representative 'normal' (Annual Median Flow) conditions, monthly means and duration exceedances, and low flow conditions (7Q10).

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study The 7-day, 10-year (7Q10) annual low-flow statistics are based on an annual series of the smallest values of mean discharge computed over any 7-consecutive days during the annual period. A probability distribution is fit to the annual series of 7-day minimums, and the 7Q10 statistic is the annual 7-day minimum flow with a 10-year recurrence interval (nonexceedance probability of 10 percent).

Figure 20 below depicts the daily average flow duration curve for the entire year at the USGS gage, and **Figure 21** presents the daily average flow duration exceedance curve.

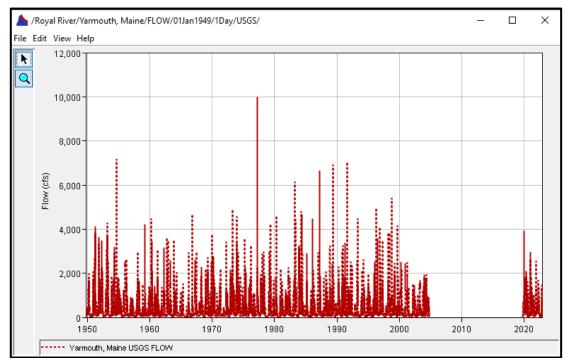


Figure 19: Royal River 1-Day Averaged Flows 1949-2023

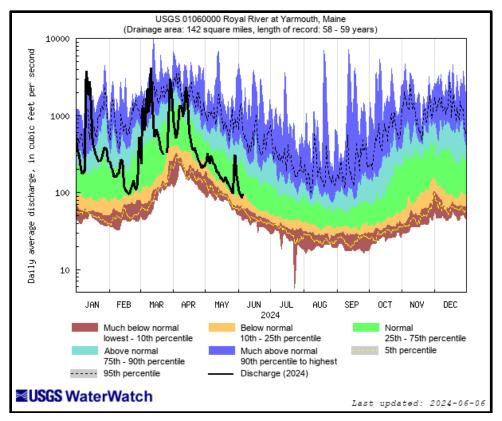


Figure 20: Annualized Daily Average Flow Statistics

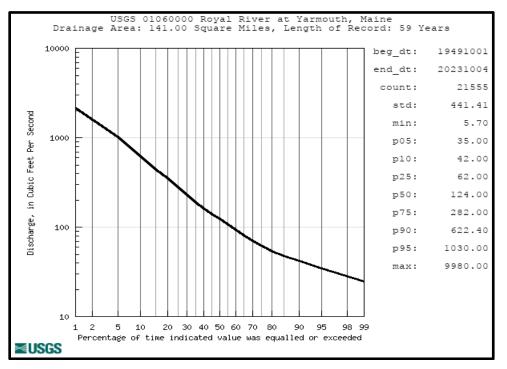


Figure 21: Flow Duration Curve Royal River

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

For the 7Q10, the project team utilized HEC-DSSVue version 3.3.29 with the full period of record daily flows from the Royal River stream gage, to determine the smallest values of mean discharge computed over any 7-consecutive days during each water year using a 7-day forward moving average. HEC-DSSVue was also used to fit an exceedance probability distribution to the annual series of 7-day minimums, resulting in a 7Q10 of 25 cfs. It was noted that this is similar to results published from the USGS of 24 cfs (Dudley, 2004), and the value reported in the Stantec 2013 report (23 cfs).

The Annual Median flow for the USGS gage is reported in the Stantec 2013 study to be 120 cfs. This value was adopted for this study after favorable comparison to the updated 50% exceedance statistics included in **Figure 21**.

Daily average flows for the period of record were imported into HEC-DSSVue (version 3.3.29) to derive migration season flow duration exceedance curves. For the Mid-May to Mid-June peak Alewife upriver passage, the Royal River flows for low (95% duration exceedance), average (50%), and high (5% duration exceedance) are 62 cfs, 144 cfs, and 641 cfs respectively, as shown in **Table 3**. The full May-June upriver migration period values are similar: 53 cfs, 149 cfs, and 706 cfs respectively. These discharges were compiled for use in the hydraulic model, specifically for evaluation of measures and conceptual designs, as described in later sections.

		Yarmouth, Maine
Ordinate	Exceedance	FLOW
		USGS
Labels		
Units	Percent	
Туре		
1	0.100	39
2	0.200	35
3	0.500	23
4	1.000	15
5	2.000	11
6	5.000	6
7	10.000	4
8	15.000	3
9	20.000	2
10	30.000	2
11	40.000	1
12	50.000	1
13	60.000	1
14	70.000	1
15	80.000	
16	85.000	
17	90.000	
18	95.000	
19	98.000	
20	99.000	
21	99.500	
22	99.800	

Table 3: Peak Upriver Migration Flow Duration Statistics — Mid-May to Mid-June

5.1.2 Flood Flows

Flood flows were also necessary for use in the hydraulic model, to assess potential water surface impacts and the range of velocity/shear stress resulting from evaluated measures during the high flow events. Peak flow statistics for the Royal River were adopted from the recently updated Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) for Cumberland County, Maine (dated June 20, 2024).

Peak flows were available for the 10%, 2%, 1%, and 0.2% annual exceedance probability (AEP) (a.k.a. the 10-, 50-, 100-, and 500-yr annual recurrence interval (ARI)) storm events and it was noted that hydrologic calculations to support the FEMA FIS were completed in the 1980s. As such, an updated flood frequency analysis was completed using the USACE Hydrologic Engineering Center's Statistical Software Package (HEC-SSP), utilizing recommended Bulletin 17C procedures. The 15-year period from OCT2004-SEP2019 was censored because the gage was not operational. Flood frequency flows were determined for a range of standard frequency events. Results of the flood frequency analysis are shown in **Figure 22** and **Table 4** below.

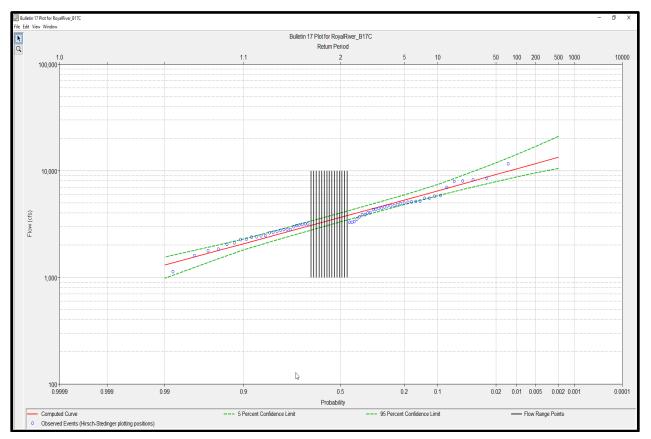


Figure 22: Flood Frequency Analysis Results

Annual Chance	Average Recurrence Interval (year)	Computed Curve (Flow, cfs)	Confidence Limits (Flow, cfs)		USGS StreamStats	FEMA FIS Flows (cfs)		Adopted
Exceedance			0.05	0.95	Flows (cfs)	At USGS gage 01060000	At Route 9 in North Yarmouth	Flows (cfs)
0.2	500	13,415	20,997	10,530	14,300	14,540	13,820	
0.5	200	11,678	16,867	9,522				
1	100	10,419	14,189	8,729	11,000	10,530	10,020	10,419
2	50	9,200	11,841	7,903	9,710	9,060	8,850	
5	20	7,639	9,174	6,751				
10	10	6,480	7,447	5,820	6,780	6,085	6,540	6,480
20	5	5,314	5,924	4,824	5,540			
50	2	3,643	3,998	3,321	3,740			3,643
80	1.25	2,506	2,758	2,253				
90	1.11	2,063	2,293	1,803				
95	1.05	1,759	1,984	1,475				
99	1.01	1,305	1,551	975				

Table 4: Flood Frequency Analysis Results

Updated frequency flows were similar to FEMA FIS flows available for comparison. All published FIS values are within the confidence limits of the flood frequency analysis. The FIS peak flows support the updated analysis flows which were then adopted for this study. As with the daily flows, USGS gage data was utilized directly without adjusting for slight increase in drainage area between the USGS gage and the upstream limits.

The final peak discharges for each modeled event are summarized in Table 5.

Modeled Event	Peak Discharge (cfs)
7Q10	25
Annual Median	120
95% Exceedance MidMay-MidJune	62
5% Exceedance MidMay-MidJune	641
50% AEP	3,643
10% AEP	6,480
1%AEP	10,419
10-22DEC2019	4,300

Table 5: Summary of Peak Discharges

For relative comparison, the flood of record on the Royal River occurred on March 13, 1977, and had a peak discharge of 11,500 cfs. Records from the 1977 event are not refined enough to develop a hydrograph, so the hydrograph of the 10-22 DEC 2019 storm event (peak discharge 4,300 cfs) was utilized for model validation and to inform the 1% AEP modeled event. Specifically, the 10-22 DEC 2019 storm event hydrograph was scaled by a factor of 2.42 to match historic hydrograph to the 1% AEP peak discharge.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study

5.2 HYDRAULICS

A hydraulic model for the reach of interest was necessary to simulate the range of anticipated water surface elevation and velocity resulting from each of the alternatives and was used to inform conceptual design of bank stabilization and in-stream structures.

5.2.1 Model Development

The USACE Hydrologic Engineering Center's (CEIWR-HEC) River Analysis System (HEC-RAS) model was utilized for this analysis, given the software capability for twodimensional (2D) unsteady flow calculations. HEC-RAS version 6.1 was initially utilized for terrain and initial model development at the beginning of the study, with version 6.4.1 utilized for model finalization, computations, and alternative evaluation. The alternatives were simulated under a range of hydrologic loading conditions that include low-flow through extreme loading scenarios.

5.2.1.1 Domain

For the 2D model domain, a perimeter was established for the full study area extending from the downstream end of the estuary near Parker Point to approximately 750-feet upstream of Memorial Highway (State Route 9). The State Route 9/Baston Park vicinity was selected as the upper limit of the feasibility-level HEC-RAS hydraulic model domain based on previous studies (primarily Stantec 2013), their findings, and data availability. Specifically, the Stantec 2013 hydraulic model & report indicated that modeling up to State Route 9 / Baston Park vicinity should capture most of the impacts. Plus, State Route 9/Baston Park vicinity is the upstream limit of the available, detailed channel bathymetry. The model domain is shown in **Figure 23**.

Figure 23: Royal River 2D Model Domain

5.2.1.2 Terrain

Model terrain was developed from the best available topographic and bathymetric data for the study area. This included: site surveys, bathymetric surveys, Digital Elevation Models (DEM), and LiDAR data. For assembly, all elevation sources (**Table 6**) were converted to the NAVD88 vertical datum, with units in feet, while the horizontal projection is NAD_1983_NSRS2007_StatePlane_Maine_West_FIPS_1802_Ft_US, with units in feet. Terrain processing was primarily performed in the HEC-RAS Ras Mapper utility, supplemented by ESRI ArcMap 10.6.1.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study

	 Plan of Topographic Survey Bridge Street – Titcomb Associates (2013)
	Plan of Topographic Survey East Elm Street– Titcomb Associates
Site Surveys	(2013)
	 Spot Elelvations Bridge Street & Elm Street Dams –
	Interfluve/University of Southern Maine (2016)
	 Elm Street Dam Impoundment - USACE (2022)
	 After Dredge Survey-ROY2769 - USACE (2015)
Bathymetry	 East Elm Street to Rt 9 – Stantec (2013)
	 Bridge Street Dam Impoundment - Stantec (2009/2010)
	 FEMA FIS XS Inverts and spot survey – FEMA (1979/1980)
Lidar	 Lidar me_southcoastal_1_2020 las (USGS 3DEP)(2020)
	 for in-channel boulders & ledge
DEMs & DEM	 USGS 1 Meter - ME South Coastal - 1m resolution – 2020 (USGS
generated	3DEP)
contours	 Geollibrary DEM 2013.08MAR22 - 1m resolution –
	Maine_Elevation_DEM_Aggregate - State of Maine (2013)
	 USGS 1/3 arc second - 10m resolution – 2021 (USGS 3DEP)

Table 6: Royal River Model Terrain Sources

Approximate top of sediment bathymetry associated with the recent sediment probe data collected by USACE and Stantec were not explicitly incorporated into the terrain model, however the data was reviewed and found to generally match the terrain model.

A topographic work map displaying the terrain model is included in **Attachment B** of this appendix.

5.2.1.3 Structures

Existing hydraulic structures were incorporated into the HEC-RAS model domain as SA2D Connections. Correspondingly, modifications were added to the terrain model to represent substructure features. The primary difference between the Existing (without project) and TSP (with Project) hydraulic models are how the Bridge Street Dam and East Elm Street Dam are represented through SA2D Connections and terrain modifications, as well as the 2D computational mesh in the vicinity of the dams.

Dimensional information for the 2 dams (Bridge Street Dam, Elm Street Dam), 9 bridges that cross the Royal River, and 1 culvert at Foundry Channel are based on best available information as summarized in **Table 7**.

Table 7: Royal River Model Hydraulic Structure Information

Hydraulic Structure	Primary Reference
Bridge Street Dam	Titcomb Associates site survey (2013) /
East Elm Street Dam	Interfluve/University of Southern Maine (2016)
Interstate-295 Northbound &	
Southbound Bridges	
MainStreet / Route 88 / Falls Bridge	
Bridge Street / Cotton Mill Bridge	
US Route 1 Bridge	MaineDOT MEPLANS As-Builts
East Elm Street Bridge / Foundry	
Channel culvert	
Memorial Highway / State Route 9 /	
Dunns Bridge	
Beth Condon Memorial Footbridge	Town of Yarmouth As-Builts
Grand Trunk Railroad Bridge	Stantas 2012 HEC BAS Coomstru
Maine Central Railroad Bridge	Stantec 2013 HEC-RAS Geometry

Note that all elevation data that was converted to NAVD88, if not natively in that vertical datum. Dam information was primarily derived from the Titcomb Associates site surveys and the Interfluve dataset. As-built plans were retrieved from the MaineDOT MEPLANS application in May 2022 for Interstate-295, Falls Bridge/MainStreet/Route 88, Cotton Mill/Bridge Street, US Route 1, Elm Street, and Memorial Highway/State Route 9/ Dunns bridges. As-built information for the Beth Condon Footbridge was provided by the Town of Yarmouth. As-built information for the Grand Trunk Railroad and Maine Central Railroad bridges was not readily available and thus the model geometry for these structures was based on the Stantec 2013 1-dimensonal hydraulic model. An excerpt of the Interstate-295 as-builts is provided in **Figure 24**. Available pertinent as-built plans are included in **Attachment B**.

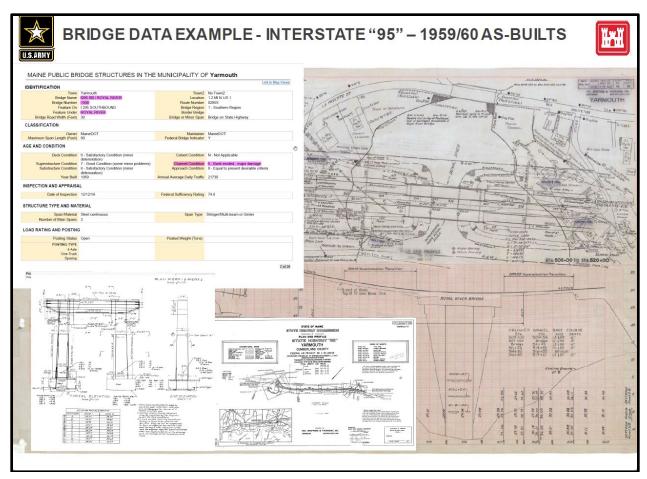


Figure 24: Royal River Bridge Data Example

Additionally, the Elm Street culvert on Foundry Channel was included in the model domain based on field measurements by USACE staff. The Elm Street culvert on Foundry Channel was measured at the downstream face and generalized to be 12-feet span and 8-feet rise, with an irregular bottom and 2-ft of cover between the crown and roadway surface. This information has been used to update the hydraulic model.

5.2.1.4 Roughness/Land Use

Roughness coefficients represent the resistance to flow in channels and floodplains. Roughness is usually presented in the form of a Manning's n value in HEC-RAS. The value of Manning's n is highly variable and depends on a number of factors including: surface roughness; vegetation; channel irregularities; channel alignment; scour and deposition; obstructions; size and shape of the channel; stage and discharge; seasonal changes; temperature; and suspended material and bedload. Because Manning's n depends on many factors, several options are available in HEC-RAS to vary n.

The process to assign roughness coefficients initially assigned Manning's "n" values to the model domain based on land use classifications in the spatially varying National Land Cover Database (NLCD) 2019. The georeferenced NLCD 2019 grid was imported into the HEC-RAS model domain and Manning's "n" values were assigned following a review of typical ranges presented in the HEC-RAS 2D User's Manual. The NLCD 2019/Manning's n association for Royal River is shown in **Table 8**.

	d Area Edits	Show Base	Overrides			Region:	All Regions
ID	Name	ManningsN	FirstFalls - ManningsN	BridgeSt - ManningsN	MiddleFalls - ManningsN	FoundrChannel - ManningsN	ElmStreet - ManningsN
0	NoData	0.066					
43	Mixed Forest	0.16					
21	Developed, Open Space	0.016					
81	Pasture-Hay	0.05					
22	Developed, Low Intensity	0.063					
23	Developed, Medium Intensity	0.094					
90	Woody Wetlands	0.12					
42	Evergreen Forest	0.16					
41	Deciduous Forest	0.16					
31	Barren Land Rock-Sand-Clay	0.035					
71	Grassland-Herbaceous	0.035					
82	Cultivated Crops	0.045					
95	Emergent Herbaceous Wetlan	0.15					
11	Open Water	0.033					
24	Developed, High Intensity	0.125					
52	Shrub-Scrub	0.07					
1	openwater	0.033	0.05	0.05	0.05	0.05	0.05

 Table 8: Royal River Roughness Coefficients Based on Land Cover

The land use classification polygons were refined to establish the stream corridor as "openwater" through the study area based primarily upon boundaries in the Town of Yarmouth parcel database. It was noted that the referenced n values are for appreciable depths of flow and are not meant for shallow overland flow. Shallow, overland flow Manning's n values are generally much higher due to the relative roughness compared to the flow depth. Therefore, additional Manning's calibration regions were added for each of the four sets of falls, plus the Foundry Channel, and are discussed in more detail in the calibration section of this appendix. The spatial extents of the final Manning's values are shown in **Figure 25**.

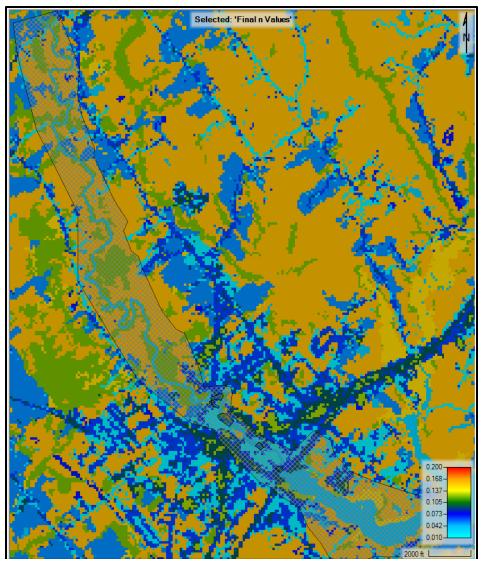


Figure 25: Royal River Final Roughness Coefficients

5.2.1.5 Computational 2D Mesh/Breaklines

The 2D computational grid was developed with Default point spacing of 80ft x 80 ft, and is summarized in **Table 9** while computational settings are shown in **Figure 26**.

Table 9: Royal River 2D Computational Mesh Properties

Geometry: Existing_2D_19JUL24	Geometry: TSP_2D_19JUL24
Number of Cells = 13942	Number of Cells = 14026
Average Face Length = 79 ft. Average Cell Size = 6,168 sq.ft. Maximum Cell Size = 17,459 sq.ft. Minimum Cell Size = 46 sq.ft.	Average Face Length = 78 ft Average Cell Size = 6,131 sq ft Maximum Cell Size = 17,459 sq ft Minimum Cell Size = 39 sq ft

D Flow Areas						
2D Flow Area: Perimeter 1			↓ ↑ Storage ← Area			
Connections and References to thi	is 2D Flow Are	a				
Conn: Beth_Condon Conn: BridgeS Conn: ElmStDam Conn: FallBrid Conn: RR2_MaineCentral Conn: To Periodic Connection		treetDam	Conn: CottonMil_Bridg	Conn: EES8		
		ge	Conn: FoundryChanl	Conn: RR1_StLawAtl		
		neter 1	Conn: US_Rt1	BCLine: BC Line 1 - Upstream		
BCLine: BC Line 2 - Downstream				-		
Default Manning's n Value:		0.06	20 Flow Are	ea Computation Points		
Edit Land Cover to M	lanning's n		Mesh contains: 13942 cells	(A)		
Cell Volume Filter Tol (0=OFF)(ft):		0.01	max cell(13498) = 17458.56(sq ft) min cell = 45.82(sq ft)			
Cell Minimum Surface Area Fraction	(0-0EE)-	0.01	avg cell = 6168.41(sq ft)			
	(0-011).	0.01				
Face Profile Filter Tol (0=OFF)(ft):		0.01	Cenerate Computation Points	on Regular Interval with All Breaklines		
Face Area-Elev Filter Tol (0=OFF)(f				ines (and internal Connections)		
Face Conveyance Tol Ratio (min=0.	.0001):	0.02				
ace Laminar Depth (0=OFF)(ft):		0.2	view/Edit C	Computation Points		
 Spatially Varied Manning's n on F Composite Classification Values 		2				
composite classification values	in Cells					
GIS Outline Force	Mesh Recomp	utation		Cancel		
GIS Outine Force D Flow Areas D Flow Area: Perimeter 1 Connections and References to thi Conn: Beth_Condon	Mesh Recomp is 2D Flow Are Conn: BridgeS	atreetDam	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Conn: CottonMil_Bridg		
GIS Outline Force O Flow Areas D Flow Areas D Flow Areas Perimeter 1 Connections and References to thi Conn: Beth_Condon Conn: EESB	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa	a treetDam am	Conn: BridgeStreetDamL Conn: FalBridge	Conn: CottonMil_Bridg		
GIS Outline Force D Flow Areas 2D Flow Areas 2D Flow Areas 2D Flow Areas Connections and References to thi Conn: Beth_Condon Conn: EES8 Conn: RR1_StLawAtt	Mesh Recomp is 2D Flow Are Conn: BridgeS	a treetDam am aineCentral	Corn: BridgeStreetDamL Corn: FalBridge Corn: To Perimeter 1	Conn: CottonMill_Bridg		
GIS Outline Force D Flow Areas 2D Flow Areas 2D Flow Areas 2D Flow Areas Connections and References to thi Conn: Beth_Condon Conn: EES8 Conn: RR1_StLawAtt	Mesh Recomp iis 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma	a treetDam am aineCentral e 2 - Downstre	Conn: BridgeStreetDamL Conn: FalBridge Conn: To Perimeter 1	Conn: CottonMil_Bridg		
GIS Outine Force D Flow Areas D Flow Are	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStD: Conn: RR2_Mi BCLine: BC Lin	a treetDam am aineCentral	Corn: BridgeStreetDamL Corn: FalBridge Corn: To Perimeter 1 early 20 Flow Arc	Conn: CottonMill_Bridg		
GIS Outine Force D Flow Areas D Flow Areas D Flow Area: Perimeter 1 Connections and References to thi Conn: Beth_Condon Conn: EESB Conn: RR 1_StLawAtl BCLine: BC Line 1 - Upstream I	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStD: Conn: RR2_Mi BCLine: BC Lin	a treetDam am aineCentral e 2 - Downstre	Conn: BridgeStreetDamL Conn: Bridge Conn: FalBridge Conn: To Perimeter 1 tarh 20 Flow Arc Mesh contains: 14026 cells max cell(13751) = 17458.56(sg	Conn: CottonMil_Bridg		
GIS Outline Force D Flow Areas D Flow Area: Perimeter 1 Connections and References to thi Conn: Beth_Condon Conn: EESB Conn: RR1_StLawAtl BCLine: BC Line 1 - Upstream Default Manning's n Value: Edit Land Cover to M	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStD: Conn: RR2_Mi BCLine: BC Lin	a treetDam am aineCentral e 2 - Downstre	Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 earth 20 Flow Arc Mesh contains: 14026 cells	Conn: CottonMil_Bridg		
GIS Outline Force D Flow Areas D Flow Area: Perimeter 1 Connections and References to thi Conn: Beth_Condon Conn: EESB Conn: RR1_StLawAtl BCLine: BC Line 1 - Upstream Edit Land Cover to M Cell Volume Filter Tol (0=OFF)(ft):	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin BCLine: BC Lin	a treetDam am aineCentral e 2 - Downstre 0.06	Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 Conn: To Perimeter	Conn: CottonMil_Bridg		
GIS Outine Force D Flow Areas D Flow Are	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin BCLine: BC Lin	a treetDam am aineCentral e 2 - Downstre 0.06	Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 Conn: To Perimeter	Conn: CottonMil_Bridg		
GIS Outline Force D Flow Areas D Flow Ar	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin BCLine: BC Lin Ianning's n	a treetDam am aineCentral e 2 - Downstre 0.06 0.01 0.01	Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 conn: To Perimeter	Conn: CottonMil_Bridg		
GIS Outline Force D Flow Areas Perimeter 1 Connections and References to thi Connections and References to thi Conn: Beth_Condon 0 Conn: EESB 0 Conn: RR1_StLawAtl 0 BCLine: BC Line 1 - Upstream 1 Default Manning's n Value: Edit Land Cover to M Cell Volume Filter Tol (0=OFF)(ft): Cell Minimum Surface Area Fraction Face Area-Elev Filter Tol (0=OFF)(ft): Face Area-Elev Filter Tol (0=OFF)(ft):	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin Ianning's n (0=OFF): ft):	a treetDam am e 2 - Downstre 0.06 0.01 0.01 0.01	Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 conn: To Perimeter	Conn: CottonMill_Bridg		
GIS Outline Force D Flow Areas Perimeter 1 Connections and References to thi Connections and References to thi Conn: Beth_Condon 0 Conn: EESB 0 Conn: RR1_StLawAtl 0 BCLine: BC Line 1 - Upstream 1 Default Manning's n Value: Edit Land Cover to M Cell Volume Filter Tol (0=OFF)(ft): Cell Minimum Surface Area Fraction Face Profile Filter Tol (0=OFF)(ft): Face Area-Elev Filter Tol (0=OFF)(ft):	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin Ianning's n (0=OFF): ft):	a treetDam am 2 - Downstre 0.06 0.01 0.01 0.01 0.01	Conn: BridgeStreetDamL Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 conn: To Perimeter 1 contains: 14026 cells max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp contains: 14026 cells max cell(13751) = 17458.56(sp contains: 1402	Conn: CottonMill_Bridg		
D Flow Areas 20 Flow Areas 20 Flow Area: Perimeter 1 Connections and References to thi Conn: Beth_Condon (Conn: EESB (Conn: RR1_StLawAtl (BCLine: BC Line 1 - Upstream) Default Manning's n Value:	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin BCLine: BC Lin Ianning's n (0=OFF): ft): .0001): Faces	a treetDam am aineCentral e 2 - Downstre 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Conn: BridgeStreetDamL Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 conn: To Perimeter 1 contains: 14026 cells max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp contains: 14026 cells max cell(13751) = 17458.56(sp contains: 1402	Conn: CottonMil_Bridg Conn: FoundryChanl Conn: US_Rt1 Conn: US_Rt1 Conn: US_Rt1 Connections ft)		
GIS Outline Force D Flow Areas Perimeter 1 Connections and References to thi Connections and References to thi Conn: Beth_Condon 0 Conn: EESB 0 Conn: RR1_StLawAtl 0 BCLine: BC Line 1 - Upstream 1 Default Manning's n Value: Edit Land Cover to M Cell Volume Filter Tol (0=OFF)(ft): Cell Minimum Surface Area Fraction Face Profile Filter Tol (0=OFF)(ft): Face Area-Elev Filter Tol (0=OFF)(ft): Face Laminar Depth (0=OFF)(ft): Spatially Varied Manning's n on F Composite Classification Values Image: Spatially Varied Manning's n on F	Mesh Recomp is 2D Flow Are Conn: BridgeS Conn: ElmStDa Conn: RR2_Ma BCLine: BC Lin BCLine: BC Lin Ianning's n (0=OFF): ft): .0001): Faces	a treetDam am aineCentral e 2 - Downstre 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.2	Conn: BridgeStreetDamL Conn: BridgeStreetDamL Conn: FallBridge Conn: To Perimeter 1 conn: To Perimeter 1 contains: 14026 cells max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp max cell(13751) = 17458.56(sp contains: 14026 cells max cell(13751) = 17458.56(sp contains: 1402	Conn: CottonMil_Bridg Conn: FoundryChanl Conn: US_Rt1 Conn: US_Rt1 Conn: US_Rt1 Connections ft)		

Figure 26: Royal River 2D Computational Mesh Settings Geometry: Existing_2D_19JUL24 & TSP_2D_19JUL24

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

Breaklines were added to align the 2D computational grid with the Royal River, plus significant topographic features, and infrastructure. Specifically, twenty-nine (29) breaklines were defined as shown in **Figure 27**.

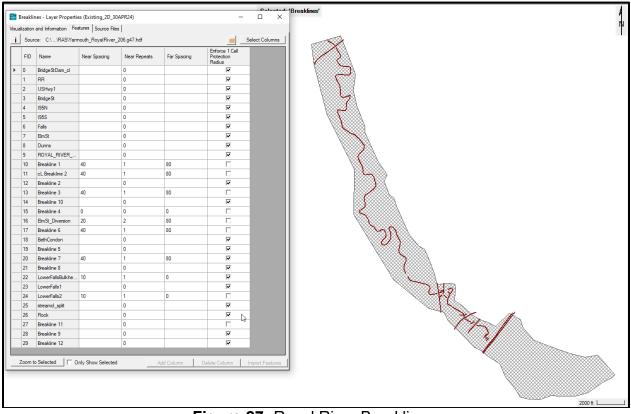


Figure 27: Royal River Breaklines

5.2.1.6 Boundary Conditions

<u>Flow</u>

- Normal Depth distribution at upstream boundary
- 7Q10, Annual Median Flow, 10%, 2%, 1%, and 0.2% AEP flood events as constant hydrograph flows. Each flow event has a constant flow hydrograph for the entire time series except the 1% AEP flow.
- Unsteady flow runs were performed for the 1% AEP modeled event, and the validation 10-22DEC2019 storm event.
- The hydrograph of the 10-22 DEC 2019 storm event (peak discharge 4,300 cfs) was utilized to inform the 1% AEP modeled event. Specifically, the 10-22 DEC 2019 storm event hydrograph was scaled by a factor of 2.42 to match the historic hydrograph to the 1% AEP peak discharge (10,419 cfs).
- For the Mid-May to Mid-June peak Alewife upriver passage, the Royal River flows for low (95% duration exceedance), average (50%), and high (5% duration exceedance) were also modeled with constant hydrograph flows.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

<u>Tide</u>

- Assumed 0-ft NAVD88 for constant hydrograph run model plans, except the validation and 1% AEP model runs which are based on a storm (10-22DEC2019).
- Based on Portland, ME NOAA tide station for validation runs.
- Sensitivity to downstream boundary assumptions checked with constant tailwater runs alternately simulating the Portland NOAA tide station Upper 95% Confidence Interval, 1% AEP and the Lower 95% Confidence Interval, 1% AEP levels. More details in section 5.4 of this appendix.

HEC-RAS Unsteady Computation Options and Tolerances								
General 2D Flow Options 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options								
	Jse Coriolis Effects (not used with Diffusion	on Wave equation)						
	Parameter	(Default)	Perimeter 1					
11	Theta (0.5-1.0)	1	1					
21	Theta Warmup (0.5-1.0)	1	1					
3 \	Nater Surface Tolerance [max=0.2](ft)	0.01	0.01					
4	/olume Tolerance (ft)	0.01	0.01					
5 N	Maximum Iterations	20	20					
6	Equation Set	Diffusion Wave	SWE-ELM (original/faster)					
7 I	nitial Conditions Time (hrs)		2					
8 I	initial Conditions Ramp Up Fraction (0-1)	0.1	0.1					
91	Number of Time Slices (Integer Value)	1	1					
10 1	Furbulence Model	Non-Conservative (original)	Conservative					
11 L	ongitudinal Mixing Coefficient	0.3	0.3					
12 1	Fransverse Mixing Coefficient	0.1	0.1					
13 5	Smagorinsky Coefficient	0	0					
14 E	Boundary Condition Volume Check			- H				
15 L	atitude for Coriolis (-90 to 90)							
16 5	Solver Cores	All Available	All Available					
17 N	Matrix Solver	PARDISO (Direct)	PARDISO (Direct)					
	Convergence Tolerance							
	Minimum Iterations	0	0					
20 N	Maximum Iterations	0	0					
	Restart Iteration	10	10					
	Relaxation Factor	1.3	1.3					
23 5	SOR Preconditioner Iterations	10	10					
			OK Cancel Defa	aults				

Figure 28: Royal River Computation Settings

5.2.1.6 Computational settings

- Equation Set: Shallow water (SWE-ELM)
- Turbulence Conservative
- Timestep
 - Most model runs utilized 10 second timesteps
 - \circ the 1% AEP and DEC19 validation runs used 3 second timesteps.
- Ramp-up & model time

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Initial Conditions time varied because runs with lower initial discharges needed more time to fill the stream (from upstream to downstream), while runs with higher discharges could do same in less time.

