DRAFT INTEGRATED FEASIBILITY REPORT AND EIS PUBLIC HEARING

Corps of Engineers, New England District

October <u>23 and 24, 2018</u>

NON-FEDERAL SPONSORS
New Haven Port Authority
Connecticut Port Authority

NEW HAVEN HARBOR

FEASIBILITY STUDY PROGRESS

SCOPING

ALTERNATIVE FORMULATION & ANALYSIS

ALTERNATIVES MILESTONE

Vertical Team concurrence on Array of **Alternatives** April 7, 2017

TENTATIVELY SELECTED PLAN (TSP) MILESTONE

April 28, 2018

FEASIBILITY-LEVEL ANALYSIS

AGENCY DECISION MILESTONE

Jan. 2019

CHIEF'S **REPORT**

4 Final Recommended Plan/EIS

REPORT Nov. 2019

CHIEF'S

5

Sept. 2019

Conducting Concurrent Reviews

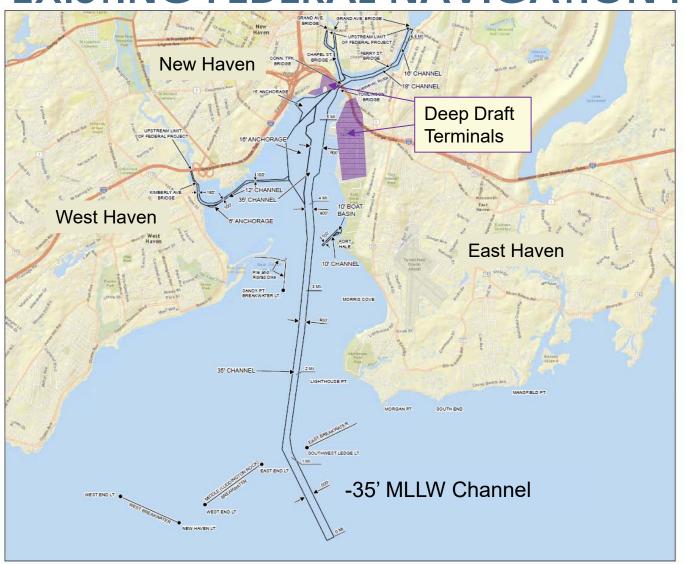
- **IEPR**
- ATR
- Public (Public Hearings October 23 and 24, **Public Comments Due November 15)**

NON-FEDERAL SPONSOR

- New Haven Port Authority
 - Non-Federal Sponsor for Study
- Connecticut Port Authority
 - Partner and Provided Study Funding
- Study Cost Shared 50% Federal 50% Non-Federal

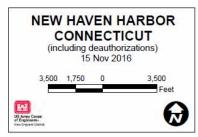
STUDY AUTHORITY

- Legislative authority for the study of New Haven Harbor, Connecticut, is contained in a resolution by the United States Senate Committee on the Environment and Public Works dated 31 July 2007
- The agreement to conduct study signed in December 2015 with New Haven Port

