FINAL REPORT

MARINE GEOPHYSICAL INVESTIGATION NAVIGATION CHANNEL IMPROVEMENT PROJECT PISCATAQUA RIVER PORTSMOUTH, NEW HAMPSHIRE

OSI REPORT NO. 06ES102-NH

Prepared For: Public Archaeology Laboratory, Inc. 210 Lonsdale Avenue Pawtucket, RI 02860

Prepared By: Ocean Surveys, Inc. 91 Sheffield St. Old Saybrook, CT 06475

17 September 2008

TABLE OF CONTENTS

Page

TABLE OF CONTENTS FIGURES	i ii
1.0 INTRODUCTION 1.1 Project Tasks	1
2.0 GEOLOGIC SETTING	3
3.0 SURVEY AREA AND TRACKLINES	4
4.0 SURVEY EQUIPMENT OVERVIEW	6
5.0 SUMMARY OF FIELD INVESTIGATION	
6.0 DATA PROCESSING AND DELIVERABLES	9
 7.0 SURVEY RESULTS 7.1 Side Scan Sonar Imagery 7.2 Magnetic Intensity Data	
8.0 CONCLUSIONS AND RECOMMENDATIONS	16
9.0 REFERENCES	19

Appendices

А	Side Scan Sonar Target Listing
В	Magnetic Anomaly Listing
С	Seismic Reflection Profiles
D	Geotechnical Logsheets (provided by USACE)
-	

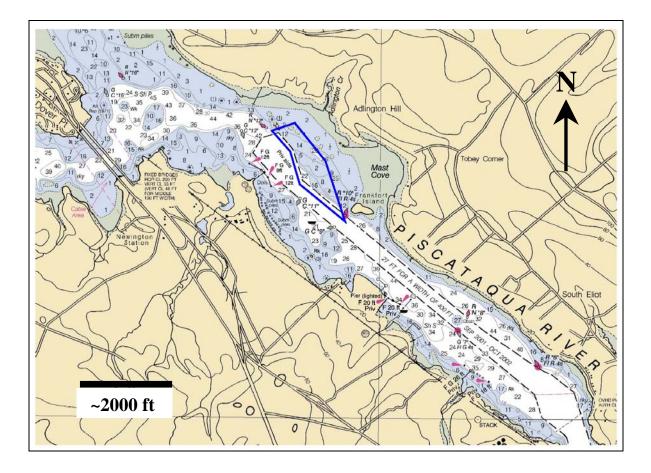
- E Equipment Operations and Procedures
- F Equipment Specification Sheets
- G Data Processing and Analysis Methods

FIGURES

Figure #	Title
1	Site Location Map
2	Survey Tracklines
3	OSI Geophysical Tracks and USACE Hydrographic Survey Coverage
4	Interpreted Areas of Shallow Acoustic Basement
5	Possible Additional Geotechnical Stations

FINAL REPORT

Marine Geophysical Investigation Navigation Channel Improvement Project Piscataqua River Portsmouth, New Hampshire


1.0 INTRODUCTION

Ocean Surveys, Inc. (OSI) conducted a marine geophysical investigation in the Piscataqua River in Portsmouth Harbor, New Hampshire on 21 and 22 December 2006 (Figure 1) in support of the United States Army Corps of Engineers (USACE), New England District, proposed navigation channel improvement project. The project site is specifically located at the northernmost end of the federally maintained navigation channel, immediately northwest of Frankfort Island and Mast Cove. The site actually borders Eliot, Maine to the northeast and Newington, New Hampshire to the southwest. The project proposes to dredge a turning basin on the east side of the channel between red nun buoys #10 and #12 to increase the area available for commercial vessel maneuverability off from the Sprague Energy Terminal.

This investigation was designed to provide information both for a marine archaeological assessment of the riverbed and an evaluation of geologic conditions in the project depth of interest. A proposed maximum dredging depth of 45 feet below MLLW (mean lower low water) was noted in the final scope of work (SOW) dated 6 November 2006. The study was performed under contract with The Public Archaeology Laboratory, Inc. (PAL) who are responsible for the marine archaeology portion of the project.

In support of the marine archaeological and geological site assessments, the primary objectives of the marine geophysical investigation thus included (1) the identification of natural and man made objects on and below the bottom and (2) high resolution seismic data acquisition down to 52 feet MLLW and an overall assessment of subsurface conditions to 70 feet MLLW.

The intent of objective no. 2 was to identify the presence of coarse glacial till (cobbles, boulders) and bedrock that may adversely affect dredging operations within the depth of interest. The subbottom profile data were also reviewed to provide information on any seismic facies suggestive of paleo-environments, such as buried channels and shorelines, that might represent potential pre-historic cultural sites.

Figure 1. Location of the area investigated for this project (site limits in blue). Nautical chart no. 13285 in background.

1.1 Project Tasks

To accomplish the goals and objectives discussed above, the following survey tasks were completed in support of the proposed channel improvement project in the Piscataqua River:

- Side scan sonar survey to identify coarse materials as well as natural and man-made acoustic targets on the bottom
- Magnetic intensity survey to identify objects composed of ferrous materials on and below the bottom
- Subbottom profile survey to map subsurface stratigraphy and possible large buried obstructions to the depth of interest

At the request of the USACE, no hydrographic survey work was performed during this investigation. Original depth to acoustic basement calculations, completed for the earlier draft of this report, were based on historical hydrographic data provided by the USACE. In April 2008, the USACE provided depth data from an August 2007 hydrographic survey (multibeam) conducted by the USACE as well as geotechnical data acquired in September 2007 for correlation with seismic profiles. Revision of the June 2007 OSI draft report has resulted in this final report which presents the results of the analysis and correlation of updated USACE data sets with the OSI geophysical interpretations, generating new depth to primary acoustic basement calculations.

2.0 GEOLOGIC SETTING

Riverbed geomorphology and stratigraphic framework in the Piscataqua River near Mask Cove and Frankfort Island consists primarily of rocks of the 'Merrimack Group', specifically the Eliot Formation (Billings, 1980). The Merrimack Group generally covers southeastern New Hampshire and the southern tip of Maine. The rocks of the Eliot Formation ("Sze" on the bedrock geology map; Anderson, 1985) range from somewhat metamorphosed to more metamorphosed, argillaceous, sedimentary rocks (green schist facies) that are Silurian-PreCambrian in age. In the least metamorphosed portions of the formation, predominantly easily-weathered, quartzose and calcareous slates, gray on fresh surfaces, turn buff-colored when normally exposed. With an increase in the grade of metamorphism, biotite begins to form and the fresh rocks become purplish-brown biotite schist, the more quartzose become quartz-mica schist, and the calcaleous rocks become brown biotite-actinolite schist and greengray actinolite granulite (Billings, 1980). Quartzites are estimated to constitute approximately 15% of the formation (Freedman, 1950).

The uppermost section of the Eliot formation consists of the Calef Member which is primarily recognized as a black phyllite with some green quartz-chlorite phyllite. Maximum thickness of the Calef Member is estimated at 800 feet while the entire formation in this region is believed to extend up to 6,500 feet deep (Freedman, 1950). Outcrops of the Eliot Formation consist of a mix of the rock types described above in alternating beds a few inches to a few feet thick.

The Piscataqua River bottom in the site is comprised of an extremely wide range of materials from fine grained sediments (such as silt nearshore, outside the stronger current flows in the channel), to coarse glacial till (including gravel, cobbles, and possibly boulders). The extreme tidal range in this area generates high velocity currents which can inhibit the deposition of most finer materials, leaving only coarser deposits on the riverbed.

3.0 SURVEY AREA AND TRACKLINES

The project site covers an approximate 900 foot by 2,600 foot shoal area east of the Piscataqua River federal navigation channel between red nun buoys #10 and #12. The site is offshore from Adlington Creek and Mast Cove, and extends approximately 100 feet out into the federal channel (Figure 2). The table below lists the corner coordinates of the survey area. Due to the absence of water in the site during low tide, all survey work had to be completed around high tide, with the exception of a few lines along the edge of the channel.

Point	Easting (feet) *	Northing (feet) *
1	2781542.5	105206.7
2	2782299.3	104257.0

Piscataqua River Survey Area Limits

Point	Easting (feet) *	Northing (feet) *
3	2782784.7	102743.9
4	2781666.7	103670.2
5	2781430.9	104492.0
6	2780980.4	105009.4

*Note: Site limit coordinates referenced to the Maine State Plane Coordinate System, West Zone 1802, NAD 83.

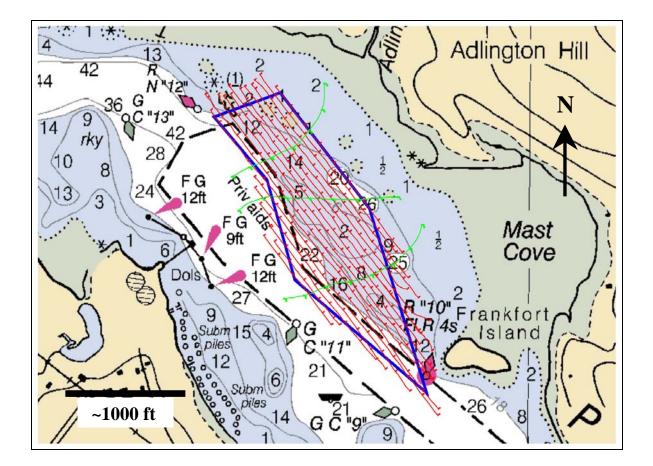


Figure 2. Primary survey tracklines (red) and tielines (green) in the project site (outline in blue), overlaying chart no. 13285.

Primary survey tracklines were spaced 50 feet apart throughout the entire survey area and were oriented generally parallel to the main axis of the channel (see Figure 2). Magnetic intensity measurements were collected on every primary line, while side scan sonar imagery

and subbottom profiles were recorded on every third line at a minimum. This included Lines 1, 4, 7, 10, 12, 15, and 18. Tielines were surveyed through the site (Lines 19, 20, 21) and oriented generally perpendicular to the primary survey lines, based on the preliminary field review of subsurface data. Only subbottom profile data were collected along the tielines.

4.0 SURVEY EQUIPMENT OVERVIEW

The major equipment systems mobilized to the Piscataqua River for this investigation, and a brief description of their operation, are listed below. A complete discussion of this equipment along with the operational procedures employed to collect the data for this project can be found in Appendix E. Specification sheets for all the equipment used can be found in Appendix F.

Equipment	Description
System	
Trimble 4000RS DGPS	Global positioning system receiver capable of tracking up to 9
Receiver	satellites simultaneously; interfaced with Trimble ProBeacon receiver
	and HYPACK [®] navigation computer.
Trimble ProBeacon USCG	Beacon receiver which receives USCG differential corrections that are
Beacon Receiver	input to the Trimble 4000 receiver, increasing the overall system
	accuracy.
HYPACK [®] navigation software	HYPACK® software runs on a Pentium notebook computer providing
and data logging computer	real time trackline control, digital data logging, and many survey
	utility functions; this package allows for efficient simultaneous
	acquisition of digital data from multiple systems.
Klein 3000 Dual Frequency	Side scan sonar system providing acoustic imagery of the bottom out
Side Scan Sonar System	to either side of the survey trackline; dual frequency technology
	allows the acquisition of high resolution images (500 kHz) and
	extended sweep ranges (100 kHz).
Geometrics G-882 Marine	Marine cesium magnetometer used to detect ferrous metal on and
Cesium Magnetometer	below the bottom to a 0.1 gamma accuracy. Measurements collected
	at a rate of 10 times per second.
Applied Acoustics Engineering	Powerful low frequency 0.5-8 kHz "Boomer" system used to try and
"Boomer" Subbottom Profiling	penetrate coarse glacial till and adverse geologic conditions to resolve
System	subsurface layering and lithologic structures in the stratigraphic
	column.

Synopsis of Survey Equipment Operations

The side scan sonar towfish and magnetometer sensor were deployed off the sides of the vessel and each towed off a davit and winch to allow modificiation of sensor height along tracklines. The side scan sonar system utilized a 164 foot (50 meter) sweep range to provide high resolution imagery. Over 200% coverage of the bottom, as data were collected on parallel lines spaced 150 feet apart. The side scan sonar towfish was maintained at an altitude of 10-15% of the sweep range where possible (shallow water does not permit this). Similarly, the magnetic sensor was towed at a nominal height of 20 feet but was actually much closer in shallow water nearshore.

The subbottom profiler sound source (catamaran with transducer plate) and receiver (hydrophone array or "eel") were towed off the vessel's stern outside the boat propeller wash to minimize acoustic noise. The "boomer" subbottom profiler used a 100 millisecond scan rate to record a total depth profile (water and stratigraphic column) of approximately 250 feet (assumes 5,000 feet per second sound velocity in sediments). The system collects raw seismic signals in the 500-8,000 hertz range, with filtered frequencies of 800-4,000 hertz used for final display and interpretation. Laybacks and offsets to sensors were recorded in the field for application during post-survey processing.

5.0 SUMMARY OF FIELD INVESTIGATION

The marine geophysical investigation took place on 20 and 21 December 2006 under favorable weather conditions for the time of year. Calm sea states were encountered the afternoon of 20 December and morning of 21 December followed by windy, choppy conditions in the afternoon of 21 December. The field survey successfully navigated around the shoal and timed the operations perfectly around high tide. The following OSI personnel comprised the field crew for this project.

Geophysical Survey Crew:

Jeffrey D. Gardner Gregory L. Schulmeister Geophysical Project Manager Geophysical Technician

The R/V Ready II (26 foot Parker Sport with dual 150 Hp outboard engines) was outfitted with the necessary geophysical equipment and support gear to complete the field investigation and transited directly from Searsport, Maine where a similar geophysical program was conducted during the seven days prior. The vessel is outfitted with an enclosed cabin and full suite of electronic navigation devices to ensure safe operations under a wide range of weather conditions. David Robinson from PAL was onboard the vessel for the duration of the field program.

5.1 <u>Horizontal Control</u>

Horizontal positioning of the survey vessel was accomplished by utilizing a Trimble 4000 Differential Global Positioning System (DGPS via interface to Trimble ProBeacon Reciever) which calculates geodetic coordinates referenced to the WGS-84 datum (World Geodetic System established in 1984), and equivalent to NAD 83 (North American Datum established in 1983). Differential corrections were received from the U.S. Coast Guard reference beacon at Portsmouth, New Hampshire (288 kilohertz at a transmission rate of 100 bps) with good reliability and signal strength. This DGPS configuration typically provides better than a 3 foot (sub-meter) repeatable position accuracy, as stated by the manufacturer.

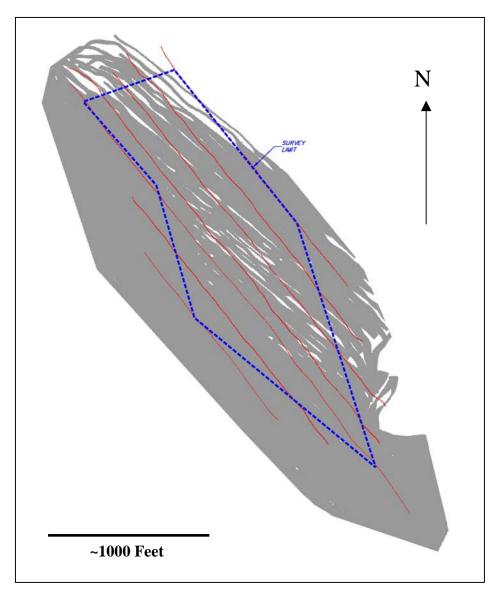
The HYPACK[®] computer navigation software utilized aboard the survey vessel converts the geodetic coordinates (latitude-longitude) to state plane coordinates (easting-northing) for navigation while logging these position data at 1 second intervals along survey tracklines. The survey was conducted in the Maine State Plane Coordinate System (West Zone 1802), referenced to NAD 83 with all coordinates in feet. The table below lists information for the horizontal check point established at the marina dock with the DGPS system. Navigation

checks were performed over this point at the beginning and end of each field day to ensure the positioning system was functioning properly and delivering the horizontal position accuracy required for the project.

Point ID	Position *	Description					
Great Bay Marine	N 103845	Point marked by PK nail with pink survey					
Slip A1	E 2774061	flagging flush with the dock. Point is positioned					
		midway along the southeast edge of outermost					
		dock, next to center cleat, Slip A1					

*Note: Coordinates referenced to the Maine State Plane Coordinate System, West Zone 1802, NAD 83.

6.0 DATA PROCESSING AND DELIVERABLES


Data processing techniques and the methods used for analysis of the side scan sonar, magnetic intensity, and subbottom profile data are described in Appendix G. The following list details the data products generated for this project. Final drawings have been provided separately in hard copy (24x36 inch, D sheets) and digital (AutoCAD 2000) formats. Drawings have been constructed at a horizontal scale of 200 feet per inch in a plan view format. All data have been referenced to the Maine State Plane Coordinate System (West Zone 1802), NAD 83 in feet, in the horizontal plane. Vertical reference datum for the project is Mean Lower Low Water (MLLW) as dictated by the USACE April 2008 hydrographic data.

Product	Scale/Format	Description					
As Appendices at End of Rep	ort						
Sonar Target List NA		Table of acoustic targets interpreted from the side					
	Excel spreadsheet	scan sonar imagery, included in Appendix A					
Magnetic Anomaly List	NA	Table of magnetic anomalies interpreted from the					
	Excel spreadsheet	total earth's magnetic field intensity data, included in					
		Appendix B					

Product	Scale/Format	Description
Geologic Cross Sections	(as shown)	Interpretation of selected subbottom profiles used to
	PDF format	determine depth to coarse glacial till or bedrock,
		included in Appendix C

Product	Scale/Format	Description						
Hard Copy and Digital Full Size Drawings, Separate Deliverable								
Drawing V-1	1 inch = 200 feet	Water depth contours at a 1 foot interval developed from August 1007 USACE hydrographic survey						
Drawing V-2	1 inch = 200 feet	Geophysical data results; side scan sonar targets and magnetic anomaly locations as well as areas of coarse surficial material						
Drawing V-3	1 inch = 200 feet	Contour map of the primary acoustic basement reflector, contour interval 1 foot						

On April 24, 2008 USACE provided to OSI, an XYZ ASCII file titled "Portsmouth proposed channel aug16+17+2007 03 avg.xyz". This file contains a 3 foot by 3 foot cell matrix of soundings, referenced to MLLW (1983-2001 Tidal Epoch) based on average depth selection and is considered the full resolution data set by the USACE. Figure 3 is a plan view illustration of the hydrographic data coverage (gray) in relation to the subbottom profile transects (red) surveyed by OSI. Note that there were some gaps in the hydrographic data (greater than 3 foot by 3 foot spacing between soundings) especially in the shallow areas, in the northern corner of the survey area. A digital surface model of the multibeam hydrographic data was generated using QuickSurf DTM software to determine water depths along the subbottom profiler tracklines. Reflector depths below the bottom were measured and exported out of ReflexW seismic processing software and referenced to MLLW using the multibeam hydrographic surface.

Figure 3. Illustration of the OSI 2006 subbottom data points (red) and site boundary (blue) in relation to the hydrographic data "Portsmouth proposed channel aug16+17+2007 03 avg.xyz"provided by the USACE (gray). Note, white spaces indicate holidays in hydrographic data (greater than 3 feet by 3 feet spacing between points).

7.0 SURVEY RESULTS

The following discussion of survey results references the project drawings listed above. All water depths discussed in the text are referenced to MLLW, while subsurface reflector or

lithology depths may be relative to MLLW or depth below the bottom, as specified in the text. Subsurface results were developed from interpretation of the OSI geophysical data (collected December 2006) and correlated to geotechnical data (probes and borings collected in September 2007) provided by the USACE in October 2007 and June 2008. Geotechnical logs provided by the USACE for the eight borings and three probes are included in Appendix D.

7.1 Side Scan Sonar Imagery

Review and interpretation of the side scan sonar imagery reveals acoustic reflectivity representative of different sediment types and bottom features. Stronger reflectivity on the records can be related to coarser material (sand, gravel, rocks), submerged aquatic vegetation, and/or variations in bottom morphology, whereas weaker acoustic returns are typically associated with finer grained sediments (silt-clay). It is important to remember the side scan sonar system is a surface mapping tool only and does not provide information on subsurface conditions.

Based on interpretation of the sonar images, coarse glacial till (gravel, cobbles, boulders) is apparent over some portions of the site (Figure 4). Sand and gravel are suspected to dominate the remainder of the riverbed and cover a majority of the navigation channel slope. Some silt may exist closer to the Maine river bank in slightly deeper, quiescent waters infilling depressions in the bedrock surface. The shoal that covers the central portion of the site, parallel to the top of the channel slope, is at least partially comprised of coarse glacial till.

A total of 80 acoustic targets have been identified in the site from review of the side scan sonar images. Most appear as isolated, linear or oblong targets or debris fields inclusive of numerous targets. Many of the targets could be boulder-sized material (greater than 12 inches diameter) associated with the coarse glacial till in some portions of the site. In many cases, it is difficult to determine from acoustical properties only whether a target is a natural feature or man made. Non-linear targets average approximately 3 feet by 6 feet in size. Ten of the

sonar targets have correlating magnetic anomalies within close proximity, suggesting the targets may be generated by nearby ferrous objects.

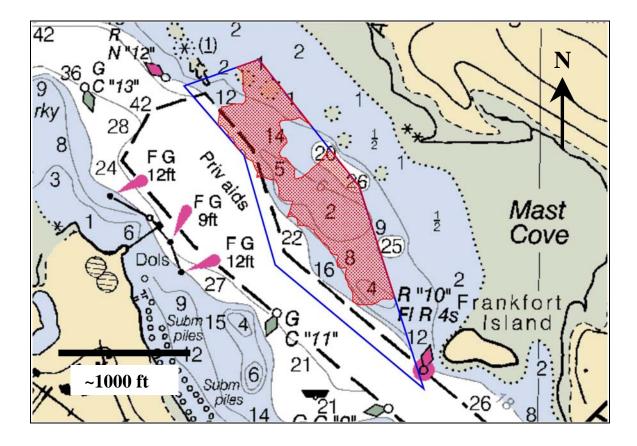
7.2 Magnetic Intensity Data

Measurements of the earth's total magnetic field allowed the identification of local deviations in the field due to the presence of ferrous objects on or below the riverbed. A magnetic anomaly with no associated sonar target at the same location indicates the ferrous object may be buried below the bottom. The magnetic intensity data were analyzed in order to map isolated anomalies in the site potentially generated by man made debris. Significant variation in the magnetic intensity readings exists due to shallow metamorphic bedrock and boulders in the area. The abundance of ferrous minerals in the rocks affect the total measured magnetic field, resulting in more pronounced background variations. Fluctuations in the background magnetic field generated by subsurface geology were not included in the anomaly list. A total of 74 magnetic anomalies have been identified within the limits of the designated survey area (Appendix B). Man made debris is common in harbors such as this where heavy commercial traffic has existed for years.

It is important to remember that anomalies are always measured at the sensor position along each trackline. The magnetic sensor cannot determine distance from an object which may rest at some distance offline, at the surface, or buried in the riverbed. Thus the anomaly location does not necessarily represent the exact position of the ferrous object. In some cases, the anomaly may be associated with a nearby sonar target identified from the side scan sonar imagery.

7.3 <u>Subbottom Profile Data</u>

The subbottom profiling method achieved subsurface penetration over a majority of the survey area where surficial materials allowed. Little to no organic-rich, gaseous deposits


were evident, while apparent coarse material deposits on and below the riverbed did limit signal penetration in a number of places. It is possible these accumulations of material could be outcroppings of coarse glacial till (boulders, cobbles, gravel), piles of man made debris, or side castings of coarse dredged materials from the channel. Please refer to the interpreted subbottom profiles in Appendix C (Lines 1, 4, 7, 10, 12, 15, 18) for the following discussion.

An acoustic basement reflector was mapped from interpretation of the "boomer" subbottom profiles and correlated to the geotechnical data set. This reflector may represent either the top of coarse glacial till (mix of gravel, cobbles, and boulders with a sand matrix) or the bedrock surface underlying the site. The acoustic basement reflector is relatively weak and discontinuous in nature and the mapped surface is based primarily on the geotechnical information. This is typical in areas where a high concentration of coarse material inhibits the seismic signal penetration down to the top of rock.

The USACE borings and probes suggest bedrock is generally deeper than 40 feet MLLW except in the vicinity of Boring B6 which encountered metamorphic rock at a depth of 15 feet below the riverbed (30 feet MLLW). Although correlation of Boring B6 is indirect due to its position between geophysical tracklines, interpretation of adjacent seismic profiles #7 and #10 indicates the acoustic basement reflector slopes up closer to the bottom in this area. Figure 4 illustrates the areas where the acoustic basement has been mapped shallower than 45 feet MLLW based on interpretation of the seismic profiles. Full scale OSI Drawing 3 presents contours of the acoustic basement reflector depth below MLLW at a 1 foot interval.

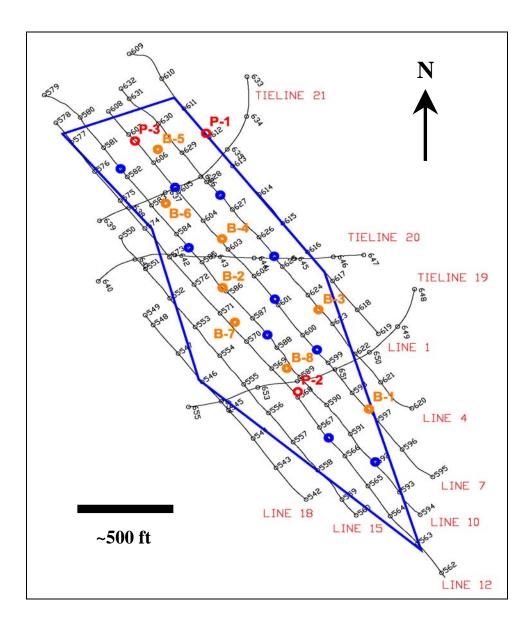
In the remainder of the site, the primary acoustic basement reflector was apparent at depths of 10-20 feet below the bottom in the channel (Line 18) and along the toe of the slope (Lines 12 and 15). The interpreted top of the coarse glacial till/bedrock surface slopes up slightly to the east-northeast toward the top of the channel slope. Geotechnical results suggest bedrock is generally deeper than 40 feet MLLW in the southeastern two-thirds of the site as only one station, P2, penetrated deeper to 52 feet MLLW. None of the borings or probes indicate hard

refusal was encountered. The shoal evident in the central portion of the site, particularly on Lines 7, 10, and 12, is believed to be primarily comprised of sand with coarse material (gravel, cobbles, boulders), mainly gravel according to the borings.