5.2.1.7 Profile Lines

A profile line representing the approximate Royal River stream centerline ("Royal River 1") was utilized for stream stationing and comparison purposes. In addition, profile lines were added along approximate fish passage routes through the dam sites and Middle Falls to evaluate fish passage parameters, and at intermediate locations across the channel to provide flow hydrographs and cross sections for comparison.

5.2.2 Existing Information

Existing hydraulic structures were incorporated into the HEC-RAS model domain as SA2D Connections. Correspondingly, modifications were added to the terrain model to represent substructure features. The primary difference between the Existing (without project) and TSP (with Project) hydraulic models are how the Bridge Street Dam and East Elm Street Dam are represented through SA2D Connections and terrain modifications, as well as the 2D computational mesh in the vicinity of the dams. Similarly, the two alternatives evaluated prior to TSP selection, full and partial dam removals, were also represented through SA2D Connections and terrain modifications, as well as the 2D computational mesh in the vicinity of the dams.

5.2.3 Calibration/Validation

Due to lack of quality High Water Marks that could be used for model calibration, Manning's n values in the Calibration Regions were initially adjusted to produce hydraulic results at the USGS Gage (01060000) that would generally match the published gaging station rating curve. Five model runs with Manning's n values ranging from 0.033 to 0.18, all assuming tailwater at a constant 0 ft, NAVD88, were compared to the station rating curve (**Figure 29**). Calibration Region n=0.05 was visually observed to match best and was adopted for this study. Model result sensitivity to Manning's n roughness coefficients was evaluated and is discussed in **Section 5.4**.

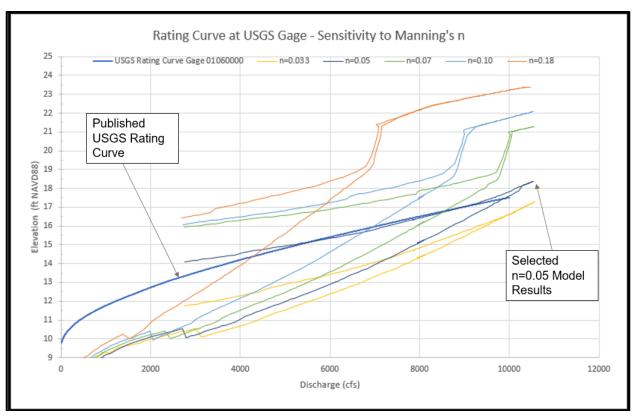


Figure 29: Royal River Rating Curve Comparison at USGS Gage

Additionally, a simulation of the 10-22 DEC 2019 storm event was performed as a validation of the model utilizing Without Project (Existing) conditions. A separate With Project (TSP) conditions model run was additionally performed to allow relative comparison.

A stage hydrograph of the tidal signal for the period, retrieved from the NOAA 8418150 Portland, ME tide gage, was utilized at the downstream boundary for the validation run. The tidal signal was utilized without adjustment because very little difference was noted in tidal amplitude and timing of high tide from Portland versus the subordinate tide stations nearest Yarmouth (South Freeport 8417801 and Prince Point 8417948) (**Figure 30** and **Figure 31**). The flow hydrograph observed at the USGS gage for the period was used as the upstream flow hydrograph for the model run (**Figure 32**).

Figure 30: NOAA Tide Stations Near Royal River

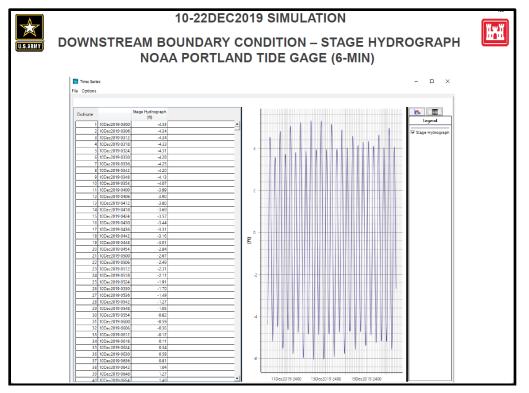
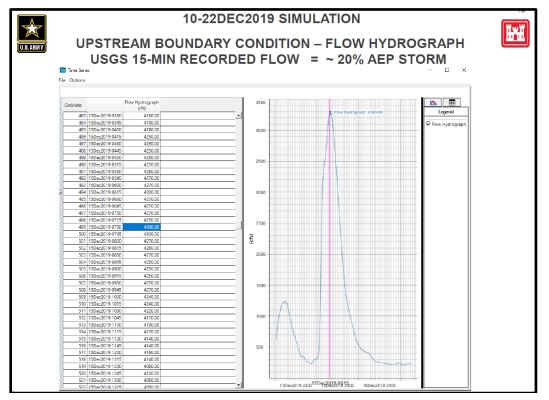



Figure 31: Tide Stage for 10-22DEC2019 Storm Event Royal River

Figure 32: Upstream Flow Hydrograph for 10-22DEC2019 Storm Event Royal River 42

The resulting hydraulic model discharge and water surface time series at the USGS gage location was then compared to the observed flow and stage for the 10-22 DEC 2019 storm event, as show in **Figure 33** and **Figure 34**.

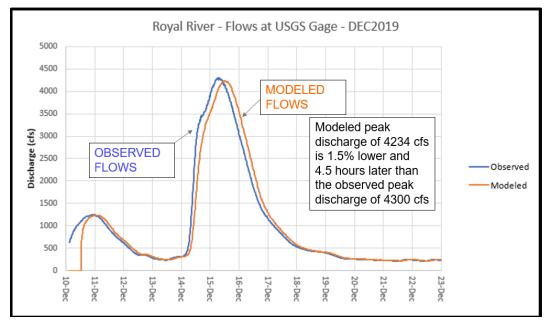


Figure 33: Modeled & Observed Flow Hydrograph at USGS Gage - 10-22DEC2019

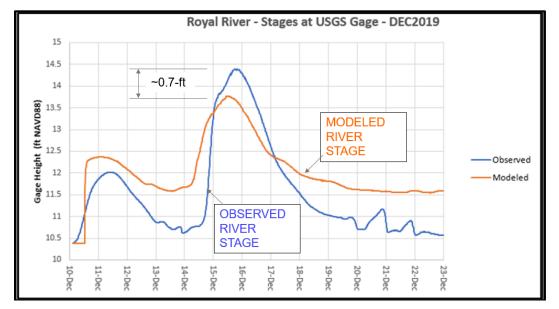


Figure 34: Modeled & Observed Stage Hydrograph at USGS Gage - 10-22DEC2019

The modeled peak discharge of 4234 cfs is 1.5% lower and 4.5 hours later than the observed peak discharge of 4300 cfs. The closely matching discharge response demonstrates that the inflow hydrograph magnitude is minimally affected by channel and storage routing between the upstream limit of study and the USGS gage location.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Additionally, the hydraulic model underpredicts observed peak water surface at the USGS gage by approximately 0.7-ft. This finding is in parity with the graphical representation in the rating curve comparison (**Figure 35**) indicating that the model is somewhat more efficient than measured observations at these flow and tidal conditions, but generally matches the trend.

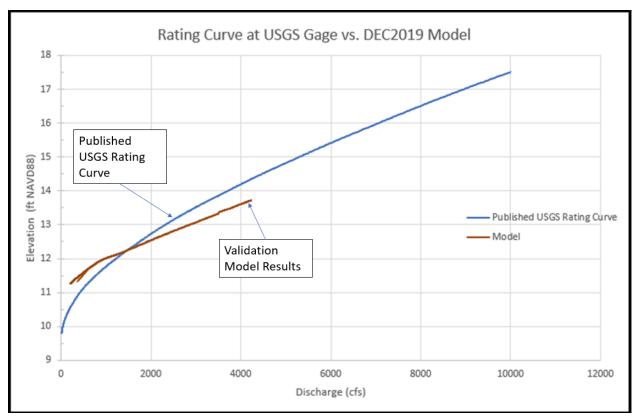


Figure 35: Modeled & Published Rating Curve at USGS Gage - 10-22DEC2019

5.2.4 Results

Without and With Project conditions were modeled for the 7Q10, Annual Median Flow, 50%, and 10% AEP flood events as constant hydrograph flows. The 1% AEP flood event was modeled utilizing a version of the 10-22DEC2019 historic storm hydrograph scaled to mimic 1% AEP peak flows. For the Mid-May to Mid-June peak Alewife upriver passage, the Royal River flows for design low (95% duration exceedance) and design high (5% duration exceedance) were also modeled with constant hydrograph flows.

5.2.4.1 Without Project Conditions

Without Project water surface, depth, and velocity results are presented in **Attachment C** "RoyalRiver_Appendix_C_HydraulicsResults_30AUG24".

5.2.4.2 With Project Conditions

With Project water surface, depth, and velocity results are presented in **Attachment C** "RoyalRiver_Appendix_C_HydraulicsResults_30AUG24".

5.2.4.3 Fish Passage Summary of Results

Hydraulic parameters were evaluated at the Bridge Street Dam, Middle Falls, and East Elm Street Dam sites for Peak Alewife upriver passage conditions (Mid-May to Mid-June 95% and 5% duration exceedance). This task was complicated by ledge outcrops at each of these sites yielding cascades with complex and varied flow paths that change depending on flow quantity. Likewise, unknown bottom conditions and bathymetry immediately upstream and below the dams add uncertainty to this task. Localized depths, velocities, vertical accelerations, turbulence, and other hydraulic phenomena may affect target species behavior at a scale that is impractical or impossible for 2D hydraulic modeling to accurately predict. These factors combined make determination of fish passage routes tenuous, at best. But an important consideration is that Royal River historically sustained upriver migration prior to construction of the dams, and With Project conditions intend to generally restore Royal River to that state.

For purposes of this evaluation, profile lines "BridgeSt_LowFlow1", "Middle Falls Bypass", and "Elm_St_Low_Flow1" were added to the model based on initial 95% exceedance peak upriver migration inundation limits as the assumed migration pathways to evaluate of the hydraulic parameters. **Table 10** presents a summary of hydraulic parameters along these profile lines, as a natural system, as well as the values from **Table 2** USFWS design guidance values for engineered, nature-like fish passage of the target species as a reference.

USFWS Recommended	Species	Minimum Pool/Channel Width (ft)	Minimum Pool/Channel Depth (ft)	Minimum Pool/Channel Length (ft)	Minimum Weir Opening Width (ft)	Minimum Weir Opening Depth (ft)	Maximum Weir Opening Water Velocity (ft/sec)	Maximum Fishway Channe Slope			
Parameters for Fish Passage Design	Alewife	5.0	2.25	10.0	2.50	1.00	6.00	1:20			
				Location: Brid	ge Street Dam		1				
TSP Model Results:	Upriver Migration 95% Exceedance	16	< 1 (natural)	15	N/A (natural)	<1 (natural)	4.6 (natural)	1:10, local max 1:5 (natural)			
Bridge Street Dam	Upriver Migration 5% Exceedance	40	< 1 (natural)	30	N/A (natural)	<1 (natural)	8.9 (natural)	1:10, local max 1:5 (natural)			
	Location: Middle Falls										
TSP Model Results:	Upriver Migration 95% Exceedance	4	< 1 (natural)	14	N/A (natural)	<1 (natural)	2.6 (natural)	1:15, local max 0.5:1 (natural)			
Middle Falls	Upriver Migration 5% Exceedance	20	< 2 (natural)	60	N/A (natural)	<1 (natural)	4.3 (natural)	1:15, local max 0.5:1 (natural)			
	Location: East Elm Street Dam										
TSP Model Results:	Upriver Migration 95% Exceedance	2	< 1 (natural)	5	N/A (natural)	<1 (natural)	4.5 (natural)	1:7, local max 1:5 (natural)			
Elm Street Dam	Upriver Migration 5% Exceedance	5	< 2 (natural)	7	N/A (natural)	<1 (natural)	11.6 (natural)	1:7, local max 1: (natural)			

Table 10: Royal River Summary of Site-Specific Fish Passage Parameters

While some of the parameters in **Table 10** are outside the design guidelines for an engineered nature-like fishway, the proposed natural setting at each of these sites may yet allow upriver migration through yet-undefined flow pathways, whether currently visible or post-demolition. If further review by fish passage experts, USFWS, or other partners indicate grave concerns for target species passage based on these results, at any or all of these sites, additional site design could be addressed in the Design and Implementation Phase through the project's Adaptive Management Plan. Such designs would likely fine-tune localized hydraulics for effect by supplementing the natural stream bed with limited and strategically placed material such as sandbags, boulders, or remnant granite blocks from dam demolition.

5.2.4.4 Recreation Summary of Results

Changes to depth, width and velocity of the river were reviewed with regards to potential impacts to recreation from the Yarmouth History Center boat launch to the upstream limits of the study, near Route 9.

In general, With Project water levels during "normal" Annual Median flows are anticipated to be approximately 4-feet lower than Without Project conditions, from the Yarmouth History Center boat launch to a point approximately 4 miles upstream near the mouth of Toddy Brook. From the mouth of Toddy Brook to Route 9, at the upstream end of the study reach, the difference in water levels decreases from 4-feet to

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study approximately 1-foot. Although not explicitly in the model, testing indicates that lower water levels are unlikely to extend beyond Wescustugo Park or the railroad tracks along Chandler Brook.

Despite the lower water levels, flow widths and depths at the canoe launch and heading upstream appear to continue to support recreation activities, as shown in the "paddle depth" plots contained in Attachment C "RoyalRiver_Appendix_C_HydraulicsResults_30AUG24". In the "paddle depth" review, With Project flow depths are displayed highlighting locations predicted to be less than 1-foot deep during "normal" Annual Median Flows. The flow depth plots have orange colors for depths less than 1-ft, and red below 6-inches, indicating potential recreational hazards.

Areas across from the Yarmouth History Center canoe launch and towards the Elm Street Bridge could be problematic for paddling, but depths in the upstream direction appear sufficient for recreation. Four locations of potential stream narrowing with relatively shallow depths (< 1.5-ft depth) are indicated in the plots, generally in the upper reaches near Toddy Brook, which may require limited portage. Although the flow velocity during "normal" Annual Median Flows is generally predicted to increase, it is predicted to remain low near the canoe launch (<2 feet/second).

This review is intended to be representative but is not all inclusive. It is possible that shallower depths may sustain recreation, or deeper depths may pose recreational hazards based on individual circumstances. Similarly, thunderstorms and/or heavy rainfall in the Royal River watershed could lead to rapidly changing and dangerous conditions on the river, as is currently the case under Without Project conditions. USACE assumes no liability regarding these findings or future recreational uses on the Royal River.

5.2.4.5 Summary of Results

With- and Without Project conditions results were compared for the low- and normalflow periods (7Q10 and Annual Median Flow), peak Alewife upriver passage conditions (Mid-May to Mid-June 95% and 5% duration exceedance), and flood events (50%, 10%, and 1% AEP).

Water surface elevation change (With-Project - Without-Project) was evaluated along the stream centerline "Royal River 1" for each of these modeled events and is presented in **Table 11**.

				Water Surfa	ce Elevation	Change (With-I	Project - With	out-Project)
	Reach	From Station	To Station	Average (ft)	Max (ft)	Where (Sta)	Min (ft)	Where (Sta)
	Estuary	-	9,400	0.0	0.0	5,622	0.0	6,131
	First Falls	9,400	11,250	0.0	1.0	9,973	0.0	10,021
	Bridge Street	11,250	13,100	-1.8	0.9	11,857	-3.0	11,954
	Middle Falls	13,100	14,600	0.0	0.5	13,741	-0.5	13,643
ð	Elm Street	14,600	45,500	-3.4	1.0	15,267	-3.9	21,161
ğ	Route 9	45,500	46,822	-2.1	-1.4	46,753	-2.5	45,476
2	Reach	From Station	To Station	Average (ft)	Max (ft)	Where (Sta)	Min (ft)	Where (Sta)
	Estuary	-	9,400	0.0	0.0	-	0.0	-
5	First Falls	9,400	11,250	0.0	0.4	9,973	0.0	11,194
	Bridge Street	11,250	13,100	-2.3	1.0	11,859	-5.2	11,915
_ <u>≥</u> g_ ,	Middle Falls	13,100	14,600	-0.5	0.7	13,749	-1.3	13,642
	Elm Street	14,600	45,500	-4.0	3.3	15,269	-4.5	16,384
An	Route 9	45,500	46,822	-2.3	-1.6	46,752	-2.7	45,472
	Reach	From Station	To Station	Average (ft)	Max (ft)	Where (Sta)	Min (ft)	Where (Sta)
	Estuary	-	9,400	0.0	0.0	-	0.0	-
ê ji	First Falls	9,400	11,250	0.1	0.2	9,964	-0.1	9,995
문문.	Bridge Street	11,250	13,100	-2.4	1.0	11,858	-4.5	11,927
Exceedance May-Midune	Middle Falls	13,100	14,600	-0.3	0.7	13,749	-1.0	13,642
ĕ.	Elm Street	14,600	45,500	-3.9	0.1	15,155	-4.3	16,384
95%	Route 9	45,500	46,822	-2.4	-1.6	46,778	-2.8	45,497
	Reach	From Station	To Station	Average (ft)	Max (ft)	Where (Sta)	Min (ft)	Where (Sta)
•	Estuary	-	9,400	0.0	0.0	9,271	0.0	-
8 5	First Falls	9,400	11,250	0.0	0.7	10,054	-2.4	9,993
je je .	Bridge Street	11,250	13,100	-1.6	1.2	11.860	-6.6	11,898
8.5	Middle Falls	13,100	14,600	-0.1	0.3	13,921	-0.4	14,020
% Exceedance AidMay-Midum	Elm Street	14,600	45,500	-2.5	2.7	15,272	-3.3	16,384
2 Pi	Route 9	45,500	46,822	-1.0	-0.7	46,786	-1.1	45,501
	Reach	From Station	To Station	Average (ft)	Max (ft)	Where (Sta)	Min (ft)	Where (Sta)
	Reach Estuary	From Station	To Station 9.400	Average (ft)	Max (ft) 0.0	Where (Sta) 7.274	Min (ft) 0.0	Where (Sta)
	Estuary	-	9,400	0.0	0.0	7,274	0.0	-
	Estuary First Falls	- 9,400	9,400 11,250	0.0	0.0	7,274 9,871	0.0	9,590
	Estuary First Falls Bridge Street	- 9,400 11,250	9,400 11,250 13,100	0.0 0.0 -1.4	0.0 0.1 1.8	7,274 9,871 11,867	0.0 0.0 -7.7	9,590 11,898
, AEP	Estuary First Falls Bridge Street Middle Falls	9,400 11,250 13,100	9,400 11,250 13,100 14,600	0.0 0.0 -1.4 0.1	0.0 0.1 1.8 0.7	7,274 9,871 11,867 13,920	0.0 0.0 -7.7 -0.2	9,590 11,898 14,573
50% AEP	Estuary First Falls Bridge Street	- 9,400 11,250	9,400 11,250 13,100	0.0 0.0 -1.4	0.0 0.1 1.8	7,274 9,871 11,867	0.0 0.0 -7.7	9,590 11,898
50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9	9,400 11,250 13,100 14,600 45,500	9,400 11,250 13,100 14,600 45,500 46,822	0.0 0.0 -1.4 0.1 -0.7 -0.3	0.0 0.1 1.8 0.7 2.9 -0.3	7,274 9,871 11,867 13,920 15,274 46,261	0.0 0.0 -7.7 -0.2 -5.6 -0.3	9,590 11,898 14,573 15,279 45,467
50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach	9,400 11,250 13,100 14,600	9,400 11,250 13,100 14,600 45,500 46,822 To Station	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft)	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft)	7,274 9,871 11,867 13,920 15,274	0.0 0.0 -7.7 -0.2 -5.6	9,590 11,898 14,573 15,279
50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9	9,400 11,250 13,100 14,600 45,500 From Station	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400	0.0 0.0 -1.4 0.1 -0.7 -0.3	0.0 0.1 1.8 0.7 2.9 -0.3	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta)	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft)	9,590 11,898 14,573 15,279 45,467 Where (Sta)
SO% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls	9,400 11,250 13,100 14,600 45,500	9,400 11,250 13,100 14,600 45,500 46,822 To Station	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0	7,274 9,871 11,867 13,920 15,274 46,261	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0	9,590 11,898 14,573 15,279 45,467
EP SO% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary		9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2	9,590 11,898 14,573 15,279 45,467 Where (Sta)
¢ AEP SO% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0 -1.5	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2	9,590 11,898 14,573 15,279 45,467 Where (Sta) - 9,849 11,898
10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250 13,100	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0 -1.5 0.0	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0 0.2	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8	9,590 11,898 14,573 15,279 45,467 Where (Sta) - 9,849 11,898 13,993
10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250 13,100 14,600	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600 45,500	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0 -1.5 0.0 -0.4	0.0 0.1 1.8 0.7 2.9 -0.3 Max(ft) 0.0 0.0 0.0 2.0 0.2 3.0	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062 15,274	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6	- 9,590 11,898 14,573 15,279 45,467 Where (Sta) - 9,849 11,898 13,993 15,279
10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street Route 9	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250 13,100 14,600 45,500	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600 45,500 46,822	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0 -1.5 0.0 -0.4 -0.1	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0 0.2 3.0 -0.1	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - - 9,973 11,871 14,062 15,274 46,042	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6 -0.1	9,590 11,898 14,573 15,279 45,467 Where (Sta) 9,849 11,898 13,993 15,279 45,473
10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach		9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600 45,500 46,822 To Station	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 0.0 -1.5 0.0 -0.4 -0.1 Average (ft)	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0 0.2 3.0 -0.1 Max (ft)	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062 15,274 46,042 Where (Sta)	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6 -0.1 Min (ft)	9,590 11,898 14,573 15,279 45,467 Where (Sta) 9,849 11,898 13,993 15,279 45,473 Where (Sta)
10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary		9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 -1.5 0.0 -0.4 -0.1 Average (ft) 0.0	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0 0.2 3.0 -0.1 Max (ft) 0.0	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062 15,274 46,042 Where (Sta) 6,950	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6 -0.1 Min (ft) 0.0	9,590 11,898 14,573 15,279 45,467 Where (Sta) 9,849 11,898 13,993 15,279 45,473 Where (Sta)
P 10% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250 13,100 14,600 45,500 From Station - 9,400	9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250 13,100 14,600 45,500 46,822 To Station 9,400 11,250	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 -1.5 0.0 -0.4 -0.1 Average (ft) 0.0 0.0 0.0 0.0	0.0 0.1 1.8 0.7 2.9 -0.3 Max (ft) 0.0 0.0 2.0 0.2 3.0 -0.1 Max (ft) 0.0 0.1	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062 15,274 46,042 Where (Sta) 6,950 9,759	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6 -0.1 Min (ft) 0.0 0.0 0.0	9,590 11,898 14,573 15,279 45,467 Where (Sta) - 9,849 11,898 13,993 15,279 45,473 Where (Sta) - 9,401
10% AEP 50% AEP 50% AEP	Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street Middle Falls Elm Street Route 9 Reach Estuary First Falls Bridge Street	- 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250 13,100 14,600 45,500 From Station - 9,400 11,250	9,400 11,250 13,100 44,600 45,500 46,822 To Station 9,400 11,250 13,100 46,822 To Station 9,400 11,250 13,100	0.0 0.0 -1.4 0.1 -0.7 -0.3 Average (ft) 0.0 -0.4 -0.1 Average (ft) 0.0 -0.4 -0.1 Average (ft) 0.0 -1.5	0.0 0.1 1.8 0.7 2.9 -0.3 Max(ft) 0.0 0.0 2.0 0.2 3.0 -0.1 Max(ft) 0.0 0.1 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.0 0.2 3.0 -0.1 Max(ft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7,274 9,871 11,867 13,920 15,274 46,261 Where (Sta) - 9,973 11,871 14,062 15,274 46,042 Where (Sta) 6,950 9,759 11,686	0.0 0.0 -7.7 -0.2 -5.6 -0.3 Min (ft) 0.0 -0.2 -8.2 -0.8 -5.6 -0.1 Min (ft) 0.0 0.0 0.0 -4.5	- 9,590 11,898 14,573 15,279 45,467 Where (Sta) - 9,849 11,898 13,993 15,279 45,473 Where (Sta) - 9,401 11,897

Table 11: Royal River Predicted Water Surface Elevation Changes

Below is a list of select observations made while comparing the With- and Without Project conditions and results for the low- and normal-flow periods (7Q10 and Annual Median), peak Alewife upriver passage conditions (Mid-May to Mid-June 95% and 5% duration exceedance), and flood events (50%, 10%, and 1% AEP).

- Comparison of the With- and Without Project conditions indicates Royal River will be lower during normal and low flow conditions in areas upstream of the dams - generally between Bridge Street and Middle Falls, and also between the East Elm Street Dam / Royal River Park and State Route 9 / Baston Park. Some areas may experience within bank flow depth increases, particularly areas downstream of the dams. As flows increase due to precipitation or snowmelt, the Royal River is expected to behave more similar to existing conditions.
- Comparison of Hydraulic fish passage parameters at the Bridge Street Dam, Middle Falls, and East Elm Street Dam sites for Peak Alewife upriver passage conditions (Mid-May to Mid-June 95% and 5% duration exceedance) were made to USFWS suggested guidelines for engineered nature-like fishway designs for the target species. Although multiple factors made this comparison tenuous, and some of the parameters in Table 10 are outside the design guidelines, the proposed natural setting at each of these sites may yet allow upriver migration through yet-undefined flow pathways, whether currently visible or post-demolition.
- Aside from locations under the dams, two new areas of predicted streambed bedrock outcropping are predicted to become visible during normal flows. The first location is approximately 100-ft upstream of the Beth Condon pedestrian footbridge. This location was observed during a trial drawdown of Bridge Street Dam on 12NOV2014 and was also observed during a 2011 drawdown (Maine Rivers, 2013). The second location is between the Elm Street bridge and the Yarmouth Historical building.
- Flood conditions will be generally identical or have slight reduction based on 50%, 10%, and 1% (2-, 10-, and 100-yr) storm events. However, there are some locations of water level increase during the 1% AEP (100-yr) storm event, as shown in Attachment C. Specifically, water levels are predicted to increase on average 0.1-ft between the estuary and Bridge Street, average 0.2-ft between Bridge Street and the Bridge Street Dam site. A photograph provided by the Yarmouth Historical Society depicting Grist Mill during a flood in 1893 seems to indicate that the building would be resilient to such an increase (see **Attachment C**). Upstream of Bridge Street on the left side could experience a water level increase of 0.5-ft., possibly due to acceleration and increased flow in With Project conditions on that side of the stream interacting with the island upstream of the bridge, however it is still expected to crest multiple feet below the retaining wall. Comparison of results indicates areas of potential increase up to 1foot located in the far left floodplain near US Route 1 and the Beth Condon footbridge. It is suspected, but not yet confirmed, that the results in this specific area are likely inaccurate due to how the SA2D connections are

Detailed Project Report & Environmental Assessment

modeled for the two closely spaced bridges. Comparison at Middle Falls indicates that 1% AEP water surface levels could increase by up to 2.5-feet, however the extents are limited to largely difficult-to-access areas with no predicted adverse impacts. There is also an area immediately downstream of Elm Street Dam indicating an increase of 3.5 feet water level, due to the removal of the dam its associated plunge jet of water. Refined hydraulic modeling may be able to more accurately predict 1% AEP With Project conditions in the future, but at this time the results indicate that no existing structures would be adversely impacted in a significant manner under the With Project conditions

- Review of the 1% AEP (scaled 10-22DEC2019 storm hydrograph) model runs, roughly equivalent to the 1% AEP and based on an actual storm hydrograph and tailwater combination, also follows the trend of generally identical or slight reduction with some areas of slight increase. Similar to the 1% AEP constant hydrograph flow model run, water levels are predicted to increase on average 0.1-ft between the estuary and the Bridge Street Dam site, with an isolated area near Bridge Street that could experience up to a maximum water level increase of 0.2-ft. The area immediately downstream of Elm Street Dam is predicted to have a water level increase 2.1 feet, but is subject to the same localized, transient condition and also does not impact structures in the vicinity.
- Significant increase of within bank velocity through the Bridge Street Dam site during flood flows primarily due to the narrowing and the lowering of the floodplain through that area. Impacts are generally expected inside the channel between Bridge Street and Middle Falls. These effects are also reflected in the upriver migration results but to a lesser extent as the flows are lower, as summarized in **Table 10** and displayed in **Attachment C**.
- Significant increase of within bank velocity through the East Elm Street Dam site during flood flows primarily due to the narrowing and the lowering of the floodplain through that area. Impacts are generally expected inside the channel between Elm Street and Middle Falls, along the southern side of Gooch Island near the existing fish ladder. These effects are also reflected in the upriver migration results but to a lesser extent as the flows are lower, as summarized in **Table 10** and displayed in **Attachment C**.
- Foundry Channel is expected to become intermittent except during higher flow events. Flows in Foundry Channel will be largely controlled by the invert of the culvert under East Elm Street.
- Based on available bathymetry and hydraulic model results, a portion of the back channel of Gooch Island closest to the East Elm Street Dam is

expected to become intermittent except during high flow events. The hydraulic modeling does not explicitly account for flow through the cracks between the granite blocks, however. Anecdotal evidence suggests an unquantified portion of the flow in the back channel flows through, not over, the dam. The hydraulic modeling does indicate that other portions of the back channel are expected to have water during normal conditions, fed from the downstream junction. Recent collections of bathymetry have not sampled in the back channel, so improved bathymetry could help enhance the definition of the hydraulic response in this area, as it is currently based on the FEMA study and some LiDAR spot elevations. Similarly, further studies could include a focused inspection and identification effort to quantify major cracks between granite blocks, estimate current flow through the dam, and estimate the amount of potential flow reduction due to With Project reduced water levels.

- The water levels at Baston Park and at the State Route 9 bridge are predicted to decrease by approximately 2-feet under normal conditions. It is currently unknown if this change could impact operation of the dry hydrant or planned improvements at Baston Park.
- Lower normal water levels may affect some recreational opportunities; however, the general lowering of water levels between Elm Street and State Route 9 by an average of 3.8 feet does not appear to necessarily exclude any current opportunity. The water depth at the canoe launch behind the Yarmouth Historical building would still have more than 3-ft flow depth without a significant increase in stream velocity. This is partially due to the predicted streambed bedrock outcropping between the Yarmouth Historical building and Elm Street. Some locations between the Yarmouth Historical building and the State Route 9 canoe launch may become relatively narrow and have normal flow depths of approximately 1.5-ft, based on current bathymetry.

5.3 ASSUMPTIONS & SIMPLIFICATIONS

For this feasibility-level CAP 206 aquatic ecosystem restoration study, several assumptions/simplifications were necessary:

 Hydraulic model results are assumed to be generally representative for feasibility-level aquatic organism passage considerations. At the falls and other locations within the model domain, localized depths, velocities, vertical accelerations, turbulence, and other hydraulic phenomena may affect target species behavior at a scale that is impractical or impossible for 2D hydraulic modeling to accurately predict.

- Due to unknowns regarding dam construction methods in this study area, there is uncertainty regarding the stream bed under the dams. While it is known that the dams were built upon bedrock formations, the extent to which the bedrock may have been modified is unknown. Additionally, bathymetric data immediately upstream of the dams was not collected due to safe access constraints. For purposes of this study, the underlying stream bed was assumed to have a smooth linear slope between nearest available bathymetric data points.
- Tailwater assumed constant 0-ft NAVD88 for majority of model runs, except the 1% AEP and DEC19 model validation runs. Due to the First Falls hydraulic control at the head-of -tide, the model is largely not sensitive to this assumption as discussed in section 5.4 of this appendix.
- As noted in the previous hydrology and boundary condition discussions of this appendix, flows were defined only at the upstream boundary. While most of the runs are constant hydrograph flow, the DEC19 model validation run demonstrates that the inflow hydrograph is minimally affected by channel and storage routing between the upstream limit of study and the USGS gage location. While there are some tributaries and directly contributing runoff areas within the study reach, they are minor compared to the upstream watershed.
- The bathymetric surface is assumed to be a fixed bed (non-erodible sediment) for model simplification. While there is significant uncertainty regarding depth to bedrock below the bathymetric surface in some areas, especially immediately upstream of the dams, available sediment probes indicate surficial deposits are relatively shallow. The following was noted by USACE staff performing sediment sampling in October 2023: "The majority of the riverbed is scoured hard bottom with some coarse sediment (cobble, gravel, and a little bit of sand). With the exception of the area immediately behind the East Elm Street Dam we had to really hunt for areas with sediment to sample. In most cases the samples had to be taken immediately adjacent to the shoreline in order to get anything at all. The material next to the shore line was typically a mix of sand, organic silt, and vegetative debris." Sensitivity to this fixed bed assumption, focused on the area immediately upstream of East Elm Street Dam "All Muck", is included in section 5.4 of this appendix.
- Potential geomorphological and/or channel bank instability due to water level draw down, especially upstream of Elm Street, assumed to not generate a significant increase in sediment delivery or otherwise pose a significant threat to the feasibility of the project. The PDT has coordinated with the ERDC WOTS program to evaluate and address the likelihood of this concern, however at the time of this draft a final report is not available.