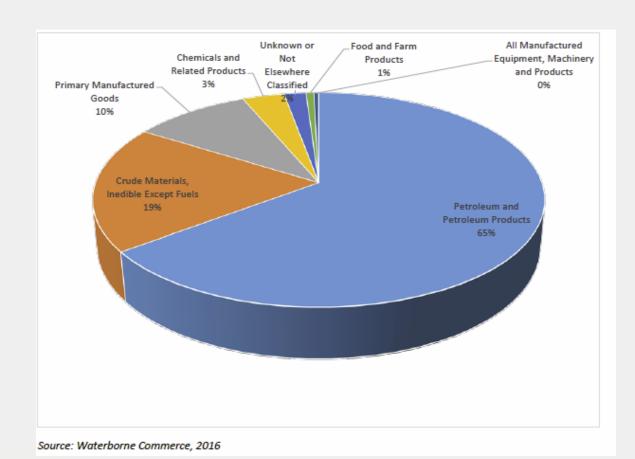

STUDY PURPOSE

Federal interest

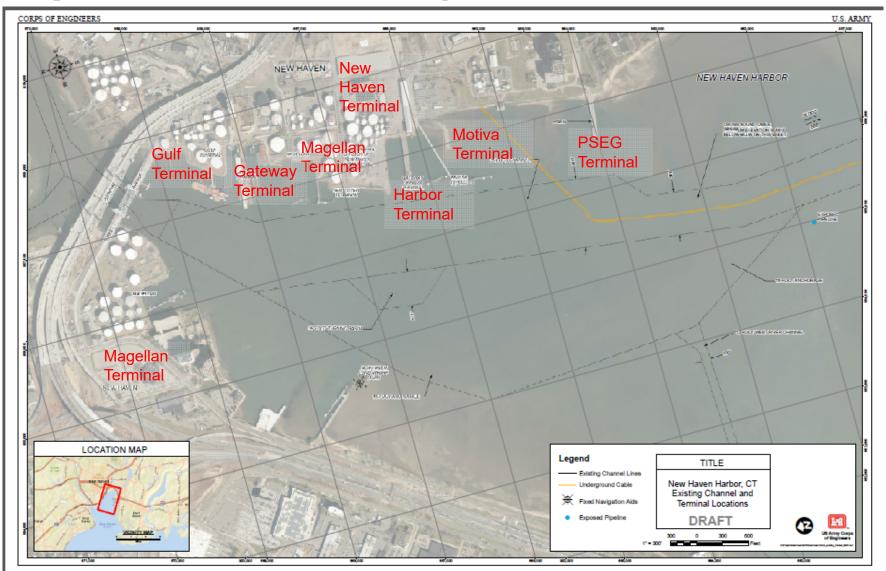
The purpose of the study is to:


- Investigate improvements needed to provide a safe, reliable, efficient, and environmentally sustainable waterborne transportation system
- Determine whether navigation improvements to the existing Federal navigation project at New Haven Harbor are warranted and in the