Figure 4. Map showing the areas within the site (blue outline) where the acoustic basement has been interpreted from the seismic reflection profiles and identified at Boring B6 shallower than 45 feet MLLW (red hatch).

One anomalous area of the site is evident from review of the data sets. Despite the findings of Probe P1 along Line 1 that indicate 59 feet of unconsolidated sediments, the seismic profile reveals a strong acoustic basement reflector quite shallower, closer to 20-30 feet below the riverbed (see Line 1 profile in Appendix C) where it has been mapped. It is possible that this reflection is a partial side echo from a mound of coarse till or bedrock high spot located just off the trackline.

An average acoustic velocity of 5,000 feet per second was used to calculate sediment thickness, a potentially conservative estimate of sound speed for dominantly coarse material overburden. For example, an increase in the assumed average velocity from 5,000 feet per second (representative of finer grained, saturated marine sediments such as silt to medium sand) up to 6,000 feet per second (more typical of coarser grained, saturated marine sediments such as gravel and cobbles) would result in an increase of 20% in the estimated reflector depths. Given the shallow nature of the acoustic basement reflector at this site, this velocity variation would have minimal affect on the interpreted sediment thickness and resulting depth to acoustic basement contoured surface.


8.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

The detailed marine geophysical investigation conducted in the Piscataqua River on 21-22 December 2006 has provided valuable information for riverbed and subsurface characterization of site geology. Geophysical data sets acquired have also allowed the mapping of natural and man made objects on and possibly below the bottom. A total of 80 side scan sonar targets and 73 magnetic anomalies have been identified from interpretation of the geophysical data sets, as well as bottom areas where sonar reflectivity suggests the presence of coarse material. Such objects and features observed on the side scan sonar and magnetic intensity data may represent obstructions to future dredging operations. All data products generated as a result of this investigation have been delivered to PAL for their archaeological assessment of the site, a determination of the presence of potentially significant cultural resources.

Regarding the subsurface geologic conditions, coarse glacial till and bedrock are present shallower than 45 feet MLLW in the vicinity of Boring B6 and may exist above this project depth of interest in other portions of the site, as suggested by seismic interpretation (see Figure 4). Due to the abundance of coarser deposits (coarse sand, gravel, cobbles) in the nearsurface, it is difficult to determine from the seismic profiles whether the origin of the

acoustic basement reflector is coarse glacial till or bedrock. There is not much acoustic signal left to resolve the bedrock surface at depth after being reflected proportionally by the overlying coarse materials. Interpretation of the seismic profiles does suggest significant relief may exist in the acoustic basement reflector that could represent locally abrupt changes in elevation. The acoustic basement is apparent just below the bottom of the navigation channel (5-10 feet), suggesting coarse till and rock may have been dredged from the channel previously (this is the point where the channel widens toward the turning basin at its northwest end).

The difficult nature of the site conditions on the seismic reflection profiling technique, causing reduced penetration and resolution of the acoustic basement, indicates geotechnical investigations may provide the most absolute findings. If further delineation of the bedrock surface and coarse glacial till deposits are necessary, additional borings (Figure 5) are recommended to fill in the remainder of the site with geotechnical information and supplement geophysical data acquisition and its interpetation.

Figure 5. Recommended additional geotechnical stations in the site (blue), if further delineation of subsurface geologic conditions is deemed necessary.

9.0 <u>REFERENCES</u>

- Anderson, W.A., 1985. Bedrock Geologic Map of Maine, Maine Geological Survey / Department of Conservation, 1:500,000 scale.
- Billings, M.P., 1980. The Geology of New Hampshire, Part II: Bedrock Geology, New Hampshire Department of Resources and Economic Development, p. 38-43.
- Freedman, J., 1950. Stratigraphy and Structure of the MT. Pawtuckaway Quadrangle, Southeastern New Hampshire. Geological Society of America Bulletin: Vol. 61, No. 5, p. 449–492.

APPENDICES

- A Side Scan Sonar Target Listing
- **B** Magnetic Anomaly Listing
- **C** Seismic Reflection Profiles
- **D** Geotechnical Logsheets (provided by the USACE)
- **E** Equipment Operations and Procedures
- F Equipment Specification Sheets
- G Data Processing and Analysis Methods

APPENDIX A

Side Scan Sonar Target Listing

	Piscataqua River / Navigation Channel Improvement Project Side Scan Sonar Targets										
Date	Run	Line	Event	Target ID #	Easting	Northing	Length	Width	Height or Relief	Comment	Associated Magnetic Anomaly
					feet	feet	feet	feet	feet		
21-Dec	2	18	419.8	SS8	2781753	103748	3.6	1.6	1.3	curved	
										rectangular, possible lobster	
			420.3	SS10	2781783	103665	3.0	2.3	1.0	pot	
			419.6	SS12	2781697	103749	40.0	0.3	<0.5	linear	
			420.1	SS13	2781759	103695	2.0	1.6	1.6	triangular	
			420.3	SS14	2781803	103656	35.4	2.3	1.0	broken linear	M1
			420.5	SS15	2781810	103605	4.9	3.6	1.3	rounded	
			422.0	SS19	2782018	103413	n/a	0.3	<0.5	long linear end	
			421.9	SS20	2781998	103413	2.3	1.0	0.7	small	
										possible angular, at edge of	
21-Dec	4	15	435.1	SS27	2781534	104225	13.1	6.6	5.2	boulder field	
			436.7	SS28	2781741	103965	3.0	1.3	0.7	oval	
			436.9	SS29	2781769	103930	2.6	0.7	0.7	rectangular	
			436.7	SS30	2781701	103941	n/a	0.3	<0.5	long linear begin	
			437.0	SS31	2781784	103933	n/a	0.3	<0.5	long linear2 begin	
			437.3	SS33	2781717	103826	2.3	2.0	1.3	curved	
			437.6	SS34	2781818	103820	3.0	1.6	1.6	curved object	
			437.7	SS35	2781867	103823	n/a	0.3	<0.5	long linear2 end	
			438.0	SS36	2781900	103763	n/a	0.3	<0.5	begin long linear4	M16
			438.6	SS37	2781977	103691	13.1	2.0	0.3	wide linear	
			438.0	SS38	2781765	103667	5.6	3.9	0.7	curved	
			439.2	SS39	2782023	103565	4.6	3.0	3.9	angled, alonglong linear4 object	
			438.8	SS40	2781909	103563	5.9	0.7	0.7	2 linear approimately same size	
			439.2	SS41	2781958	103513	n/a	0.3	<0.5	approximate end of long linear3	
			439.7	SS42	2782126	103515	4.6	1.3	1.6	2 parallel rectangular	
			441.1	SS45	2782281	103289	7.2	4.6	1.3	rectangular	
			441.7	SS46	2782347	103184	1.3	1.0	1.0	small	
			447.7	SS49	2782498	102991	n/a	0.7	<0.5	end long linear4	
21-Dec	5	12	447.0	SS57	2782676	102950	n/a	0.3	<0.5	approximate beginning long linear	
			447.2	SS58	2782700	103003	5.6	1.0	1.0	2 objects, one oblong, one oval	M44

Final Report -- Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

				Piscata	qua River / N	Navigation Cl	nannel Impr	ovement I	Project		
					S	ide Scan Sona	ar Targets				
Date	Run	Line	Event	Target ID #	Easting	Northing	Length	Width	Height or Relief	Comment	Associated Magnetic Anomaly
					feet	feet	feet	feet	feet		
			448.4	SS59	2782388	103096	8.5	0.7	0.3	linear	
			448.5	SS60	2782510	103203	3.3	1.3	1.3	small	
			449.8	SS61	2782338	103400	7.2	4.6	0.7	rectangular	
			451.3	SS62	2782135	103625	4.3	3.3	2.3	rounded	
			453.7	SS63	2781855	104021	n/a	0.7	<0.5	approximate end long linear	
			457.2	SS64	2781464	104578	6.2	4.6	5.2	angular, in boulder field	
			457.5	SS65	2781442	104642	5.6	7.5	<0.5	angular, in boulder field	
										possible angular, in boulder	
			456.9	SS66	2781458	104513	12.8	3.0	2.6	field	
			458.2	SS67	2781301	104707	5.2	6.2	6.2	curved angular	M26
			459.4	SS68	2781148	104898	5.2	2.3	<0.5	rectangular	
			460.3	SS70	2781040	104992	4.9	2.6	5.9	oval	
21-Dec	24	1	663.4	SS71	2781750	104865	4.6	2.0	0.7	rectangular	
			663.7	SS72	2781827	104828	6.2	2.3	1.0	2 adjacent curved	
										possible partially buried	
			663.7	SS73	2781789	104788	11.5	4.3	0.7	rectangular object	M55
			664.6	SS74	2781904	104685	17.4	<0.5	<0.5	linear depression	
			664.8	SS75	2781899	104613	5.2	2.0	1.0	3 oblong shapes	
21-Dec	25	4	674.0	SS79	2782249	103930	3.0	2.3	1.0	roughly rectangular	M69
			674.0	SS80	2782275	103946	3.9	3.9	1.0	square	M60
			673.8	SS81	2782298	103926	4.6	3.0	1.3	curved/round	
			674.7	SS82	2782181	104063	4.9	2.3	1.6	curved-angular	
			676.6	SS83	2782038	104420	3.3	2.6	1.0	oval	
			676.7	SS84	2782050	104443	3.9	1.6	1.0	linear	
			677.1	SS85	2781890	104429	4.9	1.3	0.7	2 objects approximate same size, oblong	
			677.5	SS86	2781864	104507	4.3	3.6	1.6	1 linear, 1 oblong	
			677.7	SS87	2781905	104608	8.2	5.6	3.3	curved	
			678.7	SS88	2781700	104682	4.6	3.6	1.0	angled	
			678.4	SS89	2781802	104694	12.1	3.0	1.0	curved angluar	
			679.3	SS90	2781613	104756	18.0	3.3	0.3	somewhat pointed	1
			679.8	SS91	2781694	104951	18.4	3.6	<0.5	2 parallel linear	1
			680.0	SS92	2781641	104968	3.6	4.6	0.7	rounded	
			680.2	SS93	2781596	104983	35.4	2.0	1.0	partially buried linear	M64
21-Dec	26	10	685.0	SS99	2781164	105060	6.2	0.3	<0.5	possible linear object	M87
		-	685.5	SS100	2781214	104964	4.3	1.0	1.3	curved next to round	

Final Report -- Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

Side Scan Sonar Targets												
Date	Run	Line	Event	Target ID #	Easting	Northing	Length	Width	Height or Relief	Comment	Associated Magnetic Anomaly	
					feet	feet	feet	feet	feet			
			686.7	SS101	2781403	104821	8.5	1.3	1.3	possible curved-linear		
			688.7	SS102	2781524	104404	n/a	0.7	<0.5	begin linear	M27	
			689.2	SS103	2781572	104324	n/a	0.7	<0.5	end linear		
			694.8	SS104	2782375	103507	5.6	2.6	1.3	oblong		
			697.8	SS105	2782672	102984	11.2	8.5	<0.5	area with curved and linear features		
			698.4	SS106	2782722	102915	<0.5	<0.5	<0.5	approximately 20m long striations with one rounded target		
		_								possibly partially buried		
21-Dec	28	7	706.7	SS108	2782477	103488	12.5	3.9	1.0	object		
			706.9	SS109	2782462	103521	3.9	1.6	2.3	oblong		
			709.9	SS110	2782085	103978	17.4	27.2	3.6	oblong and curved-angular objects		
			710.3	SS111	2782058	104055	6.6	1.3	2.3	wide linear		
			711.7	SS112	2781867	104259	4.6	0.7	2.0	linear		
			712.6	SS113	2781769	104408	5.6	3.0	4.3	oval		
			713.5	SS114	2781631	104531	8.9	3.0	3.6	crescent-shape		
			714.2	SS115	2781641	104706	21.7	3.6	1.3	somewhat linear		
			714.8	SS116	2781575	104837	13.5	6.6	3.3	roughly rectangular		
			715.7	SS117	2781393	104883	5.9	2.6	1.0	oblong		
			715.8	SS118	2781347	104893	35.8	3.0	2.3	linear, possible partially buried object		
			715.6	SS119	2781445	104908	8.5	1.6	1.3	curved and linear		
			715.6	SS120	2781462	104922	8.9	2.0	3.0	possibly partially buried object		
NOTES:												
1. Coordi	nates ar	e referenc	ed to the N	Aaine State Pla	ane system,	West Zone 18	02, NAD83,	in feet.				
				ased on acoust					directly.			
				lentifies feature					Í			
				one side scan				argets loca	ated			
,			were not r		contai intage		e mapped, t					
				ot sequential, a				1	· · ·			

Final Report -- Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

APPENDIX B

Magnetic Anomaly Listing

	Piscataqua River / Navigation Channel Improvement Project												
						Ma	gnetic Anor	nalies					
Date	Run	Line	Event	Anomaly ID#	Easting	Northing	Size	Туре	Duration	Sensor Altitude	Dipolar ferrous mass (lbs)	Monopolar ferrous mass (lbs)	Associated Side Scan Target
					feet	feet	gammas		feet	feet	pounds	pounds	
21-Dec	7	16	472.0	M1	2781826	103643	12	D	67	45.7	1189.3		SS014
21-Dec	8	15	481.0	M3	2781944	103583	10	M+	25	45.5	978.2	21.5	
			482.0	M4	2781810	103750	15	M+	100	51.7	2152.5		
21-Dec	9	14	494.4	M7	2781739	103923	200	M+	60	29.9	5551.6		
			494.9	M8	2781662	104013	250	M-	25	35.6	11712.9	329.0	
21-Dec	10	13	500.4	M11	2782686	102808	110	M+	150	50.5	14710.9	291.3	
			507.3	M12	2781836	103874	190	M+	67	35.0	24514.8	491.3	
			509.9	M13	2781516	104283	50	M+	133	44.6	4606.3	103.3	
			509.3	M14	2781597	104180	20	M+	100	42.4	1583.1	37.3	
			501.3	M15	2782585	102936	18	M+	67	49.9	2322.5	46.5	
			506.6	M16	2781916	103768	20	M+	133	32.3	699.9	21.7	SS036
			507.6	M17	2781803	103921	20	M+	50	34.0	816.3	24.0	
21-Dec	11	12	514.5	M19	2782673	102864	150	D	225	47.8	17011.7	355.9	
			523.2	M20	2781621	104222	150	D	67	47.7	16905.2	354.4	
			524.0	M21	2781517	104365	40	M-	150	43.8	3490.2	79.7	
			526.8	M22	2781169	104777	140g	M+	133	47.7	15778.2	330.8	
21-Dec	38	11	825.4	M25	2781063	105032	8g	M-	40	27.1	165.3		
			827.4	M26	2781315	104715	75g	M+	200	39.8	4910.0		SS067
			829.2	M27	2781524	104412	10g	M+	33	42.9	819.9	19.1	SS102
			829.8	M28	2781593	104311	53g	D	100	38.9	3239.7	83.3	
20-Dec	1	18	413.3	M30	2781690	103669	100g	M+	225	18.6	668.2		
21-Dec	24	1	661.7	M31	2781565	105182	32g	D	133	7.3	12.9		
			665.8	M32	2782085	104524	20g	M-	133	26.0	365.0		
			667.2	M33	2782250	104319	35g	M+	133	28.4	832.5		
21-Dec	25	4	674.1	M35	2782332	103973	75g	M+	200	18.3	477.3		
	_		680.2	M36	2781576	104922	10g	M+	15	11.4	15.4		
21-Dec	26	10	686.9	M37	2781343	104738	40g	M+	200	21.5	412.8		
	-	-	689.4	M38	2781652	104348	5g	M+	18	10.1	5.3		
			690.4	M39	2781774	104199	12g	M+	29	6.8	4.8		
			690.6	M40	2781800	104167	10g	M+	33	7.3	4.0		
			692.9	M41	2782087	103807	30	M+	133	18.0	181.7		
			694.9	M42	2782339	103484	5	M+	67	8.6	3.3		
			695.3	M43	2782374	103439	15	M+	67	8.6	9.9		

Final Report -- Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River, Portsmouth, New Hampshire

	Piscataqua River / Navigation Channel Improvement Project												
					-	Ma	gnetic Ano	malies					
Date	Run	Line	Event	Anomaly ID#	Easting	Northing	Size	Туре	Duration	Sensor Altitude	Dipolar ferrous mass (lbs)	Monopolar ferrous mass (lbs)	Associated Side Scan Target
		-			feet	feet	gammas	71	feet	feet	pounds	pounds	
			633.7	M44	879695	285016	33.9	M+	50	15.37	127.8	8.3	SS171
21-Dec	28	7	706.5	M47	2782563	103453	38	D	225	17.2	200.8	11.7	
			710.3	M48	2782091	104033	8	D	13	6.6	2.4	0.4	
			712.6	M49	2781802	104402	8	M+	33	5.9	1.7	0.3	
			716.5	M50	2781321	105012	15	D	100	30.2	429.0	14.2	
21-Dec	31	2	730.8	M52	2781707	104922	5	M+	20	6.6	1.5	0.2	
			729.3	M53	2781527	105153	10	M+	67	8.1	5.5	0.7	
			731.0	M54	2781730	104894	4	M+	20	6.8	1.3	0.2	
			731.6	M55	2781797	104806	20	M+	200	15.1	71.5	4.7	SS073
			733.7	M56	2782062	104482	30	M-	171	23.1	384.0	16.6	
			734.9	M57	2782215	104285	30	M+	133	24.0	430.7	17.9	
21-Dec	32	5	741.5	M60	2782297	103941	50	M+	200	24.8	792.0	31.9	SS080
			742.2	M61	2782213	104044	10	M+	67	14.4	31.0	2.2	
			748.4	M62	2781432	105016	18	M+	100	6.7	5.6	0.8	
21-Dec	33	3	752.3	M63	2781474	105146	35	M+	50	7.8	17.2	2.2	
			753.3	M64	2781590	104986	5	M+	17	6.8	1.6	0.2	SS093
			755.8	M65	2781923	104577	12	M+	100	22.7	145.8	6.4	
			757.9	M66	2782178	104252	15	M+	100	20.3	130.3	6.4	
			759.5	M67	2782375	104003	80	M+	175	11.0	110.6	10.1	
21-Dec	34	6	767.2	M69	2782256	103910	25	M+	200	21.9	272.7	12.5	SS079
			771.3	M70	2781749	104550	12	M+	150	19.9	98.2	4.9	
			771.8	M71	2781672	104655	25	M+	50	14.7	82.5	5.6	
			774.6	M72	2781327	105068	20	M-	125	6.3	5.2	0.8	
21-Dec	35	8	781.8	M73	2781696	104457	10	M+	50	7.4	4.2	0.6	
			782.5	M74	2781777	104355	5	M+	50	9.0	3.8	0.4	
			783.5	M75	2781914	104178	3	M+	25	7.3	1.2	0.2	
			783.7	M76	2781931	104157	5	M+	25	6.8	1.6	0.2	
			788.6	M77	2782541	103383	25	M+	200	14.8	84.2	5.7	
21-Dec	36	11	796.2	M79	2782300	103453	10	D	50	11.7	16.6		
			796.6	M80	2782240	103528	10	M+	67	12.4	19.8	1.6	
			798.2	M81	2782042	103778	20	M+	175	20.4	176.3		
			800.6	M82	2781748	104151	100	M-	50	6.1	23.6	3.9	
			804.9	M83	2781209	104821	50	M-	100	34.0	2040.7	60.0	
21-Dec	37	9	809.8	M87	2781149	105071	20	M+	50	6.1	4.7	0.8	SS099

						Ma	agnetic Ano	malies					
Date	Run	Line	Event	Anomaly ID#	Easting	Northing	Size	Туре	Duration	Sensor Altitude	Dipolar ferrous mass (lbs)	Monopolar ferrous mass (lbs)	Associated Side Scan Target
					feet	feet	gammas		feet	feet	pounds	pounds	
			814.4	M88	2781717	104345	2	M+	7	8.4	1.2	-	
			815.4	M89	2781840	104197	15	M+	40	5.7	2.9		
			817.7	M90	2782122	103838	30	M+	100	12.5	60.8		
			819.5	M91	2782363	103543	10	M+	50	12.7	21.3		
			820.0	M92	2782422	103461	25	D	100	8.4	15.4		
			820.8	M93	2782506	103346	30	M+	175	11.3	45.0	-	
21-Dec	6	17	464.7	M94	2781852	103528	8	M+	29	20.2	68.5	3.4	
NOTES													
1. Posi	tions are	reference	ed to the N	Maine State	Plane Coord	linate System	n, West Zone	e 1802, NAD8	33, in feet.				
2. Esti	mated fer	rous mas	ses calcu	lated using t	the following	formulas:							
	T r ² / 963		onopoles	Ŭ	0								
	T r ³ / 963												
				ect T – ano	maly amplitu	do r – distar	nce hetween	magnetic se	nsor and object	+			
									e between 175				
-								CD = comple					<u> </u>
										om the listing			
4. ANO	maly luen	uncation	rumpers	are not sequ	iential, as th		a outside th		vere removed fr	om me iisting.			
										1	1		

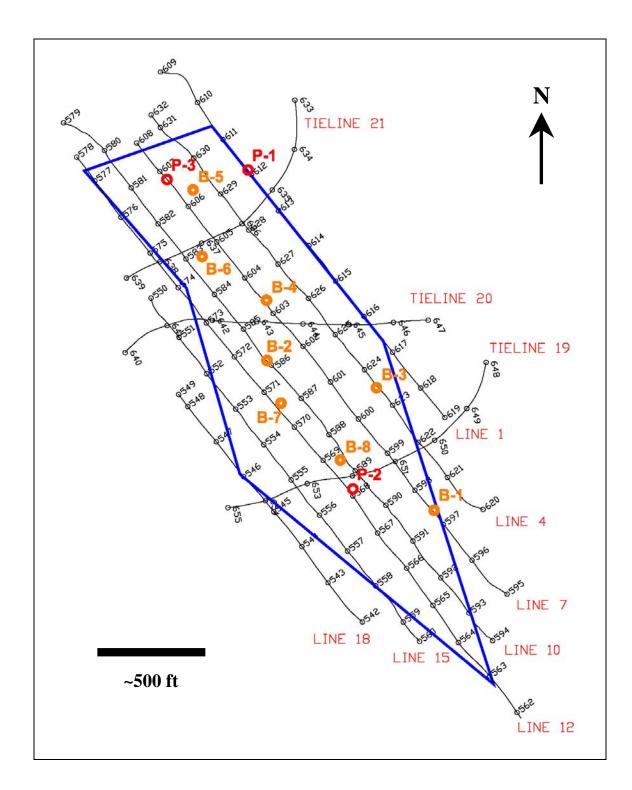
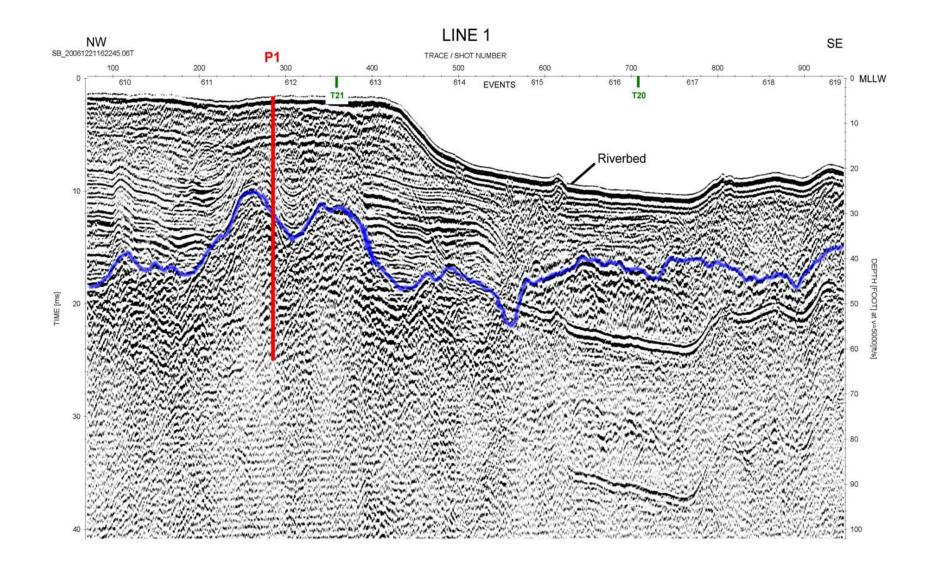
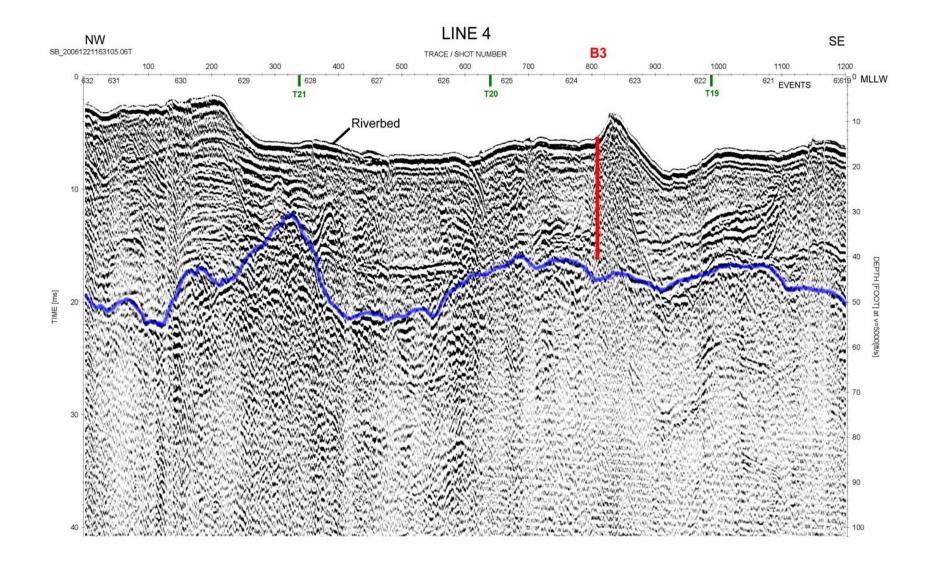
APPENDIX C