These concerns were also evaluated by FGS, for the Stantec 2013 report, concluding in full:

"Removal of the East Elm Street Dam is likely to increase bank erosion in the upstream impoundment but is less likely to increase sediment delivery to the harbor as large floods, given the confined nature of the channel, appear responsible for the bulk of sediment delivery to the harbor and have been essentially unaffected by the dam's presence. Sediment released by additional bank erosion is more likely to remain at the base of the bank or be reworked within the impoundment by smaller floods whose transport efficiency will increase with dam removal. The modification of channel form due to the greater effectiveness of small floods could have minor impacts to recreational uses within the impoundment area. The slight increase in flow velocity at low flow conditions and shallowing of flow depths as riffles develop may reduce the number of suitable days and river length where ice conditions are appropriate for skating in the winter. Canoeing and other boating may become more difficult in the shallowest areas, but the effectiveness of large floods may periodically reverse these trends and lead to deepening of the sandy channel substrate. Habitat complexity is likely to increase with dam removal as more frequent pools, riffles, and point bars develop over time. Further studies could be conducted to corroborate the findings of this assessment, but the distinct confined nature of the impoundment on the Royal River upstream of the East Elm Street Dam has likely limited sediment storage behind the dam and, as a consequence, will minimize the impact of dam removal within the impoundment area and the harbor downstream."

• Explicit sediment transport modeling was not performed for this study, however there is significant sediment transport capacity in the Royal River to the estuary during flood flows, based on hydraulic results. This is supported by the shallow bedrock of the Royal River streambed and the steep channel slope of 70 feet/mile for the stream mile upstream of the head-of-tide. In addition, hydraulic results indicate that the river is largely insensitive to measures and alternatives considered for this feasibility study during flood flows. Smaller flows may influence some sediment transport and deposition within the upstream impoundments, as described in the FGS conclusions above, however this would be transitory in nature and reset by intermittent larger floods. In simple terms, the river is assumed to continue to transport sediment downstream to the estuary, as it has done historically, and sediment transport modeling is therefore assumed to be not required for the purposes of this study or future design efforts.

The upstream limits of the study area are assumed to be acceptable for purposes of this CAP 206 study. Specifically, hydraulic results show that during the normal flow scenario approximately 1-foot of water level reduction occurs at the limit when comparing With and Without project conditions. The study limit was defined (at least partially) based on limit of bathymetric data. An attempt was made to extend the model further upstream using DEM information with an assumed triangular shaped channel with an invert based on the FEMA FIS flood profile slope and inverts in order to approximate how far the effects could propagate upstream, as shown in Figure 36. The approximation indicates that effects are unlikely to propagate further than 10,000 feet above the current study limits (Wescustogo Park/Route 231). The model extension was corrupted/lost during a software crash.

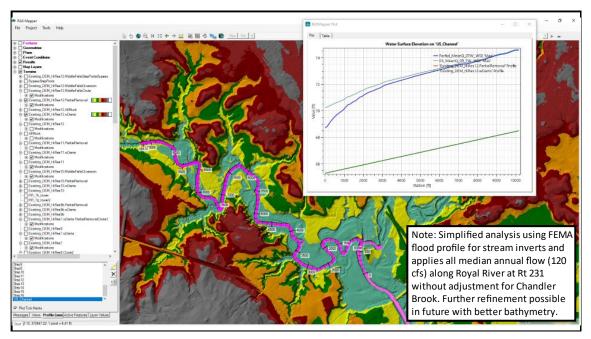


Figure 36: Approximated Upstream Model Extension

- Any portions of dams not removed in partial removal measures are assumed to remain in place and be properly maintained.
- During the process of selecting LiDAR point cloud data to define inchannel boulders and other topographic features, some erroneous 'noise' was introduced into the terrain model. Although efforts attempted to remove as many of the erroneous LiDAR data points from the terrain as practical, some remain and potentially affect hydraulic results. An example of such spurious spikes resulting from erroneous LiDAR points is shown in Figure 37. Any erroneous LiDAR data points remaining in the terrain are assumed to be negligible and not impact the overall CAP study results.

Figure 37: Exaggerated vertical scale terrain model showing some erroneous LiDAR points near Gooch Island (yellow circle)

- Ice effects are not considered in this study. Ice is assumed not to affect river hydraulics during the upriver migration period. The target species will migrate and lay in the spring when the water is between 41-50F, which is May through June. While ice and ice jams may affect the flooding stagefrequency relationship along the Royal River, its formation, passage, and effects are assumed to be equivalent in With- and Without- project conditions. The only Royal River entry in the USACE Ice Jam Database indicates that there was a Break-Up ice jam reported at the USGS gage on 16 FEB 1984 at 1650 hours. No gage height or flooding was reported, and the average daily discharge was estimated to be 1500 cfs.
- Groundwater was not explicitly modeled and any drawdown effects in the potentiometric groundwater surface related to dam removal surface water drawdowns are assumed to be localized. Review of the Maine Department of Environmental Protection's Environmental and Groundwater Analysis Database, via the Maine Geological Survey (<u>https://www.maine.gov/dacf/mgs/pubs/digital/well.htm#mapsearch</u>) (accessed on 01April24) indicates that well depth in the vicinity are typically 200 feet or more.
- Accumulation of floating debris and its effects on hydraulics were not considered in this feasibility study. It is anticipated that increased amounts of floating debris may become trapped behind remnants of the East Elm

Street Dam in the With Project scenario. This is because the remaining wall will be on the outside of a bend in the river's path and the lower water levels will not pass logs over the remaining wall, as occurs in Without Project. Natural, woody debris accumulation in that location is not expected to significantly affect hydraulics because it is not within the direct flow path. Routine maintenance by project partners is assumed to prevent significant accumulation.

5.4 SENSITIVITY ANALYSIS

TSP sensitivity to downstream boundary assumptions was checked for the Upriver Peak Migration 95% exceedance and 5% exceedance flows with constant tailwater runs based on the Portland NOAA tide station Upper 95% Confidence Interval, 1% AEP and the Lower 95% Confidence Interval, 1% AEP levels. The Portland NOAA tide station Upper 95% Confidence Interval, 1% AEP and the Lower 95% Confidence Interval, 1% AEP and the Lower 95% Confidence Interval, 1% AEP levels are 9.6-ft NAVD88, and -9.0-ft NAVD88, respectively. The results of the sensitivity runs were compared to TSP Upriver Peak Migration 95% exceedance and 5% exceedance flow results along the stream centerline. Water surface centerline profiles and tabular results of the comparison are included in **Attachment C**, but only nominal changes were identified at the USGS Gage location and no changes upstream of First Falls. Thus, the TSP model is not sensitive to downstream boundary tailwater assumptions.

Existing and TSP sensitivity to Manning's n roughness assumptions were checked for the Upriver Peak Migration 95% exceedance and 5% exceedance flows. As discussed in sections 5.2.1 and 5.2.3, Existing and TSP Manning's n roughness values were based on NLCD land use values as well as calibration zones. The ranges of typical nvalues presented in the HEC-RAS 2D User Manual for each NLCD value was utilized to develop two test scenarios: Low and High roughness. The Low roughness scenario assigned the lowest values in each NLCD category based on the HEC-RAS 2D User Manual reference, and also set the calibration zones to the lowest value for open water. The High roughness scenario assigned values equal to 1.5 times the highest values in each NLCD category based on the HEC-RAS 2D User Manual reference. The High roughness scenario also set the calibration zones to 1.5 times the highest value for open water. Water surface centerline profiles and tabular results of the comparison are included in Attachment C. Generally stated, High n and Low n scenarios produce TSP water levels up to 0.8-ft higher and 0.2-ft lower, respectively, for the 95% Upriver Peak Migration Flows. Comparing Existing and TSP plans we see there is generally less drawdown with High n values (max 0.6-ft less), and generally more drawdown with Low n values (max 0.3 ft. more). For the 5% Upriver Peak Migration Flows, there is more difference with the additional flow: High n and Low n scenarios produce TSP water levels up to 2-ft higher and 0.5-ft lower, respectively. Comparing Existing and TSP plans we see there is generally less drawdown with High n values (max 0.8-ft less), and generally more drawdown with Low n values (max 0.5 ft. more). Thus, the Existing and TSP models are moderately sensitive to Manning's n roughness assumptions.

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study Detailed Project Report & Environmental Assessment

Per the assumptions listed above, whatever sediments upstream of the dams were assumed immobile for purposes of the hydraulic model analysis. Bedrock is also observed at the dam locations, and many of the sediment probes in the vicinity indicate shallow substrate or rock. However, it is also known that there is some muck and other soft sediments that can be potentially mobilized, particularly behind the East Elm Street Dam. To check the sensitivity of this bottom condition assumption at East Elm Street Dam, a sensitivity "All Muck" run was performed. The "All Muck" model run modified bathymetric surface at East Elm Street Dam to lower elevations to the minimum values observed in the vicinity upstream and downstream of the dam (elevation 60-ft NAVD88). The results of this analysis indicated that Annual Median Flow water surface elevations could decrease by 2-feet or more vertically, however the extents of that change would be limited by upstream bedrock outcropping located approximately 150-feet upstream of the East Elm Street bridge. The upstream bedrock has been identified as rock and is predicted to act as a hydraulic control for upstream water surface elevations. In this "All Muck" Annual Median Flow scenario, flows would be expected to be generally shallow cascades starting at the upstream bedrock and running downstream through the East Elm Street dam location. If this scenario manifests, the increased drawdown may adversely impact minimum depths required for fish passage, as well as other parameters evaluated in Table 10, potentially requiring that the site is included in the Adaptive Management Plan.

6.0 CONCLUSIONS

Multiple flow conditions of the Royal River were modeled using HEC-RAS 2D hydraulics routines for evaluation of aquatic ecosystem restoration measures across the natural range of hydrologic variability. The results were used to inform planning, feasibility level design calculations, and cost estimates. Model results indicate that the Royal River will be lower during normal and low flow conditions in areas upstream of the dams - generally between Bridge Street and Middle Falls, and also between the East Elm Street Dam / Royal River Park and State Route 9 / Baston Park. Some areas may experience within bank flow depth increases, particularly areas downstream of the dams. As flows increase due to precipitation or snowmelt, the Royal River is expected to behave more similar to existing conditions.

Comparison of Hydraulic fish passage parameters at the Bridge Street Dam, Middle Falls, and East Elm Street Dam sites for Peak Alewife upriver passage conditions (Mid-May to Mid-June 95% and 5% duration exceedance) were made to USFWS suggested guidelines for engineered nature-like fishway designs for the target species. Although multiple factors made this comparison tenuous, and some of the parameters in **Table 10** are outside the design guidelines, the proposed natural setting at each of these sites may yet allow upriver migration through yet-undefined flow pathways, whether currently visible or post-demolition. If further review by fish passage experts, USFWS, or other partners indicate grave concerns for target species passage based on these results, at any or all of these sites, additional site design could be addressed in the Design and Implementation Phase through the project's Adaptive Management Plan. Such designs

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study would likely fine-tune localized hydraulics for effect by supplementing the natural stream bed with limited and strategically placed material such as sandbags, boulders, or remnant granite blocks from dam demolition.

Changes to depth, width and velocity of the river were reviewed with regards to potential impacts to recreation from the Yarmouth History Center boat launch to the upstream limits of the study, near Route 9. Areas across from the Yarmouth History Center canoe launch and towards the Elm Street Bridge could be problematic for paddling, but depths in the upstream direction and typical flow velocities appear sufficient for continued recreational uses.

Flood conditions will be generally identical or have slight reduction based on 50%, 10%, and 1% (2-, 10-, and 100-yr) storm events. However, there are some locations of water level increase during the 1% AEP (100-yr) storm event. Specifically, water levels are predicted to increase on average 0.1-ft between the estuary and the Bridge Street Dam site, with an isolated area near Bridge Street that could experience up to a maximum water level increase of 0.5-ft.

Significant increase of within bank velocity through both the East Elm Street Bridge site and the Bridge Street Dam site are predicted during flood events due to the narrowing and the lowering of the floodplain through those areas. Impacts are generally expected to be limited to inside the channel with resistant bedrock streambed. These effects are also reflected in the upriver migration results but to a lesser extent as the flows are lower. Review of fish passage velocity parameters in **Table 10** are outside the design guidelines at Bridge Street Dam and at the East Elm Street Dam. The proposed natural setting at each of these sites may yet allow upriver migration through yet-undefined flow pathways, whether currently visible or post-demolition. If further review by fish passage experts, USFWS, or other partners indicate grave concerns for target species passage based on velocity, at any or all of these sites, additional site design could be addressed in the Design and Implementation Phase through the project's Adaptive Management Plan.

7.0 FUTURE EFFORTS

At the time of this draft, Middle Falls aquatic organism passage design is in progress and is pending input from USFWS. The results reported here do not reflect modifications to Middle Falls, but they should be included in the overall analysis in the future. It should be noted though that preliminary modeling has indicated that such efforts likely will have only localized within bank effects on streamflow.

If warranted by feasibility or design needs, the hydraulic model could be enhanced in the future:

• Evaluate/refine Middle Falls project elements for aquatic organism passage criteria, including acquisition of survey if required;

Royal River, Yarmouth ME 206 Aquatic Ecosystem Restoration Restoration Study

- Extend Royal River model upstream to Westcutugo Park and along Chandler Brook to the first railroad crossing, or further upstream, as relevant to evaluate the full upstream limits of potential effects;
- Rebuild the terrain model using updated Federal Navigation Project survey if relevant for estuary concerns;
- Further refine collective understanding of bathymetric surface at immediate vicinity of dams, remove erroneous lidar points, and remove likely mobilized, surficial sediments from the terrain model, as relevant;
- Collect additional bathymetry in the Gooch Island back channel to enhance the definition of the hydraulic response in this area, if appropriate;
- Enhance 2D computation mesh at areas of enhanced interest especially around dam removals and aquatic organism passage projects. In addition, review the dam and bridge hydraulics throughout the model and especially near the Beth Condon Footbridge, Route 1, and Falls Bridges as some results in these areas appear inconsistent at different flow values;
- Establishment of a stream gage, or similar instrumentation at the State Route 9 bridge could help provide a more complete understanding of channel hydraulics when used with the current USGS stream gage. This would allow model calibration for normal, and any flood flows experienced during its operation, and could improve understanding of both With and Without Project conditions.
- Develop a plan for post-construction validation of aquatic organism passage. Hydraulic modeling can only predict fish behavior to a certain extent and there might be a need to evaluate and modify site conditions after construction. For example, should there be an as-built survey and an as-built modeling update? Or is it sufficient to rely on actual fish passage data collected by partners? This can be integrated into the Adaptive Management Plan if appropriate.

The pending ERDC WOTS draft trip report identified potential items for further study:

- Sediment located on the margins of the pool upstream of the dam modification should be targeted for revegetation as the modifications are completed. Specifically, native species should be identified and used to re-establish nature conditions.
- Utilities, bridges, and other infrastructure should be further investigated to determine if any issues will arise from the dam modifications.
- Development of fish passage designs should include working with existing restoration groups and engineering designs previously implemented to ensure there is a "Systems Approach" to restoration for the entire reach.

- Although this project appears to be one of the best situations for dam removal, some additional tributary and bank erosion assessments should be completed upstream of the dam modification site during Design and Implementation.
- The nature of the Stream Alluvium on the Royal River channel margins and the interaction with the Presumpscot Formation (fine-grained clays) should be further investigated. The fine-grained clays may provide erosion protection both in the channel bed (tributaries) and in the lower banks of the Royal River.

The nature of the bedrock is known locally around the dam locations and will need to be further investigated upstream of each structure so there are no significant impacts to the landowners immediately adjacent and upstream of the dam removal/modification sites.

8.0 **REFERENCES**

Dudley, Robert W. (2004). Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine—USGS Scientific Investigations Report 2004-5026

Dudley, R.W. and Nielsen, M.G. Simulation of streamflow in the Pleasant, Narraguagus, Sheepscot, and Royal Rivers, Maine, using watershed models: U.S. Geological Survey Scientific Investigations Report 2010-5221, 31 p., at http://pubs.usgs.gov/sir/2010/5221/.

Dudley, Robert W. (2015). Regression Equations for Monthly and Annual Mean and Selected Percentile Streamflows for Ungaged Rivers in Maine—USGS Scientific Investigations Report 2015-5151 (first published, and later revised as Version 1.1, both in December 2015).

Federal Emergency Management Agency. June 2024. Flood Insurance Study for Cumberland County, Maine (All Jurisdictions)

Field Geological Services. 2013. Potential Impacts of Dam Removal on Sediment Production and Sediment Transport on the Royal River, ME

GZA GeoEnvironmental, Inc. (2018). Royal River Fish Passage Studies Summary Report – Royal River Watershed Yarmouth, North Yarmouth, New Gloucester, Pownal, Durham, Gray, and Auburn, Maine (GZA File Number 09.0025936.00.). For The Nature Conservancy, Maine Chapter. Portland, Maine. January, 2018.

Harris, A. 2017. RE: Assessment of the Royal River. East Orland, Maine; 306 Hatchery Rd.

Hodgkins, G.A., and Dudley, R.W. (2013). Modeled future peak streamflows in four coastal Maine rivers. U.S. Geological Survey Scientific Investigations Report 2013-5080, 18 p., http://pubs.usgs.gov/sir/2013/5080/.

Interfluve. 2018. Fishway Assessment and Cost Analysis Report, Royal River Yarmouth ME

Johnson, S. 2014. Visual Assessment of Bridge Street Dam, HDR Engineering, Inc.

Maine Rivers. 2012. Royal River Rolling Stones Project, Factory Island Back-Channel, Yarmouth Fact Sheet.

Maine Rivers. 2013. Royal River Restoration Project, Yarmouth, ME., Summary of Recreational Changes Associated with Dam Removal & River Restoration.

NOAA. Datums for 8418150, Portland ME.

<<u>https://tidesandcurrents.noaa.gov/datums.html?datum=NAVD88&units=0&epoch=0&id</u> =8418150&name=Portland&state=ME> Accessed 15 April, 2024

Petrovsky, M. 2019. East Elm Street Dam Condition Inspection. MBP Consulting

Powers, R. 2009.Yarmouth Dams Inspection Report 091211. Visual Inspection of Bridge Street Dam and East Elm Street Dam. HDR Engineering, Inc.

Retelle, M. 1999. Surficial Geology, Yarmouth Quadragle, Maine. Open-File No. 99-105.

Royal River Conservation Trust, 2024 "The Royal River Water Trail" Website accessed May 9 2024 <u>https://rrct.org/royal-river-water-trail/</u>

Stantec Consulting Services, Inc. 2010. Fisheries & Aquatic Habitat Restoration Feasibility Study, Royal River Restoration Project Yarmouth, ME

Stantec Consulting Services, Inc. 2013. Royal River Restoration Project: Phase II Analysis and Reporting, Yarmouth, ME

Stantec Consulting Services, Inc. 2015. Estimated Sediment Volume: Bridge Street Dam Impoundment, Royal River, Yarmouth, Maine.

Stantec Consulting Services, Inc. 2016. Sediment Sampling and Analysis, Bridge Street Dam Impoundment, Royal River, Yarmouth, Maine.

Stantec Consulting Services, Inc. 2024. Summary Memo - Royal River Sediment Probing, Yarmouth, Maine.

- Turek, J., Haro, A., & Towler, B. (2016). Technical Memorandum Federal Interagency Nature-like Fishway Passage Design Guidelines for Atlantic Coast Diadromous Fishes. In NOAA Institutional Repository. NOAA.
- US Army Corps of Engineers, Hydrologic Engineering Center, "HEC-RAS User Manual", online retrieval MAY 2022.
- US Army Corps of Engineers Hydrologic Engineering Center, "HEC-SSP User Manual", online retrieval MAY 2022.
- US Army Corps of Engineers, Philadelphia District, "Bloomsbury Dam Removal Feasibility Report", 2013.
- US Bureau of Reclamation, "Dam Removal Analysis Guidelines for Sediment", 2017

US Fish and Wildlife Service, "Fish Passage Engineering Design Criteria", 2019

- West, D. and Hussey II, A.. 2018. Bedrock Geology of the Yarmouth Quadrangle, Maine. Open-File No. 18-10.
- Yarmouth History Center exhibits and collections accessed on December 15, 2023. Located on 118 East Elm Street, Yarmouth, ME.

9.0 LIST OF ACRONYMS AND ABBREVIATIONS

AEP	Annual Exceedance Probability
ARI	Average Return Interval
cfs	Cubic feet / second
DPR	Detailed Project Report
DoD	Department of Defense
EO	Executive Order
FEMA	Federal Emergency Management Agency
FERC	Federal Energy Regulatory Commission
FID	Federal Interest Determination
FNP	Federal Navigation Project
MHW	Mean High Water
MHHW	Mean Higher High Water
MLW	Mean Low Water
MLLW	Mean Lower Low Water
NACCS	North Atlantic Coast Comprehensive Study
NAD	North Atlantic Division
NAVD 88	North American Vertical Datum of 1988
NMFS	National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Association
NTDE	National Tidal Datum Epoch
O&M	Operations & Maintenance
PDT	Project Delivery Team
sq. ft.	Square feet
TSP	Tentatively Selected Plan
USACE	United States Army Corps of Engineers
USFWS	United States Fish and Wildlife Service

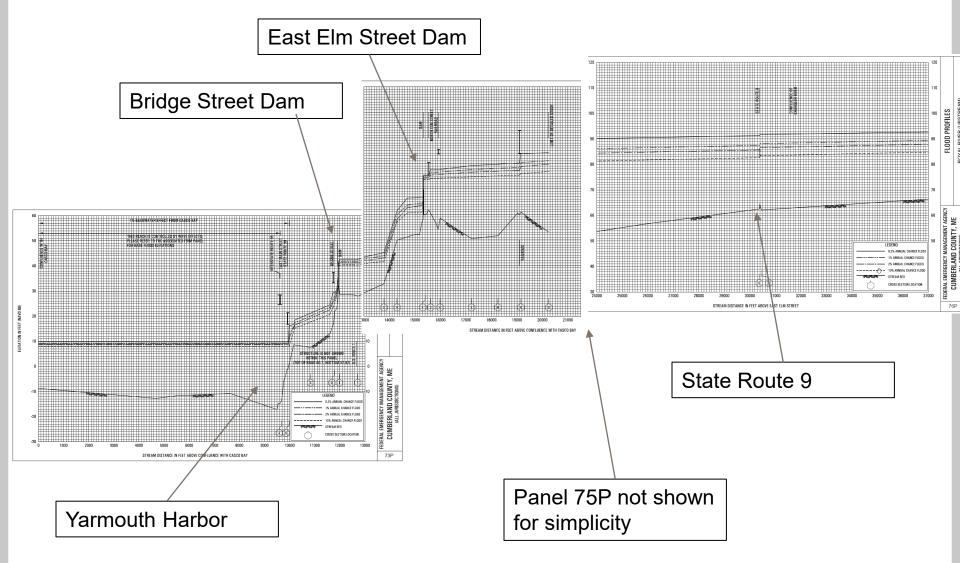
Attachment A

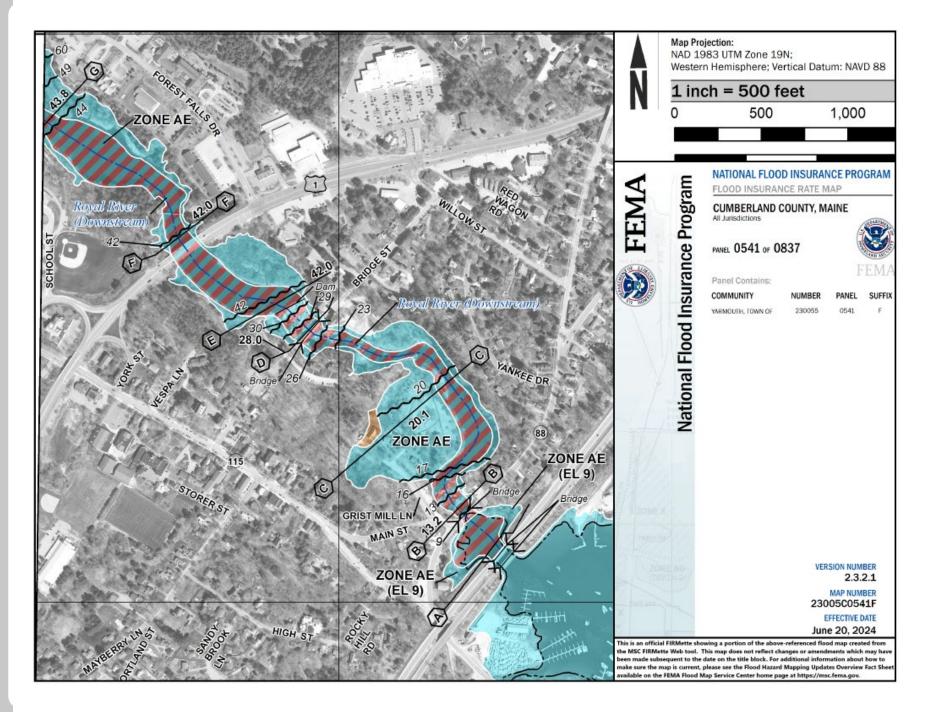
Selections from the Effective FEMA HEC-2 Hydraulic Study

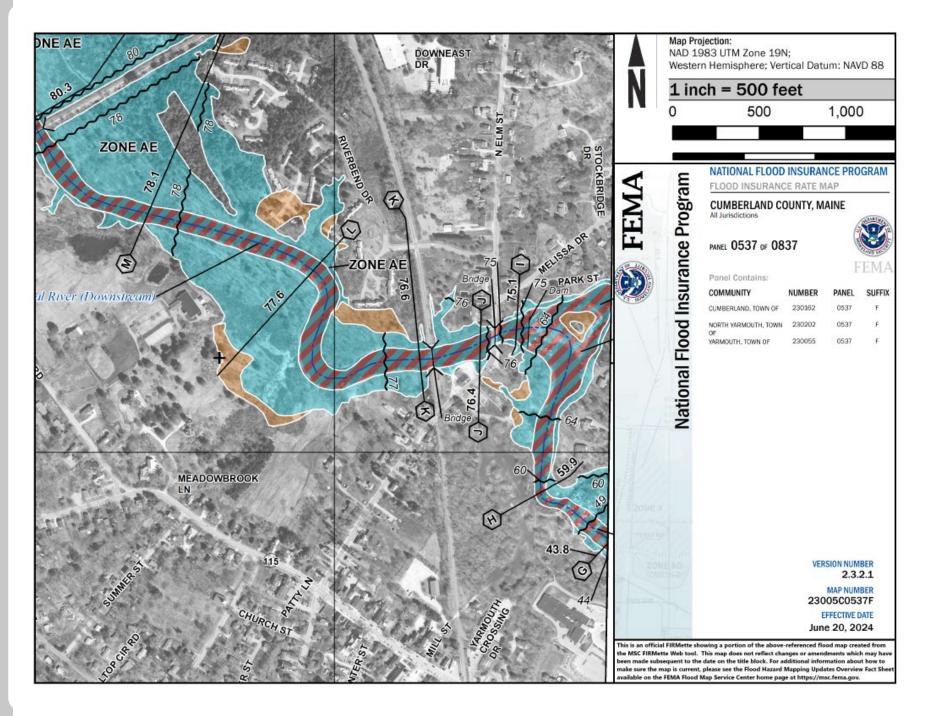
30AUG24 - SECTION 206 ROYAL RIVER FISH PASSAGE

YARMOUTH, MAINE

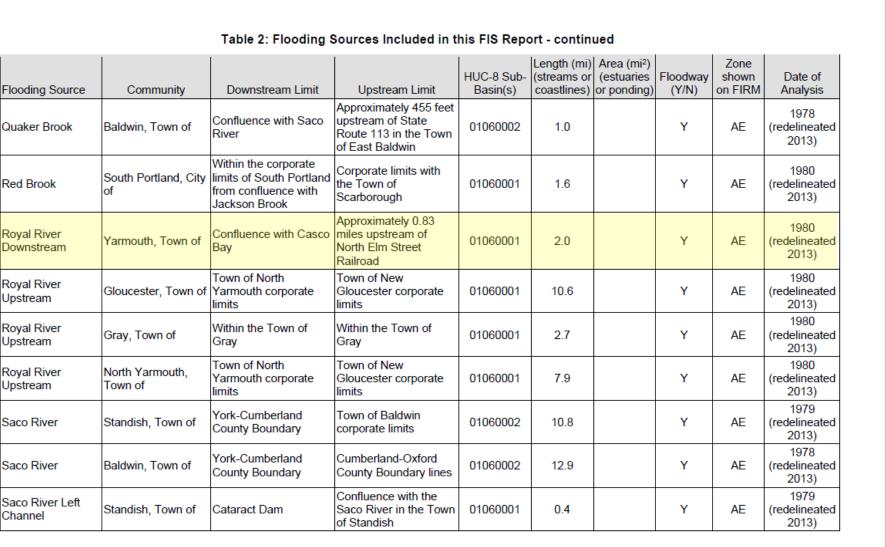
ATTACHMENT A SELECTIONS FROM THE EFFECTIVE FEMA HEC-2 HYDRAULIC STUDY







SECTION 206 ROYAL RIVER FISH PASSAGE – YARMOUTH, ME FEMA FLOOD PROFILES FOR STUDY REACH



Upstream

Upstream

Upstream

Channel

Table 13: Summary of Hydrologic and Hydraulic Analyses - continued

Flooding Source	Study Limits Downstream Limit	Study Limits Upstream Limit	Hydrologic Model or Method Used	Hydraulic Model or Method Used	Date Analyses Completed	Flood Zone on FIRM	Special Considerations
Red Brook	Within the corporate limits of South Portland from confluence with Jackson Brook	Corporate limits with the Town of Scarborough	regional equation prepared by USGS	USACE HEC-2 step-backwater	1980 (redelineated 2013)	AE w/ Floodway	
Royal River Downstream	Confluence with Casco Bay	Approximately 0.83 miles upstream of North Elm Street Railroad	USGS Maine Regional Equation	divided flow analysis	1980 (redelineated 2013)	AE w/ Floodway	Correlated with statistical analyses of USGS stream gage no. 0106000
Royal River Upstream	Town of North Yarmouth corporate limits	Town of New Gloucester corporate limits	USDA NRCS TR-20	USDA NRCS WSP-2	1980 (redelineated 2013)	AE w/ Floodway	
Royal River Upstream	Within the Town of Gray	Within the Town of Gray	USDA NRCS TR-20	USDA NRCS WSP-2	1980 (redelineated 2013)	AE w/ Floodway	
Royal River Upstream	Town of North Yarmouth corporate limits	Town of New Gloucester corporate limits	USDA NRCS TR-20	USDA NRCS WSP-2	1980 (redelineated 2013)	AE w/ Floodway	
Saco River	York-Cumberland County Boundary	Town of Baldwin corporate limits	log-Pearson Type III distribution	USGS E431 step-backwater	1979 (redelineated 2013)	AE w/ Floodway	
Saco River	York-Cumberland County Boundary	Cumberland- Oxford County Boundary lines	log-Pearson Type III, U.S. Water Resources Council Bulletin No. 17	USACE HEC-2 step-backwater	1978 (redelineated 2013)	AE w/ Floodway	USGS gage (no. 01066000) located at Cornish, Maine, on the Saco River, was used to establish the peak discharge-frequency relationships

7

		Drainage		Peak Disc	charge (cfs)	
Flooding Source	Location	Area (Square Miles)	10% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance
Royal River (Upstream)	At Morse Road in New Gloucester	48.3	2,610	3,710	4,270	5,940
Royal River (Upstream)	At Penny Road in New Gloucester	45.13	2,450	3,530	4,060	5,890
Royal River (Upstream)	At State Route 231 in New Gloucester	38.1	2,100	3,110	3,620	5,090
Royal River (Upstream)	At Canadian National Railroad in New Gloucester	29.15	1,320	2,090	2,460	3,580
Royal River (Upstream)	At Cobbs Bridge Road in New Gloucester	28.46	1,270	2,020	2,390	3,490
Royal River (Upstream)	At the New Gloucester upstream corporate limits	26.07	1,110	1,810	2,150	3,190
Royal River (Upstream)	At the North Yarmouth downstream corporate limits	136.4	6,490	8,930	10,170	13,900
Royal River (Upstream)	At State Route 9 in North Yarmouth	131.96	6,540	8,850	10,020	13,820
Royal River (Upstream)	At State Route 231 in North Yarmouth	77.67	3,560	4,800	5,420	7,250
Royal River (Upstream)	At Mill Road in North Yarmouth	73.84	3,430	4,700	5,330	7,190
Royal River (Upstream)	At the North Yarmouth upstream corporate Limits	72.76	3,390	4,670	5,310	7,170
Royal River (Downstream)	At USGS gage No. 010600000	142	6,085	9,060	10,530	14,540
Saco River	At Bonny Eagle Dam	1,560	25,300	37,700	43,800	60,600