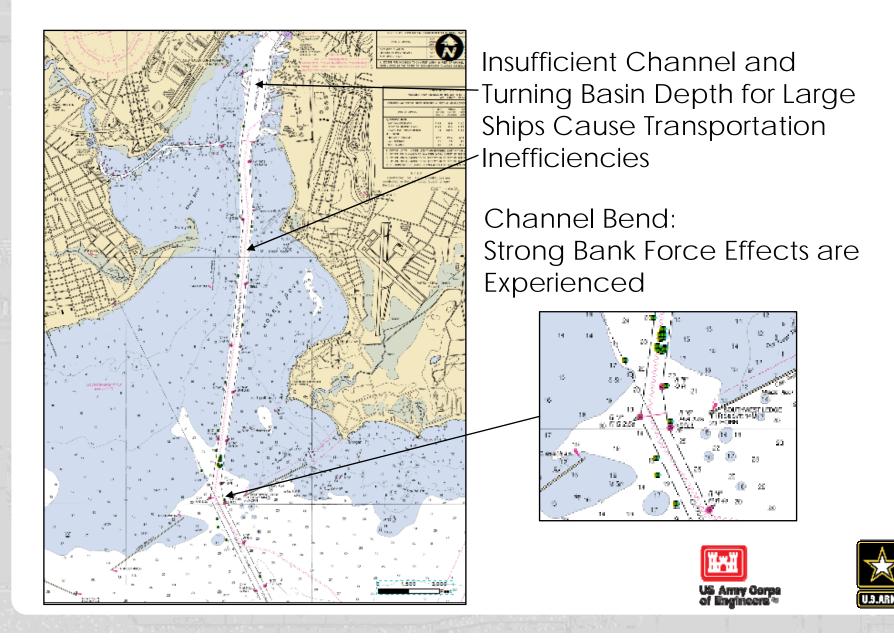
STUDY AREA - NEW HAVEN HARBOR, CT EXISTING FEDERAL NAVIGATION PROJECT

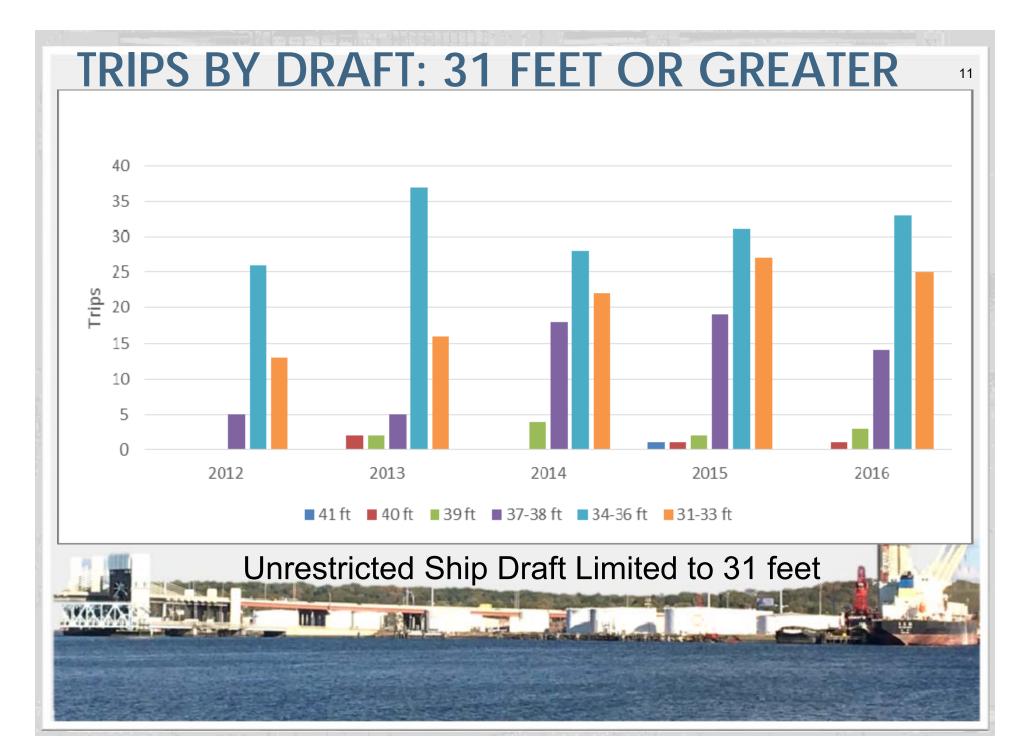


PORT - INFORMATION


- Largest Port in Connecticut
- 2nd Largest Port in New England
- Commodities:
 - Primarily Petroleum Products
 - Salt, Sand, Cement, Steel
 - Scrap metal (export)

PORT - COMMODITIES


PORT - TERMINALS



EXISTING NAVIGATION PROBLEMS

ALTERNATIVES EVALUATED

Alternative	Deepen the Channel	Inner Harbor	Outer	Width in Bend at
	and Turning Basin	Channel	Harbor	Breakwaters (Feet)
	Depth (Feet	Width (Feet)	Channel	
	MLLW)		Width (Feet)	
No Action	35	400	500	560
Alt. 1	37	500	600	Increase width to 700
Alt. 2	38	500	600	Increase width to 700
Alt. 3	40	500	600	Increase width to 700
Alt. 4	42	500	600	Increase width to 700

ALTERNATIVES QUANTITIES

Channel Design Depth	-37′	-38′	-40′	-42′
Rock	7,000	16,000	33,000	49,000
Sand (fine sand with silt)	121,000	170,000	351,000	475,000
Fines (Silt/Clay)	1,984,000	2,591,000	3,885,000	5,245,000
TOTALS	2,112,000	2,777,000	4,269,000	5,769,000

ECONOMIC EVALUATION

DDN PCX- Economic Production Center performed economic evaluation for study

 Transportation costs were estimated using HarborSym, a planning level model used to analyze the transportation costs of various waterway modifications within a harbor

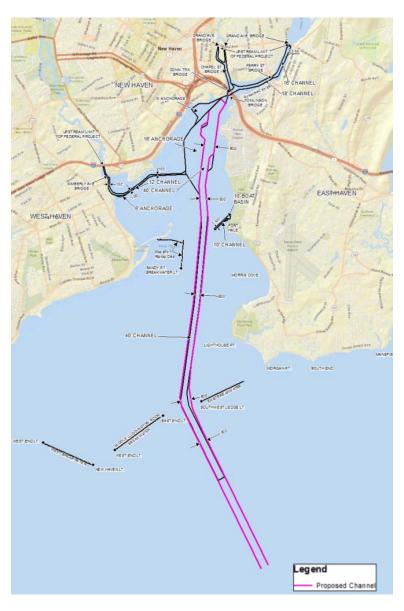
Cost savings for each plan is calculated as an Average Annual Equivalent

Alternative	AAEQ Transportation Cost	AAEQ Transportation Cost Reduction Benefit	
Future Without Project	\$64,740,000		
37-FT	\$62,033,000	\$2,707,000	
38-FT	\$62,484,000	\$2,257,000	
40-FT	\$57,771,000	\$6,970,000	
42-FT	\$57,704,000	\$7,036,000	

COMPARISONS OF COST AND BENEFITS OF ALTERNATIVES, IDENTIFICATION OF NED PLAN

Alternative	Total AAEQ Costs	Total AAEQ Benefits	Total Net Benefits	Benefit/Co st Ratio	
37-FT	\$2,432,000	\$2,707,000	\$275,000	1.1	
38-FT	\$3,060,000	\$2,257,000	-\$804,000	0.7	
40-FT	\$3,764,000	\$6,970,000	\$3,206,000	1.9	
42-FT	\$4,610,000	\$7,036,000	\$2,427,000	1.5	