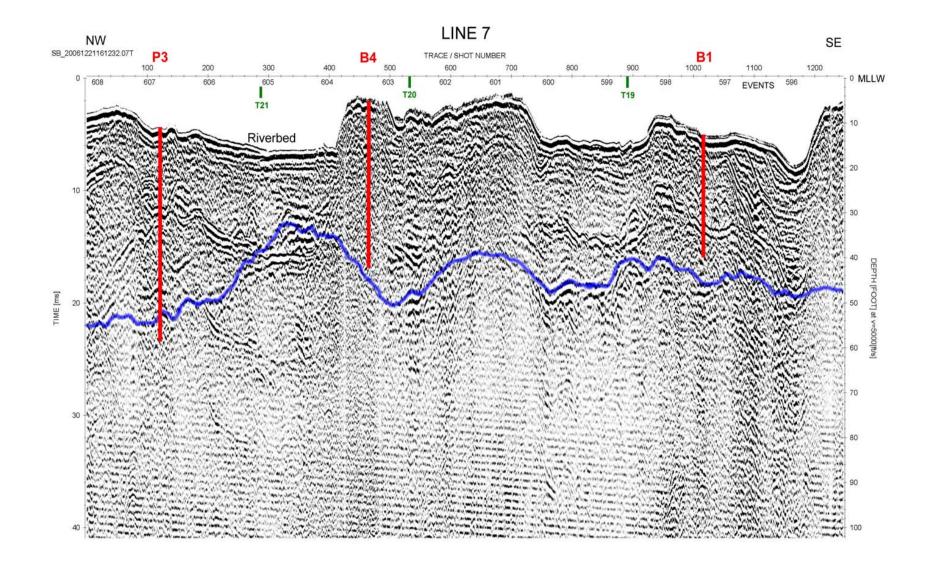
Seismic Reflection Profiles

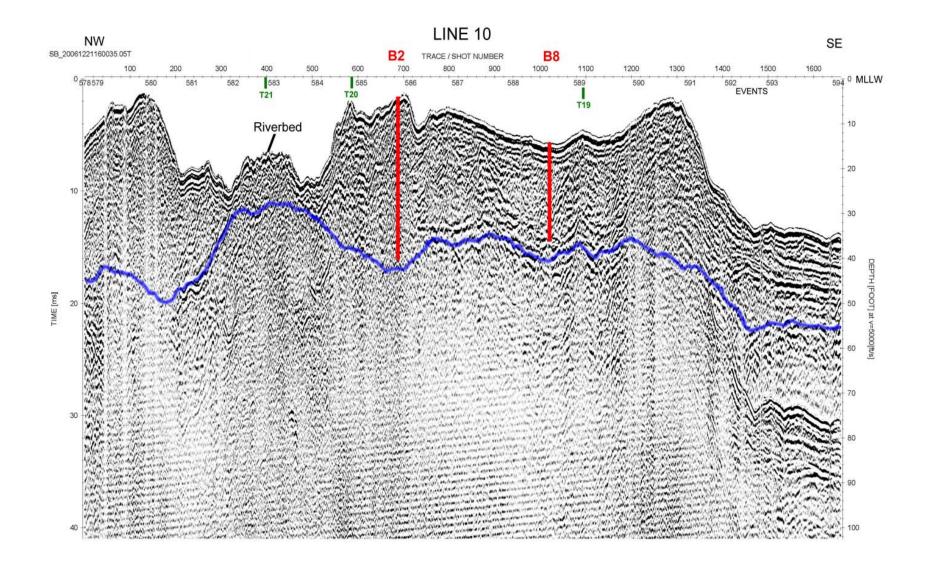
Lines 1, 4, 7, 10, 12, 15, 18 and TieLines 19, 20, 21

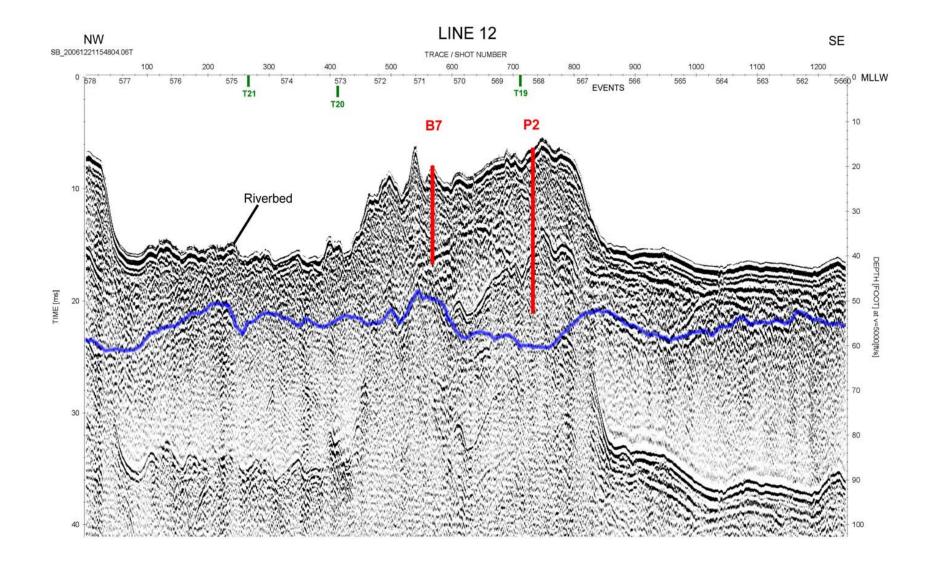
NOTES ON SEISMIC PROFILES:

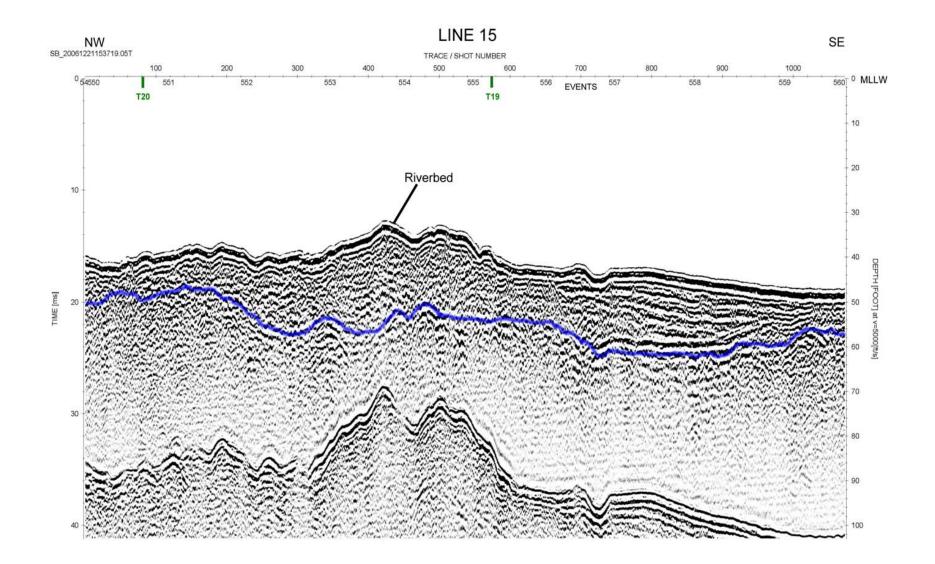
- 1. Assumed seismic velocity of 5,000 feet per second used to correct the raw time sections to geologic profiles.
- 2. Profiles have been referenced to MLLW based on predicted tide values for Dover Point, New Hampshire, the nearest NOAA tide station.
- 3. ReflexW Seismic Processing Software used to pick acoustic reflectors and export x,y,z values for contouring.
- 4. Event numbers (black) across the top of each profile are spaced 200 feet apart. Green line numbers with vertical mark represent the intersection points of crossing tracklines.
- 5. Primary survey lines labeled L1, L4, L7, L10, L12, L15, and L18. Tielines labeled T19, T20, and T21.
- 6. Reflector color codes are:blue = interpreted acoustic basement reflector (top of coarse glacial till or bedrock)
- 7. Geotechnical stations positioned slightly off the geophysical tracklines were projected onto adjacent profiles. Due to highly variable bottom topography, some stations could not be realistically projected.

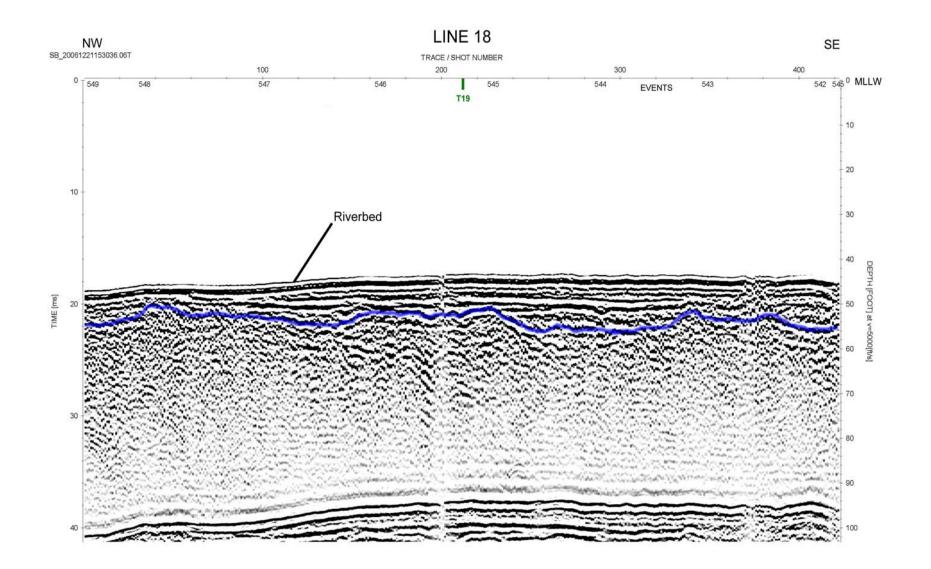




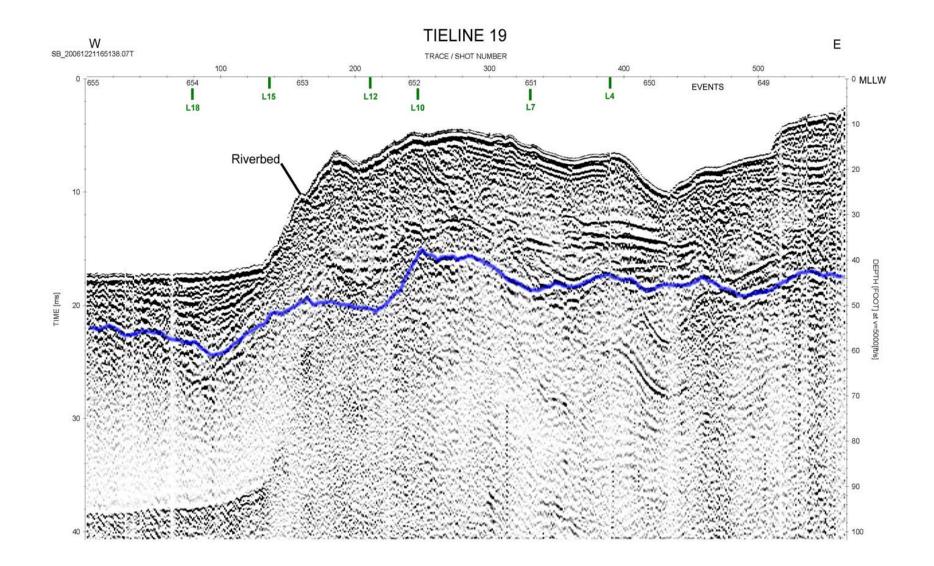

Figure showing the location of subbottom "boomer" profile lines and borings in the site.

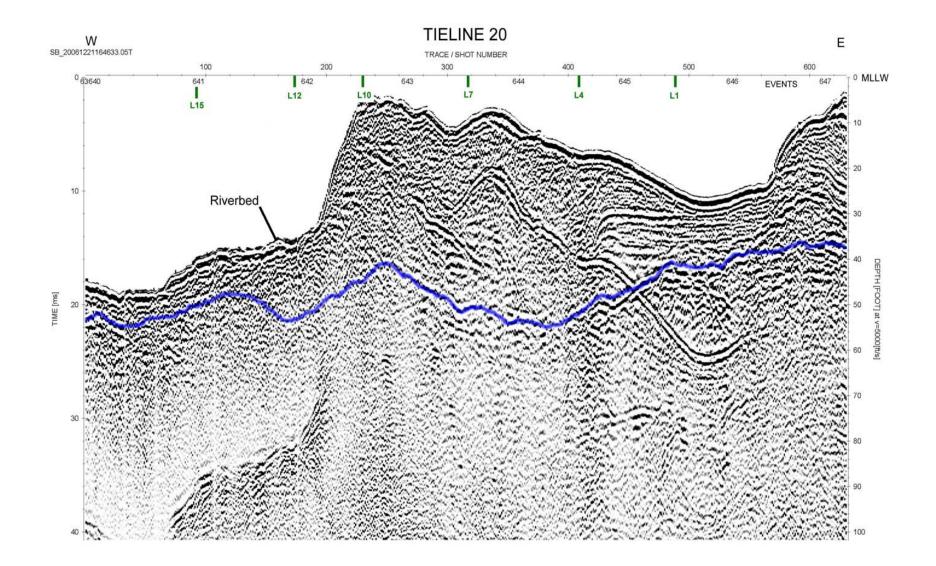

Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

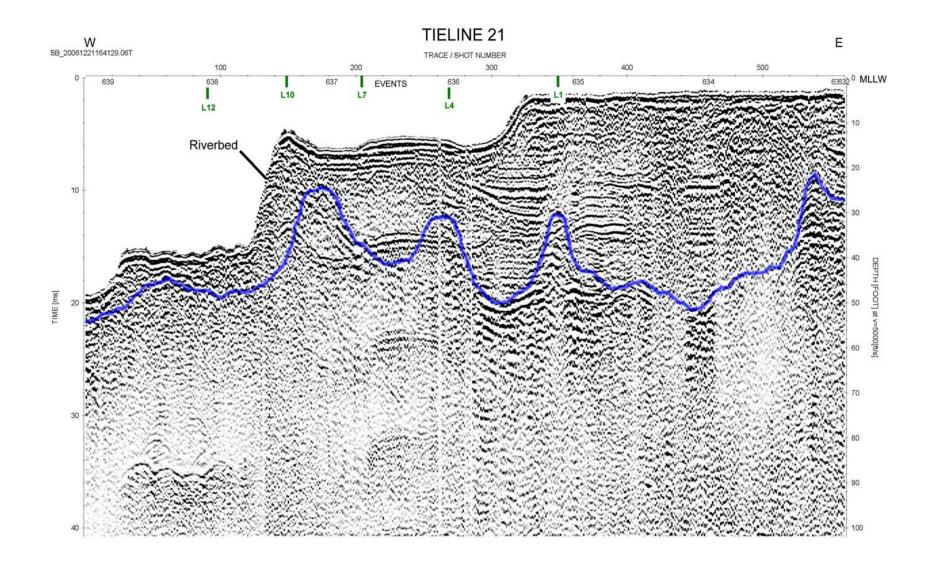

Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire


Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire


Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire


Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire


Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire


Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

Final Report – Marine Geophysical Investigation Navigation Channel Improvement Project, Piscataqua River Portsmouth, New Hampshire

APPENDIX D

Geotechnical Logsheets (provided by the USACE)

DRIL	LING LOG	DIVISION North Atlantic Division		ISTALLATION Baltimore						EET 2 s	1 неет«
. PROJEC). SIZE AND T			ller bit		UF	2 5	ITEE R
FS for I	Navigational I	mprovement, Portsmouth, NH		a. VERTICAL		11b. HORIZ	ONTAL	DATUM			
	LOCATION (Coo 511.5 E 2,7	ordinates or Station)		MLLW		State F			3 Main	e Wes	st
	SII.S E Z, T G AGENCY	02,022.3		2. MANUFACT Detrich D-		DESIGNATION	I OF DR	ILL			
New H	ampshire Bo	ring		B. TOTAL NO.	OF		STURBE		UNDI	STURB	ED
	F DRILLER a "Bub" Thom	npson					6			0	
. NAME O	F INSPECTOR			4. TOTAL # OI			0 ft		<u>⊽</u> ft		
Maria (Orosz ON OF HOLE			5. ELEVATION 6. DATE/: STA					⊈ ft		
		NCLINED DEG. FROM VER		·	0/07 09		/07 120		⊻ ft		
				7. ELEVATION	N TOP OF	HOLE		-13.00	ft		
						RECOVERY F	OR BOF	RING	%		
	EPTH OF HOLE		19	9. SIGNATUR	E OF INSI		a Oresz				
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Lengt RQD
-13.00	0.00	0.0-2.0			CR			1120.	INLO.		
		Silty fine, SAND and gravel, wet, brown									
				J-1	SPT	2-2-17-21		0.7	35%		
-15.00	2.00										
		2.0-5.0									
		ROLLERBITTED.									
-18.00	5.00 -	5070									
		5.0-7.0 Medium to coarse, SAND and gravel, wet,									
		brown		J-2	SPT	16-11-11-		0.5	25%		
00.00						11					
-20.00	7.00 -	7.0-10.0									
		ROLLERBITTED.									
-23.00	10.00 -	10.0.10.0									
		10.0-12.0 Medium to coarse, SAND and gravel, wet,									
	_	brown, with one larger angular piece of		J-3	SPT	13-14-13-8		0.3	15%		
05.00		gravel.									
-25.00	12.00 -	12.0-15.0									
		ROLLERBITTED.									
-28.00	15.00 -										
	-	15.0-17.0 Medium to coarse, SAND and gravel, wet,									
		brown, with one larger piece of gravel.		J-4	SPT	5-7-8-8		0.4	20%		
-30.00	17.00 -	17.0-20.0									
		ROLLERBITTED.									
-33.00	20.00										
		✓ DURING V AT V AFTER		PRO	JECT	avigational		1	-		

ROJECT		(Cont. Sheet) -13.00 ft	INSTALLATI	ON		поје	No. E		EET	2
		al Improvement		e District						HEETS
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)	SAMPL	E SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
		20.0-22.0 Fine, SAND little gravel, wet, brown	J-5	SPT	3-3-7-9		1	50%		
-35.00	22.00									
		22.0-25.0 ROLLERBITTED.								
-38.00	25.00 -	25.0-27.0								
		Fine, SAND some gravel, wet, brown	J-6	SPT	4-5-8-14		0.9	45%		
-40.00	27.00	BOTTOM OF HOLE								
		Notes: 1. Soils are field visually classified in accordance with the Unified Soils Classification System 2. Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hamm dropped 30".	er							
		3. Water depth at start of drilling from top of water to mudline was 16.5'								
	 	 4. Drill rods periodically ran rough for short periods of time during drilling, especially while drilling through sands and gravels. 5. The majority of SPT samples did not have sample in shoe, most likely due to wash out. 6. Boring were advanced using 4" casing and 4" rollerbit. 								
		7. Roundness of gravel was subangular.								
		8. GPS coordinates were determined through data processing.								
	RM 1836-A).

DRIL	LING LC	G	DIVISION North Atlantic Division		TALLATION					SHE	EET 3 s	1 HEETS
. PROJEC				-	SIZE AND T		ыт 4" ro	ller bit		1.0	2 0	0
FS for N	Vavigationa	l Impr	ovement, Portsmouth, NH	11a	. VERTICAL		11b. HORIZ	ONTAL I	DATUM	N 4 - '	- 14/	
	172.3 E 2		ates or Station) 786.4		ALLW	URER'S I	State P			s iviain	e wes	st
DRILLING	G AGENCY			<u> </u>	Detrich D-	50						
	ampshire E = DRILLER	Soung)		TOTAL NO. OVERBURD	OF DEN SAMF		STURBE		UNDI	sturbe 0	Ð
Manlea	"Bub" The		on	-	TAKEN TOTAL # OF			0		⊻ ft	0	
NAME OF Maria C	FINSPECTOF Drosz	र		15.	ELEVATION	I GROUNI	D WATER	ft		⊻n T⊈ft		
. DIRECTIO	ON OF HOLE	_			DATE/ STA	rted 0/07 13		LETED		⊥ n T ft		
		INCLI		-	ELEVATION				-3.00 f	÷ .		
	SS OF OVER			18.	TOTAL ROC	K CORE	RECOVERY F			%		
				19.	SIGNATURE	E OF INSF		Ø				
			37.00 ft	<u> </u>		SPT/		a Orosz				
ELEV. (ft)	DEPTH (ft)		CLASSIFICATION OF MATERIALS (Description)		SAMPLE	AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
-3.00	0.00	Me	-2.0 dium to coarse, SAND and gravel, wet, rown		J-1	SPT	9-11-5-2		0.5	25%		
-5.00	2.00		-5.0 ILLERBITTED.									
-8.00	5.00	5.0	-7.0									
10.00	7.00	Me	dium, SAND little gravel, wet, brown		J-2	SPT	6-5-4-5		0.6	30%		
10.00			-10.0 DLLERBITTED.									
13.00	10.00											
15.00	12.00		e to medium, SAND little gravel, wet, rown		J-3	SPT	4-4-6-8		1	50%		
40.00			0-15.0 ILLERBITTED.									
-18.00	15.00 -	Fin	0-17.0 e to medium, SAND little gravel, wet, rown, Bottom 0.3 medium to coarse sand nd gravel.		J-4	SPT	4-8-12-12		0.8	40%		
20.00	17.00 -		0-20.0 ILLERBITTED.									
-23.00	20.00											
	RM 1836		DURING 🖳 AT 🖳 🗶 AFTER		PRO	JECT S for Na).).

	•	Cont. Sheet -3.00 ft				line	No. B			
ROJECT	Novigational	Improvement	INSTALLATION Baltimore					SHE		2
F3 101		Improvement	Baltimore					UF	3 5	HEETS
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
25.00		20.0-22.0 Medium to coarse, SAND and gravel, wet, brown	J-5	SPT	9-12-17-17		0.6	30%		
-25.00	22.00 -	22.0-25.0 ROLLERBITTED.								
-28.00	25.00	25.0-27.0								
-30.00	27.00	Medium to coarse, SAND and gravel, wet, brown	J-6	SPT	6-8-11-14		0.7	35%		
-30.00		27.0-30.0 ROLLERBITTED								
-33.00	30.00	30.0-32.0								
-35.00	32.00	Medium to coarse, SAND and gravel, wet, brown	J-7	SPT	11-12-14- 18		0.8	40%		
		32.0-35.0 ROLLERBITTED								
-38.00	35.00									
		35.0-37.0 GRAVEL with medium to coarse sand, wet, brown, In tip of SPT the color changed to gray	J-8	SPT	7-31-30-27		0.8	40%		
-40.00	37.00 -	BOTTOM OF HOLE	-							
		Notes: 1. Soils are field visually classified in accordance with the Unified Soils Classification System 2. Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hammer dropped 30". 3. Water depth at start of drilling from top of water to mudline was 9.0'								
		 4. Drill rods running rough between 20.0' - 27.0'. 5. Drill rods periodically ran rough for short 								
		 be a periods of time during drilling, especially while drilling through sands and gravels. 6. The majority of SPT samples did not have sample in shoe, most likely due to wash out. 7. Boring were advanced using 4" casing and 4" rollerbit. 								
		and 4" rollerbit. 8. Roundness of gravel was subangular.								