Table 10: Summary of Discharges - continued

Table 13: Roughness Coefficients

		8

5 1 1 0		
Flooding Source	Channel "n"	Overbank "n"
All Stream Channels (At Westbrook)	0.035	0.080
All Streams Studied (At Gray)	0.045 - 0.070	0.070 - 0.095
Capisic Brook (At Portland)	0.035 - 0.060	0.055 - 0.120
Corn Shop Brook (At Bridgton)	0.065	0.050 - 0.075
Crooked River (At Casco)	0.037 - 0.071	0.065 - 0.140
Crooked River (Town of Harrison)	0.032 - 0.078	0.070 - 0.150
Crooked River (At Naples)	0.037 - 0.071	0.065 - 0.150
Crystal Lake Brook (At Harrison)	0.060 - 0.070	0.065 - 0.095
Ditch Brook (At Windham)	0.035 - 0.055	0.045 - 0.115
East Branch Capisic Brook (At Portland)	0.035 - 0.060	0.055 - 0.120
Fall Brook (At Portland)	0.030 - 0.055	0.030 - 0.140
Jackson Brook (At South Portland)	0.015 - 0.070	0.050 - 0.120
Long Creek (At South Portland)	0.015 - 0.070	0.050 - 0.120
Nasons Brook (At Portland)	0.025 - 0.040	0.040 - 0.080
Piscataqua River (At Falmouth)	0.040 - 0.050	0.065 - 0.080
Presumpscot River (At Falmouth; At Portland)	0.050	0.065 - 0.120
Presumpscot River (At Gorham; At Windham)	0.035 - 0.060	0.045 - 0.125
Red Brook (At South Portland)	0.015 - 0.065	0.040 - 0.100
Royal River (Upstream) (At New Gloucester)	0.055 - 0.070	0.070 - 0.100
Royal River (Upstream) (At North Yarmouth)	0.036 - 0.056	0.060 - 0.170
Royal River (Downstream) (At Yarmouth)	0.032 - 0.045	0.060 - 0.150
Saco River (Baldwin)	0.040 - 0.045	0.080 - 0.100
Saco River (Standish)	0.030 - 0.500	0.035 - 0.120
Saco River Left Channel (Standish)	0.030 - 0.500	0.035 - 0.120
Songo River (Casco)	0.045 - 0.057	0.080 - 0.110
Songo River (Naples)	0.045 - 0.057	0.070 - 0.110

FLOODING	SOURCE		FLOODWAY		BASE FLOOD WATER SURFACE ELEVATION (FEET NAVD 88)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
А	9,689	*	2,912	3.6	9.1 ²	6.1 ³	6.6	0.5	
В	9,979	*	1,510	7.0	13.2	13.2	13.6	0.4	
С	10,835	*	1,103	9.5	20.1	20.1	20.3	0.2	
D	11,785	*	879	12.0	28.0	28.0	28.1	0.1	
E	11,986	*	2,987	3.5	42.0	42.0	42.0	0.0	
F	12,714	*	1,436	7.3	42.0	42.0	42.0	0.0	
G	13,781	*	1,192	8.8	43.8	43.8	44.1	0.3	
н	14,298	*	693	15.2	59.9	59.9	59.9	0.0	
1	15,407	*	1,532	6.9	75.1	75.1	75.1	0.0	
J	15,618	*	2,326	4.5	76.4	76.4	76.6	0.2	
K	15,988	*	1,849	5.7	76.6	76.6	76.8	0.2	
L	17,223	*	2,191	4.8	77.6	77.6	77.8	0.2	
Μ	18,258	*	2,245	4.7	78.1	78.1	78.3	0.2	
N	19,156	*	1,555	6.8	80.3	80.3	80.3	0.0	
0	20,254	•	2,435	4.3	81.1	81.1	81.5	0.4	

¹ FEET ABOVE CONFLUENCE WITH CASCO BAY

TABLE

23

² ELEVATION COMPUTED WITHOUT CONSIDERATION OF WAVE EFFECTS, PLEASE • REFER TO ASSOCIATED DFIRM PANEL FOR BASE FLOOD ELEVATIONS

FEDERAL EMERGENCY MANAGEMENT AGENCY

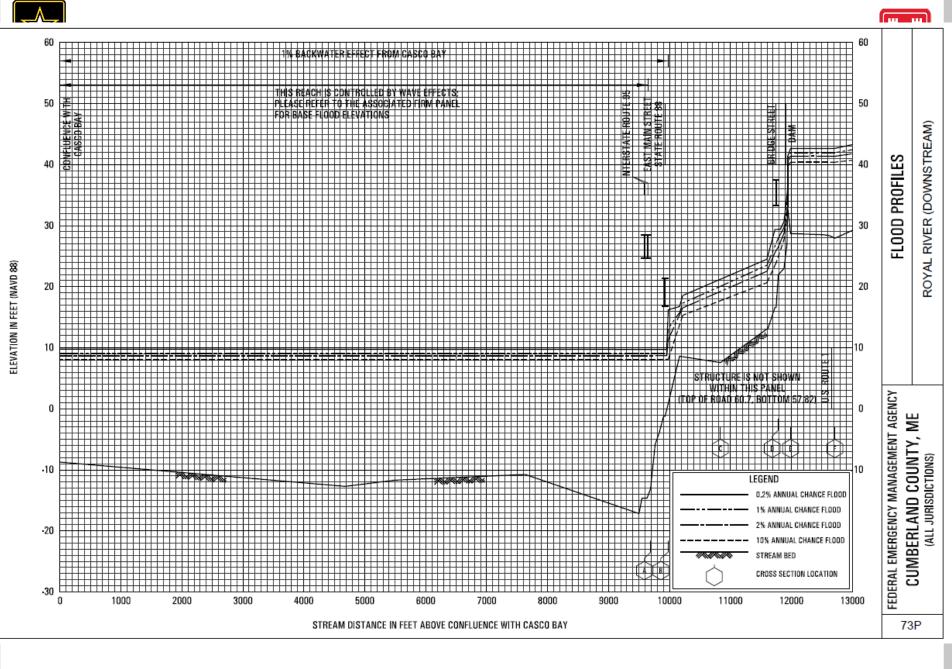
CUMBERLAND COUNTY, ME (ALL JURISDICTIONS) ³ ELEVATION COMPUTED WITHOUT BACKWATER EFFECTS FROM CASCO BAY

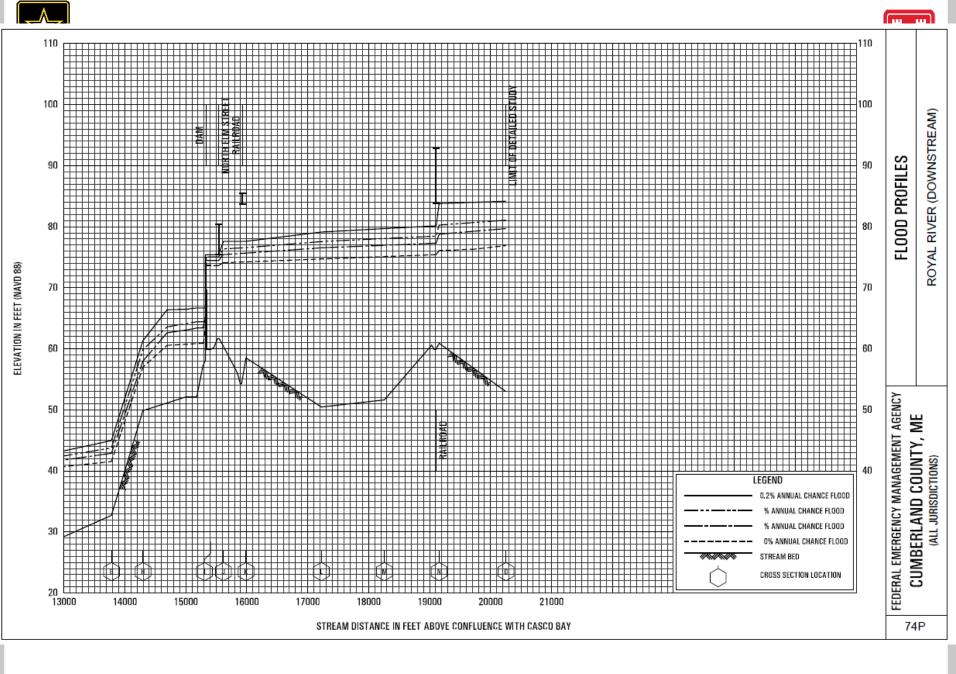
* FLOODWAY COINCIDENT WITH CHANNEL BANKS

FLOODWAY DATA

ROYAL RIVER (DOWNSTREAM)

Table 28: Summar	/ of	Contracted	Studies	Included in	this	FIS Re	port	(continued)	


Flooding Source	FIS Report Dated	Contractor	Number	Work Completed Date	Affected Communities
Piscataqua River	10/16/1984	Anderson- Nichols & Company, Inc., CDM/Resource Analysis, and New England Coastal Engineers for FEMA	H-4771	1980	Falmouth, Town of
Pleasant River	1/6/1982	USDA NRCS	IAA-H-17-78, Project Order No. 5	1980	Gray, Town of
Presumpscot River	10/15/1981 9/2/1981	U.S. Geological Survey	IAA-H-9-77, Project Order No. 7	1979	Gorham, Town of; Windham, Town of
Presumpscot River	7/17/1986 10/16/1984 1/2/1981	New England Division, USACE	IAA-H-7-76, Project Order No. 25, and IAA-H-10-77, Project Order No. 1	1978	Falmouth, Town of; Portland, City of; Westbrook, City of
Quahog Bay	6/20/2024	STARR	HSFEHQ-09- D-0370, Task Order 8 and Task Order 15	2013, 2016	Harpswell, Town of
Quaker Brook	7/2/1980	Edward C. Jordan Company	H-4578	1978	Baldwin, Town of
Red Brook	8/17/1981	Anderson- Nichols & Company, Inc., CDM/Resource Analysis, and New England Coastal Engineers for FEMA	H-4771	1980	South Portland, City of
Royal River (Downstream)	11/15/1984	Anderson- Nichols & Company, Inc., CDM/Resource Analysis, and New England Coastal Engineers for FEMA	H-4771	1980	Yarmouth, Town of


W...W

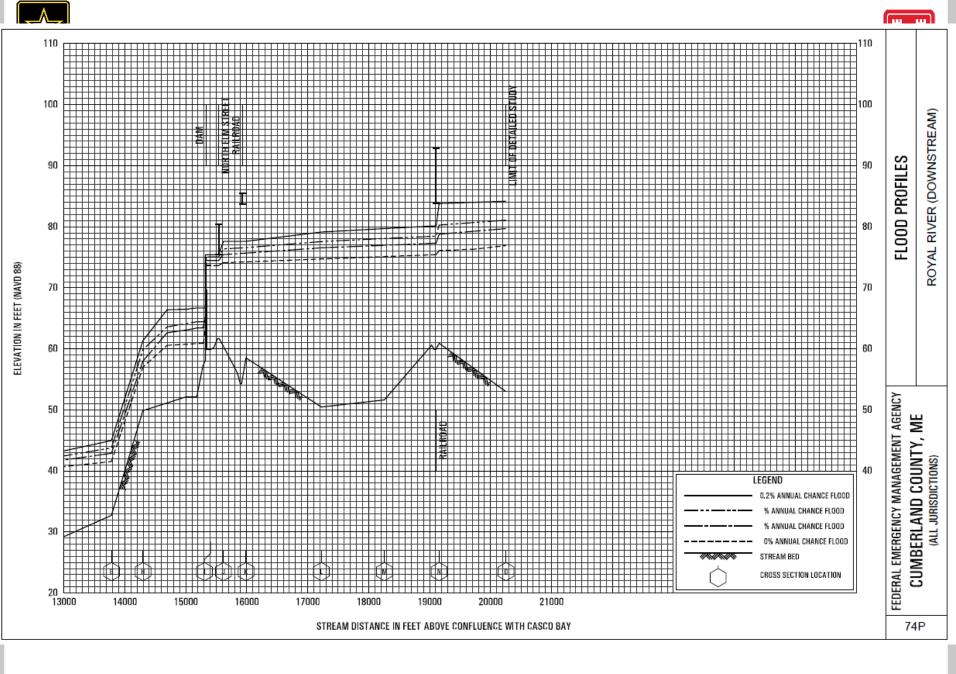
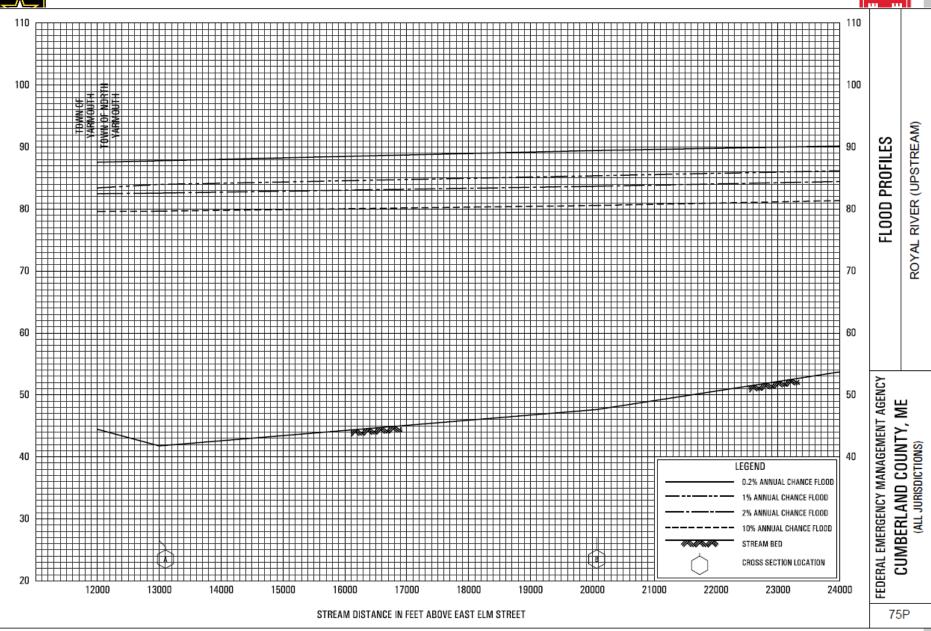
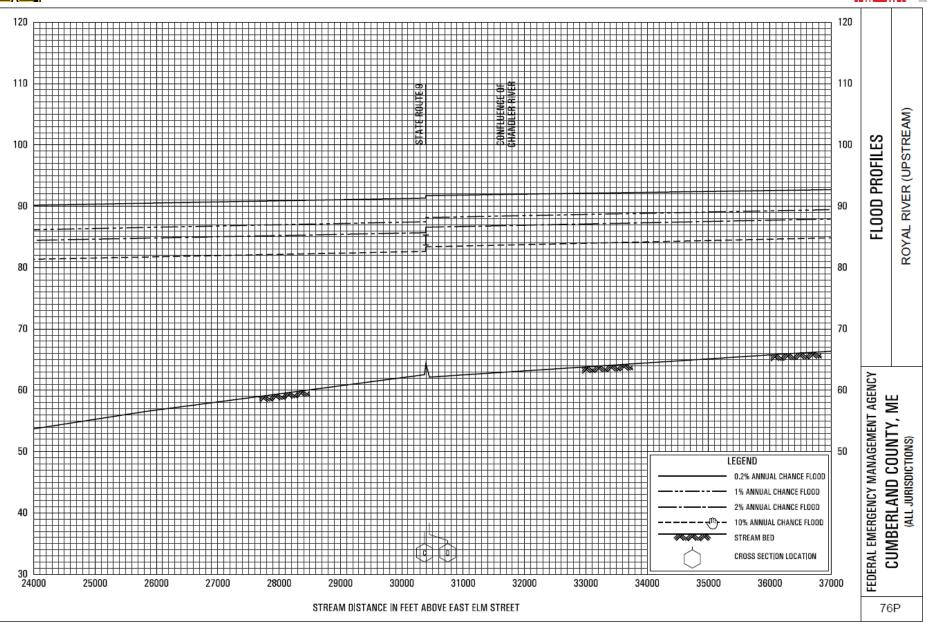
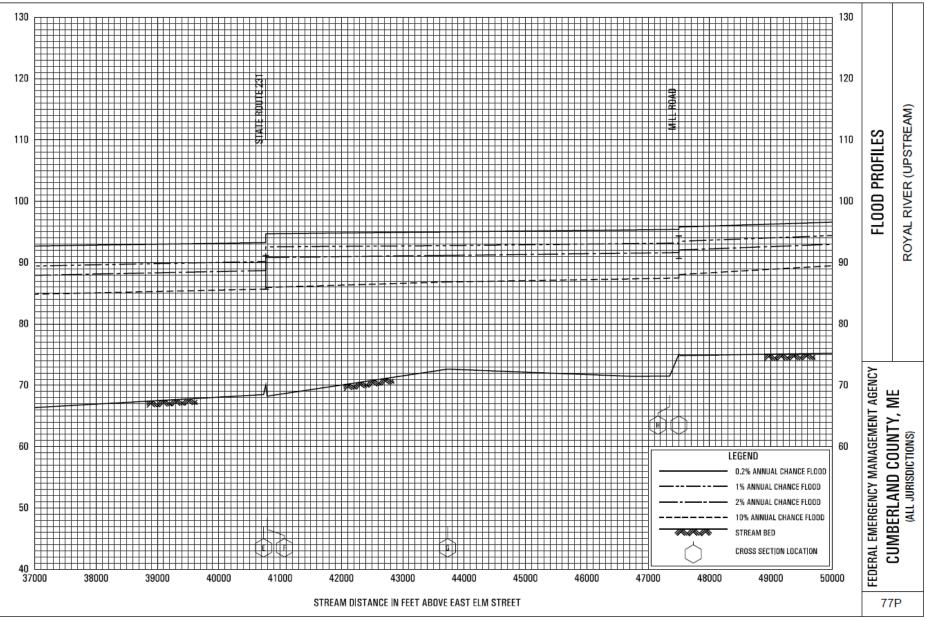
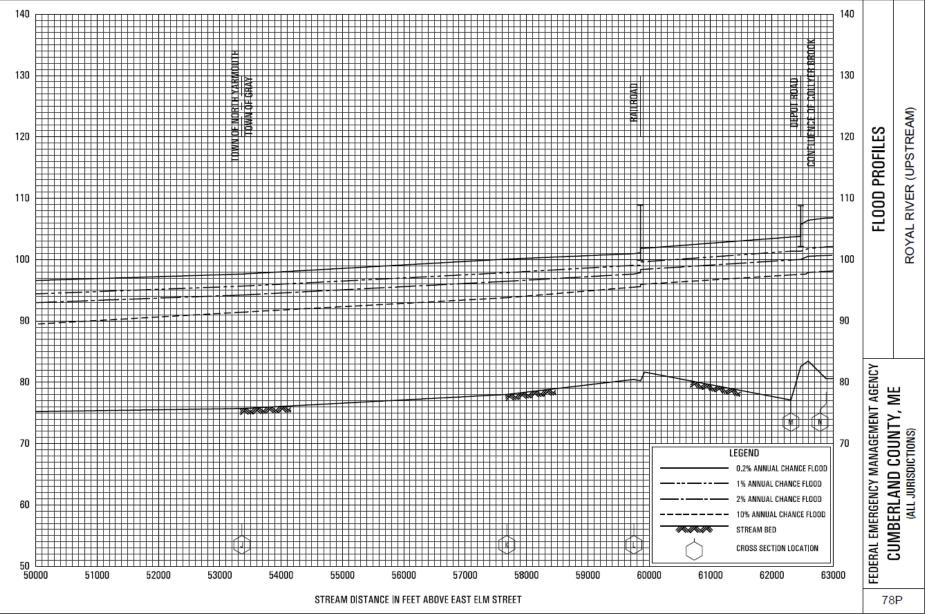

10

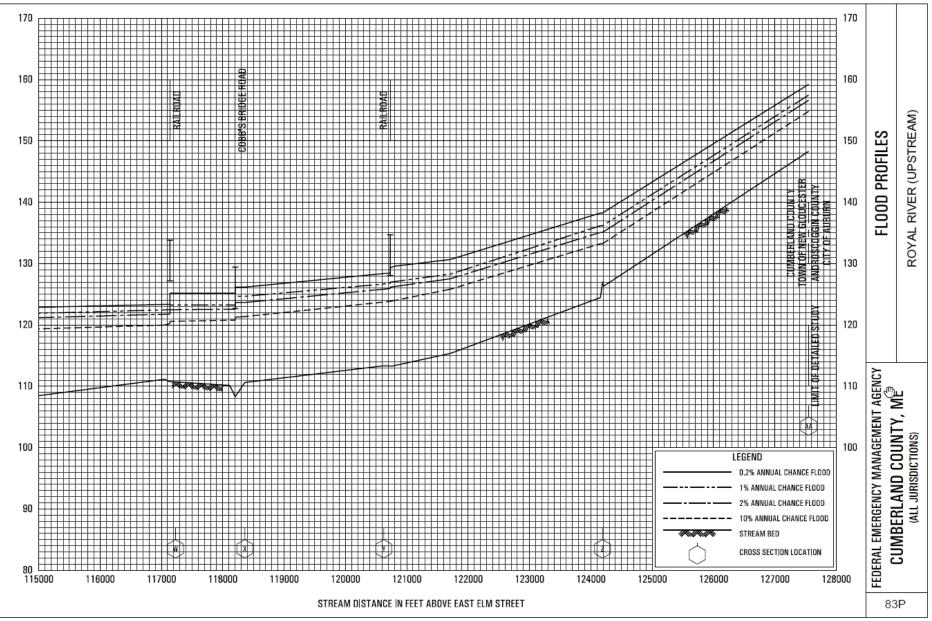
Table 28: Summary of Contracted Studies Included in this FIS Report (continued)


Flooding Source	FIS Report Dated	Contractor	Number	Work Completed Date	Affected Communities
Royal River (Upstream)	4/1/1982 1/6/1982 7/16/1981	USDA NRCS	IAA-H-17-78, Project Order No. 5	1980	Gray, Town of; New Gloucester, Town of; North Yarmouth, Town of
Saco River	5/19/1981	U.S. Geological Survey	IAA-H-14-78	1979	Standish, Town of
Saco River	7/2/1980	Edward C. Jordan Company	Contract No. H-4578	1978	Baldwin, Town of
Saco River Left Channel	5/19/1981	U.S. Geological Survey	IAA-H-14-78	1979	Standish, Town of
Sebago Lake	10/1/1981 9/2/1981 5/19/1981 5/5/1981 4/1/1981 3/2/1981	USDA NRCS & U.S. Geological Survey	IAA-H-17-78, Project Order No. 5 & IAA-H-9-77, Project Order No. 7	1979/1980	Casco, Town of; Frye Island, Town of; Naples, Town of; Raymond, Town of; Sebago, Town of; Standish, Town of; Windham, Town of
Songo River	5/5/1981	USDA NRCS	Interagency Agreement No. IAA-H-17- 78, Project Order No. 5	1979	Casco, Town of
Songo River	10/1/1981	USDA NRCS	IAA-H-17-78, Project Order No. 5	1979	Naples, Town of
Stevens Brook	5/3/1982	USDA NRCS	Interagency Agreement No. IAA-H-17- 78, Project Order No. 5	1980	Bridgton, Town of
Stroudwater River	7/17/1986	Anderson- Nichols & Company, Inc., CDM/Resource Analysis, and New England Coastal Engineers for FEMA	H-4771	1979	Portland, City of








ELEVATION IN FEET (NAVD 88)

ELEVATION IN FEET (NAVD 88)

ELEVATION IN FEET (NAVD 88)

ELEVATION IN FEET (NAVD 88)

				· I-						
									ECUTED 02/06/	
**** HER	C2 RELEASE	DATED NOV	76 UPDATED	**************** JULY 1979 *************	2			THIS KON EX		
****	101+1CA110N	* >0.92.9>	2,00, 7, 7,	****	*				2	mal Cu
11 12 13	FLODD INSU FDYAL RIVE	URANCE STUD	YA YA	RMOUTH, MAINE						
				IR STRT	METRIC	HVINS	Q	WSEL F	2	Hing un Ch
	· 0.	4.	0.	0. 0.0	0.0	0.0	0.		.0	
32	NPROF	IPLOT P	REVS XS	ECV XSECH	FN	ALLDC	IBW		TRACE	
	1.000			0.0 0.0	0.0	00	0.0	0.0	0.0	
33			IMMARY PRINT			1 000	2.000	3.000	34.000	
	38.000	39.000	40.000 4	1.000 42.00	43.000	1.000	2.000	5.000		·
	21.000	22.000	26.000	0.0 38.0	00 1.000	50.000	. 61.000	51.000	53.000	
	27.000	4.000	28.000 5	4.000 13.00	00 14.000	15.000	0.0	200.000	0.0	The second second
QT NC	8.000	6085-000	9060.000	10530.000	14540.000	10530.000	10530.000		0.0	0.0
NC	6:00	1200:000	2800:000	0.100	0.0	8:8	2:100	0.0	0.0	0.0
Xi	6.0	.16.888	1200.000	2800.000 995.000 1700.000	. 10.000	1065:000	8:800	1120:000	0:0	1200.000
GGGGG	-3.000 -3.000	960.000 1250.000 2750.000	-5.000	1700.000	-5.888	1803.000	18:888	2202.838	0.0 -5.000 15.000	1200.000 2300.000 2990.000
GR	20.000	1250.000 2750.000 3035.000 720.000	1288:800	8:8	8:8	8:8	2:100	8:8	8:8	8:3
~ 1				1280 000	4494 000	4694.000	4694.000	0.0	0.0	0.0
XGGRET	25.000	14.000 290.000 720.000	720.000	1280.000 335.000 800.000	4694.000 15.000 -10.000	365.000 850.000 1355.000	10.000 -12.000 25.000 2.100	390.000 1000.000	-10.000	1150.000
GR	-5.000	1200.000	2230:000	1280.000	5.000	1355.000	25.000	1400.000	8:8	8:8
						1000 000			0.0	0.0
XGGGG	1.040 25.000 -10.000 5.000	12.000	-11-000	2230.000 435.000 2000.000	1000.000	1000.000 470.000 2120.000	-2.000	1770.000	-5:000	1850.000
GR	5.000	360 000 1880 000 2290 000 755 000	470.000 5.000 -11.000 25.000 1230.000	3150.000	0.0	0.0	-2.000 -5.000 2.100	0 0.0	0.0	0.0
			and the second							2.2
GR	25:000	11.000 650.000 850.000	755.000	1230.000 690.000 1150.000	2500.000	2112.000 720.000 1200.000	2112.000	755.000	-6:000	800.000

•	PF	0.0	905.000	1100.000	0.400	0.000	0.0	2:100	8:8	8:8	8:8	
•	XGGNET	1.800 25.006 -16.500 0.0	10.000 820.000 1020.000 2941.000	900.000 5.000 -8.000 3060.000	1105.000 .900.000 1070.000 0.00	1900.000 0.0 0.500 0.0	1900.000 935.000 1090.000	1901.000 -6.000 5.000 2.100	950.000 1105.000 0.0	-16.500 25.000 0.0	1190.0000 0.0	
•	XGGSE	1.868 27.700 0.0 1.250 0.0	7.000 2886.000 3050.000 1.560 2940.000	2956.000 27.900 2.600 3061.000	3000.000 2950.000 3122.000 0.0	42.000 -9.300 0.0 54.000 0.0	42.000 2983.000 6.000 0.0	42.000 -13.900 0.0 4976.000 2.100	3000.000	-8.200 -13.900	3037.000	
с . Г	X1 X2 ET	1.814 0.0 0.0	0.0 9.0 2940.000	0.0 1.900 3061.000	26.500	30.000 29.500 0.0	30.000 0.0 0.0	30.000 0.0 2.100	3:0	0.0	0.0 0.0 0.0	
C	X1 SET	1.820 1.250 0.0	0.0 1.560 2939.000	0.0 2.600 3062.000	0.0	30.000	30.000	30.000 4976.000 2.100	2.500	-13.900	-13.900	
oF	X1 ET	1.826	2900.000	0.0 1.000 3085.000	26.500	30.000 29.500	30.000	30.000	0.0	0.0	0.0	
с с	X GS G ZET	1.835 -10.400 -10.400 0.0	12.000 870.000 3085.000 865.000	2920.000 -11.300 25.000 1220.000	3085.000 2920.000 3620.000 3150.000 0.100 0.0	50.000 -6.600 -10.000 0.500 0.500	50.000 2930.000 3050.000 0.0	50.000 -10.788 -8.488 0.00 2.100	3829.8888 3.8	-12:288 0:00 0:00	2975:000 3075:000 0:0	
c c	XIERE	1.849 25.000 4.000 15.000 0.0	11.000 750.000 890.000 1300.000 930.000	865.000 15.000 -4.000 0.0 1070.000	1220.000 770.000 1180.000 0.0		$160.000\\810.000\\1220.000\\0.0\\0.0\\0.0$	74.000 5.000 5.000 2.100	1230.000 0.0 0.0		1276.000 0.0	
c c	XGRROT	1.865 25.000 5.000 0.0	13.000 800.000 930.000 1090.000 966.000	930,000 20,000 -2,000 15,000 1034,000	1070.000 810.000 945.000 1105.000 0.300 0.00	84.000 15.000 20.500 0.0	200.000 815.000 1000.000 1160.000 0.0	84.000 10.000 -2.000 0.0 2.100	870.000 1055.000 0.0 0.0	0.000	1070.000 1070.000 0.0 0.0	
o c	XAGGGGG	1.874 10.000 -0.300 -0.300 -0.00 -0.00	14.000 880.000 988.000 1035.000 11.560	965.100 21.900 -0.300 19.600 1034.000	$1034.900 \\ 940.000 \\ 1300.000 \\ 1062.000 \\ 0.0$	70.000 7.700 21.500 75.000	40.000 965.000 1012.000 1070.000 0.0	50.000 -0.300 -0.300 25.000 1330.000 2.100	965 108 1027 030 1215 900 0:8	22.100 -0.300 -0.300 -0.300	0.0 973.000 1034.900 -0.0 -0.0	
C	ET X1	1.881	965:000 0.0 9.9	0.0	0.0	39.000 22.100	39.000 9.9	39.000	0.0	0.0	0.0	

CGR 22 CGR 22	1.890 22.400 22.400 24.00 24.00 24.00 24.00 24.00 24.00 20.00 2.00 2	21.000 2782.000 2916.000 3073.000 935.000 935.000 13.000 630.000 140.000 935.000 160.000 2960.000 2960.000	2917.000 24.200 3.500 22.900 0.0 1070.000 935.000 20.000 9.5000 1070.000 1070.000 0.0 3075.000 2974.000	3047.000 2827.000 3087.000 0.100 0.0 1070.000 1070.000 1070.000 10310.000 10310.000 0.0	50.000 23.500 23.300 0.300 0.300 0.00 15.000 30.000 53.000 0.0	50.000 2855.200 2922.002 30.7.000 31.18.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	50.900 23.200 1500 23.800 2.100 174.000 14.000 14.000 2.100 53.000 0.0	$\begin{array}{c} 0.0\\ 2633.000\\ 3950.000\\ 3162.000\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	22.900 21.900 23.800 23.800 0.0 0.0 12.000 15.000 0.0 0.0	2905.000 2975.000 3236.000 0.0 0.0 955.000 1095.000 0.0	
X1 GGRR 2 GGRT 2 X1CT X1CT X1CT X1CT X1CT X1CT X1CT X1CT	28.800 1.123 0.0 56:255	1495:000 2960:000 2665:000	20.000 25.000 1070.000 0.0 3075.000	0.0	12:000 30:000 53:000	53.000	2:100	935.000 1070.000 0.0 0.0	0.0		
• XI 5 GRE 5 OCRC 2 • XI 6 GRE 1 • XI 6 GRE 1 • XI 6 GRE 1 • XI 6 • CONC 1	2.052	2960.000	3075.000	0.0	53.000 0.0 0.0	53.000	53.000	0.0	0.0		
• ORR 2 EL • X1 • GGR 1 • GGR 1	2:052 56:400 8:400	2885:808	2974.000			0.0	2.100	0.0	0.0	8:0	•
• ET	20:488	3000.000 3112.000 940.000	2974.000 24.800 9.300 20.800 0.0 1060.000	3026.000 2921.000 3015.000 3200.000	800.000 19.600 11.000 20.900 0.0	2992:888 3252:888 3252:888 0:0	628.000 11.100 13.300 20.900 2.100	2980.000 3051.000 3792.000	9:200 14:300 60:900 0:0	2996.000 3086.000 3863.000 0.0	,
· \$3	2.198 46.000 14.000 25.000 0.0	13.000 850.000 980.000 1.65.000 910.000	970.000 25.000 14.000 30.000 00 1090.000	1030.000 900.000 1020.000 1300.000 0.300 0.0	850.000 20.000 14.500 40.000 0.500 0.0	600.000 940.000 1025.000 1400.000 1400.000 0.0	771.000 16.000 16.000 0.0 0.0 2.100	970.000 1030.000 0.0 0.0 0.0	14.500 20.000 0.0 0.0	975-000 1060-000 0-0 0-0	,
GR GR I	2000 2000 1007 1007 1007 1007 1007 1007	16.000 710.000 1050.000 1280.000 1280.000 910.000	910.000 35.000 20.030 18.000 0.0 1090.000	1090.000 800.000 1090.000 1090.000 0.0	65.000 20.000 20.000 20.000 20.000 163.600	170.000900.0001010.0001090.1001090.00012.0000.00	121.000 18.000 17.500 35.000 2783.000 2.100	38.400 909.900 1015.000 1110.000 1110.000 0.0	37.500 17.500 39.000 39.000 17.500	8:8 910.000 1045.000 1165.000 17.500	
×1 ×2 ×3	2.226	0.0 0.0 710.000 36.800 34.200 1050.000 2900.000	1.000 59.000 1010.000 38.200 3100.000	34.200 0.0 910.000 38.400 34.200 1160.000	26.000 37.600 800.000 38.800 34.200 1090.000 39.000	26.000 0.0 39.000 1015.000 38.000 38.000 0.0	26.000 0.0 930.000 38.300 34.200 1280.000 2.100	0.0 38.400 900.000 38.700 34.200 1090.100 52.000 0.0	0.0 37.600 38.800 1045.000 1045.000 38.000 0.0		•

