
GREAT CHEBEAGUE ISLAND MAINE NAVIGATION IMPROVEMENT PROJECT

APPENDIX F SEDIMENT SAMPLING AND TESTING DATA

Appendix F – Sediment Sampling and Testing Data

This appendix contains the report on sediment sampling and testing for bioassay (toxicity) and bioaccumulation analysis of sediments proposed for dredging from the Stone Wharf Landing at Great Chebeague Island, Maine, including an extract of the test data. The complete report includes extensive QA/QC data and is available at the New England District. The analysis and report were prepared by AECOM, Chelmsford, MA, under contract to the USACE, New England District.

The results of earlier sampling and testing of sediments to be dredged from this area for physical and bulk chemical analysis have been included in the Environmental Assessment prepared for this project, and in the suitability determination for disposal of the dredged material (see Appendix H).

USACE CONTRACT NO. W912WJ-17-D-0003 Delivery Order No. W912WJ17F0106

Final Report: Sampling and Testing in Support of Dredged Material Suitability Determination:

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Prepared for

U.S. Army Corps of Engineers New England District Concord, Massachusetts

> Prepared by AECOM 250 Apollo Drive Chelmsford, MA 01824

AECOM 250 Apollo Drive Chelmsford MA, 01824 USA aecom.com

April 13, 2018

Richard Ben Loyd Department of Army New England District Corps of Engineers 696 Virginia Road Concord, MA 01742

RE: Chebeague Island - Final Report (Final Version)

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Dear Mr. Loyd:

AECOM Technical Services, Inc. (AECOM) is pleased to provide the enclosed Final Report under Delivery Order W912WJ17F0106, Task 10 of the Performance Work Statement (PWS) entitled "Sampling and Test ing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine" dated 4 August 2017.

This submission has been subjected to AECOM's review and coordination procedures. Please let us now if you have any questions or if you would like a call to discuss this report further.

Best Regards,

Kris van Naerssen Project Manager

AEĆOM

T: 484-678-1876

E: kris.vannaerssen@aecom.com

cc: Maura Surprenant, AECOM

Christine Archer, AECOM Mary Kozik-O'Connell, AECOM

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

April 13, 2018

Final Report (Final Version)

Final Report: Sampling and Testing in Support of Dredged Material Suitability Determination:

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Report Prepared By:	
Christine Archer AECOM Lead Toxicologist	13 April, 2018 Date
Report Reviewed By: Kris van Naerssen AECOM Task Order Manager	_13 April, 2018
Report Approved By: Maura Surprenant AECOM Deputy Program Manager	13 April, 2018 Date

Table of Contents

1.	Introdu	Introduction					
	1.1	Project Background	1				
	1.2	Relevant Regulations/Standards	2				
2.	Metho	ds	3				
	2.1	Field Sampling	3				
	2.1.1	Sediment Collection	3				
	2.1.2	Surface Water Collection	4				
	2.1.3	Sampling Deviations/Difficulties Encountered	4				
	2.2	Sample Processing and Analysis	4				
	2.2.1	Sample Handling	4				
	2.2.2	Test Sample Preparation and Compositing	5				
	2.2.3	Elutriate/Suspended Particulate Phase Sample Preparation and Analysis	5				
	2.2.3.1	1 Test Species	5				
	2.2.3.2	2 Reference Toxicant Assays	5				
	2.2.4	10-Day Whole Sediment Toxicity Testing	6				
	2.2.4.1	1 Test Species	6				
	2.2.4.2	2 Reference Toxicants	6				
	2.2.5	28-Day Bioaccumulation Bioassay and Tissue Analysis	6				
	2.2.5.1	1 Test Species	7				
	2.2.5.2	2 Reference Toxicants	7				
	2.3	Data Analysis	7				
	2.3.1	Toxicity Bioassay Statistics	7				
	2.3.2	Bioaccumulative Tissue Statistics	7				
3.	Result	ts and Discussion	18				
	3.1	Water Column Evaluations	18				
	3.1.1	Elutriate Chemistry	18				
	3.1.2	SPP Bioassay Results	18				
	3.1.2.1	1 A. bahia and M. beryllina Acute SPP Evaluations	19				
	3.1.2.2	2 A. punctulata Acute SPP Evaluations	20				
	3.1.2.3	3SPP Protocol Deviations	20				
	3.2	Sediment Toxicity Characteristics	20				
	3.2.1	10-Day Whole Sediment Toxicity Testing	20				
	3.2.1.1	1 A. bahia 10-Day Solid Phase Assay	21				
	3.2.1.2	2 L. plumulosus 10-day solid phase assay	21				
	3.2.1.3	3Whole Sediment Protocol Deviations	21				
	3.2.2	28-Day Bioaccumulation Bioassay and Tissue Analysis	21				
	3.2.2.1	1 Survival Analysis	21				
	3.2.2.2	2Tissue Chemistry	22				
	3.2.2.3	3Tissue Body Burden Analysis	22				
	3.2.2.4	428-Day Bioaccumulation Bioassay and Tissue Protocol Deviations	22				
4.	Chemi	ical Analyses QA/QC	32				
	4.1	Deviations	32				
	4.2	Analytical Sensitivity	32				
	4.3	Data Precision	33				

	4.3.1	Elutriate and Ambient Seawater Measurement Precision	.33
	4.3.2	Tissue Measurement Precision	.33
	4.4	Data Accuracy	.33
	4.4.1	Elutriate and Ambient Seawater Analysis Accuracy	.33
	4.4.2	Tissue Analysis Accuracy	
	4.5	Chemical QA/QC Summary	
5.	_	ences	
·			
Figu	ıres		
Figure	1 Che	beague Island Landing Proposed FNP (Figure from PWS, NAE, 2017)	.16
		Reference Site Grab Sample and Water Sample Locations (Figure from PWS, NAE 2017)	
Tabl	es		
		gical Testing and Elutriate Preparation - Sample Collection Dates and Compositing Information	
		ate Solution Preparation Summary	
		ates and Equipment Blank - Parameters, Analytical Methods, and Method Detection Limits	
	•	ended Particulate Phase Testing - Testing Conditions	
	•	ended Particulate Phase Testing – Period of Assay Conduct	
	•	ended Particulate Phase Testing – Reference Toxicant Results	
		ay Whole Sediment Testing – Test Conditions	
		ay Whole Sediment Testing – Reference Toxicant Resultsay Bioaccumulation Bioassay – Test Conditions	
		ue Analysis - Parameters, Analytical Methods, and Method Detection Limits	
		Day Bioaccumulation Bioassay – Reference Toxicant Results	
		riate Chemistry - Results	
		pended Particulate Phase Testing – Bioassay Findings	
		pended Particulate Phase Testing - Water Quality Data Summary	
		Day Whole Sediment Bioassay - Findings	
		Day Whole Sediment Bioassay - Lab Control Performance and Assay Acceptability Criteria Summary	
		Day Whole Sediment Bioassay Water Quality Data Summary: A. bahia	
		Day Whole Sediment Bioassay Water Quality Data Summary: L. plumulosus	
		Day Bioaccumulation Bioassay - Findings	
		Day Bioaccumulation Bioassay – Lab Control Performance and Assay Acceptability Criteria Summary	
		ue Analysis – Mean Wet Weight Chemical Concentrations and Statistical Findings: <i>M. nasuta</i> Tissue	
		ue Analysis – Mean Wet Weight Chemical Concentrations and Statistical Findings: <i>N. virens</i> Tissue	

Appendices

Appendix A: Work Plan Appendix B: Field Report Appendix C: Chemistry Data Appendix D: Biology Data

Appendix D.1: Suspended Particulate Phase Evaluation

Appendix D.2: 10-Day Whole Sediment Bioassay (10 Day Solid Phase Evaluation)

Appendix D.3: 28-Day Sediment Toxicity and Bioaccumulation Evaluation

Acronyms

ARO Aquatic Resource Organisms

AWQC Ambient Water Quality Criteria

COC Chain of Custody
CWA Clean Water Act
DO Dissolved Oxygen

DGPS Differential Global Positioning System

DM Dredged Material

EC50 Median Effective Concentration

EPA U.S. Environmental Protection Agency

ESI EnviroSystems, Inc.
FNP Federal Navigation Project
FSP Field Sampling Plan

GC/ECD Gas Chromatography/Electron Capture Detector GC/MS Gas Chromatography /Mass Spectrometry

LMW High Molecular Weight

ICP/MS Inductively Coupled Plasma Mass Spectrometry

LC50 Median Lethal Concentration
LCS Laboratory Control Sample
LMW Low Molecular Weight
MDL Method Detection Limit
MLLW Mean Lower Low Water

MPRSA Marine Protection, Research, and Sanctuaries Act

NA Normandeau Associates

NAE U.S. Army Corps of Engineers, New England District NOAA National Oceanic and Atmospheric Administration

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl
PDS Portland Disposal Site
PWS Performance Work Statement
QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan

Regional Implementation Manual

RL Reporting Limit

RIM

RPD Relative Percent Difference SPP Suspended Particulate Phase SRM Standard Reference Material USACE U.S. Army Corps of Engineers

1. Introduction

The New England District (NAE) of the US Army Corps of Engineers (USACE) is currently preparing a suitability determination to assess disposal options for materials which may be generated during improvement dredging activities proposed at the Chebeague Island landing located on Great Chebeague Island, Maine. This report summarizes efforts performed by the AECOM Team (comprised of AECOM Technical Services, Inc., Normandeau Associates, Inc., EnviroSystems, Inc., and Alpha Analytical, Inc.) under Delivery Order W912WJ-17-F-0106 of USACE Contract W912WJ-17-D-0003.

The AECOM Team work scope included provision of logistical support to NAE and laboratory analysis for the generation of pertinent environmental data. Data generated under this task order will be used by NAE to assess the suitability of materials that may be dredged from the proposed Federal Navigation Project (FNP) at the Chebeague Island landing (depicted in Figure 1) for unconfined open water disposal at the Portland Disposal Site (PDS).

This report summarizes the methodology used for field sampling and laboratory analysis, the results of the testing and quality assurance/quality control (QA/QC) details regarding the analyses.

1.1 Project Background

The Town of Chebeague Island has requested that the NAE investigate the potential of establishing a federal channel to allow full time vessel traffic to the Great Chebeague Island landing. An initial study performed by NAE determined that a 0.5 acre turning basin and a 100- to 150-foot wide channel would be required to meet the project objectives. The dredged depths for the turning basin and channel would be 8 and 10 feet, respectively, at mean lower low water (MLLW), plus a 1-foot allowable overdepth. The proposed improvement dredging activities would produce approximately 33,000 cubic yards of mixed gravel, sand, and silt. NAE anticipates that this material would be mechanically dredged and placed at the PDS.

In May of 2017, NAE collected sediment cores from 8 locations within the boundaries of the FNP at the Chebeague Island landing. Samples from these cores were analyzed for physical and bulk chemical parameters in accordance with the sediment characterization requirements described in the EPA/ NAE regional protocol "Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters" (RIM: U.S. Environmental Protection Agency [EPA]/USACE, 2004). The results of analysis showed levels of individual metals, Polycyclic Aromatic Hydrocarbons (PAHs), and Polychlorinated Biphenyls (PCBs) above the reporting limits set forth in the RIM. This triggered the need for additional water column and benthic effects evaluations in order to determine the suitability of this material for unconfined open water disposal.

This requirement for further evaluation will be met through NAE's evaluation of data generated under this task order. A Work Plan (AECOM, 2017a; included as Appendix A) was prepared by AECOM to guide the field sampling and laboratory analyses. The Work Plan was prepared in accordance with relevant regulations and standards, as described in Section 1.2, below, and in accordance with project-specific requirements identified by NAE in its Performance Work Statement (PWS) entitled "Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine" dated 4 August 2017. Field sampling and laboratory analyses were performed in late 2017/early 2018 and completed in accordance with the project Work Plan.

In order to further characterize materials to be generated as part of the proposed FNP improvement dredging project, sediments from 5 core locations within the Chebeague Island Landing were collected by NAE in October 2017 to undergo water column and biological testing in accordance with the RIM's evaluation requirements. Work conducted under this program included field sampling, elutriate chemistry, suspended particulate phase (SPP) toxicity testing, 10-day whole sediment toxicity testing and 28-day bioaccumulation testing with associated tissue analysis. The data presented herein will be used by USACE NAE to support a suitability determination for unconfined open water disposal of the dredged material from the proposed FNP at the PDS. The PDS and its associated reference site are depicted in Figure 2.

1.2 Relevant Regulations/Standards

Data for the dredged material suitability evaluations under the Marine Protection, Research, and Sanctuaries Act (MPRSA) and the Clean Water Act (CWA) have been collected based on quality standards outlined in *QA/QC Guidance for Sampling and Analysis of Sediments, Water and Tissues for Dredged Material Evaluations* (EPA, 1995). Evaluations have followed guidance provided in the Green Book (EPA/USACE, 1991), the *Inland Testing Manual* (EPA/USACE, 1998), and the RIM (EPA/USACE, 2004).

2. Methods

Field and laboratory methods are detailed in the project Work Plan (AECOM, 2017a; included as Appendix A), which is comprised of a Field Sampling Plan (FSP) and a Quality Assurance Project Plan (QAPP). Brief summaries of the field and laboratory methods used are included in the following subsections.

Field work for the Chebeague Island proposed FNP dredged material suitability determination was completed by both USACE NAE personnel (harbor site sampling) and individuals on the AECOM and Normandeau Associates (NA) Field Team (collectively the AECOM Field Team). Field activities undertaken by the AECOM Field Team included collection and transport of sediment and water samples from the PDS Reference Site, as well as receipt and delivery of NAE-collected sediment and water samples from the proposed FNP at the Chebeague Island Landing.

Tasks described in Section 2.1, below, as well as in the accompanying Field Report (AECOM, 2017b; included as Appendix B) focus primarily on activities undertaken by the AECOM Field Team. Sampling techniques employed by NAE personnel, relative to sediment and water collection activities on Chebeague Island, are addressed under separate cover.

2.1 Field Sampling

Sample locations were established by NAE and are distributed throughout the proposed project area at the Chebeague Island landing. The AECOM Field Team collected sediment and water samples from the PDS Reference Site, located at latitude 43.643419 and longitude - 69.982990, to facilitate the evaluation of the dredge area material for placement at the PDS. Field sampling locations are depicted in Figures 1 and 2. A full field report (AECOM, 2017b) describing the AECOM Field Team's sampling effort is provided in Appendix B.

Appropriate volumes of dredge area sediment and water were collected by NAE at each of the five harbor stations for the elutriate and biological testing described in the sections below. These samples were subsequently composited by the laboratory into three project composite samples, as described in the project PWS.

The project field effort commenced on October 17, 2017 and was completed on October 18, 2017. Project mobilization activities occurred on October 16, 2017. The program was divided into three tasks: AECOM's receipt of sediment and water samples that were collected by NAE on October 17, 2017; the AECOM Field Team's collection of sediment and water samples at the PDS Reference Site on October 17, 2017; and, delivery of project samples to the EnviroSystems, Inc. (ESI) laboratory on October 18, 2017.

Vessel positioning and the determination of actual sample locations were accomplished utilizing a Differential Global Positioning System (DGPS). The sampling vessel was held on station at the PDS Reference Site with a multi-point anchor spread. Attachment 1 of the Field Report (AECOM, 2017b; Appendix B) lists the grab sample positions for each attempt. Local National Oceanic and Atmospheric Administration (NOAA) tide data was obtained from NOAA Station 8418150 to calculate tidal height in feet above MLLW.

The field report (AECOM, 2017b) provided in Appendix B provides additional detail regarding field activities, including field observations such as penetration depth, material recovery, visual descriptions and other pertinent observations.

2.1.1 Sediment Collection

Sediments from the proposed FNP at the Chebeague Island landing were collected by NAE using vibracore methodology. These sediment samples were containerized by NAE and transferred to AECOM under chain of custody (COC) at the conclusion of NAE sampling efforts.

PDS reference site sediments were collected by the AECOM Field Team using a Van Veen and Ponar sampler as outlined in the project Work Plan. Prior to use, the sediment sample collection equipment was decontaminated in accordance with the project Work Plan. In addition, equipment blanks were collected on the sediment sampling collection equipment in accordance with the project Work Plan.

The proposed FNP and PDS Reference Site sediment samples were transferred to a temperature-controlled refrigerated van unit immediately upon return to the dock and were held at temperature and in accordance with the project Work Plan until delivery to ESI.

2.1.2 Surface Water Collection

Water from the vicinity of the three sediment composite locations at the Chebeague Island landing (dredge site water) was collected by NAE personnel on 17 October, 2017 using a pump and tubing system.

Water from the PDS reference area (SPP dilution water) was collected by the AECOM Field Team on 17 October, 2017 using a large volume Niskin Bottle, as outlined in the Work Plan. Prior to use, the surface water collection equipment was decontaminated in accordance with the project Work Plan. Equipment blanks were collected on the surface water collection equipment, in accordance with the project Work Plan.

Water samples were also transferred to the refrigerated van immediately after returning to the dock and held at temperature in accordance with the project Work Plan until delivery to ESI.

2.1.3 Sampling Deviations/Difficulties Encountered

One minor deviation from the project Work Plan was noted during field sampling activities, as outlined below. Laboratory deviations, if applicable, are presented in Appendices C and D.

The Work Plan notes that HYPACK software shall be utilized in concert with the DGPS unit for navigation. The R/V P1 was equipped with a comparable navigation setup that included a Trimble DGPS system and Nobeltec navigation software (rather than HYPACK software) for vessel positioning. DGPS accuracy was achieved as specified in the Work Plan. Project coordinates were monitored in real-time in Degree Decimal Minute format. No project implications are anticipated as a result of this deviation.

2.2 Sample Processing and Analysis

The project QAPP provides detailed descriptions of the aqueous and sediment sample handling and the methods used for water column and biological testing. Section B.6 of the QAPP (AECOM, 2017a) summarize the chemical testing methods used and Section B.7 summarizes the bioassay test methods. Only minor deviations from the QAPP were noted. These minor deviations are discussed in Sections 3.1.2.3, 3.2.1.3, and 3.2.2.4 for the biological testing and Section 4 for the analytical chemistry. These deviations are not expected to have an impact on the usability of the data for decision making.

The biological and analytical project team included two laboratories:

- EnviroSystems Inc. (ESI; Hampton, NH) provided processing facilities and performed SPP analysis, 10-day whole sediment toxicity testing, 28-day bioaccumulation bioassays, and elutriate chemistry testing; and,
- Alpha Analytical Laboratories (Mansfield, MA) provided tissue testing services.

Sediment and water samples were transferred directly from the field to ESI for further processing before subsequent testing commenced. All field to lab transfers (and subsequent lab to lab transfers) were conducted under COC procedures, as specified in the project work plan. COC records are included in the laboratory backup appendices (Appendices C and D), as well as in the Field Report (Appendix B).

2.2.1 Sample Handling

Sample handling and delivery was performed as outlined in the project Work Plan. PDS Reference Site samples collected by the AECOM Team were stored in labeled, 5-gallon food grade collapsible carboys (water samples) or 3.5-gallon food grade high density polyethylene pails with locking lids (sediment samples), and kept on wet ice until returning to the dock. All sediment and water samples were securely stored in a locked, refrigerated van (set to 4°C) for the field sample transport effort.

2.2.2 Test Sample Preparation and Compositing

Following the sample compositing scheme outlined in the Work Plan / PWS, sediment composites were prepared by combining equal volumes of the material from the various stations for subsequent testing. The sample compositing scheme is depicted in Table 1. These composite samples were used in the sediment bioassays and to develop elutriate/SPP samples for chemical and toxicological testing.

2.2.3 Elutriate/Suspended Particulate Phase Sample Preparation and Analysis

Chebeague Island dredge site water was used in the preparation of all chemical elutriates and formed the basis of all elutriate/SPP sample preparations. Water from PDS was used for all SPP dilutions in the toxicity tests.

Each elutriate/SPP batch was prepared by adding the homogenized sediment to the site water in a 1:4 volumetric ratio, stirring the mixture for 30 minutes, and then allowing the mixture to settle for 1 hour. The supernatant was siphoned off prior to chemical and biological evaluations. Chemical samples were also centrifuged as required by the protocol. All samples were stored at or below 4°C when not in use. Elutriate samples were containerized for chemistry analysis (i.e., filtration of metals samples, analysis of metals and (total) organic compounds). Table 2 provides a summary of the elutriate/SPP preparation.

Elutriate samples were analyzed for metals, pesticides, pentachlorophenol, and PCB congeners in accordance with Table 5 of the PWS and in accordance with the protocol recommended in Tables 2 and 3 of the New England District RIM document, with appropriate updates to current analytical methods. Acid digestion followed by analysis using an inductively coupled plasma mass spectrometer (ICP/MS) for the analysis of the extracted metals except mercury and hexavalent chromium. Mercury was determined using Cold Vapor Atomic Fluorescence Spectrometry; the diphenylcarbazide colorimetric procedure described in Standard Methods 3500-Cr D was used to measure chromium 6 (Cr6+). Table 3 summarizes the analytes, analytical methods and method detection limits achieved for the elutriate chemistry analyses.

Water column bioassays were conducted in accordance with the RIM (EPA/USACE, 2004), the Inland Testing Manual (EPA/USACE, 1998) and the project Work Plan (AECOM, 2017a). Test organisms for the water column bioassays included *Americamysis bahia*, *Menidia beryllina*, and *Arbacia punctulata*. Table 4 summarizes the test conditions for these bioassays and Table 5 identifies the dates of the SPP testing. The toxicity tests were completed on three elutriate samples. All SPP testing was started before the 24-hour holding time for suspended particulate phase solutions. Results and protocol deviations are described in Section 3.1.2.

2.2.3.1 Test Species

A. bahia were ≤5 days old and were obtained from cultures maintained by Aquatic Resource Organisms (ARO) of Hampton, New Hampshire. *M. beryllina* were 9-14 days old at the start of the assay and were also obtained from ARO. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. Organisms were transferred to test vessels using a large bore pipet to minimize the amount of water added to test solutions.

Adult *A. punctulata* were from cultures maintained by ESI. Original stock was obtained from a commercial supplier. Adult sea urchins are maintained in the laboratory for as long as they are viable. Male and female urchins are maintained in separate chambers at a temperature of approximately 12±3°C after spawning.

2.2.3.2 Reference Toxicant Assays

ESI completed acute 96-hour sodium dodecyl sulfate (SDS) reference toxicant assays for *A. bahia* and *M. beryllina* in August 2017 and ammonium chloride reference toxicant assays in November 2017. Results were within two standard deviations of the historic mean of ESI's control charts, indicating that the test organisms were healthy.

The *A. punctulata* copper reference toxicant assay conducted in August 2017 and the ammonium chloride reference toxicant assay conducted in October 2017 were also within two standard deviations of the corresponding control chart mean. Table 6 summarizes the results of the reference toxicant assays conducted in support of the SPP assays.

Although the Work Plan (AECOM, 2017a) specified that the reference toxicant assays be conducted concurrent with the SPP tests, the reference toxicant assays were conducted before and after the duration of the SPP tests. The RIM does not specify that the assays be conducted concurrently and the lack of concurrence between the project assay and the reference toxicant assays does not impact the findings of the project assays.

2.2.4 10-Day Whole Sediment Toxicity Testing

Bulk sediment bioassays are an important part of the overall suitability testing framework for PDS disposal consideration and agency guidance specifies that a filter feeder, a deposit feeder, and a burrowing organism be represented in the assay. Ten-day whole sediment bioassays were performed using the crustacean *A. bahia* (mysid shrimp) and the crustacean *Leptocheirus plumulosus* (amphipod) to represent these feeding strategies in accordance with the RIM (EPA/USACE, 2004), the Inland Testing Manual (EPA/USACE, 1998), and the project work plan (AECOM, 2017a). *A. bahia* is a filter and deposit feeder that spends much of its time in the water above the sediment-water interface. The amphipod *L. plumulosus* builds burrows in the sediment and feeds on particles that are in suspension and on the sediment surface.

Table 7 summarizes the test conditions for the 10-day whole sediment toxicity tests. Assays with both species began on November 03, 2017 and were terminated on November 13, 2017. The control sediment used in the assays was natural sediment collected from the Hampton Estuary, Hampton, New Hampshire. The area is not known to receive any direct industrial inputs and has been used as a laboratory reference sediment in the testing of marine sediments for over 25 years. Overlying seawater was obtained from the Hampton Estuary. Water from the estuary has been used for the culture and maintenance of test organisms at ESI since 1978. Seawater is obtained through a filter system located on the bottom of the estuary at a point approximately 1 mile from the open ocean.

Results and protocol deviations are described in Section 3.2.1.

2.2.4.1 Test Species

A. bahia were obtained from ARO. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. A. bahia used in the assay were <5 days old at the start of the test.

L. plumulosus were obtained from cultures maintained by ARO. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. *L. plumulosus* were non-reproductive adults.

2.2.4.2 Reference Toxicants

As part of the laboratory quality control program, standard reference toxicant assays were conducted with a subsample of the organisms received for testing, for each test species. ESI completed acute 96-hour ammonium chloride reference toxicant assays for *A. bahia* and *L. plumulosus*. Results were within two standard deviations of the historic mean of ESI's control charts, indicating that the test organisms were healthy. Table 8 summarizes the results of the reference toxicant assays conducted in support of the 10-day tests. Reference toxicant assays for the *L. plumulosus* were not conducted concurrent with the 10-day tests; however, the lack of concurrence does not impact the findings of the project assays

2.2.5 28-Day Bioaccumulation Bioassay and Tissue Analysis

The 28-day solid phase/bioaccumulation evaluation was conducted in accordance with the RIM (EPA/USACE, 2004), the Inland Testing Manual (EPA/USACE, 1998) and the project work plan (AECOM, 2017a) using the bivalve *Macoma nasuta* and the burrowing polychaete *Nereis virens*. Table 9 summarizes the test conditions for the 28-day bioaccumulation bioassay.

The *M. nasuta* assays were initiated on November 7, 2017 and were completed on December 5, 2017. The *N. virens* assays were initiated on November 7, 2017 and terminated on December 5, 2017. Results and protocol deviations are described in Section 3.2.2.

At the end of the 28-day bioaccumulation assay exposure period and the 24 hour depuration period, the test organisms were recovered, rinsed/depurated with clean seawater, homogenized, frozen and transferred to the chemistry laboratory for preparation and analysis. Tissue samples were analyzed for total lipids, percent moisture, metals, PAHs, and PCB congeners. Table 10 summarizes the analytes, analytical methods and method detection limits achieved for the tissue chemistry analyses.

2.2.5.1 Test Species

M. nasuta, approximately 28-45 mm in total length, were obtained from ARO. Organisms were field collected along the Washington coast and shipped to ARO via overnight delivery. At ESI, the clams were placed in clean holding sediment with flowing seawater and monitored for at least 24 hours prior to use. Damaged bivalves and those that would not close when prodded were discarded. The *Macoma* test commenced on November 7, 2017. A total of 20 organisms were added to each replicate in order to obtain sufficient tissue at test termination.

Adult *N. virens* were also obtained from ARO. Worms were collected in the field from the Damariscotta River in Boothbay Harbor, Maine and delivered to ARO. If not used the same day, worms were refrigerated overnight in seaweed. Damaged and inactive worms were not used in the assay. The *Nereis* test assay commenced on November 7, 2017 with a total of 20 organisms added to each replicate in order to obtain sufficient tissue at test termination.

2.2.5.2 Reference Toxicants

ESI completed acute 96-hour copper reference toxicant assays for *M. nasuta* and *N. virens* concurrent with the 28-day bioassays. Results were within two standard deviations of the historic mean of ESI's control charts, indicating that the test organisms were healthy. Table 11 summarizes the results of the reference toxicant assays conducted in support of the 28-day bioassays.

2.3 Data Analysis

The array of water column and biological testing that was performed on the Chebeague Island sediments provides a comprehensive data set from which a suitability assessment for the anticipated unconfined placement of this material at the PDS may be determined. These data sets were generally evaluated in the following ways:

- Biological testing data were compared to reference or control values;
- Tissue chemistry results were compared to the reference site tissue chemistry using non-parametric and ttests.

A description of these evaluation methods is provided below.

2.3.1 Toxicity Bioassay Statistics

Survival and effects data were analyzed using statistical software (CETIS) to determine significant differences between the project sediments and the laboratory control, and between project sediments or suspended phase solutions and the agency-selected reference site sediments or solutions. Survival data were evaluated to determine homogeneity of sample variances and normality of distribution. Data sets were subsequently evaluated using the appropriate parametric or non-parametric analysis. Pair-wise comparisons were based on the appropriate statistical analysis presented in the EPA decision tree guidelines specified in individual test methods. Statistical difference was evaluated at α =0.05. For the SPP testing, acute exposure endpoints, the median lethal concentration (LC50) and the median effective concentration (EC50; in the *Arbacia* testing), were calculated and responses in the undiluted SPP solutions were evaluated against the responses in the reference site diluent.

2.3.2 Bioaccumulative Tissue Statistics

The statistical analyses of body burden data were completed to determine significant differences between the reference sediment and each site composite sample. The statistical analyses were completed for all compounds of concern identified in the Work Plan; however, the findings of significance discussed in Section 3.2.2.3 focus only on

AECOM

those compounds detected in the reference sample. Per RIM guidelines, the MDL is used in instances when a compound is not detected for purposes of calculating a mean concentration. MDLs used in statistical computations are adjusted for differences in tissue mass and final extract volumes used in the analysis for each sample.

Data were evaluated to determine homogeneity of sample variances and normality of distribution using appropriate statistics. Data sets were subsequently evaluated using the appropriate parametric or non-parametric Analysis of Variance (ANOVA) statistic. Statistical difference was evaluated at $\alpha = 0.05$.

Table 1 Biological Testing and Elutriate Preparation - Sample Collection Dates and Compositing Information

Station ID	Date	Core Length (ft.) / Water Sample Collection Depth (ft.)	Water Depth (MLLW [ft.])	Latitude	Longitude	Composite ID	SPP/Elutriate testing	10-day toxicity bioassay	28-day bioassay/tissue
Sediment	10/17/0017	2.0	0.1	42.752200	70 400720				
A	10/17/2017	2.0	-9.1	43.753398	-70.109738	- 1	Х	Х	Х
В	10/17/2017	5.0	-5.9	43.752682	-70.109191	•			,,
С	10/17/2017	7.0	-3.8	43.751975	-70.108908	- 2	Х	Х	X
D	10/17/2017	4.0	-6.9	43.752097	-70.108580		^	^	^
F	10/17/2017	6.0	-5.0	43.751506	-70.108083	3	Х	Х	Х
CI-PDS ¹	10/17/2017	0 to -0.5	-199.0	43.643419	-69.982990	PDS- Ref	Х	Х	Х
Seawater									
CIW-1	10/17/2017	Mid-Depth	-5.9	43.752669	-70.109278	1	Х		
CIW-2	10/17/2017	Mid-Depth	-5.9	43.752669	-70.109278	2	Х		
CIW-3	10/17/2017	Mid-Depth	-5.9	43.752669	-70.109278	3	Х		
CIW-PDS	10/17/2017	3, 98, 195	-199.0	43.643419	-69.982990	PDS- Ref	Х		

 $¹⁻Sample \ collected \ using \ grab \ sampler. \ Other \ samples \ collected \ using \ vibracoring \ device.$

Table 2 Elutriate Solution Preparation Summary

Wat	Water		Sediment		Elutriate Preparation			
Station ID	ESI Code	Composite ID	ESI Code	Elutriate ID	ESI Code	Date	Time	
CIW-1	29746-006	Composite 1	29747-101	Composite 1 Elutriate	29750-100	10/24/17	1250	
CIW-2	29746-007	Composite 2	29747-102	Composite 2 Elutriate	29750-101	10/24/17	1400	
CIW-3	29746-008	Composite 3	29747-103	Composite 3 Elutriate	29750-102	10/24/17	1535	

Table 3 Elutriates and Equipment Blank - Parameters, Analytical Methods, and Method Detection Limits

Parameter	Method Reference	Method Number	MDL	MDL Units
Metals				
Arsenic	SW-846	200.8	0.000084	mg/L
Cadmium	SW-846	200.8	0.000016	mg/L
Chromium	SW-846	200.8	0.000076	mg/L
Hexavalent chromium	SW-846	3500	0.0014	mg/L
Copper	SW-846	200.8	0.000136	mg/L
Lead	SW-846	200.8	0.00002	mg/L
Mercury	SW-846	245.7	0.0000016	mg/L
Nickel	SW-846	200.8	0.000064	mg/L
Selenium	SW-846	200.8	0.000228	mg/L
Silver	SW-846	200.8	0.000052	mg/L
Zinc	SW-846	200.8	0.000252	mg/L
Semi-volatile compounds	0.1.0.10		0.000_0_	9/=
Pentachlorophenol ^a	SW-846	8270SIM	0.2	ug/L
Pesticides	0.1.0.10	02.00	J	~g/ =
Aldrin	SW-846	8081B	0.0005	ug/L
Chlordane (alpha/gamma/oxy)	SW-846	8081B	0.0021	ug/L
Chloropyrifos	SW-846	8081B	0.0014	ug/L
4,4'-DDT	SW-846	8081B	0.0011	ug/L
Dieldrin	SW-846	8081B	0.0005	ug/L
Endosulfan and derivatives (I, II)	SW-846	8081B	0.0009	ug/L
Endrin	SW-846	8081B	0.0011	ug/L
Heptachlor & derivative (epoxide)	SW-846	8081B	0.001	ug/L
Hexachlorocyclohexane (lindane)	SW-846	8081B	0.0021	ug/L
Toxaphene (inidane)	SW-846	8081B	0.004	ug/L
PCBs	OVV 040	00012	0.004	ug/L
C12(8)	SW-846	8270C/EPA 680	0.0008	ug/L
C13(18)	SW-846	8270C/EPA 680	0.0008	ug/L
C13(28)	SW-846	8270C/EPA 680	0.0008	ug/L
C14(44)	SW-846	8270C/EPA 680	0.0008	ug/L
C14(52)	SW-846	8270C/EPA 680	0.0008	ug/L
C14(66)	SW-846	8270C/EPA 680	0.0008	ug/L
C15(101)	SW-846	8270C/EPA 680	0.0008	ug/L
C15(105)	SW-846	8270C/EPA 680	0.0008	ug/L
C15(118)	SW-846	8270C/EPA 680	0.0008	ug/L
C16(128)	SW-846	8270C/EPA 680	0.0008	ug/L
C16(138)	SW-846	8270C/EPA 680	0.0008	ug/L
C16(153)	SW-846	8270C/EPA 680	0.0008	ug/L
C17(170)	SW-846	8270C/EPA 680	0.0008	ug/L
C17(180)	SW-846	8270C/EPA 680	0.0008	ug/L ug/L
C17(187)	SW-846	8270C/EPA 680	0.0008	ug/L
C18(195)	SW-846	8270C/EPA 680	0.0008	ug/L ug/L
C19(206)	SW-846	8270C/EPA 680	0.0008	ug/L ug/L
C110(209)	SW-846	8270C/EPA 680	0.0008	ug/L ug/L
0110(200)	O V V - O+O	321 00/EI A 000	0.0000	ug/L

^a Pentachlorophenol was not requested or analyzed in the core or grab sampler equipment blank. Maximum MDL listed per parameter. MDLs are adjusted to reflect differences in dilutions used in the analysis for each sample.

Table 4 Suspended Particulate Phase Testing - Testing Conditions

Parameter	A. bahia	M. beryllina	A. punctulata
Treatments (SPP prepared from sediment composites and harbor water)	3 Sample Composites and 1 PDS Reference Site water	3 Sample Composites and 1 PDS Reference Site water	3 Sample Composites and 1 PDS Reference Site water
Replicates	5	5	5
Test population	1-5 days old	9-14 days	2 hours after fertilization
Temperature	Mean of 20 ± 2°C Maximum Deviation of 3°C	Mean of 20 ± 2°C Maximum Deviation of 3°C	Mean of 20 ± 1°C Maximum Deviation of 3°C
Dissolved Oxygen	40% Saturation	40% Saturation	NA
Salinity	30 ‰ ±2‰	30 ‰ ± 2‰	30 ‰ ±2‰
Feeding	Daily, <24 hour old Artemia nauplii	Daily, <24 hour old Artemia nauplii	None
Reference Toxicant	SDS / NH4CI	SDS / NH4Cl	Copper / NH4Cl

Ammonia and pH are monitored during the assay but the RIM does not present required limits.

Table 5 Suspended Particulate Phase Testing – Period of Assay Conduct

Elutriate			Assay S	Start	Assay	End
Comp/Elutriate ID	ESI Code	Test Species	Date	Time	Date	Time
Composite 1 Elutriate	29750-100	A. bahia	10/24/17	1745	10/28/17	1450
Composite 2 Elutriate	29750-101	M. beryllina	10/24/17	1755	10/28/17	1450
Composite 3 Elutriate	29750-102	A. punctulata	10/24/17	1735	10/27/17	1240

Table 6 Suspended Particulate Phase Testing – Reference Toxicant Results

Date	Organism Lot	Endpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
A. bahia						
08/31/17	03AbARO083017	96Hr LC-50	20.5	18.0	13.3 - 22.8	SDS (mg/L)
11/02/17	03AbARO110217	96Hr LC-50	53.7	53.7 ^a	а	NH4Cl (mg/L)
M. beryllina						
08/31/17	-	96Hr LC-50	7.2	6.2	3.6 - 8.8	SDS (mg/L)
11/02/17	10MbARO110217	96Hr LC-50	60.9	60.9 ^a	а	NH4Cl (mg/L)
A. punctulata						
08/30/17	99ApARO083017	EC-50	16.1	18.9	10.4 - 27.5	Copper (mg/L)
10/24/17	99ApARO082917	EC-50	1.8	1.8 ^a	a	NH4Cl (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays.

^a Values are based on the results of 1 assay, therefore an acceptable range is not available.

Table 7 10-Day Whole Sediment Testing – Test Conditions

Parameter	L. plumulosus	A. bahia
Treatments	3 Sample Composites and 1 PDS Reference Site Control	3 Sample Composites and 1 PDS Reference Site Control
Replicates	5	5
Test population	Juvenile -non reproductive adult (2-4mm)	1-5 days old
Temperature	Mean of 20± 1°C Maximum Deviation of 3°C	Mean of 20 \pm 1°C Maximum Deviation of 3°C
Dissolved Oxygen	40% Saturation	40% Saturation
Salinity	20‰ ±2‰	30‰ ±2‰
Ammonia	Porewater unionized ammonia <0.8 mg/L	Overlying water unionized ammonia <0.6 mg/L
Feeding	None	Daily, <24 hour old Artemia nauplii
Reference Toxicant	NH4CI	NH4CI

pH is monitored during the assay but the RIM does not present required limits.

Table 8 10-Day Whole Sediment Testing – Reference Toxicant Results

Date	Organism Lot	Endpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
A. bahia						
11/02/17	03AbARO110217	96Hr LC-50	53.7	53.7 ^a	а	NH4CI (mg/L)
11/16/17	03AbARO111517	96Hr LC-50	54.6	54.2 ^b	52.9 - 55.4 ^b	NH4CI (mg/L)
L. plumulosus						
05/05/17	18LpARO050517	96Hr LC-50	176.0	176.0 ^a	а	NH4Cl (mg/L)
11/28/17	99LpARO112817	96Hr LC-50	180.0	202.6 b	110.1 - 295.1 ^b	NH4CI (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays unless otherwise noted.

^a Values are based on the results of 1 assay. No historic range is available.

^b Values are based on the results of 2 assays.

Table 9 28-Day Bioaccumulation Bioassay – Test Conditions

Parameter	M. nasuta	N. virens
Treatments*	3 Sample Composites and 1 PDS Reference Site Control	3 Sample Composites and 1 PDS Reference Site Control
Replicates	5	5
Test population	Adult clam; 28-45 mm	Adult Polychaete; 3-15 grams
Temperature	Mean of 12 ±2°C Maximum Deviation of 3°C	Mean of 12 ± 2°C Maximum Deviation of 3°C
Dissolved Oxygen	>40% Saturation	>40% Saturation
Salinity	30‰ ±2‰	30‰ ±2‰
Feeding	None	None
Reference Toxicant	Copper	Copper

Ammonia and pH are monitored during the assay but the RIM does not present required limits.

Table 10 Tissue Analysis - Parameters, Analytical Methods, and Method Detection Limits

Parameter	Method Reference	Method Number	MDL	MDL Units	
Physical tests					
Percent Moisture	SM 2540	SM 2540	0.1	%	
Total linida	NOAA 130 1009	NOAA Tech Memo NOS	0.1	%	
Total lipids	NOAA 130, 1998	ORCA 130, 1998	0.1	70	
Metals (wet wt.)					
Arsenic	EPA OW	6020A	0.034	mg/kg	
Cadmium	EPA OW	6020A	0.011	mg/kg	
Chromium	EPA OW	6020A	0.036	mg/kg	
Copper	EPA OW	6020A	0.033	mg/kg	
Lead	EPA OW	6020A	0.006	mg/kg	
Mercury	SW-846	7474	0.004	mg/kg	
Nickel	EPA OW	6020A	0.037	mg/kg	
Zinc	EPA OW	6020A	0.15	mg/kg	
PAHs (wet wt.)				3 3	
Acenaphthene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Acenaphthylene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Anthracene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Benzo(a)anthracene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Benzo(a)pyrene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Benzo(b)fluoranthene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Benzo(k)fluoranthene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Benzo(g,h,l)perylene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Dibenz(a,h)anthracene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Chrysene	SW-846	8270D-SIM/680(M)	9.94	ug/kg ug/kg	
Fluoranthene	SW-846	8270D-SIM/680(M)	9.94	ug/kg	
Fluorene	SW-846	8270D-SIM/680(M)	9.94	ug/kg ug/kg	
Indeno(1,2,3-cd)pyrene	SW-846	8270D-SIM/680(M)	9.94	ug/kg ug/kg	
Naphthalene	SW-846	8270D-SIM/680(M)	9.94	ug/kg ug/kg	
Phenanthrene	SW-846	` ,	9.94	0 0	
Pyrene	SW-846	8270D-SIM/680(M) 8270D-SIM/680(M)	9.94	ug/kg	
PCBs (wet wt.)	377-040	8270D-311V1/080(1V1)	9.94	ug/kg	
` ,	CW 946	9270D CIM/690/M)	0.004	a/I.ca	
C12(8)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C13(18)	SW-846	8270D-SIM/680(M)	0.994 0.994	ug/kg	
C13(28)	SW-846	8270D-SIM/680(M)		ug/kg	
C14(44)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C14(52)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C14(66)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C15(101)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C15(105)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C15(118)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C16(128)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C16(138)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C16(153)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C17(170)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C17(180)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C17(187)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C18(195)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C19(206)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	
C110(209)	SW-846	8270D-SIM/680(M)	0.994	ug/kg	

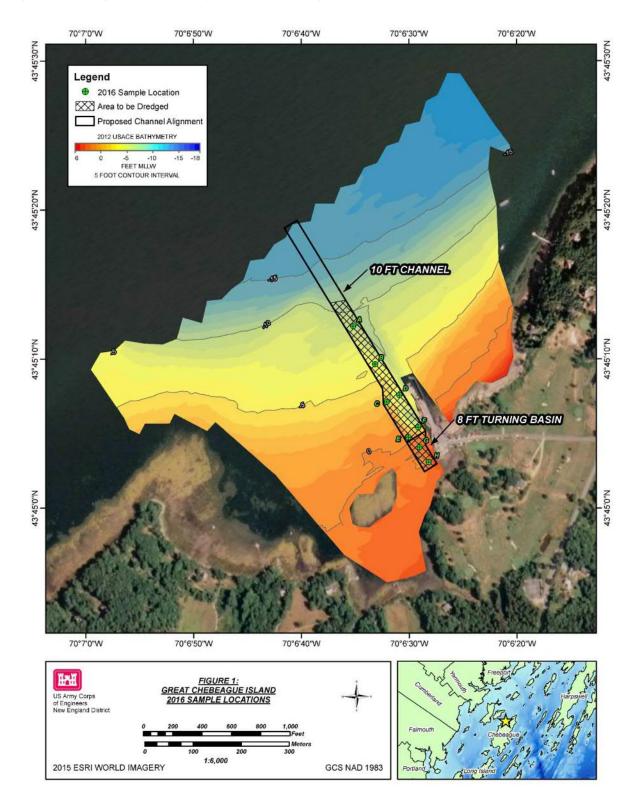

Maximum MDL listed per parameter. MDLs are adjusted for differences in tissue mass and final extract volumes used in the analysis for each sample.

Table 11 28-Day Bioaccumulation Bioassay – Reference Toxicant Results

Date	Organism Lot	Endpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
M. nasuta						
11/07/17	110117MN	96Hr LC-50	9.8	9.0	1.3 – 16.8	Copper (mg/L)
N. virens						
11/07/17	110717NV	96Hr LC-50	4.2	3.6	1.5 – 5.8	Copper (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays.

Figure 1 Chebeague Island Landing Proposed FNP (Figure from PWS, NAE, 2017)

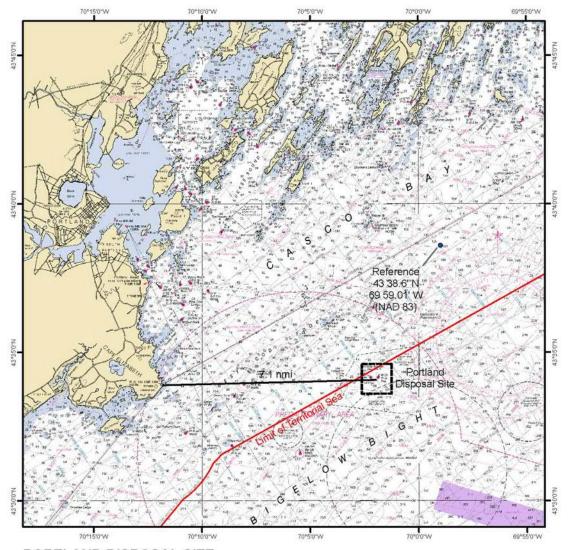
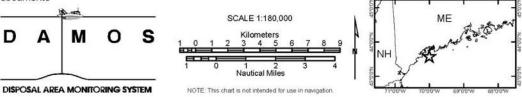



Figure 2 PDS Reference Site Grab Sample and Water Sample Locations (Figure from PWS, NAE 2017)

PORTLAND DISPOSAL SITE

Description: The Portland Disposal Site (PDS) is one of three regional dredged material disposal sites located in the waters of Maine. It covers a 1 nmi² (3.4 km²) area of seafloor centered at 43° 34.111′ N, 70° 01.9386′ W (NAD 83), approximately 7.1 nmi (13.2 km) east of Dyer Point, Cape Elizabeth, Maine. PDS is characterized by a rough, irregular bottom topography, with areas of soft sediment accumulation in the basins among bedrock outcrops.The authorized disposal point (within the overall disposal area) is specified for each dredging project in other project documents

3. Results and Discussion

The Section 3 subsections present results evaluating the following potential exposure pathways associated with the anticipated unconfined open water material placement at the PDS:

- Direct exposure to the water column during/after mixing (elutriate and particulate phase analysis);
- Direct exposure to the dredged material (DM) following placement (bulk sediment; chemistry previously analyzed); and
- Bioaccumulation potential resulting from DM exposure over a period of time (bioaccumulation bioassays followed by tissue analysis).

As described in Section 1, physical and chemical analyses were previously completed for the Chebeague Island proposed FNP. The May 2017 investigation results showed levels of individual metals, Polycyclic Aromatic Hydrocarbons (PAHs), and Polychlorinated biphenyls (PCBs) above the reporting limits set forth in the RIM. This triggered the need for additional water column and benthic effects evaluations in order to revise the suitability determination of the material for unconfined open water disposal.

The October 2017 sampling and analysis efforts, described herein, include the evaluation of elutriate chemistry, SPP toxicity testing, 10-day whole sediment toxicity testing and 28-day bioaccumulation bioassay data with accompanying tissue analysis at sampled stations. This data will form the basis of a suitability determination for unconfined open water disposal at PDS.

3.1 Water Column Evaluations

Water column evaluations performed in this study incorporated the analysis of chemical elutriate samples and SPP bioassay tests. The full suite of chemicals were measured in the elutriate mixtures to evaluate possible DM effects on water quality at the PDS. SPP toxicity bioassays included three test species: crustacean, fish, and sea urchin larvae. Acute toxicity as well as sensitive (larvae) developmental effects have been evaluated.

3.1.1 Elutriate Chemistry

Table 12 summarizes elutriate chemistry results obtained after mixing the site materials with reference site seawater to simulate DM mixing at the PDS. Analytical results for the PDS Reference water are also included in Table 12. Laboratory elutriate chemistry data are included in Appendix C.

Pentachlorophenol, pesticides, and PCBs were below target reporting limits for all samples analyzed. In general, metals results were also below reporting limits in most samples, with the exception of As and Zn which were detected in all three elutriate samples. Copper was detected in the Composite 1 elutriate, but not in the elutriates prepared from Composites 2 or 3.

3.1.2 SPP Bioassay Results

The SPP toxicity tests were completed on three elutriate samples. The SPP endpoints and adverse effects are presented in Table 13. Associated SPP water quality data is presented in Table 14. Laboratory summary reports, including laboratory bench data, are presented in Appendix D.1.

All SPP laboratory control samples met minimum survival criteria. Survival in laboratory controls was 98% for *A. bahia* and 90% for *M. beryllina* which meets the minimum test acceptability criteria of \geq 90% survival in the laboratory control and is an indication that the test organisms were healthy and not stressed by handling. In the *A. punctulata* assays, embryo counts in the laboratory control treatment showed 81% of the embryos survived at the end of the assay and, of the original embryos, 81% were normally developed pluteus larvae. These results meet the minimum test acceptability criteria of \geq 70% embryo survival and \geq 70% normal development in the laboratory control sample.

A notable amount of total ammonia was observed in the elutriates from Composites 2 (9.9 mg/L) and 3 (16 mg/L) at the start of the assays for all three test species. EPA guidance suggests that ammonia, generally in the unionized form, can be a source of

toxicity when total ammonia values are >5 mg/L (EPA 2002). EPA Ambient Water Quality Criteria (AWQC) for unionized ammonia in saltwater references LC50 values for two of the species tested: *A. bahia* (1.04 mg/L) and *M. beryllina* (0.88 mg/L) (EPA 1989). AWQC for unionized ammonia in saltwater are not available for *A. punctulata*, however, effects levels are available in the literature for urchin species ranging from 0.06 mg/L for an EC50 for development (Maguire Group Inc., 2003) to approximately 0.336 mg/L for a 96-hour LC50 (Chang-Hoon Lee et al., 2013).

Calculated unionized ammonia values from the start of the assays for Composites 2 and 3 ranged between 0.14 to 0.16 mg/L for all three species. However, by the end of these assays, the unionized ammonia levels ranged from 0.15 to 0.20 mg/L (*A. bahia*), 0.47 to 0.51 mg/L (*M. beryllina*) and 0.58 to 1.0 mg/L (*A. punctulata*). The higher ending unionized ammonia levels in the minnow and urchin assays are coincident with rising pH levels in those assays and the 0.20 mg/L level in the *A. bahia* assay was recorded in the 50% treatment (due to prior mortality in the 100% treatment).

It is possible that the total and/or unionized ammonia content may have contributed in part to the observed toxicity to *A. bahia*, *M. beryllina* and to *A. punctulata*. Given the rapid toxicity observed in the *A. bahia* assay (complete mortality in the 100% treatment within 1 hour) and to a lesser extent in the *M. beryllina* assay, it is also possible that additional factors contributed to the toxicity observed in elutriate from Composite 3. The laboratory data sheets for Composite 3 indicate a "sulfur" smell was observed and hydrogen sulfide, if present at sufficient levels in the water, could contribute to toxicity. While sulfide as a driver of toxicity is difficult to determine, non-conservative¹ parameters such as ammonia and sulfide are the most likely source of these types of effects

Given the low levels of chemicals detected in the elutriate samples (Table 12; Section 3.1.1), the elevated ammonia levels in two of the tested elutriates, and the observed response of the test organisms to ammonia in the reference toxicant assays, it is likely that the observed toxicity in these elutriates is driven primarily by total and unionized ammonia content and other non-conservative parameters, rather than sediment-related chemicals of concern. As stated above, given the rapid toxicity observed for *A. bahia* (and to a lesser extent *M. beryllina*) exposed to Composite 3 elutriate, it is possible that additional factors also contributed to the toxicity observed in that sample, but a review of water quality parameters did not identify any anomalies.

3.1.2.1 A. bahia and M. beryllina Acute SPP Evaluations

Mysid shrimp were not adversely affected by exposure to SPP solutions prepared from Composites 1 or 2 with LC50 values of >100% for these samples. In SPP solutions prepared from Composite 3, the LC50 value was 43%.

Minnows were not adversely affected by exposure to SPP solutions prepared from Composites 1 or 2 with LC50 values of >100% for these samples. In SPP solutions prepared from Composite 3, the LC50 value was 76%.

M. beryllina survival in the PDS reference was 60% at test termination. Survival in the PDS reference water had dropped to 70% after 24 hours while the laboratory control survival was at 94%. Given the poor performance in the PDS reference water and the impacts to M. beryllina exposed to SPP solutions prepared from Composite 3, an additional data review was completed to consider whether the respective performances were attributable to sources other than the individual samples. First, adverse effects on mysids and urchins also occurred following exposure to SPP solutions prepared from Composite 3, demonstrating a commonality of effects from exposure to this sample. It was noted that 60% minnow mortality was observed approximately 1 hour after exposure to the 100% SPP treatment prepared from Composite 3, when survival in the PDS reference water was still at 100% survival, also demonstrating that toxicity in the elutriate solution is distinct from that in the reference site water, with ammonia being a likely source of toxicity in elutriate 3. Additionally, impacts from the reference site water were limited to M. beryllina and a general inverse trend in toxicity for this species was observed in all 3 composite elutriate solutions (excluding the 100% treatment for SPP solutions prepared from Composite 3), demonstrating that impairment stemming from the reference water was consistent across treatments for this species. Water qualities obtained during testing were comparable across species and waters, demonstrating that the samples themselves were consistent and representative across all assays and species, and also indicating it's unlikely that outside contaminants influenced performance in the M. beryllina study. Based on this weight of evidence, observed effects to the minnow following exposure to the reference water and to SPP solutions prepared from Composite 3 are considered distinct and representative for the species and samples.