PRILLING LOG (-3.00 ft	INSTALLATIO	N		Hole	No. E	8-2	EET	3
FS for Navigationa	al Improvement	Baltimor							SHEETS
ELEV. DEPTH (ft)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
AB FORM 1836-A	9. GPS coordinates were determined through data processing.			avigational				OLE NO	

DRIL	LING LOG	DIVISION North Atlantic Division		TALLATION					SHE	2 s	1 HEFTS
. PROJECT	Г		-	SIZE AND T			ller bit			_ 0	
FS for N	avigational Ir	mprovement, Portsmouth, NH	11a	. VERTICAL		11b. HORIZ	ONTAL I	DATUM		- 14/	
	LOCATION (Coo)52.6 E 2,78	rdinates or Station) 82,268.9		ALLW	URFR'S	State P			3 Main	e wes	3T
3. DRILLING	AGENCY		<u> </u>	Detrich D-	50						
New Ha	ampshire Boi	ring		TOTAL NO. OVERBURD			STURBE		UNDIS	sturbe 0	Ð
Manlea	"Bub" Thom	pson		TAKEN TOTAL # OF			0)		£1	U	
	INSPECTOR			ELEVATION			<u>ft</u>		∑ ft		
Maria C 6. DIRECTIC	DN OF HOLE		16.	DATE/ STA	RTED	COMP	LETED		⊈ ft		
🔀 VERT		ICLINED DEG. FROM VERT.			1/07 10		07 131	-	⊈ ft		
7. THICKNE	SS OF OVERBU	RDEN 27.00 ft				RECOVERY F		-15.00	ft %		
8. DEPTH D	RILLED INTO RO	DCK ft		SIGNATURE					70		
9. TOTAL DE	EPTH OF HOLE	27.00 ft					, Oresz				
ELEV. (ft)	DEPTH H	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
-15.00	0.00	0.0-2.0 Fine to medium, SAND contains shells, little gravel, wet, black and brown		J-1	SPT	3-3-3-2		0.4	20%		
-17.00	2.00	2.0-5.0 ROLLERBITTED.									
-20.00	5.00										
-20.60	5.60	5.0-5.6 Fine to medium, SAND little gravel, wet,		J-2	SPT	31-120/0.1		0.6	100%		
-25.00	10.00	7.0-10.0 ROLLERBITTED.									
-27.00	_	10.0-12.0 Sandy fine, SILT with gravel, wet, brown		J-3	SPT	2-5-22-37		1.2	60%		
-30.00	15.00	12.0-15.0 ROLLERBITTED.									
-32.00	17.00	15.0-17.0 Fine, SAND with two interbedded silt layers, wet, brown		J-4	SPT	4-5-5-6		0.7	35%		
	_	17.0-20.0 ROLLERBITTED.									
-35.00	20.00										
	RM 1836	☑ DURING ☑ AT			JECT					OLE NO	<u>`</u>

		Cont. Sheet				поје	No. B			
ROJECT	Novineties	Improvement	INSTALLATION					SHE		2
FS for		Improvement	Baltimore					OF	2 s	HEETS
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
		20.0-22.0 Fine, SAND wet, brown	J-5	SPT	8-2-6-8		0.4	20%		
-37.00	22.00	22.0-25.0								<u> </u>
		ROLLERBITTED.								
-40.00	25.00									
		25.0-27.0 Fine to medium, SAND wet, brown	J-6	SPT	8-6-4-6		0.9	45%		
-42.00	27.00	BOTTOM OF HOLE								<u> </u>
		Notes:1. Soils are field visually classified in accordance with the Unified Soils Classification System2. Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hammer dropped 30".3. Water depth at start of drilling from top of water to mudline was 18.5'4. Casing dropped 0.5' while setting up to								
		sample J-2, potentially due to washed out sand and gravel. 5. Drill rods running rough between 5.6' to 10.0' - sounded like grinding on gravel.								
		6. Drilling for B-3 was rougher for longer periods of time than B-1 and B-2.								
		 The majority of SPT samples did not have sample in shoe, most likely due to wash out. Boring were advanced using 4" casing and 4" rollerbit. 								
		9. Roundness of gravel was subangular.								
		10. GPS coordinates were determined through data processing.								
	RM 1836-A			JECT						

DRIL	LING LOG	DIVISION North Atlantic Division		TALLATION					SHE	EET 2 s	1 HEETS
I. PROJECT	-			SIZE AND T			ller bit			_ 3	
FS for N	lavigational I	mprovement, Portsmouth, NH	11a	. VERTICAL		11b. HORIZ	ONTAL	DATUM			
	-OCATION (Cod 38.4 E 2,7	ordinates or Station) 81.783.8				State P			3 Main	e Wes	st
3. DRILLING	AGENCY			Detrich D-		DEGIGINATION					
New Ha 4. NAME OF	ampshire Bo	ring		TOTAL NO. OVERBURD			STURBE		UNDI	STURBE 0	ED
	"Bub" Thon	npson		TAKEN TOTAL # OF			0 0		_ 4	0	
	INSPECTOR			ELEVATION			ft		∑ ft		
Maria O 6. DIRECTIC	DN OF HOLE			DATE/ STA		COMP	LETED		⊈ ft		
VERT		NCLINED DEG. FROM VERT	. —		3/07 12		07 123		<u>▼</u> ft		
7. THICKNES	SS OF OVERBL	JRDEN 37.00 ft				RECOVERY F		-3.00 f	τ %		
8. DEPTH DI	RILLED INTO R	оск ft		SIGNATURI					70		
9. TOTAL DE	EPTH OF HOLE	37.00 ft				Mari	a Orosz				
ELEV. (ft)	DEPTH (ft) O	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Lengtl RQD
-3.00	0.00	0.0-2.0 Silty medium to coarse, SAND and gravel, wet, brown, rock stuck in tip of SPT		J-1	SPT	8-12-21-18		0.6	30%		
-5.00	2.00 -	2.0-5.0 ROLLERBITTED.	_								
-10.00	7.00	5.0-7.0 Fine to medium, SAND little gravel, wet, brown		J-2	SPT	4-6-9-11		0.9	45%		
-10.00		7.0-15.0 ROLLERBITTED.									
-18.00	15.00 -	15.0-17.0 Fine to medium, SAND little gravel, wet, brown, Bottom 0.2 fine sandy silt		J-3	SPT	4-6-10-12		1.3	65%		
-20.00		17.0-25.0 ROLLERBITTED.									
	-								1		

	ING LUG	(Cont. Sheet) -3.00 ft				Hole	No. E			_
ROJECT	Navigation	al Improvement	INSTALLATIC Baltimore		t			SHI	EET 2 s	2 HEETS
ELEV.				SPT/	BLOWS	PP/	Length	%		Length
(ft)	DEPTH (ft)	(Description)	SAMPLE	AB/ CR	/ 0.5 ft	TOR	REC.	REC.	RQD	RQD
	-									
	-									
28.00	25.00									
		25.0-27.0 Fine to medium, SAND little gravel, wet,								
		brown	J-4	SPT	7-13-30-42		1.1	55%		
-30.00	27.00 -	27.0-35.0								
		ROLLERBITTED.								
	_									
-38.00	35.00									
		35.0-37.0 Fine to medium, SAND wet, brown								
			J-5	SPT	10-12-38-		1.4	70%		
40.00	27.00	ROTTOM OF HOLE			81					
-40.00	37.00 -	BOTTOM OF HOLE								
		Notes:								
		1. Soils are field visually classified in accordance with the Unified Soils								
		Classification System 2. Sampled using a standard 1 3/8" split								
		spoon driven manually by a 140 lb. hamm	ner							
		dropped 30". 3. Water depth at start of drilling from top	of							
		water to mudline was 8.0'								
		4. Drill rods running rough between 2.0' to 5.0', 7.0' to 10.0', and 25.0' to 37.0'.								
		5. The majority of SPT samples did not have sample in shoe, most likely due to								
		wash out. 6. Boring was advanced using 4" casing								
	-	and 4" rollerbit.								
]	7. Roundness of gravel was subangular.								
		8. GPS coordinates were not processed								
	-	and the raw utilized.								

DRII	LING LOG	DIVISION							SHE		1
. PROJEC		North Atlantic Division		Baltimore			II I- 10		OF	2 s	HEETS
		nprovement, Portsmouth, NH		. SIZE AND 1 a. VERTICAL		BIT 4" ro					
. BORING	LOCATION (Coor 925.0 E 2,78	rdinates or Station)		MLLW		State F	lane, l	NAD 83	8 Main	e Wes	st
3. DRILLING	G AGENCY			Detrich D-		DESIGNATION		LL			
	ampshire Bor	ring	13	. TOTAL NO.			STURBE		UNDI	STURB	ED
	F DRILLER hompson			OVERBURE TAKEN . TOTAL # OI			6 0			0	
5. NAME O	F INSPECTOR			. ELEVATION			0 ft		∑ ft		
Maria (Orosz ON OF HOLE			. DATE/: STA					⊈ ft		
		ICLINED DEG. FROM VER		^{ГIME} 11,	/27/07 0		7/07 12	245	⊻ ft		
	SS OF OVERBU			. ELEVATION	N TOP OF	HOLE		-14.50	ft		
	RILLED INTO RO					RECOVERY F	FOR BOF	RING	%		
. TOTAL D	EPTH OF HOLE	27.00 ft	19	. SIGNATUR	E OF INSI		a Oresz				
ELEV. (ft)	DEPTH (ft) 0	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Lengtl RQD
-14.50	0.00	0.0-2.0 Sandy fine, SILT wet, brown, Upper 0.3 black fine sand with shells		J-1	SPT	1-1-3-3		1.4	70%		
-19.50	5.00	2.0-5.0 ROLLERBITTED.									
-21.50	7.00	5.0-7.0 Sandy fine, SILT wet, brown		J-2	SPT	3-3-5-5		0.6	30%		
-24.50		7.0-10.0 ROLLERBITTED.									
-26.30	_	10.0-11.8 Silty fine, SAND with gravel, wet, brown, One large piece of gravel approx 0.1'		J-3	SPT	30-50-96- 100/0.3		1.2	67%		
-29.50	15.00	11.8-15.0 ROLLERBITTED.									
-31.50	17.00	15.0-17.0 Fine, SAND wet, brown, Bottom 0.2 gravel and coarse sand.		J-4	SPT	20-17-18- 21		1.1	55%		
		17.0-20.0 ROLLERBITTED.									
-34.50	20.00										
	RM 1836	∇ DURING $\overline{\Psi}$ AT $\overline{\Psi}$ AFTER		PRO	JECT	avigational			I H	IOLE NO	J

	NG LOG (-14.50 ft					No. B			
ROJECT	Navigational	Improvement	INSTALLATION Baltimore						EET 2 s	2 HEETS
									2 5	
ELEV. (ft)	DEPTH (ft) US	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
		20.0-22.0 Fine, SAND little gravel, wet, brown	J-5	SPT	9-20-21-24		1.2	60%		
-36.50	22.00	22.0-25.0	-							
		ROLLERBITTED.								
-39.50	25.00									
00.00		25.0-27.0 Fine to medium, SAND little gravel, wet, brown	J-6	SPT	12-29-40-		1.3	65%		
-41.50	27.00_	BOTTOM OF HOLE			48					
		<u>Notes:</u> 1. Soils are field visually classified in accordance with the Unified Soils Classification System 2. Sampled using a standard 1 3/8" split								
		 Spin a standard 1 5/8 spin spoon driven manually by a 140 lb. hammer dropped 30". Water depth at start of drilling from top of water to mudline was 23.5' 								
		 Boring was advanced using 4" casing and 4" rollerbit. Roundness of gravel was subangular. 								
		6. Drill rods running rough between 7.0' to 15.0'.								
		7. GPS coordinates were not processed and the raw utilized.								
	 RM 1836-A	∠ DURING ⊥ AT ⊥ AFTER DRILLING COMPLETION DRILLING		JECT					OLE NO	

DRILLING	G LOG	DIVISION North Atlantic Division		STALLATION Baltimore						EET 2 s	1 НЕ Е Т ^с
. PROJECT			_	. SIZE AND T			oller bit		101	_ 0	
FS for Naviga	tional Imp	provement, Portsmouth, NH		a. VERTICAL		11b. HORIZ	ONTAL	DATUM			
2. BORING LOCAT N 104,631.0				MLLW		State F			3 Main	e Wes	st
3. DRILLING AGEN		,500.2		. MANUFACT Detrich D-		DESIGNATION	N OF DR	ILL			
New Hampsl	nire Borin	ng		. TOTAL NO.	OF		STURBE	D	UNDI	STURB	ED
4. NAME OF DRILL Dave Thomp				OVERBURE TAKEN			3	; 		0	
5. NAME OF INSPE				. TOTAL # OI			2		∑ ft		
Maria Orosz				. ELEVATION			ft		⊥ ft		
6. DIRECTION OF			T	. DATE/∶STA ^{∏ME} : 11/	/28/07 0		PLETED 8/07 13	305	▼ ft		
				. ELEVATION				-15.00	ft		
7. THICKNESS OF			18	. TOTAL ROO	CK CORE	RECOVERY I	OR BOF	RING100)%		
8. DEPTH DRILLED			19	. SIGNATURI	E OF INSI		-				
9. TOTAL DEPTH (28.00 ft	_	1	a	Mari	<i>a Oresz</i>				· · · ·
ELEV. DEPT (ft) (ft)	LEGEND H	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Lengt RQD
-15.00 0.00	- Fi	.0-2.0 ine to medium, SAND with gravel, wet, brown		J-1	SPT	7-8-9-10		0.6	30%		
-17.00 2.00											
		.0-5.0 OLLERBITTED.									
	4										
	$\frac{1}{1}$										
	-										
	-										
-20.00 5.00		.0-7.0	-								
	S	ilty fine, SAND with gravel, wet, brown									
				J-2	SPT	18-28-40- 43		0.5	25%		
-22.00 7.00	$\frac{1}{1}$					43					
	- 7.	0-10.0	1								
		OLLERBITTED.									
	4										
-25.00 10.00		0.0.12.0	_								
	S	0.0-12.0 ilty fine, SAMD with gravel, wet, brown, Upper 0.2 black gravel and coarse sand		J-3	SPT	76-88-63- 72		1	50%		
-27.00 12.00	o ╡ │										
	- 12		1								
		OLLERBITTED.									
		E 0 49 0									
		5.0-18.0 PT refusal @ 15' (0.0/100).									
		ROLLERBITTED to 18.0'. Wash water									
		from tailings was cloudy gray, and tailings appeared to be crushed rock. Began									
		coring at 18.0.'									
-33.00 18.00		8.0-23.0	_								
	= G	neiss gray, slightly weathered, fine,									
		medium hard, Rock contained pitted voids from 18.0 to 19.0'. One apparent fracture									
		at 19.9'. Fracture was slightly stained,									
NAB FORM 18		rough, narrow, dipping at approx 50 Ф90119R®S ▼ AT ▼ AFTER		PRO	JECT	avigational	1	I	<u> </u>	I IOLE NO	<u>і</u> Э.

ROJECT		ין ט	Cont. Sheet -15.00 ft	INSTALLAT	ON		Hole	No. E	6-6	FT	2
	Navigati	onal	Improvement		re District	t					Z HEETS
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS (Description)	SAMPL	E SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
			Mechanical breaks occurred at 18.2', 18.9', 20.1', 20.5' and 22.2'.		CR Run 1			5	100%	0.92	55.2
-38.00	23.00										
			 23.0-28.0 Gneiss gray, slightly weathered, fine, medium hard, One apparent fracture at 23.7'. Fracture was slightly stained, rough narrow, dipping at approx 60 degrees. Mechanical breaks occurred at 24.6', 25.3 25.7', and 26.5'. Mechanical break angles ranged from 40 to 70 degrees. 	,	CR Run 2			5	100%	0.94	56.4
-43.00	28.00 -		BOTTOM OF HOLE								
			 Notes: Soils are field visually classified in accordance with the Unified Soils Classification System Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hammedropped 30". Water depth at start of drilling from top o water to mudline was 15.0' Boring was advanced using 4" casing and 4" rollerbit. Roundness of gravel was subangular. Run Times (ft/min) for Run #1: 3-4-4-4-4 and Run#2: 4-3-3-3. Poor recovery for J-2 due to rock in catcher. Drill rods running rough between 7.0' to 10.0'. GPS coordinates were determined through data processing. 	f							

DRIL	LING LOC	G North Atlantic Division		STALLATION Baltimore					SHE	EET 2 s	1 HEETS		
. PROJEC). SIZE AND T			oller bit			_ 0			
FS for I	Navigational	Improvement, Portsmouth, NH	11	a. VERTICAL		11b. HORIZ	ONTAL	DATUM					
	LOCATION (Co 983.5 E 2,7	ordinates or Station)		MLLW		State F			3 Main	e Wes	st		
	GAGENCY	181,047.7		Detrich D-		DESIGNATION	NOF DRI	ILL					
	ampshire Bo	oring		B. TOTAL NO.	OF		STURBE		UNDI	STURB	ED		
	F DRILLER hompson			OVERBURE TAKEN		•	5		0				
	F INSPECTOR			I. TOTAL # OI			0		∑ ft				
Maria (-	5. ELEVATION 6. DATE/: STA					⊥ ft				
					/29/07 C		8/07 11	100	▼ ft				
		INCLINED DEG. FROM VE		. ELEVATION				-19.00					
	SS OF OVERB		18	. TOTAL ROO	CK CORE	RECOVERY F	FOR BOF	RING	%				
			19). SIGNATURI	E OF INS		Ø						
9. TOTAL D		= 22.00 ft				Marı	a Oresz						
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD		
-19.00	0.00	0.0-2.0 Fine, SAND little gravel, wet, brown		J-1	SPT	11-4-3-2		1	50%				
-21.00	2.00 -	2.0-5.0 ROLLERBITTED.											
-24.00	5.00												
-26.00	7.00	5.0-7.0 Fine to medium, SAND little gravel, wet, brown		J-2	SPT	5-5-3-5		1.3	65%				
-29.00	10.00	7.0-10.0 ROLLERBITTED.											
-31.00	12.00	10.0-12.0 Fine to coarse, SAND with gravel, wet, brown		J-3	SPT	4-4-4-6		1.2	60%				
-34.00	15.00	12.0-15.0 ROLLERBITTED.											
-36.00	17.00 -	15.0-17.0 Medium to coarse, SAND with gravel, wet, brown		J-4	SPT	7-8-12-31		0.9	45%				
		17.0-20.0 ROLLERBITTED.											
-39.00	20.00 -												
	20.00 - RM 1836	│ □ ☑ DURING ☑ AT		PRO	JECT	avigational			 F	IOLE NO B-7). D.		

		- (Cont. Sheet	1			поје	No. B			
PROJECT	Navinati	onal	Improvement	INSTALLATION Baltimore						ET 2 s	2 HEETS
				Datumore	SPT/		_		-	23	
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
			20.0-22.0 Medium to coarse, SAND with gravel, wet, brown	J-5	SPT	13-78-39-		1.4	70%		
-41.00	22.00		BOTTOM OF HOLE			26					
IAB FOI NOV 06	RM 1836		Notes: 1. Soils are field visually classified in accordance with the Unified Soils Classification System 2. Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hammer dropped 30". 3. Water depth at start of drilling from top of water to mudline was 25.0" 4. Boring was advanced using 4" casing and 4" rollerbit. 5. Roundness of gravel was subangular. 6. Drill rods running rough between 17.0' to 20.0". 7. The current was very strong in this location. 8. For samples J-1, J-3, and J-5, the 3" spoon was used to retrieve a greater amount of sample. 9. GPS coordinates were determined through data processing.		JECT	vigational				OLE NG	

DRIL	LING LO	G North Atlantic Division		STALLATION Baltimore					SHE	2 s	1 HEETS
1. PROJEC	Т			. SIZE AND T			ller bit			_ 0	
FS for N	Vavigational	Improvement, Portsmouth, NH	11	a. VERTICAL		11b. HORIZ	ONTAL	DATUM			
	LOCATION (Co 732.7 E 2,	pordinates or Station) 782.109.8			רו ופבסיפ י	State F			3 Main	e Wes	st
3. DRILLING	G AGENCY			Detrich D-							
New Ha 4. NAME OF	ampshire B	oring	13	. TOTAL NO. OVERBURI			STURBE		UNDI	sturbe 0	ED
	hompson		14	TAKEN			5 0			0	
5. NAME OF	- INSPECTOR			. ELEVATION			ft		∑ ft		
Maria C	Drosz DN OF HOLE			. DATE/ STA			LETED		⊻ ft		
		INCLINED DEG. FROM VE	RT. 🗕			237 11/3			<u>▼</u> ft		
7. THICKNE	SS OF OVERE	BURDEN 22.00 ft		. ELEVATION				-18.00			
8. DEPTH D	RILLED INTO			. TOTAL ROO		RECOVERY F	OR BOF	RING	%		
9. TOTAL D	EPTH OF HOL	E 22.00 ft	19				a Oresz				
ELEV. (ft)	DEPTH (ft)	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
-18.00	0.00	0.0-2.0 Fine to medium, SAND wet, brown, One large piece of gravel approx 0.3'		J-1	SPT	19-6-2-2		0.7	35%		
-20.00	2.00 -	2.0-5.0 ROLLERBITTED.									
-23.00	5.00	5.0-7.0									
-25.00	7.00	Coarse, SAND AND GRAVEL wet, brown		J-2	SPT	5-5-7-9		1	50%		
-28.00	10.00	7.0-10.0 ROLLERBITTED.									
-30.00	12.00 -	10.0-12.0 Fine to medium, SAND AND GRAVEL little gravel, wet, brown		J-3	SPT	14-19-23- 30		0.9	45%		
33.00	45.00	12.0-15.0 ROLLERBITTED.									
-33.00	15.00 -	15.0-17.0 Medium to coarse, SAND AND GRAVEL wet, brown		J-4	SPT	12-30-31- 40		2	100%		
-35.00	17.00	17.0-20.0 ROLLERBITTED.									
-38.00 NAB FOF	20.00				JECT					IOLE NO	

	NG LO	_	-18.00 ft	INIOT				No. B			
PROJECT	Navinati	onal	Improvement	INSTALLATIC Baltimore						EET 2 s	2 HEETS
ELEV.	DEPTH		CLASSIFICATION OF MATERIALS				PP/	Length	%		Length
etev. (ft)	(ft)	LEGEND	(Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	TOR	REC.	% REC.	RQD	RQD
	-		Coarse, SAND AND GRAVEL wet, brown	J-5	SPT	13-15-17-		1	50%		
-40.00	22.00	-	BOTTOM OF HOLE			14					
			Notes: 1. Soils are field visually classified in accordance with the Unified Soils Classification System 2. Sampled using a standard 1 3/8" split spoon driven manually by a 140 lb. hammer dropped 30". 3. Water depth at start of drilling from top of water to mudline was 25.0" 4. Boring was advanced using 4" casing and 4" rollerbit. 5. Roundness of gravel was subangular. 6. For samples J-1, J-2, J-4, and J-5, the 3" spoon was used to retrieve a greater amount of sample. 7. GPS coordinates were determined through data processing.							OLE N	

		G	DIVISION			STALLATION						EET	1	1
		0	North Atlantic	Division	-	Baltimore					OF	3 s	HEETS	
1. PROJEC FS for		Impro	ovement, Portsmo	uth NH		. SIZE AND T a. VERTICAL		3IT 11b. HORIZ						-
	LOCATION (Co					MLLW	DATON	State F			3 Main	e Wes	st	
	013.1 E 2,	781,7	/03.1					DESIGNATIO						1
	G AGENCY lampshire B	orina				Detrich D- . TOTAL NO.			STURBE			STURB		-
4. NAME O	FDRILLER				13.	OVERBURD	DEN SAMF	PLES			UNDI	0	D	
	a "Bub" Thoi	mpso	n		14.	TAKEN . TOTAL # OF	ROCK S	AMPLES	0		∑ ft			
5. NAME O Maria					15.	ELEVATION	GROUN	D WATER	ft		⊥ ft			L
	ION OF HOLE					DATE/ STA					-			L
VER		INCLIN	NED	DEG. FROM VERT.	-		3/07 07		/07 091		Ţ ft			1
7. THICKN	ESS OF OVERB	BURDE	N	58.90 ft				RECOVERY		-2.00	n %			
8. DEPTH I	DRILLED INTO I	ROCK		ft		SIGNATURI					/0			
9. TOTAL D	DEPTH OF HOLI	E		58.90 ft					ia Orosz					
ELEV. (ft)	DEPTH (ft) OH		CLASSIFICATION ((Descrip			SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD	
-2.00	0.00	0.0-	58.9											F
														E
														E
														F
														E
														E
														-
														E
														Ē
														E
														Ē
														E
														E
														F
														E
														E
														E
														E
		1												Ē
		1												-
		1												E
		1												
		1												E
		1												-
		1												E
		1												-
		1												E
		1												E
		1												-
														E
		1												E
		1												E
		40.0	24.0											E
)-24.0 ing blows per foot: 2	26-24-22-24-21										E
	RM 1836					PRO	JECT				<u> </u> 	IOLE NO	<u> </u>	F
NOV 06	INI 1050	⊻ D D	URING TAT RILLING COMPLE	ETION AFTER DRILLING		F	S for Na	vigational	Improv	/emen	t '	P-1		

	NG LO	- (-2.00 ft	 			TIDIE	No. P	- 1		
ROJECT		onc	Improvement	STALLATION Baltimore					SHE		2
			I Improvement	Daiumore					-	3 s	HEETS
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
			24.0-29.0 Casing blows per foot: 23-21-22-21-21 29.0-34.0 Casing blows per foot: 21-21-20-21-22								
			34.0-39.0 Casing blows per foot: 26-25-25-22-20								
			39.0-44.0 Casing blows per foot: 23-27-24-23-22								
			44.0-49.0 Casing blows per foot: 21-21-18-21-27								

ROJECT			Cont. Sheet -2.00 ft	TALLATION			TIOle	No. P	SHE	FT	3
	Navigatio	nal	Improvement	Baltimore						3 s	
ELEV. (ft)		LEGEND	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
			49.0-54.0 Casing blows per foot: 26-26-29-34-42 54.0-58.9 Casing blows per foot: 40-42-48-56-49								
-60.90	58.90		BOTTOM OF HOLE <u>Notes:</u> 1. Water depth at start of drilling from top of water to mudline was 2.5'								
			 Probe holes were advanced using a 300 Ib hammer to pound NW rods into the sediment. An A-rod center plug that was ground into a 60 degree point was used to advance the NW rods. Top of rock was determined by a bouncing refusal. Casing blows were only recorded for P-1. GPS coordinates were determined through data processing. 								