•	SRARR RU	4375554 QC	2775.000 2881.000 2975.000 3100.000 3230.000	42.500 37.2000 25.400 45.400	2798.000 2863.000 3000.000 3116.000 3264.000	39.2000 24.9900 35.700	2816.000 2900.000 3025.000 3148.000 3304.000	38.800 233.500 239.00	2837.000 2925.000 3050.000 3160.000	30 - 500 223 - 900 39 - 900 0 - 0	2950-000 3075-000 3200-000	•
•	NC ET	0.0	910.000	1080.000	3264.000	53:308	0:0	2:100	3.0	0.0	8:8	•
	XGGGGE	250000	$\begin{array}{r} 15.000\\ 735.000\\ 900.000\\ 1010.000\\ 2908.000\end{array}$	910.000 50.000 24.500 30.000 3150.000	1080.000760.000910.0001170.0000.0	70.000 45.000 24.000 35.000	135.000 900.000 920.000 1200.000 0.000	95.000 40.000 24.000 40.000 2.100	820.000 1070.000 1280.000	0.0 35.000 245.000 45.000	385.000 1080.000 1340.000 0.0	-
•	XGGGGGGGG	600 600 600 600 600 600 600 600	255.000 2561.000 2771.000 3075.000 3237.000 3237.000 2791.000	2928.000 40.3000 30.3000 43.3000 43.3000 3177.000	3076.000 2604.000 2795.000 3076.000 3308.000 0.0	557.68000 377.68000 41.000 477.70 377.6000 477.70	2653 868 2850 9880 3100 000 3374 000	5000 350 350 350 350 350 350 350 350 350	2707.000 2908.000 300.000 3150.000 3425.000 36.0	0.000 515.000 41.88000 341.000 341.000	2735.000 2909.000 3172.000 3479.000 26.0	•
•	XX DBBB BB	2.261 25.000 2707.000 40.300 3000.000 39.600	25.000 2581.000 55.500 2928.000 36.800	2909.000 1.000 50.000 2860.000 40.800 3100.000	3100.000 0.0 2735.000 40.300 3050.000 39.300	3.000 36.800 2604.000 2929.000 2929.000 36.800	$\begin{array}{r} 3.000\\ 59.200\\ 2908.000\\ 35.800\\ 3150.000\\ 43.700 \end{array}$	3.000 0.0 2771.000 40.300 30.75.000 39.400	0.0 2655.000 48.100 2950.000 36.800	0.0 57.800 2909.000 36.800 31.72.900	0.0 0.0 2795.000 40.800 3076.000 41.800	
	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3237.000 2581.000 2587.000 30275.000 3025.000 3237.000 2869.000	42.600 59.200 40.300 36.000 34.500 43.700 3131.000	0.0 34 79.000 26 04.4000 2795.000 30 76.000 30 76.000 30 76.000 30 8.000 0.0	33 08 000 69 800 57 800 40 300 35 000 36 500 47 300 0 0	43.700 2665.000 2860.000 2950.000 3100.000 3374.000 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3374 000 2707 000 2908 000 3000 000 3156 000 3423 000 0 0	3172.000 47.300 51.700 36.400 34.100 41.800 69.800 0.0	0+0 2735-000 2909-000 3172-888 3479-000 0-0	,,
	XGGGGGGGGGG	2:270 60:2000 34:300 30:1000 30:1000 30:1000 41:300	30.000 2463.000 2473.000 3600.000 3125.000 3125.000 3900.000	2869.000 58.930 33.100 30.500 32.700 41.600 1100.600	3131.000 2616.000 2000.000 3025.000 3128.000 3280.000 0.0	50.000 57.300 311.500 560.500 560.500 500 500 500 500 500 500 500 500 50	50.000 2705.000 2925.000 3050.000 3131.000 3329.000	50.000 51.800 36.800 30.800 36.800 36.800 36.800 36.800 29.100	0.0 2748.000 2655.000 3075.000 3151.000 3351.000	0.0 44.600 36.800 29.700 31.900 357.100 0.0	2769.000 2969.000 2969.000 3100.000 3170.000 3377.000 336.000	,
0	XGREACT	2:377 55:000 455:000 0:0	11.000820.0001080.0001250.0002906.000	900.000 40.000 32.000 3054.000	1100.000895.0001090.0000.3000.3000.0	565.000 35.000 35.000 0.500 0.500	470.000 900.000 1100.000 0.0 0.0	565.000 32.000 40.000 0.0 2.100	0.0 1130.008 0.0 0.0	0.0 29.400 45.000 0.0 0.0	920.000 1190.000 0.0 0.0	3
C	X1 GR	2.387 60.000 37.100 9.900	7.000 2876.000 3085.000	2915.000 37.100 60.000 2.600	3085.000 2915.000 3124.000	40.000 29.200 170.000	40.000 2930.000 12.000	53.000 29.200 4000.000	3000.000	29.200 29.200 29.200	3070.000 29.200	و

u	m)
1.1	
	· .

•	X1 X1 ET	2.399	0.0 2935.000	0.0	57.200	63.000 60.700	63.000 0.0	63.000 2.100	8:8	8:8	0.0	
•	XGGGGGZE	2.408 57.900 45.600 41.600 0.120 0.0	19.000 2545.000 2782.000 3090.000 0.120 2938.000	2935.000 50.400 42.300 29.000 2.600 0.040 3062.000	3065.000 22857.000 30122.000 0.100 0.0	50.000 49.8000 55.5000 0.300 0.0	50.000 2615.000 2935.000 3030.000 3176.000 0.0	50.000 46.900 31.700 32.800 65.400 0.0 2.100	2678.000 2950.000 3050.000 3233.000 0.0	0.0 46.700 30.600 36.900 0.0 0.0	2727:000 2975:000 3065:000 0:0 0:0	
•	X GG GG GG GG	25.000 37.000 374.1000 344.200 50.00	28.000 2710.000 2867.000 2867.000 2950.000 3060.000 3167.000	2938.000 50.000 37.000 46.400 35.700 52.900 3035.000	3062.000 2750.000 2863.000 2975.000 3062.000 31.000	$\begin{array}{c} 1067.000\\ 46.600\\ 42.400\\ 43.400\\ 35.400\\ 56.400\\ 56.400\\ 0.0\end{array}$	$\begin{array}{c} 1067,000\\ 2765,000\\ 2813,000\\ 3907,000\\ 3900,000\\ 3085,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 3237,0000\\ 323,000000000000000000$	1067.000 46.600 37.000 36.700 35.000 44.900 0.0 2.100	2768.000 2839.000 3020.000 3104.000 0.0	0.0 41.700 35.600 33.600 40.0 0.0	2782-000 2854-000 3950-000 3127-000 0.0	
•	XGRGGGGNE	2.708 77.000 57.000 50.57.000 6.0.120 0.0	25.000 2895.000 2965.000 3020.000 3107.000 950.000	2965.000 58.100 53.000 51.300 67.200 0.040 1080.000	3035.000 2604.000 29613.000 2930.000 3153.000 0.100 0.0	440.000 57.600 52.600 53.100 67.260 0.300 0.0	510.000 2833.000 2937.000 2937.000 3035.000 3201.000 0.0	517.000 66.900 51.600 65.600 65.600 65.600 65.600 65.600 65.600 65.200 0.0 2.100	2874-000 2951-000 2990-000 3046-000 3252-000 3252-000 0-0	0.0 59.400 51.100 66.400 70.200 0.0	2886.000 2956.000 3064.000 3289.000 3289.000 0.0	
0	X1 GRR GRR E	2.783 75.000 52.000 65.000 0.0	13.000 550.000 970.000 1215.000 910.000	950.000 70.000 52.000 70.000 1105.000	1070.000 615.000 1050.000 1340.000 0.0	396.000 65.000 53.000 75.000 0.0	396.000 925.000 1060.000 1415.000	396.000 55.000 55.000 2.100	950.000 1070.000 0.0	53.000 55.000 0.0	960.000 1200.000 0.0	
0	XGGGZZE	2 642 75 000 54 000 65 000 1265 000 0 6	$\begin{array}{c} 13.000\\ 780.000\\ 910.000\\ 1170.000\\ 0.090\\ 0\\ 0\\ 650.000\end{array}$	$\begin{array}{c} 910.000\\ 70.000\\ 53.000\\ 65.000\\ 630.000\\ 0.0\\ 1050.000\end{array}$	1070.000 830.000 920.000 1250.000 0.040 0.0 0.0	312.000 53.000 70.000 690.000 0.0	312.000 855.000 1060.000 1310.000 0.100 0.0 0.0	312.000 60.000 54.000 940.000 2.100	1075.000 0.040 0.040	9.0 55.000 1050.000 0.0	0.0 905.000 1085.000 0.120 0.0 0.0	
0 0	X REAR ARCT	2.874 75.000 56.000 55.000 65.000 0.100 0.0	$\begin{array}{c} 17.000\\ 490.000\\ 690.000\\ 940.000\\ 940.000\\ 1190.000\\ 1190.000\\ 795.000\end{array}$	650.000 70.000 53.000 75.000 1075.000	1050.000 600.000 710.000 950.000 1265.000 0.100 0.0	800.000 60.000 53.000 0.300 0.300	70.000 635.000 1040.000 0.0 0.0	169.000 56.000 55.000 0.0 0.0 2.100	650-000 830-000 1050-000 0-0 0-0 0-0	53.000 60.000 60.000 60.000 60.000	875.888 1135.000 8.8	
0	X1 GRR GRCT	2.894 80.000 58.500 60.00 0.0	13.000 640.000 870.000 1075.000 2805.000	795.000 75.000 60.000 70.000 3093.000	1075.000 750.000 875.000 1150.000 1150.000 0.300	150.000 60.000 60.000 75.000 0.500 0.0	70.000 795.000 950.000 1205.000 0.0 0.0	106.000 59.500 53.000 0.0 2.100	820.000 960.000 8:8 0.0	58.000 58.000 8.8 0.0	830.000 1070.000 8.8 9.0	

ĨH	
----	--

•	1 RRRRR RBT	2.5000 2.50000 86559.5000 6559.5000	25.000 2668.000 2960.000 3005.000 310.000 100.000 2795.000	2855.000 81.800 64.000 61.000 75.000 75.000 34.08.000	3080.000 2683.000 2840.000 2950.000 3350.000 3350.000	42.000 62.000 61.0000 75.000 1.00	42.000 2713.000 2855.000 2955.100 3075.000 3380.000	42.000 80.800 59.100 63.000 80.000 1.000 2.100	0.0 2753.000 2690.000 3080.000 3550.000 3550.000	76:000 55:000 70:088 85:808	2780.000 2910.000 3004.900 3790.000 3790.000 3790.000	
•	XXBBBBBBBBBBBBBBBBCCGCC	2750000 2750000 3000000 30000000 35500000 35500000 35500000 61.00000 61.00000 61.0000000000	25.000 266.000 80.800 2960.000 2960.000 3210.000 2668.000 2807.000 2805.000 2805.000 2905.000	2855.000 86.500 2855.000 3075.000 81.800 61.000 61.000 75.000 3064.900	3080.000 2780.000 3000 71.600 3700.000 2683.000 2680.000 2680.000 2680.000 2680.000 2600 2600 2600 2600 2600 2600 2600	3.500 70.500 2683.000 77.400 29.5.000 71.000 3350.000 80.700 61.000 60.000 61.000 61.000 60.000 61.000 60.000 61.000 60.000 61.000 60.000 60.000 61.000 60.000 60.000 60.000 61.000 60.000 60.000 60.000 61.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.0000 60.0000 60.00000 60.00000000	$\begin{array}{c} 3.500\\ 0.0\\ 81.800\\ 2890.000\\ 70.500\\ 3080.000\\ 75.000\\ 2713.000\\ 2713.000\\ 2995.100\\ 3385.000\\ 3385.000\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	3.500 0.0 28.07.000 71.000 30.05.000 73.400 0.0 50.800 60.800 60.800 60.800 60.800 60.800 60.800 60.800 60.800 60.800 60.800 60.800 71.000 2.106	$\begin{array}{c} 0.0\\ 0.0\\ 2713.000\\ 74.700\\ 2995.100\\ 0.0\\ 3380.000\\ 2753.000\\ 2753.000\\ 2890.000\\ 2890.000\\ 3980.000\\ 3980.000\\ 3980.000\\ 3080.0$	$\begin{array}{c} 0.0\\ 0.0\\ 80.700\\ 2910.800\\ 71.000\\ 0.0\\ 3110.000\\ 75.000\\ 77.400\\ 61.000\\ 61.000\\ 85.000\\ 85.000\\ 0.0\\ 0.0\\ \end{array}$	0.0 2848.888 0.0 3050.000 75.000 0.3 2780.000 2780.000 3010.000 3010.000 3100.000 0.0 0.0 0.0 0.0 0.0 0.0 0	· · ·
•	HA LERR RET	2.918 88.9000 78.000 60.800 60.00 89.000 80.00	27.000 2606.000 2613.000 2924.000 2990.000 3660.000 3500.000 3500.000	2936.000 67.800 75.800 61.500 70.600 61.500 70.600 1065.000	3064.000 2664.000 2838.000 3000.000 3006.000 3600.000 3600.000	79.000 86.200 68.200 68.200 75.8200 68.200 75.750 00 00	79.000 2706.000 2856.000 2940.000 3020.000 3087.000 3087.000 0.0	79.000 80.800 65.300 62.800 75.700 62.800 75.700 2.100	2729.000 2895.000 3040.000 3340.000 3340.000 0.0	0.0 80.800 75.100 66.600 75.700 75.700 0.0 0.0	2781-000 2914-000 2980-000 3050-000 3370-000 8-8	•
•	XGGGZE	2.930 87.000 75.000 75.000 0.0	14.000700.000950.0001065.000941.000	940.000 85.000 61.300 80.000 0.000 1051.000	1065.000 760.000 955.000 1170.000 0.500 0.0	63.000 61.300 85.000 85.000 85.000 0.700	63.000 790.000 1035.000 1535.000 0.0	63.000 75.000 90.000 90.000 2.100	940.000 1040.000 1760.000 0.0	71.000 71.000 71.000 0.0	949-0000 1045-000 8-8	
•	XX GGGSSE	2 938 10 000 87 460 75 000 0 0	$13.000 \\ 0.0 \\ 700.000 \\ 960.000 \\ 1051.100 \\ 1.560 \\ 941.000$	941.000 0.0 63.700 80.700 80.700 1051.000	1051.000 0.000 760.000 1068.000 0.0	42.000 80.000 80.000 110.000 0.0	42.000 790.000 1000.000 1480.000 0.0	42.000 75.000 64.100 1870.000 2.100	81.900 1042.000 0.00 0.0	62.600 62.600 62.600	8.8 1051-8000 62.600 0.0	. 3
	XXXBabbit	2.944 6.000 10.0000 940.9000 84.1000 76.400 76.060 0.0	0.0 700.000 877.100 1051.100 2950.000	1:000 87:000 1000:000 80:900 3124:000	77:300 0:0 941:000 84:000 0:0 0:0	33:468 760:000 77:000 1068:000 0:6	33.400 9.0 85.000 1042.000 80.700 90.700 0.0	33.400 0.0 960.0000 83.700 0.0 0.0 2.100	0.0 31.900 790.000 76.700 14.9.000 0.0 0.0	0.0 80.7000 877.2000 1051.5000 85.000 0.0	977-9900 977-9900 83-400 0-0	0

•	ACCO	2.958 86.300 77.400	21.000 2630.000 2921.000 2987.000 3112.000 3430.000	2950.000 83.100 73.700 62.600	3124.000 2632.000 3012.000 3117.000	74.000 83.100 70.200 70.200	2750.000 3037.000 3124.000	74-000 61-400 66-900 62-600	0.0 2846.000 2955.000 3062.000	0.0 78.700 66.300 62.500	2884.000 2962.000 3087.000 3290.000	
•	GGGZE	65.700 85.000 0.0	3112.000 3430.000 1950.000	66.600 0.0 2085.000	3117.000 0.0 0.100	70.200	3124.000	75.600	3133.000	80.000 0.0 0.0	3296:000	•
•	X 1 GRR GGT	2.970 85.000 85.000 85.000	11.000 970.000 1980.000 2350.000 1950.000	1950.000 80.000 60.000 2075.000	2085.000 1400.000 2055.000 0.0	63.000 65.000 0.0 0.0	1850-000 2065-000 0.0	63.000 75.000 75.000 2.100	0.0 1950 000 2085 000 0.0 0.0	0:000 80:000 0:00 0:00	1970-900 2270-900 0.0	
•	XGGGZE	3.003 857.0000 857.0000 8000 0.0	12.000 900.000 1970.000 2200.000 2935.000	1950.000 80.000 57.000 85.000 0.0 3085.000	2075.000 1500.000 2055.000 2265.000 0.500 0.500	130.000 75.000 66.000 0.700 0.700 0.0	70.000 1965.000 2665.000 0.0	174.000 73.000 73.000 0.0 2.100	0.0 1950.000 2075.000 0.0 0.0	0.0 66.000 75.000 0.0 0.0	1960.000 2090.000 0.0 0.0	
•	A S G G G S S E	3.011 10.000 67.000 70.200 70.000 70.000	15.000 1880.000 2950.000 3050.000 1.560 2935.000	2935.000 95.000 59.900 70.700 3085.000	3085.000 2250.000 2960.000 3052.000 0.0	42.000 80.000 75.000 130.000	42.000 2440.000 3000.000 3085.000 0.0	42.000 75.000 57.000 2886.000 2.100	$\begin{array}{c} 0.0\\ 2935.000\\ 3020.000\\ 3090.000\\ 0.0\\ 0.0\\ \end{array}$	0.0 86.300 71.700 63.300 85.000 55.200	0.0 2937.000 3040.000 3150.000 55.200	
•	XXXBBNT	3.016 10.000 3050.000 0.150 0.0	0.0 0.0 1860.000 86.500 0.150 2939.000	0.0 1.000 86.100 84.200 0.045 3055.000	84.200 3052.000	2935-000 86-100 2935-000 86-500	28.000 86.100 0.0	28.000 0.0 3150.000 2.100	0:0 36:100 2937.000 86:500 0:0	9:9 86:300 86:100 0:0	84.200 0.0	
•	XOGOGZE	3.028 85.000 76.700 61.500 64.300 0.0	20.000 2400.000 2913.000 3055.000 2951.000	2939.000 80.000 76.700 59.800 71.300 00 3051.000	3055.000 2440.000 2930.000 2975.000 3061.000 0.100 0.0	0.0 63.000 78.700 60.500 77.100 0.300 0.0	0.0 2473.000 2935.000 3000.000 3072.000 0.0	63.000 78.500 71.300 61.200 79.500 2.100	2853.000 2939.000 3025.000 3211.000 0.0	0.0 77.800 65.600 85.600 85.600	0.0 2890.000 2945.000 3045.000 3249.000 3249.000	
•	XGGGGGGGGG	3-262 899-900 522-700 80-70	30.000 2694.000 29951.000 29955.000 3040.000 3140.000 3140.000 3733.000 2948.000	2951.000 82.400 66.100 51.400 66.600 78.100 81.100	3051.000 2740.000 3000.000 3045.000 3243.000 3811.000	400.000 80.400 61.400 69.900 89.900 81.200	1200.000 2800.000 2960.000 3010.000 3021.000 3900.000 3900.000	1236.00079.40053.80054.20071.50079.50082.100	0.0 2882.000 2965.000 3053.000 3053.000 3957.000	0.0 78.100 52.700 56.600 78.000 80.000 80.600	2929.000 2975.000 3030.000 3066.000 3997.800 3997.800	
	XOGGG	35.4700 35.7200 774.2900	25.000 1822.000 2933.000 2970.000 3928.888	3052.000 2948.000 77.100 71.600 53.400 53.400	0.0 3052.000 1860.000 2962.000 2980.000 3030.000	1300.000 76.100 69.900 53.800 63.700	850.000 1908.000 2948.000 2990.000	1035.000 76.100 65.700 53.300 66.700	0.0 2912.000 2950.000 3000.000 3045.000	0.0 75.400 61.900 69.900	0.0 2925.000 2960.000 3010.000 3052.000	

•	ĔŤ	0.0	950.000	1050.000	0.0	0.0	0.0	2.100	0.0	0.0	0.0	G
•[ARRES OF	3.603 90.000 75.000 67.000 90.000	16.000 330.000 935.000 1475.000	950.000 85.000 70.000 70.000	1050.000 400.000 950.000 1050.000 1050.000	450.000 80.000 87.000 75.000	900.000 410.000 960.000 1065.000	766.000 78.000 61.300 80.000	450.000 970.000 1100.000	0.0 75.000 61.300 85.000	700.000 1030.000 1110.000	-
•	ÈÈ	8:8	2963:000	3027:000	8:500	0:0	8:8	2:100	3:8	8:8	0.0	
•	XXGGGGG	3.612 10.000 85.000 64.600 70.000	15.000 2900.000 2986.000 3027.000	2963.000 0.0 80.000 60.800 72.00	3027.000 2920.000 2990.000 3028.000	48.000 0.0 75.000 61.200 75.000	48.000 2940.000 3000.000 3050.000	48.000 70.000 60.900 120.000	93.800 93.800 2962.000 3010.000 3100.000	0.0 93.800 64.800 69.700 85.000 60.800	8.8 3828.988 3128.888	
	SBE	0:0	3027.000 1.560 2963.000	72.000 2.630 3027.000	0.0	75:000	8:8	1220.000	0.0	0.0	0.0	
•	X1 X2	3.617	8:0	0.0 1.000	0.0 84.600	25.400 93.800	25.400	25.400 0.0 0.0	0.0 7.0 93.800 2963.000	0.0 0.0 93.800 93.800	0.0	
•	XXBBE	3.617 10.000 3027.000	2900.000 93.800 2950.000	92.800 93.800 84.600 3050.000	3028.000 0.0	2962.000	93.800	3120.000	2963.000 93.800 0.0	93.800 0.0 0.0	84.600 0.0 0.0	
•	XI	3.628 85.000 77.200	25.900	2950.000	3050.000 1850.000 2897.000	58.000 80.000 76.700 70.000	58.000 2230.000 2923.000	58.000 77.600 73.300	2660-800 2631-800 2955-000	0.0 77.608 72.100 67.500 70.500 86.00	2814-000 2938-000 2960-000	
•	GGGR	71.600 63.500 70.000	2940.000 2965.000 3050.000 950.000	71.600 61.800 75.500 0.0 1050.000	2942.000 2980.000 3081.000 0.100 0.00	62.100 81.400 0.300	2950.000 3000.000 3114.000 0.0	67.900 65.900 85.500 0.0 2.100	2955.000 3020.000 3159.000 0.0	70.500 86.600 0.0	3040.000 3197.000 0.0	
•	ET	0.0		950.000	1050.000	500.000	1300.000 840.000			0.0	0.0	
•	XIRRER	3.836 85.000 63.900 53.700	22.000 325.000 955.000 1000.000	80.000	370.000 960.000 1015.000 1668.000 1666.000	80.000 58.800 56.700 77.900	840.000 970.000 1030.000 1101.000	1098.000 75.000 58.600 58.800 77.900	940.000 980.000 1045.000 1273.000	71.700 55.700 63.900 79.400	950.000 1990.000 1948.000 1914.000	•
5.	GREJ	80.300 80.0	1569.000	536.900 764.500 0.0	1608.000	8:8	8:8	0:0	3:8	8.0	8:8	

ROYAL RIVER HEC-2 HYDRAULIC MODEL – FLOODWAY RESULTS

PROFILE NO.	2	R FLOODHAY		HATCO C				
STATION C L C	WIDTH (FT)	FLOODWAY SECTION AREA	VELOCITY	HATER S WITH FLOODWAY	URFACE ELEV WITHOUT D FLOODWAY	IFFERENCE		
Royal River	1600.	17050.	0.6	5.5	4.5	1:8		
1.040	1600. 560. 1760. 475. 195.	17050. 7550. 14830. 6689.	1.4 0.7 1.6	5.4	4.6	1.0 1.0 1.0		
1.800	195.	6689. 2807. 1384.	3.8	5.6	4.6 4.7 4.1 4.5	0.9 1.0 0.9		
1.800 1.800 1.814 1.820 1.826 A-1.835	121.	1384. 1421. 1436. 1470.	7.32	155555577	4.0077	0.9		
1.849 1.865	119. 121. 121. 123. 185. 140.	101 102 102 102 102 102 102 102	3.6 2.7 8.6	7.3	6.7 6.0	0.5 0		
1.874 1.881 B-1.890	20.	616: 789: 1510.	8.61 17.3 7.0 7	8.7	8.6 11.0 13.8	0.5		
1.923	130.	1004	13.7	16.6	16.6	0.0		
49544 846741 866741 866741 8667332 866732 866732 86777777777777777777777777777777777777	120.	1067.	13.75 10.55 9.92	-687526190001 11468058888 11468058888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 205888 2058888 205988 205988 20588 205888 20588 205888 205888 205888 205888 205888 20588	1100 477 5 67 650 9 67 680 477 7 80 5 1 9 67 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.4		
D-2-232 2.250	170:	879.	12:0	28.67	28.6	-0.1 ×		
2.261	242. 386. 262. 200.	1771. 2987.	10.3	35.0 41.9 42.6	35.0 41.9 42.6	0.0		
2.377 2.387 2.399	200. 188. 188.	2561.	4.1	42.7	42.7	0.0		
6-2-408 6-2-610	1 30	1067797 1067797 1067797 1067795 107795 107795 107795 10795 10795 10795 10795 10795 10654 10657 10795 106577 10795 106577 10795 106577 10795 106577 10795 106577 10795 106577 10795 106577 10795	1290395117 10939534.17 10534.17 173822	409677778788802 05112222240556 334444446666	42 7 42 7 42 7 42 9 44 4 60 5 3	0.00		
# 2.783 2.842	124. 85. 130. 195.	1648. 2438.	6.4	65.9	64.7 65.0 65.1	0.9		
2.894 894 9918 2-29918 2-29938 J-229958 J-229950 J-229950	400. 280. 288.	2056.	435.1 10.4		65.3 65.1 66.1	0.9 1.0 0.0		
2-2-918 2-930	613. 128. 125. 110.	3447. 1532. 1467.	3.1 6.9 7.2 8.9	060555555 777777777777777777777777777777	19787 8214	0.0		
2.938	110.	1188. 1202. 2326. 1865.	8.9 8.8 4.5	75.7 75.8	75.7	0.0		
2.970 3.003 3.011	11745	18491 18491 198491 18491 2245	10.080.47	77777777777777777777777777777777777777	777.4 777.4 777.4 777.4 778.8 78.8 78.8			

ROYAL RIVER HEC-2 HYDRAULIC MODEL – FLOODWAY RESULTS

ROYAL RIVER HEC-2 – "DIVERSION" MODEL

Π.	a,		
I.		1	
11	1	I L	

		100				10221002		810			1.1.1.1.1.1	97-	
***	*** * * * * * * * * *	******	******						THIS RUN	EXECUTE	0 09/25/	79 14.00.23	
H E M	EC2 RELEASE RROR CORR - ODIFICATION	CATED NCV 01,02 - 50,51,	76 UPDATE	D AUG 1977									
11 12 13	FLOOD INS	URANCE STU		YARMOUTH,					0 80 80 1215			and in the	
J1	10-YEAR F		NINV	ID IR S	TRT	METRIC	HVINS	c	WSEL	FQ			
12	0.	2. 19101	D. PREVS	0. 0.0	SECH	0.0 . FN	0.0	0.	61.420	0.0			
	1.000	0.0	-1.000	0.0	0.0	0.0	ALLDC 0.0	18W 0.0	CHNIM 0.0	ITRACE 0.0			
13			UMMARY PRIN										· · ·
	38.000	39.000	40.000	41.000	42.000	43.000	1.000	2.000	3.000	34.000	1	· mail their	
	21.000	22.000	26.000	0.0	38.000	1.000	50.000	61.000	51.000	53.000			
	27.000	4.000	28.000	54.000	13.000	14.000	15.000	0.0	0.0	0.0			
NC	0.120 8.000	0.120	200.000	308:8	88	408:300	8:9	8:8	8:0		8:8	8:8	
X1 GP	2.783	13.000	950.000	1070.0	00	63:300	925.000	0.0 55.000 55.000		0.0	53.000	960.000	
GRRC	52.000 65.000 0.120	970.000 1215.000 0.080	950.000 70.000 52.000 70.000 0.045	1 07 0 . 0 61 5 . 0 1 05 0 . 0 1 34 C . 0 C . 1	000	53.000 75.000 0.300	1060.000 1415.000 0.0	55.000		00	55.000 0.0 0.0	1200.000	
X1 GR GR	0.015	10.000 735.000 1010.000	980.000 65.000 55.000	1 02 C . 0 86 C . 0 1 02 C . 0	00	200.000	0.0 965.000 1140.000	79.000	980.0 1150.0	00	0.0 50.500 70.000	985-000 1300-000	
X1 GR		8.000						227.000	Contraction of the second		0.0	0.0	ten sakain peris
GR GR NC	0.058 75.000 63.000	890.000 1010.000	990.000 70.000 70.000 70.000	1010.0 945.0 1018.0	000	227.000 63.000 75.000 0.500	227.000 990.000 1025.000	56.000	992.0 0.0 0.0	00	56.000	1008.000	
XIRRB	0.067 75.000 57.900 0.0	8.000 960.000 1010.000 2.560	981.500 70.000 65.000 2.700	1018.50 970.00 1018.50 0.0	00	48.000 65.000 75.000 0.500	48.000 981.500 1020.000 0.0	48.000 62.000 0.0 2.000	990.0	00	0.0 57.900 66.300	992.000 57.900	
×1 ×2	0.068	12.000	981.500	1018.50	00	5.000	5.000	5.000	0.0		0.0	0.0	

ROYAL RIVER HEC-2 – "DIVERSION" MODEL

BT BT BT GR GR GR	981-500 66-200 76-300 66-300 68-000	66.700 0.0 1018.100 950.000 990.600 1018.500	0.0 1001 100 73.900 75.000 66.300 75.000	990 500 72 400 6 5 5 000 1001 000 102 C 000	66.700 0.0 1020.000 70.000 66.300 0.0	0.0 1006.000 75.000 970.000 1001.100	990.600 72.400 68.040 66.300 0.0	65.200 0.0 981.500 1006.000 0.0	1006-100 66-300 66-300	1001 - 000 0 0 996 - 500 1006 - 100 0 0	1000000
X1 GR GR	0.079 76.000 71.000	8.000 950.000 1009.000	990.000 75.000 75.000	1009.000 98C.000 101C.000	58.000 71.000 80.000	58.000 990.000 1200.000	58.000 68.000 0.0	992.000 0.0	68.300 0.0	1007:000	
X1 X3 GR GR SB	0.089 10.000 80.000 71.000 0.0	9.000 0.0 960.000 1005.850 1.560	994.250 0.0 75.000 75.000 2.600	1005.800 0.0 990.000 1010.000 0.0	53.000 0.0 71.000 80.000 11.500	53.000 994.200 1030.000 0.0	53.000 0.0 69.300 85.000 107.000	0.0 80.800 994.250 1215.000 0.0	0.0 80.900 69.300 0.0 69.300	0.0 1005.800 69.300	
X1 X2 X3 BT BT NC	0.094 0.0 10.000 7.000 1005.80 85.00	0.0 0.0 960.000 80.800 0.0 0.0	0 • 0 1 • 00 0 0 • 0 80 • 80 0 78 • 60 0 0 • 0 0 • 0	0.0 78.600 0.0 1005.850 0.0 C.100	28.000 80.800 994.200 80.800 0.0 0.300	28.000 0.0 80.800 0.0 0.0 0.0	28.000 0.0 0.0 1030.000 0.0 0.0	0.0 90.800 994.250 80.800 0.0	0.0 90.800 80.800 0.0 0.0	0.0 0.0 78.600 1215.000 0.0	
X1 GR GR GR	0.102 81.000 69.300 85.000	11.000 910.000 1000.000 1250.000	990.000 80.000 69.500 0.0	1010.000 925.000 1005.000 0.0	42.000 75.000 71.000 0.0	42.000 975.000 1010.000 0.0	42.000 71.000 75.000 0.0	0.0 990.000 1015.000 0.0	0.0 69.500 80.000	991.000 1150.000 0.0	
XGGGE	0.127 85.000 60.000 85.000 0.0	11.000 970.000 1980.000 2350.000 0.0	1550.000 80.000 60.000 0.0 0.0	2085.000 1400.000 2055.000 0.0 0.0	200.000 80.000 65.000 0.0 0.0	20.000 1850.000 2065.000 0.0 0.0	132.000 75.000 75.000 0.0 0.0	1950.000 2085.000 0.0	65.000 80.000 0.0	1570-000 2270-000 0-0	
				×)							
			~								