SHIP SIMULATION STUDY AT ERDC TO REFINE DESIGN



TENTATIVELY SELECTED PLAN

General Navigation Features

- Deepen Channel & Turning Basin to -40 feet MLLW
- Widen the channel to 500 feet inner channel & 600 feet entrance channel
- Widen Bend at Breakwater (refined design) from 560 to 800 ft
- Turning Basin (refined design) maintain existing location and expand 200 feet to north
- Quantities:
 - 4.27 million cy of ordinary material
 - > 43,500 cy of rock

TSP SUMMARY

Reduces transportation costs

 More efficient transportation of commodities: petroleum products, gas, diesel; bulk goods, salt, steel and scrap metal etc.

Improves navigation through bend at breakwaters

Increased safety and maneuverability for the Larger ships

Promotes environmental benefits

- Dredged Material Base Plan: beneficial use of dredged material to create shellfish habitat, fill borrow pits, and cover historic disposal mounds at CLIS
- Dredged Material Beneficial Use Plan: use dredged material to create ~ 70 acres of salt marsh

Project First Cost 40 ft-Plan (Refined Design): \$65.9M

Federal Cost: \$49.4

Non-Federal Cost: \$ 16.5

AAEQ NET BENEFITS: \$ 2.63 M

AAEQ Benefits: \$ 6.97 M AAEQ Costs: \$ 4.34 M

BCR: 1.6 at 2.75%

Salt Marsh Creation (~70 acres) Incremental Project First Cost adds \$4.7M

Federal Cost: \$ 3.0

Non-Federal Cost: \$ 1.7

TSP SUMMARY FEDERAL AND NON-FEDERAL COST

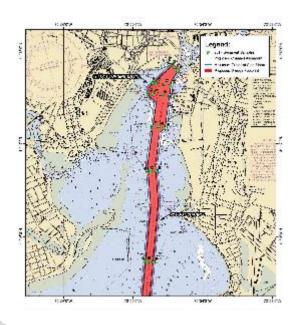
New Haven Harbor Navigation Improvement Project TSP (40-FT Plan, Refined Design)

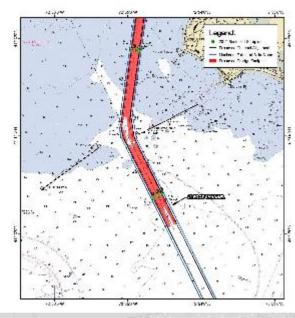
Federal and Non-Federal Cost

(October 2018 Price Level)

Item	Federal Cost	Non-Federal Cost	Total Cost				
General Navigation Feature (GNF) 75% Federal/ 25% Non-Federal							
Construction	\$44,863,000	\$14,954,000	\$59,817,000				
Planning, Engineering and Design (PED)	\$2,283,000	\$761,000	\$3,044,000				
Construction Management	\$2,283,000	\$761,000	\$3,044,000				
GNF, Construction Cost	\$49,429,000	\$16,476,000	\$65,905,000				
LERR	\$-	\$-	\$-				
Total GNF - Project First Costs	\$49,429,000	\$16,476,000	\$65,905,000				
Beneficial Use (BU) Increme	ental Cost (Salt	Marsh) 65% I	Federal / 35% Non-Federal				
Construction	\$2,613,000	\$1,407,000	\$4,020,000				
PED	\$213,000	\$115,000	\$328,000				
Construction Management	\$133,000	\$71,000	\$204,000				
LERR	\$-	\$160,000	\$160,000				
Total BU - Incremental Cost	\$2,959,000	\$1,753,000	\$4,712,000				
Total Project First Costs - GNF and BU	\$52,388,000	\$18,229,000	\$70,617,000				
Other Items							
Non-Federal Sponsor, Additional 10% Payment	\$-	\$6,590,500	\$-				
Aids to Navigation - 100% Federal – US Coast Guard	\$-	\$-	\$-				
Local Service Facilities - Port Berthing Areas 100% Non-Federal	\$-	\$2,000,000	\$2,000,000				
Cable Enforcement Action (Permit Compliance) 100% Non-Federal (CSC LLC)	\$-	\$32,648,000	\$32,648,000				