DRILLING LOG	DIVISION North Atlantic Division		TALLATION Baltimore					SHE	2 s	1 HEETS
. PROJECT			SIZE AND T		IT			•		
. BORING LOCATION (Coordina		N	. VERTICAL		11b. HORIZ	lane, l	NAD 83	8 Main	e Wes	st
N 103,605.5 E 2,782, DRILLING AGENCY	165.0	12.			DESIGNATION					
New Hampshire Boring]	13	TOTAL NO. OVERBURD	OF	DI	STURBE		UNDI	STURBI	Ð
Manlea "Bub" Thompso	on									
NAME OF INSPECTOR		15.	15. ELEVATION GROUND WATER ft Tft							
DIRECTION OF HOLE			DATE/ STAI	rted 2/07 01:		LETED		y n ▼ ft		
VERTICAL INCLI		17.	ELEVATION				-15.50	ft		
DEPTH DRILLED INTO ROCK			TOTAL ROC			OR BOR	RING	%		
TOTAL DEPTH OF HOLE	37.00 ft	19.	SIGNATURE			a Oresz			-	
ELEV. DEPTH UNDER CHARACTER (ft) DEPTH	CLASSIFICATION OF MATERIALS (Description)		SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD

		. (0	Cont. Sheet -15.50 ft					Hole	No. P			
ROJECT		nal	Improvement		LLATION	District					EET 2 s	2 SHEETS
ELEV.			CLASSIFICATION OF MATERIALS			SPT/	BLOWS	PP/	Length	%		Lengt
(ft)	(ft)	LEGEND	(Description)	S	AMPLE	AB/ CR	/ 0.5 ft	TOR	REC.	REC.	RQD	RQD
	_											
	_											
	<u> </u>											
]											
]											
	1											
	-]											
]											
	E											
	=											
	1											
	1											
]											
-52.50	37.00 -		BOTTOM OF HOLE									
	_		Notes:]								
	=		1. Water depth at start of drilling from top of									
			water to mudline was 15.5'									
			2. Hard driving rods near bottom of probe									
			hole.									
			3 At completion of probabala, the final red									
			3. At completion of probe hole, the final rod that was pulled was bent.									
	=											
			4. Probe holes were advanced using a 300 lb hammer to pound NW rods into the									
	=		sediment. An A-rod center plug that was ground into a 60 degree point was used to									
			ground into a 60 degree point was used to advance the NW rods.									
	=		Top of rock was determined by a									
			bouncing refusal. 6. GPS coordinates were not processed									
	E		and the raw utilized.									
	-											
	=											
	-											
AB FOI	RM 1836-	Α	$ \begin{array}{c} $\underline{\nabla}$ DURING $ $\underline{\Psi}$ AT $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$		PRO	JECT			/ement	H	IOLE NO	υ.

Hole No. P-3

	DIVISION	INSTALLATION	1				SHI	Ie No	<u>р. г-</u> 1
DRILLING LOG	North Atlantic Division	Baltimore	District					3 s	HEETS
PROJECT		10. SIZE AND 1							
FS for Navigational Impr BORING LOCATION (Coordina	11a. VERTICAL MLLW	DATUM	11b. HORIZ State F			3 Main	e Wes	st	
N 104,971.2 E 2,781,	12. MANUFACT								
DRILLING AGENCY New Hampshire Boring	3	Detrich D- 13. TOTAL NO.			STURBE	D		STURBI	=D
NAME OF DRILLER		OVERBURI TAKEN	DEN SAMI	PLES	0		0.121	0	
Manlea "Bub" Thompso	on	14. TOTAL # O			0		<u>⊽</u> ft		
Maria Orosz		15. ELEVATION 16. DATE/: STA					⊥ ft		
DIRECTION OF HOLE	NED DEG. FROM VERT.		12/07 08		/07 113	32	⊻ ft		
. THICKNESS OF OVERBURDE		17. ELEVATION				-12.00	ft		
DEPTH DRILLED INTO ROCK		18. TOTAL ROO 19. SIGNATUR			FOR BOF	RING	%		
. TOTAL DEPTH OF HOLE	49.00 ft	19. SIGNATUR	E OF INSP		a Oresz				
ELEV. DEPTH (ft) (ft)	CLASSIFICATION OF MATERIALS (Description)	SAMPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Lengtl RQD
	-49.0								

ROJECT	NG LOG (Co	-12.00 ft	Hole No. P-3							
	Navigational In	nprovement		re District	t					2 HEETS
ELEV.	DEPTH (ft)	CLASSIFICATION OF MATERIALS	SAMPLI	SPT/	BLOWS / 0.5 ft	PP/ TOR	Length	%	RQD	Length
(ft)	(ft)	(Description)		CR	/ 0.5 ft	IOR	REC.	REC.		RQD
	-									
	RM 1836-A _又	DURING I AT AFTER DRILLING COMPLETION DRILLI			avigational	1	1	· · · · ·	HOLE NO	

			Cont. Sheet -12.00 ft					Hole	No. P			
PROJECT FS for Navigational Improvement					INSTALLATION Baltimore District					SHEET 3 OF 3 SHEETS		
									Lawath	_		
ELEV. (ft)	DEPTH (ft)	LEGEND	CLASSIFICATION OF MATERIALS (Description)	SA	MPLE	SPT/ AB/ CR	BLOWS / 0.5 ft	PP/ TOR	Length REC.	% REC.	RQD	Length RQD
-61.00	49.00		BOTTOM OF HOLE									
-01.00	43.00		Notes:									
			1. Water depth at start of drilling from top of water to mudline was 11.5'									
			2. Probe holes were advanced using a 300									
			lb hammer to pound NW rods into the sediment. An A-rod center plug that was									
			ground into a 60 degree point was used to advance the NW rods.									
			Top of rock was determined by a									
			bouncing refusal. 4. GPS coordinates were determined									
			through data processing.									
	E											
	_]											
	RM 1836-	_	✓ DURING ✓ AT ✓ AFTER ORILLING ✓ AFTER ORILLING			JECT		I	1		IOLE NO P-3	

Client: US Army Corp of Engineers GeoTesting Project: Navigation Improvement Location: Portsmouth, NH Project No: GTX-8193 express Boring ID: B-1 Sample Type: jar Tested By: ар a subsidiary of Geocomp Corporation Sample ID:J-5 Test Date: 05/09/08 Checked By: jdt Depth : 20.0-22.0 ft Test Id: 130435 Test Comment: Sample Description: Moist, yellowish brown sand with silt

Sample Comment: ---Particle Size Analysis - ASTM D 422-63 (reapproved 2002) .375 in #100 #200 #10 #40 #60 #20 #4 100 90 80 70 60 Percent Finer 50 40 30 20 10

> 1 Grain Size (mm)

0.1

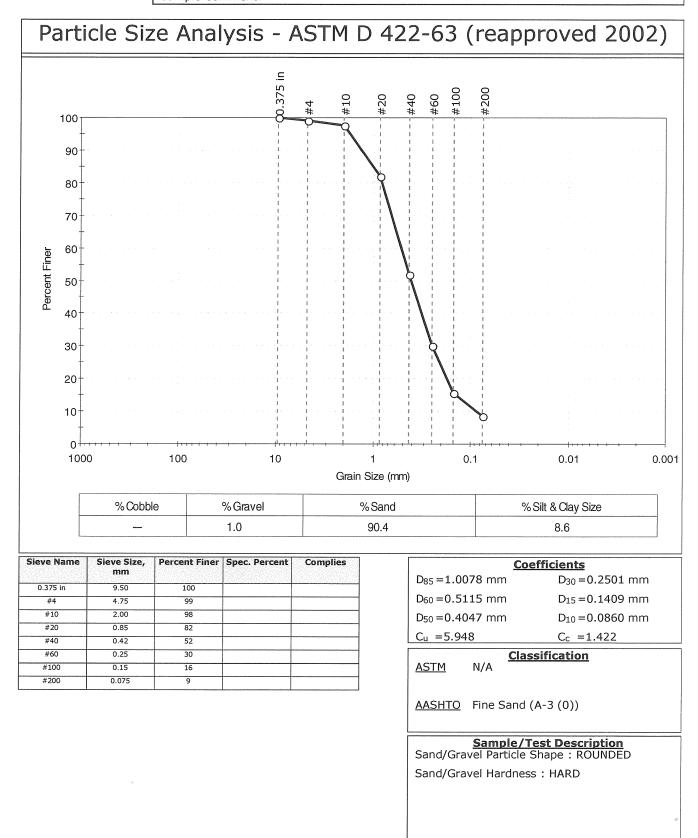
10

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	1.5	89.9	8.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	98		
#10	2.00	98		
#20	0.85	96		
#40	0.42	89		
#60	0.25	61		
#100	0.15	27		
#200	0.075	9		

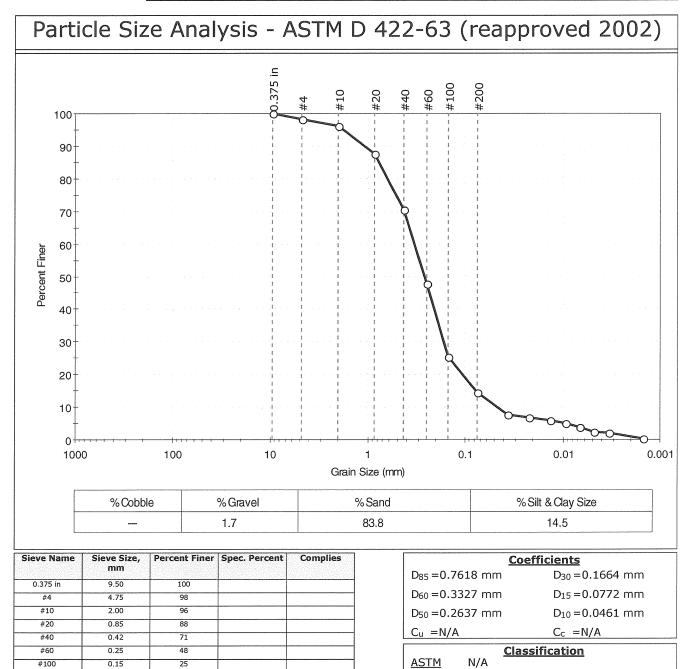
100

	Coeffi	<u>cients</u>			
D ₈₅ =0.39	972 mm	D ₃₀ =0.1578 mm			
D ₆₀ = 0.24	74 mm	D ₁₅ =0.0960 mm			
D ₅₀ = 0.21	.30 mm	D ₁₀ =0.0792 mm			
C _u =3.12	.4	C _c =1.271			
Classification					
ASTM	N/A	Gation			
AASHTO Fine Sand (A-3 (0))					
Sample/Test Description					
Sand/Gravel Particle Shape : ROUNDED					
Sand/Gravel Hardness : HARD					


0.01

0.001

0^{+...} 1000


a subsidiary of Geocomp Corporation

Client:	US Army (Corp of Enginee	ers			
Project:	Navigatior	n Improvement				
Location:	Portsmout	h, NH			Project No:	GTX-8193
Boring ID:	B-2		Sample Type	; jar	Tested By:	ар
Sample ID	:J-3		Test Date:	05/09/08	Checked By:	jdt
Depth :	10.0-12.0	ft	Test Id:	130436		
Test Comn	nent:					
Sample De	escription:	Moist, dark ye	llowish brown	sand with s	ilt	
Sample Co	mment:					

a subsidiary of Geocomp Corporation

Client:	US Army (Corp of Enginee	ers			
Project:	Navigatior	n Improvement				
Location:	Portsmout	h, NH			Project No:	GTX-8193
Boring ID:	B-4		Sample Type:	: jar	Tested By:	ар
Sample ID	:J-3		Test Date:	05/09/08	Checked By:	jdt
Depth :	15.0-17.0	ft	Test Id:	130437		
Test Comm	nent:					
Sample Description: Moist, dark ye		llowish brown	silty sand			
Sample Co	mment:					

 \underline{AASHTO} Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape : ROUNDED

Sand/Gravel Hardness : HARD

0.075

Particle Size (mm)

0.0365

0.0223

0.0134

0.0095

0.0067

0.0048

0.0034

0.0015

15

Percent Finer

8

7

6

5

4

2

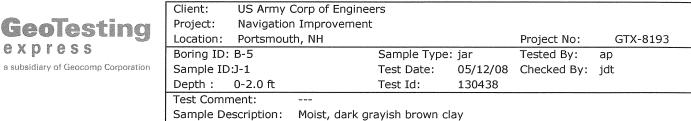
2

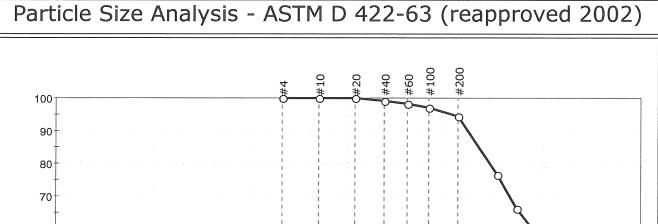
0

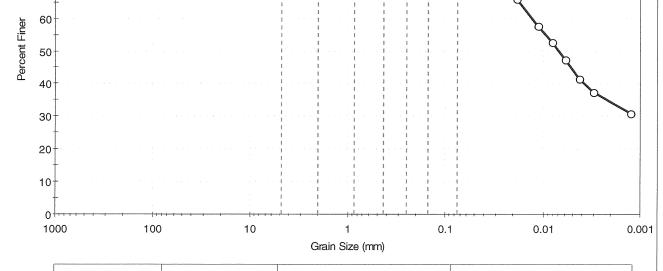
Spec. Percent

Complies

#200

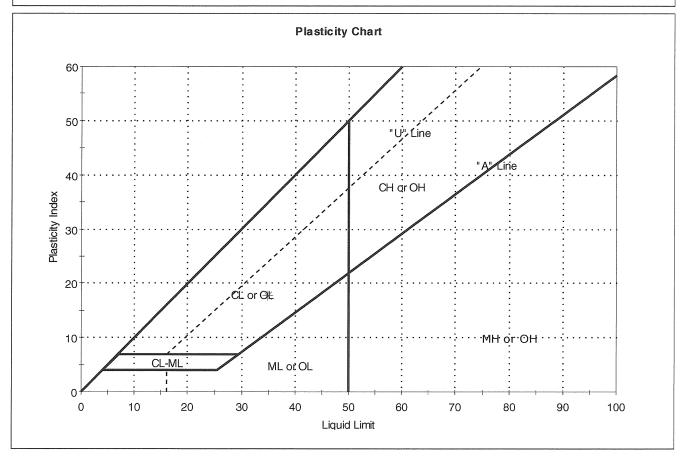






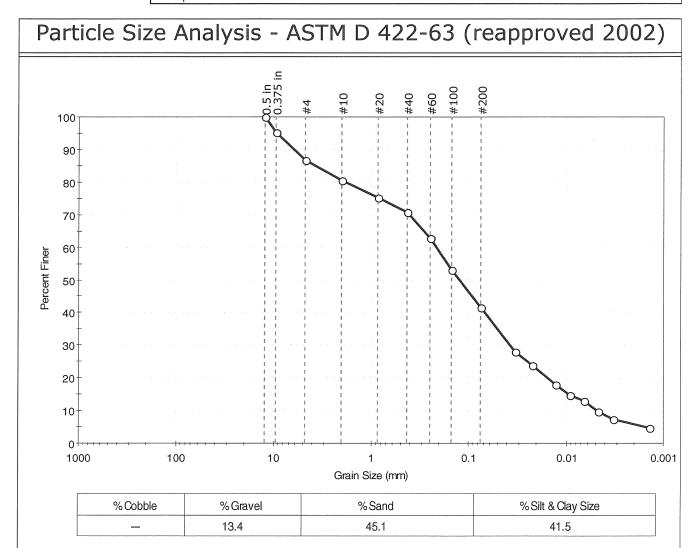
Sample Comment:

% Cobble	%Gravel	% Sand	% Silt & Clay Size
	0.0	5.7	94.3


0.0294 77 0.0190 66 0.0115 58 0.0082 53 0.0059 48 0.0043 42 0.0030 37	Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
#20 0.85 100 #40 0.42 99 #60 0.25 98 #100 0.15 97 #200 0.075 94 Particle Size (mm) Percent Finer Spec. Percent 0.0294 77 0.0190 66 0.0115 58 0.0082 53 0.0059 48 0.0043 42	#4	4.75	100		
#40 0.42 99 #60 0.25 98 #100 0.15 97 #200 0.075 94 Particle Size (mm) Percent Finer Spec. Percent 0.0294 77 Complies 0.0115 58 0.0082 53 0.0059 48 0.0043 42	#10	2.00	100		
#60 0.25 98 #100 0.15 97 #200 0.075 94 Particle Size (mm) Percent Finer Spec. Percent Complies 0.0294 77 0.0190 66 0.0115 58 0.0082 53 <	#20	0.85	100		
#100 0.15 97 #200 0.075 94 Particle Size (mm) Percent Finer Spec. Percent Complies 0.0294 77 0.0190 66 0.0115 58 0.0082 53	#40	0.42	99		
#200 0.075 94 Particle Size (mm) Percent Finer Spec. Percent Complies 0.0294 77 Complies 0.0190 66	#60	0.25	98		
Particle Size (mm) Percent Finer Spec. Percent Complies 0.0294 77 0.0190 66 0.0115 58 0.0082 53 0.0059 48 0.0043 42	#100	0.15	97		
0.0294 77 0.0190 66 0.0115 58 0.0082 53 0.0059 48 0.0043 42 0.0030 37	#200	0.075	94		
···· 0.0190 66 ···· 0.0115 58 ···· 0.0082 53 ···· 0.0059 48 ···· 0.0043 42 ···· 0.0030 37		Particle Size (mm)	Percent Finer	Spec. Percent	Complies
0.0115 58 0.0082 53 0.0059 48 0.0043 42 0.0030 37		0.0294	77		
···· 0.0082 53 ···· 0.0059 48 ···· 0.0043 42 ···· 0.0030 37		0.0190	66		
0.0059 48 0.0043 42 0.0030 37		0.0115	58		
···· 0.0043 42 ···· 0.0030 37		0.0082	53		*****
0.0030 37		0.0059	48		
		0.0043	42		
		0.0030	37		
0.0013 31		0.0013	31		

Γ	Coe	efficients			
	D ₈₅ =0.0460 mm	$D_{30} = N/A$			
	D ₆₀ =0.0131 mm	$D_{15} = N/A$			
	D ₅₀ =0.0069 mm	$D_{10} = N/A$			
	Cu =N/A	C _c =N/A			
Г	Clas	sification			
	ASTM lean clay (CL)				
	AASHTO Clayey Soils (A-6 (18))				
Ē	Sample/T	est Description			
	Sample/Test Description Sand/Gravel Particle Shape : ROUNDED				
	Sand/Gravel Hardness : HARD				
		φ.			
1					

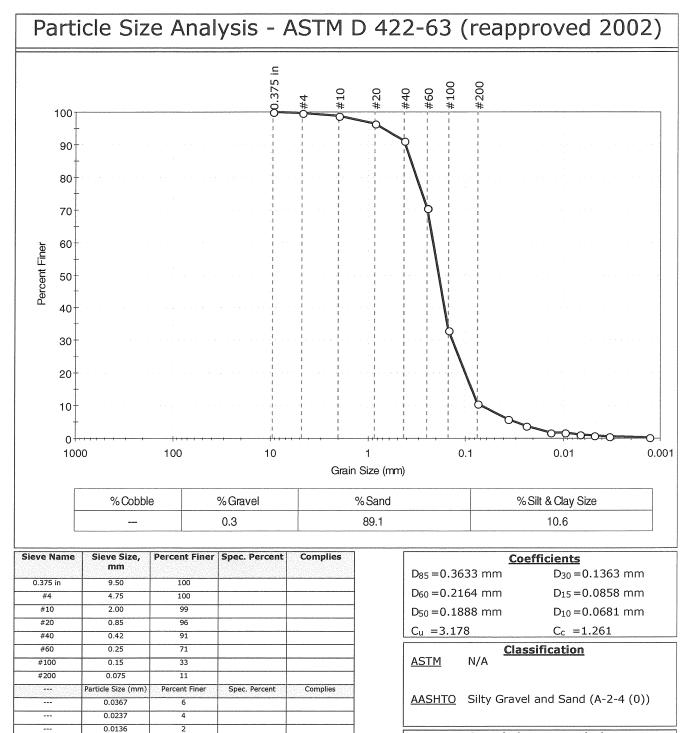
Client:	US Army	Corp of Engine	ers			
Project:	Navigatio	n Improvement	t			
Location:	Portsmout	th, NH			Project No:	GTX-8193
Boring ID:	B-5		Sample Type	: jar	Tested By:	ар
Sample ID	:J-1		Test Date:	05/09/08	Checked By:	jdt
Depth :	0-2.0 ft		Test Id:	130455		
Test Comm	nent:					
Sample De	scription:	Moist, dark gi	rayish brown c	lay		
Sample Co	mment:					


Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	J-1	B-5	0-2.0 ft	31	35	17	18	1	lean clay (CL)

Sample Prepared using the WET method 1% Retained on #40 Sieve Dry Strength: VERY HIGH Dilentancy: NONE Toughness: LOW

Client: US Army Corp of Engineers GeoTesting Project: Navigation Improvement Location: Portsmouth, NH Project No: GTX-8193 express Boring ID: B-5 Sample Type: jar Tested By: ар a subsidiary of Geocomp Corporation Sample ID:J-3 Test Date: 05/12/08 Checked By: jdt Depth : Test Id: 130439 10.0-11.8 ft Test Comment: Sample Description: Moist, olive brown silty sand Sample Comment: ---



Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.50	100		
0.375 in	9.50	95		
#4	4.75	87		
#10	2.00	80		
#20	0.85	75		
#40	0.42	71		
#60	0.25	63		*********
#100	0.15	53		
#200	0.075	41		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0330	28		
	0.0221	24		
	0.0129	18		
	0.0092	15		
	0.0065	13		
	0.0047	10		
	0.0033	7		
	0.0014	5		

Coeff	ficients
D ₈₅ =3.7939 mm	D ₃₀ =0.0374 mm
D ₆₀ =0.2153 mm	D ₁₅ =0.0096 mm
D ₅₀ =0.1240 mm	D ₁₀ =0.0048 mm
Cu =N/A	C _c =N/A
Classi	fication
ASTM N/A	
AASHTO Silty Soils (A-	-4 (0))
Sample/Tes	st Description
Sand/Gravel Particle Sh	ape: ROUNDED
Sand/Gravel Hardness :	HARD
	70

a subsidiary of Geocomp Corporation

Client:	US Army (Corp of Enginee	ers			
Project:	Navigation	n Improvement				
Location:	Portsmout	h, NH			Project No:	GTX-8193
Boring ID:	B-7		Sample Type	: jar	Tested By:	ар
Sample ID:	:J-1		Test Date:	05/09/08	Checked By:	jdt
Depth :	0-2.0 ft		Test Id:	130440		
Test Comm	nent:					
Sample De	scription:	Moist, light oli	ive brown sand	d with silt		
Sample Co	mment:					

Sample/Test Description Sand/Gravel Particle Shape : ROUNDED

Sand/Gravel Hardness : HARD

0.0097

0.0068

0.0048

0.0034

0.0013

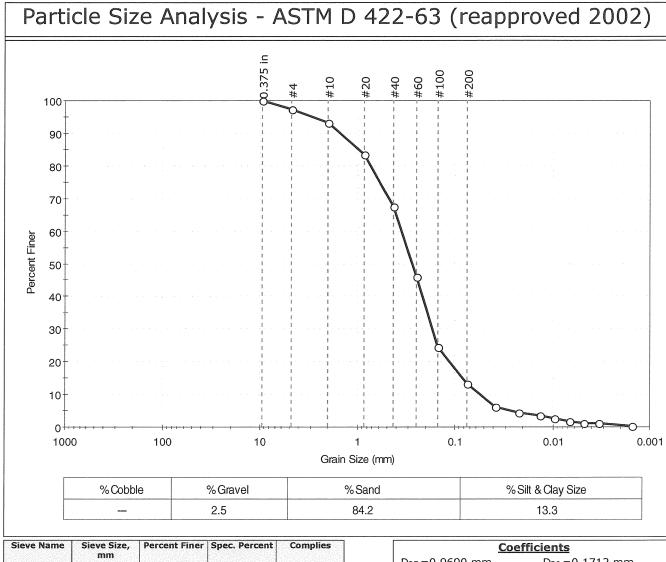
2

1

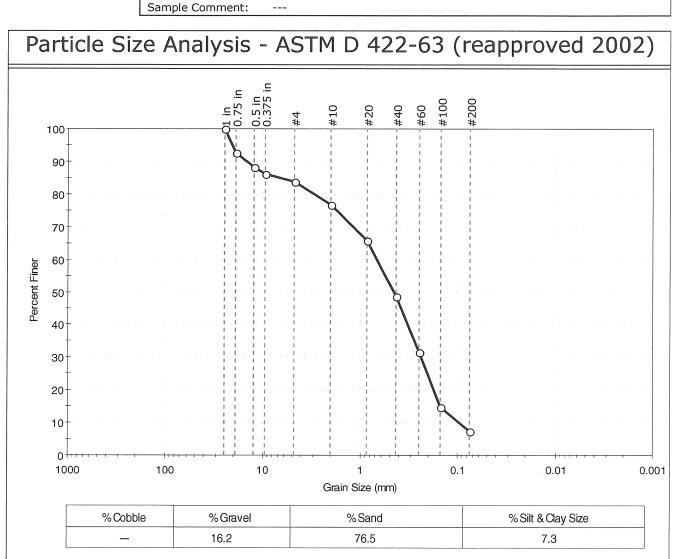
1

1

0



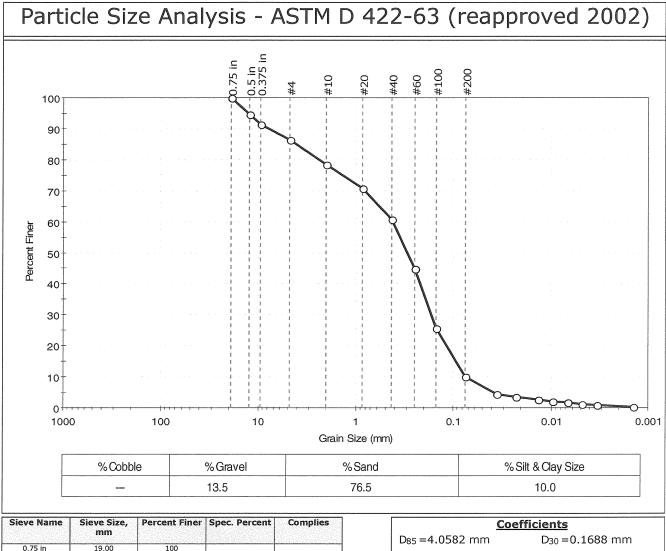
....