ROYAL RIVER HEC-2 – "DIVERSION" MODEL RESULTS

145	G2 RELEASE	CATED NOV	**************************************	** * *** *** *************************	******				THIS RUN I	EXECUTED 09	/25/79 14	4.00.33	
	ROR CORR -		52,53	********	******								12 11 2 11 2
NOTE	- ASTERISK	(*) AT LE	FT OF CROS	S-SECTION	NUMBER IND	ICATES MES	SAGE IN SU	MMARY OF E	RRORS LIST	T			
YEAR	R F1000												
SUMM	MARY PRINTO	UT											
	SECNO	XLCH 0.0	ELTRD	ELLC 0.0	ELMIN 52.00	Q 100.00	CWSEL 61.42	CRIWS	EG 61.42	.01K 2110.01	STCHL 950.00	STCHR	VCH 0.08
	2.783 2.783 2.783 2.783 2.783	0.0	0.0	0.0	52.00 52.00 52.00	200.00 300.00 400.00	61.42 61.42 61.42	0.0	61.42 61.42 61.42	2110.01 2110.01 2110.01	950.00 950.00 950.00	1070.00	0.15
	0:015	79.00	8:8	0.0	50.50	100.00 200.00 300.00	61.42 61.42 61.42	0.0	61.42	1115:09	980.00	1023.00	0:13 0:26
	0.015	79.00	0.0	0.0	50.50	400.00	61.42	0.0	61.42	1115:13	980.00 980.00	1020:00	8:53
	0.058 0.058 0.058 0.058	227.00 227.00 227.00 227.00	0.00	0.0	56.00 56.00 56.00 56.00	100.00 200.00 300.00 400.00	61.41 61.37 61.31 61.22	0.0000000000000000000000000000000000000	61.43 61.44 61.47 61.52	72.12 71.29 70.36 68.25	550.00 990.00 990.00 990.00	1010.00 1010.00 1010.00 1010.00	2.12 3.22 4.38
	0.067 0.067 0.067	48.00 48.00 48.00 48.00	0.0	0.0	57.90 57.90 57.90 57.90	100.00 200.00 300.00 400.00	61.42 61.41 61.39 61.37	0.0	61.45 61.52 61.65	47.02 46.71 46.51 46.09	981.50 981.50 981.50	1018.50 1018.50 1018.50 1018.50	1.36 2.73 4.10 5.51
	0.068	5.00	66.70 66.70 66.70	8:0	66.30 66.30 66.30	100.00	68.41 69.23 69.84	0.0	61.84 68.45 69.31 69.94	27.05	981.50 981.50 981.50 981.50 981.50	1018.50 1018.50 1018.50 1018.50	1.67
	0.068	5.00	66.70 0.0	0.0	66.30 68.00	400.00	70.34	0.0	70.47	102.65	981.50	1018.50	2.98
*	0.079 0.079 0.079	58.00 58.00 58.00	0.0	0.0	68.00 68.00 68.00	200.00 300.00 400.00	69.72 70.23 70.68	69.72 70.23 70.68	70.53 71.26 71.91	11.77 18.00 24.39	990.00 990.00 990.00		7.20 8.16 8.88
* * * *	0.039 0.089 0.089 0.085	53.00 53.00 53.00 53.00	0.0	0.0	69.30 69.30 69.30 69.30 69.30	$\begin{array}{c} 100.00\\ 200.00\\ 300.00\\ 400.00\end{array}$	70.62 71.40 72.05 72.63	70.62 71.40 72.05 72.63	71.29 72.46 73.44 74.31	6.03 12.95 20.17 27.54	994.25 994.25 994.25 994.25	1005.80 1005.80 1005.80 1005.80	6.56 8.26 9.46 10.41
	0.094 0.094 0.094 0.094	28.00 28.00 28.00 28.00	80.80 80.80 80.80 80.80	78.60 78.60 78.60 78.60 78.60	69.30 69.30 69.30 69.30	100.00 200.00 300.00 400.00	71.45 72.48 73.31 74.05	0.000	71.71 72.94 73.96 74.88	13.54 25.51 37.09 48.61	994.25 994.25 994.25 994.25	1005.80 1005.80 1005.80 1005.80	4.02 5.46 6.49 7.29

ROYAL RIVER HEC-2 – "DIVERSION" MODEL RESULTS

SECNO 0.102 0.102 0.102	XLCH 42.00 42.00 42.00 42.00	EL TRD 0.0 0.0 0.0 0.0	ELLC 0.0 0.0 0.0	ELMIN 69.30 69.30 69.30 69.30	Q 100.00 200.00 300.00 400.00	CWSEL 71.76 72.97 73.97 74.87	CRIWS 0.0 0.0 0.0	EG 71.84 73.09 74.12 75.05	.01K 24.82 51.41 90.33 111.43	STCHL 990.00 990.00 990.00 990.00	STCHR 1010.00 1010.00 1010.00 1010.00	VCH 2.19 2.80 3.19 3.46
0.102	42.00 132.00 132.00 132.00 132.00	0.0		69.30 60.00 60.00 60.00 60.00	400.00 100.00 200.00 300.00 400.00	74.87 71.84 73.10 74.14 75.06	6.0 6.0 6.0	75.05 71.84 73.10 74.14 75.06	111.43 1686.87 2021.19 2321.55 2609.29	1950-00 1950-00 1950-00	1010.00 2085.00 2085.00 2085.00 2085.00	3:46 0:09 0:21 0:25
	- NEW											
	- States											

			<u>ک</u> _2	2 / 16	R	()) ⊕ 98.3% ▼ 🔂 ▼	₩	
		•0							
			-	-	-			-	
	SURVE	Y NOT	ES	TOWN	YARM	DUTH	DATE: JUNC	26/ 79	JOB NO: 204-4
F	TY. CH.	AS_		S		NO RR-	IS FT. FROM LC	CATION NO.	U/S or D/S (circle on
		n DC.	9.1	·					
	85	ні	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEETOF
	3.84	34.76					A-163 M. D.O.T	30.925	CHECKLIST
	1.01	27.70	7.10	2 8+86		27.7	TTB . GEASS		GENERAL:
			31.4			3.4	HIGH WATER NIMER		I TEM LOCATION AND ELEV.
			39.80				W.L. 7:20 AM		NATURAL X-SECTION:
				29+85			BB.	1	1. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL AND OVERBANKS
			2.57			31.20	TOP ENd CONE Side WALL		BRIDGE OR CULVERT
			3.47			31.30	TOP CONC SIDE WALL		ELEVATIONS
	E. C.		2.87	31+22		31.20	TOP ENd CONC Side WAL		2 D/S INVERT (S) 3. INVERT 50' OPP. SIDE 4. HIGHEST LOW CHORD (U/S)
•			5.24			29.53	t rd		5. NECESSARY RD. PTS. 6. ALL M.H INVERTS
									DIMENSIONS (ON SKETCHES)
			39.80	30+00	,	- 5.03	W.F. @ 8:20 AIU		2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM
			48.7	30+00		-13.9	E BTM Lodge		5. TOTAL LENGTH (// TO STREAM BRIDGE MATERIAL CHARACTERISTICS
	2		3.33	30+37		31.4	TOP CONC Side WALL	-	I. SIDEWALL AND PIERS
			43.00	30+37		- 8.2	B.B.		DAM
			39.80	30+45	;	-5.03	W.L.@ 7:20 AM		I. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM 3. DIMENSION AND SKETCHES
		· · · · · · ·	6.80	31+22		27.9	TIB ROCKS		- PLACE REASON ON BACK IF
			51.3			-16.5	50' 2/5		APPLICABLE BUT NOT OBTAINED.

SURVE	Y NOT	ES	TOWN	Vacan	outH	DATE: JUNE	. [26]79	JOB NO: 204.11
PTY. CH.	: AG		5	TREAM N	AME: E	LOYAL RIVER STRUCT	URE or STREE	NAME: 2R-1 U/Sor D/S (circle o
		9.00			Field	Description and	True	
85	HI	FS	STA	STA	Elev.	Characteristics	Elev.	SHEETOF
3.84	34.77					4 - 163 M. D.O.T.	30.925	CHECKLIST
-								GENERAL:
5								2. WATER SURFACE ELEV. 3. PHOTOS
-		41.4	29+18		-6.6	BTIN BONK		NATURAL X-SECTION
-		45.5	29150		-10.7			2 DESCRIPTION OF CHANNEL AND OVERBANKS
		47.0	29+75		-12.2	, POLKS		BRIDGE OR CULVERT
		45.2	30+00		-10.4	& BTM Ledge		L U/S INVERT (S) 2 D/S INVERT (S)
-		46.1	30+20		-11.3			3. INVERT SO' OPP. SIDE 4. HIGHEST LOW CHORD (U/S) 5. NECESSARY RD. PTS.
		44.8	30+50		-10.0			6. ALL M.H. INVERTS
-	-	43.2	30+75		- 8.4			DIMENSIONS (ON SKETCHES) I TOTAL OPENING WIDTH 2. WIDTH OF ALL PIERS
-	-	4 3.9	30482		- 9.1	BTM BANK		2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREA
-		-						
-								1. SIDEWALL AND PIERS 2. BOTTOM OF CHANNEL
Contraction of the					+			DAM

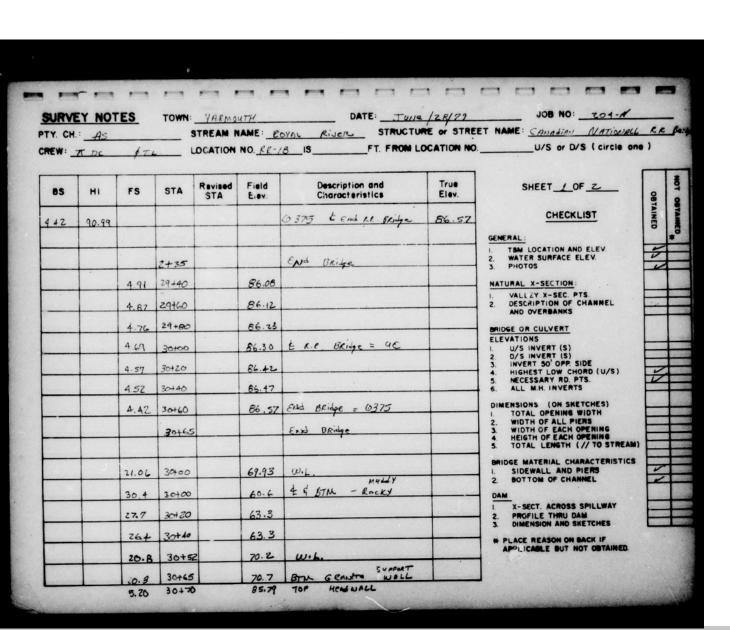
6	8

85								U/S or D/S (circle one	
	н	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEET 1 OF 2	081
628	27.89					0369	21.61	CHECKLIST	OBTAINED
)					GENERAL:	Ŭ
		5.44	29+65		22.99	ON BRidge S.W.		TBM LOCATION AND ELEV. 2. WATER SURFACE ELEV. 3. PHOTOS	*
		5.81	30+00		22.08	ON BRidge S.W.		NATURAL X-SECTION:	
0.00						30+00 ON Bridge	22.08	1. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL AND OVERBANKS	
		- 22.2	30400		-0.1	WI.@ BID AM		BRIDGE OR CULVERT	
		-22.4			-0.3	\$ Frank Recky 501 d/s	1.1	ELEVATIONS	-
0.00			30+00		-2.72 22.49	29+65 ON 5,W.	22.49	2. D/S INVERT (S) 3. INVERT 50' OPP. SIDE 4. HIGHEST LOW CHORD (U/S)	
		-22.4	29+65		- 0.10	BTM WALL		5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS	F
1. 28	27.87					0369	21.61	DIMENSIONS (ON SKETCHES)	F
	27.07	5.02	29++1		22.87	TOP S.W. ENd Bridge		2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)	E
		6,04	29+41		21.85	TOP RET. WALL		5. TOTAL LENGTH (// TO STREAM) BRIDGE MATERIAL CHARACTERISTICS L SIDEWALL AND PIERS	E
		6.20	30+44		21.70	TOP S.W.		2. BOTTOM OF CHANNEL	F
		6.43	20+62		21.46	TOP ENd S.W		1. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM	E
								3. DIMENSION AND SKETCHES	L
		8.33	30+62			TOP RET WALL	21.70	* PLACE REASON ON BACK IF APPLICABLE BUT NOT OBTAINED.	
0.00			-	-		TOP S.W 30+++ BTM CET. WALL	1111		

								T NAME: MAIN ST BRidge
REW: _7	5 D.C	d T	<u>.</u> L	DCATION	NO. <u>F.R.</u>	3_ISFT. FROM	LOCATION NO.	U/S or D/S (circle one
BS	ні	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEET 2 OF 2
0.00						Top s.w. 30+44	21.70	CHECKLIST
								GENERAL:
								3. PHOTOS
								I. VALLEY X-SEC. PTS 2. DESCRIPTION OF CHANNEL AND OVERBANKS
		3.90	30+00		17.80	TOP ARCH		BRIDGE OR CULVERT ELEVATIONS
								2. D/S INVERT (S) 3. INVERT SO' OPP. SIDE 4. HIGHEST LOW CHORD (U/S)
		13.22	30+42		5.47	BEEIN ALCH		5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS DIMENSIONS (ON SKETCHES)
0.00					22.49	Top 5.W. @ 29+65		TOTAL OPENING WIDTH 2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING
•		14.75	29+67		7.74	BEGIN ARCH	_	4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM) BRIDGE MATERIAL CHARACTERISTICS
								I. SIDEWALL AND PIERS 2. BOTTOM OF CHANNEL
						and the second		DAM I. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM
								3. DIMENSION AND SKETCHES

CH :	40		9	TREAM N	AME	STRUCTUR	E or STREE	JOB NO: <u>201-11</u> T NAME: <u>FR-3</u> U/S or D/S (circle one	1
s	ні	1 1	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEETOF	
.00						30+00 ON Bridge	22.08	CHECKLIST	US ININED
								GENERAL:	
						SHOTS TAKEN FOR AUCTINE		2. WATER SURFACE ELEV. 3. PHOTOS	
		- 19.6	29425		2.5	BIN. Little WATER LOW Tide		NATURAL X-SECTION:	
		-20.6	29450		1.5			I. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL AND OVERBANKS	Ē
		-20.2	29+75		1.9	ROLRY-Ledge			
		- 19.5	30+00		2.6			L U/S INVERT (S) 2 D/S INVERT (S)	E
		+18.6	30+25		3.5			3. INVERT 50' OPP. SIDE 4. HIGHEST LOW CHORD (U/S) 5. MECESSARY RD, PTS.	E
		- 19.1	30+50		3.0	BANKS ARE		6. ALL M.H. INVERTS DIMENSIONS (ON SKETCHES)	F
		-18.2	30+75		3.9	Ret. WAUS		I. TOTAL OPENING WIDTH	E
								3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)	E
	-					The second s		BRIDGE MATERIAL CHARACTERISTICS	F
								2. BOTTOM OF CHANNEL	F
		1						DAM 1. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM	F
								3. DIMENSION AND SKETCHES	C
		1	1	-				* PLACE REASON ON BACK IF APPLICABLE BUT NOT OBTAINED.	

	C D.C.	ф Т.	S	DCATION	NO. <u>R.R.</u>	SYAL RIVE STRUCTURE	ar STREE	T NAME:U/S or D/S (circle one)
85	н	FS	STA	Revised	Field Elev.	Description and Characteristics	True Elev.	SHEETOF	80
672	17.12					TP-5 RE-5	10.90	CHECKLIST	OBTAINED
0.40	10.10							GENERAL	•
		6.48	29+74		10.64	W, L		TOM LOCATION AND ELEV. 2. WATER SURFACE ELEV. 3. PHOTOS	11
			29+80			B B		NATURAL X-SECTION	-
			29+86					1. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL	2
			30 +00		6.4	EBRK OVERLANKS ROCKY-BITM TRees & Alders		AND OVERBANKS BRIDGE OR CULVERT	P
			30+15		9.3			ELEVATIONS U/S INVERT (S)	-
	1		30+26		11.5	в. В.		2 D/S INVERT (S) 3. INVERT 50' OPP SIDE	-
			3+26		10.64	W.F		2 D/S INVERT (S) 3. INVERT 50' OPP SIDE 4. HIGHEST LOW CHORD (U/S) 5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS	
-		9.1			8.0	50' dis		DIMENSIONS (ON SKETCHES)	-
	-	6.22				Above	10.90	2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)	
•								BRIDGE MATERIAL CHARACTERISTICS SIDEWALL AND PIERS BOTTON OF CHANNEL	
								DAM	
				-				1 X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM 3. DIMENSION AND SKETCHES	
								+ PLACE REASON ON BACK IF	



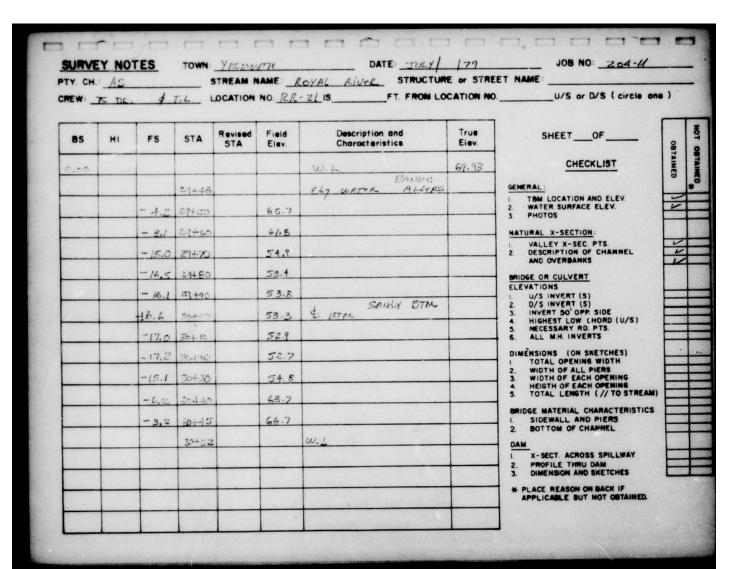
ROYAL RIVER FEMA SURVEY

|--|--|--|

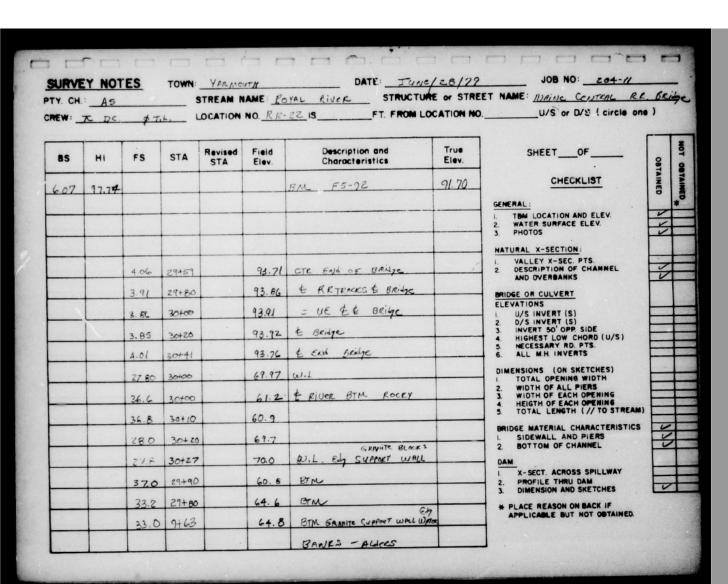
REW: 1	T.D.C.	рт	<u> </u>	DCATION	NO. RR-	GISFT. FROM LOO	E OF STRE	ET NAME: <u>BRidge ST BRidge</u> U/S or D/S (circle one)
85	ні	FS	STA	Revised	Field Elev.	Description and Characteristics	True Elev.	SHEETOF
132	42.72					TP-6 HYde will End Briche ST. Bridse	41.40	CHECKLIST
								GENERAL:
		3.93	26+99		38.79	TOP ENd S.W		1. TBM LOCATION AND ELEV. 2. WATER SURFACE ELEV. 3. PHOTOS
		3.95	29+24		38.77	TOP S.W.		NATURAL X-SECTION
		4.05	29+47		38.67	× ···		I. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL AND OVERDANKS
		4.20	29+72		38.52			BRIDGE OR CULVERT
		4.28	29+82		38.44	·· ·· ··		ELEVATIONS
		4.34	30400		38.38	TOP S.WALK		2. D/S INVERT (S) 3. INVERT 50' OPP. SIDE 4. HIGHEST LOW CHORD (U/S)
		4.48	30+24-		38.24			5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS
		4.56	30+48		38.16			DIMENSIONS (ON SKETCHES)
		4.60	30+73		38.12			2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING
		4.65	30+85		38.07			5. TOTAL LENGTH (// TO STREAM)
			31+98		37.92	TOP S. W. FENd	-	BRIDGE MATERIAL CHARACTERISTICS 1. SIDEWALL AND PIERS 2. BOTTOM OF CHANNEL
		7.00	3/+10			TOP BANK		DAM
		24.2	30100		18.52	50 d/s	-	I. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM 3. DIMENSION AND SKETCHES
		1.32	1	/	41.40	Above	41.40	* PLACE REASON ON BACK IF

EW: 1	AS DE	17	<u> </u>	DCATION	NO. R.C	VAL RIVER STRUCT	LOCATION NO	ET NAME: <u>Canading Myridgal R.a</u> U/S or D/S (circle one)
85	ні	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEET 2 OF 2
4.42						0375	86.57	CHECKLIST
		5.18	29+40			BTM HENDERLL		GENERAL:
			29+45			w.4		1. TBM LOCATION AND ELEV. 2. WATER SURFACE ELEV. 3. PHOTOS
		23.8	29+50		67.2			NATURAL X-SECTION:
		31.1	27+60		57.9			I. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL AND OVERBANKS
		35.8	29+80		55.2			BRIDGE OR CULVERT
			30+0					ELEVATIONS
		1	1					2 D/S INVERT (S) 3. INVERT 50' OPP. SIDE
		4.43			86.56			4. HIGHEST LOW CHORD (U/S) 5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS
•								
								2. WIDTH OF ALL PIERS
			1.4.4.1					4 HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)
		+						2 BOTTOM OF CHANNEL
		1	-					DAM
			-		1			2. PROFILE THRU DAM 3. DIMENSION AND SKETCHES
								* PLACE REASON ON BACK IF APPLICABLE BUT NOT OBTAINED.

TY. CH.	AS	4-1	S	TREAM N	NO PP-	AL RIVER STRUCT	LOCATION NO	JOB NO: <u>204-44</u> ET NAME:	.,
		-		Revised	Field	Description and	True	SHEETOF	
85	н	FS	STA	STA	Elev.	Characteristics	Elev.	SHEETOF	
0.00	69.93					W.L.	69.93	CHECKLIST	OBTAINED
								GENERAL:	•
								THE LOCATION AND ELEV. WATER SURFACE ELEV. PHOTOS	K
			701.10			W.L. Edg Alders-	-		-
			29+40			Wir. Edg		NATURAL X-SECTION: VALLEY X-SEC. PTS.	P
			29+45		65.6			2. DESCRIPTION OF CHANNEL AND OVERBANKS	27
		- 8.4	2.9+50		61.5			BRIDGE OR CULVERT	
		-10.1	29+75		59.8	Muddy		U/S INVERT (S)	F
		- 9.4	30+00		60.5	& BTM LOCKY		2 D/S INVERT (S) 3. INVERT 50' OPP SIDE 4. HIGHEST LOW CHORD (U/S)	
		-8.7	30+25		61.2			5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS	
		-7.3	30+50		62.6			DIMENSIONS (ON SKETCHES)	-
		- 5.6	30+55		64.3			2. WIDTH OF ALL PIERS	-
			30+60			W.L.		4 HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)	E
			20100					BRIDGE MATERIAL CHARACTERISTICS	F
								2. BOTTOM OF CHANNEL	F
-								DAM	F
_								2. PROFILE THRU DAM 3. DIMENSION AND SKETCHES	E
								* PLACE REASON ON BACK IF	
								APPLICABLE BUT NOT OBTAINED.	



W: _	K De	. ¢ 7.	<u> </u>	OCATION	NO. <u>RR-</u>	OYAL RIVER STRUCT	LOCATION NO	U/S or D/S (circle one)
85	н	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEETOF
. 00						W.L. BANKS-ALLERS		CHECKLIST
			29451			Edg W.L.	69.93	GENERAL:
		- 3.8	29+55		66.1			1. TOM LOCATION AND ELEV. 2. WATER SURFACE ELEV. 3. PHOTOS
		- 85	271-50		61.+			NATURAL X-SECTION:
			29+65		53.8			I. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL
		- 17.2	29:75		52.7			BRIDGE OR CULVERT
		- 17 8	29+85		52.1			ELEVATIONS
			30400		51.+	E ATM SANdy		2. D/S INVERT (S) 3. INVERT 50' OPP. SIDE 4. HIGHEST LOW CHORD (U/S)
		-16.5	301 10		53.1			5. NECESSARY RD. PTS.
		-157	30+20		54.2			DIMENSIONS (ON SMETCHES)
		-133	30430		54.6			2. WIDTH OF ALL PIERS 3. WIDTH OF EACH OPENING
		-76	30+40		62.3			4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)
			30+51		66.6			BRIDGE MATERIAL CHARACTERISTICS
			30451					2. BOT ON OF CHANNEL
								I X-SECT. ACROSS SPILLWAY
								3. DIMENSION AND SKETCHES
		+	+					* PLACE REASON ON BACK IF



Y. CH.	AS	ф. Т.	S	DCATION	NO. RE-	DATE: DML <u>fiver</u> STRUCTO STRUCTO STRUCTO STRUCTO STRUCTO	DE OF STREET NAME	US or D/S (circle on	• >
85	ні	FS	STA	Revised	Field Elev.	Description and Characteristics	True Elev.	SHEETOF	08
6.07	97.74					BM F5-92	91.67	CHECKLIST	OBTAINED
						Edg BANK-		LOCATION AND ELEV.	-
		281	39+45		70.0 19 71.6	W.L. ALDERS	3. PH	TER SURFACE ELEV. DTOS	É
			39+ 50		67.9		1. VA 2. DE	LLEY X-SECTION SCRIPTION OF CHANNEL	H
		30.2	29+60		67.5		BRIDGE	OR CULVERT	Ľ
			29+85		63.5		2 0/	IUND S INVERT (S) S INVERT (S) VERT 50' OPP. SIDE	E
			29+80		61.8	5 BTM. BTM	4. HI	GHEST LOW CHORD (U/S) CESSARY RD. PTS. L. M.H. INVERTS	E
			30+20		65.9		DIMENS	TAL OPENING WIDTH	E
		27.2	30+40		70.5		2. Wi 3. Wi 4. HE	DTH OF ALL PIERS DTH OF EACH OPENING IGTH OF EACH OPENING	E
			30150		69.7		BRIDGE	MATERIAL CHARACTERISTICS	E
		27.9	30+55		69.6 70.0			DEWALL AND PIERS	F
			- free				1. X-	SECT. ACROSS SPILLWAY	E
								MENSION AND SKETCHES	-

Y. CH.	AS K De.	<i>4T</i> .	<u> </u>	DCATION	NO. RR	<u>YAL Rⁱucr</u> Structúre -24 ISFT. FROM LOC	TION NO	JOB NO: <u>704-11</u> NAME: U/S or D/S (circle one)
85	ні	FS	STA	Revised STA	Field Elev.	Description and Characteristics	True Elev.	SHEETOF	08
0.00.			29450			W.L. BANKS - ALders	69.97	CHECKLIST	OBTAINED
		6.1	244:05		63.9	- U		GENERAL:	0
(8.2	274.20		61.8			1. TBM LOCATION AND ELEV. 2. WATER SURFACE F' EV. 3. PHOTOS	2
		11.2	274:0		58.8			NATURAL X-SECTION:	
		11.4	27+60		58.6			1. VALLEY X-SEC. PTS. 2. DESCRIPTION OF CHANNEL	V
		14.3	29+-90		55.7			AND OVERBANKS .	
		16.3	30100		53.7	E BTM B7M		ELEVATIONS	
		16.1	37415		53.9			2. D/S INVERT (S) 3. INVERT SO' OPP. SIDE	
			20+30		56.0			4. HIGHEST LOW CHORD (U/S) 5. NECESSARY RD. PTS. 6. ALL M.H. INVERTS	
		11.2	30+45		58.8			DIMENSIONS (ON SKETCHES)	
		6.1	30+48		63.9			2 WIDTH OF ALL PIERS	_
			30+54			Edg WATER		3. WIDTH OF EACH OPENING 4. HEIGTH OF EACH OPENING 5. TOTAL LENGTH (// TO STREAM)	-
			मुवे			1		BRIDGE MATERIAL CHARACTERISTICS	
								2. BOTTOM OF CHANNEL	
								1. X-SECT. ACROSS SPILLWAY 2. PROFILE THRU DAM	-
								3. DIMENSION AND SKETCHES	
		Paris .						* PLACE REASON ON BACK IF APPLICABLE BUT NOT OBTAINED.	