¹ Non-conservative pollutants are those that are transformed to non-toxic substances through physical, chemical, or biological processes in the receiving water. Non-conservative pollutants can transform or degrade into other compounds, but the rate of transformation depends on the physical, chemical, and biological conditions occurring within the receiving water environment.

As indicated in Section 3.1.2, the elevated unionized ammonia levels in Composite 3 may have contributed to the observed toxicity, but other factors may also have contributed to the rapid toxicity observed in the 100% treatment (60% mortality within 1 hour; 86% mortality within 96 hours). A review of elutriate chemistry results and water quality parameters did not identify any additional sources of toxicity.

3.1.2.2 A. punctulata Acute SPP Evaluations

Arbacia punctulata is the most sensitive of the project SPP exposed species. Survival and normal development were quantified when it was determined that the majority of the larvae (>90%) in the laboratory controls had reached the pluteus larval stage.

Review of the data collected at the end of the assay indicated that site composites from SPP solutions prepared from Composites 2 and 3 had negative impacts on embryonic survival and/or development. LC50s from SPP solutions prepared from Composites 2 and 3 ranged from 3 to 23% for survival and EC50s ranged from 3 to 15% for development. Both the LC50 and EC50 for the SPP solution prepared from Composite 1 were >100% for survival and development.

As described above, ammonia levels were elevated at the start of the assays and *A. punctulata* appears to be even more sensitive to ammonia than the mysid shrimp or minnows. Composites 2 and 3, which showed more toxicity than Composite 1, had higher levels of total and un-ionized ammonia at both test initiation and termination. At test termination, un-ionized ammonia levels for SPP solutions prepared from Composites 2 and 3 were 0.5776 and 0.9897 mg/L, respectively. It is expected that these elevated ammonia levels contributed to the observed survival and development impacts in these tests.

3.1.2.3 SPP Protocol Deviations

Review of the data collected for these assays documented a few minor deviations from the method protocol and/or ESI's standard procedures, as described below.

The protocol requires that the assays be conducted at $20\pm1^{\circ}$ C for the *A. punctulata* assay. Although the assay was maintained in an incubator set at the target temperatures, some temperatures recorded during the assays fell outside of the protocol range (ranging from 20 to 22 °C), due to the ambient laboratory temperature at the time that dilutions were mixed and water quality measurements were taken. Urchins can tolerate temperatures within the ranges measured, and EPA protocol allows temperatures of $25\pm2^{\circ}$ C for these species.

In addition, the protocol requires that the assays be conducted at a salinity of $30\pm2\%$. It is not uncommon for the salinity to drift upwards during assay conduct, due to evaporation and to exceed the protocol requirement, but the salinities are adjusted daily as needed to account for this occurrence, except at assay termination.

At 48, 72 and 96 hours, replicate A of the PDS reference water sample in the *A. bahia* assay was found to contain 11 mysids, therefore the same number of animals were presumed to have been added to the test chamber at the start of the assay for purposes of the statistical analyses. This is a reasonable assumption as technicians are checked for their ability to count live organisms and the staff on hand has documented a high degree of counting accuracy. Despite this, counting errors can occur. These impacts should be mitigated by the test design. Testing incorporated 5 replicates for each sample, thereby reducing the impact of a single replicate on the overall assessment.

These lab issues are considered to have had no impact on the outcome of the assays.

3.2 Sediment Toxicity Characteristics

Under the current program, 10-day whole sediment toxicity testing and 28-day bioaccumulation bioassays with associated tissue analyses were conducted at the proposed FNP stations. These investigations are described in further detail below.

3.2.1 10-Day Whole Sediment Toxicity Testing

A summary of survival data from the 10-day *A. bahia* and *L. plumulosus* assays is included in Table 15. Supporting data, including copies of bench sheets, are included in Appendix D.2. Table 16 summarizes the laboratory control results and other assay acceptability criteria for the 10-day assays. Tables 17 and 18 present the water quality data for *A. bahia* and *L.*

plumulosus, respectively, as measured during the 10-day bioassays. Overlying water quality data is presented for *A. bahia* and overlying and pore water quality data is presented for the *L. plumulosus* assays.

Before organisms were added to the test vessels, sediments and overlying water were added to the tests vessels during a preassay phase. Test chambers were renewed daily with two volume additions of overlying water and sediments were monitored until pore waters showed acceptable ammonia levels (less than 0.8 mg/L of unionized ammonia). Test organisms were added after acceptable ammonia levels were measured.

For the *A. bahia* assay, sediments were added to the test chambers on October 26, 2017 and overlying water was renewed twice daily for seven days. Test organisms were added on November 3, 2017 and total ammonia levels in overlying water at test initiation ranged from <0.1 to 0.54 mg/L (Table 17).

For the *L. plumulosus* assay, sediments were also added to the test chambers on October 26, 2017. After five days of water renewals, porewater ammonia samples were collected on October 31, 2017 and unionized ammonia concentrations ranged from 0.0085 to 0.0692 mg/L (Table 18). Test organisms were added to the test vessels on November 3, 2017.

3.2.1.1 A. bahia 10-Day Solid Phase Assay

Mean mysid survival in the laboratory control sediment was 92%, and met guideline acceptance criteria (e.g. mean survival \geq 90%; \geq 70% in any replicate). Mean survival in the PDS reference sediment was 90%. Mean survival of mysid shrimp exposed to the three Chebeague Island sediment composites ranged from 93% (Composites 1 and 3) to 97% (Composite 2), and the statistical analyses show that there were no negative effects on survival for mysids exposed to site Composite samples as compared to mysids exposed to the PDS reference sediment.

3.2.1.2 L. plumulosus 10-day solid phase assay

Mean amphipod survival in the laboratory control was 98% and met acceptance criteria. Mean survival among organisms exposed to PDS reference sediment was 92%. Mean survival of amphipods exposed to the three Chebeague Island sediment composites ranged from 91% (Composite 1) to 93% (Composites 2 and 3), and the statistical analyses show that there were no negative effects on survival for amphipods exposed to site Composite samples as compared to amphipods exposed to the PDS reference sediment.

3.2.1.3 Whole Sediment Protocol Deviations

Review of the data collected for these assays documented one minor deviation from the method protocol and/or ESI's standard procedures.

There were two respective dissolved oxygen (DO) measurements that fell below 6.0 mg/L: one on day 7 in the *A. bahia* assay and one on day 1 in the *L. plumulosus* assay. The assays were aerated prior to initiation to ensure the requirement was met, and mean DO levels were well above the threshold, indicating that overall the desired DO levels were maintained. Furthermore, both assays met the RIM protocol of \geq 40% saturation. This minor deviation is considered to have had no impact on the outcome of the assays.

3.2.2 28-Day Bioaccumulation Bioassay and Tissue Analysis

To evaluate bioaccumulation potential of dredge sediments, the clam *Macoma nasuta* and the worm *Nereis virens* were exposed to material from the three sediment Composites. Table 19 provides a summary of the *M. nasuta* and *N. virens* survival data and Table 20 summarizes the laboratory control results and other assay acceptability criteria. Tissue chemistry data and statistical results (relative to reference) are summarized in Table 21 and Table 22. Laboratory bench sheets are included in Appendix D.3.

3.2.2.1 Survival Analysis

Mean *M. nasuta* survival was 95% for clams maintained in both the laboratory control and PDS reference site sediments, respectively. Mean percent survival of the bivalves exposed to harbor sediment composites ranged from 96 to 100%. The

statistical evaluation of the survival data showed no significant reduction in survival for bivalves maintained in the site composites when compared to the PDS reference sediment.

Polychaete survival was 95% and 98% in the laboratory control and PDS reference site sediments, respectively. Mean percent survival among *N. virens* exposed to harbor sediment composites ranged from 94 to 99%. The statistical evaluation of the data showed no significant reduction in survival for polychaetes maintained in the site composites when compared to the PDS reference sediment.

Survival of clams and worms met established guideline criteria. Surviving organisms for both species tested provided sufficient tissue for preparation and analysis of body burdens.

3.2.2.2 Tissue Chemistry

Test organism tissues were analyzed for the full set of chemical parameters established for the program (AECOM, 2017a) to evaluate the bioaccumulative aspect of the project material. The chemical results provided in Table21 (*M. nasuta*) and Table 22 (*N. virens*) are presented on a wet weight basis. Backup laboratory tissue chemistry data are included in Appendix C. Statistical comparisons of tissue body burdens are discussed in Section 3.2.2.3.

Review of *M. nasuta* tissue data documented that there were no PAHs or PCB congeners detected above the MDL. Arsenic, cadmium, copper, lead, nickel, and zinc were detected in *M. nasuta* tissues from all three composites. In addition, two metals (chromium and mercury) were either detected or estimated (J-qualified as below the RL, but above the MDL) in *M. nasuta* tissues from all three composites.

Review of *N. virens* tissue data documented that there were no PCB congeners detected above the MDL. With the exception of acenaphthene in replicate 5 from Composite 2, PAHs were not detected above the MDL in *N. virens* tissues. Mercury was not detected above the MDL in tissues from any composite samples; however, the remaining metals were detected or estimated in *N. virens* tissues from all three composites.

3.2.2.3 Tissue Body Burden Analysis

Review of *M. nasuta* tissue data document statistically significant uptake of two metals (Table 21). Based on NAE criteria, there were significant increases in cadmium and zinc body burdens for clams reared in all three site composites as compared to PDS reference tissue. In addition, mercury body burdens for clams reared in site Composite 1 sediment were also significantly higher than clam tissue from the PDS reference sediment. Review of body burden data showed that there were no additional chemicals of concern detected in site composite tissues that were not also detected in PDS reference tissue.

The review of *N. virens* tissue data found no statistically significant uptake of chemicals in site composites (Table 22). Based on NAE criteria, there were no significant increases in polychaete body burdens for any chemical of concern as compared to PDS reference tissue. Review of body burden data showed that acenaphthene was detected in site composite tissue, but no further analysis was required because the chemical of concern was not detected in reference tissue.

3.2.2.4 28-Day Bioaccumulation Bioassay and Tissue Protocol Deviations

Review of the data collected for these assays documented minor deviations from the method protocol and/or ESI's standard procedures.

No hourly temperature logger was activated for either assays, therefore no hourly temperature measurements were collected. Throughout the assays, there were no temperature abnormalities observed in the daily water quality measurements that were collected. Although this represents a deviation from ESI's SOP and a data gap, this deviation did not adversely affect the outcome of the assay.

Protocol requires that assays be conducted at 30±2% for the *M. nasuta* and *N. virens* assays, and, as a practice, salt or water are added to the aquaria to bring low or high salinity levels back within range. Some salinity values recorded in the laboratory control and PDS reference aquaria on Day 16 of the *M. nasuta* assay were lower than the protocol range (19.1%). This deviation had no adverse impact on the outcome of the assay.

Table 12 Elutriate Chemistry - Results

Analyte	PDS Reference	Water	Composite	1	Composite	2	Composite	3
Total Metals (mg/L)								
Arsenic	0.0015	R1	0.0258		0.0129		0.0064	
Cadmium	0.0001	U,R1	0.0002	U	0.0002	U	0.0002	U
Chromium	0.0001	U,R1	0.001	U	0.001	U	0.001	U
Copper	0.0008	R1	0.0005		0.0005	U	0.0005	U
Lead	0.0002	U,R1	0.0002	U	0.0002	U	0.0002	U
Nickel	0.0002	U,R1	0.001	U	0.0010		0.0016	
Selenium	0.001	U,R1	0.001	U	0.001	U	0.0011	
Silver	0.0001	U,R1	0.0002	U	0.0002	U	0.0002	U
Zinc	0.0012	B,R1	0.0027		0.0037		0.0129	
Mercury	0.00001	U,R1	0.00001	U	0.00001	U	0.00001	U
Hexavalent Chromium	0.0004	U,O,R1	0.0050	U	0.0050	U	0.0050	U
Organochlorine Pesticides (ug/L)								
Aldrin	0.002	U,R1	0.002	U	0.002	U	0.002	U
alpha-BHC	0.002	U,R1	0.002	U	0.002	U	0.002	U
alpha-Chlordane	0.002	U,R1	0.002	U	0.002	U	0.002	U
beta-BHC	0.002	U,R1	0.002	U	0.002	U	0.002	U
Chlorpyrifos	0.002	U,R1	0.002	U	0.002	U	0.002	U
cis-Nonachlor	0.002	U,R1	0.002	U	0.002	U	0.002	U
delta-BHC	0.002	U,R1	0.002	U	0.002	U	0.002	U
Dieldrin	0.004	U,R1	0.004	U	0.004	U	0.004	U
Endosulfan I	0.002	U,R1	0.002	U	0.002	U	0.002	U
Endosulfan II	0.004	U,R1	0.004	U	0.004	U	0.004	U
Endosulfan Sulfate	0.004	U,R1	0.004	U	0.004	U	0.004	U
Endrin	0.004	U,R1	0.004	U	0.004	U	0.004	U
Endrin Aldehyde	0.004	U,R1	0.004	U	0.004	U	0.004	U
Endrin Ketone	0.004	U,R1	0.004	U	0.004	U	0.004	U
gamma-BHC (Lindane)	0.002	U,R1	0.002	U	0.002	U	0.002	U
gamma-Chlordane	0.002	U,R1	0.002	U	0.002	U	0.002	U
Heptachlor	0.002	U,R1	0.002	U	0.002	U	0.002	U
Heptachlor Epoxide	0.002	U,R1	0.002	U	0.002	U	0.002	U
Hexachlorobenzene	0.002	U,R1	0.002	U	0.002	U	0.002	U
Methoxychlor	0.02	U,R1	0.02	U	0.02	U	0.02	U
Oxychlordane	0.002	U,R1	0.002	U	0.002	U	0.002	U
Toxaphene	0.1	U,R1	0.1	U	0.1	U	0.1	U
trans-Nonachlor	0.002	U,R1	0.002	U	0.002	U	0.002	Ū
4,4-DDD	0.004	U,R1	0.004	U	0.004	U	0.004	U
4,4-DDE	0.004	U,R1	0.004	U	0.004	U	0.004	U
4,4-DDT	0.004	U,R1	0.004	U	0.004	U	0.004	U
Total DDT	0.0013	U,R1	0.0013	U	0.0013	U	0.0013	U
Pentachlorophenol (ug/L)	0.0013	0,111	0.0013	0	0.0013		0.0013	
Pentachlorophenol	1	U,R1	1.1	U	1.1	U	1.1	U
Polychlorinated Biphenyl Congeners (ug/L)		0,101	1.1	- 0	1.1	- 0	1.1	0
PCB 8	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 18	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 18	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 26				U	0.00083	U		U
PCB 44 x	0.00080	U,R1 U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 49 X	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
				U		U		U
PCB 66	0.00080	U,R1 U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 77 X			0.00083	U	0.00083			
PCB 87 x		U,R1	0.00083		0.00083	U	0.00083	U
PCB 101	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 105	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 118	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 126 x		U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 128	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 138	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 153	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 170	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 180	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 183 x		U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 184 x		U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 187	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 195	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 206	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
PCB 209	0.00080	U,R1	0.00083	U	0.00083	U	0.00083	U
Total PCBs	0.007	U,R1	0.003	U	0.003	U	0.003	U

Results presented for composites are the mean of three replicate samples.

One-half of the sample-specific method detection limit (MDL) is used to represent non-detects in calculation of Total DDT and Total PCBs.

Sample-specific MDLs are adjusted for differences in dilutions used in the analysis for each sample.

Total PCBs calculated as the sum of the 18 NOAA congeners multiplied by 2.

B – Analyte found in laboratory blank at 0.0003 mg/L.

J – Estimated value.

NA – Not analyzed

R1 – Sample analyzed out of hold time.

RL – Reporting Limit.

U – Not detected above the laboratory RL. Total DDT and Total PCBs are calculated using MDL.

O – Sample out of hold time. Value obtained from ICP-MS. x – Congener is not one of the 18 NOAA congeners included in Total PCBs.

Table 13 Suspended Particulate Phase Testing – Bioassay Findings

Sample ID	A. bahia	M. beryllina	A. pun	A. punctulata	
	LC50 (%)	LC50 (%)	LC50 (%)	EC50 (%)	
Composite 1	>100%	>100%	>100%	>100%	
Composite 2	>100%	>100%	23%	15%	
Composite 3	43%	76%	3%	3%	

Notes:

Americamysis bahia – survival endpoint

Menidia beryllina - survival endpoint

Arbacia punctulata - survival and development endpoints

Table 14 Suspended Particulate Phase Testing – Water Quality Data Summary

	Temperature (°C)		рН (pH (SU)		Salinity (‰)		onia (mg/L) Start	Ammonia (mg/L) End	
Sample ID	Start	End	Start	End	Start	End	Total	Unionized	Total	Unionized
A. bahia										
Lab Control	22	20	8.12	7.65	31	31	<0.1	<0.0028	1.8	0.0313
PDS Reference Water	22	20	7.88	7.68	32	32	<0.1	<0.0017	1.6	0.0297
Composite 1	22	19	7.65	7.91	31	32	2.9	0.0581	3.2	0.0929
Composite 2	22	19	7.56	7.70	31	32	9.9	0.1618	8.0	0.1452
Composite 3 (100% SPP) a	22 ª	-	7.29 ^a	-	31 ª	-	16 ª	0.1415 a	-	-
Composite 3 (50% SPP) b	22 ^b	19 ^b	7.48 ^b	8.03 ^b	31 ^b	32 ^b	-	-	5.2 ^b	0.1972 ^b
M. beryllina										
Lab Control	22	20	8.12	7.69	31	33	<0.1	<0.0028	1.7	0.0323
PDS Reference Water	22	20	7.88	7.71	32	32	<0.1	<0.0017	1.7	0.0338
Composite 1	22	19	7.65	7.95	31	33	2.9	0.0581	3.2	0.1016
Composite 2	22	20	7.56	8.27	31	33	9.9	0.1618	6.9	0.4736
Composite 3	22	20	7.20	8.16	31	33	16	0.1415	9.5	0.5141
A. punctulata										
Lab Control	22	20	8.12	8.02	31	31	<0.1	<0.0028	0.12	0.0048
PDS Reference Water	22	20	7.88	8.00	31	32	<0.1	<0.0017	0.15	0.0057
Composite 1	22	21	7.65	8.18	31	32	2.9	0.0581	2.9	0.1755
Composite 2	22	20	7.55	8.19	31	31	9.9	0.1582	10	0.5776
Composite 3	22	21	7.31	8.19	31	31	16	0.1481	16	0.9897

^a Data at test initiation obtained from the 100% SPP treatment. Unionized ammonia concentrations at assay start are from the 100% test concentration and are calculated using the temperature and pH values at hour 0 with the Day 0 ammonia data. The 100% treatment experienced 100% mortality within the first hour of the assay. There are no test termination ammonia data available for the 100% test concentration at hour 1.

concentration at hour 1.

b Data at test termination obtained from the 50% SPP treatment due to mortality in the 100% treatment. Un-ionized ammonia concentrations at assay end are from the 50% test concentration and are calculated using the 96 hour temperature and pH values with the 96 hour total ammonia data. Test initiation data provided, as available. There are no start ammonia data available for the 50% test concentration.

Table 15 10-Day Whole Sediment Bioassay - Findings

A. bahia percent survival results

	Replicate	Survival at	he End of	10-Day Exp	osure (%)			Difference in	
	A	В	С	D	E	Mean Survival (%)	Statistically Different from PDS Reference ^a ?	Survival >20% Compared to PDS Reference?	
Lab Control	80%	85%	95%	100%	100%	92%			
PDS Reference	80%	85%	90%	100%	95%	90%			
Composite 1	80%	100%	95%	90%	100%	93%	No	No	
Composite 2	100%	100%	85%	100%	100%	97%	No	No	
Composite 3	95%	95%	95%	85%	95%	93%	No	No	

L. plumulosus percent survival results

	Replicate	Survival at	the End of	10-Day Exp	osure (%)			Difference in
	A	В	С	D	E	Mean Survival (%)	Statistically Different from PDS Reference ^a ?	Survival >20% Compared to PDS Reference?
Lab Control	100%	95%	100%	95%	100%	98%		
PDS Reference	100%	80%	100%	85%	95%	92%		
Composite 1	100%	80%	85%	95%	95%	91%	No	No
Composite 2	95%	95%	95%	85%	95%	93%	No	No
Composite 3	100%	90%	80%	100%	95%	93%	No	No

 $^{^{\}text{a}}$ Statistically significant difference ($\alpha\text{=}0.05)$ from PDS Reference.

Table 16 10-Day Whole Sediment Bioassay - Lab Control Performance and Assay Acceptability Criteria Summary

Endpoint / Me	asurement	Protocol Criteria	Unit	A. bahia	L. plumulosus
Mean Survival		Laboratory Control > 90%	%	92%	98%
		, _	Protocol Met	Yes	Yes
Minimo	N disaisan saan	A. bahia - 28ppt	ppt	28.1	18.8
	Minimum:	L. plumulosus - 18ppt	Protocol Met	Yes	Yes
Salinity	Maximum:	A. bahia - 32ppt	ppt	31.1	19.9
	Maximum.	L. plumulosus - 22ppt	Protocol Met	Yes	Yes
		Mean: 20±1°C	Daily / Hourly °C	19.7 / 19.3	19.8 / 19.3
Tamananahuna		Minimum: 17°C	Daily / Hourly °C	16.8 ¹ / 16.6 ¹	17.0 / 16.6 ¹
Temperature		Maximum: 23°C	°C Daily / Hourly °C		21.1 / 21.9
			Protocol Met ¹	Yes / Yes	Yes / Yes

^{1 -}The value meets the protocol requirement when rounded to the whole number precision reflected in the method, therefore is not considered a protocol deviation. Observed temperatures were within the species tolerance range.

Table 17 10-Day Whole Sediment Bioassay Water Quality Data Summary: A. bahia

Sample ID	Day	Temperature (° C)	pH (SU)	Salinity (‰)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
A. bahia – Overlying Water C	Quality Data					
Lab Control	00	21.0	7.94	28	0.14	0.0050
PDS Reference	00	21.0	7.94	28	<0.1	<0.0018
Composite 1	00	21.0	7.95	28	<0.1	<0.0018
Composite 2	00	20.9	7.95	28	0.54	0.0196
Composite 3	00	20.9	7.92	28	0.45	0.0153
Lab Control	03	21.0	7.88	30	0.28	0.0088
PDS Reference	03	21.1	7.84	30	0.21	0.0016
Composite 1	03	21.1	7.86	30	0.19	0.0057
Composite 2	03	21.0	7.92	30	0.65	0.0222
Composite 3	03	21.0	7.87	30	0.53	0.0162
Lab Control	10	19.3	7.68	30	<0.1	<0.0009
PDS Reference	10	19.3	7.76	30	<0.1	<0.0011
Composite 1	10	19.3	7.74	30	<0.1	<0.0010
Composite 2	10	19.2	7.77	31	<0.1	<0.0011
Composite 3	10	19.1	7.73	31	0.45	0.0088

Note: Data in overlying water summary were obtained from the "A" replicate of each A. bahia treatment. Day 00 results reflect measurements made after seven days of overlying water renewals to reduce ammonia levels prior to test initiation.

Table 18 10-Day Whole Sediment Bioassay Water Quality Data Summary: L. plumulosus

Sample ID	Day	Temperature (° C)	pH (SU)	Salinity (‰)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
L. plumulosus – Overlying		()	(CC)	(,csy	(3,2)	(3/
Lab Control	00	20.9	7.86	19	<0.1	<0.0015
PDS Reference	00	20.9	7.86	19	<0.1	<0.0015
Composite 1	00	20.9	7.82	19	0.64	0.0174
Composite 2	00	20.9	7.81	19	<0.1	<0.0013
Composite 3	00	20.9	7.81	19	0.9	0.0239
Lab Control	03	21.1	7.86	20	0.19	0.0057
PDS Reference	03	21.1	7.83	20	<0.1	<0.0014
Composite 1	03	21.1	7.81	20	<0.1	<0.0013
Composite 2	03	21.1	7.82	20	<0.72	0.0198
Composite 3	03	21.0	7.81	20	1	0.0268
Lab Control	10	19.4	7.55	19	<0.1	<0.0007
PDS Reference	10	19.3	7.61	19	<0.1	<0.0008
Composite 1	10	19.4	7.66	19	<0.1	<0.0009
Composite 2	10	19.4	7.68	19	<0.1	<0.0009
Composite 3	10	19.3	7.72	19	0.11	0.0021
L. plumulosus – Pore Wate	r Quality Data ^a					
Lab Control	-03	23	7.11	NR	3.3	0.0208
PDS Reference Site	-03	23	7.61	NR	0.61	0.0120
Composite 1	-03	23	7.68	NR	0.37	0.0085
Composite 2	-03	23	7.43	NR	5.3	0.0692
Composite 3	-03	23	7.48	NR	3.8	0.0556
L. plumulosus – Pore Wate	r Quality Data ^b					
Lab Control	00	23	6.99	NR	3.2	0.0153
PDS Reference	00	23	7.28	NR	1.3	0.0121
Composite 1	00	23	7.49	NR	0.41	0.0061
Composite 2	00	23	7.27	NR	3.2	0.0290
Composite 3	00	23	7.28	NR	4.7	0.0436
Lab Control	03	23	7.12	NR	2.6	0.0167
PDS Reference r	03	23	7.32	NR	0.72	0.0073
Composite 1	03	23	7.53	NR	0.28	0.0046
Composite 2	03	23	7.23	NR	2.2	0.0182
Composite 3	03	23	7.32	NR	1.9	0.0193

Table 18 10-Day Whole Sediment Bioassay Water Quality Data Summary: L. plumulosus (cont.)

Sample ID	Day	Temperature (° C)	pH (SU)	Salinity (‰)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
Lab Control	10	22	7.01	NR	1.9	0.0089
PDS Reference	10	22	7.27	NR	0.38	0.0032
Composite 1	10	22	7.48	NR	<0.1	<0.0007
Composite 2	10	22	6.98	NR	0.53	0.0023
Composite 3	10	22	7.13	NR	0.3	0.0018

Note: Data in *L. plumulosus* overlying and pore water summaries were obtained from the "Surrogate" replicate of each treatment.

Table 19 28-Day Bioaccumulation Bioassay - Findings

M. nasuta percent survival results

	Replica	te Survival a	t the End of 2	sure (%)	Mean	Statistically		
	Α	В	С	D	Е	Mean Survival (%)	Different from PDS Reference ¹ ?	
Lab Control	100%	100%	100%	80%	95%	95%		
PDS Reference	95%	95%	95%	95%	95%	95%		
Composite 1	100%	100%	100%	100%	100%	100%	No	
Composite 2	100%	100%	95%	95%	90%	96%	No	
Composite 3	95%	100%	95%	100%	95%	97%	No	

N. virens percent survival results

	Replica	te Survival a	t the End of 2	sure (%)	Mean	Statistically		
	Α	В	С	D	Е	Mean Survival (%)	Different from PDS Reference ¹ ?	
Lab Control	90%	95%	90%	85%	100%	95%	-	
PDS Reference	100%	100%	90%	95%	100%	98%		
Composite 1	100%	100%	100%	100%	95%	99%	No	
Composite 2	100%	90%	100%	90%	100%	96%	No	
Composite 3	95%	100%	95%	100%	85%	94%	No	

NR – Not recorded. Salinity in pore water is not measured as part of the test protocol.

^a Pre-assay pore water monitoring. Measurements on Day -03 reflect five days of overlying water renewals to reduce ammonia levels prior to test initiation.

^b In-life assay pore water monitoring

Table 20 28-Day Bioaccumulation Bioassay - Lab Control Performance and Assay Acceptability Criteria Summary

Endpoint/ Measurement	Protocol Criteria	Unit	M. nasuta	N. virens
Maan Cumiyal	Laboratory control > 000/	%	95%	95%
Mean Survival	Laboratory control >90%	Protocol Met	Yes	Yes
Tissue Mass	Sufficient for analysis	Protocol Met	Yes	Yes
	Minimum: 20nnt	ppt	19.1	28
Salinity	Minimum: 28ppt	Protocol Met	No ^a	Yes
	Maximum:22nnt	ppt	31.4	31.3
	Maximum:32ppt	Protocol Met	Yes	Yes
	Mean: 12-16°C	Daily/Hourly	12.7 / ^b	12.6 / ^b
Tananavatuva	Minimum: 9°C	Daily/Hourly	12.4 / ^b	12.1 / ^b
Temperature	Maximum: 15°C	Daily/Hourly	13.4 / ^b	13.7 / ^b
		Protocol Met	Yes / ^b	Yes / ^b

^a Low salinity recorded in laboratory control and PDS reference replicates on Day 16 of the *M. nasuta* assay. Low readings may have been due to sediment lodged in the tip of the probe.

^b No hourly temperature logger was activated for these assays, therefore no hourly temperature measurements were collected. There were no temperature abnormalities observed in the daily water quality measurements that were collected.

Table 21 Tissue Analysis - Mean Wet Weight Chemical Concentrations and Statistical Findings for M. nasuta Tissue

Analyte	PDS Ref Site	Composite 1	Composite 2	Composite 3
	Mean Qual	Mean Qual	Mean Qual	Mean Qual
otal Metals (mg/kg)				
Arsenic, total	2.2	2.2 NS	1.8 NS	2 NS
Cadmium, total	0.036 b	0.046 bS	0.047 S	0.044 bS
Chromium, total	0.38 b	0.37 bNS	0.35 bNS	0.32 bNS
Copper, total	1.7	2 NS	1.5 NS	1.7 NS
Lead, total	0.36	0.23 NS	0.26 NS	0.32 NS
Mercury, total	0.011 b	0.013 bS	0.011 bNS	0.011 bNS
Nickel, total	0.44	0.44 NS	0.41 NS	0.4 NS
Zinc, total	9.64	15.8 S	14.3 S	15.3 S
Polycyclic Aromatic Hydrocarbons (ug/kg)			
Acenaphthene	9.1 a	8.9 ac	9 ac	9.1 ac
Acenaphthylene	9.1 a	8.9 ac	9 ac	9.1 ac
Anthracene	9.1 a	8.9 ac	9 ac	9.1 ac
Benzo(a)anthracene	9.1 a	8.9 ac	9 ac	9.1 ac
Benzo(a)pyrene	9.1 a	8.9 ac	9 ac	9.1 ac
Benzo(b)fluoranthene	9.1 a	8.9 ac	9 ac	9.1 ac
Benzo(k)fluoranthene	9.1 a	8.9 ac	9 ac	9.1 ac
Benzo(g,h,i)perylene	9.1 a	8.9 ac	9 ac	9.1 ac
Chrysene	9.1 a	8.9 ac	9 ac	9.1 ac
Dibenz(a,h)anthracene	9.1 a	8.9 ac	9 ac	9.1 ac
Fluoranthene	9.1 a	8.9 ac	9 ac	9.1 ac
Fluorene	9.1 a	8.9 ac	9 ac	9.1 ac
Indeno(1,2,3-c,d)pyrene	9.1 a	8.9 ac	9 ac	9.1 ac
Naphthalene	9.1 a	8.9 ac	9 ac	9.1 ac
Phenanthrene	9.1 a	8.9 ac	9 ac	9.1 ac
Pyrene	9.1 a	8.9 ac	9 ac	9.1 ac
Total LMW PAHs 1	27	27	27	27
Total HMW PAHs '	46	45	45	46
Total PAHs 1	73	71	72	73
olychlorinated Biphenyl Congeners	(0 0)			
PCB 8	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 18	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 28	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 44	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 52	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 66	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 101	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 105	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 118	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 128	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 138	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 153	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 170	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 180	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 187	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 195	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 206	0.91 a	0.89 ac	0.9 ac	0.91 ac
PCB 209	0.91 a	0.89 ac	0.9 ac	0.91 ac

Results presented are the mean of five replicate samples.

1 - Totals calculated for informational purposes only using 1/2 MDL for non-detected values. Statistical analysis not conducted on total values and qualifiers not applied.

Statistical qualifiers -

- a Analyte not detected (below MDL) in at least one replicate; mean value was calculated using the project specific MDL for non-detected values.
- b Analyte estimated (detected below RL but above MDL) in at least one replicate; mean value calculated using estimated value.
- c Analyte was detected in the treatment tissue sample replicates at an equal or higher mean concentration than in the associated reference site tissue, however statistical analysis is not required as the analyte was not detected in any of the reference site replicates.
- NS Not Significant mean tissue body burden was not statistically different from the associated reference site mean body burden. Statistical significance accepted at α =0.05.
- S Significant mean tissue body burden was statistically different, greater than the associated reference site mean body burden. Statistical significance accepted at α =0.05

Table 22 Tissue Analysis - Mean Wet Weight Chemical Concentrations and Statistical Findings for N. virens Tissue

Analyte	PDS Ref Site	Composite 1	Composite 2	Composite 3
Total Metals (mg/kg)				
Arsenic, total	2	1.6 NS	1.6 NS	1.6 NS
Cadmium, total	0.055	0.043 bNS	0.037 bNS	0.042 bNS
Chromium, total	0.053 b	0.069 bNS	0.089 bNS	0.047 bNS
Copper, total	1.2	0.92 NS	1.1 NS	1.1 NS
Lead, total	0.35	0.26 NS	0.21 NS	0.21 NS
Mercury, total	0.008 b	0.0032 aNS	0.0036 aNS	0.0038 aNS
Nickel, total	0.18	0.089 bNS	0.093 bNS	0.074 bNS
	14.3		16.7 NS	14.2 NS
Zinc, total		11.6 NS	10.7 NS	14.2 NS
Polycyclic Aromatic Hydrocarbons (u	0 0/	0.4	0.0 -1	0.0
Acenaphthene	9 a	9.1 ac	8.9 abc	9.2 ac
Acenaphthylene	9 a	9.1 ac	8.9 ac 8.9 ac	9.2 ac 9.2 ac
Anthracene	9 a	9.1 ac		
Benzo(a)anthracene Benzo(a)pyrene	9 a 9 a	9.1 ac 9.1 ac	8.9 ac 8.9 ac	9.2 ac 9.2 ac
Benzo(a)pyrene Benzo(b)fluoranthene	9 a 9 a	9.1 ac 9.1 ac	8.9 ac	9.2 ac 9.2 ac
Benzo(k)fluoranthene	9 a	9.1 ac	8.9 ac	9.2 ac
Benzo(g,h,i)perylene	9 a	9.1 ac 9.1 ac	8.9 ac	9.2 ac
Chrysene	9 a	9.1 ac	8.9 ac	9.2 ac
Dibenz(a,h)anthracene	9 a	9.1 ac	8.9 ac	9.2 ac
Fluoranthene	9 a	9.1 ac	8.9 ac	9.2 ac
Fluorene	9 a	9.1 ac	8.9 ac	9.2 ac
Indeno(1,2,3-c,d)pyrene	9 a	9.1 ac	8.9 ac	9.2 ac
Naphthalene	9 a	9.1 ac	8.9 ac	9.2 ac
Phenanthrene	9 a	9.1 ac	8.9 ac	9.2 ac
Pyrene	9 a	9.1 ac	8.9 ac	9.2 ac
Total LMW PAHs 1	27	27	27	28
Total HMW PAHs ¹	45	46	45	46
Total PAHs 1	72	73	71	74
Polychlorinated Biphenyl Congeners		73	7 1	17
PCB 8	1.2 a	1.1 aNS	0.89 aNS	0.92 aNS
PCB 18	0.9 a	0.91 ac	0.89 ac	0.92 and
PCB 28	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 44	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 52	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 66	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 101	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 105	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 118	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 128	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 138	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 153	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 170	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 180	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 187	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 195	0.9 a	0.91 ac	0.89 ac	0.92 ac
PCB 206	0.0 -	0.91 ac	0.89 ac	0.92 ac
	0.9 a	0.91 ac	0.03 ac	0.32 ac
PCB 209	0.9 a	0.91 ac	0.89 ac	0.92 ac

Results presented are the mean of five replicate samples.

1 - Totals calculated for informational purposes only using 1/2 MDL for non-detected values. Statistical analysis not conducted on total values and qualifiers not applied.

Statistical qualifiers -

- a Analyte not detected (below MDL) in at least one replicate; mean value was calculated using the project specific MDL for non-detected values.
- b Analyte estimated (detected below RL but above MDL) in at least one replicate; mean value calculated using estimated value.
- c Analyte was detected in the treatment tissue sample replicates at an equal or higher mean concentration than in the associated reference site tissue, however statistical analysis is not required as the analyte was not detected in any of the reference site replicates.
- NS Not Significant mean tissue body burden was not statistically different from the associated reference site mean body burden. Statistical significance accepted at α =0.05.
- S Significant mean tissue body burden was statistically different, greater than the associated reference site mean body burden. Statistical significance accepted at α =0.05

4. Chemical Analyses QA/QC

This section provides quality control information and documents the overall quality of the analytical data upon which the project conclusions are drawn. Project QA/QC information (e.g., laboratory control survival, reference toxicant results) for the biological testing program is discussed in Sections 2 and 3.

The chemical data collected during the investigation were of sufficient quality and sensitivity to meet the project objectives. The majority of the QC results associated with the analytical parameters met the measurement objectives presented in the work plan (AECOM, 2017a). Specific nonconformances with those measurement objectives are presented in the laboratory report narrative, RIM Checklist and validation memo associated with each laboratory report. A full set of QC sample findings (method blanks, duplicate precision results, laboratory control sample results, and matrix spike results) is provided in Appendix C.

4.1 Deviations

As noted above, all samples were delivered to ESI's laboratory on October 18, 2017 at the conclusion of the sampling program. During the sampling and analysis program, there was one noted deviation from the sample hold times and preservation conditions outlined in the workplan. Due to an initial laboratory processing error, PDS water samples were subsequently processed on 12/18/18, in accordance with conversations with NAE but out of the recommended hold times; therefore, the results have been qualified R1 (Appendix C) due to the holding time exceedance for these analytes. Results for arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver and zinc, which usually have a 6 month holding time, are considered estimated with a possible low bias since the sample wasn't preserved with nitric acid at the time of collection.

The laboratory has qualified the PCB congener data for the PDS Reference Site Water since this sample was extracted outside of the method holding time. However, PCB congeners are generally stable; therefore these results are considered as estimated (UJ). Similarly, the pesticide results for the PDS Reference Site Water have been qualified R1 due to the extraction holding time exceedance. However, many of the pesticide compounds can remain stable over time and the results may be usable as estimated values.

The pentachlorophenol (PCP) analysis was not reported from the initial submission of the laboratory report due to a surrogate spiking error. All PCP samples with the exception of the Water Pump Blanks 1 and 2 were extracted beyond the 14 day specified method to extraction holding time and have been qualified as R1 by the laboratory. These results should be used with caution and may be biased low due to the holding time exceedance. No other deviations relative to chemical analysis were noted.

4.2 Analytical Sensitivity

The sensitivity of program chemical measurements can sometimes dictate the ultimate usefulness of the final data. Results that are insufficiently sensitive to detect changes can limit the final project conclusions. The Chebeague Island project required RLs were specified in the agency approved work plan (AECOM, 2017a) to detect sedimentary contaminant considerations, ambient seawater and elutriate concentrations, and bioaccumulative tissue concerns.

The work plan prepared by AECOM (AECOM, 2017a) summarized the laboratory RLs and project required RLs. Nondetect chemistry results were reported at laboratory RLs since they provide greater confidence. The majority of the RLs met the QAPP specifications. Laboratory reporting limits for hexavalent chromium and toxaphene in the elutriate were slightly higher than the project required limits shown in the QAPP. Selected semivolatile results associated with the tissue analysis were elevated due to interferents present in the sample matrix which resulted in the need for dilution.

Sample contamination can sometimes affect sample results, particularly when measuring chemical parameters at very low concentrations. In this study, potential contamination has been monitored using equipment blank QC samples. Equipment blanks were collected in a parking lot setting. Consequently, potential existed for ambient dust to potentially impact the field blank results. In the future, corrective actions will be taken to generate the equipment blank in an area that minimizes the possibility of ambient dust influence in future work. A few target metals were detected in the equipment blanks associated with the water pump, core sediment and grab sediment equipment, but

at very low levels and are not considered to have an impact on sample results. Equipment blank performance data is presented in Appendix C.

4.3 Data Precision

Analytical precision was measured at the laboratory level using laboratory control sample (LCS) duplicates or matrix spike duplicates.

4.3.1 Elutriate and Ambient Seawater Measurement Precision

Elutriate analysis precision was evaluated using matrix duplicates, matrix spike duplicates, and Laboratory Control Sample (LCS) duplicates. RPD objectives for this project were equivalent to the sediment objectives (20 percent for metals, 30 percent for trace organic compounds). The RPD criteria were met for all elutriate parameters.

4.3.2 Tissue Measurement Precision

Tissue analysis precision was evaluated using matrix spike and LCS duplicates. The tissue RPD objectives for this project were also 20 percent for metals and 30 percent for trace organic compounds. The RPD criteria were not met for the LCS/LCSD for several target congeners; reported RPD values ranged from 33-43%. Laboratory duplicates for the determination of PCBs and PAHs in field samples were within precision limits. Chromium and zinc in laboratory duplicates analyzed for metals exceeded the 20% RPD limit but this may be the result of sample homogeneity. RPD values for selected PAH and congener results in MS/MSD analyses exceeded the 30% RPD limit however this may reflect homogeneity of the native sample matrix used for spiking. These variances are not considered to adversely affect the tissue dataset.

4.4 Data Accuracy

Accuracy was evaluated using several QC sample types by calculating the percent recovered for each parameter of interest. A recovery value of 100% corresponds to 100% accuracy in this analysis. LCS and matrix spiked samples were incorporated as accuracy QC samples. Additionally, surrogate spikes were used to evaluate the accuracy of organic measurements and certified reference materials (CRMs) were included where available.

4.4.1 Elutriate and Ambient Seawater Analysis Accuracy

Matrix spike results associated with hexavalent chromium in the elutriate samples were reported at 71% which is slightly below the lower control limit of 75% for this analysis.

Low recovery (29%) of the decachlorobiphenyl surrogate was reported for Replicates 2 and 3 of the Composite 3 Elutriate pesticide analysis. Elevated surrogate results (168%) were reported for decachloribiphenyl in Replicate 3 of the Composite 2 Elutriate Blank. It was noted that the laboratory was using wider control limits (30-150%) than the 50-120% limits stated in the RIM Checklist for the MS and MSD recoveries associated with organic compounds Individual pesticide results were within the 30-150% laboratory limits but outside the 50-120% limits of the RIM checklist. The lab has been asked to revise the MS/MSD control limits for organic analytes in future reports to reflect the RIM guidance.

Elevated recoveries were reported for several congeners in the LCSD associated with samples L1745513-21 -40; recoveries above the 120% upper control limit were reported for Cl4-BZ#44 (123%), Cl4-BZ#52 (121%), Cl4-BZ#66 (123%), Cl5-BZ#87 (127%), Cl5-BZ#101 (124%), Cl5-BZ#105(128%), Cl5-BZ#118 (127%), Cl6-BZ#128 (126%), Cl6-BZ#138 (129%), Cl6-BZ#153 (124%), Cl7-BZ#170(121%), Cl9-BZ#206 (138%) and Cl10-BZ#209 (138%). Since these congeners were not detected in the associated samples there is no impact on data usability.

4.4.2 Tissue Analysis Accuracy

LCSs, matrix spikes, and SRMs were used to assess the accuracy of the tissue chemical measurements. The SRMs represent an excellent measure of overall analytical accuracy. Elevated results were reported for C13-BZ#28 in the

PCB Congener SRM; associated sample results for this analyte would be considered biased high however since it appears all results for C13-BZ#28 are reported as nondetect there is no impact on data usability.

Matrix spike recovery measurements were largely within work plan specified limits. Metals MS/MSDs were within control limits. Elevated recoveries (134% and 127%) were reported for C13-BZ#18 in the MS and MSD associated with samples L1745513-21- 40 and the MSD (121%) associated with C15-BZ#101 in samples L1745513-41-60. More information can be found in the individual laboratory reports.

4.5 Chemical QA/QC Summary

Analytical results, with the exception of PCP data for samples extracted outside the method holding time and results for the PDS Reference Site Water, are considered usable as reported. The hexavalent chromium, mercury and PCP data may be used for information purposes but are considered rejected due to the holding time exceedance documented by the laboratory. PCB congener and pesticide results for the PDS Reference Site Water should be considered estimated since it appears the initial extraction took place outside of the recommended holding time. The results for arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver and zinc in the PDS Reference Site Water should be considered estimated with a possible low bias since the sample was not acidified upon arrival at the laboratory.

5. References

AECOM, 2017a. Sampling and Environmental Testing in Support of Dredged Material Suitability Determination: Work Plan Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine. October 2017.

AECOM. 2017b. Field Report: Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine. October, 2017.

Chang-Hoon Lee, Chan-Gyoung Sung, Seong-Dae Moon and Jong-Hyeon Lee. 2013. Effects of Ammonia on Fertilization, Development, and Larval Survival in the Northern Pacific Asteroid, *Asterias amurensis* (Sea urchin). Bulletin of Environmental Contamination and Toxicology. 91:102-106.

EPA. 1989. Ambient Water Quality Criteria for Ammonia (Saltwater) - 1989. EPA 440/5-88-004. April 1989.

EPA 2002. Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. Fifth Edition. EPA-821-R-02-012.

EPA/USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal: Testing Manual (Green Book). EPA 503/8-91/001. February 1991.

EPA/USACE. 1998. Evaluation of Dredged Material Proposed For Discharge in Waters of the U.S. – Testing Manual. Inland Testing Manual. EPA-823-B-98-004. February 2004.

EPA/USACE, 2004. Regional Implementation Manual for the Evaluation Of Dredged Material Proposed For Disposal In New England Waters. April, 2004.

Maguire Group, Inc. 2003. Laboratory Testing in Support of Site Specific Water Quality Criteria Assessment and Hydrographic Data Collection for New Bedford Harbor. Toxicity Identification Evaluation Testing with Mysids and Sea Urchins.

AECOM

Appendix B: Field Report

Field Report:
Sampling and Testing in Support of
Dredged Material Suitability Determination
Chebeague Island Navigation
Improvement Project, Great Chebeague
Island, Maine

United States Army Corps of Engineers

Project Number: 60551931

October 2017

Field Report: Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project

Quality information

Prepared by		Checked by		Approved	l by	
In	The	Maria		Maur	a K Jurremant	
K. van Naerssen AECOM Field Team Lead / Task Order Manger		K. Durocher AECOM Sedi Network Lead	ments Technical Practice	Maura Surprenant Deputy Program Manager		
	95.					
Revision H	History					
Revision	Revision date	Details	Authorized	Name	Position	

Field Report: Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project

Prepared for:

United States Army Corps of Engineers

Prepared by:

Kris van Naerssen AECOM Field Team Lead / Task Order Manager D +1.860.263.5763 M +1.484.678.1876 kris.vannaerssen@aecom.com

AECOM 500 Enterprise Drive Suite 1A Rocky Hill, CT, 06067, USA aecom.com

All rights reserved. No part of this work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Introduction	1
2.	Great Chebeague Island / PDS Sampling Field Summary	1
3.	Health and Safety	
4.	Sediment Collection	
	4.1 Vessel Positioning	1
	4.2 Grab Sample Handling	2
5.	Water Collection	2
6.	Field QA/QC Procedures	2
7.	SAP Deviations/Difficulties Encountered	2
Tab Table	les 1 Great Chebeague Island / PDS Field Survey Activity Summary	3
Figu	ures	
•	e 1 PDS Reference Site Sediment and Water Sampling Location – Great Chebeague Island Sediment incterization Study	4

Attachments

Attachment 1 Great Chebeague Island / PDS Sampling Daily Activity Logs
Attachment 2 Great Chebeague Island / PDS Sampling SH&E Documentation
Attachment 3 Great Chebeague Island / PDS Sampling Chain of Custody Forms
Attachment 4 Great Chebeague Island / PDS Sampling Field Logs

Acronyms

°C degrees Celsius COC Chain of Custody

DGPS Differential Global Positioning System

ESI EnviroSystems, Inc.

L liter

MLLW Mean Lower Low Water
NA Normandeau Associates
NAE New England District

NOAA National Oceanographic and Atmospheric Administration

PDS Portland Disposal Site R/V Research Vessel

SAP Sampling and Analysis Plan SPP Suspended Particulate Phase

USACE United States Army Corps of Engineers

1. Introduction

The Chebeague Island Navigation Improvement Project dredged material suitability determination field program was completed by both U.S. Army Corps of Engineers (USACE) New England District (NAE) personnel (harbor landing site sampling) and individuals on the AECOM and Normandeau Associates (NA) Field Team (collectively the AECOM Field Team). Field activities undertaken by the AECOM Field Team included collection and transport of sediment and water samples from the Portland Disposal Site (PDS) Reference Site, as well as receipt and delivery of NAE-collected representative sediment and water samples from the Great Chebeague Island harbor landing.

Tasks described within this Field Report focus primarily on activities undertaken by the AECOM Field Team. Sampling techniques employed by NAE personnel, relative to sediment and water collection activities at Great Chebeague Island, are addressed under separate cover.

2. Great Chebeague Island / PDS Sampling Field Summary

The project field effort commenced on October 17, 2017 and was completed on October 18, 2017. Project mobilization activities occurred on October 16, 2017. The program was divided into three tasks: AECOM's receipt of sediment and water samples that were collected by NAE on October 17, 2017; the AECOM Field Team's collection of sediment and water samples at the PDS Reference Site October 17, 2017; and, sample delivery to the project laboratory, EnviroSystems, Inc. (ESI), on October 18, 2017.

PDS Reference Site samples (sediment/water) were collected by the AECOM Field Team from NA's sampling platform, the research vessel (R/V) P1. Table 1 summarizes the activities accomplished during the field effort. Daily Activity Logs are provided in Attachment 1.

3. Health and Safety

Great Chebeague Island and the associated PDS sampling activities were completed safely and without incident. AECOM Team participants took an active part during the project safety briefing, conducted on October 17, 2017 (the one day of active field sampling by the AECOM Team). The AECOM Deputy Program Manager was de-briefed at the completion of field activities. The daily safety briefings are documented on the attached Daily Activity Logs (Attachment 1). The Float Plan and Tailgate meeting form covering boating activities and safety protocols, respectively, are compiled as Attachment 2.

4. Sediment Collection

Great Chebeague Island landing sediments were collected by NAE using vibracore methodology. These sediment samples were containerized by NAE and transferred to AECOM under chain of custody (COC) at the conclusion of NAE sampling efforts.

PDS Reference Site sediments were collected by the AECOM Field Team using Van Veen and ponar grab samplers as outlined in and in accordance with the project Sampling and Analysis Plan (SAP)¹.

Great Chebeague Island landing and PDS Reference Site sediment samples were held in a temperature-controlled refrigerated van unit in accordance with the project SAP until delivery to ESI.

4.1 Vessel Positioning

Vessel positioning was accomplished utilizing a Differential Global Positioning System (DGPS) unit. The sampling vessel was held on station as outlined in the SAP. The local National Oceanic and Atmospheric Administration (NOAA) tide data were obtained from Station 8418150.

¹ AECOM, 2017. Sampling and Testing in Support of Dredged Material Suitability Determination: Work Plan - Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine. USACE Contract No. W912WJ-17-D-003. Delivery Order No. W912WJ17F0106. October, 2017.

4.2 Grab Sample Handling

Grab sampling at the PDS Reference Site was accomplished as outlined in the SAP using Van Veen and ponar grab samplers. Multiple deployments of the samplers were required to obtain the 23.5-gallons of PDS sediment required for testing. For each grab, the sample was examined for disturbance and then transferred to a polyethylene bucket. The sediments collected by grab sampler at the reference site were transferred from the vessel and into a locked refrigerated van set to 2.2 degrees Celsius (°C) upon return to the dock.

Before and after sediment collection, the sampling gear was decontaminated as outlined in the SAP.

5. Water Collection

Water samples from the harbor area (site water) were collected by NAE from three representative harbor locations on October 17, 2017. These water samples were transferred to AECOM under COC at the conclusion of NAE sampling efforts.

The PDS Reference Site water sample (suspended particulate phase [SPP] dilution water) was collected using a large (8 liter [L]) Niskin bottle. Given the site depth at the PDS Reference Site, water was collected from three separate depths in the water column (approximately 3-feet below the surface, mid-depth, and approximately 3-feet off the bottom). Water samples from PDS were transferred to the refrigerated van immediately after returning to the dock.

Before and after water collection, the sampling gear was decontaminated as outlined in the SAP.

6. Field QA/QC Procedures

Equipment blanks were collected from the coring equipment by NAE on October 17, 2017. Equipment blanks were collected from the Niskin bottle and sediment grab sampler used for PDS Reference Site sampling on October 17, 2017.

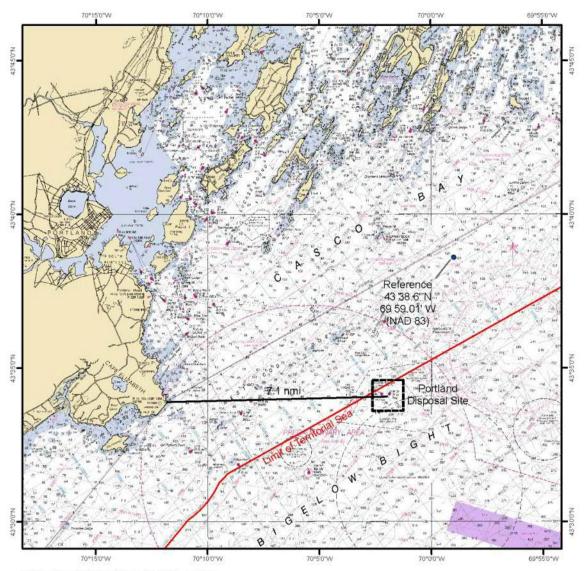
All equipment blanks were placed in the locked refrigerated van after collection and iced for transport to the laboratory.