PLACEMENT ALTERNATIVES

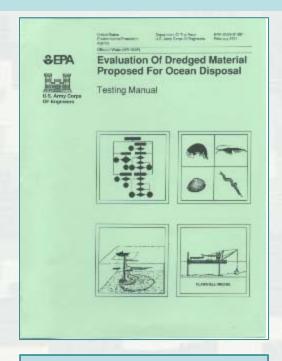

- Morris Cove Borrow Pit
- Oyster Habitat Creation behind East Breakwater
- Salt Marsh Creation at Sandy Point Dike
- Rock Placement at West Breakwater
- Cover Historic Disposal Mounds at CLDS
- Open Water Disposal at CLDS
- West River Borrow Pit
- Confined Aquatic Disposal (CAD) Cell
- Beach Placement
- Use as Fill for Coastal Resiliency Projects



SEDIMENT PHYSICAL, CHEMICAL, AND BIOLOGICAL TESTING TO DETERMINE SUITABILITY OF DREDGED MATERIAL

Vibaracore Sampling

- 8 transects
- 23 stations



R/V Candu - OSI

Determining Sediment Classification

Contaminant History
Sediment Chemistry
Water Column
Toxicity
Bioaccumulation
Risk Evaluation

- Suitability for placement of dredged material follows the EPA/Corps testing Manual and the Regional Implementation Manual
- Testing Procedures examine the two pathways for contamination: impacts on the water column and impacts on benthic organisms that live in sediment and form the basis for the food chain.

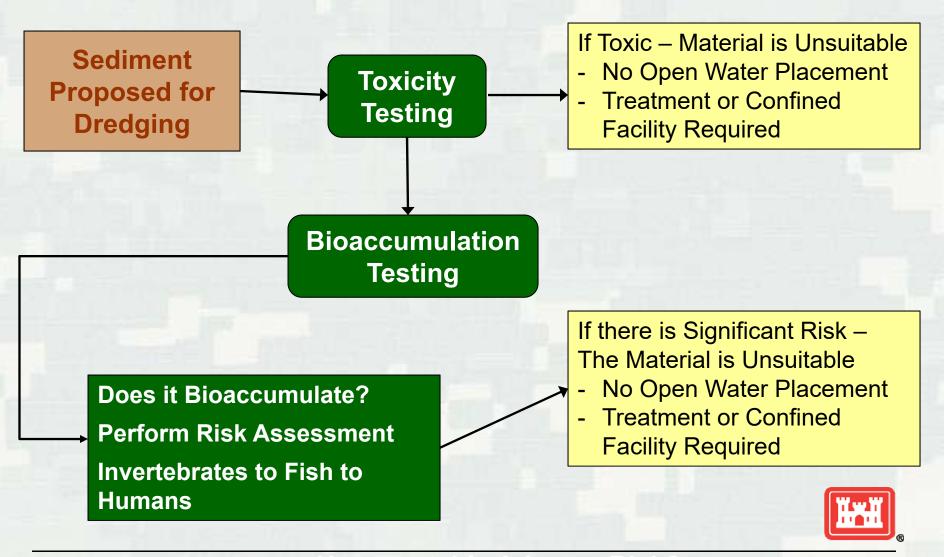
Determining Sediment Classification

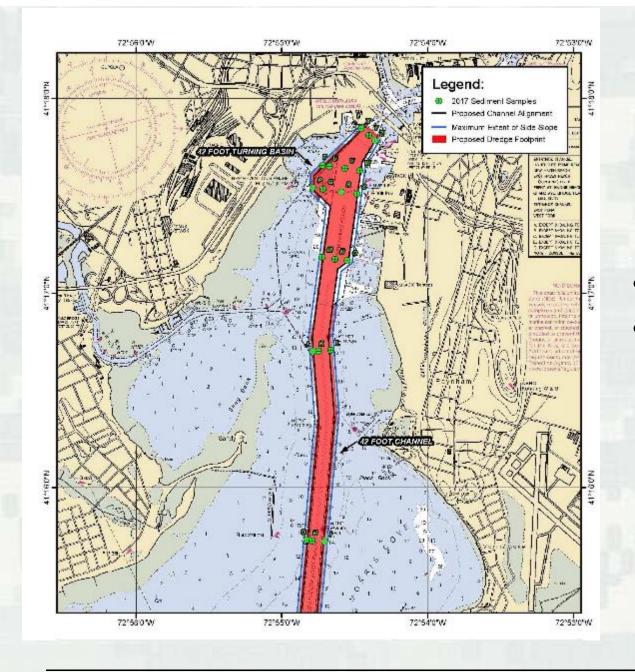
TIER **Existing Data** TIER II Physical/Chem. data Screening Tests Predictive models TIER III Toxicity Tests Bioaccumulation Tests **TIER IV** Chronic Sub-Lethal Tests