Attachment B

Select As-Built Plans and Terrain Model Topographic Workmaps

30AUG24 - SECTION 206 ROYAL RIVER FISH PASSAGE

YARMOUTH, MAINE

ATTACHMENT B SELECT AS-BUILT PLANS AND TERRAIN MODEL TOPOGRAPHIC WORKMAPS

IDENTIFICATION

Town	Yarmouth	Town2	No Town2
Bridge Name	295 NB / ROYAL RIVER	Location	1.2 MI N US1
Bridge Number	5834	Route Number	0295X
Feature On	I 295 NORTHBOUND	Bridge Region	1 - Southern Region
Feature Under	Royal River	Border Bridge	
Bridge Road Width (Feet)	30	Bridge or Minor Span	Bridge on State Highway

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	80	Federal Bridge Indicator	Y

AGE AND CONDITION

Deck Condition	6 - Satisfactory Condition (minor	Culvert Condition	N - Not Applicable
	deterioration)		
Superstructure Condition	6 - Satisfactory Condition (minor	Channel Condition	4 - Protect. severely undermined. sev. damage
	deterioration)		
Substructure Condition	6 - Satisfactory Condition (minor	Approach Condition	8 - Equal to present desirable criteria
	deterioration)		
Year Built	1959	Annual Average Daily Traffic	20370

INSPECTION AND APPRAISAL

Date of Inspection 12/12/19 Federal Sufficiency Rating 70.8	Federal Sufficiency Rating 70.8
---	---------------------------------

STRUCTURE TYPE AND MATERIAL

Span Material	Steel continuous	Span Type	Stringer/Multi-beam or Girder
Number of Main Spans	3		

LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

Link to Map Viewer

IDENTIFICATION

Town	Yarmouth	Town2	No Town2
Bridge Name	1295 SB / ROYAL RIVER	Location	1.2 MI N US 1
Bridge Number	1508	Route Number	0295S
Feature On	I 295 SOUTHBOUND	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	30	Bridge or Minor Span	Bridge on State Highway

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	80	Federal Bridge Indicator	Y

AGE AND CONDITION

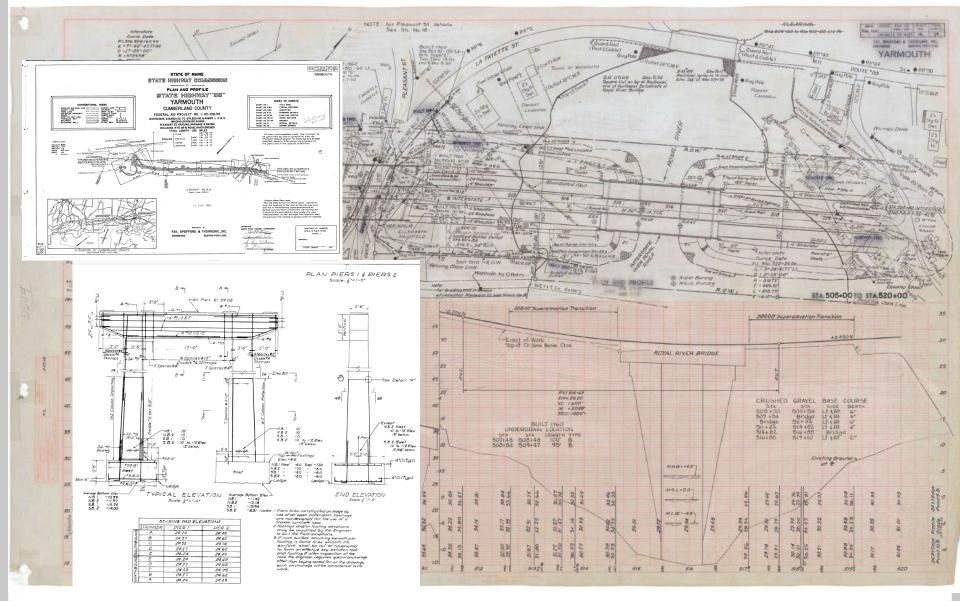
Deck Condition	6 - Satisfactory Condition (minor	Culvert Condition	N - Not Applicable
	deterioration)		
Superstructure Condition	7 - Good Condition (some minor problems)	Channel Condition	5 - Bank eroded major damage
Substructure Condition	6 - Satisfactory Condition (minor	Approach Condition	8 - Equal to present desirable criteria
	deterioration)		
Year Built	1959	Annual Average Daily Traffic	21730

INSPECTION AND APPRAISAL

STRUCTURE TYPE AND MATERIAL

Span Material	Steel continuous	Span Type	Stringer/Multi-beam or Girder
Number of Main Spans	3		

LOAD RATING AND POSTING


Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

መ

INTERSTATE "95" – 1959/60 AS-BUILTS

	1-295	_PierFo	ooters - Layer Prop	erties							
	Visualizati	on and	Information Feature	es Source Files							
	i So	urce:	C:\\RAS\Terrain\	BaseDEM_1m_fema	abathy.hdf						
		FID	Name	Elevation Value	Elevation Type	Elev Pt Toleranc	e	Generate Boundary Elevations	Use ShapeFile Elevation		e
	•	0	NB1E	-8.1	TakeHigher	20		V	Γ	(19 P	oints)
		1	NB1W	-8.6	SetValue	20				(20 P	oints)
		2	NB2E	-8.6	TakeHigher	20				(21 P	oints)
		3	NB2W	-7.6	TakeHigher	20				(17 P	oints)
		4	SB2E-1	-8.6	SetValue	20				(20 P	oints)
		5	SB2W	-8.6	TakeHigher	20				(19 P	oints)
		6	SB1W	-8.6	TakeHigher	20 / /	~		נ <mark>פ</mark> זיזמא ו ט		-:- * @
3		7	SB1E	-8.6	TakeHigher	📑 🔁 I-295	5_PierFo	ooters - Layer Prope	ties		
4-1/ -4-1/ -4-1/		8	SB2E-2	-12	TakeHigher	Visualizati	ion and	Information Features	Source Files		
5-0 3-6 17-0 4.0	10 3'6' 5'.0'		252 12			i So	ource:	C:\\RAS\Terrain\B	aseDEM_1m.Clon/	e1.hdf	
Allectered Barrows Barrows Carlos	a de de la contra	Elevan C	See Detail -A-				FID	Name	Elevation Value	Elevation Type	Ele Tc
1 Column D	cices @ 2 i.O	_,	48				0	NB1E	-11.42	SetValue	20
S 	778	D -//8 / /0' //8 2 /0' 5.8 / /0' 5.8 2 /0' fo -/2 (/3" below	Errey				1	NB1W	-10.59	SetValue	20
34-59 Dowely 40-02 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	2-9 49-04		5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0				2	NB2E	-12.18	SetValue	20
10 5 199.87 6 179.97 5 179.972 5 10 5 199.72 5 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Eost 58	(8./West =6.0 East = 8.2 = -7.0 = 8.1 = -8.0 = 8.2 = -8.0 = Ledge (4	(-250 -80 -80 (adge				3		-11.57	SetValue	20
12 weage	N.82 -12.16		END ELEVATION Scale:#*-F-0*				4	SB2E-1	-16.31 -14	SetValue	20
Average Boltom Elec P ² TYP/CAL ELEVATION NB.1 - 10.59 NB.2 - 11.57 SB.1 - 15.25 SB.2 - 1400							5	SB2W	- 14	SetValue	20
(16,2 -11,57) 56,7 -16,29 53,2 -1400		l Piers to be constru use of an open col are not designed i tremte concrete o "Realings and/or to may be modified	Inucleal on leage by altendam, Sabings 'far the use of a teal. 'baling elevations 'd by the Engineer				6	SB1W	.15.25	SatValue	20
146 7 - 1/157 56 51400	R 2 2. (49 (62) (50) (62) (70)	7.Feelings and/or fo may be modified to suit the Field as 3.If rock surface of fooling is found to	Included an Indege by Included and Indege by each each and the Internet of the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by the Indege by t				6 7	SB1W SB1E	-15.25 -15.94	SetValue SetValue	20 20

IDENTIFICATION

Town2	No Town2	

Town	Yarmouth	Town2	No Town2
Bridge Name	FALLS	Location	0.1 MI E JCT RTE 115
Bridge Number	2272	Route Number	0088X
Feature On	ROUTE 88	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	32	Bridge or Minor Span	Bridge on State Highway

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	75	Federal Bridge Indicator	Y

AGE AND CONDITION

Deck Condition	4 - Poor Condition (advanced deterioration)	Culvert Condition	N - Not Applicable
Superstructure Condition	4 - Poor Condition (advanced deterioration)	Channel Condition	3 - Protection failure
Substructure Condition	6 - Satisfactory Condition (minor	Approach Condition	8 - Equal to present desirable criteria
	deterioration)		
Year Built	1930	Annual Average Daily Traffic	4867

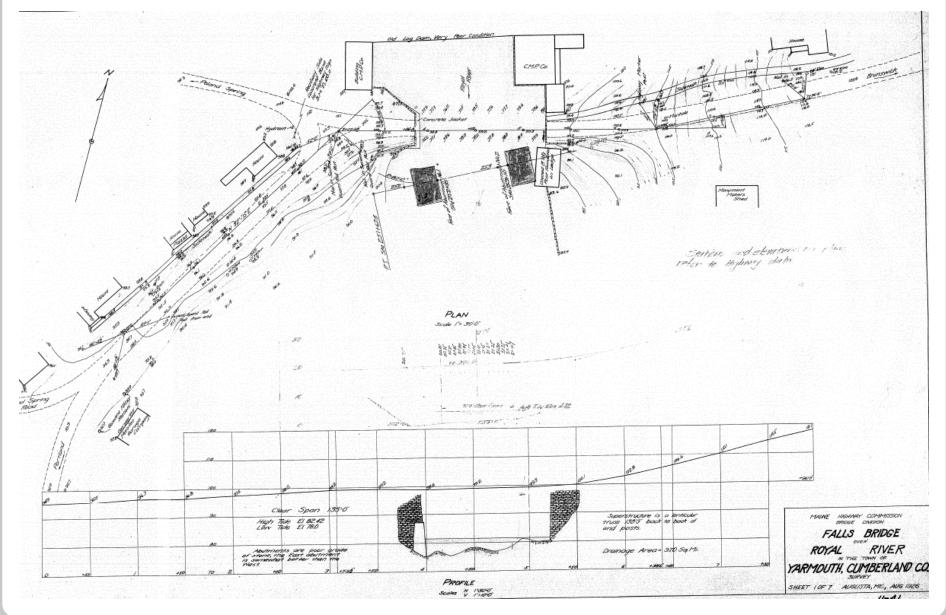
INSPECTION AND APPRAISAL

Date of Inspection 10/07/20	Federal Sufficiency Rating 6	63.9
-----------------------------	------------------------------	------

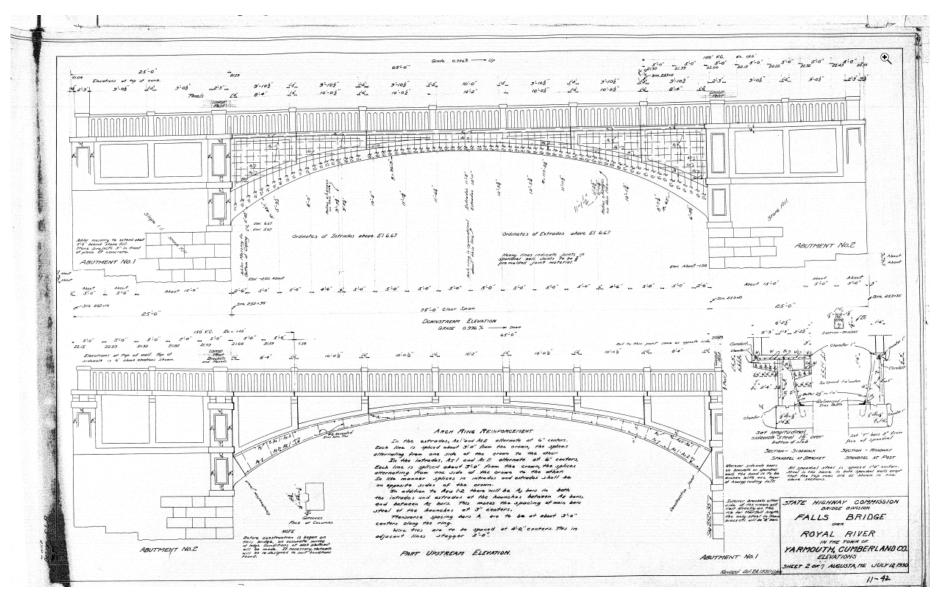
STRUCTURE TYPE AND MATERIAL

Span Material	Concrete	Span Type	Arch - Deck
Number of Main Spans	1		

LOAD RATING AND POSTING


Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

Link to Map Viewer


FALLS BRIDGE – MAIN ST – ROUTE 88

FALLS BRIDGE – MAIN ST – RT 88

IDENTIFICATION

1.2.1			10
Lini	k to	Map	Viewer

Town	Yarmouth	Town2	No Town2
Bridge Name	COTTON MILL	Location	0.2 MI NE JCT RTE 115
Bridge Number	3983	Route Number	05Y0006
Feature On	BRIDGE STREET	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	22	Bridge or Minor Span	Bridge on Townway or State Aid Road

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	58.9	Federal Bridge Indicator	Y

AGE AND CONDITION

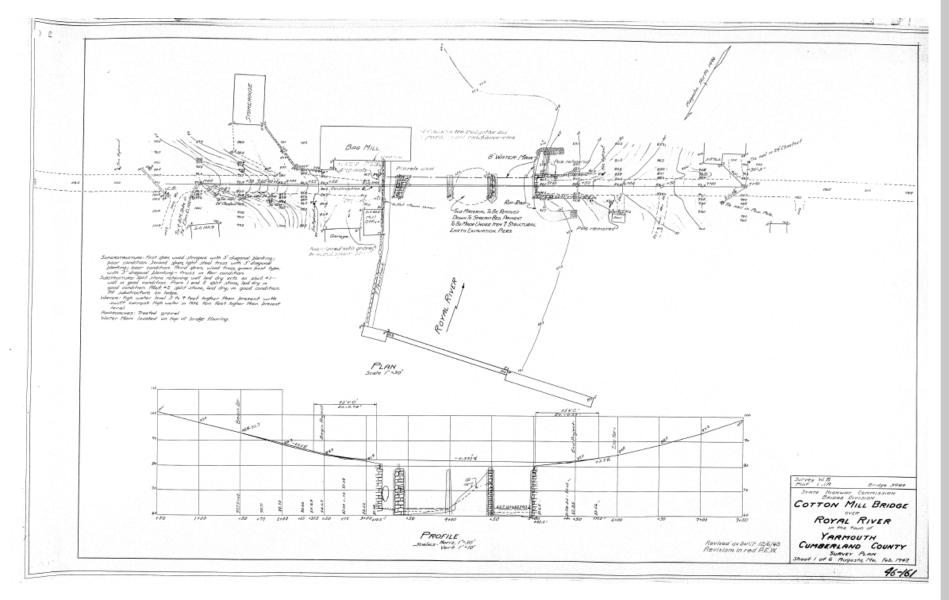
Deck Condition	8 - Very Good Condition (no problems	Culvert Condition	N - Not Applicable
	noted)		
Superstructure Condition	6 - Satisfactory Condition (minor	Channel Condition	7 - Bank protection needs minor repairs
	deterioration)		
Substructure Condition	5 - Fair Condition (minor section loss)	Approach Condition	8 - Equal to present desirable criteria
Year Built	1948	Annual Average Daily Traffic	711

INSPECTION AND APPRAISAL

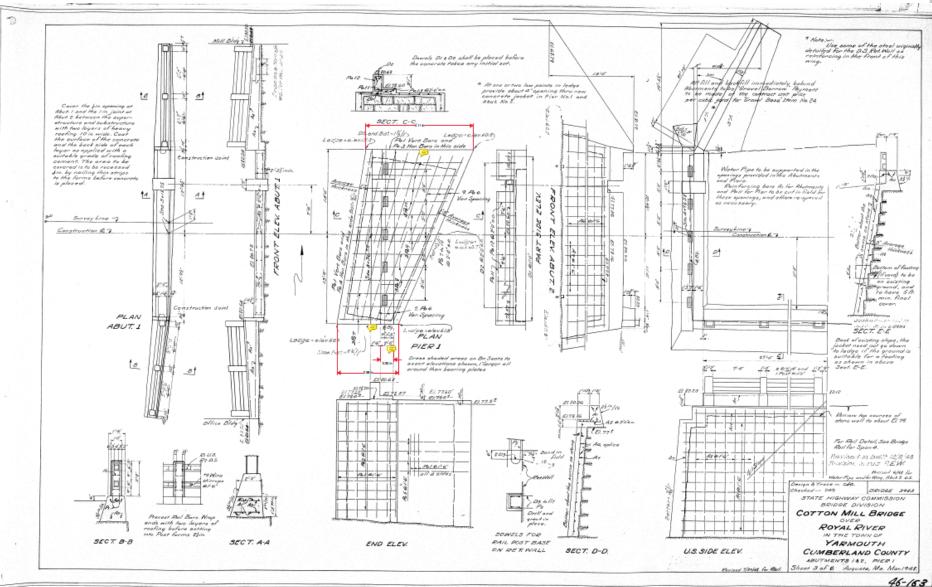
Date of Inspection 05/26/21	Federal Sufficiency Rating	62
-----------------------------	----------------------------	----

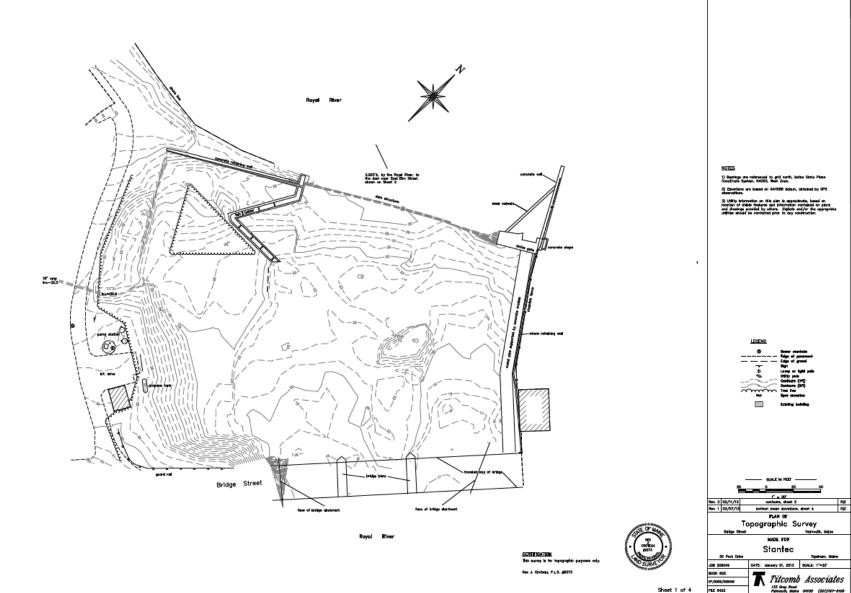
STRUCTURE TYPE AND MATERIAL

Span Material	Steel	Span Type	Stringer/Multi-beam or Girder
Number of Main Spans	3		


LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			


COTTON MILL BRIDGE – BRIDGE ST


COTTON MILL BRIDGE – BRIDGE ST

TOPOGRAPHIC SURVEY BRIDGE STREET DAM

IDENTIFICATION

Town	Yarmouth	Town2	No Town2
Bridge Name	ROYAL RIVER	Location	1 MI S 195
Bridge Number	3800	Route Number	0001X
Feature On	US 1	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	58	Bridge or Minor Span	Bridge on State Highway

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	83	Federal Bridge Indicator	Y

AGE AND CONDITION

Deck Condition	8 - Very Good Condition (no problems	Culvert Condition	N - Not Applicable
	noted)		
Superstructure Condition	7 - Good Condition (some minor problems)	Channel Condition	7 - Bank protection needs minor repairs
Substructure Condition	6 - Satisfactory Condition (minor	Approach Condition	7 - Better than present minimum criteria
	deterioration)		
Year Built	1948	Annual Average Daily Traffic	5640

INSPECTION AND APPRAISAL

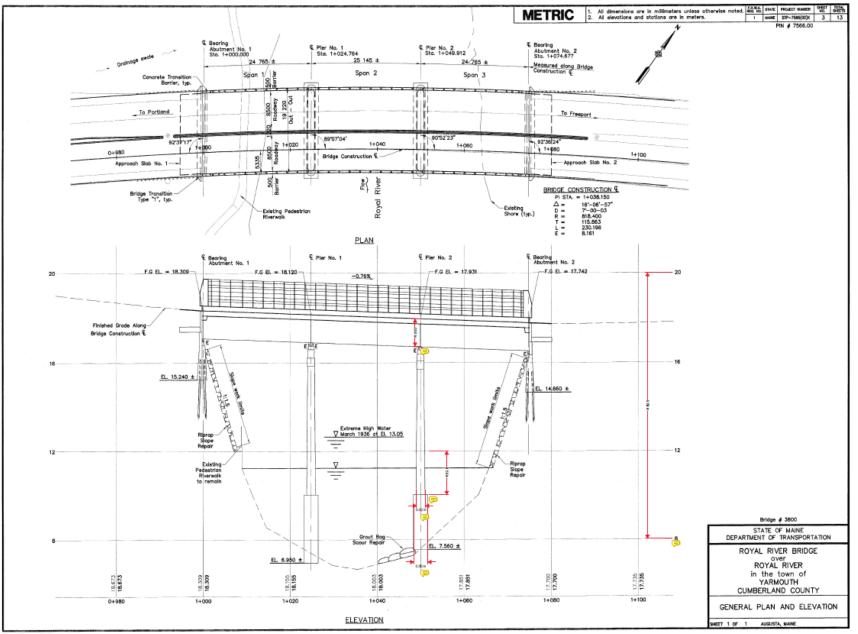
Date of Inspection	03/19/21	Federal Sufficiency Rating	98

STRUCTURE TYPE AND MATERIAL

Span Material	Steel	Span Type	Stringer/Multi-beam or Girder
Number of Main Spans	3		

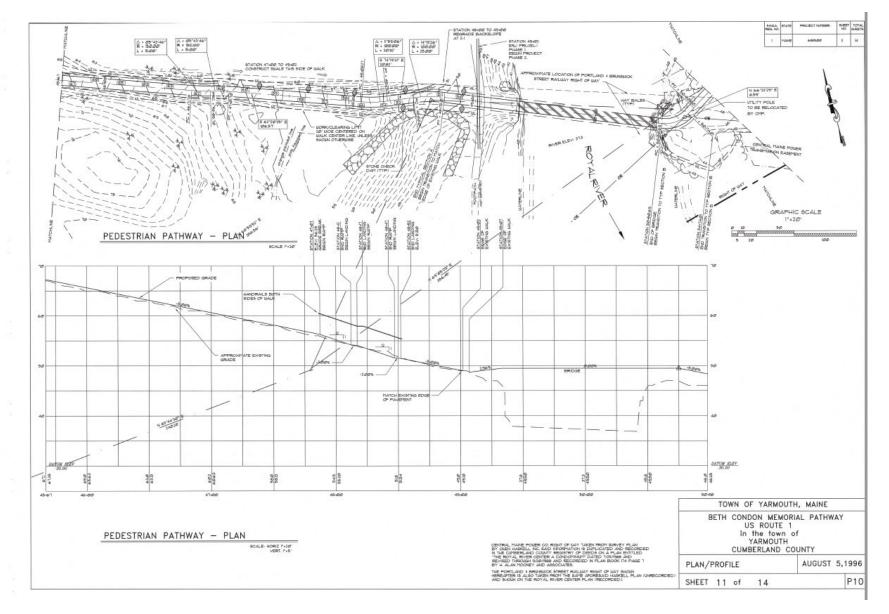
LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

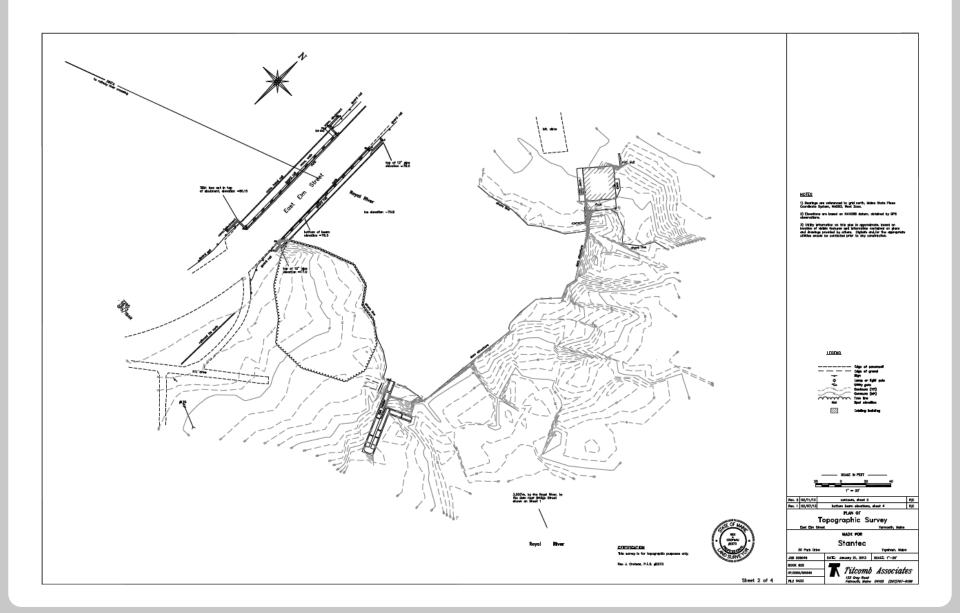

Link to Map Viewer

TWM 5 AN 10/99 RMH 10/99

PLANS



BETH CONDON MEMORIAL PATHWAY



TOPOGRAPHIC SURVEY EAST ELM STREET DAM

IDENTIFICATION

Town	Yarmouth	Town2	No Town2
Bridge Name	NORTH ELM	Location	.3 MI N'LY OF ROUTE 115
Bridge Number	5444	Route Number	05Y0016
Feature On	NORTH (E) ELM ST	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	26	Bridge or Minor Span	Bridge on Townway or State Aid Road

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	100	Federal Bridge Indicator	Y

AGE AND CONDITION

Deck Condition	8 - Very Good Condition (no problems	Culvert Condition	N - Not Applicable
	noted)		
Superstructure Condition	8 - Very Good Condition (no problems	Channel Condition	8 - Banks are protected
	noted)		
Substructure Condition	7 - Good Condition (some minor problems)	Approach Condition	8 - Equal to present desirable criteria
Year Built	2014	Annual Average Daily Traffic	2613

INSPECTION AND APPRAISAL

Date of Inspection 07/06/20	Federal Sufficiency Rating	81.3
-----------------------------	----------------------------	------

STRUCTURE TYPE AND MATERIAL

Span Material	Prestressed concrete	Span Type	Box Beam or Girders - Single or Spread
Number of Main Spans	1		

LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

IDENTIFICATION

Town	Yarmouth	Town2	No Town2
Bridge Name	HODSON	Location	0.3 MI NE RT 115
Bridge Number	0338	Route Number	05Y0016
Feature On	EAST ELM STREET	Bridge Region	1 - Southern Region
Feature Under	ROYAL RV. AUX. CHNL.	Border Bridge	
Bridge Road Width (Feet)	23	Bridge or Minor Span	Minor Span on Town Way

CLASSIFICATION

Owner	Municipality	Maintainer	Municipality
Maximum Span Length (Feet)	14	Federal Bridge Indicator	N

AGE AND CONDITION

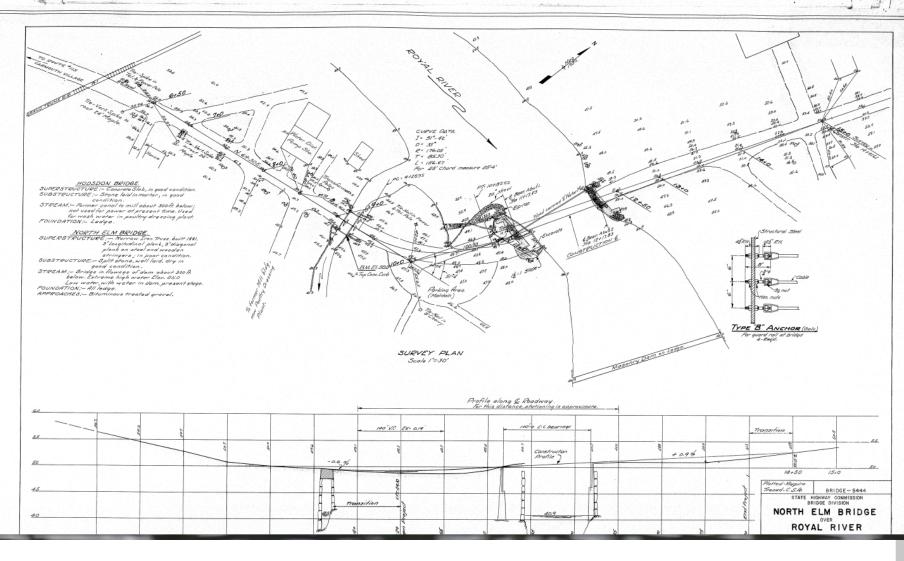
Deck Condition	6 - Satisfactory Condition (minor	Culvert Condition	N - Not Applicable
	deterioration)		
Superstructure Condition	6 - Satisfactory Condition (minor	Channel Condition	8 - Banks are protected
	deterioration)		
Substructure Condition	6 - Satisfactory Condition (minor	Approach Condition	6 - Equal to present minimum criteria
	deterioration)		
Year Built	1930	Annual Average Daily Traffic	2896

INSPECTION AND APPRAISAL

Date of Inspection 10/10/19 Federal Sufficiency Rating 65.8	Federal Sufficiency Rating 65.8	Date of Inspection 10/10/19
---	---------------------------------	-----------------------------

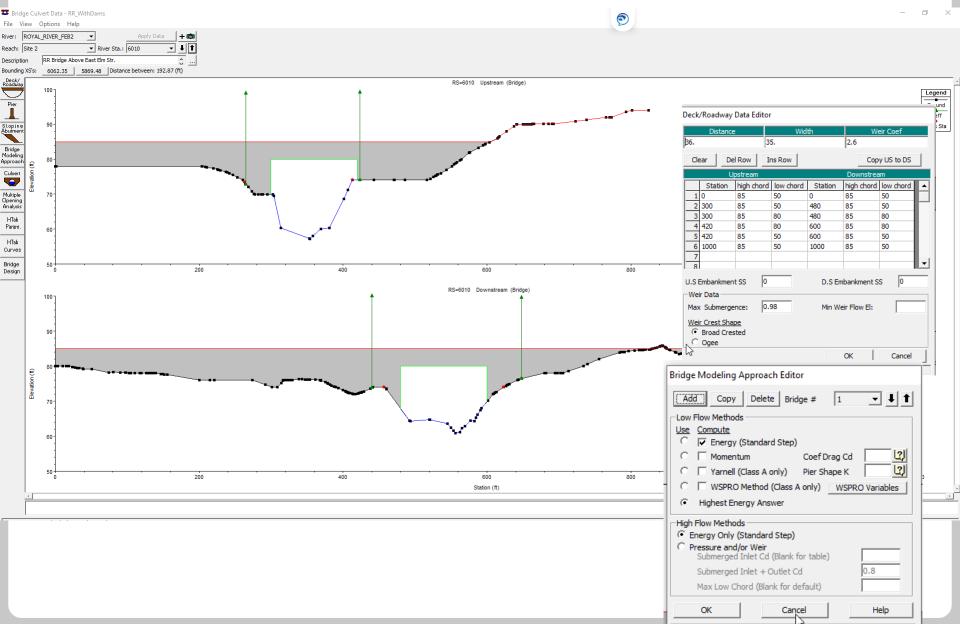
STRUCTURE TYPE AND MATERIAL

Span Material	Concrete	Span Type	Slab
Number of Main Spans	1		

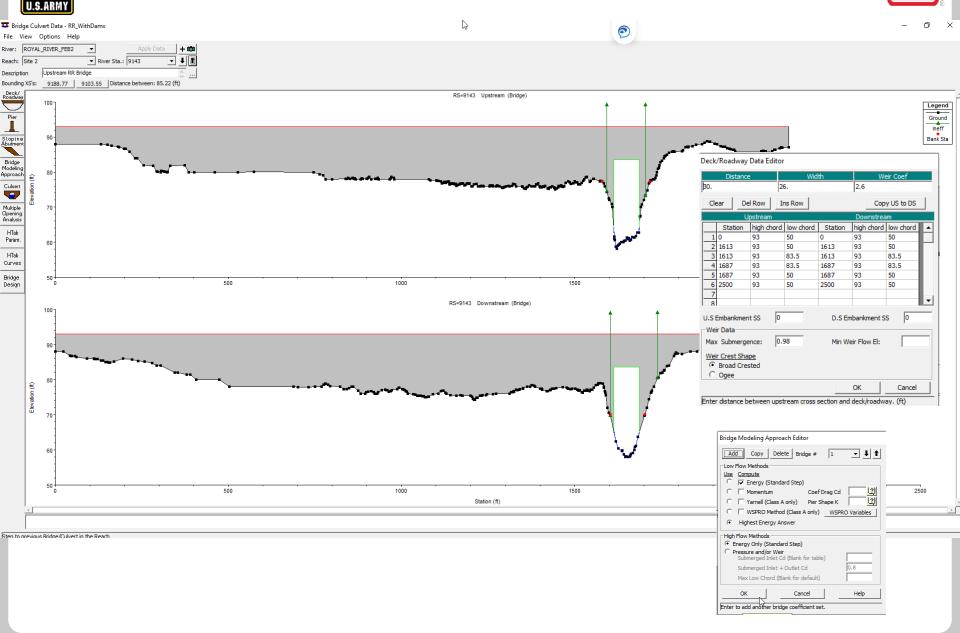

LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

Link to Map Viewer



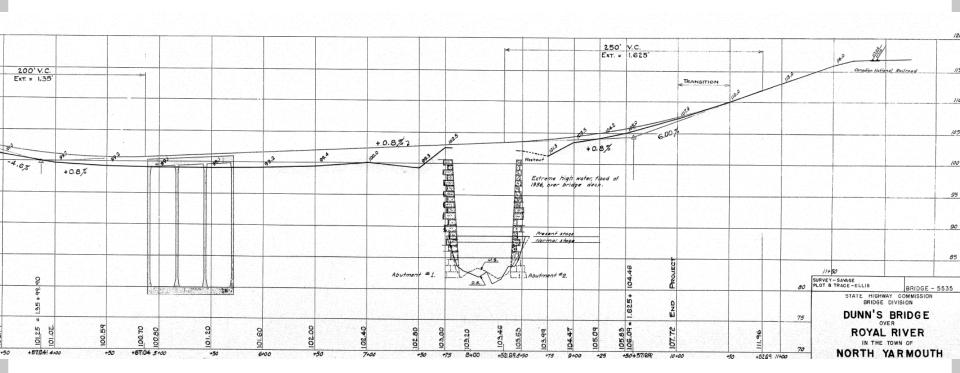
EAST ELM STREET BRIDGE & FOUNDRY CHANNEL CULVERT



GRAND TRUNK RAILROAD BRIDGE – NO AS-BUILTS - STANTEC

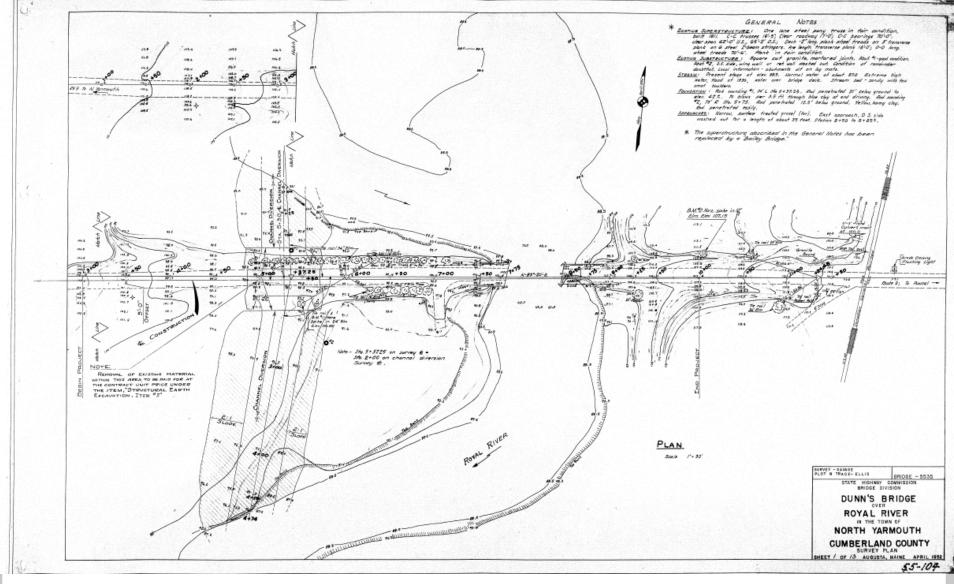
MAINE CENTRAL RAILROAD BRIDGE – NO AS-BUILTS - STANTEC 2013 HEC-RAS

Link to Map Viewer


DENTIFICATION			
	North Yarmouth		No Town2
Bridge Name			1.5 MI SW'LY POWNAL T.L.
Bridge Number		Route Number	
Feature On			1 - Southern Region
	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	24	Bridge or Minor Span	Bridge on Townway or State Aid Road
CLASSIFICATION			
	MaineDOT		MaineDOT
Maximum Span Length (Feet)	25	Federal Bridge Indicator	Y
AGE AND CONDITION			
Deck Condition	6 - Satisfactory Condition (minor deterioration)	Culvert Condition	N - Not Applicable
Superstructure Condition	6 - Satisfactory Condition (minor deterioration)	Channel Condition	6 - Bank slump. widespread minor damage
Substructure Condition	6 - Satisfactory Condition (minor deterioration)	Approach Condition	8 - Equal to present desirable criteria
Year Built	1953	Annual Average Daily Traffic	1591
INSPECTION AND APPRAISA	AL		
Date of Inspection	06/08/20	Federal Sufficiency Rating	66.9
STRUCTURE TYPE AND MAT	ERIAL		
	Concrete continuous	Span Type	Frame (except frame culverts)
Number of Main Spans	3		
LOAD RATING AND POSTING	3		
Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			