All samples were held under COC, and signed for during ownership transfer (Attachment 3).

7. SAP Deviations/Difficulties Encountered

There are a few notes of interest relative to the Great Chebeague Island / PDS sediment collection effort:

The SAP notes that HYPACK software shall be utilized in concert with the DGPS unit for navigation. The R/V P1 was equipped with a comparable navigation setup that included a Trimble DGPS system and Nobeltec navigation software (rather than HYPACK software) for vessel positioning. DGPS accuracy was achieved as specified in the SAP. Project coordinates were monitored in real-time in Degree Decimal Minute format. No project implications are anticipated as a result of this deviation.


All project logbook entries are included as Attachment 4.

Field Report: Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project

Table 1 Great Chebeague Island / PDS Field Survey Activity Summary

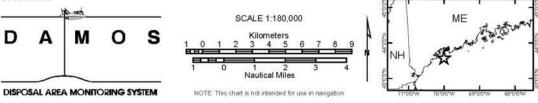

Date	AECOM Survey Activities	Equipment	Platform
October 16, 2017	Project Mobilization	Refrigerated Van	Refrigerated Van
October 17, 2017	PDS Reference Site water and sediment grab sampling. Equipment blank collected for Niskin Bottle and Grab Samplers	Niskin Bottle / Van Veen / Ponar Grab Samplers, Refrigerated Van	R/V P1, Refrigerated Van
	Great Chebeague Island sediment and water sample receipt from NAE and subsequent storage/transport	Refrigerated Van	Refrigerated Van
October 18, 2017	Sample transport to ESI	Refrigerated Van	Refrigerated Van

Figure 1 PDS Reference Site Sediment and Water Sampling Location – Great Chebeague Island Sediment Characterization Study

PORTLAND DISPOSAL SITE

Description: The Portland Disposal Site (PDS) is one of three regional dredged material disposal sites located in the waters of Maine. It covers a 1 nmi² (3.4 km²) area of seafloor centered at 43° 34.111' N, 70° 01.9386' W (NAD 83), approximately 7.1 nmi (13.2 km) east of Dyer Point, Cape Elizabeth, Maine. PDS is characterized by a rough, irregular bottom topography, with areas of soft sediment accumulation in the basins among bedrock outcrops. The authorized disposal point (within the overall disposal area) is specified for each dredging project in other project documents

Appendix C: Chemistry Data

AECOM 250 Apollo Drive Chelmsford MA, 01824 USA aecom.com

March 5, 2018

Richard Ben Loyd Department of Army New England District Corps of Engineers 696 Virginia Road Concord, MA 01742

RE: Chebeague Island Elutriate Chemistry – Final Progress Report (Revised)

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Dear Mr. Loyd:

AECOM Technical Services, Inc. (AECOM) is pleased to provide the enclosed revised Elutriate Testing final progress report under Delivery Order W912WJ17F0106, Task 5 of the Performance Work Statement (PWS) entitled "Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine", dated 4 August 2017.

The enclosed report details the project's elutriate chemistry results, including revisions implemented to address edits which arose during Final Report preparation for this project. A revised elutriate chemistry electronic data deliverable (EDD) accompanies this submittal. Please let us know if you have any questions or would like anything further.

This submission has been subject to AECOM's review and coordination procedures. Please let us know if you have any questions or if you would like a call to discuss the attached.

Best Regards,

Kris van Naerssen Project Manager

AECOM

E: kris.vannaerssen@aecom.com

cc: Maura Surprenant, AECOM Mary O'Connell-Kozik, AECOM

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability

Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

March 5, 2018

Elutriate Chemistry – Final Progress Report (Revised)

CHEMICAL ANALYSIS OF A MARINE SEDIMENT - ELUTRIATE SOLUTION:

Chebeague Island Navigation Improvement Project
Tier III Sediment Evaluation
Great Chebeague Island, Maine

New England District Corps of Engineers USACE Contract No.: W912WJ17F0106

Prepared For:

AECOM 250 Apollo Drive Chelmsford, MA 01824

Prepared By:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

EnviroSystems, Inc. Sample Deliver Group Reference 29746
Study Specific Reference 29751

LABORATORY STANDARDS STATEMENT

This study was performed by EnviroSystems, Incorporated at its facility in Hampton, New Hampshire. EnviroSystems' laboratory is accredited by the State of New Hampshire under the National Environmental Laboratory Accreditation (NELAC) program. Additionally, ESI is accredited under the Department of Defense (DoD) ELAP program, ISO/IEC 17025:2005, Certificate Number L2340. All testing conducted by EnviroSystems as part of this program was compliant with NELAC guidelines and standards. Additionally, this study was conducted in accordance with guidelines presented in the 2004 version of the New England District's Regional Implementation Manual (RIM) for Evaluation of Dredged Material Proposed for Disposal In New England Waters. Any deviations from specific elements of the RIM are detailed in the completeness checklist of this Report.

For EnviroSystems, Inc.

February 14, 2018

Date

Renneth A. Simon Technical Director

CHEMICAL ANALYSIS OF A MARINE SEDIMENT - ELUTRIATE SOLUTION:

Chebeague Island Navigation Improvement Project Tier III Sediment Evaluation Great Chebeague Island, Maine

1.0 SAMPLE COLLECTION, PRESERVATION AND STORAGE

Sediment samples for chemical and physical analysis were provided by AECOM from locations specified within the project work plan. Samples were received under chain of custody in sample containers appropriate for the specified analysis. Upon arrival at the laboratory, all samples received an internal sample control number and were logged into the project sample control system. Samples were placed in a secure sample holding location and stored at a temperature of 4±2°C until analysis.

2.0 ANALYSIS

Sample analysis was carried out following methods and protocol specified in the project Sample Analysis Plan by EnviroSystems, Inc. at its Hampton, NH facility. Review of the data report document showed that all sample holding times were met, unless otherwise qualified, that the analytical methods used in the analysis were appropriate for the parameter and sample matrix and met New England District Regional Implementation Manual requirements. Review of supporting quality assurance data documented that, except where qualified, all data collected meet all of the requirements of NELAC, for all NELAC accredited parameters.

3.0 RESULTS

Analytical methods used in the analysis of sediment samples were analyzed using protocol recommended in Tables 2 and 3 of the New England District RIM document with appropriate updates related to current methods. Trace metals were evaluated using EPA Method 200.8, Inductively Coupled Plasma - Mass Spectrometry (ICP-MS), mercury was evaluated using EPA Method 245.7, Cold Vapor Atomic Fluorescence Spectrometry. PCB Congeners were analyzed by EPA Method 608. Pentachlorophenol was analyzed by EPA Method 680. Pesticides were analyzed by EPA Method 8081B. In cases where dilution of the sample extract was required the final reporting limit remained below the RIM document specified limits and did not result in artificial "Non Detects."

A review of QC data documented three incidences where the surrogate recovery fell outside of acceptable limits. There was one incidence of the %R exceeding the acceptable limit in a matrix spike. The reporting limit for the compound toxaphene was above the reporting limit stated in the Sampling and Analysis Plan (SAP).

A full copy of the analytical report is included in the following data appendix

3 of 127

TABLE OF CONTENTS

Report Element	Number of Pages	Page Number
Sediment Analysis		
Trace Metals Analysis	11	5
PCB Congener Analysis	11	16
PCP Analysis	9	27
Pesticide Analysis	11	36
QC Support		
Trace Metals QC Support	32	47
PCB Congener QC Support	8	79
PCP QC Support	10	87
Pesticide QC Support	8	97
New England District Quality Control Summary Tables	12	105
Sample Support Documents		
COC, Sample Receipt Record, Elutriate Preparation Records	11	117
Total Pages	127	

Report No: 29993 SDG:

Project: Ref Site Background

Sample ID: PDS Reference Site Water

Matrix: Water

Sampled: 10/17/17 1425

Parameter		Result		Quant Limit	Units	Date Prepared	Date of Analysis	INIT/Method/Reference
Arsenic, total	29993-103	0.0015	R1	0.0004	mg/L	, ,	, ,	JLH/EPA 200.8
Cadmium, total Chromium, total	29993-103 29993-103	ND ND	R1 R1	0.0002 0.0004	mg/L mg/L	, ,		JLH/EPA 200.8 JLH/EPA 200.8
Hexavalent Chromium	29993-103	ND	O,R1	0.0004	mg/L	, ,		JLH/EPA 200.8
Copper, total	29993-103	0.0008	R1	0.0004	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8
Lead, total	29993-103	ND	R1	0.0002	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8
Mercury, total	29993-104	ND	R1	0.01	ug/L	12/08/17 1533	12/10/17 1015	JHW/EPA 245.7
Nickel, total	29993-103	ND	R1	0.0008	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8
Selenium, total	29993-103	ND	R1	0.001	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8
Silver, total	29993-103	ND	R1	0.0002	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8
Zinc, total	29993-103	0.0012	B,R1	0.0008	mg/L	12/18/17 0915	12/18/17 1904	JLH/EPA 200.8

603-926-3345

fax 603-926-3521

Notes:

ND = Not Detected

O = Sample out of hold time. Value obtained from ICP-MS

R1 = Sample was run out of recomended hold time.

B = Analyte found in laboratory blank at level indicated. 0.0003 mg/L.

USACE Contract No.: W912WJ17F0106 AECOM

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project: Chebeague

Sample ID: Lab ID: Date Sampled:

Matrix:

Composite 1 Elutriate Blank - Rep 1 29751-001 10/24/17 1012 Water Composite 1 Elutriate Blank - Rep 2 29751-002 10/24/17 1012 Water

Composite 1 Elutriate Blank - Rep 3 29751-003 10/24/17 1012 Water

Analyte	Units	Result	Qual	Result	Qual	Result	Qual
Arsenic, total	mg/L	0.0017		0.0017		0.0015	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U	0.005	U	0.005	U
Copper, total	mg/L	0.0005	U	0.0005	U	0.0009	
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.0018		0.0011		0.001	U
Selenium, total	mg/L	0.001	U	0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.001	U	0.001	U	0.0012	

U = Below quantitation limit

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project:

Chebeague

Sample ID: Lab ID: Date Sampled: Matrix: Composite 1 Elutriate - Rep 1 29751-019 10/24/17 1250 Water Composite 1 Elutriate - Rep 2 29751-020 10/24/17 1250 Water Composite 1 Elutriate - Rep 3 29751-021 10/24/17 1250 Water

Analyte	Units	Result	Qual	Result	Qual	Result	Qual
Arsenic, total	mg/L	0.0257		0.0257		0.0260	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U	0.005	U	0.005	U
Copper, total	mg/L	0.0006		0.0005	U	0.0005	U
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.001	U	0.001	U	0.001	U
Selenium, total	mg/L	0.001	U	0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.0045		0.0016		0.0020	

U = Below quantitation limit

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project:

Chebeague

Sample ID: Lab ID: Date Sampled:

Matrix:

29751-037 10/24/17 1012 Water

29751-038 10/24/17 1012 Water

Composite 2 Elutriate Blank - Rep 1 Composite 2 Elutriate Blank - Rep 2 Composite 2 Elutriate Blank - Rep 3 29751-039

10/24/17 1012 Water

Analyte	Units	Result	Qual	Result	Qual	Result	Qual
Arsenic, total	mg/L	0.0015		0.0016		0.0016	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U	0.005	U	0.005	U
Copper, total	mg/L	0.0005	U	0.0005	U	0.0006	
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.001	U	0.0015		0.0024	
Selenium, total	mg/L	0.001	U	0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.0015		0.0013		0.001	U

U = Below quantitation limit

ESI

www.envirosystems.com EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project:

Chebeague

Sample ID: Lab ID: Date Sampled: Matrix: Composite 2 Elutriate - Rep 1 29751-055 10/24/17 1400 Water Composite 2 Elutriate - Rep 2 29751-056 10/24/17 1400 Water Composite 2 Elutriate - Rep 3 29751-057 10/24/17 1400 Water

Analyte	Units	Result	Qual	Result	Qual	Result C	Qual
Arsenic, total	mg/L	0.0129		0.0130		0.0128	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U,J5	0.005	U	0.005	U
Copper, total	mg/L	0.0005	Ü	0.0005	U	0.0005	U
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.001	U	0.001	U	0.0011	
Selenium, total	mg/L	0.001	U	0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.0027		0.0055		0.0029	

J5 = MS %R below limit

U = Below quantitation limit

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project:

Chebeague

Sample ID: Lab ID: Date Sampled:

Matrix:

29751-073 10/24/17 1054 Water

29751-074 10/24/17 1054 Water

Composite 3 Elutriate Blank - Rep 1 Composite 3 Elutriate Blank - Rep 2 Composite 3 Elutriate Blank - Rep 3 29751-075 10/24/17 1054 Water

Analyte	Units	Result	Qual	Result	Qual	Result	Qual
Arsenic, total	mg/L	0.0016		0.0016		0.0015	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U	0.005	U	0.005	U
Copper, total	mg/L	0.0005	U	0.0005	U	0.0015	
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.0011		0.001	U	0.001	U
Selenium, total	mg/L	0.001	Ŭ	0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.0012		0.0024		0.0015	

U = Below quantitation limit

ESI

603-926-3345 fax 603-926-3521 EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778

Inorganic Analytes in Elutriates SW 846 6020/EPA 200.8 modified EPA 245.7 and SM 3500-Cr D

Project:

Chebeague

Sample ID: Lab ID: Date Sampled: Matrix: Composite 3 Elutriate - Rep 1 29751-091 10/24/17 1535 Water Composite 3 Elutriate - Rep 2 29751-092 10/24/17 1535 Water Composite 3 Elutriate - Rep 3 29751-093 10/24/17 1535 Water

Analyte	Units	Result	Qual	Result	Qual	Result	Qual
Arsenic, total	mg/L	0.0065		0.0064		0.0064	
Cadmium, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Chromium, total	mg/L	0.001	U	0.001	U	0.001	U
Chromium, hexavalent	mg/L	0.005	U	0.005	U	0.005	U
Copper, total	mg/L	0.0005	U	0.0005	U	0.0005	U
Lead, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Mercury, total	ug/L	0.01	U	0.01	U	0.01	U
Nickel, total	mg/L	0.0023		0.0011		0.0013	
Selenium, total	mg/L	0.0013		0.001	U	0.001	U
Silver, total	mg/L	0.0002	U	0.0002	U	0.0002	U
Zinc, total	mg/L	0.0210		0.0057		0.0121	

U = Below quantitation limit

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

Chebeague Composite 1 Elutriate Blank

	Lab Number:	29751-01	0	29751-0°	11	29751-01	12
	Sample Designation:	Composi	te 1 Elutriate Blank - Rep 1	Composi	ite 1 Elutriate Blank - Rep 2	Composi	te 1 Elutriate Blank - Rep 3
	Date Sampled:	10/24/17	1012	10/24/17		10/24/17	
	Date Extracted:	10/23/17	0920	10/23/17	0920	10/23/17	0920
	Date Analyzed:	11/02/17		11/02/17	•	11/02/17	
	Matrix:	Water		Water		Water	
	Sample Amount (mL):	960		960		960	
	Final Volume (mL)	0.4		0.4		0.4	
	Dilution Factor:	1		1		1	
		Rep 1		Rep 2		Rep 3	
		Result	Qual	Result	Qual	Result	Qual
Number	PCB Congener	(ug/L)		(ug/L)		(ug/L)	
8	2,4'-dichlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
18	2,2',5-trichlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
28	2,4,4'-trichlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
44	2,2',3,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
49	2,2',4,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
52	2,2',5,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
66	2,3',4,4'-tetrachlorobiphenyl	0.00083	Ü	0.00083	-	0.00083	Ü
77	3,3',4,4'-tetrachlorobiphenyl	0.00083	U	0.00083		0.00083	Ü
87	2,2',3,4,5'-pentachlorobiphenyl	0.00083	Ü	0.00083		0.00083	Ü
101	2,2',4,5,5'-pentachlorobiphenyl	0.00083	U	0.00083		0.00083	Ü
105	2,3,3',4,4'-pentachlorobiphenyl	0.00083	Ü	0.00083		0.00083	Ü
118	2,3',4,4',5-pentachlorobiphenyl	0.00083	U	0.00083		0.00083	U
126	3,3',4,4',5-pentachlorobiphenyl	0.00083	Ü	0.00083		0.00083	Ü
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.00083	U	0.00083	-	0.00083	U
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.00083	U	0.00083	_	0.00083	U
156	2,3,3',4,4',5-hexachlorobiphenyl	0.00063	U	0.00063	O	0.00063	O
169 170	3,3',4,4',5,5'-hexachlorobiphenyl 2,2',3,3',4,4',5-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00083	U	0.00083	-	0.00083	U
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00083	U	0.00083		0.00083	U
187		0.00083	U	0.00083		0.00083	U
	2,2',3,4',5,5',6-heptachlorobiphenyl		-				-
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00083	U	0.00083		0.00083	U
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00083	U	0.00083		0.00083	U
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U
	Surrogate Standard	Recovery	<i>(</i>	Recover	y	Recovery	/ Limit
	•	(%)		(%)		(%)	(%)
198	2,2',3,3',4,5,5',6-octachlorobiphenyl	66		67		71	30-150

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

	Project:	Chebeag Composit						
	Lab Number: Sample Designation: Date Sampled: Date Extracted: Date Analyzed: Matrix: Sample Amount (mL): Final Volume (mL) Dilution Factor:	29751-02 Composit 10/24/17 10/23/17 11/01/17 Water 960 0.4 1	e 1 Elutriate - Rep 1 1250	29751-02 Compos 10/24/17 10/23/17 11/01/17 Water 950 0.4 1	ite 1 Elutriate - Rep 2 1250 0920	29751-03 Composi 10/24/17 10/23/17 11/01/17 Water 970 0.4 1	te 1 Elutr 1250	iate - Rep 3
		-	Qual	Result	Qual	Result	Qual	
Number	PCB Congener	(ug/L)	Quai	(ug/L)	Quai	(ug/L)	Quai	
8	2,4'-dichlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
18	2,2',5-trichlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
28	2,4,4'-trichlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
44	2,2',3,5'-tetrachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
49	2,2',4,5'-tetrachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
52	2,2',5,5'-tetrachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
66	2,3',4,4'-tetrachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
77 97	3,3',4,4'-tetrachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
87 101	2,2',3,4,5'-pentachlorobiphenyl	0.00083	U U	0.00084	U U	0.00082 0.00082	U U	
101 105	2,2',4,5,5'-pentachlorobiphenyl 2,3,3',4,4'-pentachlorobiphenyl	0.00083	U	0.00084 0.00084	U	0.00082	U	
118	2,3',4,4',5-pentachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
126	3,3',4,4',5-pentachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00083	Ü	0.00084	U	0.00082	U	
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.00083	U	0.00084	Ü	0.00082	Ü	
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.00083	Ü	0.00084	Ü	0.00082	Ü	
156	2,3,3',4,4',5-hexachlorobiphenyl							
169	3,3',4,4',5,5'-hexachlorobiphenyl							
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.00083	U	0.00084	U	0.00082	U	
	Surrogate Standard	Recovery	,	Recover	y	Recovery	/	Limit
198	2,2',3,3',4,5,5',6-octachlorobiphenyl	(%) 78		(%) 81		(%) 81		(%) 30-150
130	2,2,0,0, 1 ,0,0,0-00.addillolobipilettyl	70		01		01		30-130

Chebeague Composite 2 Elutriate Blank

	Lab Number: Sample Designation: Date Sampled: Date Extracted: Date Analyzed: Matrix: Sample Amount (mL): Final Volume (mL) Dilution Factor:	29751-04 Composi 10/24/17 10/23/17 11/02/17 Water 970 0.4 1	te 2 Elutriate Blank - Rep 1 1012	29751-04 Composi 10/24/17 10/23/17 11/02/17 Water 970 0.4 1	te 2 Elutriate Blank - Rep 2 1012 0920	29751-04 Compositi 10/24/17 10/23/17 11/02/17 Water 980 0.4 1	e 2 Elutriate Blank - Rep 3 1012
Number	PCB Congener	Result (ug/L)	Qual	Result (ug/L)	Qual	Result (ug/L)	Qual
8	2,4'-dichlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
18	2,2',5-trichlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
28	2,4,4'-trichlorobiphenyl	0.00082	Ü	0.00082	Ü	0.00082	Ü
44	2,2',3,5'-tetrachlorobiphenyl	0.00082	Ü	0.00082	Ü	0.00082	U
49	2,2',4,5'-tetrachlorobiphenyl	0.00082	Ü	0.00082	Ü	0.00082	Ü
52	2,2',5,5'-tetrachlorobiphenyl	0.00082	Ü	0.00082	Ü	0.00082	U
66	2,3',4,4'-tetrachlorobiphenyl	0.00082	U	0.00082	Ū	0.00082	Ü
77	3,3',4,4'-tetrachlorobiphenyl	0.00082	Ü	0.00082	Ü	0.00082	U
87	2,2',3,4,5'-pentachlorobiphenyl	0.00082	Ü	0.00082	Ū	0.00082	U
101	2,2',4,5,5'-pentachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
105	2,3,3',4,4'-pentachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
118	2,3',4,4',5-pentachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
126	3,3',4,4',5-pentachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
156	2,3,3',4,4',5-hexachlorobiphenyl						
169	3,3',4,4',5,5'-hexachlorobiphenyl						
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
	Surrogate Standard	Recovery	,	Recovery	у	Recovery	Limit
198	2,2',3,3',4,5,5',6-octachlorobiphenyl	(%) 67		(%) 73		(%) 78	(%) 30-150

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

Project:	Chebeague
	Composite 2

	Lab Number:	29751-06	4	29751-06	65	29751-06	66	
	Sample Designation:		e 2 Elutriate - Rep 1		te 2 Elutriate - Rep 2			e - Rep 3
	Date Sampled:	10/24/17		10/24/17		10/24/17		
	Date Extracted:	10/23/17		10/23/17		10/23/17		
	Date Analyzed:	11/02/17		11/02/17		11/02/17		
	Matrix:	Water		Water		Water		
	Sample Amount (mL):	960		960		960		
	Final Volume (mL)	0.4		0.4		0.4		
	Dilution Factor:	1		1		1		
		Rep 1		Rep 2		Rep 3		
		Result	Qual	Result	Qual	Result	Qual	
Number	PCB Congener	(ug/L)		(ug/L)	4.00 .	(ug/L)	~	
	, and the second	, ,		()		()		
8	2,4'-dichlorobiphenyl	0.00083	U	0.00083	U	0.00083		
18	2,2',5-trichlorobiphenyl	0.00083	U	0.00083	U	0.00083		
28	2,4,4'-trichlorobiphenyl	0.00083	U	0.00083	U	0.00083		
44	2,2',3,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
49	2,2',4,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
52	2,2',5,5'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
66	2,3',4,4'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
77	3,3',4,4'-tetrachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
87	2,2',3,4,5'-pentachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
101	2,2',4,5,5'-pentachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
105	2,3,3',4,4'-pentachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
118	2,3',4,4',5-pentachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
126	3,3',4,4',5-pentachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
156	2,3,3',4,4',5-hexachlorobiphenyl							
169	3,3',4,4',5,5'-hexachlorobiphenyl							
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.00083	U	0.00083	U	0.00083	U	
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00083	U	0.00083	U	0.00083		
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00083	Ü	0.00083	Ü	0.00083		
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl		U	0.00083		0.00083		
_00		3.0000	_	2.23000	-	2.23000	-	
	Surrogate Standard	Recovery		Recovery	y	Recovery	y	Limit
		(%)		(%)		(%)		(%)
198	2,2',3,3',4,5,5',6-octachlorobiphenyl	63		85		76	3	0-150

Chebeague Composite 3 Elutriate Blank

	Lab Number: Sample Designation: Date Sampled: Date Extracted: Date Analyzed: Matrix: Sample Amount (mL): Final Volume (mL) Dilution Factor:	29751-08 Composi 10/24/17 10/23/17 11/02/17 Water 970 0.4 1	te 3 Elutriate Blank - Rep 1 1054	29751-08 Composi 10/24/17 10/23/17 11/02/17 Water 970 0.4 1	ite 3 Elutriate Blank - Rep 2 7 1054 7 0920	29751-084 Composite 10/24/17 1 10/23/17 0 11/02/17 Water 970 0.4 1	e 3 Elutriate Blank - Rep 3 1054
		·		·		·	
Number	PCB Congener	Result (ug/L)	Qual	Result (ug/L)	Qual	Result ((ug/L)	Qual
8	2,4'-dichlorobiphenyl	0.00082	U	0.00082	U	0.00082	U
18	2,2',5-trichlorobiphenyl	0.00082	U	0.00082	. U	0.00082	U
28	2,4,4'-trichlorobiphenyl	0.00082	U	0.00082		0.00082	U
44	2,2',3,5'-tetrachlorobiphenyl	0.00082	U	0.00082		0.00082	U
49	2,2',4,5'-tetrachlorobiphenyl	0.00082	U	0.00082		0.00082	U
52	2,2',5,5'-tetrachlorobiphenyl	0.00082	U	0.00082		0.00082	U
66	2,3',4,4'-tetrachlorobiphenyl	0.00082	U	0.00082		0.00082	U
77	3,3',4,4'-tetrachlorobiphenyl	0.00082	U	0.00082		0.00082	U
87	2,2',3,4,5'-pentachlorobiphenyl	0.00082	U	0.00082	-	0.00082	U
101	2,2',4,5,5'-pentachlorobiphenyl	0.00082	U	0.00082	-	0.00082	U
105	2,3,3',4,4'-pentachlorobiphenyl	0.00082	U	0.00082	-	0.00082	U
118	2,3',4,4',5-pentachlorobiphenyl	0.00082	U	0.00082		0.00082	U
126	3,3',4,4',5-pentachlorobiphenyl	0.00082	U	0.00082		0.00082	U
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00082	U U	0.00082		0.00082	U U
138 153	2,2',3,4,4',5'-hexachlorobiphenyl 2,2',4,4',5,5'-hexachlorobiphenyl	0.00082 0.00082	U	0.00082 0.00082		0.00082 0.00082	U
156	2,3,3',4,4',5-hexachlorobiphenyl	0.00062	U	0.00062	U	0.00062	U
169	3,3',4,4',5,5'-hexachlorobiphenyl						
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.00082	U	0.00082	. U	0.00082	U
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00082	Ü	0.00082		0.00082	Ü
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00082	Ü	0.00082		0.00082	Ü
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00082	U	0.00082	: U	0.00082	U
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.00082	U	0.00082	: U	0.00082	U
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00082	U	0.00082	. U	0.00082	U
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00082	U	0.00082	. U	0.00082	U
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.00082	U	0.00082	. U	0.00082	U
	Surrogate Standard	Recovery	,	Recovery	у	Recovery	Limit
		(%)		(%)		(%)	(%)
198	2,2',3,3',4,5,5',6-octachlorobiphenyl	72		81		82	30-150

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

	Troject	Composit						
	Lab Number: Sample Designation: Date Sampled: Date Extracted: Date Analyzed: Matrix: Sample Amount (mL): Final Volume (mL) Dilution Factor:	29751-10 Composit 10/24/17 10/23/17 11/02/17 Water 950 0.4 1	te 3 Elutriate - Rep 1 1535	29751-10 Composi 10/24/17 10/23/17 11/02/17 Water 980 0.4 1	te 3 Elutriate - Rep 2 1535	29751-10 Composi 10/24/17 10/23/17 11/02/17 Water 980 0.4 1	te 3 Elutri 1535	iate - Rep 3
		Rep 1		Rep 2		Rep 3		
Number	PCB Congener	Result (ug/L)	Qual	Result (ug/L)	Qual	Result (ug/L)	Qual	
8 18	2,4'-dichlorobiphenyl 2,2',5-trichlorobiphenyl	0.00084 0.00084	U U	0.00082 0.00082	U U	0.00082 0.00082	U U	
28	2,4,4'-trichlorobiphenyl	0.00084	Ü	0.00082	Ü	0.00082	Ü	
44	2,2',3,5'-tetrachlorobiphenyl	0.00084	Ü	0.00082	Ü	0.00082	Ü	
49	2,2',4,5'-tetrachlorobiphenyl	0.00084	Ü	0.00082	Ü	0.00082	Ū	
52	2,2',5,5'-tetrachlorobiphenyl	0.00084	Ü	0.00082	Ü	0.00082	Ū	
66	2,3',4,4'-tetrachlorobiphenyl	0.00084	Ū	0.00082	Ü	0.00082	Ū	
77	3,3',4,4'-tetrachlorobiphenyl	0.00084	Ü	0.00082	Ū	0.00082	U	
87	2,2',3,4,5'-pentachlorobiphenyl	0.00084	Ü	0.00082	Ü	0.00082	Ū	
101	2,2',4,5,5'-pentachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
105	2,3,3',4,4'-pentachlorobiphenyl	0.00084	Ü	0.00082	Ū	0.00082	U	
118	2,3',4,4',5-pentachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
126	3,3',4,4',5-pentachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
156	2,3,3',4,4',5-hexachlorobiphenyl							
169	3,3',4,4',5,5'-hexachlorobiphenyl							
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.00084	U	0.00082	U	0.00082	U	
	Surrogate Standard	Recovery	,	Recovery	,	Recovery	/	Limit
	San Sgato Standard	(0/)		(0/)	•	(0/)	•	(0/)

Chebeague

(%)

30-150

198 2,2',3,3',4,5,5',6-octachlorobiphenyl

(%)

85

(%)

81

(%) 79 Congener

Number PCB Congener

Lab Number: 29993-100

Sample Designation: PDS Reference Site Water

Concentration Qualifier

(ug/L)

Recovery

(%)

59

Limits

(%)

30 - 150

 Date Sampled:
 10/17/17 1425

 Date Extracted:
 11/20/17 0900

 Date Analyzed:
 11/23/17

 Matrix:
 Water

 Sample Amount (mL):
 970

 Final Volume (mL)
 0.4

 Dilution Factor:
 1

8	2,4'-dichlorobiphenyl	0.008	U,R1
18	2,2',5-trichlorobiphenyl	0.008	U,R1
28	2,4,4'-trichlorobiphenyl	0.008	U,R1
44	2,2',3,5'-tetrachlorobiphenyl	0.008	U,R1
49	2,2',4,5'-tetrachlorobiphenyl	0.008	U,R1
52	2,2',5,5'-tetrachlorobiphenyl	0.008	U,R1
66	2,3',4,4'-tetrachlorobiphenyl	0.008	U,R1
77	3,3',4,4'-tetrachlorobiphenyl	0.008	U,R1
87	2,2',3,4,5'-pentachlorobiphenyl	0.008	U,R1
101	2,2',4,5,5'-pentachlorobiphenyl	0.008	U,R1
105	2,3,3',4,4'-pentachlorobiphenyl	0.008	U,R1
118	2,3',4,4',5-pentachlorobiphenyl	0.008	U,R1
126	3,3',4,4',5-pentachlorobiphenyl	0.008	U,R1
128	2,2',3,3',4,4'-hexachlorobiphenyl	0.008	U,R1
138	2,2',3,4,4',5'-hexachlorobiphenyl	0.008	U,R1
153	2,2',4,4',5,5'-hexachlorobiphenyl	0.008	U,R1
156	2,3,3',4,4',5-hexachlorobiphenyl		
169	3,3',4,4',5,5'-hexachlorobiphenyl		
170	2,2',3,3',4,4',5-heptachlorobiphenyl	0.008	U,R1
180	2,2',3,4,4',5,5'-heptachlorobiphenyl	0.008	U,R1
183	2,2',3,4,4',5',6-heptachlorobiphenyl	0.008	U,R1
184	2,2',3,4,4',6,6'-heptachlorobiphenyl	0.008	U,R1
187	2,2',3,4',5,5',6-heptachlorobiphenyl	0.008	U,R1
195	2,2',3,3',4,4',5,6-octachlorobiphenyl	0.008	U,R1
206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	800.0	U,R1
209	2,2',3,3',4,4',5,5',6,6'-decachlorobiphenyl	0.008	U,R1
			Advisory
			•

U = Not deteced at value reported. R1 = Sample was run out of hold time.

Surrogate Standards

PCB 198

Chebeague Harbor Composite 1 Elutriate Blank

Lab Number: 29751-109

Composite 1 Elutriate Blank - Rep 1 Composite 1 Elutriate Blank - Rep 2 Composite 1 Elutriate Blank - Rep 3

29751-110

29751-111

Sample Designation: Date Sampled: Date Extracted: Date Analyzed:

Sample Amount (mL):

Final Volume (mL)

Dilution Factor:

11/15/17 1105 11/16/17 0900 11/21/17 Water 980

0.50

11/15/17 1105 11/16/17 0900 11/21/17 Water 980 0.50

11/15/17 1105 11/16/17 0900 11/21/17 Water 980 0.50 1

Compound

Matrix:

Result Qual (ug/L)

Result Qual (ug/L)

Result Qual (ug/L)

pentachlorophenol

1 U,R1

U,R1

1

U,R1

Surrogate Standards

2,4,6-tribromophenol

Recovery (%) 64

Recovery (%) 66

Recovery (%) 70

Limit (%) 30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc.

One Lafayette Road

Hampton, NH 03843-0778

603-926-3345 fax 603-926-3521

www.envirosystems.com

Chebeague Harbor Composite 1

Lab Number: 29751-112 29751-113 29751-114

Sample Designation: Composite 1 Elutriate - Rep 1 Composite 1 Elutriate - Rep 2 Composite 1 Elutriate - Rep 3

Date Sampled: 11/15/17 1105 11/15/17 1105 11/15/17 1105 Date Extracted: 11/16/17 0900 11/16/17 0900 11/16/17 0900 Date Analyzed: 11/21/17 11/21/17 11/21/17 Matrix: Water Water Water Sample Amount (mL): 980 920 920 Final Volume (mL) 0.50 0.50 0.50 Dilution Factor: 1

Result Qual Result Qual (ug/L) Qual (ug/L) Result Qual (ug/L) (ug/L) Qual (ug/L) (ug/L) Qual (ug/L) (ug/L)

Surrogate Standards	Recovery	Recovery	Recovery	Limit
	(%)	(%)	(%)	(%)
2,4,6-tribromophenol	62	65	52	30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521

www.envirosystems.com

Chebeague Harbor Composite 2 Elutriate Blank

1

Lab Number: 29751-117 29751-118 29751-119

Sample Designation: Composite 2 Elutriate Blank - Rep 1 Composite 2 Elutriate Blank - Rep 2 Composite 2 Elutriate Blank - Rep 3

1

1

Date Sampled: 11/15/17 1155 11/15/17 1155 11/15/17 1155 Date Extracted: 11/16/17 0900 11/16/17 0900 11/16/17 0900 Date Analyzed: 11/21/17 11/22/17 11/22/17 Matrix: Water Water Water Sample Amount (mL): 540 430 930 Final Volume (mL) 0.50 0.50 0.50 Dilution Factor:

Result Qual Result Qual Result Qual Compound (ug/L) (ug/L) (ug/L)

pentachlorophenol 1.9 U,R1 2.3 U,R1 U,R1 1.1

Recovery Surrogate Standards Recovery Recovery Limit (%) (%) (%) (%) 2,4,6-tribromophenol 63 68 114 30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com Chebeague Harbor Composite 2 Elutriate

Lab Number:

Date Sampled:

Date Extracted:

Date Analyzed:

29751-120

Sample Designation:

Composite 2 Elutriate - Rep 1 11/15/17 1155 11/16/17 0900 11/22/17 Water

Matrix: Sample Amount (mL): 940 Final Volume (mL) 0.50 Dilution Factor:

29751-121

Composite 2 Elutriate - Rep 2

11/15/17 1155 11/16/17 0900 11/22/17 Water 940 0.50

29751-122

Composite 2 Elutriate - Rep 3

11/15/17 1155 11/16/17 0900 11/22/17 Water 920 0.50 1

Compound

pentachlorophenol

Result Qual (ug/L)

U,R1

1.1

Result Qual (ug/L)

1.1

Result Qual

(ug/L)

U,R1

1.1 U,R1

Surrogate Standards

2,4,6-tribromophenol

Recovery (%) 118

Recovery (%) 104

Recovery (%) 98

Limit (%) 30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc.

One Lafayette Road

Hampton, NH 03843-0778

603-926-3345 fax 603-926-3521

www.envirosystems.com

Dilution Factor:

Chebeague Harbor Composite 3 Elutriate Blank

Lab Number: 29751-123 29751-124 29751-125

Sample Designation: Composite 3 Elutriate Blank - Rep 1 Composite 3 Elutriate Blank - Rep 2 Composite 3 Elutriate Blank - Rep 3

1

Date Sampled: 11/15/17 1315 Date Extracted: 11/16/17 0900 Date Analyzed: 11/22/17 Matrix: Water Sample Amount (mL): 480 Final Volume (mL) 0.50

1

11/15/17 1315 11/15/17 1315 11/16/17 0900 11/16/17 0900 11/22/17 11/22/17 Water Water 480 890 0.50 0.50 1

Result Qual Result Qual Result Qual Compound (ug/L) (ug/L) (ug/L)

pentachlorophenol 2.1 U,R1 U,R1 U,R1 2.1 1.1

Surrogate Standards Recovery Recovery Recovery Limit (%) (%) (%) (%) 2,4,6-tribromophenol 96 116 93 30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc. One Lafayette Road Hampton, NH 03843-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com Chebeague Harbor Composite 3 Elutriate

Lab Number:

Date Sampled:

Date Extracted:

Date Analyzed:

Dilution Factor:

29751-126

Sample Designation:

Composite 3 Elutriate - Rep 1

11/15/17 1315 11/16/17 0900 11/22/17

Matrix: Water Sample Amount (mL): 910 Final Volume (mL) 0.50

29751-127

Composite 3 Elutriate - Rep 2

11/15/17 1315 11/16/17 0900 11/22/17 Water 920 0.50

29751-128

Composite 3 Elutriate - Rep 3

11/15/17 1315 11/16/17 0900 11/22/17 Water 920 0.50 1

Compound

Result Qual

(ug/L)

Result Qual (ug/L)

Result Qual

(ug/L)

pentachlorophenol

1.1 U,R1 1.1 U,R1

1.1 U,R1

Surrogate Standards

2,4,6-tribromophenol

Recovery (%) 104

Recovery (%) 103

Recovery (%) 102

Limit (%) 30-150

U = Not deteced.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc.

One Lafayette Road

Hampton, NH 03843-0778

603-926-3345 fax 603-926-3521

www.envirosystems.com

Semivolatile Organics in Water SW 846 8270/EPA 680 modified

Lab Number: 29993-100

Sample Designation: PDS Reference Site Water

 Date Sampled:
 10/17/17 1425

 Date Extracted:
 11/17/17 0900

 Date Analyzed:
 11/24/17

 Matrix:
 Water

 Sample Amount (mL):
 980

Matrix: Water
Sample Amount (mL): 980
Final Volume (mL) 0.50
Dilution Factor: 1

Concentration Qualifier

Compound (ug/L)

pentachlorophenol 1 U,R1

Surrogate Standards Recovery Advisory Limits

(%)

2,4,6-tribromophenol 107 30 - 150

U = Below quantitation limit.

R1 = Sample was run out of recomended hold time.

ESI

EnviroSystems, Inc.

One Lafayette Road

Hampton, NH 03843-0778

603-926-3345 fax 603-926-3521

(%)

www.envirosystems.com

Lab Number:	29751-016	29751-017	29751-018
Sample Designation:	Composite 1 Elutriate Blank - Rep 1	Composite 1 Elutriate Blank - Rep 2	Composite 1 Elutriate Blank - Rep 3
Date Sampled:	10/24/17 1012	10/24/17 1012	10/24/17 1012
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/07/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	980	980	980
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

Elutriate Replicate 1

Elutriate Replicate 2

Elutriate Replicate 3

	Concentration		Concentrati	Concentration		ion
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier
aldrin	0.002	U	0.002	U	0.002	U
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U
chlopyrifos	0.002	U	0.002	U	0.002	U
dieldrin	0.004	U	0.004	U	0.004	U
4,4'-DDT	0.004	U	0.004	U	0.004	U
endosulfan I	0.002	U	0.002	U	0.002	U
endosulfan II	0.004	U	0.004	U	0.004	U
endrin	0.004	U	0.004	U	0.004	U
heptachlor	0.002	U	0.002	U	0.002	U
heptachlor epoxide	0.002	U	0.002	U	0.002	U
gamma-BHC (lindane)	0.002	U	0.002	U	0.002	U
toxaphene	0.1	U	0.1	U	0.1	U

Surrogate Standard	Recovery	Advisory Limits	Recovery	Advisory Limits	Recovery	Advisory Limits
	(%)	(%)	(%)	(%)	(%)	(%)
tetrachloro-m-xylene	76	30 - 150	55	30 - 150	93	30 - 150
decachlorobiphenyl	45	30 - 150	46	30 - 150	45	30 - 150

U = Not detected at indicated level.

Lab Number:	29751-034	29751-035	29751-036
Sample Designation:	Composite 1 Elutriate - Rep 1	Composite 1 Elutriate - Rep 2	Composite 1 Elutriate - Rep 3
Date Sampled:	10/24/17 1250	10/24/17 1250	10/24/17 1250
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/07/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	960	960	960
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

Elutriate Replicate 1

Flutriata	Replicate 2

Elutriate Replicate 3

	Concentration		Concentrati	Concentration		Concentration	
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier	
aldrin	0.002	U	0.002	U	0.002	U	
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U	
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U	
chlopyrifos	0.002	U	0.002	U	0.002	U	
dieldrin	0.004	U	0.004	U	0.004	U	
4,4'-DDT	0.004	U	0.004	U	0.004	U	
endosulfan I	0.002	U	0.002	U	0.002	U	
endosulfan II	0.004	U	0.004	U	0.004	U	
endrin	0.004	U	0.004	U	0.004	U	
heptachlor	0.002	U	0.002	U	0.002	U	
heptachlor epoxide	0.002	U	0.002	U	0.002	U	
gamma-BHC (lindane)	0.002	U	0.002	U	0.002	U	
toxaphene	0.1	U	0.1	U	0.1	U	

Surrogate Standard	Recovery (%)	Advisory Limits (%)	Recovery (%)	Advisory Limits (%)	Recovery (%)	Advisory Limits (%)
tetrachloro-m-xylene	61	30 - 150	94	30 - 150	85	30 - 150
decachlorobiphenyl	134	30 - 150	32	30 - 150	37	30 - 150

U = Not detected at indicated level.

Lab Number:	29751-052	29751-053	29751-054
Sample Designation:	Composite 2 Elutriate Blank - Rep 1	Composite 2 Elutriate Blank - Rep 2	Composite 2 Elutriate Blank - Rep 3
Date Sampled:	10/24/17 1012	10/24/17 1012	10/24/17 1012
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/08/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	890	920	940
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

Elutriate Replicate 1	
-----------------------	--

Elutriate Replicate 3

	Concentration		Concentration		Concentration	
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier
aldrin	0.002	U	0.002	U	0.002	U
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U
chlopyrifos	0.002	U	0.002	U	0.002	U
dieldrin	0.004	U	0.004	U	0.004	U
4,4'-DDT	0.004	U	0.004	U	0.004	U
endosulfan I	0.002	U	0.002	U	0.002	U
endosulfan II	0.004	U	0.004	U	0.004	U
endrin	0.004	U	0.004	U	0.004	U
heptachlor	0.002	U	0.002	U	0.002	U
heptachlor epoxide	0.002	U	0.002	U	0.002	U
gamma-BHC (lindane)	0.002	U	0.002	U	0.002	U
toxaphene	0.1	U	0.1	U	0.1	U

Surrogate Standard	Recovery	Advisory Limits	Recovery	Advisory Limits	Recovery	Advisory Limits
	(%)	(%)	(%)	(%)	(%)	(%)
tetrachloro-m-xylene	88	30 - 150	111	30 - 150	116	30 - 150
decachlorobiphenyl	58	30 - 150	98	30 - 150	168,J18	30 - 150

U = Not detected at indicated level. J18 = Surrogate %R above limit.

Lab Number:	29751-070	29751-071	29751-072
Sample Designation:	Composite 2 Elutriate - Rep 1	Composite 2 Elutriate - Rep 2	Composite 2 Elutriate - Rep 3
Date Sampled:	10/24/17 1400	10/24/17 1400	10/24/17 1400
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/08/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	970	970	970
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

Elutriate	Replicate 1
-----------	-------------

Clustrios.	Danliagta	2
Elutriate	Replicate	2

Elutriate I	Replicate 3
-------------	-------------

(Concentrati	on	Concentrati	on	Concentrati	on
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier
aldrin	0.002	U	0.002	U	0.002	U
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U
chlopyrifos	0.002	U	0.002	U	0.002	U
dieldrin	0.004	U	0.004	U	0.004	U
4,4'-DDT	0.004	U	0.004	U	0.004	U
endosulfan I	0.002	U	0.002	U	0.002	U
endosulfan II	0.004	U	0.004	U	0.004	U
endrin	0.004	U	0.004	U	0.004	U
heptachlor	0.002	U	0.002	U	0.002	U
heptachlor epoxide	0.002	U	0.002	U	0.002	U
gamma-BHC (lindane)	0.002	U	0.002	U	0.002	U
toxaphene	0.1	U	0.1	U	0.1	U

Surrogate Standard	Recovery	Advisory Limits	Recovery	Advisory Limits	Recovery	Advisory Limits
	(%)	(%)	(%)	(%)	(%)	(%)
tetrachloro-m-xylene	119	30 - 150	122	30 - 150	114	30 - 150
decachlorobiphenyl	46	30 - 150	72	30 - 150	70	30 - 150

U = Not detected at indicated level.

Lab Number:	29751-088	29751-089	29751-090
Sample Designation:	Composite 3 Elutriate Blank - Rep 1	Composite 3 Elutriate Blank - Rep 2	Composite 3 Elutriate Blank - Rep 3
Date Sampled:	10/24/17 1054	10/24/17 1054	10/24/17 1054
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/08/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	960	980	940
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

	Elutriate Re	eplicate 1	Elutriate Re	eplicate 2	Elutriate Re	eplicate 3
	Concentrati	on	Concentrati	on	Concentrati	on
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier
aldrin	0.002	U	0.002	U	0.002	U
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U
chlopyrifos	0.002	U	0.002	U	0.002	U
dieldrin	0.004	U	0.004	U	0.004	U
4,4'-DDT	0.004	U	0.004	U	0.004	U
endosulfan I	0.002	U	0.002	U	0.002	U
endosulfan II	0.004	U	0.004	U	0.004	U
endrin	0.004	U	0.004	U	0.004	U
heptachlor	0.002	U	0.002	U	0.002	U
heptachlor epoxide	0.002	U	0.002	U	0.002	U

U

U

0.002

0.1

Surrogate Standard	Recovery	Advisory Limits	Recovery	Advisory Limits	Recovery	Advisory Limits
	(%)	(%)	(%)	(%)	(%)	(%)
tetrachloro-m-xylene	116	30 - 150	81	30 - 150	72	30 - 150
decachlorobiphenyl	73	30 - 150	59	30 - 150	50	30 - 150

0.002

0.1

U

U

U = Not detected at indicated level.

gamma-BHC (lindane)

toxaphene

ESI

U

U

0.002

0.1

Lab Number:	29751-106	29751-107	29751-108
Sample Designation:	Composite 3 Elutriate - Rep 1	Composite 3 Elutriate - Rep 2	Composite 3 Elutriate - Rep 3
Date Sampled:	10/24/17 1535	10/24/17 1535	10/24/17 1535
Date Extracted:	10/26/17 0830	10/26/17 0830	10/26/17 0830
Date Analyzed:	11/08/17	11/08/17	11/08/17
Matrix:	Water	Water	Water
Sample Amount (mL):	940	950	960
Final Volume (mL)	1.0	1.0	1.0
Dilution Factor:	1	1	1

Elutriate Replicate 1

Elutriate Replicate 2	Elutriate	Replicate	2
-----------------------	-----------	-----------	---

	Concentration		Concentration		Concentration	
Analyte	(ug/L)	Qualifier	(ug/L)	Qualifier	(ug/L)	Qualifier
aldrin	0.002	U	0.002	U	0.002	U
gamma-chlordane (cis)	0.002	U	0.002	U	0.002	U
alpha-chlordane (trans)	0.002	U	0.002	U	0.002	U
chlopyrifos	0.002	U	0.002	U	0.002	U
dieldrin	0.004	U	0.004	U	0.004	U
4,4'-DDT	0.004	U	0.004	U	0.004	U
endosulfan I	0.002	U	0.002	U	0.002	U
endosulfan II	0.004	U	0.004	U	0.004	U
endrin	0.004	U	0.004	U	0.004	U
heptachlor	0.002	U	0.002	U	0.002	U
heptachlor epoxide	0.002	U	0.002	U	0.002	U
gamma-BHC (lindane)	0.002	U	0.002	U	0.002	U
toxaphene	0.1	U	0.1	U	0.1	U

Surrogate Standard	Recovery	Advisory Limits	Recovery	Advisory Limits	Recovery	Advisory Limits
	(%)	(%)	(%)	(%)	(%)	(%)
tetrachloro-m-xylene	105	30 - 150	115	30 - 150	92	30 - 150
decachlorobiphenyl	31	30 - 150	27,J17	30 - 150	29,J17	30 - 150

U = Not detected at indicated level. J17 = Surrogate %R below limit.

Pesticides in Water SW 846 8081B

Lab Number: 29993-101

Sample Designation: PDS Reference Site Water

 Date Sampled:
 11/20/17 0900

 Date Extracted:
 11/20/17 0900

 Date Analyzed:
 11/23/17

 Matrix:
 Water

 Sample Amount (mL):
 980

 Final Volume (mL)
 1.0

 Dilution Factor:
 1

Analyte	Concentration (ug/L)	Qualifier
aldrin	0.002	U,R1
gamma-chlordane (cis)	0.002	U,R1
alpha-chlordane (trans)	0.002	U,R1
chlorpyrifos	0.002	U,R1
dieldrin	0.004	U,R1
4,4'-DDT	0.004	U,R1
endosulfan I	0.002	U,R1
endosulfan II	0.004	U,R1
endrin	0.004	U,R1
heptachlor	0.002	U,R1
heptachlor epoxide	0.002	U,R1
gamma-BHC (lindane)	0.002	U,R1
toxaphene	0.1	U,R1

Surrogate Standard	Recovery	Advisory Limits
	(%)	(%)
tetrachloro-m-xylene	85	30 - 150
decachlorobiphenyl	76	30 - 150

U = Not detected at indicated level.

R1 = Sample was run out of recomended hold time.

AECOM

Appendix D: Biology Data

Appendix D.1: Suspended Particulate Phase Evaluation

AECOM 250 Apollo Drive Chelmsford MA, 01824 USA aecom.com

November 10, 2017

R. Ben Loyd Department of Army New England District Corps of Engineers 696 Virginia Road Concord, MA 01742

RE: Chebeague Island SPP Report Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0076

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Dear Mr. Loyd:

AECOM Technical Services, Inc. (AECOM) is pleased to provide the Suspended Particulate Phase (SPP) Toxicity Testing report under Delivery Order W912WJ17F0106, Task 6 of the Performance Work Statement (PWS) entitled "Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine" dated 4 August 2017.

For your review and use, please find the attached report with SPP results for *Americamysis bahia*, *Menidia beryllina* and *Arbacia punctulata*. Please let us know if you have any questions or would like anything further.

AECOM certifies that this submission has been subjected to AECOM's review and coordination procedures. Please let us know if you have any questions or if you would like to discuss the report.

Best Regards,

Kris van Naerssen Project Manager

AECOM

E: kris.vannaerssen@aecom.com

cc: Maura Surprenant, AECOM Christine Archer, AECOM

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability

Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

November 10, 2017

SPP Report

TRANSMITTAL LETTER

TO: Kris Van Naerssen, Christine Archer, Maura Surprenant, Mary O'Connell Kozik

AECOM

250 Apollo Drive

Chelmsford, Massachusetts 01824

FROM: Kirk Cram

DATE: November 9, 2017

SUBJECT: Chebeague Island Federal Navigation Project

Chebeaque Island, Maine

Contract #: W912WJ-17-D-0003

Attached please find the following Adobe documents and Microsoft Word document (marked as final) revised per the comments provided by Christine Archer via email on November 6 and 9, 2017:

> Suspended Particulate Phase Evaluation Report Rev. 1 (secured document) Suspended Particulate Phase Evaluation Report Rev. 1 (unsecured document)

Pertaining to:

Samples received on: October 18, 2017

Study Number: Master 29746, SPP Study 29752

Number of Samples Received: 5 + PDS Reference Site

Number of Elutriates Analyzed: 3 Elutriates + PDS Reference Site

If you have any questions please do not hesitate to call.

Regards,

Nancy E. Roka DN: cn-Nancy E. Roka DN: cn-Nancy E. Roka, o-EnviroSystems, Inc., ou, email=nroka@envirosystems.com, c=US Date: 2017.11.09 14:44:31-05'00'

Kirk Cram

Toxicology Laboratory Manager

EnviroSystems, Inc.