• Steady-State Bioaccumulation Tests

Risk Assessment

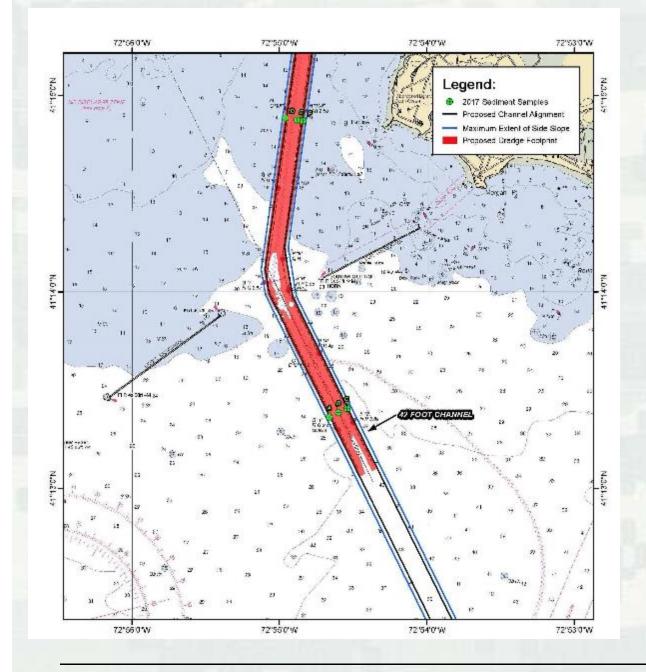
1 – Examine existing data on sediment tests, harbor history, and contaminant spills


2 – Physical and chemical tests on sediment and water column and evaluation with computer models


3 – Acute toxicity testing of exposed organisms and bioaccumulation

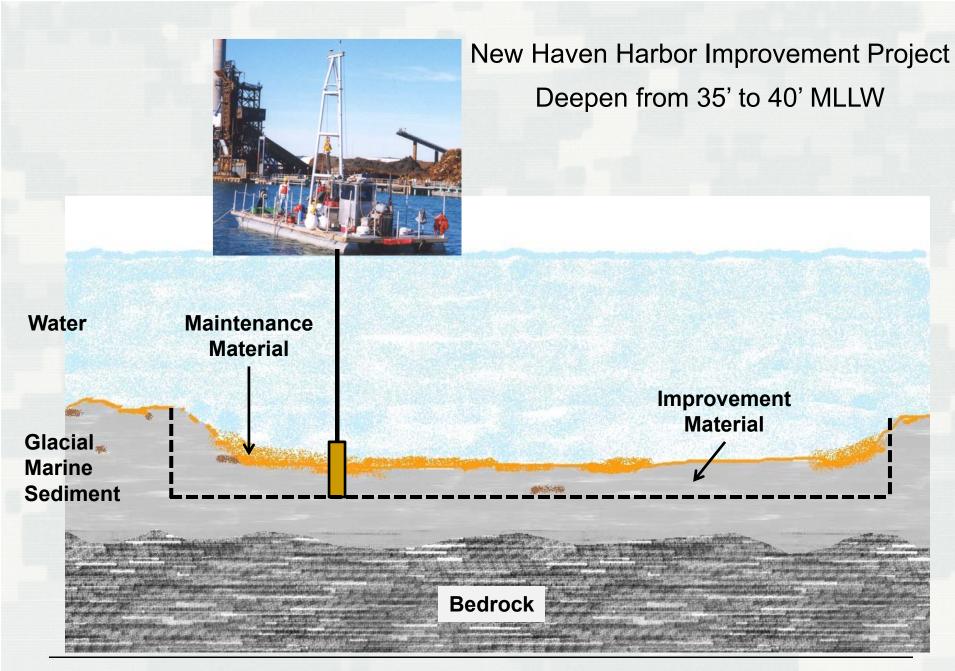
4 – Additional bioaccumulation testing with benthic organisms followed by risk assessments