a subsidiary of Geocomp Corporation

Client: US Army	Corp of Engineers			
Project: Navigation	n Improvement			
Location: Portsmout	h, NH		Project No:	GTX-8193
Boring ID: B-7	Sample Typ	e: jar	Tested By:	ар
Sample ID:J-2	Test Date:	05/09/08	Checked By:	jdt
Depth : 5.0-7.0 ft	Test Id:	130441		
Test Comment:				
Sample Description:	Moist, dark yellowish brow	n silty sand		
Sample Comment:	Removed one 2" rock from	sample		

Sieve name	mm	reitent i mei	Spee. Percent	complies
0.375 in	9.50	100		
#4	4.75	97		
#10	2.00	93		
#20	0.85	84		
#40	0.42	68		
#60	0.25	46		
#100	0.15	24		
#200	0.075	13		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0382	6		
	0.0220	4		
	0.0133	4		
	0.0096	3		
	0.0068	2		
	0.0048	1		
	0.0034	1		

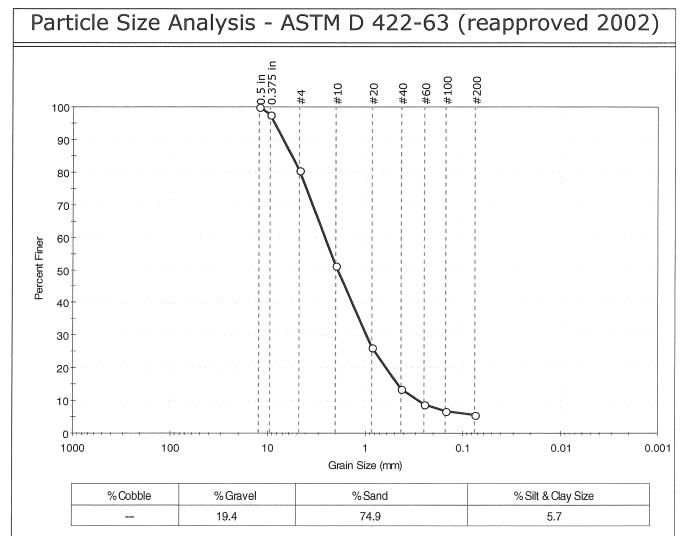
Client: US Army Corp of Engineers GeoTesting Project: Navigation Improvement Location: Portsmouth, NH Project No: GTX-8193 express Boring ID: B-7 Sample Type: jar Tested By: ар a subsidiary of Geocomp Corporation Sample ID:J-3 Test Date: 05/08/08 Checked By: jdt Depth : Test Id: 130442 10.0-12.0 ft Test Comment: Sample Description: Moist, brown sand with silt and gravel


Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	92		
0.5 in	12.50	88		
0.375 in	9.50	86		
#4	4.75	84		
#10	2.00	77		
#20	0.85	66		······
#40	0.42	49		
#60	0.25	32		
#100	0.15	15		
#200	0.075	7		

	Coe	efficients
D ₈₅ =6.73	302 mm	D ₃₀ =0.2386 mm
D ₆₀ =0.67	747 mm	D ₁₅ =0.1509 mm
D ₅₀ = 0.44	190 mm	D ₁₀ =0.0965 mm
Cu =6.99)2	C _c =0.874
ASTM	Clas N/A	<u>sification</u>
AASHTO	Stone Fragr (A-1-b (0))	ments, Gravel and Sand
		est Description Shape : ROUNDED s : HARD

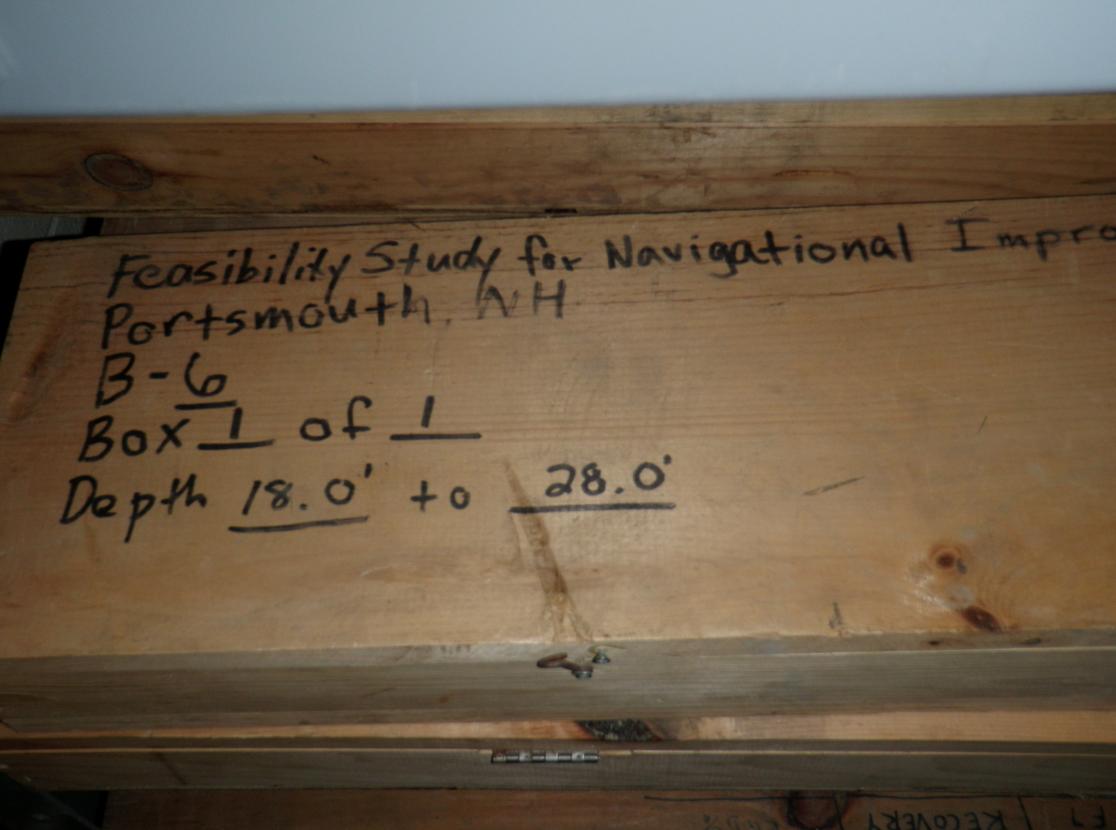
a subsidiary of Geocomp Corporation

Client: US Army	Corp of Enginee	ers			
Project: Navigatio	n Improvement	2			
Location: Portsmour	th, NH	,		Project No:	GTX-8193
Boring ID: B-8		Sample Type	: jar	Tested By:	ар
Sample ID:J-1		Test Date:	05/09/08	Checked By:	jdt
Depth : 0-2.0 ft		Test Id:	130443		
Test Comment:					
Sample Description:	Moist, very da	ark grayish bro	wn sand wit	th silt	
Sample Comment:	Removed one	2" rock from s	sample		



	mm			
0.75 in	19.00	100		
0.5 in	12.50	95		a
0.375 in	9.50	91		
#4	4.75	86		
#10	2.00	79		*****
#20	0.85	71		
#40	0.42	61		
#60	0.25	45		
#100	0.15	26		
#200	0.075	10		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0360	5		
	0.0229	4		
	0.0136	3		·····
	0.0096	2		
	0.0068	2		
	0.0048	1		
	0.0034	1		

Coefficients			
D ₈₅ =4.0582 mm	D ₃₀ =0.1688 mm		
D ₆₀ =0.4148 mm	D ₁₅ =0.0938 mm		
D ₅₀ =0.2970 mm	D ₁₀ =0.0751 mm		
C _u =5.523	C _c =0.915		
Classi	ification		
ASTM N/A			
AASHTO Fine Sand (A-3 (0))			
Sample/Test Description			
Sand/Gravel Particle Shape : ROUNDED			
Sand/Gravel Hardness : HARD			
	rk.		


a subsidiary of Geocomp Corporation

Client:	US Army Corp of Engineers					
Project:	Navigation Improvement					
Location:	Portsmout	h, NH			Project No:	GTX-8193
Boring ID:	B-8		Sample Type:	jar	Tested By:	ар
Sample ID	:J-2		Test Date:	05/09/08	Checked By:	jdt
Depth :	5.0-7.0 ft		Test Id:	130444		
Test Comm	nent:					
Sample De	scription:	Moist, brown	and gray sand	with silt and	d gravel	
Sample Co	mment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.5 in	12.50	100		
0.375 in	9.50	98		
#4	4.75	81		
#10	2.00	51		
#20	0.85	26		
#40	0.42	14		
#60	0.25	9		
#100	0.15	7		
#200	0.075	6		

	Coeffic	<u>cients</u>
D ₈₅ =5.6893 mm		D ₃₀ =0.9707 mm
D ₆₀ = 2.592	2 mm	D ₁₅ =0.4589 mm
D ₅₀ = 1.921	0 mm	D ₁₀ =0.2821 mm
C _u =9.189		C _c =1.289
	<u>Classifi</u>	cation
ASTM I	N/A	
AASHTO S	ASHTO Stone Fragments, Gravel and Sand	
((A-1-b (0))	
Sample/Test Description		
Sand/Gravel Particle Shape : ROUNDED		
Sand/Gravel Hardness : HARD		
		*

U.S. ARMY CORPS OF ENGINEERS 52A # 33961.07 THOMASTON DAM 11/4/00 THOMASTON / OT JJM / DLD 100-103 5 1035-108.5 1085-113.5 Foosibility Study for Novigotional Improvement Ports mouth, NH -6 Box_1-6-Jepth 18.0' to 28.0

APPENDIX E

Equipment Operations and Procedures

Trimble 4000RS and ProBeacon Differential GPS HYPACK[®] Navigation Software Klein 3000 Dual Frequency Side Scan Sonar System Geometrics G-882 Marine Cesium Magnetometer Applied Acoustics Engineering "Boomer" Seismic Reflection System

EQUIPMENT OPERATIONS AND PROCEDURES

Trimble 4000RS and ProBeacon Differential GPS

The Trimble 4000RS satellite positioning system provides reliable, high-precision positioning and navigation for a wide variety of operations and environments. The system consists of a GPS receiver, a GPS volute antenna and cable, RS232 output data cables, and a secondary reference station receiver, in this case a Trimble ProBeacon receiver. The beacon receiver consists of a small control unit, a volute antenna and cable, and RS232 interface to the Trimble GPS unit.

Fully automated, the Trimble 4000RS provides means for 9 channel simultaneous satellite tracking with real time display of geodetic position, time, date, and boat track if desired. The Trimble unit is mounted on the survey vessel with the ProBeacon receiver which continuously receives differential satellite correction factors via radio link from one of the DGPS United States Coast Guard beacons. The Trimble 4000RS accepts the correction factors via the ProBeacon interface and applies the differential corrections to obtain continuous, high accuracy, real time position updates. The Trimble 4000 system is interfaced to the OSI data logging computer and HYPACK[®] navigation software for trackline control. The output data string from the Trimble receiver can be modified to send all or part of the data parameters to the computer for logging.

The Coast Guard beacon located at Portsmouth Harbor, New Hampshire (frequency of 288 kHz, @ 100 bps) was used during this project with good reliability and signal strength.

HYPACK[®] Navigation Software

Survey vessel trackline control and position fixing were obtained by utilizing an OSI computer-based data logging package running HYPACK[®] navigation software. The Pentium computer is interfaced with the Trimble 4000 DGPS system onboard the survey vessel. Vessel position data from the Trimble 4000RS were updated at 1.0 second intervals and input to the HYPACK[®] navigation system which processes the geodetic positions into State Plane coordinates used to guide the survey vessel accurately along preselected tracklines. The incoming data are logged on disk and processed in real time allowing the vessel position to

be displayed on a video monitor and compared to each preplotted trackline as the survey progresses. A nautical chart background shows the shoreline, general water depths, and locations of existing structures, buoys, and control points on the monitor in relation to the vessel position. The OSI computer logging system combined with the HYPACK[®] software thus provide an accurate visual representation of survey vessel location in real time, combined with highly efficient data logging capability and post-survey data processing and plotting routines.

Klein 3000 Dual Frequency Side Scan Sonar System

Side scan sonar images of the bottom were collected using a Klein 3000 dual frequency, high resolution sonar system operating at frequencies of 100 and 500 kilohertz. The system consists of a topside notebook computer, external monitor, keyboard, mouse, an EPC1086NT dual channel thermal graphic recorder, a Kevlar tow cable and sonar towfish. The system contains an integrated navigational plotter which accepts standard NMEA 0183 input from a GPS system. This allows vessel position and sonar sweep to be displayed on the monitor and speed information to be used for controlling the sonar ping rate.

All sonar images are stored digitally and can be enhanced real-time or post-survey by numerous mathematical filters available in the program software. Other software functions that are available during data acquisition include; changing range scale and delay, display color, automatic or manual gain, speed over bottom, multiple enlargement zoom, target length, height, and area measurements, logging and saving of target images, and annotation frequency and content. The power of this system is its real-time processing capability for determining precise dimensions of targets and areas on the bottom.

As with many other marine geophysical instruments, the side scan sonar derives its information from reflected acoustic energy. A set of transducers mounted in a compact towfish generate the short duration acoustic pulses required for extremely high resolution. The pulses are emitted in a thin, fan-shaped pattern that spreads downward to either side of the fish in a plane perpendicular to its path. As the fish progresses along the trackline, the acoustic beam is capable of scanning the bottom from a point beneath the fish, outward as far as 200 meters on each side of the survey trackline, depending on towfish height above the seabed.

Acoustic energy reflected from any bottom discontinuities is received by the set of transducers in the towfish, amplified and transmitted to the survey vessel via the tow cable where it is further amplified, processed, and converted to a graphic record by the side scan recorder. The sequence of reflections from the series of pulses is displayed on the dual-channel graphic recorder on which paper is incrementally advanced prior to printing each acoustic pulse. The resulting output is essentially analogous to a high angle oblique "photograph" providing detailed representation of the bottom features and characteristics.

Geometrics G-882 Marine Cesium Magnetometer

Total magnetic field intensity measurements were acquired along the survey tracklines using an Geometrics G-882 cesium magnetometer which has an instrument sensitivity of 0.1 gamma. The G-882 magnetometer system includes the sensor head with a coil and optical component tube, a sensor electronics package which houses the AC signal generator and mini-counter that converts the Larmor signal into a magnetic anomaly value in gammas, and a RS-232 data cable for transmitting digital measurements to a data logging system. The cesium-based method of magnetic detection allows the sensor to be towed off the side of the survey vessel, simultaneously with other remote sensing equipment, while maintaining high quality, quiet magnetic data with ambient fluctuations of less than 1 gamma. The G-882 features an altimeter that provides digital height above the bottom in real time thus allowing the sensor height to be precisely maintained along line. The altimeter and magnetic intensity data were recorded at a 10 hertz sampling rate on the OSI data logging computer by HYPACK[®].

The G-882 magnetometer acquires information on the ambient magnetic field strength by measuring the variation in cesium electron energy states. The presence of only one electron in the cesium atom's outermost electron shell (known as alkali metals) makes cesium ideal for optical pumping and magentometry.

In operation, a beam of infrared light is passed through a cesium vapor chamber producing a Larmor frequency output in the form of a continuous sine wave. This radio frequency field is generated by an H1 coil wound around a tube containing the optical components (lamp oscillator, optical filters and lenses, split-circular polarizer, and infrared photo detector). The

Larmor frequency is directly proportional to the ambient magnetic intensity measurements, and is exactly 3.49872 times the ambient magnetic field measured in gammas or nano-Teslas. Changes in the ambient magnetic field cause different degrees of atomic excitation in the cesium vapor which in turn allows variable amounts of infrared light to pass, resulting in fluctuations in the Larmor frequency.

Although the earth's magnetic field does change with both time and distance, over short periods and distances the earth's field can be viewed as relatively constant. The presence of magnetic material and/or magnetic minerals, however, can add to or subtract from the earth's magnetic field creating a magnetic anomaly. Rapid changes in total magnetic field intensity which are not associated with normal background fluctuations mark the locations of these anomalies.

Determination of the location of an object producing a magnetic anomaly depends on whether or not the magnetometer sensor passed directly over the object and if the anomaly is an apparent monopole or dipole. A magnetic dipole can be thought of simply as a common bar magnet having a positive and negative end or pole. A monopole arises when the magnetometer senses only one end of a dipole as it passes over the object. This situation occurs mainly when the distance between opposite poles of a dipole is much greater than the distance between the magnetometer and the sensed pole, or when a dipole is oriented nearly perpendicular to the ambient field thus shielding one pole from detection. For dipolar anomalies, the location of the object is at the point of maximum gradient between the two poles. In the case of a monopole, the object associated with the anomaly is located below the maximum or minimum magnetic value.

Applied Acoustics Engineering "Boomer" Seismic Reflection System

Subbottom information from deeper below the seafloor was gathered using an Applied Acoustics Engineering seismic reflection system. The AAE "boomer" system consists of a variable 100-300 joule power supply, a catamaran boomer plate for sound source, a 10 element hydrophone array (eel) as receiver, and a graphic recorder for printing the acoustic returns. For this project, an Octopus Model 760 Marine Seismic Processor with universal amplifier and filter was used inline with the system, which includes TVG (time varied gain) with bottom tracking, automatic gain control, and a swell filter. A Kronhite Model 3200

analog filter was also used to band pass the signals for unwanted electrical and tow noise. The entire system was interfaced with an EPC Model 1086NT thermal recorder for displaying the seismic profiles.

The Octopus 760 seismic processor adds significant power and versatility to the system. Besides the typical amplification and filtering options (band pass filter, time varied gain (TVG), it also includes a number of time varied filtering (TVF) features such as signal stacking and swell filtering which help minimze noise in the horizontal plane. The system has the ability to save data in a variety of digital formats.

Operationally, a seismic source is used to create an intense, short duration acoustic pulse or signal in the water column. This signal propagates downward to the seafloor where it is partially reflected at the sediment-water interface, while the rest of the signal continues into the subbottom. As the downward propagating signal encounters successive interfaces between layers of different material, similar partial reflections occur. The types of sediment which cause acoustic signals to behave in such a manner are defined primarily by the cross-product of the bulk density and the compressional wave velocity of each material, a quantity known as the acoustic impedance. As a first approximation, the percentage of an acoustic signal which is reflected from an interface is directly proportional to the change in acoustic impedance across that interface.

The return signal consists of a continuous sequence of reflected energy which has a series of "peaks" correlative in intensity with the magnitude of the change in acoustic impedance of the materials on either side of the interface. These return signals received by the transducer array are subsequently converted to electrical voltages which are proportional to the intensity of the return and hence dictate how strongly the return is printed by the graphic recorder. Ambient noise is filtered out and the signal is then amplified with overall gain and/or TVG and displayed trace-by-trace iteratively on the recorder to yield a continuous display somewhat analogous to a geologic cross section. The lower frequency and increased band width of the boomer waveform is designed to achieve greater penetration into the subsurface for resolution of deeper stratigraphy.

APPENDIX F

Equipment Specification Sheets

4000RSi & 4000DSi

DGPS Reference Surveyor and Differential Surveyor

Key features and benefits

- Sub 0.5 meter accuracy
- Real time QA/QC
- Everest Multipath Rejection Technology
- Super-trak Signal Processing Technology

Timble

The 4000RSi[™] Reference Surveyor receiver and 4000DSi[™] Differential Surveyor receiver incorporate the latest in GPS technology, offering true, real-time positioning accuracy better than 0.5 meter. Based on Trimble's advanced Maxwell processing technology, these DGPS receivers provide the highest level of accuracy even when operating in the most challenging conditions.

The 4000RSi receiver operates as an autonomous reference station, generating DGPS corrections in the RTCM SC-104 standard format for transmission to mobile GPS receivers.

The 4000DSi receiver is designed to use DGPS corrections in the RTCM SC-104 standard format broadcast by the 4000RSi receiver. The 4000DSi's standard NMEA-0183 messages, navigation firmware, data, and 1PPS outputs allow for optimal flexibility for system integration and interfacing with other instruments.

The signal processing of the two reeivers incorporates Trimble's Super-trak[™] technology. This technology enhances low power satellite signal acquisition, improves signal tracking capabilities under less than ideal conditions and provides increased immunity to signal jamming from radio frequency interference (RFI). These improvements are derived from integrating complex RF circuitry onto a single chip and by using state-of-the-art Surface Acoustic Wave filter technology.

Super-trak technology increases productivity and facilitates continual operations in demanding environments,

such as ports, harbors, along riverbanks and near RFI sources that would normally interfere with satellite signals.

The 4000RSi and 4000DSi receivers also incorporate Trimble's latest advance in multipath rejection through enhanced signal processing: the patented EVEREST[™] Multipath Rejection Technology. This technology eliminates multipath error before the receiver calculates GPS measurements. When combined with Trimble's advanced carrier-aided filtering and smoothing techniques applied to exceptionally low noise C/A code measurements, the result is real-time positioning accuracy on the order of a few decimeters.

The two receivers are ideal for hydrographic and navigation systems,

vessel tracking, dynamic positioning systems, dredging, and other dynamic positioning and navigation applications. Both receivers feature nine channels of continuous satellite tracking (12 channels optional); a lightweight, rugged, weatherproof housing; and low power consumption for extending the field operation time from batteries.

During operation, both receivers can output binary and ASCII data for archiving or post-mission analysis. In addition, the 4000RSi receiver can operate as a mobile receiver with the same features, functionality and options as the 4000DSi receiver. For optimum DGPS performance, combine the receivers with any of Trimble's data communication systems and QA/QC firmware to ensure the integrity of positioning accuracy.

4000RSi & 4000DSi DGPS Reference Surveyor and Differential Surveyor

4000 RSI FEATURES

- RTCM Input
- RTCM Output; filtered and carrier-smoothed RTCM differential corrections (version 1.0 and 2.X) (4000RSi)
- EVEREST Multipath Rejection Technology
- Super-trak Signal Processing Technology
- Better than 0.5 meter DGPS accuracy using 4000RSi receiver corrections
- 0.5 second measurement rate
- · Weighted-least squares solution
- Autonomous operation automatic mode restoration after power-cycle
- · Data integrity provision
- 2 RS-232 I/O ports with flow control for data recording and data link (4 RS-232/422 on rack mount)
- Triple DC input
- · Low power; lightweight; portable; environmentally protected
- 1 PPS output; NMEA-0183 outputs
- L1 geodetic antenna; 30m antenna cable (4000RSi)
- Compact Dome antenna; 30m antenna cable (4000Dsi)
- 1-year warranty
- Firmware upgrades via serial port

OPTIONS AND ACCESSORIES

- Firmware update service 1 and 4 year
- · Extended hardware warranty
- L1 Carrier Phase
- 12 L1 channels
- L1/L2 Carrier Phase (rackmount)
- 12 L1/L2 channels (rackmount)
- Internal Memory for datalogging
- Event Marker input (requires memory option)
- QA/QC feature
- Rackmount Version
- 4 serial I/O ports (standard on rackmount)
- L1 and Ll/L2 Geodetic antennas
- 30m antenna cable extension, with in-line amplifier
- Office Support Module: OSM II (CE Marked)
- Receiver transport case
- TRIMTALK[™] Series radio links
- ProBeacon[™] MSK receiver
- LEMO to dual BNC sockets adapter

PHYSICAL CHARACTERISTICS

Receiver

Size	9.8" W x 11.0" D x 4.0" H (portable)
	(24.8cm X 28.0cm x 10.2cm)
	16.8" W x 16.0" D x 5.25" H (rackmount)
	(42.7cm x 40.6cm x 13.3cm)
Weight	6 lbs (2.7kg) (portable), 15 lbs. (6.8kg) (rackmount)
	0.5 lbs (0.2kg) compact dome antenna
	5.7 lbs (2.6kg) L1 geodetic antenna
Power	Nominal 10.5-35 VDC, 7 Watts (portable)
	-

	100, 120, 220, 240 VAC, 40 Watts (rack mount)
	DC: 10-36 Volts, 30 Watts
Operating temperature	-20° C to $+55^{\circ}$ C (portable), 0° C to $+50^{\circ}$ C (rack mount)
Storage temperature	$-30^{\circ}C$ to $+75^{\circ}C$ (portable)
	-20° C to $+60^{\circ}$ C (rack mount)
Humidity	100%, fully sealed, buoyant (portable)
,	95%, non-condensing (rack mount)
Geodetic Antenna	
Size	16" D x 3.5" H
Weight	5.7 lbs.
Operating temperature	-40° C to $+65^{\circ}$ C
Storage temperature	$-55^{\circ}C$ to $+75^{\circ}C$
Humidity	100%, fully sealed
Interface	·
Keyboard	Alphanumeric, function and softkey entry
Display	Backlit LCD, four lines of forty alphanumeric
	characters; Large, easy-to-read– 2.8mm x 4.9mm;
	Viewing area: 32 cm ² ; adjustable backlight and
	viewing angle
Serial Ports	Port 1 and 3: up to 57600 bps, software flow control
	Port 2 and 4: up to 57600 bps, hardware/software flow
	control
	RS-232 / RS-422 user configurable (rack mount)
Data recording	RTCM and GPS data available via serial port
Remote control	Trimble Data Collector Interface
Antenna	External, LEMO socket connector (portable),
	N-Type Socket connector (rack mount)
RTCM Messages	Types 1, 2, 3, 6, 9, 16; Version 1.0 and 2.X
1 PPS	LEMO 7-pin, adapter to BNC available (portable)
	BNC socket (rack mount)
Event Marker	LEMO 7-pin, adapter to BNC available (portable)
	BNC socket (rack mount)
NMEA-0183	ALM, BWC, GGA, GLL, GRS, GSA, GST, GSV,
	RMB, RMC, VTG, WPL, ZDA
PERFORMANCE	CHARACTERISTICS
Signal Processing	Multibit Super-trak technology; Maxwell architecture with
Signal Frocessing	EVEDECT M literal D total Table 1

Signal Processing	Multibit Super-trak technology; Maxwell architecture with
	EVEREST Multipath Rejection Technology; very low
	noise C/A code processing
Tracking (Standard)	9 channels L1 C/A code and carrier
(Optional)	12 L1, 12 L1 + 12 L2; C/A, P and/or cross-correlation
	code and carrier (rack mount)
Startup time	< 2 minutes after cold start
Measurement rate	0.5 second per independent measurement
Accuracy	Typically better than 0.5 m RMS: assumes at least 5
	satellites, PDOP less than 4, and using 4000RSi corrections.
RTCM Corrections	4000RSi corrections can be applied to all differential-
	equipped RTCM compatible GPS receivers.