Specialists in Environmental Toxicology and Chemistry

P.O. Box 778

Hampton, NH 03843-0778

Voice: 603-926-3345 Ext. 212 / Fax: 603-926-3521

A Woman Owned Small Business (WOSB) - Celebrating 30 Years of Service

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

Suspended Particulate Phase Evaluation

Prepared For:

AECOM 250 Apollo Drive Chelmsford, Massachusetts 01824

Prepared By:

EnviroSystems, Incorporated
One Lafayette Road
Hampton, New Hampshire 03842

EnviroSystems, Inc. Master Reference 29746
Study Specific Reference 29752
October 2017
Revision 1

TABLE OF CONTENTS

LABO	RAT	DRY STANDARDS STATEMENT	3
1.0	INTRODUCTION		
2.0	MA	TERIALS AND METHODS	4
	2.1	Sample Collection, Preservation and Storage Elutriate Sample Preparation	
		Test Species	
		Suspended Particulate Phase Assays	5
		2.4.1.SPP Evaluations - A. bahia and M. beryllina	
	٥.	2.4.2. Embryo Survival and Development SPP Evaluation - A. punctulata	
		Data AnalysisQuality Control	
	2.0	Quality Control	0
3.0	RES	SULTS AND DISCUSSION	6
		SPP Evaluations - A. bahia	
		SPP Evaluations - M. beryllina	
		SPP Evaluations - <i>A. punctulata</i>	
		Summary	
	0.0		
4.0	REF	ERENCES	8
		LIST OF TABLES	
Table		Sample Collection and Receipt Information	
Table		Summary of Sample Compositing Information	
Table	-	Elutriate Solution Preparation	
Table Table		Period of Assay Conduct	
Table		Summary of Endpoints and Adverse Effects	
Table	-	Summary of Water Quality Data	
۸DDE	אוטוא	A: RAW DATA & STATISTICAL SUPPORT	10
	עוטויו	. A. INAW DATA & STATISTICAL SUFFURT	

LABORATORY STANDARDS STATEMENT

This study was performed by EnviroSystems, Incorporated at its facility in Hampton, New Hampshire. EnviroSystems' laboratory is accredited by the State of New Hampshire under the National Environmental Laboratory Accreditation (NELAC) program. Additionally, ESI is accredited under the Department of Defense (DoD) ELAP program, ISO/IEC 17025:2005, Certificate Number L2340. All testing conducted by EnviroSystems as part of this program was compliant with NELAC guidelines and standards. Additionally, this study was conducted in accordance with guidelines presented in the 2004 version of the New England District's Regional Implementation Manual (RIM) for Evaluation of Dredged Material Proposed for Disposal In New England Waters. Any deviations from specific elements of the RIM are detailed in the Protocol Deviation Section of this Report.

For EnviroSystems, Inc.

Kenneth A. Simon

Juneth A Sima

Technical Director

November 9, 2017

Date

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

Suspended Particulate Phase Evaluation

1.0 INTRODUCTION

As part of a comprehensive plan to reduce adverse environmental impacts of ocean dumping, Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972 specifies that all sediments to be discharged into ocean waters must be evaluated to define their potential impact on existing benthic communities. The United States Environmental Protection Agency (US EPA) has determined that the most effective means to make such an assessment is through the use of bioassay tests, which provide a relatively direct estimate of potential impact.

This project was designed to evaluate the potential toxicity of sediments from the area of dredging proposed for the Chebeague Island Federal Navigation Project (FNP) located in Chebeague Island, Maine. Testing involved conduct of Suspended Particulate Phase (SPP) assays using the mysid, *Americamysis bahia*, inland silverside minnow, *Menidia beryllina*, and larvae of the sea urchin, *Arbacia punctulata*. Testing followed procedures established by the US EPA and the US Army Corps of Engineers (US ACE) for testing of dredged material, including *Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters* (US EPA, CENAE 2004), *Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Manual* (US EPA, US ACE 1991) and *Evaluation of Dredged Material Proposed for Discharge in Waters of the US - Testing Manual* (US EPA, US ACE 1998).

2.0 MATERIALS AND METHODS

2.1 Sample Collection, Preservation and Storage

Sediment cores for toxicological analysis were collected by the US ACE New England District (CENAE) using vibracoring equipment from locations identified in the dredge footprint specified in the project Sampling and Analysis Plan (SAP) (AECOM, 2017). Site water samples were also collected by the CENAE. Samples were received from AECOM, Chelmsford, Massachusetts under chain of custody in 5 gallon polyethylene buckets for sediment and in 5 gallon cubitainers for water. Sediment samples were composited based on the compositing scheme outlined in the SAP. Reference sediment and water samples were collected by the AECOM field team (AECOM and Normandeau Associates, Bedford, New Hampshire) from the Portland Disposal Site (PDS). Upon arrival at the laboratory, all samples received an internal sample control number and were logged into the project sample control system. Prior to testing, samples were placed in a secure refrigerator and stored at a temperature of $4\pm2^{\circ}$ C until test initiation. Sample identification, collection and receipt information is summarized in Table 1. Sample compositing information is provided in Table 2.

Water for the internal laboratory control was obtained from the Hampton Estuary, Hampton, New Hampshire. Water from this source has been used for culture and maintenance of test organisms at ESI since 1978. Seawater is obtained through a filter system located on the bottom of the estuary at a point approximately 1 mile from the open ocean. The estuary receives no direct industrial discharges. The Hampton Estuary laboratory control was included to verify the health of the test organisms, and as a relative benchmark for reference site toxicity.

2.2 Elutriate Sample Preparation

The elutriate sample was prepared by placing one volume of test sediment and four volumes of overlying site water in a stainless steel container and mixing with a mechanical stirring device for 30 minutes. Speed of the stirring motor was set so that the sample did not cavitate, entrain air, and oxidize the sample. After mixing, the sediment and water mixture was allowed to settle for an hour. The resulting supernatant solution was then removed by siphon and centrifuged before being submitted for biological and chemical evaluation. A summary of the elutriate preparation is provided in Table 3.

Test concentrations were mixed by diluting the elutriate sample with the overlying water collected from the PDS reference site. Test concentrations for all assays were 1%, 10%, 50% and 100% (undiluted elutriate).

2.3 Test Species

A. bahia were ≤5 days old and were obtained from cultures maintained by Aquatic Research Organisms (ARO), Hampton, New Hampshire. M. beryllina were 9-14 days old at the start of the assay and were also obtained from ARO. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. Organisms were transferred to test vessels using a large bore pipet to minimize the amount of water added to test solutions.

Adult *A. punctulata* were from cultures maintained by ESI. Original stock was obtained from a commercial supplier. Adult sea urchins are maintained in the laboratory for as long as they are viable. Male and female urchins are maintained in separate chambers at a temperature of approximately $12\pm3^{\circ}$ C after spawning.

2.4 Suspended Particulate Phase Assays

2.4.1 SPP Evaluations - A. bahia and M. beryllina

The 96 hour static acute toxicity tests were conducted at $20\pm2^{\circ}\text{C}$ with a photoperiod of 16:8 hours light:dark. Test chambers were 250 mL beakers containing 200 mL of test solution in each of 5 replicates with 10 organisms/replicate. Survival in all test replicates was recorded after 1, 24, 48, 72, and 96 hours of exposure. Dissolved oxygen, pH, temperature and salinity were measured daily in one replicate of each treatment. *A. bahia* and *M. beryllina* were fed twice daily throughout testing.

2.4.2 Embryo Survival and Development SPP Evaluation - A. punctulata

The *A. punctulata* embryo survival and development assays were conducted at 20±1°C with a photoperiod of 16:8 hours light:dark. Test chambers for the acute assays were 250 mL glass beakers containing 200 mL test solution in each of 5 replicates. Dissolved oxygen, pH, temperature and salinity were measured in one replicate of each treatment at the start and end of the test. Gametes were obtained by potassium chloride injection to induce spawning. Gametes were collected and diluted with filtered laboratory seawater to yield approximate stock concentrations. Measured aliquots of gamete stock solutions were combined, fertilization success was monitored 15 minutes later, and the density of embryos was calculated. Sufficient embryos were removed from the stock solution and added to each test vessel to achieve a final concentration of approximately 25 to 35 embryos/mL of solution. Prior to transferring embryos from the holding vessel to the individual test vessels, the embryo stock solution was thoroughly homogenized to ensure even distribution. Embryo counts in three surrogate vessels were conducted just after the addition of the embryos for comparison with the actual embryo concentrations in the final elutriate solutions.

Observations in surrogate vessels were used to evaluate test completion. The test is terminated when approximately 90% of the fertilized embryos have reached the pluteus larval stage in the controls (between 48 and 96 hours). On termination, 5 mL aliquots of each test replicate were preserved with 10% buffered formalin solution. All larvae in the 5 mL aliquot were counted to determine survival and normal

Chebeague Island FNP Tier III Sediment Evaluation. Suspended Particulate Phase Evaluation. US ACE New England District. ESI Study 29752. October 2017. Page 5 of 12

development. The period of assay conduct is presented in Table 4.

2.5 Data Analysis

As appropriate, statistical analysis of acute and chronic exposure data was completed using CETISTM (Comprehensive Environmental Toxicity Information System) version 1.9.3.0 software. The program computes acute exposure endpoints based on US EPA decision tree guidelines specified in individual test methods. Statistical significance was accepted at \propto = 0.05.

2.6 Quality Control

As part of the laboratory quality control program, standard reference toxicant assays are conducted on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. Summaries of reference toxicant assays conducted in support of this study are provided in Table 5.

3.0 RESULTS AND DISCUSSION

A summary of endpoints for each species is provided in Table 6. Water quality characteristics are summarized in Table 7. Laboratory bench sheets, water quality data, and associated statistical support data are included in Appendix A.

3.1 SPP Evaluations - A. bahia

At the end of the 96 hour exposure period, *A. bahia* survival was 98% in the Hampton Estuary laboratory control and 98% in the PDS reference water treatment. This meets the minimum test acceptability criteria of \geq 90% survival in the laboratory control and is an indication that the test organisms were healthy and not stressed by handling. These data are considered valid for evaluating impacts associated with elutriate samples.

Review of data collected at the end of the assay documented that the mysid LC-50s in composite elutriate solutions 1 and 2 were both >100%, and was 43% in composite elutriate solution 3.

3.2 SPP Evaluations - M. beryllina

At the end of the 96 hour exposure period, M. beryllina survival was 90% in the Hampton Estuary laboratory control and 60% in the PDS reference water treatment. Despite the poor performance in the PDS reference water, the laboratory control met the minimum test acceptability criteria of \geq 90% survival indicating that the test organisms were healthy and not stressed by handling. These data are considered valid for evaluating impacts associated with elutriate samples.

Review of data collected at the end of the assay documented that the minnow LC-50s in composite elutriate solutions 1 and 2 were both >100%, and was 76% in composite elutriate solution 3.

Given the poor performance in the PDS reference water and the impacts to *M. beryllina* exposed to composite elutriate solution 3, additional data review was completed to consider whether the respective performances were attributable to sources other than the individual samples. First, adverse effects on mysids and urchins also occurred following exposure to composite elutriate solution 3, demonstrating a commonality of effects from exposure to this sample. It was noted that 60% minnow mortality was observed approximately 1 hour after exposure to composite elutriate solution 3, when reference site survival was still 100%, also demonstrating that toxicity in the elutriate solution is distinct from that in the reference site water, with ammonia being a likely source of toxicity in elutriate 3 (see section 3.5 for a discussion of elutriate ammonia content and toxicity). Additionally, impacts from the reference site water were limited to *M. beryllina* and a general inverse trend in toxicity for this species was observed in all 3 composite elutriate solutions (excluding the 100% treatment for composite elutriate solution 3), demonstrating that impairment

stemming from the reference water was consistent across treatments for this species. Water qualities obtained during testing were comparable across species and waters, demonstrating that the samples themselves were consistent and representative across all assays and species, and also indicating it's unlikely that outside contaminants influenced performance in the *M. beryllina* study. Based on this weight of evidence, observed effects to the minnow following exposure to the reference water and to composite elutriate solution 3 are considered distinct and representative for the species and samples.

3.3 SPP Evaluations - A. punctulata

Counts made in the Hampton Estuary laboratory surrogate test vessels at the initiation of the A. punctulata assay indicated an average initial embryo concentration of 157 embryos/5mL, equal to approximately 31 embryos/mL. The assay was terminated after 67 hours exposure when it was determined that the majority of the larvae (>90%) had reached the pluteus larval stage. Embryo counts in the Hampton Estuary laboratory control treatment showed 81% of the embryos survived at the end of the assay. Of the original embryos, 81% were normally developed pluteus larvae. Embryo counts in the PDS reference site water showed 80% of the embryos survived and 78% were normally developed at the end of the assay. This meets the minimum test acceptability criteria of \geq 70% embryo survival and \geq 70% normal development in the laboratory control sample.

Review of the data collected at the end of the assay indicate that site composite elutriate solution 1 had no significant negative impacts on embryonic survival and/or development. Composite elutriate solutions 2 and 3 both had significant negative effects on survival and development with LC-50s, based on Spearman-Kärber calculation, ranging from 3-23% for survival and with EC-50s ranging from 3-15% for development.

3.4 Protocol Deviations

Review of the data collected for these assays documented a few minor deviations from the method protocol and/or ESI's standard procedures. The protocol requires that the *A. punctulata* assay be conducted at $20\pm1^{\circ}$ C. Although the assay was maintained in an incubator set at the target temperature, some temperatures recorded during the assays fell outside of the protocol range due to the ambient laboratory temperature at the time that dilutions were mixed and water quality measurements were taken. Urchins can tolerate temperatures within the ranges measured, and US EPA protocol allows temperatures of $25\pm2^{\circ}$ C for this species. It is the opinion of ESI's technical director that these deviations had no adverse impact on the outcome of the assay.

In addition, the protocol requires that the assays be conducted at $30\pm2\%$. It is not uncommon for the salinity to drift upwards during assay conduct due to evaporation and exceed the protocol requirement, but the salinities are adjusted daily as needed to account for this occurrence except at assay termination. It is the opinion of ESI's technical director that these deviations had no adverse impact on the outcome of the assay.

At 48, 72 and 96 hours, replicate A of the PDS reference water sample in the *A. bahia* assay was found to contain 11 mysids, therefore the same number of animals were presumed to have been added to the test chamber at the start of the assay for purposes of the statistical analyses. This is a reasonable assumption as technicians are checked for their ability to count live organisms and the staff on hand has documented a high degree of counting accuracy. Despite this, counting errors can occur. These impacts should be mitigated by the test design. Testing incorporated 5 replicates for each sample, thereby reducing the impact of a single replicate on the overall assessment. It is the opinion of ESI's study director that this deviation did not adversely affect the outcome of the assay.

3.5 Summary

This program utilized protocols developed by the USEPA and the CENAE to assess the potential impact of the proposed dredge material collected from Chebeague Island would have on the marine environment. Review of the data documents that there were no significant effects on any of the tested organisms following exposure to the undiluted elutriate solution from composite 1. In addition, there were no

Chebeague Island FNP Tier III Sediment Evaluation. Suspended Particulate Phase Evaluation.
US ACE New England District. ESI Study 29752. October 2017. Page 7 of 12

adverse effects on mysid or minnow survival after exposure to the undiluted elutriate solutions from composite 2. However, significant adverse effects on mysid and minnow survival occurred following exposure to composite 3 elutriate solution, and composite 2 and 3 elutriate solutions had significant negative effects on urchin larval survival and development.

It was noted that total ammonia levels were elevated (≥10 mg/L) in composite 2 and 3 elutriate solutions at the start of the assays. US EPA guidance suggests ammonia, generally in the unionized form, can be a source of toxicity when total ammonia values are >5 mg/l (USEPA 2002). US EPA Ambient Water Quality Criteria (AWQC) for unionized ammonia in saltwater references LC-50 values for two of the species tested: *A. bahia* (1.04 mg/L) and *M. beryllina* (0.88 mg/L) (USEPA 1989). AWQC for unionized ammonia in saltwater are not available for *A. punctulata*, however effects levels are available in the literature for urchin species ranging from 0.06 mg/L for an EC-50 for development (Maguire Group Inc., 2003) to approximately 0.336 mg/L for a 96-hour LC-50 (Chang-Hoon Lee et al., 2013).

Calculated unionized ammonia values from the start of the assays for composites 2 and 3 ranged between 0.14 to 0.16 mg/L for all three species. However, by the end of these assays the unionized ammonia levels ranged from 0.05 to 0.15 mg/L (*A. bahia*), 0.47 to 0.51 mg/L (*M. beryllina*) and 0.58 to 1.0 mg/L (*A. punctulata*). The higher ending unionized ammonia levels in the minnow and urchin assays appear coincident with rising pH levels in those assays. While it seems unlikely that the unionized ammonia levels caused toxicity to the mysid, it is possible that the total and/or unionized ammonia content may have contributed to the observed toxicity to *M. beryllina* and to *A. punctulata*.

4.0 REFERENCES

- AECOM. 2017. Performance Sampling and Testing in Support of Dredged Material Suitability Determination: Work Plan Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine [Sampling and Analysis Plan]. Chelmsford, Massachusetts. October 2017.
- Chang-Hoon Lee, Chan-Gyoung Sung, Seong-Dae Moon and Jong-Hyeon Lee. 2013. *Effects of Ammonia on Fertilization, Development, and Larval Survival in the Northern Pacific Asteroid, Asterias amurensis (See Urchin)*. Bulletin of Environmental Contamination and Toxicology (2013) 91:102-106.
- Maguire Group, Inc. 2003. Laboratory Testing in Support of Site Specific Water Quality Criteria Assessment and Hydrographic Data Collection for New Bedford Harbor. Toxicity Identification Evaluation Testing with Mysids and Sea Urchins.
- US EPA Region 1, CENAE. 2004. Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters. September 2004.
- US EPA. 1989. Ambient Water Quality Criteria for Ammonia (Saltwater) 1989. EPA 440/5-88-004. April 1989.
- US EPA, US ACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. EPA-503/8-91/001, February 1991.
- US EPA, US ACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the US Testing Manual. EPA-823-B-98-004, February 1998.
- US EPA 2002. *Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms*. Fifth Edition. EPA-821-R-02-012.

Table 1. Sample Collection and Receipt Information. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

Station ID		Sample	Motrix	Collect	ion	Recei	ipt
Station ID	ESI Code	Туре	Matrix	Date	Time	Date	Time
A	29746-001	Site	Solid	10/17/17	0851	10/18/17	0950
В	29746-002	Site	Solid	10/17/17	0948	10/18/17	0950
С	29746-003	Site	Solid	10/17/17	1021	10/18/17	0950
D	29746-004	Site	Solid	10/17/17	1046	10/18/17	0950
F	29746-005	Site	Solid	10/17/17	1121	10/18/17	0950
CIW-1	29746-006	Site	Water	10/17/17	1249	10/18/17	0950
CIW-2	29746-007	Site	Water	10/17/17	1249	10/18/17	0950
CIW-3	29746-008	Site	Water	10/17/17	1249	10/18/17	0950
CI-PDS	29746-009	Reference	Solid	10/17/17	1053	10/18/17	0950
CIW-PDS	29746-010	Reference	Water	10/17/17	1425	10/18/17	0950

Table 2. Summary of Sample Compositing Information. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

Composite ID	ECI Codo	Compone	Final	Composite		
Composite iD	ESI Code	Station ID ESI Code		Amount	Date	Time
Composite 1 29747-101		A	29746-001	21 gal	10/23/17	1420
Composite 1	29747-101	В	29746-002	Z i yai	10/23/17	1420
Composite 2	29747-102	С	29746-003	22 gal	10/23/17	1515
Composite 2	29747-102	D	29746-004	ZZ yai		1010
Composite 3	29747-103	F	29746-005	21 gal	10/24/17	0840
PDS Reference Site Water	29747-105	CIW-PDS ^a (Top, Middle and Bottom)	29746-010	15 gal	10/24/17	1025

Note:

Table 3. Elutriate Solution Preparation. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

W	Water Sediment			E	lutriate Prepara	ation	
Station ID	ESI Code	Composite ID	ESI Code	Elutriate ID	ESI Code	Date	Time
CIW-1	29746-006	Composite 1	29747-101	Composite 1 Elutriate	29750-100	10/24/17	1250
CIW-2	29746-007	Composite 2	29747-102	Composite 2 Elutriate	29750-101	10/24/17	1400
CIW-3	29746-008	Composite 3	29747-103	Composite 3 Elutriate	29750-102	10/24/17	1535

^a This sample was homogenized only.

LABORATORY STANDARDS STATEMENT

This study was performed by EnviroSystems, Incorporated at its facility in Hampton, New Hampshire. EnviroSystems' laboratory is accredited by the State of New Hampshire under the National Environmental Laboratory Accreditation (NELAC) program. Additionally, ESI is accredited under the Department of Defense (DoD) ELAP program, ISO/IEC 17025:2005, Certificate Number L2340. All testing conducted by EnviroSystems as part of this program was compliant with NELAC guidelines and standards. Additionally, this study was conducted in accordance with guidelines presented in the 2004 version of the New England District's Regional Implementation Manual (RIM) for Evaluation of Dredged Material Proposed for Disposal In New England Waters. Any deviations from specific elements of the RIM are detailed in the Protocol Deviation Section of this Report.

For EnviroSystems, Inc. Tuneth & Sima

December 11, 2017

Kenneth A. Simon Technical Director Date

Table 4. Period of Assay Conduct. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

Elutriate		Test Species	Assay S	Start	Assay	End
Comp/Elutriate ID	ESI Code		Date	Time	Date	Time
Composite 1 Elutriate	29750-100	A. bahia	10/24/17	1745	10/28/17	1450
Composite 2 Elutriate	29750-101	M. beryllina	10/24/17	1755	10/28/17	1450
Composite 3 Elutriate	29750-102	A. punctulata	10/24/17	1735	10/27/17	1240

Table 5. Reference Toxicant Data Summary. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

Date	Organism Lot	Endpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
A. bahia						
08/31/17	03AbARO083017	96Hr LC-50	20.5	18.0	13.3 - 22.8	SDS (mg/L)
11/02/17	03AbARO110217	96Hr LC-50	53.7	53.7 ^a	а	NH4Cl (mg/L)
M. beryllir	na					
08/31/17	-	96Hr LC-50	7.2	6.2	3.6 - 8.8	SDS (mg/L)
11/02/17	10MbARO110217	96Hr LC-50	60.9	60.9 ^a	а	NH4Cl (mg/L)
A. punctu	lata					
08/30/17	99ApARO083017	EC-50	16.1	18.9	10.4 - 27.5	Copper (µg/L)
10/24/17	99ApARO082917	EC-50	1.8	1.8 ^a	а	NH4Cl (µg/L)

Notes: Means and Acceptable Ranges based on the most recent 20 reference toxicant assays.

Table 6. Summary of Endpoints and Adverse Effects. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

		A. bahia	M. beryllina	A. pu	ınctulata
		LC-50	LC-50	LC-50	EC-50
Comp/Elutriate ID	ESI Code	(Survival)	(Survival)	(Survival)	(Development)
Composite 1 Elutriate	29750-100	>100%	>100%	>100%	>100%
Composite 2 Elutriate	29750-101	>100%	>100%	23%	15%
Composite 3 Elutriate	29750-102	43%	76%	3%	3%

^a Values are based on the results of 1 assay, therefore an acceptable range is not available.

Table 7. Summary of Water Quality Data. Suspended Particulate Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. October 2017.

	Temp	o (°C)	рН (SU)	Ammo	nia (mg/L)	Ammo	onia (mg/L)
Comp/Elutriate ID	Start	End	Start	End	Start			End
					Total	Unionized	Total	Unionized
A. bahia								
Laboratory Control	22.00	20.00	8.12	7.65	<0.1	<0.0028	1.8	0.0313
PDS Reference Water	22.00	20.00	7.88	7.68	<0.1	<0.0017	1.6	0.0297
Composite 1 Elutriate	22.00	19.00	7.65	7.91	2.9	0.0581	3.2	0.0929
Composite 2 Elutriate	22.00	19.00	7.56	7.70	9.9	0.1618	8.02	0.1452
Composite 3 Elutriate	22.00	22.00	7.29	7.29	16	0.1415	5.2	0.0460
M. beryllina								
Laboratory Control	22.00	20.00	8.12	7.69	<0.1	<0.0028	1.7	0.0323
PDS Reference Water	22.00	20.00	7.88	7.71	<0.1	<0.0017	1.7	0.0338
Composite 1 Elutriate	22.00	19.00	7.65	7.95	2.9	0.0581	3.2	0.1016
Composite 2 Elutriate	22.00	20.00	7.56	8.27	9.9	0.1618	6.9	0.4736
Composite 3 Elutriate	22.00	20.00	7.20	8.16	16	0.1415	9.5	0.5141
A. punctulata								
Laboratory Control	22.00	20.00	8.12	8.02	<0.1	<0.0028	0.12	0.0048
PDS Reference Water	22.00	20.00	7.88	8.00	<0.1	< 0.0017	0.15	0.0057
Composite 1 Elutriate	22.00	21.00	7.65	8.18	2.9	0.0581	2.9	0.1755
Composite 2 Elutriate	22.00	20.00	7.55	8.19	9.9	0.1582	10	0.5776
Composite 3 Elutriate	22.00	21.00	7.31	8.19	16	0.1481	16	0.9897

APPENDIX A:

RAW DATA & STATISTICAL SUPPORT

Contents	Number of Pages
Study Number Record	1
Chain of Custody Records and Sample Receipt Logs	4
Composite Preparation Documentation	4
Elutriate Preparation Records	3
A. bahia SPP Evaluations	
Bench Sheets - Dilutions, Survival and Water Quality, Organism History	6
Statistical Analysis	11
M. beryllina SPP Evaluations	
Bench Sheets - Dilutions, Survival and Water Quality, Organism History, Wet Weights	7
Statistical Analysis	10
A. punctulata SPP Evaluations	
Bench Sheets – Dilutions, Embryo Worksheet, Counts and Water Quality	4
Statistical Analysis	26
Total and Unionized Ammonia Data Calculations	1
Corps of Engineers QC Tables	2
Assay Review Checklist	3
Total Appendix Pages	82

STUDY NUMBER RECORD

Issue and complete this form for studies that will require multiple tasks and directly associated support studies. Issue consecutive study numbers at the start of the project to cover all potential elements of the project.

PROJECT: Chebeague Island FNP

CONTRACT / TO #: W912WJ-17-D-0003 / #3 Project Number 60551931

	Species / Analysis Parameters	S:	STUDY:	
Sample Receipt:			29746	
Grain Size Analysis:			-	
Composite Prep:			29747	
Bulk Sediment Analysis ^a :			-	
10 Day Access	Leptocheirus plumulosus		29748	
10 Day Assay:	Americamysis bahia		29749	
Elutriate Preparation:	Type:		29750	
_	Pentachlorophenol Yes			
Elutrioto Anglucio	Trace Metals	Yes/ No	29751	
Elutriate Analysis:	PCB Congeners Yes/ No Pesticides Yes/ No		29/31	
	Menidia beryllina			
SPP Assays:	Americamysis bahia	29752		
	Arbacia punctulata			
Discoursulation Study	Macoma nasuta		29753	
Bioaccumulation Study:	Nereis virens		29754	
	Trace Metals PAH Compounds Yes/ No.			
Tienes Amelyaia 8.			00755	
Tissue Analysis ^a :	PCB Congeners	Yes/ No	29755	
	Pesticides			

Notes:

^a All bulk sediment and tissue analyses were completed by Alpha Analytical, Mansfield, Massachusetts.

Laboratory Composite Preparation Documentation

Project Number:	29746		
Project Name:	Chebeague		
Composite Identifier:	Composite 1		
Composite Lab ID.:	29747-101	_Composite Final Volume: _	≈ 21 gallons
Composite Matrix:	Solid	_Composite Container(s): _	7 × 3 gallons
Composite Prepared Date:	10/23/17		1 × 1 gallon
Composite Prepared Time:	1420		<u> </u>
Initials:	_JTP	_	
Protocol:	ESI SOP 1478		

This composite was prepared according to protocols cited using the samples and amounts listed below:

Field ID	ESI Lab ID	Matrix	Liquids Excluded	Solids Excluded	Amount Added	Notes
Station Location A	29746-001	Solid		% IL	≈12q	Rocks & Stick/Shells
Station Location B	29746-002	Solid		≈1L	≈12q	Rocks & Stick/Shells Rocks & Shells
					~~ J	

Subsamples Removed:

Lab Number	Sample Use
29750	Elut. Prep.
29748	L.p. Solid phase
29749	A.b. Solid phase
29753	M.n. 28 day BA
29754	N.v. 28 day BA
	,

Laboratory Composite Preparation Documentation

Project Number:	29746	-	
Project Name:	Chebeague		
Composite Identifier:	Composite 2		
Composite Lab ID.:	29747-102	_Composite Final Volume: _	≈22gallons
Composite Matrix:	Solid	_Composite Container(s): _	7 x 3 gallons
Composite Prepared Date:	10/23/17	_	1 × 1 gallon
Composite Prepared Time:	<u>1515</u>		<u> </u>
Initials:	<u>Jîp</u>	<u>-</u>	
Protocol:	ESI SOP 1478	_	

This composite was prepared according to protocols cited using the samples and amounts listed below:

Field ID	ESI Lab ID	Matrix	Liquids Excluded	Solids Excluded	Amount Added	Notes
Station Location C	29746-003	Solid	- Althous-page-galler	≈1.5L	≈12gal	Rocks, shells
Station Location D	29746-004	Solid		≈200 m L	≈12ga1	Rocks, few leaves
					-	

Subsamples Removed:

Lab Number	Sample Use
29750	Elut. Prep.
29748	L.p. Solid Phase
29749	A.b. Solid phase
29753	M.n. 28 day BA
29754	N.v. 28 day BA
	1

Laboratory Composite Preparation Documentation

Project Number:	29746	_	
Project Name:	Chebeague	**************************************	
Composite Identifier:	Composite 3		
Composite Lab ID.:	29747-103	Composite Final Volume:	21 gallons
Composite Matrix:	Solid	Composite Container(s):	7×3galla buckets
Composite Prepared Date:	10/24/17	_	1 x 1 gallon
Composite Prepared Time:	0840	<u>-</u>	
Initials:	_JIP	-	
Protocol:	ESI SOP 1478	<u>.</u>	

This composite was prepared according to protocols cited using the samples and amounts listed below:

Field ID	ESI Lab ID	Matrix	Liquids Excluded	Solids Excluded	Amount Added	Notes
Station Location F	29746-005	Solid	N/A	≈1.5L	≈Zlqallus	rocks and destives excluded

Subsamples Removed:

Lab Number	Sample Use
29750	Elut. Prep.
29748	L.p. Solid Phase
29749	A.b. Solid Phase
29753	M.n. 28 day BA
29754	N.v. 28 day BA
	,

Laboratory Homogenization Documentation

Project Number	:	29746										
Project Name:		Chebeag	Chebeague									
Composite Iden	tifier:	PDS Re	PDS Reference Site Water									
Composite Lab	ID.:	<u>29747-1</u>	29747-105 Composite Final Volume: 15 galles Water Composite Container(s): 3×5 galles (a bitales)									
Composite Matr	ix:	Water		Cor	mposite Co	ntainer(s):	3 x 5 galler cabiturers					
Composite Prep	ared Date:	10/24/17										
Composite Prep	ared Time	1025	1025									
Initials:		<u> </u>										
Protocol:		ESI SOF	1478									
This composite	was prepar	ed accord	ing to pro	tocols cited	d using the	samples a	nd amounts listed below:					
Field ID	E	SI Lab ID	Matrix	Excluded	Excluded	Added	Notes					
CIW - PD:	s	Тор	Water	N/A	N/A	5gal						
		Middle	Water	MA	MA	5gal 5gal 5gal						
		Bottom	Water	N/A	MA	5 gal						
***************************************						,	MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (MANAGERIA (M					
		· · · · · · · · · · · · · · · · · · ·										
Subsamples Re	moved:											
Lab Number	Sample Use)										
							The state of the s					
				· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

Aquatic Research Organisms

DATA SHEET

I.	Organism History
	Species AMERICAMYSIS bahin
	Source: Lab reared Hatchery reared Field collected
	Hatch date 10-21-17 Receipt date
	Lot number 102117 H5 Strain
	Brood origination Flo-ziDA
II.	Water Quality
	Temperature 25 °C Salinity ~28 ppt D.O ppm
	pH 7.8su Hardnessppm Alkalinityppm
III.	Culture Conditions
	Freshwater Saltwater Other
	Recirculating Flow through Static renewal
	DIET: Flake food Phytoplankton Trout chow
	Artemia Rotifers YCT Other Every Shring DIET
	Prophylactic treatments:
	Comments:
IV.	Shipping Information
	Client:# of Organisms/OOO+
	Carrier: Date shipped
	Biologist: Mash Downgra
	$oldsymbol{\mathcal{U}}$

PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 <u>AROFISH@AOL.COM</u>

Report Date: 31 Oct-17 11:06 (p 1 of 1) **Test Code/ID:** 12-1719-4312/29752Ab

Americamysis 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:45 Species: Americamysis bahia Sample Code: 29750-100

End Date: 28 Oct-17 14:50 Protocol: EPA/821/R-02-012 (2002) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 12:50 Material: Elutriate Solution Sample Station: Comp 1 Elutriate (Stations A,B)

- Campio - Cato		01 11	12.00	waterial. Liutilate Solution					Sample Station. Comp i Liumate (Stations A,b)
Conc-%	Code	Rep	Pos	# Exposed	24h Survival	48h Survival	72h Survival	96h Survival	Notes
0	D	1	3	11				11	
0	D	2	9	10				10	
0	D	3	13	10				10	
0	D	4	20	10				9	
0	D	5	30	10				10	
0	L	1	1	10				9	
0	L	2	8	10				10	
0	L	3	16	10				10	
0	L	4	21	10				10	
0	L	5	26	10				10	
1		1	4	10				9	
1		2	7	10				9	
1		3	17	10				9	
1		4	24	10				10	
1		5	27	10				10	
10		1	5	10				10	
10		2	10	10				10	
10		3	15	10				10	
10		4	23	10				9	
10		5	25	10				10	
50		1	6	10				10	
50		2	12	10				10	
50		3	18	10				9	
50		4	19	10				10	
50		5	28	10				9	
100		1	2	10				8	
100		2	11	10				10	
100		3	14	10				10	
100		4	22	10				9	
100		5	29	10				10	

Report Date: 31 Oct-17 11:09 (p 1 of 1) **Test Code/ID:** 04-9053-4552/29752Ab

Americamysis 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:45 Species: Americamysis bahia Sample Code: 29750-101

End Date: 28 Oct-17 14:50 Protocol: EPA/821/R-02-012 (2002) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 14:00 Material: Elutriate Solution Sample Station: Comp 2 Elutriate (Stations C,D)

Sample Date.		,01 17	14.00	waterial. Liutilate Solution					Sample Station. Comp 2 Elumate (Stations C,D)
Conc-%	Code	Rep	Pos	# Exposed	24h Survival	48h Survival	72h Survival	96h Survival	Notes
0	D	1	2	11				11	
0	D	2	10	10				10	
0	D	3	17	10				10	
0	D	4	19	10				9	
0	D	5	29	10				10	
0	L	1	6	10				9	
0	L	2	8	10				10	
0	L	3	14	10				10	
0	L	4	20	10				10	
0	L	5	25	10				10	
1		1	1	10				10	
1		2	9	10				10	
1		3	13	10				10	
1		4	22	10				10	
1		5	28	10				10	
10		1	5	10				10	
10		2	11	10				10	
10		3	15	10				10	
10		4	23	10				8	
10		5	26	10				10	
50		1	3	10				10	
50		2	7	10				10	
50		3	16	10				9	
50		4	24	10				10	
50		5	30	10				10	
100		1	4	10				10	
100		2	12	10				10	
100		3	18	10				10	
100		4	21	10				10	
100		5	27	10				9	

Report Date: 31 Oct-17 11:10 (p 1 of 1) **Test Code/ID:** 09-2287-4098/29752Ab

Americamysis 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:45 Species: Americamysis bahia Sample Code: 29750-102

End Date:28 Oct-17 14:50Protocol:EPA/821/R-02-012 (2002)Sample Source:Chebeague Island FNPSample Date:24 Oct-17 15:35Material:Elutriate SolutionSample Station:Comp 3 Elutriate (Station F)

Como 9/	Code	Day	Dec	# Exposed	24h	48h	72h	96h	Netes
Conc-%	Code D	кер	3	# Exposed	Survival	Survival	Survival	Survival 11	Notes
0	D	2	9	10				10	
0	D	3	13	10				10	
0	D	4	19	10				9	
0	D	5	27	10				10	
0	L	1	4	10				9	
0	L	2	12	10				10	
0	L	3	17	10				10	
0	L	4	20	10				10	
0	L	5	30	10				10	
1		1	2	10				10	
1		2	10	10				10	
1		3	15	10				10	
1		4	22	10				9	
1		5	26	10				10	
10		1	5	10				10	
10		2	7	10				10	
10		3	16	10				10	
10		4	21	10				9	
10		5	25	10				10	
50		1	1	10				4	
50		2	11	10				3	
50		3	14	10				6	
50		4	24	10				7	
50		5	29	10		·		8	
100		1	6	10				0	
100		2	8	10				0	
100		3	18	10				0	
100		4	23	10				0	
100		5	28	10				0	

Aquatic Research Organisms

10 Mb ARO 10 2417

DATA SHEET

I.	Organism History
	Species MENIDIA DEZY///UA
	Source: Lab reared Hatchery reared Field collected
	Hatch date 10-14-17 Receipt date
	Lot number 101117113 Strain
	Brood origination CASE CON MA
II.	Water Quality
	Temperature 25 °C Salinity 28 ppt D.Oppm
	pHppm Alkalinityppm
III.	Culture Conditions
	Freshwater Other
	Recirculating Flow through Static renewal
	DIET: Flake food Phytoplankton Trout chow
	Artemia Rotifers YCT Other Encap. Shainp Diet
	Prophylactic treatments:
	Comments:
IV.	Shipping Information
	Client: # of Organisms 1000+
	Carrier: Date shipped
	Biologist: Mark Dovernon
	PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 <u>AROFISH@AOL.COM</u>

STUDY: 29752 CLIENT: AECOM PROJECT: Chebegue ASSAY: MB96AD SPECIES: M. beryllina

TASK: Wet Weight Data - Balance Output File BALANCE: Ohaus Discovery Balance Model DV215CD

Serial #: 1124024313

Date / Intials: Rep	10/24/17 CS (S
1	0.00268
2	0.0035
3	0.00152
4	0.00252
5	0.00318
6	0.00213
7	0.00208
8	0.00132
9	0.00322
10	0.00251
11	0.00244
12	0.00144
13	0.00132
14	0.00158
15	0.00211
16	0.00293
17	0.00228
18	0.00139
19	0.00113
20	0.00225
Mean Weight (g):	0.00218
Test Volume (L):	0.2
Loading Rate(g/L):	0.10883

Report Date: 31 Oct-17 11:13 (p 1 of 1) **Test Code/ID:** 12-3757-8697/29752Mb

Menidia beryllina 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:55 Species: Menidia beryllina Sample Code: 29750-100

End Date: 28 Oct-17 14:50 Protocol: EPA/821/R-02-012 (2002) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 12:50 Material: Elutriate Solution Sample Station: Comp 1 Elutriate (Stations A,B)

Sample Date.	240	/Ct-17	12.50	Wateria	ai. Liutilat	e Solution			Sample Station. Comp i Liuthate (Stations A,b)
Conc-%	Code	Rep	Pos	# Exposed	24h Survival	48h Survival	72h Survival	96h Survival	Notes
0	D	1	1	10				5	
0	D	2	11	10				8	
0	D	3	18	10				7	
0	D	4	23	10				6	
0	D	5	27	10				4	
0	L	1	4	10				10	
0	L	2	7	10				8	
0	L	3	13	10				9	
0	L	4	20	10				9	
0	Ш	5	26	10				9	
1		1	3	10				6	
1		2	8	10				8	
1		3	14	10				8	
1		4	22	10				8	
1		5	28	10				8	
10		1	5	10				8	
10		2	12	10				9	
10		3	16	10				8	
10		4	21	10				7	
10		5	29	10				10	
50		1	2	10				10	
50		2	10	10				8	
50		3	17	10				7	
50		4	19	10				9	
50		5	25	10				9	
100		1	6	10				9	
100		2	9	10				7	
100		3	15	10				9	
100		4	24	10				9	
100		5	30	10				9	

Report Date: 31 Oct-17 11:15 (p 1 of 1) **Test Code/ID:** 03-3456-1741/29752Mb

Menidia beryllina 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:55 Species: Menidia beryllina Sample Code: 29750-101

End Date: 28 Oct-17 14:50 Protocol: EPA/821/R-02-012 (2002) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 14:00 Material: Elutriate Solution Sample Station: Comp 2 Elutriate (Stations C,D)

		00 11		Materia	ai. Liutilat	.c oolullon			Sample Station. Comp 2 Elumate (Stations C,D)
Conc-%	Code	Rep	Pos	# Exposed	24h Survival	48h Survival	72h Survival	96h Survival	Notes
0	D	1	6	10				5	
0	D	2	12	10				8	
0	D	3	13	10				7	
0	D	4	19	10				6	
0	D	5	30	10				4	
0	L	1	3	10				10	
0	L	2	7	10				8	
0	L	3	15	10				9	
0	L	4	21	10				9	
0	L	5	27	10				9	
1		1	5	10				9	
1		2	10	10				9	
1		3	17	10				10	
1		4	24	10				9	
1		5	28	10				7	
10		1	4	10				9	
10		2	8	10				8	
10		3	18	10				8	
10		4	23	10				10	
10		5	29	10				8	
50		1	2	10				10	
50		2	11	10				9	
50		3	16	10				7	
50		4	22	10				10	
50		5	26	10				10	
100		1	1	10				10	
100		2	9	10				10	
100		3	14	10				9	
100		4	20	10				8	
100		5	25	10				9	

Report Date: 31 Oct-17 11:16 (p 1 of 1) **Test Code/ID:** 02-6189-4462/29752Mb

Menidia beryllina 96-h Acute Survival Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:55 Species: Menidia beryllina Sample Code: 29750-102

End Date:28 Oct-17 14:50Protocol:EPA/821/R-02-012 (2002)Sample Source:Chebeague Island FNPSample Date:24 Oct-17 15:35Material:Elutriate SolutionSample Station:Comp 3 Elutriate (Station F)

		_	_		24h	48h	72h	96h	
Conc-%	Code D	Rep 1		# Exposed 10	Survival	Survival	Survival	Survival	Notes
0	D	2	5 9	10				5 8	
0	D	3	18	10				7	
0	D	4	21	10				6	
0	D	5	26	10				4	
0	L	1	4	10				10	
0	L	2	8	10				8	
0	L	3	17	10				9	
0	L	4	20	10				9	
0	L	5	30	10				9	
1		1	1	10				8	
1		2	12	10				6	
1		3	13	10				10	
1		4	22	10				8	
1		5	28	10				6	
10		1	6	10				10	
10		2	7	10				9	
10		3	16	10				9	
10		4	24	10				10	
10		5	29	10				7	
50		1	3	10				10	
50		2	11	10				10	
50		3	14	10				9	
50		4	23	10				9	
50		5	27	10				9	
100		1	2	10				2	
100		2	10	10				2	
100		3	15	10				0	
100		4	19	10				2	
100		5	25	10				1	

EMBRYO WORKSHEET

DATE: 10/24/17	ESI ST	UDY: 29752					
CLIENT: AECOM	PROJ	IECT: Chebeague					
Eggs Collected @: 1535 Sperm Collected @: 1525	***********		ANALYST: GRS must achieve ≥90% fertilization				
Egg Stock Suspension Count:							
Take 1mL of egg stock s volume of 100 mL. Co	ount a subsample of t ted suspension should - 5,000 in the stock su	he diluted suspension have 40 - 50 eggs/m	inder dilute with seawater to a final on to get an estimate of the egg nL, (which would represent an egg				
 Sperm Stock Suspension Count Hemocytometer Count (D) Hemocytometer Count (D) Average Count (D): Sperm Concentrations: 	: 139	spe X10 ⁴ = spm = =	= Solution A = $\frac{5.48 \times 10^7}{2.74 \times 10^7}$ = Solution B = $\frac{2.74 \times 10^7}{2.74 \times 10^7}$				
	Soldion B X o		unt (per mL): 1:37×10 ⁶				
mL of Eggs to Add: mL of Sperm to Add: Gai	150 30 metes must be mixed		es mixed @: 1620 oction.				
Calculated Embryo Stock Concentration (per mL): Calculated Embryo Stock (mL) needed per chamber:	31 1.20		test concentration should be 15 - 30 embryos per mL.				
Add calculated amount of	of embryo stock to a su	rrogate chamber, ge	ntly mix, then count a 5mL aliquot.				
Embryo Concentration Check:	31		oncentration is acceptable, then the modern the test.				
Volume Embryo Stock (mL) added to test solutions:	Geskel 18	Embryos Added Solutions @:	d to Test				
SURROGATE B SURROGATE C	Embryos/ 5 mL 56 61 54	-	nism Lot ID: <u>994 ARO 0879 i 7</u> ean per mL: <u>3</u> ì				
Mean:	U 1	IVIE	call pel IIIL. Or				

Arbacia Punctulata Survival / Development Assay

Client: AECOM Assay End: 10/27/17 1240

Count Date: 10/28-29 12017 Initials: GRS / Count Off

Treatment	REP A Alive / Normal	REP B Alive / Normal	REP C Alive / Normal	REP D Alive / Normal	REP E Alive / Normal
Lab Control Water	131/131	124/122	128/127	ાઢુ/ાટ	134/134
PDS Reference Water	mho	15/155	118/116	116/1121	123/115
Composite 1	REP A	REP B	REP C	REP D	REP E
Elutriate	Alive / Normal				
1%	103/100	112/109	78/76	86/83	99/98
10%	101/100	108/107	107/103	131/128	111/109
50%	91/91	94/93	96/95	109/108	97A5
100%	79/68	93/89	85/84	92/86	95/90
Composite 2	REP A	REP B	REP C	REP D	REP E
Elutriate	Alive / Normal				
1%	30/80	2105/99	101/97	96/9590	113/108
10%	85/79	95/93	99/98	76/70	85/81
50%	33/1	43/0	11/Q	35/0	37/0
100%	31/0	39/O	3410	2760	32/0
Composite 3	REP A	REP B	REP C	REP D	REP E
Elutriate	Alive / Normal				
1%	49/48	105/99	116/112	114/109	121/116
10%	18/16	14/10	14/10	21/15	17-112
50%	2/0	1/0	0/0	1/0	10
100%	0/6	6/0	0/0	0/0	0/0

Rep 93/91

Report Date: 31 Oct-17 11:23 (p 1 of 1) **Test Code/ID:** 02-1197-0166/29752Ap

Echinoid Embryo-Larval Development Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:35 Species: Arbacia punctulata Sample Code: 29750-100

End Date: 27 Oct-17 12:40 Protocol: EPA/600/R-95/136 (1995) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 12:50 Material: Elutriate Solution Sample Station: Comp 1 Elutriate (Stations A,B)

Sample Date:	: 24 Oct-17 12:50			Material: Elutriate Solution			Sample Station: Comp 1 Elutriate (Stations A,B)				
Conc-%	Code	Rep	Pos	# Exposed	# Survived	# Normal	Notes				
0	D	1	6	157	111	110					
0	D	2	8	157	156	155					
0	D	3	16	157	118	116					
0	D	4	22	157	116	112					
0	D	5	25	157	123	115					
0	L	1	2	157	131	131					
0	┙	2	7	157	124	122					
0	┙	3	13	157	128	127					
0	Ш	4	20	157	118	118					
0	┙	5	29	157	134	134					
1		1	3	157	103	100					
1		2	11	157	112	109					
1		3	17	157	78	76					
1		4	21	157	86	83					
1		5	28	157	99	98					
10		1	4	157	101	100					
10		2	12	157	108	107					
10		3	14	157	107	103					
10		4	23	157	131	128					
10		5	26	157	111	109					
50		1	1	157	91	91					
50		2	10	157	94	93					
50		3	18	157	96	95					
50		4	19	157	109	108					
50		5	27	157	97	95					
100		1	5	157	79	68					
100		2	9	157	93	89					
100		3	15	157	85	84					
100		4	24	157	92	86					
100		5	30	157	95	90					

Report Date: 31 Oct-17 10:57 (p 1 of 1) **Test Code/ID:** 13-3967-4263/29752Ap

Echinoid Embryo-Larval Development Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:35 Species: Arbacia punctulata Sample Code: 29750-101

End Date: 27 Oct-17 12:40 Protocol: EPA/600/R-95/136 (1995) Sample Source: Chebeague Island FNP

Sample Date: 24 Oct-17 14:00 Material: Elutriate Solution Sample Station: Comp 2 Elutriate (Stations C,D)

Sample Date.	270	Ct-17	14.00	Material. Liutilate Solution		Oolution	Sample Station. Comp 2 Eluthate (Stations C,D)
Conc-%	Code	Rep	Pos	# Exposed	# Survived	# Normal	Notes
0	D	1	5	157	111	110	
0	D	2	9	157	156	155	
0	D	3	15	157	118	116	
0	D	4	22	157	116	112	
0	D	5	28	157	123	115	
0	L	1	1	157	131	131	
0	L	2	7	157	124	122	
0	L	3	16	157	128	127	
0	L	4	24	157	118	118	
0	L	5	27	157	134	134	
1		1	4	157	80	80	
1		2	10	157	93	91	
1		3	13	157	101	97	
1		4	19	157	96	90	
1		5	30	157	113	108	
10		1	2	157	85	79	
10		2	11	157	95	93	
10		3	14	157	99	98	
10		4	20	157	76	70	
10		5	29	157	85	81	
50		1	3	157	33	1	
50		2	12	157	43	0	
50		3	18	157	11	0	
50		4	23	157	35	0	
50		5	26	157	37	0	
100		1	6	157	31	0	
100		2	8	157	39	0	
100		3	17	157	34	0	
100		4	21	157	27	0	
100		5	25	157	32	0	

Report Date: 31 Oct-17 11:27 (p 1 of 1) **Test Code/ID:** 05-8877-1502/29752Ap

Echinoid Embryo-Larval Development Test EnviroSystems, Inc.

Start Date: 24 Oct-17 17:35 Species: Arbacia punctulata Sample Code: 29750-102

End Date:27 Oct-17 12:40Protocol:EPA/600/R-95/136 (1995)Sample Source:Chebeague Island FNPSample Date:24 Oct-17 15:35Material:Elutriate SolutionSample Station:Comp 3 Elutriate (Station F)

Conc-%	Code	Rep	Pos	# Exposed	# Survived	# Normal	Notes
0	D	1	1	157	111	110	
0	D	2	8	157	156	155	
0	D	3	14	157	118	116	
0	D	4	21	157	116	112	
0	D	5	29	157	123	115	
0	L	1	3	157	131	131	
0	L	2	12	157	124	122	
0	L	3	16	157	128	127	
0	L	4	20	157	118	118	
0	L	5	30	157	134	134	
1		1	4	157	49	48	
1		2	9	157	105	99	
1		3	18	157	116	112	
1		4	23	157	114	109	
1		5	26	157	121	116	
10		1	5	157	18	16	
10		2	11	157	14	10	
10		3	13	157	14	10	
10		4	24	157	21	15	
10		5	27	157	17	12	
50		1	2	157	2	0	
50		2	7	157	1	0	
50		3	17	157	0	0	
50		4	19	157	1	0	
50		5	25	157	1	0	
100		1	6	157	0	0	
100		2	10	157	0	0	
100		3	15	157	0	0	
100		4	22	157	0	0	
100		5	28	157	0	0	

STUDY: 29752 CLIENT: AECOM

PROJECT: Chebeague Island FNP, Contract #W912WJ-17-D-0003

ASSAY: Suspended Particulate Phase

TASK: Ammonia Summary METHOD: SM 4500-NH3 G

				Ammonia								
Sample ID	Hour	ESI Code	Total	Unionized	QLimit Units	Sampled	Analyzed					
Start Americamysis	<i>bahia</i> ar	nd <i>Menidia be</i>	<u>ryllina</u>									
Laboratory Control	00	29752-100	ND	0.0028	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
PDS Reference Site	00	29752-101	ND	0.0017	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 1	00	29752-102	2.9	0.0581	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 2	00	29752-103	9.9	0.1618	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 3	00	29752-104	16	0.1415	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Start Arbacia punctu	ılata											
Laboratory Control	00	29752-100	ND	0.0028	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
PDS Reference Site	00	29752-101	ND	0.0017	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 1	00	29752-102	2.9	0.0581	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 2	00	29752-103	9.9	0.1582	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
Composite 3	00	29752-104	16	0.1481	0.1 mg/L as N	10/24/17 1730	10/30/17 1230					
End Americamysis b	End Americanysis habia											
Laboratory Control	96	29752-205	1.8	0.0313	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
PDS Reference Site	96	29752-206	1.6	0.0297	0.1 mg/L as N		10/30/17 1230					
Composite 1	96	29752-207	3.2	0.0929	0.1 mg/L as N		10/30/17 1230					
Composite 2	96	29752-208	8.02	0.1452	0.1 mg/L as N		10/30/17 1230					
Composite 3 ^a	96	29752-209	5.2	0.0460	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
End Menidia beryllin	а											
Laboratory Control	- 96	29752-210	1.7	0.0323	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
PDS Reference Site	96	29752-211	1.7	0.0338	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
Composite 1	96	29752-212	3.2	0.1016	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
Composite 2	96	29752-213	6.9	0.4736	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
Composite 3	96	29752-214	9.5	0.5141	0.1 mg/L as N	10/28/17 1515	10/30/17 1230					
End <i>Arbacia punctul</i>	ata											
Laboratory Control	67	29752-200	0.12	0.0048	0.1 mg/L as N	10/27/17 1300	10/30/17 1230					
PDS Reference Site	67	29752-201	0.15	0.0057	0.1 mg/L as N	10/27/17 1300	10/30/17 1230					
Composite 1	67	29752-202	2.9	0.1755	0.1 mg/L as N		10/30/17 1230					
Composite 2	67	29752-203	10	0.5776	0.1 mg/L as N	10/27/17 1300	10/30/17 1230					
Composite 3	67	29752-204	16	0.9897	0.1 mg/L as N	10/27/17 1300	10/30/17 1230					

Notes

^a Unionized ammonia concentrations at assay end were calculated using the last recorded temperature and pH values (Day 0).

Appendix D.2: 10-Day Whole Sediment Bioassay (10 Day Solid Phase Evaluation)

AECOM 250 Apollo Drive Chelmsford MA, 01824 USA aecom.com

December 11, 2017

R. Ben Loyd Department of Army New England District Corps of Engineers 696 Virginia Road Concord, MA 01742

RE: Chebeague Island 10-Day Whole Sediment Acute Toxicity Testing Report

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Dear Mr. Loyd:

AECOM Technical Services, Inc. (AECOM) is pleased to provide the 10-Day Whole Sediment Acute Toxicity Testing report under Delivery Order W912WJ17F0106, Task 7 of the Performance Work Statement (PWS) entitled "Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine" dated 4 August 2017.