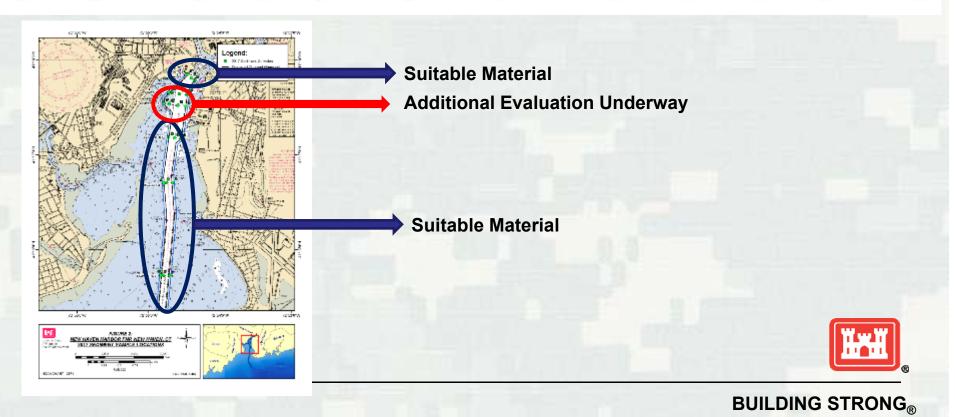
Determining Sediment Classification

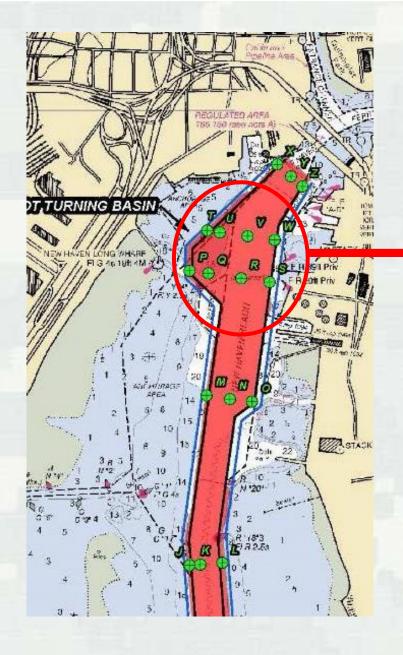


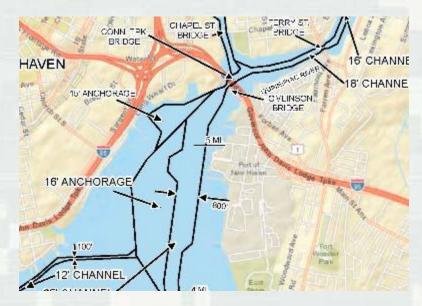
Inner Harbor

- 6 transects
- 17 Stations

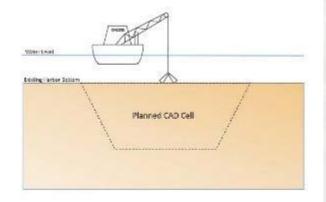



Outer Harbor


- 2 transects
- 6 stations



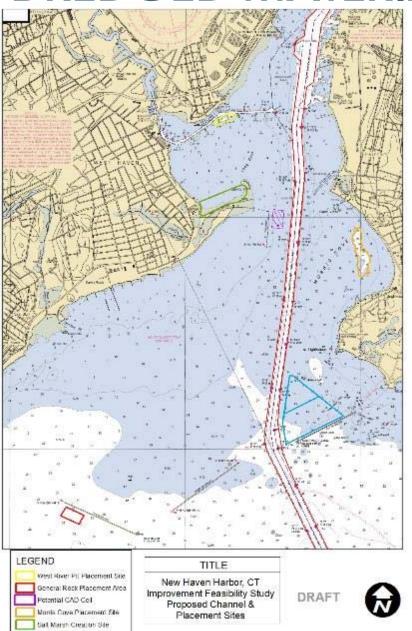
	Whole Sediment Toxicity		ent Toxicity Suspended Particulate Phase Toxicity (LC _{so})		Water Column Modeling	Bioaccumulation Risk Modeling	Stations	Determination	
	L plumulosus	A bahia	A bahia	M berylina	A punctulata	STFATE Result	B.E.S.T. Result		
Composite 1	PASS	PASS	>100%	>100%	>100%	PASS	No Unacceptable Risk	ABC	Suitable
Composite 2	PASS	PASS	>100%	>100%	21%	PASS	No Unacceptable Risk	DEF	Suitable
Composite 3	PASS	PASS	>100%	>100%	18%	PASS	No Unacceptable Risk	GHI	Suitable
Composite 4	PASS	PASS	>100%	>100%	18%	PASS	No Unacceptable Risk	JKL	Suitable
Composite 5	PASS	PASS	>100%	78%	23%	PASS	No Unacceptable Risk	MNO	Suitable
Composite 6	PASS	FAIL	68%	46%	9%	FAIL	No Unacceptable Risk	PQRS	Unsuitable
Composite 7	PASS	PASS	65%	48%	35%	FAIL	No Unacceptable Risk	TUVW	Unsuitable
Composite 8	PASS	PASS	84%	72%	35%	PASS	No Unacceptable Risk	XYZ	Suitable


Additional Evaluation Underway (see next slide)