Spacing

MEMORIAL HIGHWAY / STATE ROUTE 9 / DUNNS BRIDGE



MEMORIAL HIGHWAY / STATE ROUTE 9 / DUNNS BRIDGE

IDENTIFICATION

Town	North Yarmouth	Town2	No Town2
Bridge Name	HAYS	Location	1.7 MI N JCT 115
Bridge Number	5048	Route Number	0231X
Feature On	231	Bridge Region	1 - Southern Region
Feature Under	ROYAL RIVER	Border Bridge	
Bridge Road Width (Feet)	21	Bridge or Minor Span	Bridge on Townway or State Aid Road

CLASSIFICATION

Owner	MaineDOT	Maintainer	MaineDOT
Maximum Span Length (Feet)	45	Federal Bridge Indicator	Y

AGE AND CONDITION

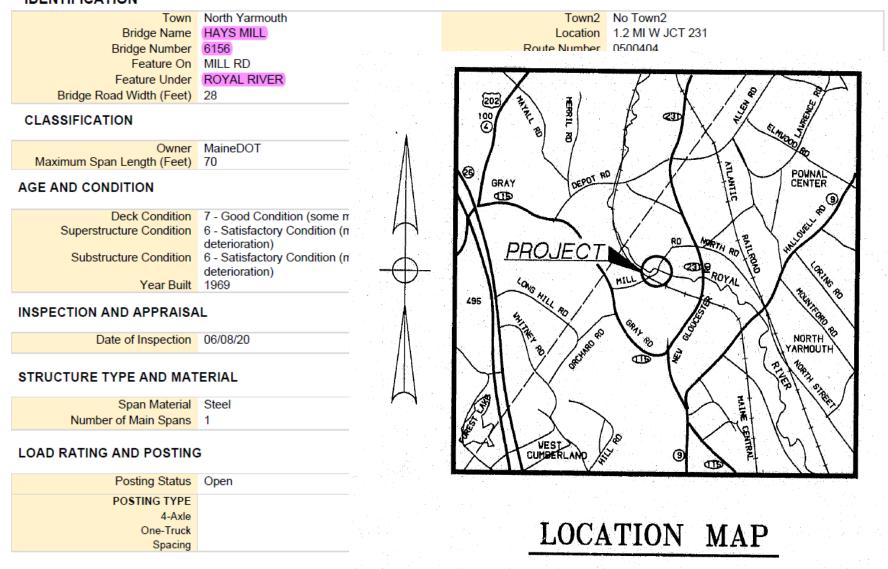
Deck Condition	6 - Satisfactory Condition (minor	Culvert Condition	N - Not Applicable
	deterioration)		
Superstructure Condition	6 - Satisfactory Condition (minor	Channel Condition	6 - Bank slump. widespread minor damage
	deterioration)		
Substructure Condition	5 - Fair Condition (minor section loss)	Approach Condition	8 - Equal to present desirable criteria
Year Built	1926	Annual Average Daily Traffic	1221

INSPECTION AND APPRAISAL

Date of Inspection 03/16/21	ederal Sufficiency Rating 40.6
-----------------------------	--------------------------------

STRUCTURE TYPE AND MATERIAL

Span Material	Concrete	Span Type	Tee Beam
Number of Main Spans	1		


LOAD RATING AND POSTING

Posting Status	Open	Posted Weight (Tons)	
POSTING TYPE			
4-Axle			
One-Truck			
Spacing			

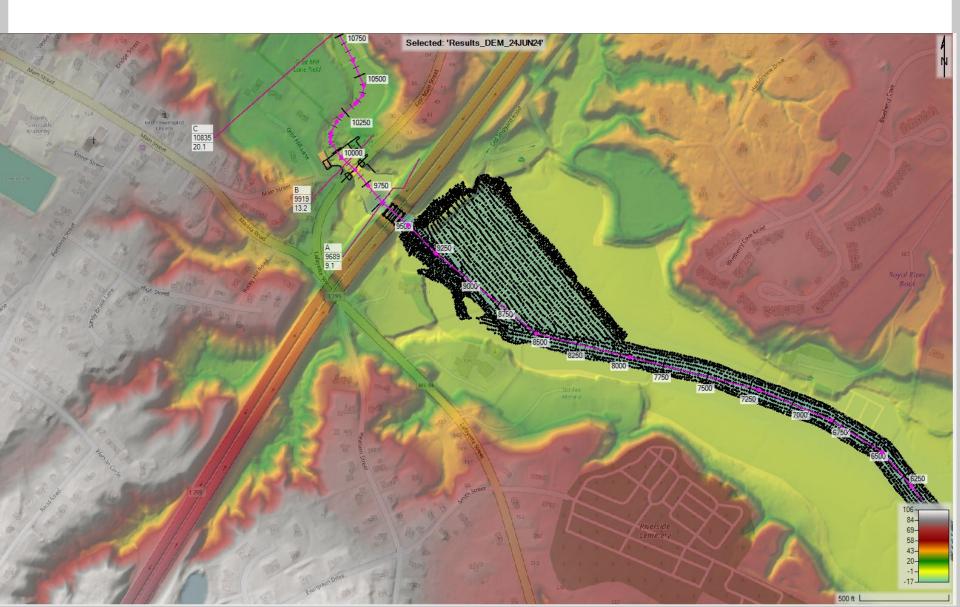
Link to Map Viewer

IDENTIFICATION

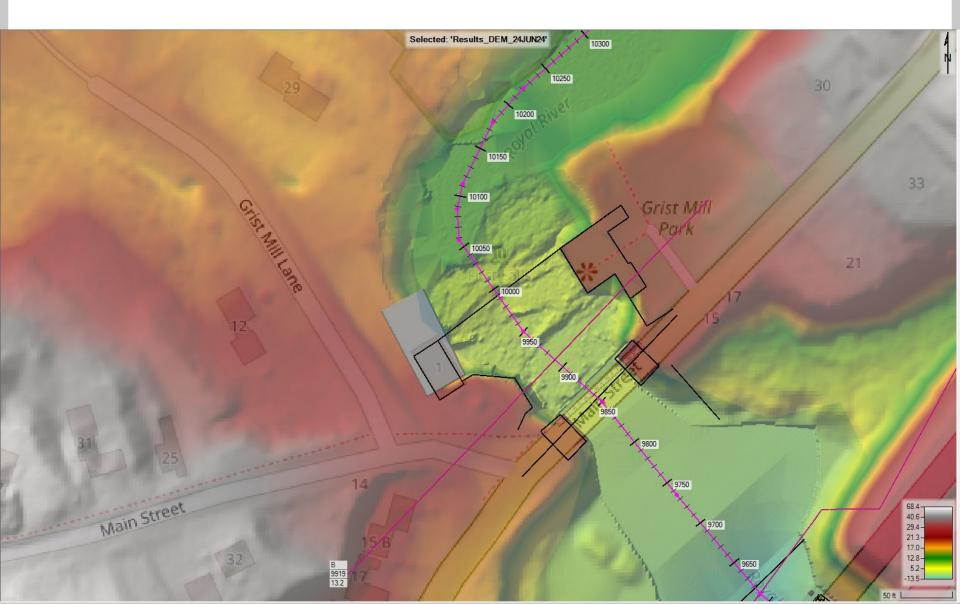
Link to Map Viewer

Scale in Miles

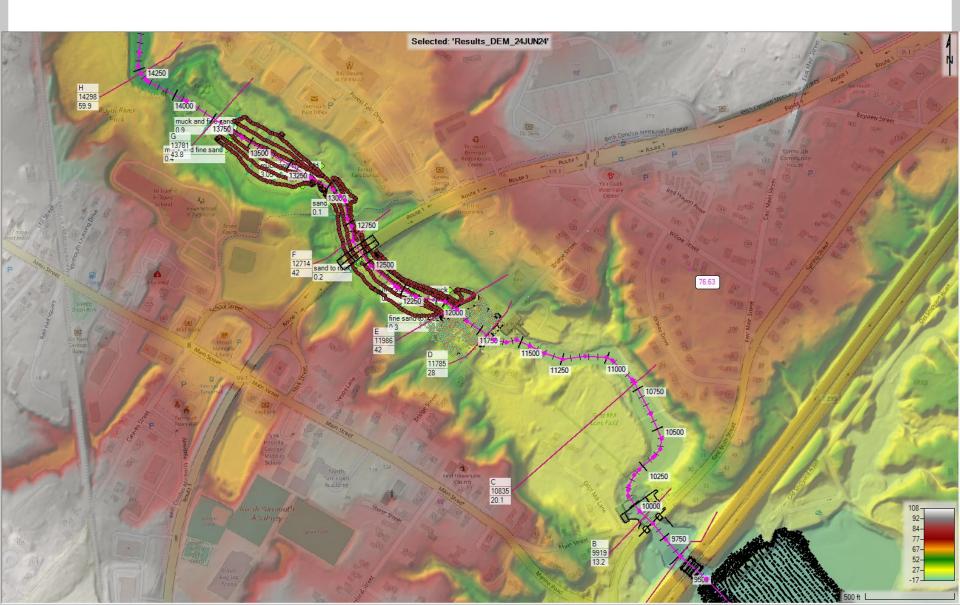
Produced by MaineDOT Bridge Maintenance October 1, 2021



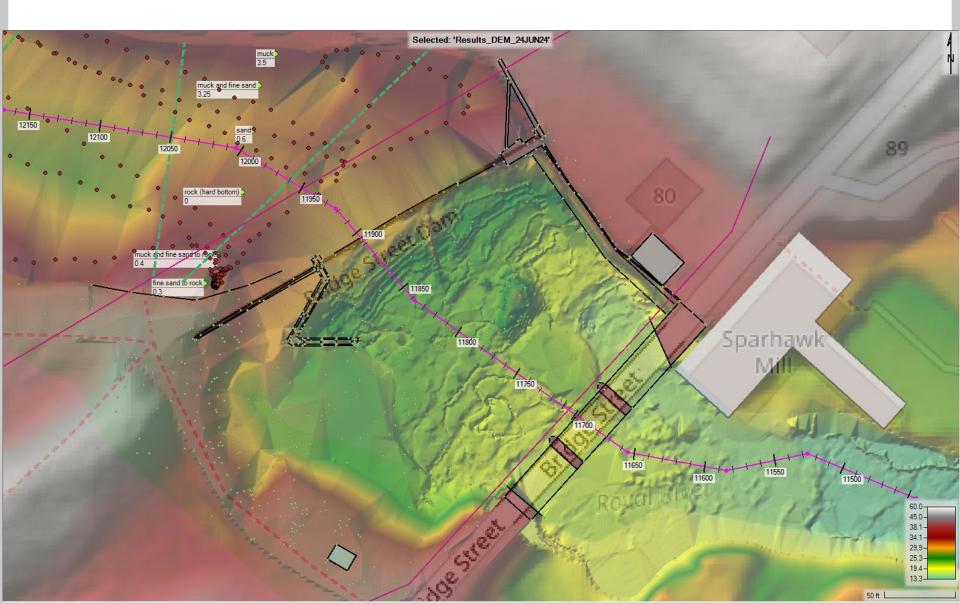
ROYAL RIVER - TERRAIN MODEL HARBOR TO LOWER FALLS OVERVIEW



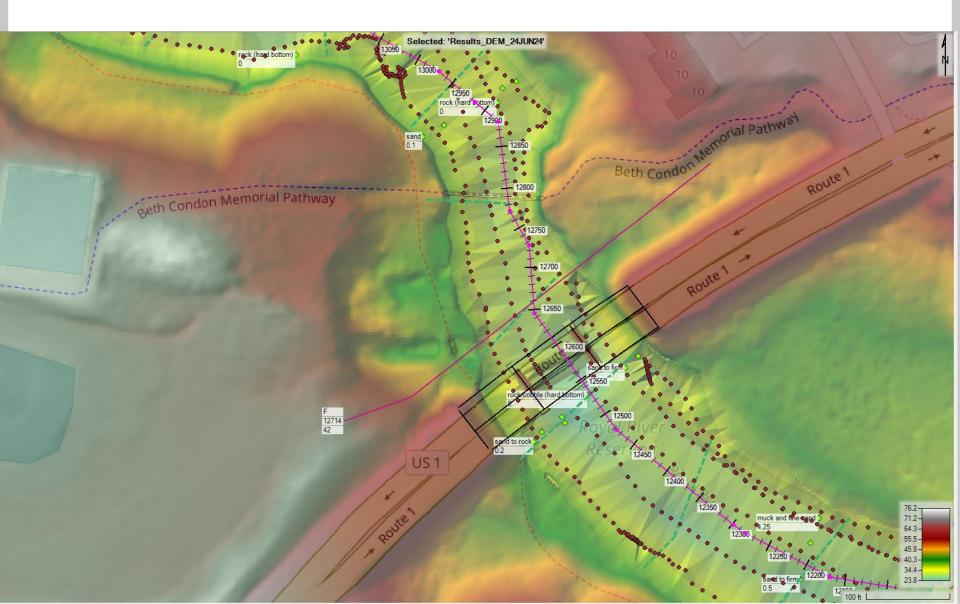
ROYAL RIVER - TERRAIN MODEL LOWER FALLS



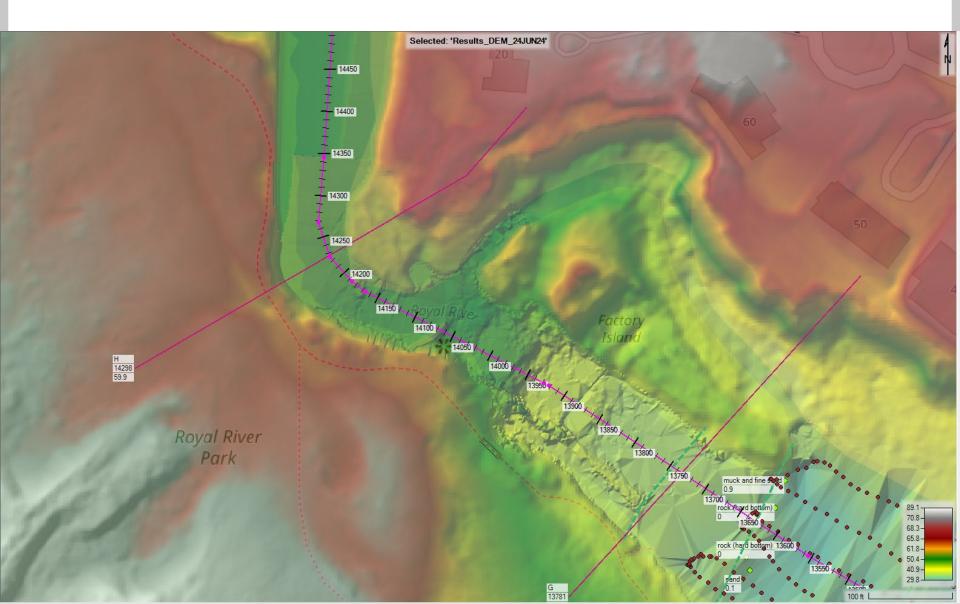
ROYAL RIVER - TERRAIN MODEL LOWER FALLS TO MIDDLE FALLS OVERVIEW



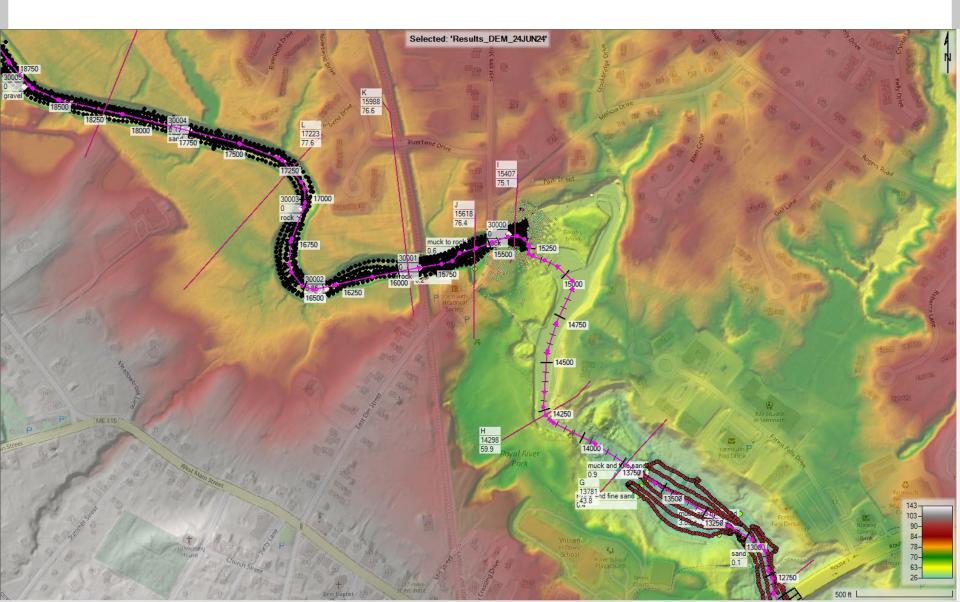
ROYAL RIVER - TERRAIN MODEL BRIDGE STREET DAM



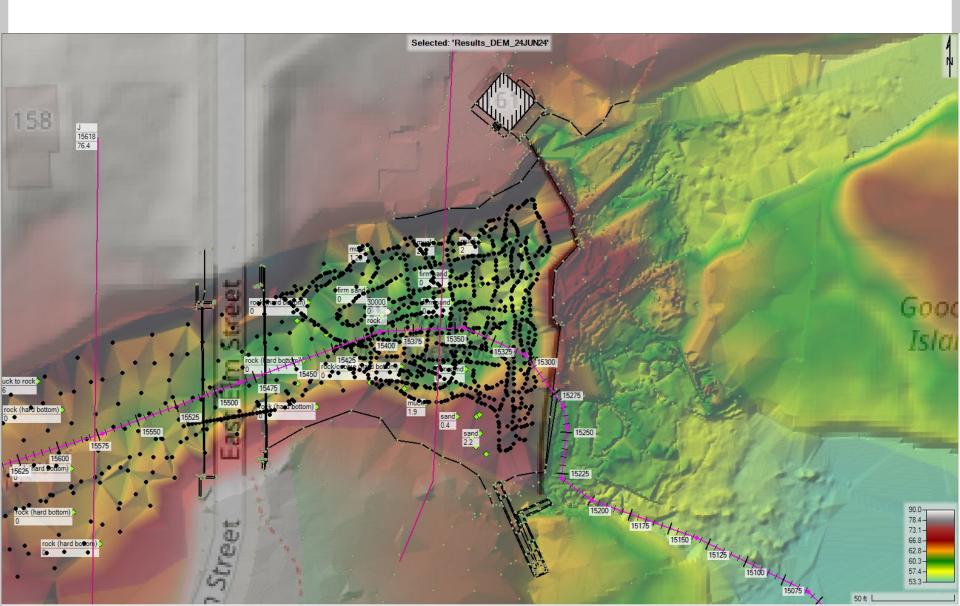
ROYAL RIVER - TERRAIN MODEL US ROUTE 1 & BETH CONDON FOOTBRIDGE



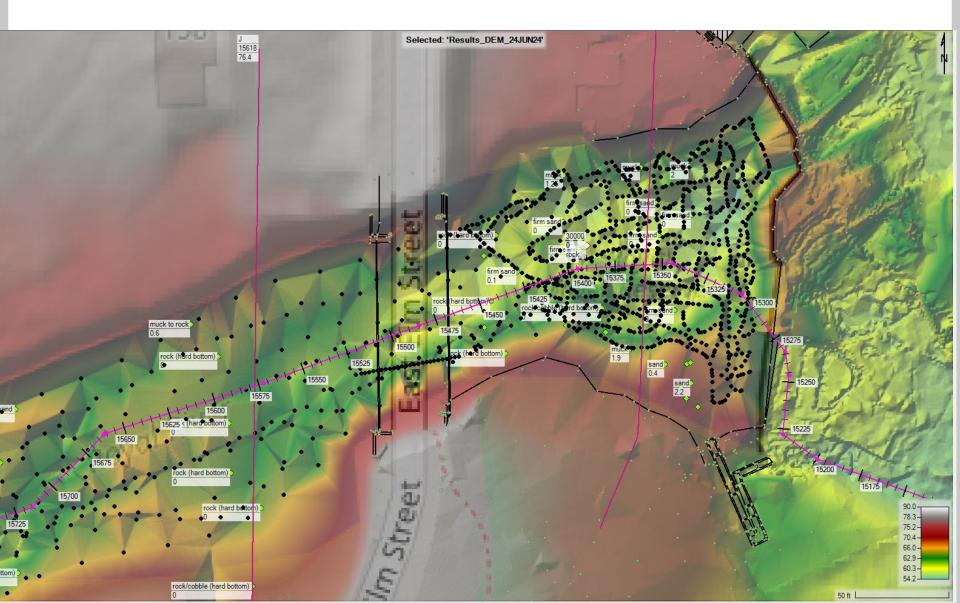
ROYAL RIVER - TERRAIN MODEL MIDDLE FALLS



ROYAL RIVER - TERRAIN MODEL ELM STREET DAM OVERVIEW

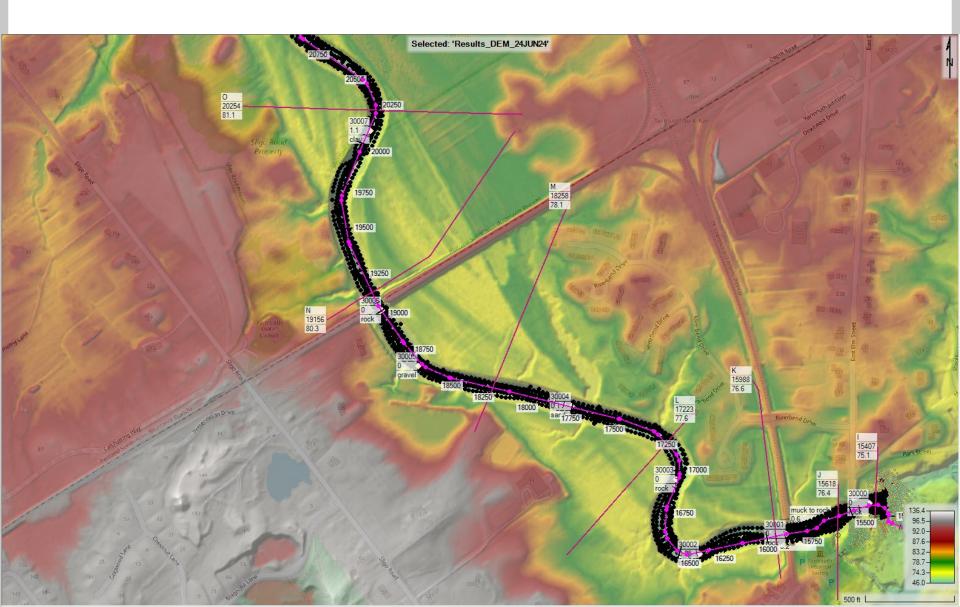


ROYAL RIVER - TERRAIN MODEL ELM STREET DAM

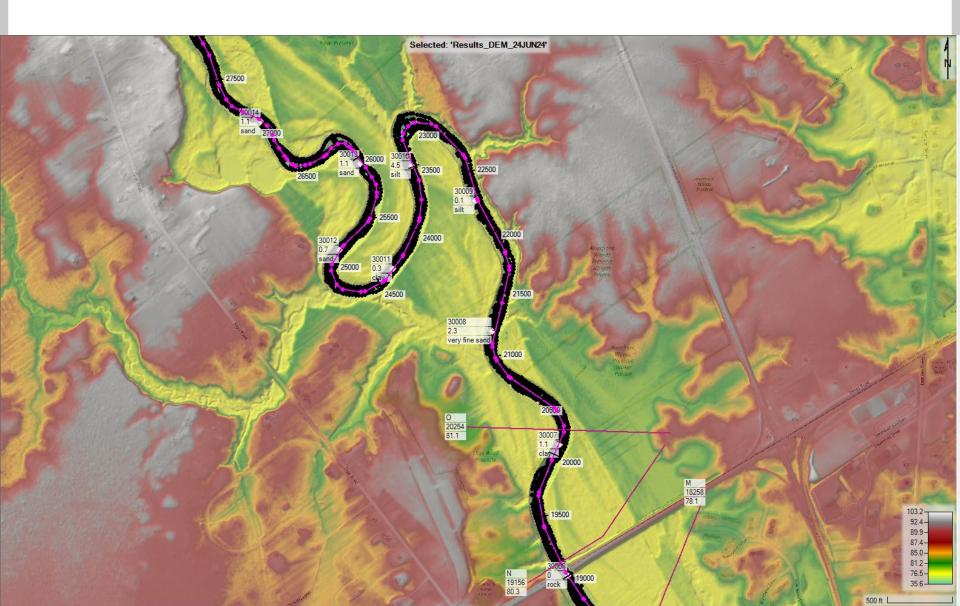


ROYAL RIVER - TERRAIN MODEL EAST ELM STREET

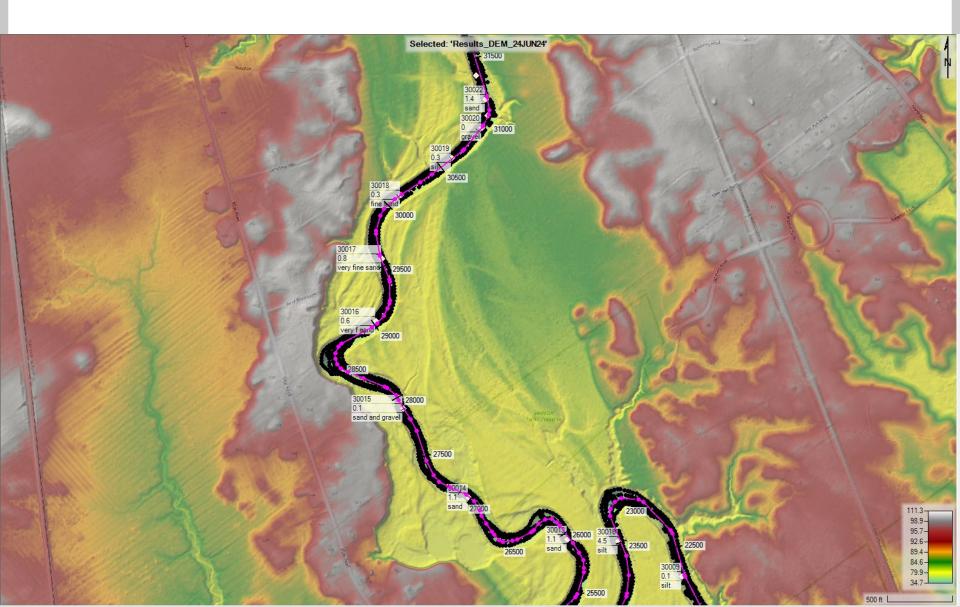
ROYAL RIVER - TERRAIN MODEL GRAND TRUNK RR



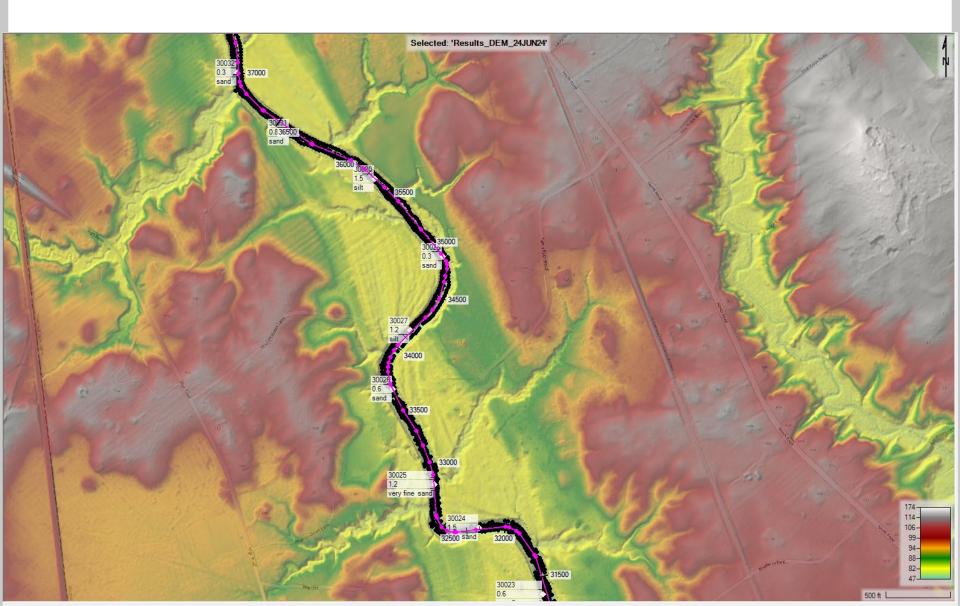
ROYAL RIVER - TERRAIN MODEL MAINE CENTRAL RR



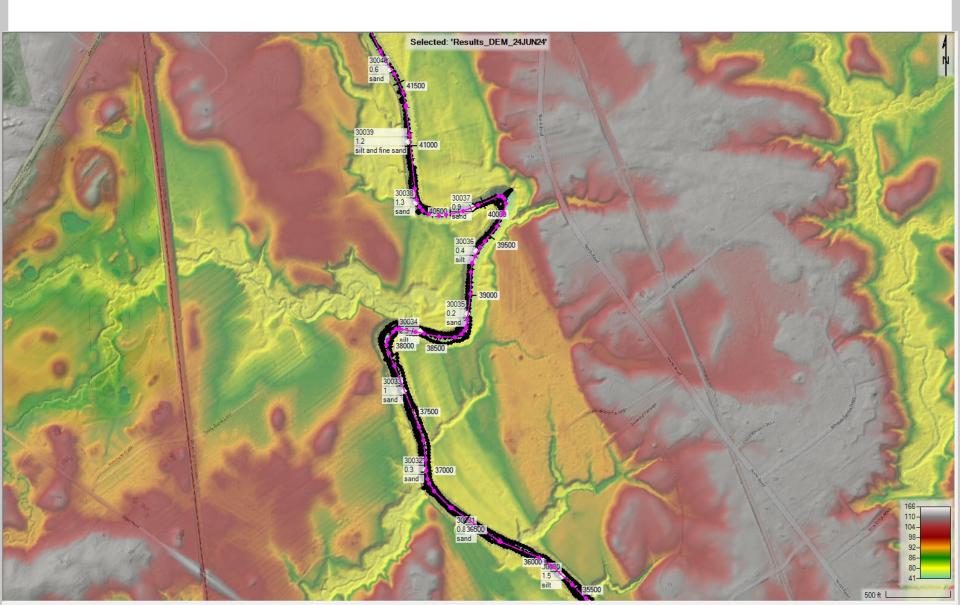
ROYAL RIVER - TERRAIN MODEL UPSTREAM OF MAINE CENTRAL RR (1)



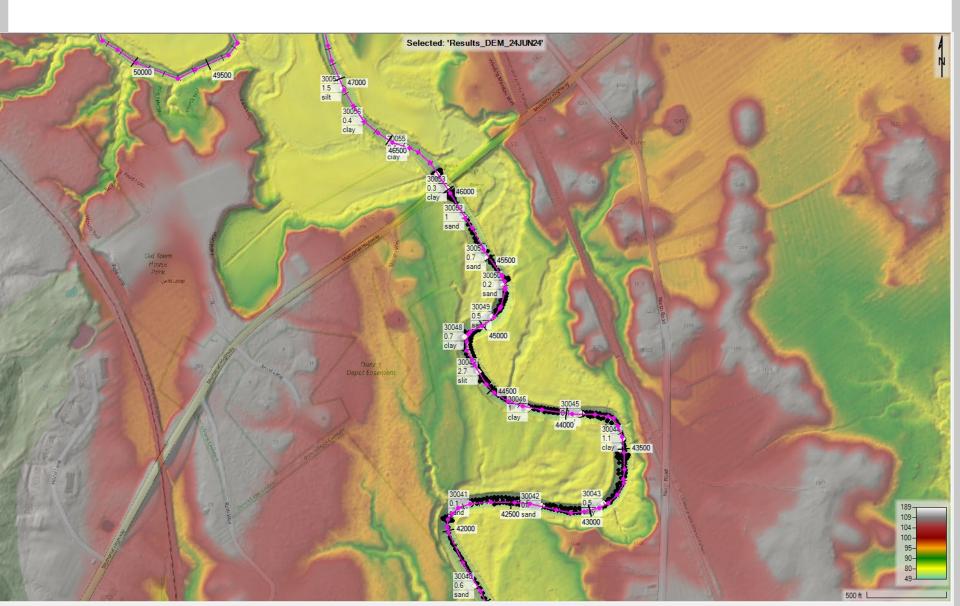
ROYAL RIVER - TERRAIN MODEL UPSTREAM OF MAINE CENTRAL RR (2)



ROYAL RIVER - TERRAIN MODEL UPSTREAM OF MAINE CENTRAL RR (3)



ROYAL RIVER - TERRAIN MODEL NEAR TODDY BROOK



ROYAL RIVER - TERRAIN MODEL BASTON PARK / US ROUTE 9