AECOM certifies that this submission has been subjected to AECOM's review and coordination procedures. Please let us know if you have any questions or if you would like to discuss the progress report.

Best Regards,

Kris van Naerssen Project Manager

AEĆOM

E: kris.vannaerssen@aecom.com

cc: Maura Surprenant, AECOM

Christine Archer, AECOM

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

December 11, 2017

10-Day Whole Sediment Acute Toxicity Testing Report

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

10 Day Solid Phase Evaluation

Prepared For:

AECOM 250 Apollo Drive Chelmsford, Massachusetts 01824

Prepared By:

EnviroSystems, Incorporated
One Lafayette Road
Hampton, New Hampshire 03842

EnviroSystems, Inc. Master Reference 29746 Specific Studies 29748 & 29749 November 2017 Revision 1

TABLE OF CONTENTS

LABO	RAT	DRY STANDARDS STATEMENT	. 3
1.0	INT	RODUCTION	4
1.0		105001101	• •
2.0	MA	FERIALS AND METHODS	4
	2.1	Sample Collection, Preservation and Storage	4
		Sediment Preparation	
	2.3	Bioassay Procedures	
		2.3.1 . A. bahia 10 Day Solid Phase Evaluation	
	0.4	2.3.2. L. plumulosus 10 Day Solid Phase Evaluation	
		Statistical Analysis	
	2.5	Quality Control	. 0
3.0	RES	SULTS AND DISCUSSION	6
		A. bahia 10 Day Solid Phase Evaluation	
	3.2	L. plumulosus 10 Day Solid Phase Evaluation	6
	3.3	Protocol Deviations	7
4.0	SUN	MMARY	7
5.0	REF	ERENCES	7
		LIST OF TABLES	
Table	1.	Sample Collection and Receipt Information	8
Table	2.	Summary of Sample Compositing Information	
Table		Summary of Reference Toxicant Data	
Table		Summary of Laboratory Control Performance	
Table	-	Summary of Survival Data: A. bahia	
Table		Summary of Survival Data: L. plumulosus	
Table		Summary of Overlying Water Quality Data: A. bahia	
Table Table	-	Summary of Overlying Water Quality Data: <i>L. plumulosus</i>	
i able	J .	Summary of Fore water Quality Data. L. piumulosus	ıs
APPE	NDIX	A: RAW DATA & STATISTICAL SUPPORT	14

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

10 Day Solid Phase Evaluation

1.0 INTRODUCTION

As part of a comprehensive plan to reduce adverse environmental impacts of ocean dumping, Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972 specifies that all sediments to be discharged into ocean waters must be evaluated to define their potential impact on existing benthic communities. The United States Environmental Protection Agency (US EPA) has determined that the most effective means to make such an assessment is through the use of bioassay tests, which provide a relatively direct estimate of potential impact.

This project was designed to evaluate the potential toxicity of sediments from the area of dredging proposed for the Chebeague Island Federal Navigation Project (FNP) located in Chebeague Island, Maine. Testing involved conduct of acute exposure 10 day solid phase assays using the mysid, *Americamysis bahia*, and the amphipod, *Leptocheirus plumulosus*. Testing followed procedures established by the US EPA and the United States Army Corps of Engineers (US ACE) for testing of dredged material. Procedures are presented in *Evaluation of Dredged Material Proposed for Ocean Disposal* (US EPA, US ACE 1991), *Evaluation of Dredged Material Proposed for Discharge in Waters of the US - Testing Manual* (US EPA, US ACE 1998), and the *Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters* (US EPA, CENAE, 2004).

2.0 MATERIALS AND METHODS

2.1 Sample Collection, Preservation and Storage

Sediment cores for toxicological analysis were collected by the US ACE New England District (CENAE) using vibracoring equipment from locations identified in the dredge footprint specified in the project Sampling and Analysis Plan (SAP) (AECOM, 2017). Samples were received from AECOM, Chelmsford, Massachusetts under chain of custody in 3 gallon polyethylene buckets. Sediment samples were composited based on the compositing scheme outlined in the SAP. Reference sediment samples were collected by the AECOM field team (AECOM and Normandeau Associates, Bedford, New Hampshire) from the Portland Disposal Site (PDS). Upon arrival at the laboratory, all samples received an internal sample control number and were logged into the project sample control system. Prior to testing, samples were placed in a secure refrigerator and stored at a temperature of $4\pm2^{\circ}$ C until test initiation. Sample identification, collection and receipt information is summarized in Table 1. Sample compositing information is provided in Table 2.

Sediment for the laboratory control treatment was collected from the Hampton Estuary, Hampton, New Hampshire. The area is not known to receive any direct industrial inputs and has been used as a laboratory reference sediment in the testing of marine sediments for over 25 years. Overlying seawater was obtained from the Hampton Estuary. Water from the estuary has been used for the culture and maintenance of test organisms at ESI since 1978. Seawater is obtained through a filter system located on the bottom of the estuary at a point approximately 1 mile from the open ocean. The Hampton Estuary laboratory control was included to verify the health of the test organisms.

2.2 Sediment Preparation

Before organisms were added to the test vessels, ammonia levels in the pore water were determined. If the pore water was found to contain an unionized ammonia level of ≥ 0.8 mg/L, then test initiation was delayed and the sediments were monitored until the ammonia levels achieved an acceptable level. Test chambers were renewed daily with 1 volume addition of overlying water during this pre-assay phase.

2.3 Bioassay Procedures

2.3.1 A. bahia 10 Day Solid Phase Evaluation

The 10 day exposure toxicity test was completed using *A. bahia* obtained from Aquatic Resource Organisms (ARO) of Hampton, New Hampshire. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. *A. bahia* used in the assay were ≤ 5 days old at the start of the test.

The assay was conducted in a static renewal mode. Test chambers were 1 liter beakers modified for static renewal testing. Each beaker contained approximately 2 cm of sediment and was filled to the 1 liter mark with seawater. The test chambers were allowed to stabilize for a minimum of 24 hours, or until overlying water unionized ammonia levels were within acceptable limits (≤0.3 mg/L at pH 7.5, and ≤0.6 mg/L at pH 7.9-8.0) prior to the addition of the test organisms. A total of 20 organisms were randomly selected from the lot received and added to each replicate. All treatment groups included 5 replicates. Each day during the test, chambers received 1 volume of new seawater having similar salinity and temperature as the overlying water in the vessels. This results in an approximate 50% renewal of overlying water. Water temperature was 20±1°C, and the salinity regimen was established at 30±2‰. The photoperiod was set at 16:8 hours light:dark. Dissolved oxygen, pH, salinity, specific conductivity and temperature were measured daily in one replicate of each treatment and in all replicates on days 0 and 10. Ammonia levels were measured in the overlying water of a representative test chamber on days 0, 3 and 10. All test chambers were aerated throughout the assay and dissolved oxygen levels were maintained at ≥6.0 mg/L per ESI's protocol (≥40% saturation following RIM protocol). Water quality measurements were completed prior to water renewals. Test chambers were observed daily to ensure proper aeration and to note any test or treatment abnormalities. Any such observations were recorded on data sheets. Mysids were fed ≤24 hour old Artemia nauplii twice daily. After 10 days of exposure, the organisms were recovered for survival counts.

2.3.2 *L. plumulosus* 10 Day Solid Phase Evaluation

L. plumulosus were obtained from cultures maintained by ARO. Prior to use, test organisms were held for a minimum of 2 hours under temperature, salinity, and photoperiod conditions similar to those used in the assay. *L. plumulosus* were non-reproductive adults.

The assay was conducted in a static renewal mode. Test chambers were 1 liter beakers modified for static renewal testing. Each beaker contained approximately 2 cm of sediment and was filled to the 1 liter mark with seawater. The test chambers were allowed to stabilize for a minimum of 24 hours, or until pore water unionized ammonia levels were within acceptable limits (≤ 0.8 mg/L) prior to the addition of the test organisms. A total of 20 organisms were randomly selected from the lot received and added to each replicate. Each treatment group included 5 replicates and a surrogate test chamber that was used to obtain water qualities during the assay without disturbing the test animals. The surrogate chamber was treated the same as actual test chambers with the addition of animals and food, but was not used to determine endpoint data. Each day during the test, chambers received 1 volume of new seawater having similar salinity and temperature as the overlying water in the vessels. This results in an approximate 50% renewal of overlying water. Water temperature was $20\pm 1\,^{\circ}\text{C}$, and the salinity regimen was established at $20\pm 2\%$. The photoperiod was set at 16:8 hours light:dark. Dissolved oxygen, pH, salinity, specific conductivity and temperature were measured daily in the surrogate replicate of each treatment and in all replicates on days 0 and 10. Ammonia levels were measured in the overlying and pore water of the surrogate test chamber on days 0, 3 and 10. All test chambers were aerated throughout the assay and dissolved oxygen levels were

Chebeague Island FNP Tier III Sediment Evaluation. 10 Day Solid Phase Evaluation. US ACE New England District. ESI Studies 29748 & 29749. November 2017. Rev 1.

maintained at \geq 6.0 mg/L per ESI's protocol 40% saturation following RIM protocol) . Water quality measurements were completed prior to water renewals. Test chambers were observed daily to ensure proper aeration and to note any test or treatment abnormalities. Any such observations were recorded on data sheets. After 10 days of exposure, the organisms were recovered for survival counts.

2.4 Statistical Analysis

Survival data were analyzed using CETISTM(Comprehensive Environmental Toxicity Information System) v1.9.3.0 software to determine significant differences between the project sediments and the reference site. Survival data were evaluated to determine homogeneity of sample variances and normality of distribution using appropriate statistics. Data sets were subsequently evaluated using the appropriate parametric or non-parametric Analysis of Variance (ANOVA) statistic. Pair-wise comparisons were based on the appropriate statistical analysis. Statistical difference was evaluated at $\alpha = 0.05$.

2.5 Quality Control

As part of the laboratory quality control program, standard reference toxicant assays are conducted on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. Summaries of acute exposure reference toxicant assays conducted in support of this study are provided in Table 3.

3.0 RESULTS AND DISCUSSION

Table 4 provides a summary of assay acceptability and laboratory control performance. Tables 5 and 6 summarize the results of the statistical analysis for *Americamysis bahia* (mysid) and *Leptocheirus plumulosus* (amphipod), respectively. Tables 7 through 9 summarize water quality data collected during the *A. bahia* and *L. plumulosus* assays. Laboratory bench sheets, water quality data, and associated statistical support data are included in Appendix A.

3.1 A. bahia 10 Day Solid Phase Evaluation

Mean mysid survival in the laboratory control sediment was 92% with a coefficient of variation (CV) of 10%. Assay protocol requires that mean control survival be ≥90%. Based on this, the mysids were considered healthy and the overlying water was determined to have had no adverse impact on the outcome of the assay. Mean survival in the PDS reference sediment was 90% with an associated CV of 9%.

Mean mysid survival in the site composites ranged from 93% (Composites 1 and 3) to 97% (Composite 2). The statistical analyses show that there were no negative effects on mysid survival following exposure to any of the site composite samples.

Temperature data collected during the daily water quality observations documented a mean value of 19.7°C with a range of 16.8 to 21.1°C . Confirmation temperature data collected on an hourly basis from a data logger documented a mean value of 19.3°C with a range of 16.6 to 21.9°C . Salinity levels ranged from 28.1 to 31.1% with a mean value of 29.5%. Test acceptability criteria requires a mean temperature of $20\pm 1^{\circ}\text{C}$ with maximum temporary fluctuations of $20\pm 3^{\circ}\text{C}$, and salinity within a range of $30\pm 2\%$.

3.2 *L. plumulosus* 10 Day Solid Phase Evaluation

Mean amphipod survival in the laboratory control sediment was 98% with a CV of 3%. Assay protocol requires that mean control survival be $\ge 90\%$. Based on this, the amphipods were considered healthy and the overlying water was determined to have had no adverse impact on the outcome of the assay. Mean amphipod survival in the PDS reference sediment was 92% with an associated CV of 10%.

Mean amphipod survival in the site composites ranged from 91% (Composite 1) to 93% (Composites 2 and 3). The statistical analyses show that there were no negative effects on amphipod survival following exposure to any of the site composite samples.

Chebeague Island FNP Tier III Sediment Evaluation. 10 Day Solid Phase Evaluation. US ACE New England District. ESI Studies 29748 & 29749. November 2017. Rev 1.

Temperature data collected during the daily water quality observations documented a mean value of $19.8\,^{\circ}$ C with a range of 17.0 to $21.1\,^{\circ}$ C. Confirmation temperature data collected on an hourly basis from a data logger documented a mean value of $19.3\,^{\circ}$ C with a range of 16.6 to $21.9\,^{\circ}$ C. Salinity levels ranged from 18.8 to 19.9% with a mean value of 19.3%. Test acceptability criteria requires a mean temperature of $20\pm 1\,^{\circ}$ C with maximum temporary fluctuations of $20\pm 3\,^{\circ}$ C, and salinity within a range of $20\pm 2\%$.

3.3 Protocol Deviations

Review of data collected as part of the biological evaluation documented only one minor deviation from ESI's Standard Operating Procedures:

ESI's protocol requires that dissolved oxygen (DO) levels are maintained at or above 6.0 mg/L. There were two respective DO measurements that fell below 6.0 mg/L: one on day 7 in the *A. bahia* assay and one on day 1 in the *L. plumulosus* assay. The assays were aerated prior to initiation to ensure the requirement was met, and mean DO levels were well above the threshold, indicating that overall the desired DO levels were maintained. Furthermore, both assays met the RIM protocol of ≥40% saturation. Therefore it is the opinion of ESI's technical director that this deviation had no adverse impact on the outcome of the assay.

4.0 SUMMARY

This program utilized protocols developed by the US EPA and the CENAE to assess the potential impact of the proposed dredge material collected from the Chebeague Island FNP on the marine environment. Review of the data presented in Tables 5 and 6 documents that no significant impacts on either *A. bahia* or *L. plumulosus* survival are anticipated following exposure to any of the site composite sediment samples.

5.0 REFERENCES

- AECOM. 2017. Sampling and Testing in Support of Dredged Material Suitability Determination: Work Plan Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine [Sampling and Analysis Plan]. Chelmsford, Massachusetts. October 2017.
- US EPA, US ACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. EPA-503/8-91/001. 204 pages.
- US EPA, US ACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the US Testing Manual. EPA-823-B-98-004, February 1998.
- US EPA Region I, Corps of Engineers, New England District. 2004. Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters. September 2004.

Table 1. Sample Collection and Receipt Information. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Station ID		Sample	Motrix	Collect	ion	Rece	ipt
Station ID	ESI Code	Туре	Matrix	Date	Time	Date	Time
A	29746-001	Site	Solid	10/17/17	0851	10/18/17	0950
В	29746-002	Site	Solid	10/17/17	0948	10/18/17	0950
С	29746-003	Site	Solid	10/17/17	1021	10/18/17	0950
D	29746-004	Site	Solid	10/17/17	1046	10/18/17	0950
F	29746-005	Site	Solid	10/17/17	1121	10/18/17	0950
CI-PDS	29746-009	Reference	Solid	10/17/17	1053	10/18/17	0950

Table 2. Summary of Sample Compositing Information. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Composite ID	ESI Codo	Compon	ents	Final	Compos	site
Composite iD	Composite ID ESI Code Station ID		ESI Code	Amount	Date	Time
Composite 1	29747-101	А	29746-001	21 gal	10/23/17	1420
Composite	Composite 1 29747-101		29746-002	21 gal	10/23/17	1420
Composite 2	29747-102	С	29746-003	22 gol	10/23/17	1515
Composite 2	29747-102	D	29746-004	22 gal	10/23/17	1313
Composite 3	29747-103	F	29746-005	21 gal	10/24/17	0840
PDS Reference Site	29747-104	CI-PDS ^a	29746-009	21 gal	10/25/174	1715

Note:

^a This sample was homogenized only.

Table 3. Summary of Reference Toxicant Data. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Date	Organism Lot	Endpoint	Value	Historic Mean/ Central Tendency	Acceptable Range	Reference Toxicant
American	nysis bahia	_				_
11/02/17	03AbARO110217	96Hr LC-50	53.7	53.7 ^a	а	NH4Cl (mg/L)
11/16/17	03AbARO111517	96Hr LC-50	54.6	54.2 ^b	52.9 - 55.4 ^b	NH4CI (mg/L)
Leptoche	irus plumulosus					
05/05/17	18LpARO050517	96Hr LC-50	176.0	176.0 ^a	а	NH4Cl (mg/L)
11/28/17	99LpARO112817	96Hr LC-50	180.0	202.6 ^b	110.1 - 295.1 ^b	NH4CI (mg/L)

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays unless otherwise noted.

Table 4. Summary of Laboratory Control Performance. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Endpoint	/ Measurement	Protocol Criteria	Unit	A. bahia	L. plumulosus
Mean Su	n in col	Laboratory Control ≥90%	%	92%	98%
Wiedri Sui	IVIVal	Laboratory Control 290 %	Protocol Met	Yes	Yes
•	Minimum	A. bahia - 28ppt	ppt	28.1	18.8
Salinity	Minimum	L. plumulosus - 18ppt	Protocol Met	Yes	Yes
Sallilly	Maximum	A. bahia - 32ppt	ppt	31.1	19.9
	IVIAXIIIIUIII	L. plumulosus - 22ppt	Protocol Met	Yes	Yes
		Mean: 20±1°C	Daily / Hourly °C	19.7 / 19.3	19.8 / 19.3
Tomporeture		Minimum: 17°C	Daily / Hourly °C	16.8 ^a / 16.6 ^a	17.0 / 16.6 ^a
Temperat	lure	Maximum: 23°C	Daily / Hourly °C	21.1 / 21.9	21.1 / 21.9
			Protocol Met	Yes / Yes	Yes / Yes

Notes:

^a Values are based on the results of 1 assay. No historic range is available.

^b Values are based on the results of 2 assays.

^a The value meets the protocol requirement when rounded to the whole number precision reflected in the method, therefore is not considered a protocol deviation.

Table 5. Summary of Survival Data: *A. bahia.* 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Day 10 Proportion Survived Summary - Mean Mysid Survival

Sample ID	ESI Code	Reps	Mean	Minimum	Maximum	CV
Laboratory Control	29749-000	5	92%	80%	100%	10%
PDS Reference Site	29747-104	5	90%	80%	100%	9%
Composite 1	29747-101	5	93%	80%	100%	9%
Composite 2	29747-102	5	97%	85%	100%	7%
Composite 3	29747-103	5	93%	85%	95%	5%

Day 10 Survival Statistical Analysis

Sample ID	ESI Code	Mean	Significantly "<" as Compared to: PDS (29747-104)	as Com	Survival >20% pared to: 747-104)
PDS Reference Site	29747-104	90%	-	-	-
Composite 1	29747-101	93%	No	No	-3%
Composite 2	29747-102	97%	No	No	-7%
Composite 3	29747-103	93%	No	No	-3%

Table 6. Summary of Survival Data: *L. plumulosus*. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Day 10 Proportion Survived Summary - Mean Amphipod Survival

Sample ID	ESI Code	Reps	Mean	Minimum	Maximum	CV
Laboratory Control	29748-000	5	98%	95%	100%	3%
PDS Reference Site	29747-104	5	92%	80%	100%	10%
Composite 1	29747-101	5	91%	80%	100%	9%
Composite 2	29747-102	5	93%	85%	95%	5%
Composite 3	29747-103	5	93%	80%	100%	9%
Composite 3	29747-103	5	93%	80%	100%	9%

Day 10 Survival Statistical Analysis

Comple ID	FOI Code	Maga	Significantly "<" as Compared to:	as Com	Survival >20% pared to:
Sample ID	ESI Code	Mean	PDS (29747-104)	PD5 (29	747-104)
PDS Reference Site	29747-104	92%	-	-	-
Composite 1	29747-101	91%	No	No	0%
Composite 2	29747-102	93%	No	No	-1%
Composite 3	29747-103	93%	No	No	-1%

Table 7. Summary of Overlying Water Quality Data: *A. bahia*. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Sample ID	Day	Temperature (°C)	pH (SU)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
Laboratory Control	00	21.0	7.94	0.14	0.0050
PDS Reference Site	00	21.0	7.94	<0.1	<0.0018
Composite 1	00	21.0	7.95	<0.1	<0.0018
Composite 2	00	20.9	7.95	0.54	0.0196
Composite 3	00	20.9	7.92	0.45	0.0153
Laboratory Control	03	21.0	7.88	0.28	0.0088
PDS Reference Site	03	21.1	7.84	0.21	0.0061
Composite 1	03	21.1	7.86	0.19	0.0057
Composite 2	03	21.0	7.92	0.65	0.0222
Composite 3	03	21.0	7.87	0.53	0.0162
Laboratory Control	10	19.3	7.68	<0.1	< 0.0009
PDS Reference Site	10	19.3	7.76	<0.1	< 0.0011
Composite 1	10	19.3	7.74	<0.1	< 0.0010
Composite 2	10	19.2	7.77	<0.1	< 0.0011
Composite 3	10	19.1	7.73	0.45	0.0088

Note: Data in summary obtained from the "A" replicate of each treatment.

Table 8. Summary of Overlying Water Quality Data: *L. plumulosus*. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Sample ID	Day	Temperature (°C)	pH (SU)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
Laboratory Control	00	20.9	7.86	<0.1	<0.0015
PDS Reference Site	00	20.9	7.86	<0.1	< 0.0015
Composite 1	00	20.9	7.82	0.64	0.0174
Composite 2	00	20.9	7.81	<0.1	< 0.0013
Composite 3	00	20.9	7.81	0.9	0.0239
Laboratory Control	03	21.1	7.86	0.19	0.0057
PDS Reference Site	03	21.1	7.83	<0.1	< 0.0014
Composite 1	03	21.1	7.81	<0.1	< 0.0013
Composite 2	03	21.1	7.82	0.72	0.0198
Composite 3	03	21.0	7.81	1	0.0268
Laboratory Control	10	19.4	7.55	<0.1	< 0.0007
PDS Reference Site	10	19.3	7.61	<0.1	<0.0008
Composite 1	10	19.4	7.66	<0.1	< 0.0009
Composite 2	10	19.4	7.68	<0.1	< 0.0009
Composite 3	10	19.3	7.72	0.11	0.0021

Note: Data in summary are obtained from the "Surrogate" replicate of each treatment.

Table 9. Summary of Pore Water Quality Data: *L. plumulosus*. 10 Day Solid Phase Evaluation. Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Sample ID	Day	Temperature (°C)	pH (SU)	Total Ammonia (mg/L)	Unionized Ammonia (mg/L)
Pre-Assay Pore Water Monitoring	<u> </u>				
Laboratory Control	-03	23	7.11	3.3	0.0208
CLDS Reference Site	-03	23	7.61	0.61	0.0120
Composite 1	-03	23	7.68	0.37	0.0085
Composite 2	-03	23	7.43	5.3	0.0692
Composite 3	-03	23	7.48	3.8	0.0556
In-Life Assay Pore Water Monito	ring				
Laboratory Control	00	23	6.99	3.2	0.0153
CLDS Reference Site	00	23	7.28	1.3	0.0121
Composite 1	00	23	7.49	0.41	0.0061
Composite 2	00	23	7.27	3.2	0.0290
Composite 3	00	23	7.28	4.7	0.0436
Laboratory Control	03	23	7.12	2.6	0.0167
CLDS Reference Site	03	23	7.32	0.72	0.0073
Composite 1	03	23	7.53	0.28	0.0046
Composite 2	03	23	7.23	2.2	0.0182
Composite 3	03	23	7.32	1.9	0.0193
Laboratory Control	10	22	7.01	1.9	0.0089
CLDS Reference Site	10	22	7.27	0.38	0.0032
Composite 1	10	22	7.48	<0.1	< 0.0007
Composite 2	10	22	6.98	0.53	0.0023
Composite 3	10	22	7.13	0.3	0.0018

Note: Data in summary are obtained from the "Surrogate" replicate of each treatment.

APPENDIX A:

RAW DATA & STATISTICAL SUPPORT

Contents	Number of Pages
Study Number Record	1
Sample Collection Details	1
Chain of Custody Records and Sample Receipt Logs	2
Composite Preparation Forms	4
Test Sediment Preparation Notes	1
A. bahia 10 Day Solid Phase Evaluation	
Pre-Assay Monitoring Record	1
Organism History Record; Organism Addition Record	1
Daily Record	1
Day 10 Recovery Bench Sheets	1
Survival Statistical Analysis Data Package	6
Sample Reading Order; Daily Water Quality Summary	3
Ammonia Calculations	1
L. plumulosus 10 Day Solid Phase Evaluation	
Pre-Assay Monitoring Record	1
Organism History Record; Organism Addition Record	1
Daily Record	1
Day 10 Recovery Bench Sheets	1
Survival Statistical Analysis Data Package	6
Sample Reading Order; Daily Water Quality Summary	3
Ammonia Calculations	2
Pore Water pH Record	1
Temperature Profile and Data	8
RIM QC Data Report Tables	2
Assay Review Checklists	1
Total Appendix Pages	50

STUDY NUMBER RECORD

Issue and complete this form for studies that will require multiple tasks and directly associated support studies. Issue consecutive study numbers at the start of the project to cover all potential elements of the project.

CONTACT(S): Kris Van Naerssen, Christine Archer, Maura Surprenant

CLIENT: AECOM

CONTACT(S). INIS VAIT	Macrosen, Offisitie Archer, Maur	a ourprenan	
PROJECT: Chebeagu	ue Island FNP		
CONTRACT / TO #: W912WJ	-17-D-0003 / #3 Project Number 6055	51931	
	Species / Analysis Parameters:		STUDY:
Sample Receipt:			29746
Grain Size Analysis:			-
Composite Prep:			29747
Bulk Sediment Analysis a:			-
10 Day Access	Leptocheirus plumulosus		29748
10 Day Assay:	Americamysis bahia		29749
Elutriate Preparation:	Туре:		29750
	Pentachlorophenol	Yes/ No	
	Trace Metals	Yes/ No	00754
Elutriate Analysis:	PCB Congeners	Yes/ No	29751
		\sim	

Pesticides

Menidia beryllina

Americamysis bahia

Arbacia punctulata
Macoma nasuta

Nereis virens
Trace Metals

PAH Compounds

PCB Congeners

Pesticides

Notes:

SPP Assays:

Bioaccumulation Study:

Tissue Analysis a:

(Yes)/ No

(Yes)/ No

(Yes)/ No

(Yes)/ No

(Yes)/ No

29752

29753

29754

29755

^a All bulk sediment and tissue analyses were completed by Alpha Analytical, Mansfield, Massachusetts.

Table A-1 Chebeague Island (NAE Sampling Locations) – Coordinates / Estimated Penetration / Sample Quantities

Sample ID	Composite ID	Latitude	Longitude	Survey Depth (ft MLLW)	Project Depth + Overdepth (ft MLLW)	l (ft)	Estimated Volume per Core (gallons) *	Minimum Sample Volume per Location (gallons) **	Estimated Number of Cores/Containers Required ***
Α	1	43.753393	-70.109779	-9.3	-11.0	1.7	0.6	11.5	19/4
В	1	43.752688	-70.109211	-6.3	-11.0	4.7	1.7	11.5	7 / 4
С	2	43.751983	-70.108908	-4.0	-11.0	7.0	2.6	11.5	5/4
D	2	43.752111	-70.108587	-7.3	-11.0	3.7	1.4	11.5	9/4
F	3	43.751509	-70.108103	-5.3	-11.0	5.7	2.1	23.0	11 / 7

^{*} Volume estimated assuming 3" inner diameter core liners for dredge area sediment samples.

23 gallons of dredge site water will be collected from a central location in the vicinity of each composite grou. Sample containers for dredge water shall be 5 gallon food grade collapsible carboys.

From AECOM's Sampling and Analysis Plan (October 2017)

^{**} Assumes 23 gallons of sediment per composite for testing and archiving.

^{***} Sample containers for dredge area sediments shall be 3.5 gallon food grade high density polyethylene pails with locking lids.

SAMPLE RECEIPT AND CONDITION DOCUMENTATION

Page 1 of 1

STUDY NO:

29746

SDG No:

Project:

Chebeague Harbor

Delivered via:

Client

Date and Time Received:

10/18/17 0950 LB

Date and Time Logged into Lab:

10/25/17 0925

Received By: Air bill / Way bill:

COC Complete:

Logged into Lab by:

Cooler on ice/packs: Cooler Blank Temp (C) at arrival: See Notes

No N/A

Custody Seals present? Custody Seals intact?

Air bill included in folder if received?

Were all samples properly labeled?

N/A N/A N/A

N/A

Number of COC Pages: COC Serial Number(s):

COC Signed and dated:

Were all samples received?

1 N/A

Yes Sampled Date: Yes Does the info on the COC match the samples?

Were samples received within holding time?

Yes Yes Yes Yes

Field ID complete: Yes Sampled Time: Yes Analysis request: Yes

Client notification/authorization: Not required

Yes Yes Were proper sample containers used? Were samples received intact? (none broken or leaking) Yes Were sample volumes sufficient for requested analysis? Yes N/A

Were VOC vials free of headspace? pH Test strip ID number:

				Bottle	Req'd	Verified
Field ID	Lab ID	Mx	Analysis Requested		Pres'n	Pres'n
Station A	29746-001	s	Hold: Composite	4 x 3 gallon	14C	Yes
Station B	29746-002	S	Hold: Composite	4 x 3 gallon	14C	Yes
Station C	29746-003	S	Hold: Composite	4 x 3 gallon	14C	Yes
Station D	29746-004	S	Hold: Composite	4 x 3 gallon	14C	Yes
Station F	29746-005	S	Hold: Composite	7 x 3 gallon	14C	Yes
CIW-1	29746-006	W	Hold: Elutriate Prep	5 x 5 gallon	(4C	Yes
CIW-2	29746-007	W	Hold: Elutriate Prep	5 x 5 gallon	(4C	Yes
CIW-3	29746-008	W	Hold: Elutriate Prep	5 x 5 gallon	(4C	Yes
CI-PDS	29746-009	S	Subsample: 10 Day Solid Phase Assays, 28 Day Bioaccu	ır 7 x 3 gallon	14C	Yes
CIW-PDS	29746-010	W	Hold: Composite, Subsample for SPP Assays	5 x 5 gallon	(4C	Yes

Notes and qualifications:

Samples recieved from refrigerated van and immediately placed in 4C storage. JTP

One Lafayette Road

P.O. Box 778

Hampton, NH 03842-0778

(603) 926-3345 fax (603) 926-3521

www.envirosystems.com

CETIS Test Data Worksheet

29747-103

29747-103

Report Date: 14 Nov-17 15:49 (p 1 of 1) **Test Code/ID:** 09-5927-6371/29749Ab

Americamysis bahia 10-Day Survival Sediment Test EnviroSystems, Inc. Start Date: 03 Nov-17 Species: Americamysis bahia Sample Code: 29749-000 End Date: Protocol: EPA/600/R-94/025 (1994) 13 Nov-17 Sample Source: Chebeague Island FNP Sample Date: 23 Oct-17 Material: Laboratory Control Sediment Sample Station: Laboratory Control (A.bahia) Rep # Exposed # Survived Sample Pos Notes 29749-000 29749-000 29749-000 29749-000 29749-000 29747-104 29747-104 29747-104 29747-104 29747-104 29747-101 29747-101 29747-101 29747-101 29747-101 29747-102 29747-102 29747-102 29747-102 29747-102 29747-103 29747-103 29747-103

002-158-534-3 CETIS™ v1.9.3.0 Analyst:____ QA:____ Chebeague Island FNP Tier III Sediment Evaluation. 10 Day Solid Phase Evaluation. Data Appendix Page 14 of 50 STUDY: 29749 CLIENT: AECOM

PROJECT: Chebeague Island FNP

ASSAY: Americamysis bahia 10 Day Solid Phase Sediment Assay

TASK: Overlying Water Ammonia Summary

METHOD: SM 4500-NH3 G

Ammonia									
Sample ID	Day	ESI Code	Total	Qual Unionized	QLimit	Units	Sampled	Analyzed	
Laboratory Control	00	29749-100	0.14	0.0050	0.1	mg/L as N	11/03/17 1100	11/06/17 1000	
PDS Reference Site	00	29749-101	ND	0.0018	0.1	mg/L as N	11/03/17 1100	11/06/17 1000	
Composite 1	00	29749-102	ND	0.0018	0.1	mg/L as N	11/03/17 1100	11/06/17 1000	
Composite 2	00	29749-103	0.54	0.0196	0.1	mg/L as N	11/03/17 1100	11/06/17 1000	
Composite 3	00	29749-104	0.45	0.0153	0.1	mg/L as N	11/03/17 1100	11/06/17 1000	
Laboratory Control	03	29749-200	0.28	0.0088	0.1	mg/L as N	11/06/17 1100	11/20/17 1140	
PDS Reference Site	03	29749-201	0.21	0.0061	0.1	mg/L as N	11/06/17 1100	11/20/17 1140	
Composite 1	03	29749-202	0.19	0.0057	0.1	mg/L as N	11/06/17 1100	11/20/17 1140	
Composite 2	03	29749-203	0.65	0.0222	0.1	mg/L as N	11/06/17 1100	11/20/17 1140	
Composite 3	03	29749-204	0.53	0.0162	0.1	mg/L as N	11/06/17 1100	11/20/17 1140	
Laboratory Control	10	29749-300	ND	0.0009	0.1	mg/L as N	11/13/17 1100	11/20/17 1140	
PDS Reference Site	10	29749-301	ND	0.0011	0.1	-	11/13/17 1100	11/20/17 1140	
Composite 1	10	29749-302	ND	0.0010	0.1	mg/L as N	11/13/17 1100	11/20/17 1140	
Composite 2	10	29749-303	ND	0.0011	0.1	mg/L as N	11/13/17 1100	11/20/17 1140	
Composite 3	10	29749-304	0.45	0.0088	0.1	mg/L as N	11/13/17 1100	11/20/17 1140	

CETIS Test Data Worksheet

29747-103

29747-103

29747-103

Report Date: 14 Nov-17 16:09 (p 1 of 1) **Test Code/ID:** 04-0060-5705/29748Lp

Test Code/ID: Leptocheirus 10-d Survival and Reburial Sediment Test EnviroSystems, Inc. Start Date: 03 Nov-17 Species: Leptocheirus plumulosus Sample Code: 29748-000 End Date: 13 Nov-17 **Protocol**: EPA/600/R-94/025 (1994) Sample Source: Chebeague Island FNP Sample Date: 23 Oct-17 Material: Laboratory Control Sediment Sample Station: Laboratory Control (L.plumulosus) Rep # Survived # Reburied Sample Pos # Exposed Notes 29748-000 29748-000 29748-000 29748-000 29748-000 29747-104 29747-104 29747-104 29747-104 29747-104 29747-101 29747-101 29747-101 29747-101 29747-101 29747-102 29747-102 29747-102 29747-102 29747-102 29747-103 29747-103

002-158-534-3 CETIS™ v1.9.3.0 Analyst:_____ QA:_____
Chebeague Island FNP Tier III Sediment Evaluation. 10 Day Solid Phase Evaluation. Data Appendix Page 28 of 50

STUDY: 29748 CLIENT: AECOM

PROJECT: Chebeague Island FNP

ASSAY: Leptocheirus plumulosus 10 Day Solid Phase Sediment Assay

TASK: Overlying Water Ammonia Summary

METHOD: SM 4500-NH3 G

Ammonia									
Sample ID	Day	ESI Code	Total	Qual Unionized ^a	QLimit Units	Sampled	Analyzed		
Laboratory Control	00	29748-100	ND	0.0015	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
PDS Reference Site	00	29748-101	ND	0.0015	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 1	00	29748-102	0.64	0.0174	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 2	00	29748-103	ND	0.0013	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 3	00	29748-104	0.9	0.0239	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Laboratory Control	03	29748-200	0.19	0.0057	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
PDS Reference Site	03	29748-201	ND	0.0014	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 1	03	29748-202	ND	0.0013	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 2	03	29748-203	0.72	0.0198	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 3	03	29748-204	1	0.0268	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Laboratory Control	10	29748-300	ND	0.0007	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
PDS Reference Site	10	29748-301	ND	0.0008	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 1	10	29748-302	ND	0.0009	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 2	10	29748-303	ND	0.0009	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 3	10	29748-304	0.11	0.0021	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		

STUDY: 29748 CLIENT: AECOM

PROJECT: Chebeague Island FNP

ASSAY: Leptocheirus plumulosus 10 Day Solid Phase Sediment Assay

TASK: Pore Water Ammonia Summary

METHOD: SM 4500-NH3 G

Ammonia									
Sample ID	Day	ESI Code	Total Qual	Unionized	QLimit Units	Sampled	Analyzed		
Laboratory Control	-03	29748-400	3.3	0.0208	0.1 mg/L as N	10/31/17 1500	11/01/17 1215		
PDS Reference Site	-03	29748-401	0.61 B	0.0120	0.1 mg/L as N	10/31/17 1500	11/01/17 1215		
Composite 1	-03	29748-402	0.37 B	0.0085	0.1 mg/L as N	10/31/17 1500	11/01/17 1215		
Composite 2	-03	29748-403	5.3	0.0692	0.1 mg/L as N	10/31/17 1500	11/01/17 1215		
Composite 3	-03	29748-404	3.8	0.0556	0.1 mg/L as N	10/31/17 1500	11/01/17 1215		
Laboratory Control	00	29748-106	3.2	0.0153	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
PDS Reference Site	00	29748-107	1.3	0.0121	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 1	00	29748-108	0.41	0.0061	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 2	00	29748-109	3.2	0.0290	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Composite 3	00	29748-110	4.7	0.0436	0.1 mg/L as N	11/03/17 1100	11/06/17 1000		
Laboratory Control	03	29748-206	2.6	0.0167	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
PDS Reference Site	03	29748-207	0.72	0.0073	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 1	03	29748-208	0.28	0.0046	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 2	03	29748-209	2.2	0.0182	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Composite 3	03	29748-210	1.9	0.0193	0.1 mg/L as N	11/06/17 1100	11/20/17 1140		
Laboratory Control	10	29748-306	1.9	0.0089	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
PDS Reference Site	10	29748-307	0.38	0.0032	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 1	10	29748-308	ND	0.0007	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 2	10	29748-309	0.53	0.0023	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		
Composite 3	10	29748-310	0.3	0.0018	0.1 mg/L as N	11/13/17 1100	11/20/17 1140		

Notes:

B = Analyte detected in the corresponding laboratory blank at 0.15 mg/L as N.

Appendix D.3: 28-Day Sediment Toxicity and Bioaccumulation Evaluation

AECOM 250 Apollo Drive Chelmsford MA, 01824 USA aecom.com

January 31, 2018

R. Ben Loyd Department of Army New England District Corps of Engineers 696 Virginia Road Concord, MA 01742

RE: Chebeague Island 28-Day Bioassay and Tissue Analysis Report

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

Dear Mr. Loyd:

AECOM Technical Services, Inc. (AECOM) is pleased to provide the enclosed 28-Day Bioassay and Tissue Analysis report under Delivery Order W912WJ17F0106, Tasks 8 and 9 of the Performance Work Statement (PWS) entitled "Sampling and Testing in Support of Dredged Material Suitability Determination Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine" dated 4 August 2017.

A report is attached with the 28-day bioassay and tissue results for *Nereis virens* and *Macoma nasuta*. Please let us know if you have any questions or would like anything further.

AECOM certifies that this submission has been subjected to AECOM's review and coordination procedures. Please let us know if you have any questions or if you would like to discuss the report.

Best Regards,

Kris van Naerssen Project Manager

AECOM

T: 484.678.1876

E: kris.vannaerssen@aecom.com

cc: Maura Surprenant, AECOM Christine Archer, AECOM

Contract: W912WJ-17-D-0003 Delivery Order: W912WJ17F0106

Sampling and Environmental Testing in Support of Dredged Material Suitability Determination

Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine

January 31, 2018

28-Day Bioassay and Tissue Analysis Report

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Great Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

28 Day Sediment Toxicity and Bioaccumulation Evaluation

Prepared for:

AECOM 250 Apollo Drive Chelmsford, Massachusetts 01824

Prepared by:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

EnviroSystems, Inc. Master Reference 29746 Study Specific Reference 29753 / 29754 November 2017 Revision 1

TABLE OF CONTENTS

LABO	RAT	ORY STANDARDS STATEMENT	3
1.0	INT	RODUCTION	4
2.0	ME	THODS AND MATERIALS	4
	2.1 2.2 2.3 2.4 2.5 2.6	Test Organisms	5 5 5
3.0	RE	SULTS	6
	3.1	Macoma nasuta 3.1.1 Survival 3.1.2 Water Quality Summary 3.1.3 Body Burden Analysis	6
	3.3	Nereis virens 3.2.1 Survival 3.2.2 Water Quality Summary 3.2.3 Body Burden Analysis Protocol Deviations Summary	6 7 7
4.0	REI	FERENCES	7
		LIST OF TABLES	
Table Table Table Table Table Table Table Table Table	2. 3. 4. 5. 6. 7.	Sample Collection and Receipt Information Summary of Sample Compositing Schedule Summary of Reference Toxicant Data Summary of Assay Acceptability and Laboratory Control Performance Macoma nasuta Day 28 Survival Data Nereis virens Day 28 Survival Data 1 Statistical Comparisons of Macoma nasuta Body Burdens vs. PDS Reference Site 1 Statistical Comparisons of Nereis virens Body Burdens vs. PDS Reference Site 1	8 9 0 0
APPE	NDIX	(A: RAW DATA & STATISTICAL SUPPORT	5

LABORATORY STANDARDS STATEMENT

This study was performed by EnviroSystems, Incorporated at its facility in Hampton, New Hampshire. EnviroSystems' laboratory is accredited by the State of New Hampshire under the National Environmental Laboratory Accreditation (NELAC) program. Additionally, ESI is accredited under the Department of Defense (DoD) ELAP program, ISO/IEC 17025:2005, Certificate Number L2340. ESI also has an approved Laboratory Quality Assurance Plan (LQAP) covering all portions of this project. All testing conducted by EnviroSystems as part of this program was compliant with NELAC guidelines and standards. Additionally, this study was conducted in accordance with guidelines presented in the 2004 version of the New England District's Regional Implementation Manual (RIM) for Evaluation of Dredged Material Proposed for Disposal In New England Waters. Any deviations from specific elements of the RIM are detailed in the Protocol Deviation Section of this Report.

For EnviroSystems, Inc.

Kenneth A. Simon Technical Director January 31, 2018

Date

TOXICOLOGICAL EVALUATION OF A PROPOSED DREDGE SEDIMENT:

Chebeague Island Federal Navigation Project
Tier III Sediment Evaluation
Great Chebeague Island, Maine

New England District Corps of Engineers Contract No. W912WJ-17-D-0003 TO#3 Project Number 60551931

28 Day Sediment Toxicity and Bioaccumulation Evaluation

1.0 INTRODUCTION

As part of a comprehensive plan to reduce adverse environmental impacts of ocean dumping, Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972, specifies that all sediments to be discharged into ocean waters must be evaluated to define their potential impact on existing benthic communities. The United States Environmental Protection Agency (US EPA) has determined that the most effective means to make such an assessment is through the use of bioassay tests that provide a relatively direct estimate of potential impact.

This project was designed to evaluate the potential toxicity of sediments from the area of dredging proposed for the Chebeague Island Federal Navigation Project (FNP) located in Great Chebeague Island, Maine. Testing involved conduct of 28-day bioaccumulation evaluations using *Nereis virens* (polychaete worm) and *Macoma nasuta* (bivalve clam). Testing followed procedures established by the US EPA, US Army Corps of Engineers and the New England District Army Corps of Engineers (CENAE) for testing of dredged material. Procedures are presented in *Evaluation of Dredged Material Proposed for Ocean Disposal* (US EPA, US ACE 1991), *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual* (US EPA, US ACE 1998), and the *Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters* (US EPA, CENAE, 2004), (RIM document).

2.0 METHODS AND MATERIALS

2.1 Sample Collection, Preservation and Storage

Sediment cores for toxicological analysis were collected by the US ACE New England District (CENAE) using vibracoring equipment from locations identified in the dredge footprint specified in the project Work Plan (AECOM, 2017). Samples were received from AECOM, Chelmsford, Massachusetts under chain of custody in 3 gallon polyethylene buckets. Sediment samples were composited based on the compositing scheme outlined in the Work Plan. Reference sediment samples were collected by the AECOM field team (AECOM and Normandeau Associates, Bedford, New Hampshire) from the Portland Disposal Site (PDS). Upon arrival at the laboratory, all samples received an internal sample control number and were logged into the project sample control system. Prior to testing, samples were placed in a secure refrigerator and stored at a temperature of $4\pm2^{\circ}$ C until test initiation. Sample identification, collection and receipt information is summarized in Table 1. Sample compositing information is provided in Table 2.

Sediment for the laboratory control treatment was collected from the Hampton Estuary, Hampton, New Hampshire. The area is not known to receive any direct industrial inputs and has been used as a laboratory reference sediment in the testing of marine sediments for more than 25 years. Overlying seawater was obtained from the Hampton Estuary. Water from the estuary has been used for the culture and maintenance of test organisms at ESI since 1978. Seawater is obtained through a filter system located on the bottom of the estuary at a point approximately 1 mile from the open ocean.

2.2 Test Organisms

M. nasuta were obtained from Aquatic Research Organisms (ARO), Hampton, New Hampshire. Organisms were field collected along the Washington coast and shipped to ARO via overnight delivery. At ESI, the clams were placed in clean holding sediment with flowing seawater and monitored for at least 24 hours prior to use. Damaged bivalves and those that would not close when prodded or that did not burrow into

Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. US ACE New England District. ESI Studies 29753/29754. November 2017 Revision 1. Page 4 of 15

sediment were not used for testing. Clams used for the assay were approximately 28-45 mm total length.

Adult *N. virens* were also obtained from ARO. Worms were collected in the field from the Damariscotta River in Boothbay Harbor, Maine and delivered to ARO. If not used the same day, worms were refridgerated overnight in seaweed. Damaged and inactive worms were not used in the assay.

2.3 Bioaccumulation Evaluation

The assay was started by placing a 5-7 cm layer of sediment (control, reference or site sediment) into 10 gallon aquaria designed for flow-through testing. Overlying water was then added to each aquarium. The volume of the overlying water in these chambers was approximately 6 gallons. Water flow was adjusted to provide approximately 6 volume additions of water/day to each aquarium. Flow into each aquarium was set so that incoming water mixed throughout the tank and did not stratify as a surface layer.

M. nasuta and N. virens were indiscriminately selected from the pool of organisms and randomly added to the aquaria. A total of 20 worms and 20 clams were added to each of 5 replicates; species were tested in separate test chambers. Temperature was maintained at 12-16 °C with no readings exceeding ± 3 °C. Salinity was maintained at $30\pm 2\%$. The photoperiod was set at 16:8 hours light:dark. Dissolved oxygen, pH, temperature, specific conductance and salinity were measured daily in all tanks. Dissolved oxygen levels were maintained at a minimum level of $\geq 60\%$ saturation by providing aeration to all tanks from the start of the assay. Organisms were not fed during the exposure period.

After 28 days exposure, *M. nasuta* and *N. virens* were recovered from the test sediments and counted. Survival counts were used for statistical analysis. All living organisms were transferred to clean test vessels and maintained in clean seawater for 24 hours to allow for removal of sediment from the animals' digestive tract. After the depuration period, organisms were transferred to plastic bags and frozen for subsequent delivery to Alpha Analytical, Mansfield, Massachusetts for tissue analysis.

2.4 Tissue Analysis

Methods used by Alpha Analytical in the analyses of tissues generated from the bioaccumulation tests followed protocols recommended in Table 8 of the New England District RIM document with appropriate updates related to current methods. Trace metals were evaluated using EPA Method 6020A, Inductively Coupled Plasma - Mass Spectrometry (ICP-MS), and mercury was evaluated using EPA Method 7474. PCB congeners and PAH compounds were evaluated by SW 846 8270D-SIM/EPA 680(M). Reporting Limits and Method Detection Limits met RIM requirements with the exception of PCB congeners. The complete analytical chemistry and quality assurance data package was provided under separate cover and in appropriate Electronic Data Deliverable (EDD) files by Alpha Analytical.

2.5 Data Analysis

Tissue chemistry data were provided by Alpha Analytical. The statistical analyses of survival and body burden data were completed at ESI using CETISTM ver. 1.9.3.0 (Comprehensive Environmental Toxicity Information System) software to determine significant differences between the reference sediment and each site composite sample. Data were evaluated to determine homogeneity of sample variances and normality of distribution using appropriate statistics. Data sets were subsequently evaluated using the appropriate parametric or non-parametric Analysis of Variance (ANOVA) statistic. Statistical difference was evaluated at α = 0.05. Per RIM guidelines, the MDL is used in instances when a compound of concern (COC) is not detected for purposes of calculating a mean concentration. MDLs used in statistical computations are adjusted for differences in tissue mass and final extract volumes used in the analysis for each sample.

Following CENAE protocol, the statistical analyses were completed for all COCs identified in the Work Plan and are included in Appendix A, however the findings of significance presented in the report focus only on those COCs detected in the reference sample.

2.6 Reference Toxicant Evaluation

As part of the laboratory quality control program, standard reference toxicant assays are conducted on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. Summaries of acute exposure reference toxicant assays

Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. US ACE New England District. ESI Studies 29753/29754. November 2017 Revision 1. Page 5 of 15

conducted in support of this study are provided in Table 3.

3.0 RESULTS

Table 4 provides a summary of test acceptability criteria and laboratory control performance. Tables 5 and 6 provide a summary of *M. nasuta* and *N. virens* survival data and statistical analyses. Tables 7 and 8 provide summaries of body burden data and findings of significance for *M. nasuta* and *N. virens*, respectively. Laboratory bench sheets, detailed summaries of survival, body burden data and associated support data are included in Appendix A.

3.1 Macoma nasuta

3.1.1 Survival

Mean *M. nasuta* survival in the laboratory control sediment was 95% with a coefficient of variation (CV) of 9%. Mean survival in the PDS reference sediment was 95% with a CV of 0%. Surviving organisms from the control and reference site provided sufficient tissue for preparation and analysis of body burdens. The endpoints met and/or exceeded requirements specified in the current version of the RIM.

After 28 days exposure, mean survival of the bivalves in the site composite sediments ranged from 96 to 100%. The statistical evaluation of the data showed no significant reduction in survival for bivalves maintained in the site composites when compared to the PDS reference sediment.

3.1.2 Water Quality Summary

Daily water quality data collected during the assay documented a mean temperature of 12.7 °C with a range of 12.4 to 13.4 °C. Confirmation temperature data were not collected on an hourly basis. Additional daily water quality data documented salinity levels during the assay varied from 19.1 to 31.4‰ with a mean value of 29.8‰. Dissolved oxygen levels ranged from 80% to 110% with a mean level of 101% while pH ranged from 7.58 to 7.90 SU. Review of temperature and salinity data documented that all temperature values fell within limits specified by the RIM and ESI's protocol, however salinity fell outside of the range. See Section 3.3 for a discussion of the salinity deviation and the missing hourly temperature data.

3.1.3 Body Burden Analysis

Based on CENAE criteria, there were significant increases in cadmium and zinc body burdens for clams reared in all three site composites as compared to PDS reference tissue. In addition, mercury body burdens for clams reared in site composite 1 sediment were also significantly higher than clam tissue from the PDS reference sediment.

Review of body burden data showed that there were no additional COCs detected in site composite tissues that were not also detected in PDS reference tissue.

3.2 Nereis virens

3.2.1 Survival

Mean *N. virens* survival in the laboratory control sediment was 95% with a coefficient of variation (CV) of 5%. Mean survival in the PDS reference sediment was 98% with a CV of 5%. Surviving organisms from the control and reference site provided sufficient tissue for preparation and analysis of body burdens. The endpoints met and/or exceeded requirements specified in the current version of the RIM.

After 28 days exposure, mean survival of the polychaetes in the site composite sediments ranged from 94 to 99%. The statistical evaluation of the data showed no significant reduction in survival for polychaetes maintained in the site composites when compared to the PDS reference sediment.

3.2.2 Water Quality Summary

Daily water quality data collected during the assay documented a mean temperature of 12.6 °C with a range of 12.1 to 13.7 °C. Confirmation temperature data were not collected on an hourly basis. Additional daily water quality data documented salinity levels during the assay varied from 28.0 to 31.3% with a mean

Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. US ACE New England District. ESI Studies 29753/29754. November 2017 Revision 1. Page 6 of 15

value of 29.9%. Dissolved oxygen levels ranged from 74% to 107% with a mean level of 97% while pH ranged from 7.46 to 7.89 SU. Review of temperature and salinity data documented that all values fell within limits specified by the RIM and ESI's protocol.

3.2.3 Body Burden Analysis

Based on CENAE criteria, there were no significant increases in polychaete body burdens for any COCs as compared to PDS reference tissue. Review of body burden data showed that only one COC (acenaphthene) was also detected in site composite tissue, but no further analysis was required because the COC was not detected in reference tissue

3.3 Protocol Deviations

Review of the assay data revealed two deviations from the method and/or ESI's protocol. Due to an oversight, no hourly temperature logger was activated for these assays, therefore no hourly temperature measurements were collected. There were no temperature abnormalities observed in the daily water quality measurements that were collected. This represents a deviation from ESI's SOP and a data gap, however it is the opinion of ESI's study director that this deviation did not adversely affect the outcome of the assay.