ORDERING INFORMATION

4000RSi Reference Surveyor	P/N 29443-75
4000RSi Reference Surveyor pair	P/N 29561-00
4000DSi Differential Surveyor	P/N 29443-70
4000RSi Reference Surveyor Rackmount	P/N 26541-80

Trimble Navigation Limited Corporate Headquarters 645 North Mary Avenue Sunnyvale, CA 94086 +1-408-481-8940 +1-408-481-7744 Fax www.trimble.com Trimble Navigation Europe Limited Trimble House, Meridian Office Park Osborne Way Hook, Hampshire RG27 9HX U.K. +44 1256-760-150 +44 1256-760-148 Fax

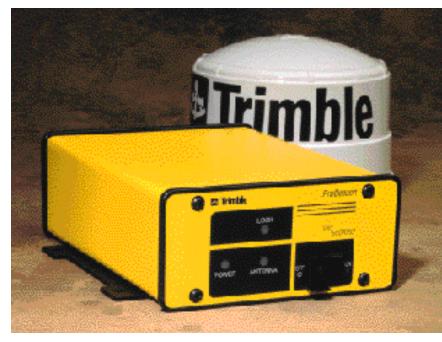
Trimble Navigation Singapore PTE Limited 79 Anson Road #05-02 Singapore 079906 SINGAPORE +65-325-5668 +65-225-9989 Fax

ProBeacon

Marine Radiobeacon MSK Receiver

Key features and benefits

- · High noise immunity
- Rapid signal aquisition
- Automatic and manual modes
- FFT signal analysis


Differential GPS correction data broadcast from marine radiobeacons provides GPS users with the improved accuracy of DGPS without setting up and maintaining a reference station. Depending on the DGPS receiver being used in conjuction with the ProBeacon[™], the combination can provide position and navigation accuracies of less than a meter to land surveyors, dredge operators, resource management agencies, crop dusters, and many others operating on land, offshore or in the air. Anyone within the range of a radiobeacon, whose application requires real-time positions, time, or velocity can benefit from this form of DGPS.

RTCM and IALA complaint

The International Association of Lighthouse Authorities (IALA), the U.S. Coast Guard and the Radio Technical Commission for Maritime Services (RTCM) have developed standards for the broadcast of DGPS correction data for public access.

All digital design

Obtaining the highest levels of DGPS performance requires a superior MSK receiver. Trimble's ProBeacon is an all-digital design, proven in independent testing to have the best overall performance, even under conditions

Differential GPS using MSK radiobeacon broadcasts.

of low signal strength and/or high noise levels. This all-digital design facilitates rapid signal acquisition and superior tracking capabilities. In addition, the ProBeacon signal processing is based upon a proprietary (patented) "noise cancellation" technique utilizing multiple channels to further improve data reception by rejecting the "impulsive" type of noise commonly found in this frequency band.

The ProBeacon also utilizes advanced logic, working in conjunction with the DGPS receiver to select the most appropriate beacon. The ProBeacon constantly monitors Message Error Ratio, switching to a different beacon if the signal degrades. By utilizing the broadcast beacon almanacs and receiving the position data from the DGPS receiver, the ProBeacon switches to the nearest beacon to maintain the highest accuracy possible.

H-field loop antenna

These features, combined with an advanced, high sensitivity H-field antenna, ensure that the DGPS user realizes the best performance under all conditions.

ProBeacon Marine Radiobeacon MSK Receiver

DESCRIPTION

Differential GPS (DGPS) is the most accurate long range form of GPS for surveying, positioning and navigation. GPS receivers that are differential capable use the correction data to counter the effects of Selective Availability, errors induced by the ionosphere and troposphere and other correlated errors that degrade the GPS solution. The ProBeacon is designed to provide this correction data in the RTCM SC-104 standard format to any compatible DGPS receiver, using standard RS-232 and RS-422 serial connections. Accuracy will depend on the type of DGPS receiver utilized. Trimble offers several GPS receivers with DGPS capability designed to meet all types of application requirements.

PERFORMANCE CHARACTERISTICS

General

Frequency range	283.5 kHz to 325.0 kHz
Channel spacing	500 Hz
MSK modulation	25, 50, 100 & 200 bits/second
Signal strength	10 µV/meter minimum
Dynamic range	100 dB
Channel selectivity	60 dB @ 500 Hz offset
Frequency offset	10 ppm maximum (200 bits/second)
	40 ppm maximum (100, 50 & 25 bits/second)
3rd order intercept	+15 dBm @ RF input (min. AGC setting)

PHYSICAL CHARACTERISTICS

Receiver

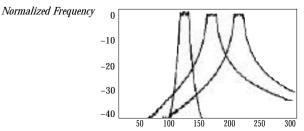
5.6 W x 2.7 H x 7.5 D
(14.2 cm x 6.9 cm x 19.0 cm)
2.5 lbs. (1.1 kg)
3.5 watts
10 to 32 volts DC
-20°C to +60°C
95% non-condensing
5.8 D x 4.5 H (14.7 cm x 11.4 cm)
1.4 lbs. (0.63 kg)
-30°C to +65°C
100% – fully sealed
50 ft. (15 meters)

FEATURES

Automatic

The ProBeacon serves as a stand-alone receiver of DGPS correction data. Once on, it automatically selects and tracks the best differential beacon in your area. If you lose reception of a differential beacon, the ProBeacon automatically switches to another beacon for continuous DGPS coverage.

Manual


Manual mode allows the operator to select a specific beacon, to pre-program a list of preferred beacons, and to request signal levels, SNR data, PLL offsets, RTCM message errors, and tracking history.

Fast acquisition

The ProBeacon uses a proprietary spectral search algorithm which enables exceptionally fast identification and acquisition of differential beacons under all operating conditions.

Jamming immunity

Only a subset of all marine radiobeacons will be differential beacons. The ProBeacon is able to track a weaker differential beacon signal in the presence of multiple jamming signals from nearby standard radiobeacons.

Integrity monitoring

The ProBeacon continuously monitors the integrity of incoming RTCM messages. If it observes parity errors, the ProBeacon will automatically switch to an adjacent beacon to ensure RTCM data integrity.

Noise immunity

Using advanced digital signal processing, the ProBeacon reliably tracks even in the presence of heavy atmospheric noise (e.g. lightning). Using algorithms based on a proprietary (patented) noise cancellation technique, the ProBeacon realizes improved performance in the presence of impulsive noise. As shown in the above figure, the signal channel plus two additional channels are monitored by the MSK receiver. These two noise-only, or pilot, channels facilitate noise reduction as the output from all the channels is highly correlated. Reduction in noise in the signal channel improves the performance of the ProBeacon in all operating environments.

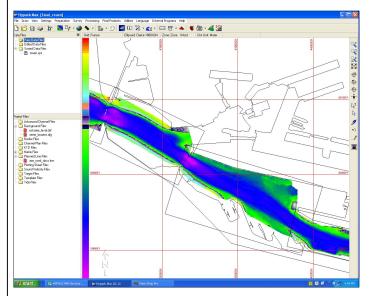
Almanac monitoring

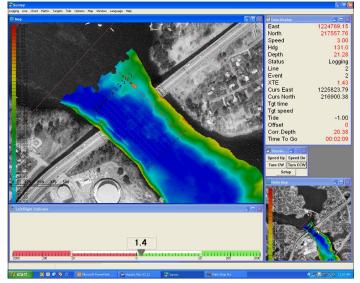
Each differential beacon broadcasts an almanac message with the identity (frequency, data rate, etc.) for adjacent differential beacons. The ProBeacon uses this message to accelerate the switch between beacons. This minimizes the interruption in DGPS data when you lose reception of a beacon.

Dual serial ports

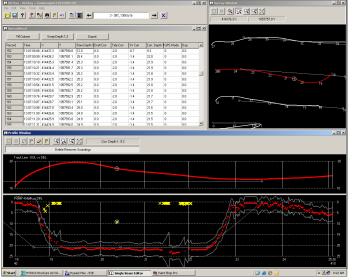
The ProBeacon offers two bi-directional serial ports and multiple baud rates (1200, 2400, 4800, 9600). Both RS-232 and RS-422 are supported. One port supports modem operation, allowing remote control of the ProBeacon

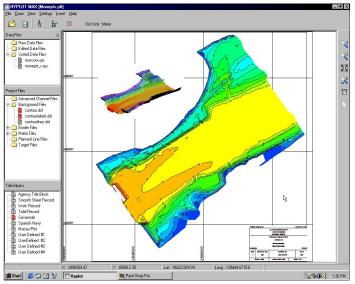
Trimble Navigation Limited Corporate Headquarters 645 North Mary Avenue Sunnyvale, CA 94086 +1-408-481-8940 +1-408-481-7744 Fax www.trimble.com Trimble Navigation Europe Limited Trimble House, Meridian Office Park Osborne Way Hook, Hampshire RG27 9HX U.K. +44 1256-760-150 +44 1256-760-148 Fax Trimble Navigation Singapore PTE Limited 79 Anson Road #05-02 Singapore 079906 SINGAPORE +65-325-5668 +65-225-9989 Fax



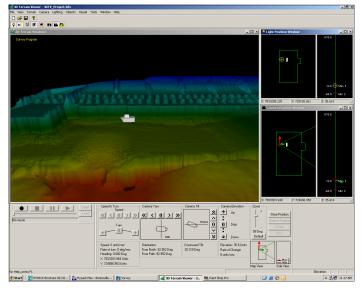

HYDROGRAPHIC SURVEY SOFTWARE

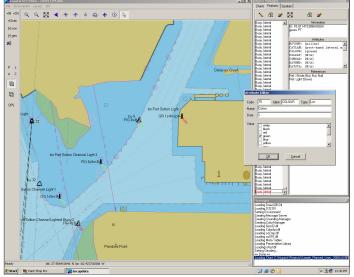
HYPACK[®]


HYPACK[®] is one of the most widely used hydrographic surveying packages in the world, with over 3,000 users. It provides the surveyor with all of the tools needed to design their survey, collect data, process it, reduce it, and generate final products. Whether you are collecting hydrographic survey data or environmental data, or positioning your vessel in an engineering project, HYPACK[®] provides the tools needed to complete your job. With users spanning the range from small vessel surveys with just a GPS and single beam echosounder to large survey ships with networked sensors and systems, HYPACK[®] gives you the power needed to accomplish your task in a system your surveyors can master.

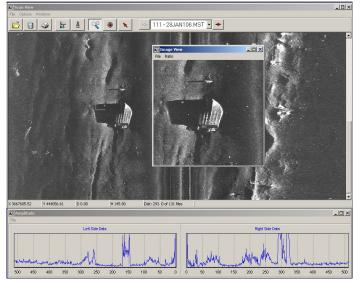

SURVEY DESIGN: HYPACK[®] allows you to create a 'Project' that contains all of your survey information for each job. You can easily define your geodetic basis, selecting from existing national grids or defining your own projection or local grid. HYPACK® also allows you to import background files in a variety of formats, including S-57, OrthoTif, ARCS, DXF, DGN, BSB and VPF. These files can be displayed while you create your planned lines, survey, edit and plot your results.

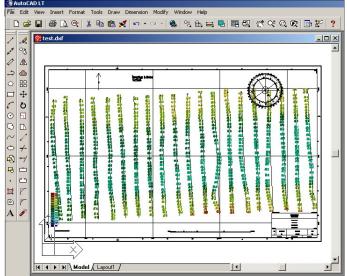
SURVEY: HYPACK[®] contains interface drivers to over 200 devices includings positioning systems, echosounders, heave-pitch-roll sensors, gyros and other types of equipment. SURVEY supports a single vessel or multiple vessels, along with towfish and ROVs. Data is logged with incredible precision (<1mSec). Survey data and windows can be broadcast over a network to any other computer or saved to a file using our Shared Memory Output routines.


EDITING: The SINGLE BEAM EDITOR program is used to quickly review your survey data and to automatically and/or manually remove outliers. Sounding data is simultaneously displayed in plan, spread-sheet, and profile views with the channel design info drawn in the backgrounds. Routines developed by **HYPACK**[®] from collaboration with the U.S. Army Corps of Engineers to integrate water level corrections based on RTK GPS elevation info are a standard part of package.

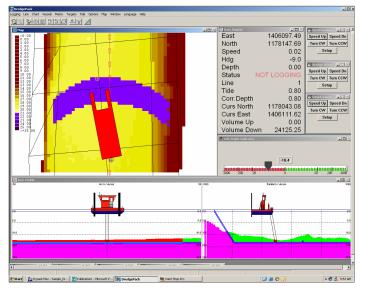

FINAL PRODUCTS: The ability to create the final products you need separates **HYPACK**[®] from the rest. The plotting program generates professional smooth sheets with soundings, grids, graphics and contours in a WYSIWYG display. The VOLUMES program is the de facto standard of the U.S. Army Corps of Engineers for the computation of quantities in dredging projects. TIN MODEL creates surface models that can be used for contouring, volume computations and surface visualization.

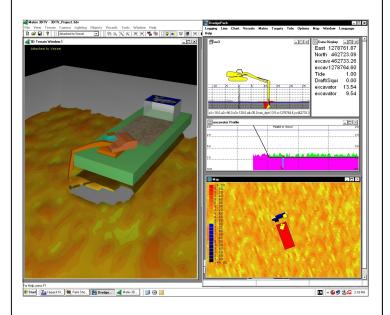
HYPACK[®]


Support: An important factor in the purchase of any hydrographic survey system is the support provided to the end-user. **HYPACK**[®] prides itself on taking good care of our users. A trained, professional staff is on-call to answer your questions, develop custom device drivers or modify programs to meet your needs. **HYPACK**[®] training seminars are held annually in many countries to provide you with the latest information. We continue to update our training materials every year to make it easier for you to get the most out of our products. Our latest training material contains PowerPoint presentations with embedded AVI demonstrations on over 100 topics. Our bi-monthly newsletter, 'Sounding Better' is published on our web site (www.hypack.com) and contains technical articles on how to get the most out of your package.


DATA VISUALIZATION: The TIN MODEL and 3D TERRAIN VIEWER (3DTV) programs of **HYPACK**[®] provide fantastic tools to view and present your data. 3DTV allows you to fly a 'camera' across your edited XYZ surface and display the results or save them to a AVI file for distribution to your clients. 3DTV also allows you to position the camera relative to the actual vessel position, showing the vessel in real time against the bottom surface.

ENCEdit is a new **HYPACK**[®] module that allows you to create, modify and verify ENC data in S-57 format. ENCEdit provides you with tools to re-attribute, create, move or delete existing features. You can also create new features by manually entering coordinates, by importing data from DXF/DGN, or by transferring targets in real time from SURVEY directly into ENCEdit.

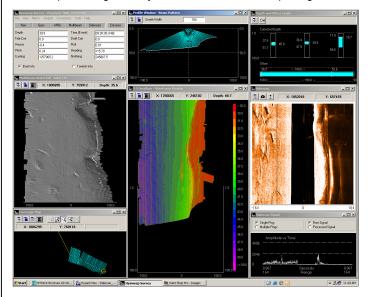

Side Scan Sonar (SSS) Support: HYPACK[®] provides support of SSS systems in its basic package. All analog and several digital side scan systems can be utilized with the SIDE SCAN SURVEY program. Users can display the real time data and perform targeting in real time or post-processing. A program that generates side scan mosaics in Geo-TIF format allows you to plot your results in HYPACK[®] or export them to your GIS.

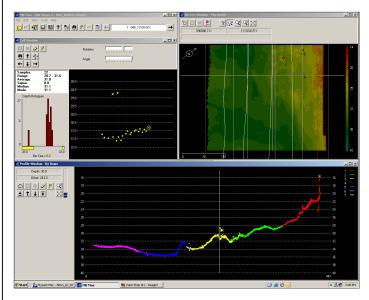

Export to CAD: Many of our users are interested in exporting their survey data into their CAD/GIS package. **HYPACK**[®] has several tools to import/export via DXF/DGN. The EXPORT TO CAD program takes all of the our files and converts them to DXF and DGN. The plotting sheets and sectional plots can also be exported directly to DXF. Users can create planned lines in their CAD/GIS program and import them into **HYPACK**[®].

DREDGEPACK[®]

DREDGEPACK[®] is a specially modified version of **HYPACK**[®] used for providing precise digging information on dredges. It allows you to see exactly where you are digging, how deeply you are digging and how deeply you need to dig. With the ADVANCED CHANNEL DE-SIGN program, you can create complex dredging plans. Real time cross sections are provided to show you the design profile, the depth of the cutting tool and the material that has to be removed.

DREDGEPACK[®] runs on cutter suction, hopper, excavator and bucket-style dredges. It can store a history of the dredge's position, draft, digging tool depth and digging status in order to meet reporting requirements. DREDGEPACK[®] has been designed to run with a minimum of user intervention. Make sure you are maximizing your dredge's efficiency with DREDGEPACK[®]




HYPACK, Inc. 56 Bradley St. Middletown, CT 06457 Phone: 860-635-1500 Web: www.hypack.com Sales: sales@hypack.com

HYSWEEP[®]

HYSWEEP[®] is an optional module that integrates the collection and processing of multibeam and multiple transducer sonar systems into **HYPACK**[®]. Time and again, surveyors switch to HYSWEEP[®] due to the powerful tools and the ease-of-use of the package. Survey data collected in **HYSWEEP**[®] is fully integrated with the final products of **HYPACK**[®]. More surveyors use **HYSWEEP**[®] for multibeam data collection and processing than any other multibeam software package.

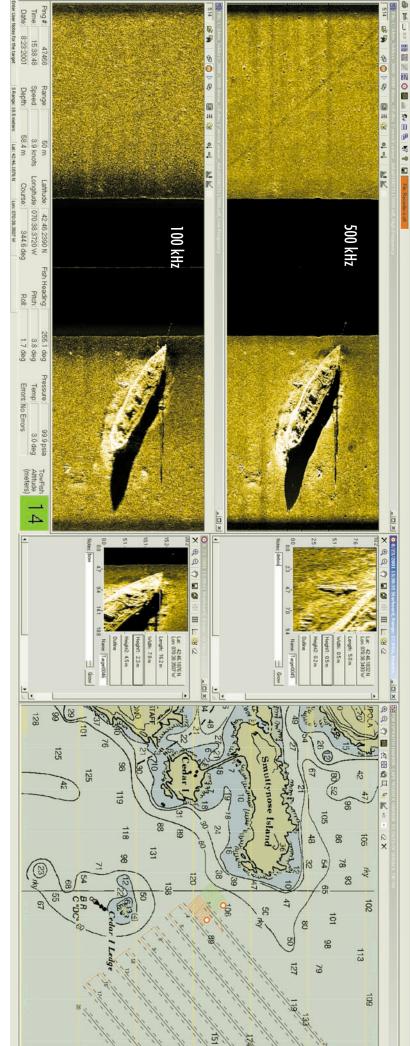
HYSWEEP® SURVEY: The data collection program of **HYSWEEP®** runs simultaneously with the SURVEY program of **HYPACK®**. It provides real time display, QC functions and data logging for most commercially available multibeam systems, including those from Atlas, Odom, Reson, Sea Beam and Simrad. A coverage map lets you examine the bottom coverage in real time, ensuring that you have 100% or 200% coverage before leaving the area.

MULTIBEAM EDITING: Multibeam data editing, sonar alignment calibration and system performance testing are all provided in the powerful MUL-TIBEAM EDITOR of **HYSWEEP**[®]. The program performs automatic or manual filtering, using geometric and statistical methods. It also contains the Performance Test that measures the overall performance of your system versus beam angle as required by USACE. **HYSWEEP**[®] can also use water level corrections created from RTK GPS elevations.

communications

Klein Associates, Incl

000


KLEIN SYSTEM 3000 www.kleinsonar.c

11 Klein Drive, Salem, N.H. 03079-1249, U.S.A. Phone: (603) 893-6131 Fax: (603) 893-8807 E-mail: sales@L9com.com Web.sife: www.L-3Klein.com

ein System 3000 Side Scan Sonar he difference is in the Image!"

Klein Associates, Inc.'s, new System 3000 presents the latest technology in digital side scan sonar imaging. The simultaneous dual frequency operation is based on new transducer designs as well as the high resolution circuitry recently developed for the Klein multi-beam focused sonar. The System 3000 performance and price is directed to the commercial, institutional, and governmental markets.

ADVANCED SIGNAL PROCESSING AND TRANSDUCERS PRODUCE SUPERIOR IMAGERY COST EFFECTIVE, AFFORDABLE PC BASED OPERATION WITH SONARPRO® SOFTWARE, DEDICATED TO KLEIN SONARS SMALL, LIGHTWEIGHT, AND SIMPLE DESIGNS -EASY TO RUN AND MAINTAIN EASILY ADAPTED TO ROVS, AND CUSTOM TOWFISH

SPECIFICATIONS

Towfish Frequencies Transmission Pulse Beams Beam Tilt Range Scales Maximum Range Doch Pating	i kHz, +/- 1% act.) µsecs. 9 500 kHz	Klein Sonar WorkstationWindows NT®, 2000®, XP® or equiv.Basic Operating SystemSonarPro®Data FormatSDF or XTF or both selectableData StorageInternal hard drive,Optionaloptional devices availableHardwareIndustrial PC with technicallyoptionsOptional waterproof laptops available	SonarPro® Software Custom developed software by users and for users of Klein side scan sonar systems operating on Windows NT®, 2000® & XP®. Field proven for many years on Klein's Multi-Beam Focused Sonar Series 5000 Systems and adapted to the System 3000 single-beam system. SonarPro® is a modular package com- bining ease of use with advanced sonar features. Basic Modules Main Program, Data Display, Information, Target Management, Novigation, Data Recording & Playing, and Sanor Display.	and for users of Klein side scan sonar systems operati oven for many years on Klein's Multi-Beam Focused S tem 3000 single-beam system. SonarPro® is a modul ar features. Main Program, Data Display, Information, Target Management, Navigation, Data Recording & Playing and Sensor Display.
Beams	Horizontal - 0./ deg. @ 100 kHz, 0.21 deg. @ 500 kHz Vertical - 40 deg.		bining ease of use with advanced so	ır features.
Beam Tilt	5, 10,15, 20, 25 degrees down, adjustable		Basic Modules	Main Program, Do
Range Scales	15 settings - 25 to 1,000 meters			Management, No
Maximum Range				and Sensor Displ
Depth Rating			Multiple Display Windows	Permits multiple windows to view different features as well as
Construction	Stainless Steel	Tow Cables	-	taraets in real time or in plavback modes
Size	122 cm long, 8.9 cm diameter	Klein offers a selection of coaxial, Kevlar® reinforced, liahtweiaht cables,		Multi-Windows for sonar channels, navigation, sensors,
Weight	29 kg in air	double armored steel cables, and interfaces to fiber optic cables. All		status monitors, targets, etc.
Standard Sensors	Roll, pitch, heading	cables come fully terminated at the towfish end.	Survey Design	Quick & easy survey set up with ability to change parameters,
Options	Magnetometer Interface, pressure, Acoustic Positioning Responder,			set tolerances, monitor actual coverage, and store settings.
	and Responder Interface Kits		Target Management	Independent windows permitting mensuration, logging, comparisons filing descification positioning time & survey
Transceiver Processor Unit (TPU)	PU)	0		target layers, and feature enhancements. Locates target in
Operating System	vxWorks® with custom application	5		navigation window.
Basic Hardware	19-inch rack or table mount, VME bus structure		Sensor Window	Displays all sensors in several formats (includes some alarms) and
Outputs	100 Base-Tx, Ethernet LAN			responder set up to suit many frequencies and ping rates.
Navigation Input	NMEA 0183	communications	Networking	Permits multiple, real time processing workstations via a
Power	120 watts @ 120/240 VAC, 50/60 Hz	Klein Associates, Inc.	•	LAN including "master and slave" configurations.
Interfacing	Interfaces to all major Sonar Data Processors	11 Klein Drive Schem N H 03079-1749 11 S A	"Wizards"	To help operator set up various manual and default parameters.
Options	Splash proof packaging option available		Data Comparisons	Tarnet and route comparisons to historical data

SonarPro® is a registered trademark of Klein Associates, Inc. Windows NT, 2000 7 XP, vxWorks, and Kevlar - are registered trademarks of Microsoft Corp., Wind River Systems, Inc., and DuPont - respectively,

E-mail: sales@L-3com.com Web site: www.L-3Klein.com Phone: (603) 893-6131 Fax: (603) 893-8807

Data Comparisons

Target and route comparisons to historical data.