Oveleg Harder Anties & Uncultable Gredged Material

*Not to scale

Confined Aquatic Disposal Cell


Excavation of CAD cell

Filling of CAD cell with unsuitable material

Completed CAD cell with cap of suitable material

DREDGED MATERIAL PLACEMENT

Shelfish Improvement Area

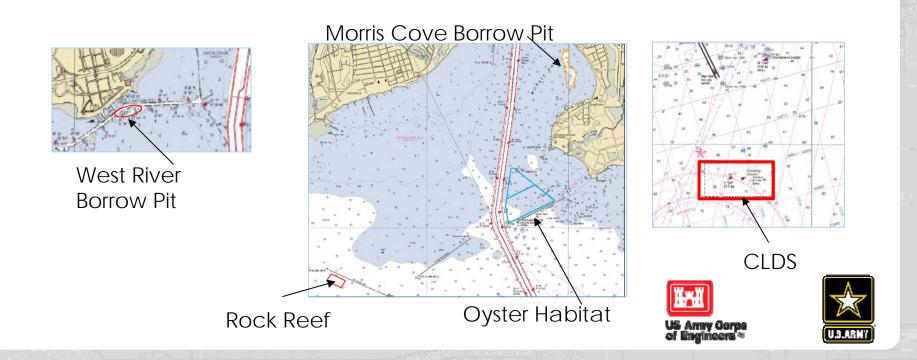
Base Plan for Placement

- Morris Cove and West River Borrow Pits
- Create Oyster Habitat
- Rock Reef near West Breakwater
- CLDS: Targeted to Cover Historic Disposal Mounds at CLDS

Beneficial Use Plan For Placement

Create Salt Marsh at Sandy Point
 ~70 acres

Contingency Placement Alternative

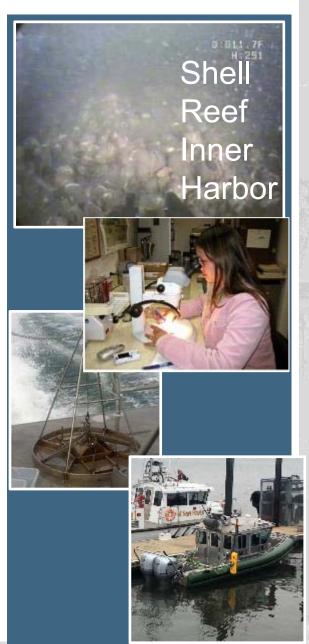

 Confined Aquatic Disposal Cell

BASE PLAN PLACEMENT SITES (CY)

- Quantities:
 - 4.27 million cy of ordinary material
 - > 43,500 cy of rock

BENEFICIAL USE PLAN - SALT MARSH CREATION

OPPORTUNITY


Opportunity for Salt Marsh Creation at Sandy Point ~70 acres, ~ 840,000 cy of Dredged Material

ENVIRONMENTAL SUMMARY

- Construction windows will be used during dredging to protect essential fish habitat species and shellfish resources
- Blasting window for rock will be coordinated with NMFS to protect marine mammals and anadromous fish
- Cultural resources studies did not indicate the presence of targets within the project footprint

ENVIRONMENTAL COMPLIANCE STATUS

- · Public Involvement: on-going
- Environmental Impact Statement (NEPA): Sept 2018 (45-day review period)
- Endangered Species Act Coordination (NMFS): On-going, Informal
- Essential Fish Habitat (EFH) Coordination (NMFS): EFH Assessment in EIS
- Coastal Zone Management Consistency Determination: to be submitted to NYDOS and CTDEEP for concurrence
- Clean Water Act (Section 404(b)(1): draft with EIS
- Clean Water Act (Section 401): conditional until PED
- National Historic Preservation Act (SHPO): Initiated & On-going,
- USFWS Coordination Act Report and Endangered Species Act Coordination: On-going, Informal

Public Involvement

NEPA Scoping Public and Agency Meetings Jan 2017

Public Information Meeting Alternatives including Disposal and Field Studies Jan 2018

Public Involvement: Public Review of Draft Documents and Public Hearings October 2018

Project Website:

Topics/New-Haven-Harbor

MILESTONE SCHEDULE

Sign FCSA	December 2015		
Alternatives Milestone	April 2017		
Tentatively Selected Plan Milestone	April 2018		
Release Draft IFR/EIS for Concurrent Review	September 28, 2018		
Comments Due	November 15, 2018		
Agency Decision Milestone (ADM)	January 2019		
Notice of Availability of FINAL IFR/EIS	September 2019		
Chief's Report	November 2019		