In addition, protocol requires that the assays be conducted at 30±2‰ for the *M. nasuta* and *N. virens* assays, and as a practice salt or water are added to bring low or high salinity levels back within range (as needed). Some salinity values recorded on day 16 of the *M. nasuta* assay in replicates from the laboratory control and PDS reference (and not in any aquaria containing site composite samples) were lower than the protocol range (19.1‰), however there were no notations on the daily observation log about the low salinity measurement or that any corrective action was taken. It was surmised later by a laboratory technician that the low readings may have been caused by some sediment that could have been lodged in the tip of the probe, and that subsequent readings fell within the acceptable range after the sediment was flushed out. While the reason for these low readings remains unclear, it is the opinion of ESI's technical director that this deviation had no adverse impact on the outcome of the assay.

3.4 Summary

This program utilized protocols developed by the US EPA and the CENAE to assess the potential impact of the proposed dredge material collected from Chebeague Island on the marine environment. Results of the 28-day toxicity evaluation indicate that long term exposure to all 3 Composites had no negative impacts on *M. nasuta* (clam) or *N. virens* (polychaete worm) survival.

Results of body burden data generated from recovered *M. nasuta* tissue showed significant uptake of two COCs (cadmium and zinc) from all 3 site composites, and significant uptake of mercury from Composite 1. There was no significant uptake of any COCs in polychaete tissue following long-term exposure to any of the site composite samples as compared to PDS reference worm tissue.

4.0 REFERENCES

- AECOM. 2017. Sampling and Testing in Support of Dredged Material Suitability Determination: Work Plan Chebeague Island Navigation Improvement Project, Great Chebeague Island, Maine [Work Plan]. Chelmsford, Massachusetts. October 2017.
- US EPA, US ACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual. EPA-503/8-91/001. 204 pages.
- US EPA, US ACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the US Testing Manual. EPA-823-B-98-004, February 1998.
- US EPA Region I, Corps of Engineers, New England District. 2004. Regional Implementation Manual for Evaluation of Dredged Material Proposed for Disposal in New England Waters. September 2004.

Table 1. Sample Collection and Receipt Information. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

				Collection		Receipt	
Station ID	ESI Code	Sample Type	Matrix	Date	Time	Date	Time
A	29746-001	Site	Solid	10/17/17	0851	10/18/17	0950
В	29746-002	Site	Solid	10/17/17	0948	10/18/17	0950
С	29746-003	Site	Solid	10/17/17	1021	10/18/17	0950
D	29746-004	Site	Solid	10/17/17	1046	10/18/17	0950
F	29746-005	Site	Solid	10/17/17	1121	10/18/17	0950
CI-PDS	29746-009	Reference	Solid	10/17/17	1053	10/18/17	0950

Table 2. Summary of Sample Compositing Schedule. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Composito ID	EOL Ocada	Compon	ents	Final	Composite	
Composite ID	ESI Code	Station ID	ESI Code	Amount	Date	Time
Composite 1	20747 101	А	29746-001	21 and	10/22/17	1420
	29747-101	В	29746-002	21 gal	10/23/17	
0	29747-102	С	29746-003	22 and	10/23/17	1515
Composite 2		D	29746-004	22 gal		
Composite 3	29747-103	F	29746-005	21 gal	10/24/17	0840
PDS Reference Site	29747-104	CI-PDS ^a	29746-009	21 gal	10/25/17	1715

Note:

Table 3. Summary of Reference Toxicant Data. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Endpoint		Value	Historic Mean	Acceptable Range	Reference Toxicant
					_
Survival	LC-50	6.8	9.0	1.3 - 16.8	Copper (mg/L)
Survival	LC-50	4.2	3.6	1.5 - 5.8	Copper (mg/L)
	Survival	Survival LC-50	Survival LC-50 6.8	Endpoint Value Mean Survival LC-50 6.8 9.0	Endpoint Value Mean Range Survival LC-50 6.8 9.0 1.3 - 16.8

Note: Means and Acceptable Ranges based on the past 20 reference toxicant assays. Acceptable range is defined as ± 2 standard deviations of historic mean.

^a This sample was homogenized only.

Table 4. Summary of Assay Acceptability and Laboratory Control Performance. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Endpoint / M	easurement	Protocol Criteria	Unit	M. nasuta	N. virens
Mean Survival		Johannton, Control . 000/	%	95%	95%
wiean Surviv	aı	laboratory Control ≥ 90%	Protocol Met	Yes	Yes
Tissue Mass	1	Sufficient for analysis	Protocol Met	Yes	Yes
0-11-11	Minimum:	28‰	ppt	19.1	28.0
	wiii iii iiiii.		Protocol Met	No ^a	Yes
Salinity	Maximum:	32‰	ppt	31.4	31.3
	Maximum.		Protocol Met	Yes	Yes
		Mean: 12-16°C	Daily / Hourly	12.7 / ^a	12.6 / ^a
Temperature		Minimum: 9°C	Daily / Hourly	12.4 / ^a	12.1 / ^a
		Maximum: 15°C	Daily / Hourly	13.4 / ^a	13.7 / ^a
			Protocol Met	Yes / a	Yes / a

Notes:

^a See Section 3.3 for a discussion of the protocol deviation.

Table 5. *Macoma nasuta* Day 28 Survival Data. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Day 28 Proportion Survived Summary - Mean Macoma nasuta Survival

Sample ID	ESI Code	Reps	Mean	Minimum	Maximum	CV
Laboratory Control	29753-000	5	95%	80%	100%	9%
PDS Reference	29747-104	5	95%	95%	95%	0%
Composite 1	29747-101	5	100%	100%	100%	0%
Composite 2	29747-102	5	96%	90%	100%	4%
Composite 3	29747-103	5	97%	95%	100%	3%
Day 28 Survival Statistic	al Analysis ESI Code	Mean	Differen Comp	y Significant ce, "<" as ared to: eference	Difference in Compar PDS Ref >10% Difference)	ed to: erence
PDS Reference	29747-104	95%		_	-	
Composite 1	29747-101	100%	1	No	No	-5%
Composite 2	29747-102	96%	1	No	No	-1%
Composite 3	29747-103	97%	1	No	No	-2%

Table 6. *Nereis virens* Day 28 Survival Data. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Day 28 Proportion Survived Summary - Mean Nereis virens Survival

Sample ID	ESI Code	Reps	Mean	Minimum	Maximum	CV	
Laboratory Control	29754-000	5	95%	90%	100%	5%	
PDS Reference	29747-104	5	98%	90%	100%	5%	
Composite 1	29747-101	5	99%	95%	100%	2%	
Composite 2	29747-102	5	96%	96% 90%		6%	
Composite 3	29747-103	5	94%	85%	100%	7%	
Day 28 Survival Statistical Analysis Sample ID ESI Code		Mean	Differen Comp	Statistically Significant Difference, "<" as Compared to: PDS Reference		Difference in Survival as Compared to: PDS Reference >10% (% Difference)	
PDS Reference	29747-104	98%		_	-		
Composite 1	29747-101	99%	No		No	-1%	
Composite 2	29747-102	96%	No		No	2%	
Composite 3	29747-103	94%	١	No	No	4%	

Table 7. Statistical Comparisons of *Macoma nasuta* Body Burdens vs. PDS Reference Site. Sediment Bioaccumulation Evaluation. Great Chebeague Island FNP. Chebeague Island, Maine. November 2017.

Compound Units		PDS		Comp 1		Comp 2		Comp 3	
Compound Office		Mean	Qual	Mean	Qual	Mean	Qual	Mean	Qual
Trace Metals		IVICALI	Quai	IVICALI	Quai	ivicari	Quai	IVICALI	Quai
Arsenic, total	mg/kg	2.2		2.2	NS	1.8	NS	2.0	NS
Cadmium, total	mg/kg	0.036	h	0.046		0.047		0.044	
Chromium, total	mg/kg	0.38		0.37	bNS	0.35	bNS	0.32	bNS
Copper, total	mg/kg	1.7		2.0	NS	1.5	NS	1.7	NS
Lead, total	mg/kg	0.36		0.23	NS	0.26	NS	0.32	NS
Mercury, total	mg/kg	0.011	h	0.013			bNS	0.011	
Nickel, total	mg/kg	0.44	~	0.44	NS	0.41	NS	0.40	NS
Zinc, total	mg/kg	9.64		15.8	S	14.3	S	15.3	S
Zirio, total	mg/ng	0.01		10.0	J	1 1.0	Ü	10.0	Ü
PAH Compounds									
Acenaphthene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Acenaphthylene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Anthracene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Benzo(a)anthracene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Benzo(a)pyrene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Benzo(b)fluoranthene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Benzo(k)fluoranthene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Benzo(g,h,i)perylene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Chrysene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Dibenz(a,h)anthracene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Fluoranthene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Fluorene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Indeno(1,2,3-c,d)pyrene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Naphthalene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Phenanthrene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Pyrene	μg/kg	9.1	а	8.9	ac	9.0	ac	9.1	ac
Total PAHs	μg/kg	145		143		144		146	
PCB Congeners									
PCB 008	µg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 018	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 028	μg/kg		а	0.89	ac	0.90	ac	0.91	ac
PCB 044	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 052	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 066	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 101	μg/kg		а	0.89	ac	0.90	ac	0.91	ac
PCB 105	μg/kg		а	0.89	ac	0.90	ac	0.91	ac
PCB 118	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 128	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac
PCB 138	μg/kg		а	0.89	ac	0.90	ac	0.91	ac
PCB 153	μg/kg	0.91	а	0.89	ac	0.90	ac	0.91	ac

Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. US ACE New England District. ESI Studies 29753/29754. November 2017 Revision 1. Page 11 of 15

	Compound Units	PDS	Comp 1	Comp 2	Comp 3	
		Mean Qual	Mean Qual	Mean Qual	Mean Qual	
PCB 170	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
PCB 180	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
PCB 187	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
PCB 195	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
PCB 206	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
PCB 209	μg/kg	0.91 a	0.89 ac	0.90 ac	0.91 ac	
Total PCBs	μg/kg	32.6	32.2	32.5	32.7	

Notes:

- a = Analyte not detected (below MDL) in at least one replicate; mean value was calculated using the project specific MDL for non-detected values.
- b = Analyte estimated (detected below RL but above MDL) in at least one replicate; mean value calculated using estimated value.
- c = Analyte was detected in the treatment tissue sample replicates at an equal or higher mean concentration than in the associated reference site tissue, however statistical analysis is not required as the analyte was not detected in any of the reference site replicates.
- NS = Not Significant mean tissue body burden was not statistically different from the associated reference site mean body burden. Statistical significance accepted at α =0.05.
- S = Significant mean tissue body burden was statistically different, greater than the associated reference site mean body burden. Statistical significance accepted at α =0.05

Table 8. Statistical Comparisons of *Nereis virens* Body Burdens vs. PDS Reference Site. Sediment Bioaccumulation Evaluation. Chebeague Island FNP. Great Chebeague Island, Maine. November 2017.

Compound Units		l р	DS	Co	mp 1	Comp 2		Comp 3	
- Compound	•	Mean	Qual	Mean	Qual	Mean	-	Mean	Qual
Trace Metals							-,		
Arsenic, total	mg/kg	2.0		1.6	NS	1.6	NS	1.6	NS
Cadmium, total	mg/kg	0.055		0.043	bNS	0.037	bNS	0.042	bNS
Chromium, total	mg/kg	0.053	b	0.069	bNS	0.089	bNS	0.047	bNS
Copper, total	mg/kg	1.2		0.92	NS	1.1	NS	1.1	NS
Lead, total	mg/kg	0.35		0.26	NS	0.21	NS	0.21	NS
Mercury, total	mg/kg	0.0080	b	0.0032		0.0036		0.0038	
Nickel, total	mg/kg	0.18		0.089	bNS	0.093	bNS	0.074	
Zinc, total	mg/kg	14.3		11.6	NS	16.7	NS	14.2	NS
,	5 5								
PAH Compounds									
Acenaphthene	μg/kg	9.0	а	9.1	ac	8.9	abc	9.2	ac
Acenaphthylene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Anthracene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Benzo(a)anthracene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Benzo(a)pyrene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Benzo(b)fluoranthene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Benzo(k)fluoranthene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Benzo(g,h,i)perylene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Chrysene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Dibenz(a,h)anthracene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Fluoranthene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Fluorene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Indeno(1,2,3-c,d)pyrene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Naphthalene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Phenanthrene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Pyrene	μg/kg	9.0	а	9.1	ac	8.9	ac	9.2	ac
Total PAHs	μg/kg	144.2		145.6		141.9		146.8	
PCB Congeners									
PCB 008	μg/kg	1.2	а	1.1	aNS	0.89	aNS	0.92	aNS
PCB 018	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 028	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 044	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 052	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 066	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 101	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 105	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 118	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 128	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 138	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac
PCB 153	μg/kg	0.90	а	0.91	ac	0.89	ac	0.92	ac

Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. US ACE New England District. ESI Studies 29753/29754. November 2017 Revision 1. Page 13 of 15

	Compound Units	PDS	Comp 1	Comp 2	Comp 3	
		Mean Qual	Mean Qual	Mean Qual	Mean Qual	
PCB 170	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
PCB 180	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
PCB 187	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
PCB 195	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
PCB 206	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
PCB 209	μg/kg	0.90 a	0.91 ac	0.89 ac	0.92 ac	
Total PCBs	μg/kg	33.0	33.2	31.9	33.0	

Notes:

- a = Analyte not detected (below MDL) in at least one replicate; mean value was calculated using the project specific MDL for non-detected values.
- b = Analyte estimated (detected below RL but above MDL) in at least one replicate; mean value calculated using estimated value.
- c = Analyte was detected in the treatment tissue sample replicates at an equal or higher mean concentration than in the associated reference site tissue, however statistical analysis is not required as the analyte was not detected in any of the reference site replicates.

NS = Not Significant - mean tissue body burden was not statistically different from the associated reference site mean body burden. Statistical significance accepted at α =0.05.

APPENDIX A:

RAW DATA & STATISTICAL SUPPORT

CONTENTS	Number of Pages
Study Number Record	1
Sample Collection Details	1
Chain of Custody Records and Sample Receipt Logs	2
Laboratory Composite Preparation Documentation	4
Test Sediment Preparation Notes	1
Management to 00 Peru Fredhadian	
Macoma nasuta 28-Day Evaluation	4
Organism Culture Sheet	1
Daily Observation Bench Records	4
Daily Water Quality Measurements	16
Day 28 Recovery Bench Sheets	1
Survival Statistical Analysis	7
Nereis virens 28-Day Evaluation	
Organism Culture Sheet	1
Daily Observation Bench Records	4
Daily Water Quality Measurements	16
Day 28 Recovery Bench Sheets	1
Survival Statistical Analysis	6
Tissue Chemistry Chains of Custody Padu Burden Freduction Application Deports	5
Body Burden Evaluation - Analytical Reports	22
M. nasuta Body Burden Data and Statistical Analysis Reports - Trace Metals	33
N. virens Body Burden Data and Statistical Analysis Reports - Trace Metals	37
M. nasuta Body Burden Data and Statistical Analysis Reports - PCB Congeners	71
N. virens Body Burden Data and Statistical Analysis Reports - PCB Congeners	73
M. nasuta Body Burden Data and Statistical Analysis Reports - PAHs	60
N. virens Body Burden Data and Statistical Analysis Reports - PAHs	60
Support Documents	
New England District QC Tables	2
Assay Review Checklist	1
Total Appendix Pages	408

STUDY NUMBER RECORD

Issue and complete this form for studies that will require multiple tasks and directly associated support studies. Issue consecutive study numbers at the start of the project to cover all potential elements of the project.

CLI	ENI	:	AECOM

CONTACT(S): Kris Van Naerssen, Christine Archer, Maura Surprenant

PROJECT: Chebeague Island FNP

CONTRACT / TO #: W912WJ-17-D-0003 / #3 Project Number 60551931

	Species / Analysis Parameters:					
Sample Receipt:			29746			
Grain Size Analysis:			-			
Composite Prep:			29747			
Bulk Sediment Analysis ^a :			-			
40 Doy Access	Leptocheirus plumulosus		29748			
10 Day Assay:	Americamysis bahia	29749				
Elutriate Preparation:	Type:		29750			
	Pentachlorophenol	Yes/ No	29751			
Elutriate Analysis:	Trace Metals	Yes/ No				
	PCB Congeners	Yes/ No				
	Pesticides	Yes/ No				
	Menidia beryllina	_				
SPP Assays:	Americamysis bahia	29752				
	Arbacia punctulata					
Diagonamulation Study	Macoma nasuta		29753			
Bioaccumulation Study:	Nereis virens		29754			
	Trace Metals	Yes/ No				
Ticous Analysis a	PAH Compounds	Yes/ No	20755			
Tissue Analysis ^a :	PCB Congeners	Yes/ No	29755			
	Pesticides	Yes/ No				

Notes:

^a All bulk sediment and tissue analyses were completed by Alpha Analytical, Mansfield, Massachusetts.

Table A-1 Chebeague Island (NAE Sampling Locations) – Coordinates / Estimated Penetration / Sample Quantities

Sample ID	Composite ID	Latitude	Longitude	Survey Depth (ft MLLW)	Project Depth + Overdepth (ft MLLW)	Estimated Core Length (ft)	Estimated Volume per Core (gallons) *	Minimum Sample Volume per Location (gallons) **	Estimated Number of Cores/Containers Required ***
Α	1	43.753393	-70.109779	-9.3	-11.0	1.7	0.6	11.5	19/4
В	1	43.752688	-70.109211	-6.3	-11.0	4.7	1.7	11.5	7 / 4
С	2	43.751983	-70.108908	-4.0	-11.0	7.0	2.6	11.5	5/4
D	2	43.752111	-70.108587	-7.3	-11.0	3.7	1.4	11.5	9/4
F	3	43.751509	-70.108103	-5.3	-11.0	5.7	2.1	23.0	11 / 7

^{*} Volume estimated assuming 3" inner diameter core liners for dredge area sediment samples.

23 gallons of dredge site water will be collected from a central location in the vicinity of each composite grou. Sample containers for dredge water shall be 5 gallon food grade collapsible carboys.

Information from AECOM's Work Plan (2017)

^{**} Assumes 23 gallons of sediment per composite for testing and archiving.

^{***} Sample containers for dredge area sediments shall be 3.5 gallon food grade high density polyethylene pails with locking lids.

28 day *Macoma nasuta*Sediment Bioaccumulation Evaluation

Statistical Analysis Reports

Survival

CETIS Test Data Worksheet

29747-103

29747-103

29747-103

Report Date: 19 Jan-18 11:58 (p 1 of 1) **Test Code/ID:** 04-0754-7748/29753Mp

04-0754-7748/29753Mn Test Code/ID: **Bioaccumulation Evaluation - Survival Endpoint** EnviroSystems, Inc. Start Date: 07 Nov-17 Species: Macoma nasuta Sample Code: 29753-000 Protocol: US ACE NED RIM (2004) End Date: 05 Dec-17 Sample Source: Chebeague Island FNP Sample Date: 01 Nov-17 Material: Laboratory Control Sediment Sample Station: Laboratory Control (M.nasuta) Rep # Survived Sample Pos # Exposed Notes 29753-000 29753-000 29753-000 29753-000 29753-000 29747-104 29747-104 29747-104 29747-104 29747-104 29747-101 29747-101 29747-101 29747-101 29747-101 29747-102 29747-102 29747-102 29747-102 29747-102 29747-103 29747-103

CETIS Summary Report

29747-103

0.950

1.000

0.950

1.000

0.950

Report Date: 23 Jan-18 12:42 (p 1 of 1) **Test Code:** 29753Mn | 04-0754-7748

							Test	Code:	29	9753Mn 0	4-0754-774
Bioaccumulat	tion Evaluation -	Survival E	Endpoint							EnviroSy	stems, Inc.
Batch ID:	13-1895-2640	Tes	t Type: Surv	/ival			Anal	yst: Kirl	c Cram		
Start Date:	07 Nov-17	Pro	tocol: US	ACE NED F	RIM (2004)		Dilu	ent: Not	Applicable		
Ending Date:	05 Dec-17	Spe	ecies: Mad	oma nasuta	a		Brin	e: Not	Applicable		
Duration:	28d 0h	Sou	ırce: ARC	O - Aquatic	Research C	rganisms, NI	H Age:				
Sample Code	Sample ID) San	nple Date	Receipt	t Date	Sample Age	Clie	nt Name	Pr	oject	
29747-104	10-1465-6	781 25 (Oct-17 17:15	25 Oct-	17 17:15	12d 7h	AEC	OM	Dr	edged Sed	iment Evalu
29747-101	15-2994-4	617 23 (Oct-17 14:20	23 Oct-	17 14:20	14d 10h					
29747-102	04-2219-8	070 23 (Oct-17 15:15	23 Oct-	17 15:15	14d 9h					
29747-103	19-9795-0	106 24 0	Oct-17 08:40	24 Oct-	17 08:40	13d 15h					
Sample Code	Material T	уре	San	ple Sourc	e	Stat	ion Locati	on	Lat/Long		
29747-104	Reference	sediment	Che	beague Isla	and FNP	PDS	Reference	e Sediment	(
29747-101	Marine Se	diment	Che	beague Isla	and FNP	Com	nposite 1 (S	Stations A,E	3)		
29747-102	Marine Se	diment	Che	beague Isla	and FNP	Com	nposite 2 (S	Stations C,E	D)		
29747-103	Marine Se	diment	Che	beague Isla	and FNP	Com	nposite 3 (S	Station F)			
Single Compa	arison Summary	,									
Analysis ID	Endpoint		Comparis	on Method			P-Value	Compari	son Result		
11-3906-7910	Proportion Survi	ved	Wilcoxon F	Rank Sum T	wo-Sample	Test	1.0000	29747-10	1 passed pr	oportion su	rvived
00-5290-5525	Proportion Survi	ved	Equal Varia	ance t Two-	Sample Tes	st	0.7354	29747-10	2 passed pr	oportion su	rvived
21-2518-6765	Proportion Survi	ved	Equal Varia	ance t Two-	Sample Tes	st	0.9294	29747-10	3 passed pr	oportion su	rvived
Proportion Su	urvived Summar	у									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29753-000	LC	5	0.950	0.842	1.000	0.800	1.000	0.039	0.087	9.12%	0.00%
29747-104	RS	5	0.950	0.950	0.950	0.950	0.950	0.000	0.000	0.00%	0.00%
29747-101		5	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	-5.26%
29747-102		5	0.960	0.908	1.000	0.900	1.000	0.019	0.042	4.36%	-1.05%
29747-103		5	0.970	0.936	1.000	0.950	1.000	0.012	0.027	2.82%	-2.11%
Proportion Su	urvived Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29753-000	LC	1.000	1.000	1.000	0.800	0.950					
29747-104	RS	0.950	0.950	0.950	0.950	0.950					
29747-101		1.000	1.000	1.000	1.000	1.000					
29747-102		1.000	1.000	0.950	0.950	0.900					

Report Date: 23 Jan-18 12:42 (p 1 of 4) **Test Code:** 29753Mn | 04-0754-7748

									Test	Code:		29753IVIN U	4-0754-7748
Bioaccumulati	ion E	Evaluation	- Survival	l Endpoint								EnviroS	stems, Inc.
Analysis ID:	11-3	3906-7910	Er	ndpoint: Pro	portion Surv	rived			CETI	S Version:	CETIS	v1.9.3	
Analyzed:	23 .	Jan-18 12:3	8 A r	nalysis: No	nparametric-	Two Sam	nple	Э	Offic	ial Results:	Yes		
Sample Code		Sample ID) Sa	ample Date	Receipt	Date	;	Sample Age	Clier	nt Name	ı	Project	
29747-104		10-1465-6	781 25	Oct-17 17:15	25 Oct-	17 17:15	•	12d 7h	AEC	MC	ı	Dredged Se	diment Evalu
29747-101		15-2994-4	617 23	3 Oct-17 14:20	23 Oct-	17 14:20	•	14d 10h					
Sample Code		Material T	уре	Sa	mple Source	Э		Stat	tion Locati	on	Lat/Lon	g	
29747-104		Reference	sedimen	t Ch	ebeague Isla	nd FNP		PDS	Reference	e Sediment (
29747-101		Marine Se	diment	Ch	ebeague Isla	nd FNP		Con	nposite 1 (S	Stations A,B)			
Wilcoxon Ran	k Su	m Two-Sar	nple Test	ŀ									
Sample I v	/S	Sample II		Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)		
Reference Sed		29747-101		40	n/a	0	8	Exact	1.0000	Non-Signifi	icant Effe	ct	
ANOVA Table													
Source		Sum Squa	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision(d	x:5%)		
Between		0.0321919)	0.0321919	9	1		-7.3E+13	<1.0E-37	Significant	Effect		
Error		-3.55E-15		-4.44E-16	;	8							
Total		0.0321919)			9		_					
Proportion Su	rvive	ed Summar	у										
Sample		Code	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
29747-104		RS	5	0.950	0.950	0.950		0.950	0.950	0.950	0.000	0.00%	0.00%
29747-101			5	1.000	1.000	1.000		1.000	1.000	1.000	0.000	0.00%	-5.26%
Angular (Corre	ected	d) Transfori	med Sum	ımary									
Sample		Code	Count	Mean	95% LCL	95% UC	CL	Median	Min	Max	Std Err	CV%	%Effect
29747-104		RS	5	1.35	1.35	1.35		1.35	1.35	1.35	0	0.00%	0.00%
29747-101			5	1.46	1.46	1.46		1.46	1.46	1.46	0	0.00%	-8.44%
Proportion Su	rvive	ed Detail											
Sample		Code	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5					
29747-104		RS	0.950	0.950	0.950	0.950	_	0.950					
29747-101			1.000	1.000	1.000	1.000		1.000					
Angular (Corre	ecte	d) Transfor	med Deta	nil									
Sample	_	Code	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5					
29747-104		RS	1.35	1.35	1.35	1.35		1.35			-		
29747-101			1.46	1.46	1.46	1.46		1.46					

Report Date: 23 Jan-18 12:42 (p 2 of 4)
Test Code: 29753Mn | 04-0754-7748

							Test	Code:	2	9753WIN U	4-0754-7748
Bioaccumulat	ion Evaluatior	ı - Surviv	al Endpoint							EnviroSy	stems, Inc.
Analysis ID: Analyzed:	12-5776-0525 12 Dec-17 13		•	oportion Surv				S Version: ial Results:	CETISv [*] Yes	1.9.3	
Sample Code	Sample	ID S	Sample Date	Receip	t Date	Sample Age	e Clier	nt Name	Р	roject	
29747-104	10-1465-	-6781 2	25 Oct-17 17:1	5 25 Oct-	17 17:15	12d 7h	AEC	ОМ	D	redged Sed	diment Evalu
29747-101	15-2994-	-4617 2	23 Oct-17 14:20	0 23 Oct-	17 14:20	14d 10h					
Sample Code	Material	Туре	Sa	mple Sourc	е	Sta	tion Locati	on	Lat/Long	J	
29747-104	Reference	ce sedime	nt Ch	ebeague Isla	and FNP	PD:	S Reference	e Sediment (
29747-101	Marine S	Sediment	Ch	ebeague Isla	and FNP	Cor	mposite 1 (S	Stations A,B)			
ANOVA Table											
Source	Sum Sq	uares	Mean Sq	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.03219	19	0.032191	9	1	-7.3E+13	<1.0E-37	Significant	Effect		
Error	-3.55E-1	5	-4.44E-16	6	8	_					
Total	0.03219	19			9						
Proportion Su	rvived Summa	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
29747-104	RS	5	0.950	0.950	0.950	0.950	0.950	0.950	0.000	0.00%	0.00%
29747-101		5	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	-5.26%
Angular (Corre	ected) Transfo	rmed Su	mmary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
29747-104	RS	5	1.35	1.35	1.35	1.35	1.35	1.35	0	0.00%	0.00%
29747-101		5	1.46	1.46	1.46	1.46	1.46	1.46	0	0.00%	-8.44%
Proportion Su	rvived Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29747-104	RS	0.950	0.950	0.950	0.950	0.950	·				
29747-101		1.000	1.000	1.000	1.000	1.000					
Angular (Corre	ected) Transfo	rmed Det	tail						_	_	
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29747-104	RS	1.35	1.35	1.35	1.35	1.35	_	_		_	_
29747-101		1.46	1.46	1.46	1.46	1.46					

23 Jan-18 12:42 (p 3 of 4) Report Date: **Test Code:** 29753Mn | 04-0754-7748

							1631	Code:	2	97 33WITT 0	4-0754-7746
Bioaccumulatio	on Evaluation -	Survival E	ndpoint							EnviroSy	stems, Inc.
•	00-5290-5525 12 Dec-17 13:2			portion Surv				IS Version: cial Results:	CETISv1 Yes	1.9.3	
Sample Code	Sample ID	Sam	ple Date	Receipt	t Date	Sample Age	e Cliei	nt Name	Р	roject	
29747-104	10-1465-67	781 25 O	ct-17 17:15	25 Oct-	17 17:15	12d 7h	AEC	ОМ	D	redged Sed	diment Evalu
29747-102	04-2219-80	070 23 O	ct-17 15:15	23 Oct-	17 15:15	14d 9h					
Sample Code	Material T	ype	Saı	mple Sourc	е	Sta	tion Locati	ion	Lat/Long		
29747-104	Reference	sediment	Che	ebeague Isla	and FNP	PD:	S Reference	e Sediment (
29747-102	Marine Sec	diment	Che	ebeague Isla	and FNP	Cor	mposite 2 (S	Stations C,D)			
Data Transform	1	Alt Hyp					Comparis	son Result			PMSD
Angular (Correct	ted)	C > T					29747-10	2 passed pro	portion su	vived	3.90%
Equal Variance	t Two-Sample	Test									
Sample I vs	s Sample II		Test Stat	Critical	MSD D	F P-Type	P-Value	Decision(a:5%)		
Reference Sed	29747-102		-0.658	1.86	0.074 8	CDF	0.7354	Non-Signif	icant Effec	t	
ANOVA Table											
Source	Sum Squa	ares	Mean Squ	ıare	DF	F Stat	P-Value	Decision(x:5%)		
Between	0.0017086		0.0017086	6	1	0.433	0.5292	Non-Signif	icant Effec	t	
Error	0.0315978		0.0039497	7	8						
Total	0.0333065				9						
Distributional T	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(x:1%)		
Variances		uality of Var			13.6	11.3	0.0062	Unequal V	ariances		
Variances		ne Equality o		Test	8.8	13.7	0.0251	Equal Varia			
Distribution	Shapiro-W	ilk W Norma	ality Test		0.843	0.741	0.0485	Normal Dis	stribution		
Proportion Sur	vived Summar	y									
Sample	Code	Count	Mean	95% LCL	95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
29747-104	RS	5	0.950	0.950	0.950	0.950	0.950	0.950	0.000	0.00%	0.00%
29747-102		5	0.960	0.908	1.000	0.950	0.900	1.000	0.019	4.36%	-1.05%
Angular (Correc	cted) Transforr	ned Summ	ary								
Sample	Code	Count	Mean	95% LCL	95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
29747-104	RS	5	1.35	1.35	1.35	1.35	1.35	1.35	0	0.00%	0.00%
29747-102		5	1.37	1.26	1.48	1.35	1.25	1.46	0.0397	6.48%	-1.94%
Proportion Sur	vived Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29747-104	RS	0.950	0.950	0.950	0.950	0.950					
29747-102		1.000	1.000	0.950	0.950	0.900					
Angular (Corre	cted) Transforr	med Detail								·	
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29747-104	RS	1.35	1.35	1.35	1.35	1.35					
29747-102		1.46	1.46	1.35	1.35	1.25					

007-291-840-4 CETIS™ v1.9.3.0 Analyst:___ QA:

29747-103

1.35

1.46

1.35

Report Date: 23 Jan-18 12:42 (p 4 of 4) **Test Code:** 29753Mn | 04-0754-7748

									Tes	t Code:	2	29753Mn 0	4-0/54-//4
Bioaccumulati	ion Evalı	uation - Surv	ival Endpoi	nt								EnviroSy	stems, Inc.
Analysis ID:	21-2518	3-6765	Endpoint:	Prop	ortion Surv	vived			CE	TIS Version:	: CETISv	1.9.3	
Analyzed:	12 Dec-	17 13:26	Analysis:	Para	ametric-Two	Sample	е		Off	icial Results	: Yes		
Sample Code	Sa	mple ID	Sample Da	ate	Receipt	t Date		Sample Ag	e Cli	ent Name	P	roject	
29747-104		-1465-6781	25 Oct-17		•	17 17:15		12d 7h		СОМ		redged Sed	diment Eval
29747-103	19-	9795-0106	24 Oct-17	08:40	24 Oct-	17 08:40)	13d 15h				J	
Sample Code	Ма	terial Type		San	ple Sourc	е		Sta	ition Loca	tion	Lat/Long	g	
29747-104	Re	ference sedin	nent	Che	beague Isla	and FNP		PD	S Referen	ce Sediment	(
29747-103	Ма	rine Sedimer	t	Che	beague Isla	and FNP		Co	mposite 3	(Station F)			
Data Transforr	m	Alt	Нур						Compar	ison Result			PMSD
Angular (Correc	cted)	C >	Т						29747-1	03 passed pi	oportion su	rvived	2.62%
Equal Variance	e t Two-	Sample Test											
Sample I v	rs Sa	mple II	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision	(α:5%)		
Reference Sed	297	747-103	-1.63		1.86	0.052	8	CDF	0.9294	Non-Sign	ificant Effe	ct	
ANOVA Table													
Source	Su	m Squares	Mear	n Squ	are	DF		F Stat	P-Value	Decision	(α:5%)		
Between	0.0	051507	0.005	1507		1		2.67	0.1411	Non-Sign	ificant Effe	ct	
Error		154521	0.00	19315		8		_					
Total	0.0	206028				9							
Distributional	Tests												
Attribute	Tes	st				Test S	tat	Critical	P-Value	Decision	(α:1%)		
Variances		vene Equality				96		11.3	9.9E-06		Variances		
Variances		d Levene Equ			est	3		13.7	0.1340	Equal Va			
Distribution		apiro-Wilk W	Normality 16	est		0.814		0.741	0.0215	Normai L	istribution		
Proportion Su		-			0=0/ 1 01	0=0/ 11					0.15	O) #0/	0/=55
Sample	Co				95% LCL		CL		Min	Max	Std Err	CV%	%Effect
29747-104 29747-103	RS	5 5	0.950 0.970		0.950 0.936	0.950 1.000		0.950 0.950	0.950 0.950	0.950 1.000	0.000 0.012	0.00% 2.82%	0.00% -2.11%
	acted\ Tu				0.000	1.000		0.000	0.000	1.000	0.012	2.0270	2.1170
Angular (Corre	Co		-	,	95% LCL	95% !!	CI	Median	Min	Max	Std Err	CV%	%Effect
29747-104	RS		1.35	•	1.35	1.35		1.35	1.35	1.35	0	0.00%	0.00%
29747-103		5	1.39		1.31	1.47		1.35	1.35	1.46	0.0278	4.47%	-3.37%
Proportion Su	rvived D	etail											
Sample	Co	de Rep	1 Rep	2	Rep 3	Rep 4		Rep 5					
29747-104	RS	0.95	0 0.950)	0.950	0.950		0.950					
29747-103		0.95	0 1.000)	0.950	1.000		0.950					
Angular (Corre	ected) Tr	ansformed D	Detail										
Sample	Co	de Rep	1 Rep	2	Rep 3	Rep 4		Rep 5					
29747-104	RS				1.35	1.35		1.35					
00747 400		4.05	4 40										

007-291-840-4 CETIS™ v1.9.3.0 Analyst:_____ QA:____

1.46

1.35

28 day *Nereis virens*Sediment Bioaccumulation Evaluation

Statistical Analysis Reports

Survival

CETIS Test Data Worksheet

29747-102

29747-102

29747-103

29747-103

29747-103

29747-103

29747-103

Report Date: 19 Jan-18 11:59 (p 1 of 1) **Test Code/ID:** 02-2228-4155/29754Nv

Test Code/ID: **Bioaccumulation Evaluation - Survival Endpoint** EnviroSystems, Inc. Start Date: 07 Nov-17 Species: Nereis virens Sample Code: 29754-000 End Date: 05 Dec-17 Protocol: US ACE NED RIM (2004) Sample Source: Chebeague Island FNP Sample Date: 01 Nov-17 Material: Laboratory Control Sediment Sample Station: Laboratory Control (N.virens) Rep # Survived Sample Pos # Exposed Notes 29754-000 29754-000 29754-000 29754-000 29754-000 29747-104 29747-104 29747-104 29747-104 29747-104 29747-101 29747-101 29747-101 29747-101 29747-101 29747-102 29747-102 29747-102

CETIS Summary Report

Report Date: 12 Dec-17 14:27 (p 1 of 1) **Test Code:** 29754Nv | 02-2228-4155

Bioaccumula	tion Evaluation	- Surviva	al Endpoint							EnviroSy	stems, Inc.
Batch ID: Start Date: Ending Date: Duration:	05-1969-5271 07 Nov-17 05 Dec-17 28d 0h	F	Species: N	urvival S ACE NED F ereis virens RO - Aquatic		rganisms, N	Anal Dilue Brind IH Age:	ent: Not e: Ge	c Cram : Applicable neric comme	ercial salts	
Sample Code	Sample II) 5	Sample Date	Receipt	t Date	Sample Ag	e Clier	t Name	Pr	oject	
29747-104	10-1465-6	781 2	5 Oct-17 17:1	5 25 Oct-	17 17:15	12d 7h	AEC	MC	Dr	edged Sed	iment Evalu
29747-101	15-2994-4	617 2	3 Oct-17 14:2	20 23 Oct-	17 14:20	14d 10h					
29747-102	04-2219-8	070 2	3 Oct-17 15:1	5 23 Oct-	17 15:15	14d 9h					
29747-103	19-9795-0	106 2	4 Oct-17 08:4	40 24 Oct-	17 08:40	13d 15h					
Sample Code	Material T	уре	S	ample Source	e	Sta	tion Locati	on	Lat/Long		
29747-104	Reference	sedime	nt C	hebeague Isla	and FNP	PD	S Reference	Sediment			
29747-101	Marine Se	diment	С	hebeague Isla	and FNP	Co	mposite 1 (S	Stations A,E	3)		
29747-102	Marine Se	diment	С	hebeague Isla	and FNP	Cor	mposite 2 (S	Stations C,E	D)		
29747-103	Marine Se	diment	С	hebeague Isla	and FNP	Cor	mposite 3 (S	Station F)			
Single Compa	arison Summary	,									
Analysis ID	Endpoint		Compar	ison Method			P-Value	Compari	son Result		
	Proportion Survi	ved		Rank Sum T	wo-Sample	Test	0.7778		1 passed pro	oportion su	rvived
03-1972-7963	Proportion Survi	ved		n Rank Sum T	•		0.5000		2 passed pro	•	
	Proportion Survi			ariance t Two-	•		0.1453		3 passed pro	•	
Proportion St	urvived Summar	У									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29754-000	LC	5	0.950	0.888	1.000	0.900	1.000	0.022	0.050	5.26%	0.00%
29747-104	RS	5	0.980	0.924	1.000	0.900	1.000	0.020	0.045	4.56%	-3.16%
29747-101		5	0.990	0.962	1.000	0.950	1.000	0.010	0.022	2.26%	-4.21%
29747-102		5	0.960	0.892	1.000	0.900	1.000	0.025	0.055	5.71%	-1.05%
29747-103		5	0.940	0.859	1.000	0.850	1.000	0.029	0.065	6.94%	1.05%
Proportion St	urvived Detail	·						•		·	
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
29754-000	LC	0.900	0.950	1.000	0.900	1.000					
29747-104	RS	1.000	1.000	1.000	0.900	1.000					
29747-101		1.000	1.000	1.000	1.000	0.950					
29747-102		1.000	0.900	1.000	0.900	1.000					
29747-103		0.900	1.000	0.950	1.000	0.850					

 Report Date:
 12 Dec-17 14:27 (p 1 of 3)

 Test Code:
 29754Nv | 02-2228-4155

Bioaccumula	tion E	Evaluation - Su	ırvival E	ndpoint							EnviroSy	stems, Inc.
Analysis ID:	18-6	6074-7598	End	ooint: Pro	portion Surv	rived		CET	IS Version:	CETISv1	1.9.3	
Analyzed:	12 I	Dec-17 13:25	Anal	ysis: Nor	parametric-	Two Samp	le	Offic	ial Results:	Yes		
Sample Code	9	Sample ID	Sam	ple Date	Receipt	Date	Sample Ag	e Clier	nt Name	P	roject	
29747-104		10-1465-6781	25 O	ct-17 17:15	25 Oct-	17 17:15	12d 7h	AEC	OM	D	redged Sec	liment Evalu
29747-101		15-2994-4617	' 23 O	ct-17 14:20	23 Oct-	17 14:20	14d 10h					
Sample Code)	Material Type)	Sar	nple Source	9	Sta	tion Locati	on	Lat/Long		
29747-104		Reference see	diment	Che	ebeague Isla	ind FNP	PD	S Reference	e Sediment (
29747-101		Marine Sedim	ent	Che	beague Isla	ind FNP	Cor	mposite 1 (S	Stations A,B)			
Data Transfo	rm	A	lt Hyp					Comparis	son Result			PMSD
Angular (Corre	ected)	С	> T					29747-10	1 passed pro	portion sur	vived	3.85%
Wilcoxon Ra	nk Su	m Two-Sample	e Test									
Sample I	vs	Sample II		Test Stat	Critical	Ties D	F P-Type	P-Value	Decision(a:5%)		
Reference Se	d	29747-101		28	n/a	1 8	Exact	0.7778	Non-Signif	icant Effec	t	
ANOVA Table	9											
Source		Sum Squares	s	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between		0.0009262		0.0009262		1	0.163	0.6971	Non-Signif	icant Effec	t	
Error		0.045485		0.0056856	<u> </u>	8						
Total		0.0464112				9						
Distributiona	l Test	s										
Attribute		Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variances		Variance Rati	o F Test			3.42	23.2	0.2613	Equal Varia	ances		
Distribution		Shapiro-Wilk	W Norma	ality Test		0.639	0.741	1.6E-04	Non-Norma	al Distribut	ion	
Proportion S	urvive											
Comple		a Summary										
Sample		•	ount	Mean	95% LCL	95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
29747-104		Code Code RS 5	ount	0.980	0.924	1.000	1.000	0.900	1.000	0.020	4.56%	0.00%
•		Code C	ount									
29747-104 29747-101	rected	Code Code RS 5		0.980 0.990	0.924	1.000	1.000	0.900	1.000	0.020	4.56%	0.00%
29747-104 29747-101	rected	Code Code RS 5 5 5 Tansformed		0.980 0.990	0.924	1.000	1.000 1.000	0.900	1.000	0.020	4.56%	0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104	rected	Code Code RS 5 5 5 Tansformed	d Summa	0.980 0.990 ary Mean 1.42	0.924 0.962 95% LCL 1.3	1.000 1.000 95% UCL 1.53	1.000 1.000 . Median	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample	rected	Code Code Code Code Code Code Code Code	d Summa	0.980 0.990 ary Mean	0.924 0.962 95% LCL	1.000 1.000	1.000 1.000	0.900 0.950 Min	1.000 1.000 Max	0.020 0.010 Std Err	4.56% 2.26% CV%	0.00% -1.02% %Effect
29747-104 29747-101 Angular (Cor Sample 29747-104		Code Code RS 5 5 5 4) Transformed Code Code Code RS 5 5 5	d Summa	0.980 0.990 ary Mean 1.42	0.924 0.962 95% LCL 1.3	1.000 1.000 95% UCL 1.53	1.000 1.000 . Median	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample		Code Code Code Code Code Code Code Code	d Summa	0.980 0.990 ary Mean 1.42	0.924 0.962 95% LCL 1.3	1.000 1.000 95% UCL 1.53	1.000 1.000 . Median	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample 29747-104		Code	d Summa ount ep 1	0.980 0.990 ary Mean 1.42 1.44 Rep 2 1.000	0.924 0.962 95% LCL 1.3 1.37 Rep 3	1.000 1.000 95% UCL 1.53 1.5 Rep 4 0.900	1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample		Code	d Summa ount ep 1	0.980 0.990 ary Mean 1.42 1.44	0.924 0.962 95% LCL 1.3 1.37	1.000 1.000 95% UCL 1.53 1.5	1.000 1.000 Median 1.46 1.46	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample 29747-104 29747-101	urvive	Code	ep 1 000 000	0.980 0.990 ary Mean 1.42 1.44 Rep 2 1.000	0.924 0.962 95% LCL 1.3 1.37 Rep 3	1.000 1.000 95% UCL 1.53 1.5 Rep 4 0.900	1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample 29747-104 29747-101	urvive	Code Code Code Code Code Code Code Code	ep 1 000 000	0.980 0.990 ary Mean 1.42 1.44 Rep 2 1.000	0.924 0.962 95% LCL 1.3 1.37 Rep 3	1.000 1.000 95% UCL 1.53 1.5 Rep 4 0.900	1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%
29747-104 29747-101 Angular (Cor Sample 29747-104 29747-101 Proportion S Sample 29747-104 29747-101 Angular (Cor	urvive	Code Code Code Code Code Code Code Code	ep 1 000 000	0.980 0.990 ary Mean 1.42 1.44 Rep 2 1.000 1.000	0.924 0.962 95% LCL 1.3 1.37 Rep 3 1.000 1.000	1.000 1.000 95% UCL 1.53 1.5 Rep 4 0.900 1.000	1.000 1.000 Median 1.46 1.46 Rep 5 1.000 0.950	0.900 0.950 Min 1.25	1.000 1.000 Max 1.46	0.020 0.010 Std Err 0.0419	4.56% 2.26% CV% 6.62%	0.00% -1.02% %Effect 0.00%

007-291-840-4 CETIS™ v1.9.3.0 Analyst:_____ QA:____

Report Date: 12 Dec-17 14:27 (p 2 of 3)
Test Code: 29754Nv | 02-2228-4155

Bioaccumula	ation E	Evaluation - Su	rvival Er	ndpoint							EnviroSy	stems, Inc.
Analysis ID:	03-	1972-7963	Endp	ooint: Pro	portion Surv	rived		CET	S Version:	CETISv1	.9.3	
Analyzed:	12	Dec-17 13:25	Analy	ysis: Noi	nparametric-	Two Sampl	е	Offic	ial Results:	Yes		
Sample Code	e	Sample ID	Samı	ple Date	Receipt	t Date	Sample Ag	e Clier	nt Name	Pı	roject	
29747-104		10-1465-6781	25 O	ct-17 17:15	25 Oct-	17 17:15	12d 7h	AEC	OM	D	redged Sec	diment Evalu
29747-102		04-2219-8070	23 O	ct-17 15:15	23 Oct-	17 15:15	14d 9h					
Sample Code	е	Material Type		Saı	nple Sourc	e	Sta	ition Locati	on	Lat/Long		
29747-104		Reference sec	liment	Che	ebeague Isla	and FNP	PD	S Reference	e Sediment (
29747-102		Marine Sedime	ent	Che	ebeague Isla	and FNP	Col	mposite 2 (S	Stations C,D)			
Data Transfo	orm	Alt	Нур					Comparis	on Result			PMSD
Angular (Corr	rected)	C	> T					29747-10	2 passed pro	portion sur	vived	5.61%
Wilcoxon Ra	nk Su	m Two-Sample	Test									
Sample I	vs	Sample II		Test Stat	Critical	Ties Di	P-Type	P-Value	Decision(x:5%)		
Reference Se	ed	29747-102		25	n/a	2 8	Exact	0.5000	Non-Signifi	icant Effec	t	
ANOVA Tabl	е											
Source		Sum Squares		Mean Squ	ıare	DF	F Stat	P-Value	Decision(x:5%)		
Between		0.004398		0.004398		1	0.4	0.5447	Non-Signifi	icant Effec	t	
Error		0.087959		0.0109949)	8						
				0.0100040	,							
Total		0.092357		0.0103540	,	9						
	al Test	0.092357		0.0103340	,		_					
Total	al Test	0.092357		0.0103340			Critical	P-Value	Decision(c	x:1%)		
Total Distributiona	al Test	0.092357 ts Test Variance Ratio				9 Test Stat	23.2	0.7040	Equal Varia	ances		
Total Distributiona Attribute	al Test	0.092357 ts Test				9 Test Stat				ances	ion	
Total Distributiona Attribute Variances		0.092357 ts Test Variance Ratio Shapiro-Wilk V				9 Test Stat	23.2	0.7040	Equal Varia	ances	ion	
Distributiona Attribute Variances Distribution		0.092357 Test Variance Ratio Shapiro-Wilk V			95% LCL	9 Test Stat 1.5 0.759	23.2 0.741	0.7040	Equal Varia	ances	ion	%Effect
Distributional Attribute Variances Distribution Proportion S Sample 29747-104		0.092357 ts Test Variance Ratio Shapiro-Wilk Ved Summary Code Code RS 5	V Norma	Mean 0.980	95% LCL 0.924	9 Test Stat 1.5 0.759 95% UCL 1.000	23.2 0.741 Median 1.000	0.7040 0.0045 Min 0.900	Equal Varia Non-Norma Max 1.000	ances al Distribut Std Err 0.020	CV% 4.56%	0.00%
Distributional Attribute Variances Distribution Proportion S Sample		0.092357 ts Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Code	V Norma	ality Test	95% LCL	9 Test Stat 1.5 0.759 95% UCL	23.2 0.741 Median	0.7040 0.0045 Min	Equal Varia	ances al Distribut	CV%	
Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102	Survive	0.092357 ts Test Variance Ratio Shapiro-Wilk Ved Summary Code Code RS 5	V Norma	Mean 0.980 0.960	95% LCL 0.924	9 Test Stat 1.5 0.759 95% UCL 1.000	23.2 0.741 Median 1.000	0.7040 0.0045 Min 0.900	Equal Varia Non-Norma Max 1.000	ances al Distribut Std Err 0.020	CV% 4.56%	0.00%
Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample	Survive	0.092357 Test Variance Ratio Shapiro-Wilk V ed Summary Code Co RS 5 5 d) Transformed Code Co	V Norma	Mean 0.980 0.960	95% LCL 0.924	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000	23.2 0.741 Median 1.000 1.000	0.7040 0.0045 Min 0.900	Equal Varia Non-Norma Max 1.000	ances al Distribut Std Err 0.020	CV% 4.56%	0.00%
Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Consample) 29747-104	Survive	0.092357 Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Sommary Code Code Code Sommary Code Code Code Code Code Code Code Code	V Norma	Mean 0.980 0.960 ary Mean 1.42	95% LCL 0.924 0.892 95% LCL 1.3	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53	23.2 0.741 Median 1.000 1.000 Median 1.46	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample	Survive	0.092357 Test Variance Ratio Shapiro-Wilk V ed Summary Code Co RS 5 5 d) Transformed Code Co	V Norma	Mean 0.980 0.960 ary Mean	95% LCL 0.924 0.892 95% LCL	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000	23.2 0.741 Median 1.000 1.000	0.7040 0.0045 Min 0.900 0.900	Max 1.000 1.000	Std Err 0.020 0.025 Std Err	CV% 4.56% 5.71%	0.00% 2.04% %Effect
Total Distributiona Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Cor Sample 29747-104	Survive	0.092357 Is Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Solution Solutio	V Norma	Mean 0.980 0.960 ary Mean 1.42	95% LCL 0.924 0.892 95% LCL 1.3	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53	23.2 0.741 Median 1.000 1.000 Median 1.46	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Total Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-102 Proportion S Sample	Survive	0.092357 Is Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Code RS 5 5 5 It standard to the stand	V Norma Summa punt	Mean 0.980 0.960 ary Mean 1.42 1.37	95% LCL 0.924 0.892 95% LCL 1.3 1.23	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-102 Proportion S Sample 29747-104	Survive	O.092357 Iss Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Solution Code Code Code Code Code Code Code Code	V Norma Summa punt pp 1 000	Mean 0.980 0.960 ary Mean 1.42 1.37 Rep 2 1.000	95% LCL 0.924 0.892 95% LCL 1.3 1.23	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4 0.900	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Total Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-102 Proportion S Sample	Survive	O.092357 Iss Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Solution Code Code Code Code Code Code Code Code	V Norma Summa punt	Mean 0.980 0.960 ary Mean 1.42 1.37	95% LCL 0.924 0.892 95% LCL 1.3 1.23	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Total Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-104 29747-102 Proportion S Sample 29747-104 29747-104	Survive	O.092357 Iss Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Solution Code Code Code Code Code Code Code Code	Summa Sumt Pp 1 000 000	Mean 0.980 0.960 ary Mean 1.42 1.37 Rep 2 1.000	95% LCL 0.924 0.892 95% LCL 1.3 1.23	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4 0.900	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Total Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-102 Proportion S Sample 29747-104 29747-104	Survive	0.092357 Is Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Sod	Summa Sumt Pp 1 000 000	Mean 0.980 0.960 ary Mean 1.42 1.37 Rep 2 1.000	95% LCL 0.924 0.892 95% LCL 1.3 1.23	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4 0.900	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46 Rep 5 1.000	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%
Total Distributional Attribute Variances Distribution Proportion S Sample 29747-104 29747-102 Angular (Con Sample 29747-104 29747-102 Proportion S Sample 29747-104 29747-104 29747-104 29747-104 29747-104	Survive	0.092357 Is Test Variance Ratio Shapiro-Wilk Ved Summary Code Code Sod	Summa Summa ount Pp 1 000 Detail pp 1	Mean 0.980 0.960 Ary Mean 1.42 1.37 Rep 2 1.000 0.900	95% LCL 0.924 0.892 95% LCL 1.3 1.23 Rep 3 1.000 1.000	9 Test Stat 1.5 0.759 95% UCL 1.000 1.000 95% UCL 1.53 1.52 Rep 4 0.900 0.900	23.2 0.741 Median 1.000 1.000 Median 1.46 1.46 Rep 5 1.000 1.000	0.7040 0.0045 Min 0.900 0.900 Min 1.25	Max 1.000 1.000 Max 1.46	Std Err 0.020 0.025 Std Err 0.0419	CV% 4.56% 5.71% CV% 6.62%	0.00% 2.04% %Effect 0.00%