Options

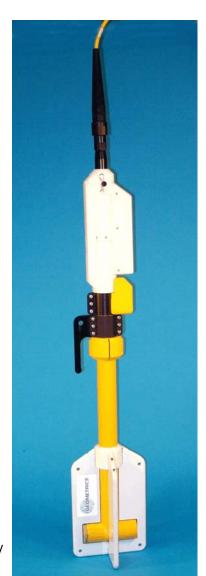
Splash proof packaging option available

G-882 MARINE MAGNETOMETER

- CESIUM VAPOR HIGH PERFORMANCE Highest detection range and probability of detecting all sized ferrous targets
- **NEW STREAMLINED DESIGN FOR TOW SAFETY Low** probability of fouling in lines or rocks
- NEW QUICK CONVERSION FROM NOSE TOW TO CG TOW -Simply remove an aluminum locking pin, move tow point and reinsert. New built in easy carry handle!
- NEW INTERNAL CM-221 COUNTER MODULE Provides Flash Memory for storage of default parameters set by user
- **NEW ECHOSOUNDER / ALTIMETER OPTION**
- NEW DEPTH RATING 4,000 psi !
- HIGHEST SENSITIVITY IN THE INDUSTRY 0.004 nT/Hz RMS with the internal CM-221 Mini-Counter
- EASY PORTABILITY & HANDLING no winch required, single man operation, only 44 lbs with 200 ft cable (without weights)
- COMBINE TWO SYSTEMS FOR INCREASED COVERAGE -Internal CM-221 Mini-Counter provides multi-sensor data concatenation allowing side by side coverage which maximizes detection of small targets and reduces noise

Very high resolution Cesium Vapor performance is now available in a low cost, small size system for professional surveys in shallow or deep water. High sensitivity and sample rates are maintained for all applications. The well proven Cesium sensor is combined with a unique and new CM-221 Larmor counter and ruggedly packaged for small or large boat operation. Use your computer and standard printer with our MagLogLite[™] software to log, display and print GPS position and magnetic field data. The G-882 is the lowest priced high performance full range marine magnetometer system ever offered.

The G-882 offers flexibility for operation from small boat, shallow water surveys as well as deep tow applications (4,000 psi rating, telemetry over steel coax available to 10Km). The G-882 also directly interfaces to all major Side Scan manufacturers for tandem tow configurations. Being small and lightweight (44 lbs net, without weights) it is easily deployed and operated by one person. But add several streamlined weight collars and the system can quickly weigh more than 100 lbs. for deep tow applications. Power may be supplied from a 24 to 30 VDC battery power or the included 110/220 VAC power supply. The tow cable employs high strength Kevlar


strain member with a standard length of 200 ft (61 m) and optional cable length up to 500m with no telemetry required.

A rugged fiber-wound fiberglass housing is designed for operation is all parts of the world allowing

sensor rotation for work in equatorial regions. The shipboard end of the tow cable is attached to an included junction box or optional on-board cable for guick and simple hookup to power and output of data into any Windows 98, ME, NT, 2000 or XP computer equipped with RS-232 serial ports.

The G-882 Cesium magnetometer provides the same operating sensitivity and sample rates as the larger deep tow model G-880. MagLogLite™ Logging Software is offered with each magnetometer and allows recording and display of data and position with Automatic Anomaly Detection and automatic anomaly printing on Windows™ printer! Additional options include: MagMap2000 plotting and contouring software and post acquisition processing software MagPick[™] (free from our website.)

The G-882 system is particularly well suited for the detection and mapping of all sizes of ferrous objects. This includes anchors, chains, cables, pipelines, ballast stone and other scattered shipwreck debris, munitions of all sizes (UXO), aircraft, engines and any other object with magnetic expression. Objects as small as a 5 inch screwdriver are readily detected provided that the sensor is close to the seafloor and within practical detection range. (Refer to table at right).

The design of this high sensitivity G-882 marine unit is directed toward the largest number of user needs. It is intended to meet all marine requirements such as shallow survey, deep tow through long cables, integration with Side Scan Sonar systems and monitoring of fish depth and altitude.

Typical Detection Range For Common Objects

Ship 1000 tons Anchor 20 tons Automobile Light Aircraft Pipeline (12 inch) Pipeline (6 inch) 100 KG of iron 100 lbs of iron 1 lb of iron Screwdriver 5 inch 1000 lb bomb 500 lb bomb Grenade 20 mm shell $\begin{array}{l} 0.5 \ \text{to} \ 1 \ \text{nT} \ \text{at} \ 800 \ \text{ft} \ (244 \ \text{m}) \\ 0.8 \ \text{to} \ 1.25 \ \text{nT} \ \text{at} \ 400 \ \text{ft} \ (120 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 100 \ \text{ft} \ \ (30 \ \text{m}) \\ 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 400 \ \text{ft} \ (12 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 400 \ \text{ft} \ (12 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 400 \ \text{ft} \ (12 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 400 \ \text{ft} \ (12 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 200 \ \text{ft} \ (60 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (50 \ \text{m}) \\ \hline 1 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (50 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 1 \ \text{nT} \ \text{at} \ 300 \ \text{ft} \ (9 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 1 \ \text{nT} \ \text{at} \ 100 \ \text{ft} \ (3 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 100 \ \text{ft} \ (30 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 5 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (16 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (16 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (16 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \\ \hline 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \ \ 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \ \ 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \ \ 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \ \ 0.5 \ \text{to} \ 2 \ \text{nT} \ \text{at} \ 500 \ \text{ft} \ (18 \ \text{m}) \ \ 0.5 \ \text{to} \ 10 \ \text{nT} \ \text{at} \ 500 \ \text{nT} \ \text{at} \ 500 \ \text{nT} \ \text{at} \ 10 \ \text{nT} \$

MODEL G-882 CESIUM MARINE MAGNETOMETER SYSTEM SPECIFICATIONS

OPERATING PRINCIPLE:	Self-oscillating split-beam Cesium Vapor (non-radioactive)	
OPERATING RANGE:	20,000 to 100,000 nT	
OPERATING ZONES:	The earth's field vector should be at an angle greater than 6° from the sensor's equator and greater than 6° away from the sensor's long axis. Automatic hemisphere switching.	
CM-221 COUNTER SENSITIVITY:	<0.004 nT/ \sqrt{Hz} rms. Up to 20 samples per second	
HEADING ERROR:	\pm 1 nT (over entire 360° spin)	
Absolute Accuracy:	<2 nT throughout range	
Ουτρυτ:	RS-232 at 1,200 to 19,200 Baud	
MECHANICAL:		
Sensor Fish:	Body 2.75 in. (7 cm) dia., 4.5 ft (1.37 m) long with fin assembly (11 in. cross width), 40 lbs. (18 kg) Includes Sensor and Electronics and 1 main weight. Additional collar weights are 14lbs (6.4kg) each, total of 5 capable	
Tow Cable:	Kevlar Reinforced multiconductor tow cable. Breaking strength 3,600 lbs, 0.48 in OD, 200 ft maximum. Weighs 17 lbs (7.7 kg) with terminations.	
OPERATING TEMPERATURE:	-30°F to +122°F (-35°C to +50°C)	
STORAGE TEMPERATURE:	-48°F to +158°F (-45°C to +70°C)	
ALTITUDE:	Up to 30,000 ft (9,000 m)	
WATER TIGHT:	O-Ring sealed for up to 4,000 psi (9000 ft or 2750 m) depth operation	
Power:	24 to 32 VDC, 0.75 amp at turn-on and 0.5 amp thereafter	
Accessories:		
Standard:	View201 Utility Software operation manual and ship kit	
Optional:	Telemetry to 10Km coax, gradiometer (longitudinal or transverse), reusable shipping case	
MagLog Lite™ Software:	Logs, displays and prints Mag and GPS data at 10 Hz sample rate. Automatic anomaly detection and single sheet Windows printer support	

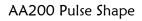
SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

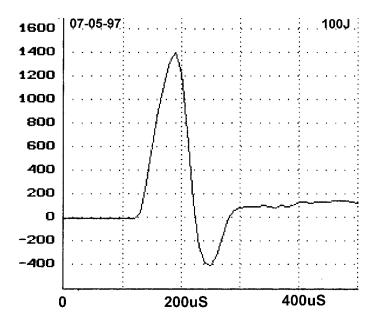
1ETF

	GEOMETRICS, INC.	2190 Fortune Drive, San Jose, California 95131
		408-954-0522 Fax 408-954-0902 Internet: sales@mail.geometrics.com
RICS	GEOMETRICS Europe	Manor Farm Cottage, Galley Lane, Great Brickhill, Bucks, England MK179AB 44-1525-261874 Fax 44-1525-261867
	GEOMETRICS China	Laurel Industrial Co. Inc Beijing Office, Room 2509-2511, Full Link Plaza #18 Chaoyangmenwai Dajie, Chaoyang District, Beijing, China 100020 10-6588-1126 (1127, 1130), 10-6588-1132 Fax 010-6588-1162

12/03

AA200 BOOMER PLATE AND CAT200 CATAMARAN




The Model AA200 is a proven design in boomer plates which encompasses precision moulding techniques to give a rugged design with a stable and repeatable signature. Designed specifically for use with our CSP range of energy sources, (although others can be used) the efficiency of the AA200 transducer ensures high output with an excellent pulse shape.

Designed for ease of use in the real world offshore, we have ensured that the flying lead connectors can be replaced in the field in case of damage. Diaphragm replacement is also straightforward. The lightweight design allows easy transportation. The unit is shown fitted to our 'CAT200' small sized catamaran which has been praised for its towing characteristics. Spectral content information is available.

- Small Size and weight
- Repeatable high output pulse
- Rugged mechanical design
- Proven Performance

Size	: 38cm x 38 cm x 5cm thick 9cm including connectors.
Weight in air / water	: 18 / 10 kg.
Fixing centres	: 31.5cm square.
Recommended use	: 100-200J / shot.
Maximum energy input	: 300J / shot.
Source Level	: 215dB re 1uPa @1m at 200J.
Pulse Length	: See graph below.
Reverberation	: <1/10 x initial pulse.
Connector type	: Joy plug male & female.

Part of our integrated Sub-bottom Profiler system. Sample data is available upon request.

December 200[°]

Marine House, Marine Park, Gapton Hall Road, Great Yarmouth, NR31 0NL, England Tel: + 44 (0) 1493 440355 Fax: + 44 (0) 1493 440720 www.appliedacoustics.com email: general@appliedacoustics.com

Due to continual product improvement these specifications may be subject to change without notice.

760 Geophysical Acquisition System

The simple digital solution for simultaneous sidescan and sub-bottom profiler

The OCTOPUS 760 GEOPHYSICAL ACQUISITION SYSTEM is an all-new multi-channel acquisition package for sidescan sonar and sub-bottom profiler in a single instrument.

Building on the reputation of the industry leading Octopus 360 Sub-Bottom Processor and the 460 Sonar Acquisition Systems, the 760 brings the Octopus geophysical acquisition range right up to date, whilst retaining the simplicity of operation and rugged, reliable design familiar to Octopus users around the world.

Combining Octopus design philosophy focussing on ease of use, with the latest hardware and software and technology, the 760 guarantees compatibility with other systems and peripherals. Incorporating a large high resolution display and the familiar Octopus key-driven user interface in a rugged instrument, the 760 is simple to use in all survey scenarios and is ideally suited to use on small and large vessels alike. Adopting the latest features and familiarity of Windows XP⁺ in an instrument package provides all of the benefits with none of the problems. With a simple layout taken from the existing 360 and 460, the 760 combines ease of use with maximum flexibility and performance. Designed and packaged specifically for geophysical acquisition, the 760 is ready to use out-of-the-box and requires minimal training and no special hardware configuration, whilst the optional in-built UPS capability guards against power failure ensuring all data is kept safe. Adding optional internal GPS makes the 760 fully self-contained, for added simplicity.

The Octopus 760 is compatible with all standard sidescan sonars, including the latest digital towfish, and all standard sub-bottom profilers, pingers, boomers, sparkers and chirp, in one compact package.

FEATURES

- 4 channel analogue sidescan acquisition
- 2 channel analogue sub-bottom acquisition
- Analogue output
- Dual SIMULTANEOUS sidescan and sub-bottom acquisition
- Simultaneous display of sidescan and sub-bottom
- Asynchronous sidescan and subbottom trigger timing
- Standard formats, XTF, SEGY, CODA, GeoPro
- Internal recording to hard disk and DVD RAM disks
- Simple 7-key interface
- Serial inputs for navigation and standard fix strings
- High resolution 15" screen
- High speed network connectivity
- 19" rack mountable or freestanding
- Supports all standard printers
- In-built UPS

BENEFITS

- Simple to use
- Reduced operating costs
- Reduced hardware
- Minimal user training
- Maximum flexibility
- Fully compatible with all popular post processing systems
- Extends the life of analogue sonars
- Data stored internally is easily and quickly downloaded

CodaOctopus Ltd www.codaoctopus.com

sales@codaoctopus.com tell +44 (0)131 553 1380 OR +44 (0)1869 337570 **24hr support:** USA +1 888 340 CODA; **worldwide** +44 (0) 131 553 7003;support@codaoctopus.com

760 Geophysical Acquisition System **Technical Specification**

INPUTS AND C					
	760 Standard - single acquisition card.	760 Dual Acquisition - as standard 760 with the following additional features.			
	Note: With single acquisition card, the 760 is user configurable for sub-bottom or sidescan acquisition.				
	With dual acquisition cards, the 760 supports simult	aneous sub-bottom and sidescan sonar acquisition.			
Analogue inputs	4 independent 16 bit channels scalable from 125mV to 5V configurable as 4 x sidescan sonar OR 1 x sub-bottom + analogue heave input	2 independent 16 bit channels scalable from 125mV to 5V configured as 1 x sub-bottom + analogue heave input.			
Analogue outputs	2 analogue outputs, selectable source, synchronous with trigger out.	1 analogue output, synchronous with trigger out.			
Trigger input	Single trigger input with variable threshold, synchronises all channels.	Single trigger input with variable threshold. Can operate asynchronously to main trigger.			
Trigger outputs	Internal trigger (5v) user selectable range, 25- 1000m. Delayed trigger synced to start of sub- bottom acquisition.	Internal trigger (5v), user selectable range 50 – 1000mS. Delayed trigger synced to start of sub-botton acquisition.			
Navigation & fix data	2 x RS232 serial inputs (9 pin D-type) for NMEA navigation (GGA, GLL, VTG, RMC etc.) or Octopus fix and annotation strings. Additional inputs on request.				
GPS	Optional in-built GPS (with DGPS and/or WASS) for fully self contained operation. Antenna connection at rear. Available mid 2004				
Printer interfaces	Centronics (25 way D-type) interface for EPC, Ultra and Isys printers. SCSI interface for Alden/GeoPrinter (SCSI interface optional)				
Network	10/100/1000 MbitS ⁻¹ Ethernet interface (RJ45).				
Other interfaces	USB x 2 (standard) SCSI II (optional), others a vailable on request.				
DATA RECOR	DING				
Recording devices	Internal 2.5" shock mounted hard disk (60Gb) Single DVD RAM/CD-R drive as standard. Optional second DVD RAM/CD-R. Other devices such as DAT, removable HDD etc. available on request.				
Recording formats	Sidescan sonar – XTF, Coda, GeoPro Sub-bottom profiler – SEGY, Coda, XTF All data is recorded raw (without gain or processing applied).				
DISPLAY MOD	ES				
Sidescan	Up to 4 channels of sidescan in vertical scrolling wa All gain and processing controls on-screen.	terfall display with co-registered oscilloscope.			
Sub-bottom	Single channel sub-bottom profiler display, horizontal scrolling with co-registered oscilloscope display. Pan and zoom functions for optimum data view. All gain and processing controls on-screen.				
Dual format	Simultaneous vertically scrolling sidescan AND horizontally scrolling sub-bottom.				
Navigation	All navigation, fix, annotation and status information	shown on all screens.			
CONTROLS					
User Interface	Familiar Octopus 7 key interface allowing quick and easy navigation to all functions without the need for a mouse. Arrow keys snap between groups of controls and allow selection of specific functions. Y & N keys allow settings to be saved or cancelled. PAGE key allows rapid selection of display screens.				
PROCESSING					
Sidescan	Channel-independent gain & TVG. Bottom tracking, slant-range correction.				
Sub-bottom	Gain, three stage TVG, high & low pass time varied filters (TVF), time varied stacking, swell compensation (automatic or external heave input).				
PHYSICAL					
Dimensions	443mm(w) x 355mm(h) x 235mm(d) (19" rack comp	atible).			
Weight	15kg				
Power	90-250Vac 47-400Hz, 200Watts. Optional 24Vdc				
	Automatic power management and controlled-shutdown. In-built UPS capability further guards against power loss. NB. requires optional 24V battery pack in place of second DVD drive				
Construction	Rugged but lightweight aluminium chassis with anodised front panel				
	High-brightness 15" TFT screen, 1024x768 resolution				

www.codaoctopus.com sales@codaoctopus.com Edinburgh tel +44 (0)131 553 1380 fax +44 (0)131 554 7143 Oxford +44 (0)1869 337570 fax +44 (0)1869 337571 24hr support: USA +1 888 340 CODA; worldwide +44 (0) 131 553 7003; <u>support@codaoctopus.com</u>

A **Means** product. We reserve the right to change equipment specifications without notice.

MODEL MP-1086 Multi-Purpose Recording System

The EPC Model MP-1086 is a multi-purpose recording system that serves as a continuous gray scale printer, analog tow fish interface, mass storage device, and signal processor.

Photographic quality images are produced using the direct thermal printing expertise that has made EPC the industry leader in this field. The analog tow fish interface allows users to connect commonly used side-scan sonars directly to the MP-1086, with no need for external components. Data can be easily logged for post processing directly to the removable disk or sent to a network server for storage.

Real-time acquisition is robust. By incorporating slant range correction, speed correction, TVG, band-pass filtering, and GPS/NMEA decoding, the MP1086 provides a total top-side solution. So, forget about all those extra boxes and cables — the MP1086 Recording System has everything you need.

HARDWARE

CPU Bus 32 Bit PCI/ISA Bus Control Panel Sealed membrane type, software defined Displays Twin 2x40 LCD displays, LED backlights

POWER

Power Supply 350 Watt, auto-sensing, universal input 84-265 VAC, 50-60 Hz Power Consumption 80 Watts non-printing 130 Watts Peak

PHYSICAL

Dimensions & Weight 17.6"W x 23.1"H x 8.9"D 55 LBS. Media Heat sensitive thermal paper or high grade plastic film - 23dB dynamic range Paper Length: 150 feet Film Length: 130 feet Temperature (non-condensing) 0°C to 65°C - Operating -28°C to 65°C - Storage

PRINTING

Gray Levels & Resolution Selectable: 2, 16, 64, 256 Levels Printhead: 2048 Pixels @ 203 DPI Maximum Line Speeds (nominal) @ 2 Shades: 12 ms @ 16 Shades: 14 ms @ 64 Shades: 42 ms @ 256 Shades: 170 ms Chart Speeds (Lines Per Inch) Fixed: 80, 100, 120, 150, 200, 240, 300 Variable: Preset automatically configured by speed input from gps/nav computer ACCESSORIES

ANALOG INTERFACE

Dual Signal Input 0V to 10V SIGNAL BNC inputs (2Kohm Input Impedance) External Trigger Input (slave) TTL EXT TRIG BNC with slope-sense Internal Key Output (master) TTL KEY OUT BNC with polarity selection (62.5us pulse width) Gain, Threshold, Polarity Independent controls for each channel Minimum printable signal 150 mV Time Bases High B/W A/D with 8 Bit resolution Scan - 5 ms to 10 secs, 1 ms resolution Key - 5 ms to 10 secs, 1 ms resolution Delay - 0 secs to 8 secs, 1 ms resolution

PARALLEL INTERFACE

Interconnect 25 Pin Sub D, metal shell Data Input (Pins 2-9) Eight Bit Centronics Compatible 2048 bytes per raster line Burst Rate Bandwidth: Over 250 kHz Sustained Bandwidth: Based on gray levels

NETWORK INTERFACE

Interconnect RJ-45 on front panel Method Winsock type Socket Interface for data & commands. High-level programmer's API available

COMMAND INTERFACE

QWERTY Keyboard Jack for commands and annotation RS-232 Serial Data Input (DCE) 9 Pin Sub 'D' for commands and GPS RJ-45 for Socket/Ethernet API

Top Cover Assembly (optional) Custom mini keyboard Water proof, Heavy duty keyboard (optional) Rack mount kit (optional) Spares kit (optional)

ENHANCED ANALOG FEATURES

Time Varied Gain 255 Logarithmic curves to choose from **Band** Pass Filtering LOW PASS: 1kHz, 1.2kHz, 2kHz, 2.4kHz, 3kHz, 4kHz, 6 kHz, 12 kHz

HIGH PASS: 83Hz, 100Hz, 166Hz, 200Hz, 250Hz, 333Hz, 500Hz, and 1kHz

TOW FISH OUTPUTS

E-type High Voltage 750Vdc short circuit proof indefinately E-Type Trigger Pulse 100kHz-+12V pulse duration 125us 500kHz-+12V pulse duration 250us E-Type Compatibility Edgetech 272T ans 272TD E-Type Connector Amp MS3102E20 EG&G 259, 960 & 260

K-Type High Voltage 750Vdc short circuit proof indefinately K-Type Trigger Pulse 12-15Vdc carrier with riding 12V pulse Pulse duration 1ms K-Type Compatibility Klein 100kHz, 500kHz or dual frequency K-Type Connector Amp MS3102E22-19 (Klein 595)

DIGITAL DATA PROCESSING

Slant Range Correction Controls for bottom tracking algorithm, and fish height alarm.

STORAGE

High Capacity Removable Disk DVD Ram, IDE hard drive Storage Format XTF (standard) SEGY, RAW (consult EPC)

Warranty: One Year Limited Parts & Labor. Specifications subject to change.

EPC LABORATORIES INC., 42A Cherry Hill Drive, Danvers, MA 01923 USA PHONE: (978) 777-1996 FAX: (978) 777-3955 EMAIL: sales@epclabs.com WEB: http://www.epclabs.com

APPENDIX G

Data Processing and Analysis Methods

Navigation Files Side Scan Sonar Imagery Magnetic Intensity Measurements Seismic Reflection Profile Data

DATA PROCESSING AND ANALYSIS METHODS

Navigation Files

Upon completion of the field work, the digital files of vessel position were processed using HYPACK[®] software to facilitate post-survey reconstruction of vessel tracklines to assist data interpretation. Event marks generated by HYPACK[®] during the field survey are plotted along each track and correlate all data by vessel position and time. These event marks are spaced 200 feet apart and are sequentially numbered throughout the duration of the entire field investigation. Events are stored digitally in the HYPACK[®] navigation files as well as printed on all hard copy data records.

USACE Depth Data

Processed x, y, z hydrographic data were provided by the USACE from previous surveys in Portsmouth Harbor. Data were provided in a final processed format, having been tide adjusted and refenced to the MLLW datum by the USACE. These data points were input to QuickSurf digital terrain modeling software (Schreiber Instruments, Inc.) operating within the AutoCAD 2004 program to generate depth contours of the harbor floor. The points were first used to develop a bottom surface within QuickSurf then contoured using the TIN-GRID method. Contours were generated at a 1 foot interval and presented in a plan view format on the final drawings.

Side Scan Sonar Imagery

During interpretation of the side scan sonar records, areas on the seabed exhibiting different acoustical properties were identified and mapped. The variation in acoustical characteristics on the bottom represents changes in surficial lithology and/or the presence of benthic communities and foreign material. Areas of large natural seabed features were identified by the increased topographic relief and morphologic variations observed on the records. In particular, areas of different surficial lithology of importance to the project were plotted on the plan view drawings. In general, coarser and harder materials show increased reflectivity whereas finer sediments exhibit weaker reflective characteristics.

Imagery were also reviewed to identify individual acoustic targets representative of natural or man made objects resting on the bottom. An object exhibiting some relief (or height) above the bottom will generate a strong reflection on the sonar image from the side of the object facing the side scan towfish. Shape and textures associated with an object may be interpreted, depending on the acoustic signal angle of incidence, geometry of the object, line orientation with respect to the object, and site conditions at the time of the survey, among other variables.

Files were reviewed and targets picked using the Klein SonarPro software which was also used for acquisition. The SonarPro software files apply the proper sensor layback and ground range correction when positioning a target on the bottom. Individual acoustic targets identified have been compiled and described in detail in an ExCel spreadsheet. These targets are also plotted on a plan view drawing of the site relative to mapped surificial materials and magnetic anomalies.

Magnetic Intensity Measurements

Digital records of the magnetic data were reviewed using HYPACK[®] software to determine the presence of ferrous material on or below the harbor floor. Anomalous readings above the geologic background gradient were identified. Anomalies are essentially a disturbance in the earth's total magnetic field, created by a more pronounced local field generated by a ferrous object. The object's local, induced field causes a deviation of the earth's total field in its immediate vicinity which is measured by the sensor passing nearby. The magnetic anomalies were then plotted in their proper location on the plan view trackline sheets taking layback of the sensor into account. The magnetic anomalies have been presented on the final drawings in plan view format and also summarized in detail in an ExCel spreadsheet included at the end of this report.

Seismic Reflection Profile Data

The processed navigation data were used to generate a plan view survey trackline sheet as part of the overall review of seismic reflection coverage and subsurface conditions. Digital seismic data was imported to the seismic processing program REFLEXW (Sendmeier Software) Version 2.5 for analysis, interpretation, final data formatting. REFLEXW is a 32

bit software package running in a Windows 2000 environment. Since raw seismic reflection data is measured in time travel of the acoustic signals, a time to distance/depth conversion is required. Acoustic velocities for subsurface layers can be obtained directly from seismic refraction methods or assumed from physical sampling of materials. Historical research shows most marine sediment types and compositions fall into certain velocity ranges. In the absence of geotechnical information, an average acoustic sediment velocity of 5,000 feet per second was used for this project, a typical value for saturated marine sediments tending toward the finer grain sizes.

The seismic reflector depths or sediment thicknesses were exported by the REFLEXW program in a x, y, z format and imported to the QuickSurf digital terrain modeling software. A surface was developed for the sediment thickness "z" value interpreted from the seismic profiles, which was then added to the USACE MLLW depth surface to obtain a final subbottom surface referencing the reflector to the project datum, MLLW. In this manner, depths to the primary acoustic basement reflector were developed relative to the project datum. The final surface was contoured using the TIN-GRID method at a 1 foot interval and presented in plan view on a final drawing.