007-291-840-4 CETIS™ v1.9.3.0 Analyst:_____ QA:____

Report Date: 12 Dec-17 14:27 (p 3 of 3) **Test Code:** 29754Nv | 02-2228-4155

								Code:			2-2228-4155
Bioaccumulation	on Evaluation	- Survival I	Endpoint							EnviroSy	stems, Inc.
Analysis ID:	09-9669-9900	End	dpoint: P	roportion Surv	ived		CET	S Version:	CETISv1	.9.3	
•	12 Dec-17 13		•	arametric-Two			Offic	ial Results:	Yes		
Sample Code	Sample	ID Sar	nple Date	Receipt	Date	Sample Age	e Clier	nt Name	Pı	roject	
29747-104	10-1465-		Oct-17 17:1	•		12d 7h	AEC	ОМ		•	liment Evalu
29747-103	19-9795-	0106 24	Oct-17 08:4	10 24 Oct-	17 08:40	13d 15h				-	
Sample Code	Material	Туре	S	ample Source	9	Sta	tion Locati	on	Lat/Long		
29747-104	Reference	e sediment	С	hebeague Isla	nd FNP	PDS	S Reference	e Sediment (
29747-103	Marine S	ediment	С	hebeague Isla	nd FNP	Con	nposite 3 (S	Station F)			
Data Transform	1	Alt Hyp					Comparis	on Result			PMSD
Angular (Correct	ted)	C > T					29747-103	3 passed pro	portion sur	vived	6.03%
Equal Variance	t Two-Sampl	le Test									
Sample I vs	s Sample	<u> </u>	Test Sta	t Critical	MSD DF	P-Type	P-Value	Decision(α:5%)		
Reference Sed	29747-10)3	1.13	1.86	0.131 8	CDF	0.1453	Non-Signif	icant Effec	t	
ANOVA Table											
Source	Sum Sq	uares	Mean So	quare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.015931	1	0.01593	11	1	1.28	0.2905	Non-Signif	icant Effec	t	
Error	0.099502	27	0.01243	78	8	_					
Total	0.115434	ł			9						
Distributional T	Γests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Variance	Ratio F Tes	t		1.83	23.2	0.5733	Equal Vari	ances		
Distribution	Shapiro-\	Wilk W Norm	nality Test		0.857	0.741	0.0708	Normal Di	stribution		
Proportion Sur	vived Summa	ary									
Sample		•									
	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
29747-104	Code RS	Count 5	Mean 0.980	95% LCL 0.924	95% UCL 1.000	Median 1.000	Min 0.900	Max 1.000	Std Err 0.020	CV% 4.56%	%Effect 0.00%
•											
29747-104	RS	5 5	0.980 0.940	0.924	1.000	1.000	0.900	1.000	0.020	4.56%	0.00%
29747-104 29747-103	RS	5 5	0.980 0.940	0.924	1.000	1.000 0.950	0.900	1.000	0.020	4.56%	0.00%
29747-104 29747-103 Angular (Correct	RS cted) Transfo	5 5 ormed Sumn	0.980 0.940 nary	0.924 0.859	1.000 1.000	1.000 0.950	0.900 0.850	1.000 1.000	0.020 0.029	4.56% 6.94% CV% 6.62%	0.00% 4.08%
29747-104 29747-103 Angular (Correct Sample	RS cted) Transfo Code	5 5 ormed Sumn Count	0.980 0.940 nary Mean	0.924 0.859 95% LCL	1.000 1.000 95% UCL	1.000 0.950 Median	0.900 0.850 Min	1.000 1.000	0.020 0.029 Std Err	4.56% 6.94% CV%	0.00% 4.08% %Effect
29747-104 29747-103 Angular (Correct Sample 29747-104	RS cted) Transfo Code RS	5 5 ormed Sumn Count 5	0.980 0.940 nary Mean 1.42	0.924 0.859 95% LCL 1.3	1.000 1.000 95% UCL 1.53	1.000 0.950 Median 1.46	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample	RS cted) Transfo Code RS vived Detail Code	5 5 ormed Sumn Count 5 5	0.980 0.940 nary Mean 1.42 1.34	0.924 0.859 95% LCL 1.3 1.18	1.000 1.000 95% UCL 1.53 1.49	1.000 0.950 Median 1.46 1.35	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample 29747-104	RS cted) Transfo Code RS	5 5 ormed Sumn Count 5 5	0.980 0.940 mary Mean 1.42 1.34 Rep 2	0.924 0.859 95% LCL 1.3 1.18 Rep 3	1.000 1.000 95% UCL 1.53 1.49	1.000 0.950 Median 1.46 1.35	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample	RS cted) Transfo Code RS vived Detail Code	5 5 ormed Sumn Count 5 5	0.980 0.940 nary Mean 1.42 1.34	0.924 0.859 95% LCL 1.3 1.18	1.000 1.000 95% UCL 1.53 1.49	1.000 0.950 Median 1.46 1.35	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample 29747-104	RS cted) Transfo Code RS vived Detail Code RS	5 5 ormed Sumn Count 5 5 7 Rep 1 1.000 0.900	0.980 0.940 mary Mean 1.42 1.34 Rep 2 1.000 1.000	0.924 0.859 95% LCL 1.3 1.18 Rep 3	1.000 1.000 95% UCL 1.53 1.49 Rep 4 0.900	1.000 0.950 Median 1.46 1.35 Rep 5	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample 29747-104 29747-103	RS cted) Transfo Code RS vived Detail Code RS	5 5 ormed Sumn Count 5 5 7 Rep 1 1.000 0.900	0.980 0.940 mary Mean 1.42 1.34 Rep 2 1.000 1.000	0.924 0.859 95% LCL 1.3 1.18 Rep 3	1.000 1.000 95% UCL 1.53 1.49 Rep 4 0.900	1.000 0.950 Median 1.46 1.35 Rep 5	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%
29747-104 29747-103 Angular (Correct Sample 29747-104 29747-103 Proportion Sur Sample 29747-104 29747-103 Angular (Correct	RS cted) Transfo Code RS vived Detail Code RS cted) Transfo	5 5 6rmed Sumn Count 5 5 1.000 0.900 6rmed Detail	0.980 0.940 mary Mean 1.42 1.34 Rep 2 1.000 1.000	0.924 0.859 95% LCL 1.3 1.18 Rep 3 1.000 0.950	1.000 1.000 95% UCL 1.53 1.49 Rep 4 0.900 1.000	1.000 0.950 Median 1.46 1.35 Rep 5 1.000 0.850	0.900 0.850 Min 1.25	1.000 1.000 Max 1.46	0.020 0.029 Std Err 0.0419	4.56% 6.94% CV% 6.62%	0.00% 4.08% %Effect 0.00%

007-291-840-4 CETIS™ v1.9.3.0 Analyst:_____ QA:____

28 day *Macoma nasuta*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports Trace Metals

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE CLAM (Macoma nasuta)

PDS Reference Site

		-			
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	2.09	2.16	2.45	2.42	1.82
Cadmium	0.042	0.034 J	0.031 J	0.038	0.033 J
Chromium	0.392	0.227 J	0.497	0.306 J	0.479
Copper	1.48	1.98	2.51	1.41	1.22
Lead	0.330	0.302	0.395	0.456	0.312
Mercury	0.012 J	0.012 J	0.010 J	0.009 J	0.012
Nickel	0.457	0.369	0.433	0.480	0.474
Zinc	9.22	11.10	8.68	10.60	8.60

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

			Composite 1		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	1.76	1.99	2.55	2.18	2.33
Cadmium	0.056	0.033 J	0.054	0.049	0.040
Chromium	0.264 J	0.627	0.287 J	0.334 J	0.318 J
Copper	1.21	3.51	1.39	1.68	2.03
Lead	0.249	0.227	0.225	0.247	0.215
Mercury	0.014	0.011 J	0.012 J	0.014	0.013
Nickel	0.475	0.391	0.482	0.435	0.415
Zinc	15.20	12.30	20.40	15.40	15.70

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

			Composite 2		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	2.38	2.00	1.55	1.71	1.43
Cadmium	0.052	0.045	0.042	0.051	0.043
Chromium	0.400	0.329 J	0.263 J	0.318 J	0.421
Copper	1.40	1.42	1.07	1.24	2.14
Lead	0.294	0.295	0.238	0.254	0.224
Mercury	0.010 J	0.011 J	0.011 J	0.011 J	0.010 J
Nickel	0.448	0.427	0.366	0.406	0.386
Zinc	17.20	13.40	13.30	14.30	13.30

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

			Composite 3		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	1.58	2.01	2.26	2.11	1.91
Cadmium	0.045	0.050	0.047	0.035 J	0.045
Chromium	0.226 J	0.327 J	0.432	0.250 J	0.364 J
Copper	1.30	2.72	1.43	1.44	1.71
Lead	0.286	0.366	0.325	0.284	0.334
Mercury	0.012 J	0.012	0.012 J	0.010 J	0.012 J
Nickel	0.340	0.373	0.445	0.408	0.410
Zinc	14.80	17.10	17.70	12.40	14.50

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

CETIS Test Data Worksheet

Report Date: 16 Jan-18 13:28 (p 1 of 1) **Test Code/ID:** 20-4848-9987/29753Mn

Bioaccumulation Evaluation - Metals - Macoma EnviroSystems, Inc.

Start Date:07 Nov-17Species:Macoma nasutaSample Code:29753-000

End Date:05 Dec-17Protocol:US ACE NED RIM (2004)Sample Source:Chebeague Island FNPSample Date:01 Nov-17Material:Laboratory Control SedimentSample Station:Laboratory Control (M.nasuta)

				assisted services		oup.o ouu		onii or (minacata)			
Sample	Rep	Pos	Body Burden	Arsenic	Cadmium	Chromiu m	Copper	Lead	Mercury	Nickel	Zinc
29747-104	1	2		2.09	0.042	0.392	1.48	0.33	0.012	0.457	9.22
29747-104	2	8		2.16	0.034	0.227	1.98	0.302	0.012	0.369	11.1
29747-104	3	12		2.45	0.031	0.497	2.51	0.395	0.01	0.433	8.68
29747-104	4	15		2.42	0.038	0.306	1.41	0.456	0.009	0.48	10.6
29747-104	5	19		1.82	0.033	0.479	1.22	0.312	0.012	0.474	8.6
29747-101	1	4		1.76	0.056	0.264	1.21	0.249	0.014	0.475	15.2
29747-101	2	6		1.99	0.033	0.627	3.51	0.227	0.011	0.391	12.3
29747-101	3	10		2.55	0.054	0.287	1.39	0.225	0.012	0.482	20.4
29747-101	4	13		2.18	0.049	0.334	1.68	0.247	0.014	0.435	15.4
29747-101	5	18		2.33	0.04	0.318	2.03	0.215	0.013	0.415	15.7
29747-102	1	1		2.38	0.052	0.4	1.4	0.294	0.01	0.448	17.2
29747-102	2	5		2	0.045	0.329	1.42	0.295	0.011	0.427	13.4
29747-102	3	9		1.55	0.042	0.263	1.07	0.238	0.011	0.366	13.3
29747-102	4	14		1.71	0.051	0.318	1.24	0.254	0.011	0.406	14.3
29747-102	5	20		1.43	0.043	0.421	2.14	0.224	0.01	0.386	13.3
29747-103	1	3		1.58	0.045	0.226	1.3	0.286	0.012	0.34	14.8
29747-103	2	7		2.01	0.05	0.327	2.72	0.366	0.012	0.373	17.1
29747-103	3	11		2.26	0.047	0.432	1.43	0.325	0.012	0.445	17.7
29747-103	4	16		2.11	0.035	0.25	1.44	0.284	0.01	0.408	12.4
29747-103	5	17		1.91	0.045	0.364	1.71	0.334	0.012	0.41	14.5

002-158-534-3 CETIS™ v1.9.3.0 Analyst:_____ QA:_____
Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation.

Appendix A Page 77 of 408

CETIS Summary Report

17-3216-2745 Zinc

08-1641-7349 Zinc

18-9719-0223 Zinc

Report Date: 16 Jan-18 13:50 (p 1 of 3) **Test Code:** 29753Mn | 20-4848-9987

	, ,				Test 0	Code:	29753Mn 20-4848-9987
Bioaccumulat	tion Evaluation - Meta	ls - Macoma					EnviroSystems, Inc.
Batch ID:	17-8957-5671	Test Type: Bio	accumulation - Metals		Analy	st: Nancy Roka	
Start Date:	07 Nov-17	Protocol: US	ACE NED RIM (2004)		Dilue	nt: Not Applicat	ole
Ending Date:	05 Dec-17	Species: Ma	coma nasuta		Brine	: Not Applicat	ole
Duration:	28d 0h	Source: AR	O - Aquatic Research	Organisms, NH	Age:		
Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client	t Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECC	DM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h			
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h			
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h			
Sample Code	Material Type	Sar	mple Source	Station	Locatio	n Lat/Lo	ong
29747-104	Reference sedim	nent Che	ebeague Island FNP	PDS R	eference	Sediment (
29747-101	Marine Sediment	t Che	ebeague Island FNP	Compo	site 1 (St	ations A,B)	
29747-102	Marine Sediment	t Che	ebeague Island FNP	Compo	site 2 (St	ations C,D)	
29747-103	Marine Sediment	t Che	ebeague Island FNP	Compo	site 3 (St	ation F)	
Single Compa	arison Summary						
Analysis ID	Endpoint	Comparis	son Method	P-	Value	Comparison Res	sult
12-4181-4840	Arsenic	Equal Var	iance t Two-Sample Te	est 0.	5560	29747-101 passed	d arsenic
18-1056-2762	Arsenic	Equal Var	iance t Two-Sample To	est 0.9	9463	29747-102 passed	darsenic
08-4806-8840	Arsenic	Equal Var	iance t Two-Sample To	est 0.8	8876	29747-103 passed	darsenic
02-3724-1033	Cadmium	Equal Var	iance t Two-Sample Te	est 0.0	0266	29747-101 failed of	cadmium
04-5509-1211	Cadmium	Equal Var	iance t Two-Sample Te	est 0.0	0024	29747-102 failed of	cadmium
04-7304-4480	Cadmium	Equal Var	iance t Two-Sample Te	est 0.0	0125	29747-103 failed of	cadmium
03-2844-7768	Chromium	Equal Var	iance t Two-Sample Te	est 0.	5651	29747-101 passed	d chromium
17-3426-7316	Chromium	Equal Var	iance t Two-Sample Te	est 0.	7107	29747-102 passed	d chromium
15-3795-6597	Chromium	Equal Vari	iance t Two-Sample Te	est 0.8	8151	29747-103 passed	d chromium
03-9801-1213	Copper	Equal Vari	iance t Two-Sample Te	est 0.3	3098	29747-101 passed	d copper
02-2685-1120	Copper	Equal Vari	iance t Two-Sample Te	est 0.8	8018	29747-102 passed	d copper
01-8192-7029	Copper	Equal Vari	iance t Two-Sample To	est 0.	5000	29747-103 passed	d copper
03-1680-6051	Lead	Equal Vari	iance t Two-Sample To	est 0.9	9986	29747-101 passed	d lead
08-3592-6799	Lead	Equal Vari	iance t Two-Sample To	est 0.9	9916	29747-102 passed	d lead
01-3314-2191	Lead	Equal Vari	iance t Two-Sample Te	est 0.8	8699	29747-103 passed	d lead
08-3034-2576	Mercury	Equal Vari	iance t Two-Sample Te	est 0.0	0349	29747-101 failed r	mercury
21-3111-9989	Mercury	Equal Var	iance t Two-Sample Te	est 0.	7142	29747-102 passed	d mercury
01-5044-3503	Mercury	Equal Var	iance t Two-Sample Te	est 0.5	2229	29747-103 passed	d mercury
05-3428-0569	Nickel	Equal Var	iance t Two-Sample Te	est 0.	5435	29747-101 passed	d nickel
05-3250-5340	Nickel	Equal Var	iance t Two-Sample Te	est 0.9	9076	29747-102 passed	d nickel
17-0786-2876	Nickel	Equal Vari	iance t Two-Sample To	est 0.9	9418	29747-103 passed	d nickel

002-158-534-3 CETIS™ v1.9.3.0 Analyst:_____ QA:____

0.0011

4.4E-04

4.0E-04

29747-101 failed zinc

29747-102 failed zinc

29747-103 failed zinc

Equal Variance t Two-Sample Test

Equal Variance t Two-Sample Test

Equal Variance t Two-Sample Test

Report Date: 16 Jan-18 13:50 (p 2 of 3) **Test Code:** 29753Mn | 20-4848-9987

Bioaccumulation	n Evaluation	n - Metals - I	Macoma							EnviroSys	tems, Inc.
Arsenic Summar	у										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	2.19	1.87	2.51	1.82	2.45	0.116	0.259	11.84%	0.00%
29747-101		5	2.16	1.78	2.54	1.76	2.55	0.136	0.304	14.07%	1.19%
29747-102		5	1.81	1.34	2.29	1.43	2.38	0.171	0.382	21.04%	17.09%
29747-103		5	1.97	1.66	2.29	1.58	2.26	0.114	0.255	12.94%	9.78%
Cadmium Summ	ary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.0356	0.0301	0.0411	0.031	0.042	0.00196	0.00439	12.34%	0.00%
29747-101		5	0.0464	0.0343	0.0585	0.033	0.056	0.00434	0.00971	20.93%	-30.34%
29747-102		5	0.0466	0.0409	0.0523	0.042	0.052	0.00206	0.00462	9.90%	-30.90%
29747-103		5	0.0444	0.0374	0.0514	0.035	0.05	0.00252	0.00564	12.70%	-24.72%
Chromium Sumr	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.38	0.238	0.522	0.227	0.497	0.0512	0.115	30.14%	0.00%
29747-101		5	0.366	0.182	0.55	0.264	0.627	0.0664	0.148	40.55%	3.73%
29747-102		5	0.346	0.266	0.426	0.263	0.421	0.0287	0.0642	18.55%	8.94%
29747-102		5	0.32	0.215	0.424	0.226	0.432	0.0207	0.0841	26.29%	15.89%
Copper Summar	у										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	1.72	1.07	2.37	1.22	2.51	0.234	0.523	30.42%	0.00%
29747-101		5	1.96	0.824	3.1	1.21	3.51	0.411	0.918	46.76%	-14.19%
29747-102		5	1.45	0.947	1.96	1.07	2.14	0.183	0.409	28.10%	15.47%
29747-103		5	1.72	1	2.44	1.3	2.72	0.259	0.579	33.64%	0.00%
Lead Summary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.359	0.278	0.44	0.302	0.456	0.0292	0.0652	18.16%	0.00%
29747-101		5	0.233	0.214	0.251	0.215	0.249	0.00662	0.0148	6.36%	35.21%
29747-102		5	0.261	0.221	0.301	0.224	0.295	0.0145	0.0324	12.40%	27.30%
29747-103		5	0.319	0.276	0.362	0.284	0.366	0.0155	0.0346	10.84%	11.14%
Mercury Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
•	Code RS	Count 5	Mean 0.011	95% LCL 0.00924	95% UCL 0.0128	Min 0.009	Max 0.012	Std Err 0.000632	Std Dev 0.00141	CV% 12.86%	%Effect
•											0.00%
29747-104 29747-101		5 5	0.011 0.0128	0.00924 0.0112	0.0128 0.0144	0.009 0.011	0.012 0.014	0.000632 0.000583	0.00141 0.0013	12.86% 10.19%	0.00% -16.36%
29747-104 29747-101 29747-102		5	0.011	0.00924	0.0128	0.009	0.012	0.000632	0.00141	12.86%	0.00%
29747-104 29747-101 29747-102 29747-103	RS	5 5 5	0.011 0.0128 0.0106	0.00924 0.0112 0.00992	0.0128 0.0144 0.0113	0.009 0.011 0.01	0.012 0.014 0.011	0.000632 0.000583 0.000245	0.00141 0.0013 0.000548	12.86% 10.19% 5.17%	0.00% -16.36% 3.64%
29747-102	RS	5 5 5	0.011 0.0128 0.0106	0.00924 0.0112 0.00992	0.0128 0.0144 0.0113	0.009 0.011 0.01	0.012 0.014 0.011	0.000632 0.000583 0.000245	0.00141 0.0013 0.000548	12.86% 10.19% 5.17%	-16.36% 3.64%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample	RS	5 5 5 5	0.011 0.0128 0.0106 0.0116	0.00924 0.0112 0.00992 0.0105	0.0128 0.0144 0.0113 0.0127	0.009 0.011 0.01 0.01	0.012 0.014 0.011 0.012	0.000632 0.000583 0.000245 0.0004	0.00141 0.0013 0.000548 0.000894	12.86% 10.19% 5.17% 7.71%	0.00% -16.36% 3.64% -5.45%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104	RS Code	5 5 5 5 Count	0.011 0.0128 0.0106 0.0116	0.00924 0.0112 0.00992 0.0105	0.0128 0.0144 0.0113 0.0127 95% UCL	0.009 0.011 0.01 0.01	0.012 0.014 0.011 0.012 Max	0.000632 0.000583 0.000245 0.0004	0.00141 0.0013 0.000548 0.000894 Std Dev	12.86% 10.19% 5.17% 7.71%	0.00% -16.36% 3.64% -5.45%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101	RS Code	5 5 5 5 Count	0.011 0.0128 0.0106 0.0116 Mean 0.443	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498	0.009 0.011 0.01 0.01 Min 0.369	0.012 0.014 0.011 0.012 Max 0.48	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045	12.86% 10.19% 5.17% 7.71% CV% 10.17%	0.00% -16.36% 3.64% -5.45% %Effect 0.00%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-102	RS Code	5 5 5 5 Count 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.44	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.488	0.009 0.011 0.01 0.01 .001 Min 0.369 0.391	0.012 0.014 0.011 0.012 Max 0.48 0.482	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0389	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-102 29747-103	RS Code	5 5 5 5 Count 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.44 0.407	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391 0.366	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.488 0.447	0.009 0.011 0.01 0.01 Min 0.369 0.391 0.366	0.012 0.014 0.011 0.012 Max 0.48 0.482 0.448	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174 0.0145	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0389 0.0324	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84% 7.97%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-102 29747-103 Zinc Summary	RS Code	5 5 5 5 Count 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.44 0.407	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391 0.366	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.488 0.447	0.009 0.011 0.01 0.01 Min 0.369 0.391 0.366	0.012 0.014 0.011 0.012 Max 0.48 0.482 0.448	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174 0.0145	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0389 0.0324	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84% 7.97%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13% 10.71%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-102 29747-103 Zinc Summary	Code RS	5 5 5 5 Count 5 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.444 0.407 0.395	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391 0.366 0.346	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.488 0.447 0.445	0.009 0.011 0.01 0.01 Min 0.369 0.391 0.366 0.34	0.012 0.014 0.011 0.012 Max 0.48 0.482 0.448 0.445	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174 0.0145 0.0179	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0389 0.0324 0.04	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84% 7.97% 10.12%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13% 10.71%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-103 Zinc Summary Sample 29747-104	Code RS	5 5 5 5 Count 5 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.44 0.407 0.395	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391 0.366 0.346	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.448 0.447 0.445	0.009 0.011 0.01 0.01 Min 0.369 0.391 0.366 0.34	0.012 0.014 0.011 0.012 Max 0.48 0.482 0.448 0.445	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174 0.0145 0.0179	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0389 0.0324 0.04	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84% 7.97% 10.12%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13% 10.71%
29747-104 29747-101 29747-102 29747-103 Nickel Summary Sample 29747-104 29747-101 29747-102 29747-103 Zinc Summary Sample	Code RS	5 5 5 5 Count 5 5 5 5	0.011 0.0128 0.0106 0.0116 Mean 0.443 0.44 0.407 0.395 Mean 9.64	0.00924 0.0112 0.00992 0.0105 95% LCL 0.387 0.391 0.366 0.346 95% LCL 8.22	0.0128 0.0144 0.0113 0.0127 95% UCL 0.498 0.448 0.447 0.445 95% UCL	0.009 0.011 0.01 0.01 Min 0.369 0.391 0.366 0.34 Min 8.6	0.012 0.014 0.011 0.012 Max 0.48 0.482 0.448 0.445 Max 11.1	0.000632 0.000583 0.000245 0.0004 Std Err 0.0201 0.0174 0.0145 0.0179 Std Err 0.512	0.00141 0.0013 0.000548 0.000894 Std Dev 0.045 0.0324 0.04 Std Dev 1.14	12.86% 10.19% 5.17% 7.71% CV% 10.17% 8.84% 7.97% 10.12% CV% 11.86%	0.00% -16.36% 3.64% -5.45% %Effect 0.00% 0.68% 8.13% 10.71% %Effect 0.00%

Report Date: 16 Jan-18 13:50 (p 3 of 3) **Test Code:** 29753Mn | 20-4848-9987

							Test Code:	29753Mn 20-4848-9987
Bioaccumulation	n Evaluatior	n - Metals -	Macoma					EnviroSystems, Inc.
Arsenic Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	2.09	2.16	2.45	2.42	1.82		
29747-101		1.76	1.99	2.55	2.18	2.33		
29747-102		2.38	2	1.55	1.71	1.43		
29747-103		1.58	2.01	2.26	2.11	1.91		
Cadmium Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.042	0.034	0.031	0.038	0.033		
29747-101		0.056	0.033	0.054	0.049	0.04		
29747-102		0.052	0.045	0.042	0.051	0.043		
29747-103		0.045	0.05	0.047	0.035	0.045		
Chromium Detai	il							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.392	0.227	0.497	0.306	0.479		
29747-101		0.264	0.627	0.287	0.334	0.318		
29747-102		0.4	0.329	0.263	0.318	0.421		
29747-103		0.226	0.327	0.432	0.25	0.364		
Copper Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	1.48	1.98	2.51	1.41	1.22		
29747-101		1.21	3.51	1.39	1.68	2.03		
29747-102		1.4	1.42	1.07	1.24	2.14		
29747-103		1.3	2.72	1.43	1.44	1.71		
Lead Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.33	0.302	0.395	0.456	0.312		
29747-101		0.249	0.227	0.225	0.247	0.215		
29747-102		0.294	0.295	0.238	0.254	0.224		
29747-103		0.286	0.366	0.325	0.284	0.334		
Mercury Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.012	0.012	0.01	0.009	0.012		
29747-101		0.014	0.011	0.012	0.014	0.013		
29747-102		0.01	0.011	0.011	0.011	0.01		
29747-103		0.012	0.012	0.012	0.01	0.012		
Nickel Detail				-				
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.457	0.369	0.433	0.48	0.474		
29747-101		0.475	0.391	0.482	0.435	0.415		
29747-102		0.448	0.427	0.366	0.406	0.386		
		0.34	0.373	0.445	0.408	0.41		
29747-103								
29747-103 Zinc Detail								
	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Zinc Detail	Code RS		Rep 2	Rep 3 8.68	Rep 4 10.6	Rep 5 8.6		
Zinc Detail Sample		Rep 1						
Zinc Detail Sample 29747-104		Rep 1 9.22	11.1	8.68	10.6	8.6		

28 day *Nereis virens*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports Trace Metals

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE WORM (Nereis virens)

PDS Reference Site

		•		•	
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	1.96	2.14	1.91	2.11	1.76
Cadmium	0.057	0.056	0.052	0.067	0.041
Chromium	0.057 J	0.057 J	0.047 J	0.056 J	0.051 J
Copper	1.27	1.20	1.12	1.18	1.03
Lead	0.382	0.382	0.312	0.406	0.273
Mercury	0.006 J	0.008 J	0.009 J	0.009 J	0.009 J
Nickel	0.199	0.122	0.152	0.259	0.158
Zinc	30.90	17.30	7.90	7.64	7.78

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

			Composite 1		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	1.59	1.79	1.71	1.65	1.45
Cadmium	0.043	0.062	0.043	0.029 J	0.036 J
Chromium	0.058 J	0.037 J	0.085 J	0.103 J	0.064 J
Copper	0.87	0.98	0.90	0.99	0.88
Lead	0.309	0.399	0.203	0.173	0.200
Mercury	0.003 U	0.004 U	0.003 U	0.003 U	0.003 U
Nickel	0.092 J	0.094 J	0.075 J	0.095	0.092 J
Zinc	6.14	6.98	6.00	31.40	7.61

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

			Composite 2		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
Metals (ug/g wet weight)					
Arsenic	1.60	1.56	1.70	1.72	1.59
Cadmium	0.038	0.031 J	0.046	0.033 J	0.038
Chromium	0.046 J	0.099 J	0.067 J	0.186 J	0.045 J
Copper	1.04	1.26	1.16	1.21	1.05
Lead	0.202	0.188	0.257	0.210	0.193
Mercury	0.003 U	0.004 U	0.004 U	0.004 U	0.003 U
Nickel	0.054 J	0.138	0.083 J	0.128	0.062 J
Zinc	15.30	8.75	32.10	6.30	21.20

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

					Composi	e 3				
CONTAMINANT	REP1 *	ł .	REP2	*	REP3	*	REP4	*	REP5	*
Metals (ug/g wet weight)										
Arsenic	1.61		1.58		1.46		1.69		1.70	
Cadmium	0.037 J	J	0.033	J	0.039	J	0.048		0.053	
Chromium	0.040 J	J	0.055	J	0.043	J	0.050	J	0.046	J
Copper	1.12		1.20		1.08		1.22		1.10	
Lead	0.190		0.194		0.191		0.276		0.213	
Mercury	0.004 L	J	0.004	U	0.004	U	0.004	U	0.003	U
Nickel	0.090 J	J	0.068	J	0.055	J	0.078	J	0.080	J
Zinc	6.17		6.39		27.20		24.40		7.04	

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

16 Jan-18 13:30 (p 1 of 1) Report Date:

Test Code/ID: 13-8607-6706/29754Nv

EnviroSystems, Inc. **Bioaccumulation Evaluation - Metals - Nereis virens**

Sample Code: 29754-000 Start Date: 07 Nov-17 Species: Nereis virens

Protocol: US ACE NED RIM (2004) End Date: 05 Dec-17 Sample Source: Chebeague Island FNP Material: Laboratory Control Sediment Sample Station: Laboratory Control (N.virens) Sample Date: 01 Nov-17

oumpro paron or				eratery cornier c	- Call 11 - Call	Jumpio Jum		31.11.01 (1.11.11.01.10)			
Sample	Rep	Pos	Body Burden	Arsenic	Cadmium	Chromiu m	Copper	Lead	Mercury	Nickel	Zinc
29747-104	1	1		1.96	0.057	0.057	1.27	0.382	0.006	0.199	30.9
29747-104	2	7		2.14	0.056	0.057	1.2	0.382	0.008	0.122	17.3
29747-104	3	12		1.91	0.052	0.047	1.12	0.312	0.009	0.152	7.9
29747-104	4	13		2.11	0.067	0.056	1.18	0.406	0.009	0.259	7.64
29747-104	5	17		1.76	0.041	0.051	1.03	0.273	0.009	0.158	7.78
29747-101	1	3		1.59	0.043	0.058	0.871	0.309	0.003	0.092	6.14
29747-101	2	6		1.79	0.062	0.037	0.98	0.399	0.004	0.094	6.98
29747-101	3	9		1.71	0.043	0.085	0.903	0.203	0.003	0.075	6
29747-101	4	16		1.65	0.029	0.103	0.985	0.173	0.003	0.095	31.4
29747-101	5	19		1.45	0.036	0.064	0.884	0.2	0.003	0.092	7.61
29747-102	1	2		1.6	0.038	0.046	1.04	0.202	0.003	0.054	15.3
29747-102	2	5		1.56	0.031	0.099	1.26	0.188	0.004	0.138	8.75
29747-102	3	11		1.7	0.046	0.067	1.16	0.257	0.004	0.083	32.1
29747-102	4	15		1.72	0.033	0.186	1.21	0.21	0.004	0.128	6.3
29747-102	5	20		1.59	0.038	0.045	1.05	0.193	0.003	0.062	21.2
29747-103	1	4		1.61	0.037	0.04	1.12	0.19	0.004	0.09	6.17
29747-103	2	8		1.58	0.033	0.055	1.2	0.194	0.004	0.068	6.39
29747-103	3	10		1.46	0.039	0.043	1.08	0.191	0.004	0.055	27.2
29747-103	4	14		1.69	0.048	0.05	1.22	0.276	0.004	0.078	24.4
29747-103	5	18		1.7	0.053	0.046	1.1	0.213	0.003	0.08	7.04

002-158-534-3 CETIS™ v1.9.3.0 Analyst:__ QA:_ Appendix A Page 110 of 408

Report Date: 16 Jan-18 14:04 (p 1 of 3) **Test Code:** 29754Nv | 13-8607-6706

Bioaccumulation Evaluation - Metals - Nereis virens

Test Code: 29/54Nv | 13-8607-6706

EnviroSystems, Inc.

Batch ID: 13-1955-3607 Test Type: Bioaccumulation - Metals Analyst: Nancy Roka Start Date: 07 Nov-17 US ACE NED RIM (2004) Diluent: Protocol: Not Applicable Brine: Ending Date: 05 Dec-17 Species: Nereis virens Not Applicable

Duration: 28d 0h **Source:** ARO - Aquatic Research Organisms, NH **Age:**

Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECOM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h		
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h		
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h		

Sample Code	Material Type	Sample Source	Station Location Lat/Long
29747-104	Reference sediment	Chebeague Island FNP	PDS Reference Sediment (
29747-101	Marine Sediment	Chebeague Island FNP	Composite 1 (Stations A,B)
29747-102	Marine Sediment	Chebeague Island FNP	Composite 2 (Stations C,D)
29747-103	Marine Sediment	Chebeague Island FNP	Composite 3 (Station F)

Single Compa	arison Summary			
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
19-0374-2492	Arsenic	Equal Variance t Two-Sample Test	0.9972	29747-101 passed arsenic
16-4093-2829	Arsenic	Equal Variance t Two-Sample Test	0.9990	29747-102 passed arsenic
20-8718-9108	Arsenic	Equal Variance t Two-Sample Test	0.9990	29747-103 passed arsenic
06-3734-9956	Cadmium	Equal Variance t Two-Sample Test	0.9394	29747-101 passed cadmium
08-9692-9909	Cadmium	Equal Variance t Two-Sample Test	0.9961	29747-102 passed cadmium
00-3153-8640	Cadmium	Equal Variance t Two-Sample Test	0.9729	29747-103 passed cadmium
12-9420-3449	Chromium	Unequal Variance t Two-Sample Test	0.1213	29747-101 passed chromium
03-2825-6424	Chromium	Unequal Variance t Two-Sample Test	0.2332	29747-102 passed chromium
06-8767-3081	Chromium	Unequal Variance t Two-Sample Test	0.1272	29747-102 passed chromium
11-3734-9781	Chromium	Equal Variance t Two-Sample Test	0.9633	29747-103 passed chromium
16-7219-5342	Copper	Equal Variance t Two-Sample Test	0.9995	29747-101 passed copper
09-3831-8315	Copper	Equal Variance t Two-Sample Test	0.6029	29747-102 passed copper
20-5789-5624	Copper	Equal Variance t Two-Sample Test	0.6237	29747-103 passed copper
05-6383-3821	Lead	Equal Variance t Two-Sample Test	0.9537	29747-101 passed lead
01-0101-6398	Lead	Equal Variance t Two-Sample Test	0.9995	29747-102 passed lead
18-0720-3044	Lead	Equal Variance t Two-Sample Test	0.9991	29747-103 passed lead
17-8027-5434	Mercury	Equal Variance t Two-Sample Test	1.0000	29747-101 passed mercury
07-5156-1906	Mercury	Wilcoxon Rank Sum Two-Sample Test	1.0000	29747-101 passed mercury
10-2864-6667	Mercury	Equal Variance t Two-Sample Test	1.0000	29747-102 passed mercury
10-3948-7517	Mercury	Wilcoxon Rank Sum Two-Sample Test	1.0000	29747-102 passed mercury
07-7584-2486	Mercury	Equal Variance t Two-Sample Test	1.0000	29747-103 passed mercury
11-7558-0737	Mercury	Wilcoxon Rank Sum Two-Sample Test	1.0000	29747-103 passed mercury
10-5495-9373	Nickel	Unequal Variance t Two-Sample Test	0.9895	29747-101 passed nickel
18-3584-4900	Nickel	Equal Variance t Two-Sample Test	0.9902	29747-102 passed nickel
17-5446-8554	Nickel	Equal Variance t Two-Sample Test	0.9986	29747-103 passed nickel
06-0312-0114	Zinc	Wilcoxon Rank Sum Two-Sample Test	0.9524	29747-101 passed zinc
08-6245-7510	Zinc	Equal Variance t Two-Sample Test	0.3592	29747-102 passed zinc
16-6462-5818	Zinc	Wilcoxon Rank Sum Two-Sample Test	0.8452	29747-103 passed zinc

Report Date: 16 Jan-18 14:04 (p 2 of 3) **Test Code:** 29754Nv | 13-8607-6706

							Tes	t Code:	29	9754Nv 13	s-8607-670
Bioaccumulatio	n Evaluatior	n - Metals - I	Nereis virer	ns						EnviroSys	stems, Inc
Arsenic Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	1.98	1.78	2.17	1.76	2.14	0.0693	0.155	7.84%	0.00%
29747-101		5	1.64	1.48	1.8	1.45	1.79	0.0575	0.129	7.85%	17.11%
29747-102		5	1.63	1.55	1.72	1.56	1.72	0.0319	0.0713	4.36%	17.31%
29747-103		5	1.61	1.49	1.73	1.46	1.7	0.0435	0.0973	6.05%	18.62%
Cadmium Sumn	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.0546	0.0429	0.0663	0.041	0.067	0.0042	0.0094	17.21%	0.00%
29747-101		5	0.0426	0.0273	0.0579	0.029	0.062	0.0055	0.0123	28.87%	21.98%
29747-102		5	0.0372	0.03	0.0444	0.031	0.046	0.0026	0.00581	15.61%	31.87%
29747-103		5	0.042	0.0318	0.0522	0.033	0.053	0.00369	0.00825	19.63%	23.08%
Chromium Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.0536	0.0481	0.0591	0.047	0.057	0.00199	0.00445	8.30%	0.00%
29747-101		5	0.0694	0.0379	0.101	0.037	0.103	0.0114	0.0254	36.60%	-29.48%
29747-102		5	0.0886	0.0157	0.161	0.045	0.186	0.0262	0.0587	66.24%	-65.30%
29747-103		5	0.0468	0.0395	0.0541	0.04	0.055	0.00263	0.00589	12.59%	12.69%
Copper Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	1.16	1.05	1.27	1.03	1.27	0.0404	0.0903	7.78%	0.00%
29747-101		5	0.925	0.857	0.992	0.871	0.985	0.0242	0.0541	5.85%	20.29%
29747-102		5	1.14	1.02	1.26	1.04	1.26	0.0434	0.0971	8.49%	1.38%
29747-103		5	1.14	1.07	1.22	1.08	1.22	0.0279	0.0623	5.44%	1.38%
Lead Summary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.351	0.281	0.421	0.273	0.406	0.0251	0.056	15.96%	0.00%
29747-101		5	0.257	0.139	0.375	0.173	0.399	0.0425	0.095	36.99%	26.84%
29747-102		5	0.21	0.176	0.244	0.188	0.257	0.0123	0.0276	13.14%	40.17%
29747-103		5	0.213	0.167	0.258	0.19	0.276	0.0163	0.0365	17.17%	39.37%
Mercury Summa	ary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.0082	0.00658	0.00982	0.006	0.009	0.000583	0.0013	15.90%	0.00%
29747-101		5	0.0032	0.00264	0.00376	0.003	0.004	0.0002	0.000447	13.98%	60.98%
29747-102		5	0.0036	0.00292	0.00428	0.003	0.004	0.000245	0.000548	15.21%	56.10%
29747-103		5	0.0038	0.00324	0.00436	0.003	0.004	0.0002	0.000447	11.77%	53.66%
Nickel Summary	y										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.178	0.112	0.244	0.122	0.259	0.0237	0.0529	29.75%	0.00%
29747-101		5	0.0896	0.0793	0.0999	0.075	0.095	0.0037	0.00826	9.22%	49.66%
29747-102		5	0.093	0.0456	0.14	0.054	0.138	0.0171	0.0382	41.06%	47.75%
29747-103		5	0.0742	0.0577	0.0907	0.055	0.09	0.00594	0.0133	17.89%	58.31%
Zinc Summary											
-		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
	Code										
29747-104	RS RS	5	14.3	1.7	26.9	7.64	30.9	4.54	10.2	70.98%	0.00%
Sample 29747-104 29747-101					26.9 25.4	7.64 6	30.9 31.4	4.54 4.95	10.2 11.1	70.98% 95.25%	
29747-104		5	14.3	1.7							0.00% 18.72% -16.96%

Report Date: Test Code: 16 Jan-18 14:04 (p 3 of 3) 29754Nv | 13-8607-6706

Bioaccumulation	Evaluation	n - Metals -	Nereis vire	ns			EnviroSystems, Inc.
Arsenic Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	1.96	2.14	1.91	2.11	1.76	
29747-101		1.59	1.79	1.71	1.65	1.45	
29747-102		1.6	1.56	1.7	1.72	1.59	
29747-103		1.61	1.58	1.46	1.69	1.7	
Cadmium Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.057	0.056	0.052	0.067	0.041	
29747-101		0.043	0.062	0.043	0.029	0.036	
29747-102		0.038	0.031	0.046	0.033	0.038	
29747-103		0.037	0.033	0.039	0.048	0.053	
Chromium Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.057	0.057	0.047	0.056	0.051	
29747-101		0.058	0.037	0.085	0.103	0.064	
29747-102		0.046	0.099	0.067	0.186	0.045	
29747-103		0.04	0.055	0.043	0.05	0.046	
Copper Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	1.27	1.2	1.12	1.18	1.03	
29747-101		0.871	0.98	0.903	0.985	0.884	
29747-102		1.04	1.26	1.16	1.21	1.05	
29747-103		1.12	1.2	1.08	1.22	1.1	
Lead Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.382	0.382	0.312	0.406	0.273	
29747-101		0.309	0.399	0.203	0.173	0.2	
29747-102		0.202	0.188	0.257	0.21	0.193	
29747-103		0.19	0.194	0.191	0.276	0.213	
Mercury Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.006	0.008	0.009	0.009	0.009	
29747-101		0.003	0.004	0.003	0.003	0.003	
29747-102		0.003	0.004	0.004	0.004	0.003	
29747-103		0.004	0.004	0.004	0.004	0.003	
Nickel Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.199	0.122	0.152	0.259	0.158	
29747-101		0.092	0.094	0.075	0.095	0.092	
29747-102		0.054	0.138	0.083	0.128	0.062	
29747-103		0.09	0.068	0.055	0.078	0.08	
Zinc Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	30.9	17.3	7.9	7.64	7.78	
29747-101		6.14	6.98	6	31.4	7.61	
29747-102		15.3	8.75	32.1	6.3	21.2	
23141-102							

28 day *Macoma nasuta*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports PCB Congeners

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE CLAM (Macoma nasuta)

PDS Reference Site

CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 18	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 28	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 44	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 52	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 66	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 87	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 101	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 105	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 118	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 128	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 138	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 153	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 170	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 180	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 187	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 195	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 206	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
PCB 209	0.942	U	0.922	U	0.909	U	0.866	U	0.888	U
Total PCBs	35.80		35.04		34.54		32.91		33.74	

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

					Composit	e 1				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 18	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 28	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 44	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 52	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 66	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 87	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 101	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 105	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 118	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 128	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 138	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 153	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 170	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 180	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 187	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 195	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 206	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
PCB 209	0.86	U	0.954	U	0.929	U	0.882	U	0.844	U
Total PCBs	32.68		36.25		35.30		33.52		32.07	

^{* =} Qualifiers

U Analyte not detected; below Με

J Analyte estimated; detection be

NA Not Analyzed

					Composit	e 2				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 18	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 28	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 44	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 52	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 66	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 87	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 101	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 105	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 118	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 128	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 138	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 153	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 170	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 180	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 187	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 195	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 206	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
PCB 209	0.882	U	0.924	U	0.852	U	0.921	U	0.928	U
Total PCBs	33.52		35.11		32.38		35.00		35.26	

^{* =} Qualifiers

 $U \quad \text{ Analyte not detected; below } M \varepsilon$

J Analyte estimated; detection be

NA Not Analyzed

					Composit	e 3				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 18	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 28	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 44	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 52	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 66	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 87	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 101	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 105	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 118	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 128	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 138	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 153	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 170	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 180	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 187	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 195	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 206	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
PCB 209	0.906	U	0.924	U	0.891	U	0.938	U	0.888	U
Total PCBs	34.43		35.11		33.86		35.64		33.74	

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

Test Code/ID:

16 Jan-18 13:31 (p 1 of 1) 03-8925-3890/29753Mn

Bioaccumulation Evaluation - PCB Congeners - Macoma EnviroSystems, Inc.

Sample Code: 29753-000 Start Date: 07 Nov-17 Species: Macoma nasuta

Protocol: US ACE NED RIM (2004) End Date: 05 Dec-17 Sample Source: Chebeague Island FNP Material: Laboratory Control Sediment Sample Station: Laboratory Control (M.nasuta) Sample Date: 01 Nov-17

Commis	Ban	Dec	PBC 008	PCB 018	PCB 028	PCB 044	PCB 052	PCB 066	PCB 101	PCB 105	PCB 118	PCB 128	PCB 138	PCB 153	PCB 170	PCB 180	PCB 187	PCB 195	PCB 206	PCB 20	PCB 087
Sample 29747-104	Rep 1	Pos 2	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942
29747-104	2	8	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922
29747-104	3	10	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909	0.909
29747-104	4	13	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866
29747-104	5	19	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888
29747-101	1	3	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
29747-101	2	5	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954	0.954
29747-101	3	11	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929
29747-101	4	16	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882
29747-101	5	18	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
29747-102	1	4	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882
29747-102	2	7	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924
29747-102	3	12	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852	0.852
29747-102	4	15	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921
29747-102	5	20	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928	0.928
29747-103	1	1	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906	0.906
29747-103	2	6	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924
29747-103	3	9	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891	0.891
29747-103	4	14	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938
29747-103	5	17	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888

CETIS™ v1.9.3.0 002-158-534-3 Analyst:___ QA:_ Appendix A Page 147 of 408

Report Date: 16 Jan-18 14:00 (p 1 of 8)

Test Code: 29753Mn | 03-8925-3890

Bioaccumulation Evaluation - PCB Congeners - Macoma EnviroSystems, Inc.

Batch ID: 16-6633-8226 Test Type: Bioaccumulation - PCBs - Mn Analyst: Nancy Roka Start Date: 07 Nov-17 US ACE NED RIM (2004) Diluent: Not Applicable Protocol: Brine: Ending Date: 05 Dec-17 Species: Macoma nasuta Not Applicable

Duration: 28d 0h **Source:** ARO - Aquatic Research Organisms, NH **Age:**

Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECOM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h		
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h		
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h		

Sample Code	Material Type	Sample Source	Station Location Lat/Long
29747-104	Reference sediment	Chebeague Island FNP	PDS Reference Sediment (
29747-101	Marine Sediment	Chebeague Island FNP	Composite 1 (Stations A,B)
29747-102	Marine Sediment	Chebeague Island FNP	Composite 2 (Stations C,D)
29747-103	Marine Sediment	Chebeague Island FNP	Composite 3 (Station F)

Single Compa	arison Summary			
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
15-4134-5199	PCB 008	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 008
19-9786-3228	PCB 008	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 008
19-1025-1492	PCB 008	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 008
18-5598-9475	PCB 018	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 018
11-5677-2692	PCB 018	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 018
11-5311-5937	PCB 018	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 018
20-4352-8728	PCB 028	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 028
10-6087-7542	PCB 028	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 028
02-4051-1606	PCB 028	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 028
18-5867-8719	PCB 044	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 044
05-6703-7506	PCB 044	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 044
12-4232-5094	PCB 044	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 044
04-9354-2727	PCB 052	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 052
19-0480-9798	PCB 052	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 052
19-7754-2384	PCB 052	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 052
21-1159-5352	PCB 066	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 066
02-2094-7664	PCB 066	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 066
19-2865-9970	PCB 066	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 066
18-7295-0993	PCB 087	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 087
14-0286-3274	PCB 087	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 087
03-7719-9454	PCB 087	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 087
05-0843-9357	PCB 101	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 101
06-9911-7614	PCB 101	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 101
08-3872-7726	PCB 101	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 101
05-8521-4292	PCB 105	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 105
13-3140-8462	PCB 105	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 105
11-3770-9045	PCB 105	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 105
13-9667-2016	PCB 118	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 118
00-7686-6055	PCB 118	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 118
19-7048-6013	PCB 118	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 118
01-0652-7990	PCB 128	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 128
15-5823-2637	PCB 128	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 128
20-9018-8079	PCB 128	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 128
05-0514-6664	PCB 138	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 138
17-4291-9874	PCB 138	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 138
06-8417-0767	PCB 138	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 138
00-8074-3800	PCB 153	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 153

Report Date: 16 Jan-18 14:00 (p 2 of 8) **Test Code:** 29753Mn | 03-8925-3890

			1631	23733WIT 03 0323 3030
Bioaccumula	tion Evaluation - PCB Co	ngeners - Macoma		EnviroSystems, Inc.
Single Compa	arison Summary			
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
14-5317-1734	PCB 153	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 153
08-3584-0258	PCB 153	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 153
02-6857-0936	PCB 170	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 170
15-3285-6836	PCB 170	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 170
18-8033-7494	PCB 170	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 170
07-1498-1503	PCB 180	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 180
10-0073-9098	PCB 180	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 180
16-7159-4192	PCB 180	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 180
16-0946-9423	PCB 187	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 187
02-9485-9083	PCB 187	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 187
13-3483-8333	PCB 187	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 187
07-3176-7276	PCB 195	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 195
18-4891-5412	PCB 195	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 195
14-4927-8910	PCB 195	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 195
15-0079-7870	PCB 206	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 206
11-7289-2452	PCB 206	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 206
07-5653-7730	PCB 206	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 206
10-1062-4636	PCB 209	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pcb 209
11-6451-4976	PCB 209	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pcb 209
10-6069-2513	PCB 209	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pcb 209

Report Date: Test Code: 16 Jan-18 14:00 (p 3 of 8) 29753Mn | 03-8925-3890

	Evaluation	n - PCB Con	igeners - M	acoma						EnviroSy	stems, In
PCB 008 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL		Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 018 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 028 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-104		5	0.894	0.836	0.951	0.844	0.954	0.0132	0.0293	5.20%	1.28%
29747-101		5	0.894	0.86	0.943	0.852	0.934	0.0208	0.0404	3.69%	0.44%
29747-102 29747-103		5 5	0.909	0.883	0.936	0.888	0.928	0.0149	0.0332	2.36%	-0.44%
PCB 044 Summa						0.000	0.000	0.00000	0.0211	2.0070	0.117
	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
Sample 29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
	KS										
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 052 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 066 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 087 Summa	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 101 Summa	ry										
	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
Sample	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
-			0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-104		5	0.694								
Sample 29747-104 29747-101 29747-102		5 5	0.894	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%

Report Date: 16 Jan-18 14:00 (p 4 of 8) **Test Code:** 29753Mn | 03-8925-3890

PCB 105 Sumn	narv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 118 Sumn	narv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 128 Sumn	narv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101	· · · ·	5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 138 Sumn	narv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 153 Sumn	narv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 170 Sumn	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 180 Sumn	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%
PCB 187 Sumn	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%
		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%
29747-101		_	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%
29747-101 29747-102		5	0.301	0.00	0.0.0	0.002				0.0070	, .

CETIS Summary Report

Report Date: 16 Jan-18 14:00 (p 5 of 8) **Test Code:** 29753Mn | 03-8925-3890

									۷.	297331011 03-0923-3090			
Bioaccumulation	on Evaluation	n - PCB Con	geners - M	acoma					EnviroSy	stems, Inc.			
PCB 195 Summ	nary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%		
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%		
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%		
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%		
PCB 206 Summ	nary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%		
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%		
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%		
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%		
PCB 209 Summ	nary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
29747-104	RS	5	0.905	0.869	0.942	0.866	0.942	0.0132	0.0295	3.26%	0.00%		
29747-101		5	0.894	0.836	0.951	0.844	0.954	0.0208	0.0464	5.20%	1.28%		
29747-102		5	0.901	0.86	0.943	0.852	0.928	0.0149	0.0332	3.69%	0.44%		
29747-103		5	0.909	0.883	0.936	0.888	0.938	0.00959	0.0214	2.36%	-0.44%		

Report Date: 16 Jan-18 14:00 (p 6 of 8) **Test Code:** 29753Mn | 03-8925-3890

Bioaccumulation	Evaluation	n - PCB Cor	ngeners - M	acoma			 EnviroSystems, Inc.
PCB 008 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 018 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 028 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 044 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 052 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 066 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 087 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 101 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
<u> </u>							

Report Date: 16 Jan-18 14:00 (p 7 of 8) **Test Code:** 29753Mn | 03-8925-3890

Bioaccumulation	Evaluation	1 - PCB Cor	ngeners - M	acoma			EnviroSystems, In
PCB 105 Detail				_			
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103 		0.906	0.924	0.891	0.938	0.888	
PCB 118 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 128 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 138 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 153 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 170 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 180 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
29747-103		0.906	0.924	0.891	0.938	0.888	
PCB 187 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.942	0.922	0.909	0.866	0.888	
29747-101		0.86	0.954	0.929	0.882	0.844	
29747-102		0.882	0.924	0.852	0.921	0.928	
00							
29747-103		0.906	0.924	0.891	0.938	0.888	

CETIS Summary Report

29747-101

29747-102

29747-103

29753Mn | 03-8925-3890 **Test Code:** Bioaccumulation Evaluation - PCB Congeners - Macoma EnviroSystems, Inc. PCB 195 Detail Sample Rep 1 Code Rep 2 Rep 3 Rep 4 Rep 5 29747-104 RS 0.942 0.922 0.909 0.866 0.888 29747-101 0.86 0.954 0.929 0.882 0.844 29747-102 0.882 0.924 0.852 0.921 0.928 29747-103 0.906 0.924 0.891 0.938 0.888 PCB 206 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 29747-104 RS 0.942 0.922 0.888 0.909 0.866 29747-101 0.954 0.86 0.929 0.882 0.844 29747-102 0.882 0.924 0.852 0.921 0.928 29747-103 0.906 0.924 0.891 0.938 0.888 PCB 209 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 29747-104 RS 0.942 0.922 0.909 0.866 0.888

0.882

0.921

0.938

0.844

0.928

0.888

0.954

0.924

0.924

0.929

0.852

0.891

0.86

0.882

0.906

Report Date:

16 Jan-18 14:00 (p 8 of 8)

28 day *Nereis virens*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports PCB Congeners

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE WORM (Nereis virens)

PDS	Reference	Site

CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.994	U	0.858	U	0.89	U	0.921	U	2.16	
PCB 18	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 28	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 44	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 52	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 66	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 87	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 101	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 105	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 118	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 128	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 138	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 153	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 170	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 180	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 187	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 195	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 206	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
PCB 209	0.994	U	0.858	U	0.89	U	0.921	U	0.843	U
Total PCBs	37.77		32.60		33.82		35.00		34.67	

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

					Composit	e 1				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.899	U	0.904	U	1.9		0.907	U	0.975	U
PCB 18	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 28	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 44	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 52	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 66	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 87	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 101	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 105	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 118	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 128	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 138	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 153	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 170	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 180	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 187	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 195	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 206	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
PCB 209	0.899	U	0.904	U	0.865	U	0.907	U	0.975	U
Total PCBs	34.16		34.35		34.94		34.47		37.05	

^{* =} Qualifiers

U Analyte not detected; below Με

J Analyte estimated; detection be

NA Not Analyzed

					Composit	e 2				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 18	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 28	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 44	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 52	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 66	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 87	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 101	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 105	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 118	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 128	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 138	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 153	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 170	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 180	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 187	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 195	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 206	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
PCB 209	0.866	U	0.873	U	0.938	U	0.885	U	0.871	U
Total PCBs	32.91		33.17		35.64		33.63		33.10	

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

					Composit	e 3				
CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PCB Congeners (ng/g wet wt.)										
PCB 8	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 18	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 28	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 44	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 52	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 66	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 87	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 101	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 105	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 118	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 128	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 138	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 153	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 170	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 180	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 187	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 195	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 206	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
PCB 209	0.882	U	0.926	U	0.865	U	0.942	U	0.971	U
Total PCBs	33.52		35.19		32.87		35.80		36.90	

^{* =} Qualifiers

U Analyte not detected; below M ϵ

J Analyte estimated; detection be

NA Not Analyzed

Report Date: Test Code/ID:

16 Jan-18 13:33 (p 1 of 1) 13-4666-5815/29754Nv

Bioaccumulation Evaluation - PCB Congeners - Nereis EnviroSystems, Inc.

Start Date: 07 Nov-17 Species: Nereis virens Sample Code: 29754-000

End Date:05 Dec-17Protocol:US ACE NED RIM (2004)Sample Source:Chebeague Island FNPSample Date:01 Nov-17Material:Laboratory Control SedimentSample Station:Laboratory Control (N.virens)

	- in the second of the second																				
Sample	Rep	Pos	PCB 008	PCB 018	PCB 028	PCB 044	PCB 052	PCB 066	PCB 101	PCB 105	PCB 118	PCB 128	PCB 138	PCB 153	PCB 170	PCB 180	PCB 187	PCB 195	PCB 206	PCB 209	PCB 087
29747-104	1	1	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994
29747-104	2	7	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858	0.858
29747-104	3	9	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
29747-104	4	14	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921	0.921
29747-104	5	18	2.16	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843
29747-101	1	3	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899	0.899
29747-101	2	8	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904	0.904
29747-101	3	11	1.9	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865
29747-101	4	16	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907	0.907
29747-101	5	19	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.975
29747-102	1	4	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866
29747-102	2	6	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873	0.873
29747-102	3	12	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938	0.938
29747-102	4	13	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885	0.885
29747-102	5	20	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871	0.871
29747-103	1	2	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882	0.882
29747-103	2	5	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926	0.926
29747-103	3	10	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865	0.865
29747-103	4	15	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942	0.942
29747-103	5	17	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971	0.971

002-158-534-3 CETIS™ v1.9.3.0 Analyst:____ QA:____ Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. Appendix A Page 218 of 408

Report Date: 16 Jan-18 14:12 (p 1 of 8) **Test Code:** 29754Nv | 13-4666-5815

Test Code: 29754Nv | 13-4666-5815

Bioaccumulation Evaluation - PCB Congeners - Nereis EnviroSystems, Inc.

Batch ID: 04-2958-1512 Test Type: Bioaccumlation - PCBs - Nv Analyst: Nancy Roka Start Date: 07 Nov-17 Protocol: US ACE NED RIM (2004) Diluent: Not Applicable Brine: Ending Date: 05 Dec-17 Species: Nereis virens Not Applicable

Duration: 28d 0h **Source:** ARO - Aquatic Research Organisms, NH **Age:**

Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECOM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h		
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h		
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h		

Sample Code	Material Type	Sample Source	Station Location Lat/Long
29747-104	Reference sediment	Chebeague Island FNP	PDS Reference Sediment (
29747-101	Marine Sediment	Chebeague Island FNP	Composite 1 (Stations A,B)
29747-102	Marine Sediment	Chebeague Island FNP	Composite 2 (Stations C,D)
29747-103	Marine Sediment	Chebeague Island FNP	Composite 3 (Station F)

Single Compa	arison Summary			
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
18-9420-1415	PCB 008	Wilcoxon Rank Sum Two-Sample Test	0.5000	29747-101 passed pcb 008
16-1367-8070	PCB 008	Equal Variance t Two-Sample Test	0.8211	29747-102 passed pcb 008
05-1455-6255	PCB 008	Wilcoxon Rank Sum Two-Sample Test	0.8889	29747-102 passed pcb 008
04-9245-4827	PCB 008	Equal Variance t Two-Sample Test	0.4835	29747-103 passed pcb 008
11-5214-3201	PCB 008	Wilcoxon Rank Sum Two-Sample Test	0.6548	29747-103 passed pcb 008
03-5509-2612	PCB 018	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 018
01-0650-2417	PCB 018	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 018
14-0527-5109	PCB 018	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 018
15-8537-2316	PCB 028	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 028
01-2058-9853	PCB 028	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 028
15-8187-9135	PCB 028	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 028
14-1584-6916	PCB 044	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 044
02-3973-5213	PCB 044	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 044
06-8430-7172	PCB 044	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 044
08-0196-2933	PCB 052	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 052
17-4671-5348	PCB 052	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 052
19-3332-7917	PCB 052	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 052
13-4446-6240	PCB 066	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 066
14-5804-8906	PCB 066	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 066
20-6577-5784	PCB 066	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 066
06-5168-1027	PCB 087	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 087
04-0406-7075	PCB 087	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 087
11-5628-5359	PCB 087	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 087
15-9927-4996	PCB 101	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 101
00-3173-8434	PCB 101	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 101
16-0665-5019	PCB 101	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 101
11-3911-6736	PCB 105	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 105
17-8667-3276	PCB 105	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 105
08-7983-6396	PCB 105	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 105
20-5749-5974	PCB 118	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 118
16-5121-5230	PCB 118	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 118
11-6611-0836	PCB 118	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 118
01-7122-7863	PCB 128	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 128
09-2813-1130	PCB 128	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 128
14-7833-4211	PCB 128	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 128
11-5002-5815	PCB 138	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 138
19-4705-3018	PCB 138	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 138

Report Date: 16 Jan-18 14:12 (p 2 of 8) **Test Code:** 29754Nv | 13-4666-5815

Bioaccumula	tion Evaluation - PCB Co	ongeners - Nereis		EnviroSystems, Inc.
Single Compa	arison Summary			
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result
17-1892-2195	PCB 138	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 138
17-0525-7289	PCB 153	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 153
07-7916-8410	PCB 153	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 153
11-5851-9673	PCB 153	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 153
21-3542-4854	PCB 170	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 170
06-6034-9384	PCB 170	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 170
09-2683-4830	PCB 170	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 170
08-2421-9752	PCB 180	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 180
01-2773-2214	PCB 180	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 180
07-3655-4284	PCB 180	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 180
10-8103-6499	PCB 187	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 187
05-3223-1752	PCB 187	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 187
09-1344-7697	PCB 187	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 187
17-7262-8945	PCB 195	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 195
04-7710-5766	PCB 195	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 195
04-7677-8016	PCB 195	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 195
09-0933-3063	PCB 206	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 206
15-8515-4600	PCB 206	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 206
08-8000-3689	PCB 206	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 206
09-2082-7824	PCB 209	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pcb 209
15-3536-3891	PCB 209	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pcb 209
08-3485-7341	PCB 209	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pcb 209

Report Date: 16 Jan-18 14:12 (p 3 of 8) **Test Code:** 29754Nv | 13-4666-5815

Bioaccumulation	n Evaluation	n - PCB Con	geners - N	ereis						EnviroSys	stems, Inc.
PCB 008 Summa	nry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	1.16	0.471	1.86	0.858	2.16	0.25	0.559	47.98%	0.00%
29747-101		5	1.12	0.572	1.66	0.899	1.9	0.196	0.439	39.29%	4.09%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	23.87%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	21.24%
PCB 018 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 028 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 044 Summa	nry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 052 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 066 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 087 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%
PCB 101 Summa	ıry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%

Report Date: 16 Jan-18 14:12 (p 4 of 8) **Test Code:** 29754Nv | 13-4666-5815

Bioaccumulation Evaluation - PCB Congeners - Nereis EnviroSystems, Inc. PCB 105 Summary %Effect Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 5 RS 0.901 6.65% 29747-104 0.827 0.976 0.843 0.994 0.0268 0.06 0.00% 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 118 Summary Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Sample 5 29747-104 RS 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 128 Summary Code 95% UCL Min Std Err Std Dev CV% %Effect Sample Count Mean 95% LCL Max 29747-104 RS 5 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 138 Summary 95% LCL Code 95% UCL Min Std Dev CV% %Effect Sample Count Mean Max Std Err 29747-104 RS 0.901 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 5 0.827 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 153 Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 5 29747-104 RS 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 5 29747-101 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 3.34% 29747-102 5 0.85 1.62% 0.887 0.923 0.866 0.938 0.0132 0.0296 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 170 Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 29747-104 RS 5 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 29747-101 5 0.91 0.86 0.960.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 180 Summary CV% Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev %Effect 29747-104 RS 5 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 29747-102 5 0.887 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 5 29747-103 0.917 0.863 0.971 0.865 0.971 0.0194 0.0434 4.74% -1.78% PCB 187 Summary Std Err CV% Code Count 95% LCL 95% UCL Min Std Dev %Effect Sample Mean Max 29747-104 RS 5 0.901 0.827 0.976 0.843 0.994 0.0268 0.06 6.65% 0.00% 29747-101 5 0.91 0.86 0.96 0.865 0.975 0.0179 0.04 4.40% -0.98% 5 0.887 29747-102 0.85 0.923 0.866 0.938 0.0132 0.0296 3.34% 1.62% 29747-103 5 0.917 0.863 0.865 0.971 0.0194 0.0434 4.74% -1.78% 0.971

CETIS Summary Report

Report Date: 16 Jan-18 14:12 (p 5 of 8) **Test Code:** 29754Nv | 13-4666-5815

								t oode.	20704111 10 4000 0010			
Bioaccumulation	on Evaluation	n - PCB Con	geners - N	ereis						EnviroSy	stems, Inc.	
PCB 195 Summ	nary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%	
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%	
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%	
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%	
PCB 206 Summ	nary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%	
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%	
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%	
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%	
PCB 209 Summ	nary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
29747-104	RS	5	0.901	0.827	0.976	0.843	0.994	0.0268	0.06	6.65%	0.00%	
29747-101		5	0.91	0.86	0.96	0.865	0.975	0.0179	0.04	4.40%	-0.98%	
29747-102		5	0.887	0.85	0.923	0.866	0.938	0.0132	0.0296	3.34%	1.62%	
29747-103		5	0.917	0.863	0.971	0.865	0.971	0.0194	0.0434	4.74%	-1.78%	

Report Date: 16 Jan-18 14:12 (p 6 of 8) **Test Code:** 29754Nv | 13-4666-5815

29747-104 29747-101 29747-102 29747-103 PCB 018 Detail Sample 29747-104 29747-101 29747-102 29747-103 PCB 028 Detail Sample	Code RS Code RS	Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994	Rep 2 0.858 0.904 0.873 0.926 Rep 2 0.858 0.904 0.873 0.926	Rep 3 0.89 1.9 0.938 0.865 Rep 3 0.89 0.865 0.938 0.865	Rep 4 0.921 0.907 0.885 0.942 Rep 4 0.921 0.907 0.885 0.942	Rep 5 2.16 0.975 0.871 0.971 Rep 5 0.843 0.975 0.871	EnviroSystems, In
Sample 29747-104 29747-101 29747-102 29747-103 PCB 018 Detail Sample 29747-104 29747-101 29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-104 29747-104	Code RS	0.994 0.899 0.866 0.882 Rep 1 0.994 0.866 0.882 Rep 1 0.994	0.858 0.904 0.873 0.926 Rep 2 0.858 0.904 0.873 0.926	0.89 1.9 0.938 0.865 Rep 3 0.89 0.865 0.938	0.921 0.907 0.885 0.942 Rep 4 0.921 0.907 0.885	2.16 0.975 0.871 0.971 Rep 5 0.843 0.975	
29747-104 29747-104 29747-101 29747-102 29747-103 PCB 018 Detail Sample 29747-104 29747-101 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-104 29747-104 29747-101	Code RS	0.994 0.899 0.866 0.882 Rep 1 0.994 0.866 0.882 Rep 1 0.994	0.858 0.904 0.873 0.926 Rep 2 0.858 0.904 0.873 0.926	0.89 1.9 0.938 0.865 Rep 3 0.89 0.865 0.938	0.921 0.907 0.885 0.942 Rep 4 0.921 0.907 0.885	2.16 0.975 0.871 0.971 Rep 5 0.843 0.975	
29747-101 29747-102 29747-103 PCB 018 Detail Sample 29747-104 29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-101 29747-101	Code RS	0.899 0.866 0.882 Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994	0.904 0.873 0.926 Rep 2 0.858 0.904 0.873 0.926	1.9 0.938 0.865 Rep 3 0.89 0.865 0.938	0.907 0.885 0.942 Rep 4 0.921 0.907 0.885	0.975 0.871 0.971 Rep 5 0.843 0.975	
29747-102 29747-103 PCB 018 Detail Sample 29747-104 29747-101 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-101 29747-102	RS Code	0.866 0.882 Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994	0.873 0.926 Rep 2 0.858 0.904 0.873 0.926	0.938 0.865 Rep 3 0.89 0.865 0.938	0.885 0.942 Rep 4 0.921 0.907 0.885	0.871 0.971 Rep 5 0.843 0.975	
29747-103 PCB 018 Detail Sample 29747-104 29747-101 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-101	RS Code	0.882 Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994	0.926 Rep 2 0.858 0.904 0.873 0.926	0.865 Rep 3 0.89 0.865 0.938	0.942 Rep 4 0.921 0.907 0.885	0.971 Rep 5 0.843 0.975	
PCB 018 Detail Sample 29747-104 29747-101 29747-103 PCB 028 Detail Sample 29747-104 29747-101 29747-101	RS Code	Rep 1 0.994 0.899 0.866 0.882 Rep 1 0.994	Rep 2 0.858 0.904 0.873 0.926	Rep 3 0.89 0.865 0.938	Rep 4 0.921 0.907 0.885	Rep 5 0.843 0.975	
Sample 29747-104 29747-101 29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-104 29747-101	RS Code	0.994 0.899 0.866 0.882 Rep 1	0.858 0.904 0.873 0.926	0.89 0.865 0.938	0.921 0.907 0.885	0.843 0.975	
29747-104 29747-101 29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-101 29747-102	RS Code	0.994 0.899 0.866 0.882 Rep 1	0.858 0.904 0.873 0.926	0.89 0.865 0.938	0.921 0.907 0.885	0.843 0.975	
29747-101 29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-101 29747-102	Code	0.899 0.866 0.882 Rep 1	0.904 0.873 0.926	0.865 0.938	0.907 0.885	0.975	
29747-102 29747-103 PCB 028 Detail Sample 29747-104 29747-101 29747-102		0.866 0.882 Rep 1 0.994	0.873 0.926	0.938	0.885		
29747-103 PCB 028 Detail Sample 29747-104 29747-101 29747-102		0.882 Rep 1 0.994	0.926			0.871	
PCB 028 Detail Sample 29747-104 29747-101 29747-102		Rep 1 0.994		0.865	0.942		
Sample 29747-104 29747-101 29747-102		0.994	Rep 2			0.971	
29747-104 29747-101 29747-102		0.994	Rep 2				
29747-101 29747-102	RS			Rep 3	Rep 4	Rep 5	
29747-102			0.858	0.89	0.921	0.843	
		0.899	0.904	0.865	0.907	0.975	
29747-103		0.866	0.873	0.938	0.885	0.871	
		0.882	0.926	0.865	0.942	0.971	
PCB 044 Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.994	0.858	0.89	0.921	0.843	
29747-101		0.899	0.904	0.865	0.907	0.975	
29747-102		0.866	0.873	0.938	0.885	0.871	
29747-103		0.882	0.926	0.865	0.942	0.971	
PCB 052 Detail							
-	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
	RS	0.994	0.858	0.89	0.921	0.843	
29747-101		0.899	0.904	0.865	0.907	0.975	
29747-102		0.866	0.873	0.938	0.885	0.871	
29747-103		0.882	0.926	0.865	0.942	0.971	
PCB 066 Detail							
	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
	RS	0.994	0.858	0.89	0.921	0.843	
29747-101		0.899	0.904	0.865	0.907	0.975	
29747-102		0.866	0.873	0.938	0.885	0.871	
29747-103		0.882	0.926	0.865	0.942	0.971	
PCB 087 Detail							
	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
	RS	0.994	0.858	0.89	0.921	0.843	
29747-101		0.899	0.904	0.865	0.907	0.975	
29747-102		0.866	0.873	0.938	0.885	0.871	
29747-103		0.882	0.926	0.865	0.942	0.971	
PCB 101 Detail							
	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	0.994	0.858	0.89	0.921	0.843	
29747-101		0.899	0.904	0.865	0.907	0.975	
29747-102		0.866	0.873	0.938	0.885	0.871	
29747-103		0.882	0.926	0.865	0.942	0.971	

Report Date: 16 Jan-18 14:12 (p 7 of 8) **Test Code:** 29754Nv | 13-4666-5815

Bioaccumulation Evaluation - PCB Congeners - Nereis EnviroSystems, Inc. PCB 105 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 RS 0.858 0.89 0.921 29747-104 0.994 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 118 Detail Sample Code Rep 2 Rep 3 Rep 1 Rep 4 Rep 5 RS 29747-104 0.994 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.871 0.885 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 128 Detail Sample Code Rep 2 Rep 3 Rep 4 Rep 5 Rep 1 29747-104 RS 0.921 0.843 0.994 0.858 0.89 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 138 Detail Sample Code Rep 2 Rep 3 Rep 5 Rep 1 Rep 4 29747-104 RS 0.994 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 153 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 RS 0.994 29747-104 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 170 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 5 Rep 4 29747-104 RS 0.994 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 180 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 29747-104 RS 0.994 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971 PCB 187 Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 RS 29747-104 0.994 0.858 0.89 0.921 0.843 29747-101 0.899 0.904 0.865 0.907 0.975 29747-102 0.866 0.873 0.938 0.885 0.871 29747-103 0.882 0.926 0.865 0.942 0.971

CETIS Summary Report

Report Date: 16 Jan-18 14:12 (p 8 of 8) **Test Code:** 29754Nv | 13-4666-5815

							rest oode.	20704147 10 4000 0010
Bioaccumulation	on Evaluation	n - PCB Cor	ngeners - N	ereis				EnviroSystems, Inc.
PCB 195 Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.994	0.858	0.89	0.921	0.843		
29747-101		0.899	0.904	0.865	0.907	0.975		
29747-102		0.866	0.873	0.938	0.885	0.871		
29747-103		0.882	0.926	0.865	0.942	0.971		
PCB 206 Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.994	0.858	0.89	0.921	0.843		
29747-101		0.899	0.904	0.865	0.907	0.975		
29747-102		0.866	0.873	0.938	0.885	0.871		
29747-103		0.882	0.926	0.865	0.942	0.971		
PCB 209 Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	0.994	0.858	0.89	0.921	0.843		
29747-101		0.899	0.904	0.865	0.907	0.975		
29747-102		0.866	0.873	0.938	0.885	0.871		
29747-103		0.882	0.926	0.865	0.942	0.971		

28 day *Macoma nasuta*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports PAHs

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE CLAM (Macoma nasuta)

PDS Reference Site

CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Acenaphthylene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Anthracene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Benzo(a)anthracene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Benzo(a)pyrene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Benzo(b)fluoranthene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Benzo(k)fluoranthene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Benzo(g,h,i)perylene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Chrysene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Dibenzo(a,h)anthracene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Fluoranthene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Fluorene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Indeno(1,2,3-c,d)pyrene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Naphthalene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Phenanthrene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
Pyrene	9.42 U	9.22 U	9.09 U	8.66 U	8.88 U
PAH Total	150.72	147.52	145.44	138.56	142.08

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

			Composite 1		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Acenaphthylene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Anthracene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Benzo(a)anthracene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Benzo(a)pyrene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Benzo(b)fluoranthene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Benzo(k)fluoranthene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Benzo(g,h,i)perylene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Chrysene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Dibenzo(a,h)anthracene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Fluoranthene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Fluorene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Indeno(1,2,3-c,d)pyrene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Naphthalene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Phenanthrene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
Pyrene	8.60 U	9.54 U	9.29 U	8.82 U	8.44 U
PAH Total	137.60	152.64	148.64	141.12	135.04

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

			Composite 2		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Acenaphthylene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Anthracene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Benzo(a)anthracene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Benzo(a)pyrene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Benzo(b)fluoranthene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Benzo(k)fluoranthene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Benzo(g,h,i)perylene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Chrysene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Dibenzo(a,h)anthracene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Fluoranthene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Fluorene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Indeno(1,2,3-c,d)pyrene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Naphthalene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Phenanthrene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
Pyrene	8.82 U	9.24 U	8.52 U	9.21 U	9.28 U
PAH Total	141.12	147.84	136.32	147.36	148.48

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

			Composite 3		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Acenaphthylene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Anthracene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Benzo(a)anthracene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Benzo(a)pyrene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Benzo(b)fluoranthene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Benzo(k)fluoranthene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Benzo(g,h,i)perylene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Chrysene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Dibenzo(a,h)anthracene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Fluoranthene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Fluorene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Indeno(1,2,3-c,d)pyrene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Naphthalene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Phenanthrene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
Pyrene	9.06 U	9.24 U	8.91 U	9.38 U	8.88 U
PAH Total	144.96	147.84	142.56	150.08	142.08

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

CETIS Test Data Worksheet

Report Date:

16 Jan-18 13:34 (p 1 of 1)

Test Code/ID:

03-3461-3667/29753Mn

Bioaccumulation Evaluation - PAHs - Macoma

EnviroSystems, Inc.

Start Date: 07 Nov-17

Species: Macoma nasuta

Sample Code: 29753-000

End Date: 05 Dec-17 Sample Date: 01 Nov-17 Protocol: US ACE NED RIM (2004)

Material: Laboratory Control Sediment

Sample Source: Chebeague Island FNP
Sample Station: Laboratory Control (M.nasuta)

Sample	Rep	Pos	Aceneaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,l)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
29747-104	1	4	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42
29747-104	2	5	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22	9.22
29747-104	3	10	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09	9.09
29747-104	4	14	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66
29747-104	5	17	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88
29747-101	1	3	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6
29747-101	2	8	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54	9.54
29747-101	3	11	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29	9.29
29747-101	4	15	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82
29747-101	5	20	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44
29747-102	1	1	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82
29747-102	2	7	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24
29747-102	3	12	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52	8.52
29747-102	4	13	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21
29747-102	5	18	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28
29747-103	1	2	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06	9.06
29747-103	2	6	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24	9.24
29747-103	3	9	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91	8.91
29747-103	4	16	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38
29747-103	5	19	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88	8.88

Report Date: 16 Jan-18 13:54 (p 1 of 6) **Test Code:** 29753Mn | 03-3461-3667

EnviroSystems, Inc.

Bioaccumulation Evaluation - PAHs - Macoma

Batch ID: 12-5697-6254 Test Type: Bioaccumulation - PAHs Analyst: Nancy Roka Start Date: 07 Nov-17 Protocol: US ACE NED RIM (2004) Diluent: Not Applicable Ending Date: 05 Dec-17 Species: Macoma nasuta Brine: Not Applicable

Duration: 28d 0h **Source:** ARO - Aquatic Research Organisms, NH **Age:**

Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECOM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h		
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h		
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h		

Sample Code	Material Type	Sample Source	Station Location Lat/Long
29747-104	Reference sediment	Chebeague Island FNP	PDS Reference Sediment (
29747-101	Marine Sediment	Chebeague Island FNP	Composite 1 (Stations A,B)
29747-102	Marine Sediment	Chebeague Island FNP	Composite 2 (Stations C,D)
29747-103	Marine Sediment	Chebeague Island FNP	Composite 3 (Station F)

Single Comparison Summary Analysis ID **Endpoint** Comparison Method P-Value Comparison Result 06-6812-8138 Acenaphthene Equal Variance t Two-Sample Test 0.6750 29747-101 passed acenaphthene 19-2302-6219 Acenaphthene Equal Variance t Two-Sample Test 0.5772 29747-102 passed acenaphthene Equal Variance t Two-Sample Test 29747-103 passed acenaphthene 13-2973-4965 Acenaphthene 0.4062 12-0661-3141 Acenaphthylene Equal Variance t Two-Sample Test 0.6750 29747-101 passed acenaphthylene 20-6936-8692 Acenaphthylene Equal Variance t Two-Sample Test 0.5772 29747-102 passed acenaphthylene 05-0607-5254 Acenaphthylene Equal Variance t Two-Sample Test 0.4062 29747-103 passed acenaphthylene 04-5581-3802 Anthracene Equal Variance t Two-Sample Test 0.6750 29747-101 passed anthracene 02-8867-8298 Anthracene Equal Variance t Two-Sample Test 0.5772 29747-102 passed anthracene 07-2295-0568 Anthracene Equal Variance t Two-Sample Test 0.4062 29747-103 passed anthracene 04-9530-7702 Benzo(a)anthracene Equal Variance t Two-Sample Test 0.6750 29747-101 passed benzo(a)anthracene 17-0165-9474 Benzo(a)anthracene Equal Variance t Two-Sample Test 0.5772 29747-102 passed benzo(a)anthracene 03-3496-7528 Benzo(a)anthracene Equal Variance t Two-Sample Test 0.4062 29747-103 passed benzo(a)anthracene Equal Variance t Two-Sample Test 29747-101 passed benzo(a)pyrene 13-9026-5426 Benzo(a)pyrene 0.6750 10-6948-2084 Benzo(a)pyrene Equal Variance t Two-Sample Test 29747-102 passed benzo(a)pyrene 0.5772 16-5832-4780 Benzo(a)pyrene Equal Variance t Two-Sample Test 0.4062 29747-103 passed benzo(a)pyrene 08-4528-6592 Benzo(b)fluoranthene Equal Variance t Two-Sample Test 0.6750 29747-101 passed benzo(b)fluoranthene 18-6892-1499 Benzo(b)fluoranthene Equal Variance t Two-Sample Test 0.5772 29747-102 passed benzo(b)fluoranthene 05-3035-6444 Benzo(b)fluoranthene Equal Variance t Two-Sample Test 0.4062 29747-103 passed benzo(b)fluoranthene 12-8186-9200 Benzo(g,h,i)perylene Equal Variance t Two-Sample Test 0.6750 29747-101 passed benzo(g,h,i)perylene 19-0428-3465 Benzo(g,h,i)perylene Equal Variance t Two-Sample Test 0.5772 29747-102 passed benzo(g,h,i)perylene 03-6409-2197 Benzo(g,h,i)perylene Equal Variance t Two-Sample Test 0.4062 29747-103 passed benzo(g,h,i)perylene 20-1372-5488 Benzo(k)fluoranthene Equal Variance t Two-Sample Test 0.6750 29747-101 passed benzo(k)fluoranthene 08-8815-0821 Benzo(k)fluoranthene Equal Variance t Two-Sample Test 0.5772 29747-102 passed benzo(k)fluoranthene 17-8913-8279 Benzo(k)fluoranthene Equal Variance t Two-Sample Test 0.4062 29747-103 passed benzo(k)fluoranthene 14-8919-6335 Chrysene Equal Variance t Two-Sample Test 0.6750 29747-101 passed chrysene Equal Variance t Two-Sample Test 03-4358-1179 Chrysene 0.5772 29747-102 passed chrysene 15-8147-5232 Chrysene Equal Variance t Two-Sample Test 0.4062 29747-103 passed chrysene Equal Variance t Two-Sample Test 0.6750 29747-101 passed dibenz(a,h)anthracene 13-2160-7504 Dibenz(a,h)anthracene 20-1282-9556 Dibenz(a,h)anthracene Equal Variance t Two-Sample Test 0.5772 29747-102 passed dibenz(a,h)anthracene 16-0984-2910 Dibenz(a,h)anthracene Equal Variance t Two-Sample Test 0.4062 29747-103 passed dibenz(a,h)anthracene 02-2120-9953 Fluoranthene Equal Variance t Two-Sample Test 0.6750 29747-101 passed fluoranthene 00-4407-7947 Fluoranthene Equal Variance t Two-Sample Test 0.5772 29747-102 passed fluoranthene 06-8813-2260 Fluoranthene Equal Variance t Two-Sample Test 0.4062 29747-103 passed fluoranthene 06-7726-1013 Fluorene Equal Variance t Two-Sample Test 0.6750 29747-101 passed fluorene 29747-102 passed fluorene 07-6531-7598 Fluorene Equal Variance t Two-Sample Test 0.5772 00-9127-9643 Fluorene Equal Variance t Two-Sample Test 0.4062 29747-103 passed fluorene 29747-101 passed indeno(1,2,3-cd)pyrene 19-2090-3583 Indeno(1,2,3-cd)pyrene Equal Variance t Two-Sample Test 0.6750

CETIS Summary Report

Report Date: 16 Jan-18 13:54 (p 2 of 6) **Test Code:** 29753Mn | 03-3461-3667

Bioaccumulat	Bioaccumulation Evaluation - PAHs - Macoma EnviroSystems, Inc.								
Single Comparison Summary									
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result					
05-1971-6164	Indeno(1,2,3-cd)pyrene	Equal Variance t Two-Sample Test	0.5772	29747-102 passed indeno(1,2,3-cd)pyrene					
14-3462-1079	Indeno(1,2,3-cd)pyrene	Equal Variance t Two-Sample Test	0.4062	29747-103 passed indeno(1,2,3-cd)pyrene					
17-5637-5558	Naphthalene	Equal Variance t Two-Sample Test	0.6750	29747-101 passed naphthalene					
08-4441-8374	Naphthalene	Equal Variance t Two-Sample Test	0.5772	29747-102 passed naphthalene					
01-9365-0903	Naphthalene	Equal Variance t Two-Sample Test	0.4062	29747-103 passed naphthalene					
09-6468-1541	Phenanthrene	Equal Variance t Two-Sample Test	0.6750	29747-101 passed phenanthrene					
06-7112-2520	Phenanthrene	Equal Variance t Two-Sample Test	0.5772	29747-102 passed phenanthrene					
05-2990-3479	Phenanthrene	Equal Variance t Two-Sample Test	0.4062	29747-103 passed phenanthrene					
08-0112-7574	Pyrene	Equal Variance t Two-Sample Test	0.6750	29747-101 passed pyrene					
02-5966-2299	Pyrene	Equal Variance t Two-Sample Test	0.5772	29747-102 passed pyrene					
19-2627-5346	Pyrene	Equal Variance t Two-Sample Test	0.4062	29747-103 passed pyrene					

Report Date: 16 Jan-18 13:54 (p 3 of 6) **Test Code:** 29753Mn | 03-3461-3667

19747-104	Bioaccumulation	n Evaluatior	n - PAHs - N	lacoma							EnviroSy	stems, Inc	
19747-104	Acenaphthene S	Summary											
	Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
9747-102	29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%	
	29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%	
Compaphity one Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% W.Effect S747-1014 RS 5 9.05 8.58 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 0.7947-1012 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 0.7947-1012 0.7947-1013 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.044% 0.7947-1014 0.7947-1	29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%	
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% WEffet	29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%	
19747-104	Acenaphthylene	Summary											
19747-101 5	Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	
19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%	
19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%	
	29747-102			9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%	
	29747-103			9.09	8.83	9.36			0.0959	0.214		-0.44%	
	Anthracene Sun	nmary											
19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-103 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 1974	Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	
19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-103 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.04% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 1974	29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%	
	29747-101	-											
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.04% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 9747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.04% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.	29747-103											-0.44%	
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.04% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.00% 9747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.04% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.	Benzo(a)anthrac	ene Summa	arv										
	Sample		•	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	
19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% 0.44% 19747-103 19747-103 19747-103 19747-104 19747-104 19747-105 19747-104 19747-105 19747-1	29747-104		5										
9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 2.60% -													
Semzo(a) Semzo(a) Semzo(b) Semzo(a) Semzo(b)	29747-103												
sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 99747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 99747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9800 Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 99747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 99747-102 5 9.01		Summary											
9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.00 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.09 8.83 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44		-	Count	Mean	95% I CI	95% UCI	Min	Max	Std Frr	Std Dev	CV%	%Effect	
1.28% 1.28	<u> </u>												
9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 98enzo(b)fluoranthene Summary 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 98enzo(g,h,i)perylene Summary 98enzo(g,h,i)perylene Summary 98enzo(g,h,i)perylene Summary 9942 8.66 9.42 0.132 0.295 3.26% 0.00% 9943 9944 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9944-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 99474-103 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 99474-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9948 9949 9949 9940 994		NO											
Senzo(b)fluoranthene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect Std Per Std													
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.298 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 8enzo(g,h,i)perylene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% <t< td=""><td></td><td></td><td></td><td>9.09</td><td>0.03</td><td>9.30</td><td>0.00</td><td>9.30</td><td>0.0939</td><td>0.214</td><td>2.30 /6</td><td>-0.44 /0</td></t<>				9.09	0.03	9.30	0.00	9.30	0.0939	0.214	2.30 /6	-0.44 /0	
9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-102 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	` ,		•						- · · -			a. 	
89747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 89747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 89747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 8enzo(g,h,i)perylene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Dev CV% %Effect 89747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 89747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 89747-103 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 8enzo(k)fluoranthene Summary Sample Code Count <td colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>												
9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-102 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%		RS											
Senzo(g,h,i)perylene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% Meffect Meganary Stample Sta	29747-101											1.28%	
Benzo(g,h,i)perylene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 99747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 99747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 99747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% Benzo(k)fluoranthene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 99747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 <td>29747-102</td> <td></td>	29747-102												
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 19747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 1980 Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-101 5 8.94 <td>29747-103</td> <td></td> <td>5</td> <td>9.09</td> <td>8.83</td> <td>9.36</td> <td>8.88</td> <td>9.38</td> <td>0.0959</td> <td>0.214</td> <td>2.36%</td> <td>-0.44%</td>	29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%	
9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9.747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9.747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9.747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	Benzo(g,h,i)pery	/lene Summ	ary										
9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9747-103 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	Sample											%Effec	
9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-104	RS											
9747-103 5 9.09 8.83 9.36 8.88 9.38 0.0959 0.214 2.36% -0.44% Benzo(k)fluoranthene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%	
Benzo(k)fluoranthene Summary Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%	
Sample Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 9747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 9747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%	
19747-104 RS 5 9.05 8.69 9.42 8.66 9.42 0.132 0.295 3.26% 0.00% 19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 19747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	Benzo(k)fluoran	thene Sumn	nary										
19747-101 5 8.94 8.36 9.51 8.44 9.54 0.208 0.464 5.20% 1.28% 1.9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	Sample											%Effec	
9747-102 5 9.01 8.6 9.43 8.52 9.28 0.149 0.332 3.69% 0.44%	29747-104	RS	5	9.05	8.69	9.42	8.66		0.132	0.295	3.26%	0.00%	
	29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%	
	29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%	
	29747-103					9.36	8.88	9.38		0.214	2.36%	-0.44%	

Report Date: 16 Jan-18 13:54 (p 4 of 6) **Test Code:** 29753Mn | 03-3461-3667

							Tes	t Code:	29	9753Mn 0	3-3461-3667
Bioaccumulatio	n Evaluatior	n - PAHs - M	lacoma							EnviroSy	stems, Inc.
Chrysene Sumn	nary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Dibenz(a,h)anth	racene Sum	mary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Fluoranthene S	ummary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Fluorene Summ	ary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Indeno(1,2,3-cd)pyrene Sum	nmary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Naphthalene Su	ımmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Phenanthrene S	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.26%	0.00%
29747-101		5	8.94	8.36	9.51	8.44	9.54	0.208	0.464	5.20%	1.28%
29747-102		5	9.01	8.6	9.43	8.52	9.28	0.149	0.332	3.69%	0.44%
29747-103		5	9.09	8.83	9.36	8.88	9.38	0.0959	0.214	2.36%	-0.44%
Pyrene Summar	ry										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Gampie						0.00	0.40	0.422	0.295	3.26%	0.00%
29747-104	RS	5	9.05	8.69	9.42	8.66	9.42	0.132	0.295	3.20%	0.0076
•	RS	5 5	9.05 8.94	8.69 8.36	9.42 9.51	8.44	9.42 9.54	0.132	0.295	5.20%	1.28%
29747-104	RS										

Report Date: 16 Jan-18 13:54 (p 5 of 6) **Test Code:** 29753Mn | 03-3461-3667

							Test Code:	29753Mn 03-3461-3667
Bioaccumulatio	n Evaluation	n - PAHs - N	lacoma					EnviroSystems, Inc.
Acenaphthene l	Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Acenaphthylene	e Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Anthracene Det	ail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Benzo(a)anthra	cono Dotail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101	NO	8.6	9.54	9.29	8.82	8.44		
29747-101		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Benzo(a)pyrene	e Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Benzo(b)fluora	nthene Detai	I						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Benzo(g,h,i)per	ylene Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29/4/-104				9.29	8.82	8.44		
29747-104		8.6	9.54	5.25	0.02			
						9.28		
29747-101		8.6 8.82 9.06	9.54 9.24 9.24	8.52 8.91	9.21 9.38	9.28 8.88		
29747-101 29747-102 29747-103	nthene Detail	8.82 9.06	9.24	8.52	9.21			
29747-101 29747-102 29747-103 Benzo(k)fluorar		8.82 9.06	9.24 9.24	8.52 8.91	9.21 9.38	8.88		
29747-101 29747-102 29747-103 Benzo(k)fluorar Sample	Code	8.82 9.06 Rep 1	9.24 9.24 Rep 2	8.52 8.91 Rep 3	9.21 9.38 Rep 4	8.88 Rep 5		
29747-101 29747-102 29747-103 Benzo(k)fluorar Sample 29747-104		8.82 9.06 Rep 1 9.42	9.24 9.24 Rep 2 9.22	8.52 8.91 Rep 3 9.09	9.21 9.38 Rep 4 8.66	8.88 Rep 5 8.88		
29747-101 29747-102 29747-103 Benzo(k)fluorar Sample 29747-104 29747-101	Code	8.82 9.06 Rep 1 9.42 8.6	9.24 9.24 Rep 2 9.22 9.54	8.52 8.91 Rep 3 9.09 9.29	9.21 9.38 Rep 4 8.66 8.82	8.88 Rep 5 8.88 8.44		
29747-101 29747-102 29747-103 Benzo(k)fluorar Sample 29747-104	Code	8.82 9.06 Rep 1 9.42	9.24 9.24 Rep 2 9.22	8.52 8.91 Rep 3 9.09	9.21 9.38 Rep 4 8.66	8.88 Rep 5 8.88		

Report Date: 16 Jan-18 13:54 (p 6 of 6) **Test Code:** 29753Mn | 03-3461-3667

							rest Code.	297331411 03-3401-3007
Bioaccumulatio	n Evaluation	n - PAHs - N	lacoma					EnviroSystems, Inc.
Chrysene Detai	I							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Dibenz(a,h)anth	racene Deta	il						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Fluoranthene D	etail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Fluorene Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Indeno(1,2,3-cd)pyrene Deta	ail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Naphthalene De	etail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Phenanthrene [Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
29747-101		8.6	9.54	9.29	8.82	8.44		
29747-102		8.82	9.24	8.52	9.21	9.28		
29747-103		9.06	9.24	8.91	9.38	8.88		
Pyrene Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.42	9.22	9.09	8.66	8.88		
		8.6	9.54	9.29	8.82	8.44		
29747-101								
29747-101 29747-102		8.82	9.24	8.52	9.21	9.28		

28 day *Nereis virens*Sediment Bioaccumulation Evaluation Body Burden Data and Statistical Analysis Reports PAHs

APPENDIX TABLE. REPLICATE CONCENTRATIONS IN THE WORM (Nereis virens)

DDG	Reference	Qito.
PDS	Reference	Site

CONTAMINANT	REP1	*	REP2	*	REP3	*	REP4	*	REP5	*
PAHs (ng/g wet weight)										
Acenaphthene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Acenaphthylene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Anthracene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Benzo(a)anthracene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Benzo(a)pyrene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Benzo(b)fluoranthene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Benzo(k)fluoranthene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Benzo(g,h,i)perylene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Chrysene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Dibenzo(a,h)anthracene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Fluoranthene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Fluorene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Indeno(1,2,3-c,d)pyrene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Naphthalene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Phenanthrene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
Pyrene	9.94	U	8.58	U	8.90	U	9.21	U	8.43	U
PAH Total	159.04		137.28		142.40		147.36		134.88	

^{* =} Qualifiers

U Analyte not detected; below Method Detection Limit; value is Method Detection Limit

J Analyte estimated; detection below Reporting Limit but above Method Detection Limit

NA Not Analyzed

			Composite 1		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Acenaphthylene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Anthracene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Benzo(a)anthracene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Benzo(a)pyrene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Benzo(b)fluoranthene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Benzo(k)fluoranthene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Benzo(g,h,i)perylene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Chrysene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Dibenzo(a,h)anthracene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Fluoranthene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Fluorene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Indeno(1,2,3-c,d)pyrene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Naphthalene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Phenanthrene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
Pyrene	8.99 U	9.04 U	8.65 U	9.07 U	9.75 U
PAH Total	143.84	144.64	138.40	145.12	156.00

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

				Composit	e 2				
CONTAMINANT	REP1 *	REP2	*	REP3	*	REP4	*	REP5	*
PAHs (ng/g wet weight)									
Acenaphthene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.82	J
Acenaphthylene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Anthracene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Benzo(a)anthracene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Benzo(a)pyrene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Benzo(b)fluoranthene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Benzo(k)fluoranthene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Benzo(g,h,i)perylene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Chrysene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Dibenzo(a,h)anthracene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Fluoranthene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Fluorene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Indeno(1,2,3-c,d)pyrene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Naphthalene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Phenanthrene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
Pyrene	8.66 L	J 8.73	U	9.38	U	8.85	U	8.71	U
PAH Total	138.56	139.68		150.08		141.60		139.47	

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

			Composite 3		
CONTAMINANT	REP1 *	REP2 *	REP3 *	REP4 *	REP5 *
PAHs (ng/g wet weight)					
Acenaphthene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Acenaphthylene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Anthracene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Benzo(a)anthracene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Benzo(a)pyrene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Benzo(b)fluoranthene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Benzo(k)fluoranthene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Benzo(g,h,i)perylene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Chrysene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Dibenzo(a,h)anthracene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Fluoranthene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Fluorene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Indeno(1,2,3-c,d)pyrene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Naphthalene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Phenanthrene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
Pyrene	8.82 U	9.26 U	8.65 U	9.42 U	9.71 U
PAH Total	141.12	148.16	138.40	150.72	155.36

^{* =} Qualifiers

 $[\]begin{array}{ll} U & \text{Analyte not detected; below M} \varepsilon \\ J & \text{Analyte estimated; detection be} \end{array}$

NA Not Analyzed

CETIS Test Data Worksheet

Report Date:

16 Jan-18 13:35 (p 1 of 1)

Test Code/ID:

03-6296-0488/29754Nv

Bioaccumulation Evaluation - PAHs - Nereis

EnviroSystems, Inc.

Start Date: 07 Nov-17 End Date: 05 Dec-17

ov-17 **Species:** Nereis virens

: Nereis virens Sample Code: 29754-000

Sample Date: 01 Nov-17

Protocol: US ACE NED RIM (2004)

Material: Laboratory Control Sediment

Sample Source: Chebeague Island FNP **Sample Station:** Laboratory Control (N.virens)

Sample	Rep	Pos	Aceneaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,l)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
29747-104	1	1	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94	9.94
29747-104	2	5	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58	8.58
29747-104	3	9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9
29747-104	4	15	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21	9.21
29747-104	5	19	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43	8.43
29747-101	1	3	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99	8.99
29747-101	2	8	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04	9.04
29747-101	3	10	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65
29747-101	4	16	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07	9.07
29747-101	5	17	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75
29747-102	1	2	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66	8.66
29747-102	2	7	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73	8.73
29747-102	3	11	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38
29747-102	4	14	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85	8.85
29747-102	5	18	8.82	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71	8.71
29747-103	1	4	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82	8.82
29747-103	2	6	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26	9.26
29747-103	3	12	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65	8.65
29747-103	4	13	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42
29747-103	5	20	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71

002-158-534-3 CETIS™ v1.9.3.0 Analyst:_____ QA:_____
Cheabeague Island FNP Tier III Sediment Evaluation. 28 day Toxicity and Bioaccumulation Evaluation. Appendix A Page 351 of 408

16 Jan-18 14:07 (p 1 of 6) Report Date:

Test Code: 29754Nv | 03-6296-0488

Bioaccumulation Evaluation - PAHs - Nereis

EnviroSystems, Inc.

Batch ID: 14-1043-2963 Test Type: Bioaccumulation - PAHs Analyst: Nancy Roka US ACE NED RIM (2004) Start Date: 07 Nov-17 Protocol: Diluent: Not Applicable Brine: Ending Date: 05 Dec-17 Species: Nereis virens Not Applicable

Duration: 28d 0h Source: ARO - Aquatic Research Organisms, NH Age:

Sample Code	Sample ID	Sample Date	Receipt Date	Sample Age	Client Name	Project
29747-104	10-1465-6781	25 Oct-17 17:15	25 Oct-17 17:15	12d 7h	AECOM	Dredged Sediment Evalu
29747-101	15-2994-4617	23 Oct-17 14:20	23 Oct-17 14:20	14d 10h		
29747-102	04-2219-8070	23 Oct-17 15:15	23 Oct-17 15:15	14d 9h		
29747-103	19-9795-0106	24 Oct-17 08:40	24 Oct-17 08:40	13d 15h		

Sample Code	Material Type	Sample Source	Station Location Lat/Long
29747-104	Reference sediment	Chebeague Island FNP	PDS Reference Sediment (
29747-101	Marine Sediment	Chebeague Island FNP	Composite 1 (Stations A,B)
29747-102	Marine Sediment	Chebeague Island FNP	Composite 2 (Stations C,D)
29747-103	Marine Sediment	Chebeague Island FNP	Composite 3 (Station F)

Single Compa	Single Comparison Summary									
Analysis ID	Endpoint	Comparison Method	P-Value	Comparison Result						
16-2611-2917	Acenaphthene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed acenaphthene						
15-6039-0967	Acenaphthene	Equal Variance t Two-Sample Test	0.6564	29747-102 passed acenaphthene						
20-9284-5757	Acenaphthene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed acenaphthene						
00-7056-6487	Acenaphthylene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed acenaphthylene						
05-0848-7898	Acenaphthylene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed acenaphthylene						
00-3044-6600	Acenaphthylene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed acenaphthylene						
02-2082-9033	Anthracene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed anthracene						
05-0845-4887	Anthracene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed anthracene						
11-3503-9077	Anthracene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed anthracene						
12-5467-0530	Benzo(a)anthracene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed benzo(a)anthracene						
01-5706-6304	Benzo(a)anthracene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed benzo(a)anthracene						
16-5037-8720	Benzo(a)anthracene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed benzo(a)anthracene						
19-6613-0386	Benzo(a)pyrene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed benzo(a)pyrene						
13-4515-2457	Benzo(a)pyrene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed benzo(a)pyrene						
18-3990-1709	Benzo(a)pyrene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed benzo(a)pyrene						
15-0723-9334	Benzo(b)fluoranthene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed benzo(b)fluoranthene						
21-0074-7972	Benzo(b)fluoranthene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed benzo(b)fluoranthene						
03-6145-1070	Benzo(b)fluoranthene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed benzo(b)fluoranthene						
04-7507-6384	Benzo(g,h,i)perylene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed benzo(g,h,i)perylene						
04-3693-8556	Benzo(g,h,i)perylene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed benzo(g,h,i)perylene						
15-2520-3711	Benzo(g,h,i)perylene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed benzo(g,h,i)perylene						
01-7751-6211	Benzo(k)fluoranthene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed benzo(k)fluoranthene						
11-4864-1724	Benzo(k)fluoranthene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed benzo(k)fluoranthene						
18-0137-5822	Benzo(k)fluoranthene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed benzo(k)fluoranthene						
19-8519-9724	Chrysene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed chrysene						
00-8184-1825	Chrysene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed chrysene						
10-2009-7097	Chrysene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed chrysene						
06-2253-7716	Dibenz(a,h)anthracene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed dibenz(a,h)anthracene						
02-8218-8961	Dibenz(a,h)anthracene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed dibenz(a,h)anthracene						
13-7956-6164	Dibenz(a,h)anthracene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed dibenz(a,h)anthracene						
04-6475-7280	Fluoranthene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed fluoranthene						
01-1997-6474	Fluoranthene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed fluoranthene						
01-3462-4762	Fluoranthene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed fluoranthene						
03-1247-7944	Fluorene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed fluorene						
11-3484-1714	Fluorene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed fluorene						
17-9941-2668	Fluorene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed fluorene						
08-4919-3881	Indeno(1,2,3-cd)pyrene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed indeno(1,2,3-cd)pyrene						
I										

CETIS Summary Report

Report Date: 16 Jan-18 14:07 (p 2 of 6) **Test Code:** 29754Nv | 03-6296-0488

Bioaccumulation Evaluation - PA	NHs - Nereis		EnviroSystems, Inc.
SIngle Comparison Summary			
Analysis ID Endpoint	Comparison Method	P-Value	Comparison Result
09-8623-5434 Indeno(1,2,3-cd)pyr-	ene Equal Variance t Two-Sample Test	0.6808	29747-102 passed indeno(1,2,3-cd)pyrene
12-9455-7067 Indeno(1,2,3-cd)pyr	ene Equal Variance t Two-Sample Test	0.3210	29747-103 passed indeno(1,2,3-cd)pyrene
09-9572-6794 Naphthalene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed naphthalene
11-3914-0883 Naphthalene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed naphthalene
10-2953-3428 Naphthalene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed naphthalene
03-8266-4054 Phenanthrene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed phenanthrene
09-7369-4127 Phenanthrene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed phenanthrene
05-3928-9257 Phenanthrene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed phenanthrene
12-6796-4705 Pyrene	Equal Variance t Two-Sample Test	0.3959	29747-101 passed pyrene
18-6125-4330 Pyrene	Equal Variance t Two-Sample Test	0.6808	29747-102 passed pyrene
06-0690-5804 Pyrene	Equal Variance t Two-Sample Test	0.3210	29747-103 passed pyrene

Report Date: Test Code: 16 Jan-18 14:07 (p 3 of 6) 29754Nv | 03-6296-0488

Bioaccumulation	n Evaluatior	n - PAHs - N	lereis							EnviroSy	stems, Inc
Acenaphthene S	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.89	8.53	9.24	8.66	9.38	0.127	0.285	3.21%	1.38%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Acenaphthylene	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Anthracene Sun	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Benzo(a)anthrac	cene Summa	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Benzo(a)pyrene	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Benzo(b)fluoran	thene Sumr	marv									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-104 29747-101		5	9.1	8.6	9.6	8.65	9.75	0.200	0.4	4.40%	-0.98%
29747-101 29747-102		5	8.87	8.5	9.0	8.66	9.73	0.179	0.4	3.34%	1.62%
29747-102 29747-103		5	9.17	8.63	9.23 9.71	8.65	9.30	0.132	0.296	3.34% 4.74%	-1.78%
Benzo(g,h,i)pery	vlene Summ										570
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-101		5	8.87	8.5	9.23	8.66	9.38	0.173	0.296	3.34%	1.62%
29747-102		5	9.17	8.63	9.23	8.65	9.71	0.132	0.290	3.34 % 4.74%	-1.78%
	thene Summ										0 //
Renzo(k)fluoran		Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
` '	Code	204111			9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
Sample	Code RS	5	9.01	8.27	9.70		2.0 .	0			
Sample 29747-104	Code RS	5 5	9.01 9.1	8.27 8.6			9.75	0.179	0.4	4.40%	-0.98%
Sample 29747-104 29747-101		5	9.1	8.6	9.6	8.65	9.75 9.38	0.179 0.132	0.4	4.40% 3.34%	
Benzo(k)fluoran Sample 29747-104 29747-101 29747-102 29747-103							9.75 9.38 9.71	0.179 0.132 0.194	0.4 0.296 0.434	4.40% 3.34% 4.74%	-0.98% 1.62% -1.78%

Report Date: 16 Jan-18 14:07 (p 4 of 6) **Test Code:** 29754Nv | 03-6296-0488

							les	t Code:	2	9754NV 0	3-6296-0488
Bioaccumulation E	Evaluation	- PAHs - N	ereis							EnviroSy	stems, Inc.
Chrysene Summar	у										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Dibenz(a,h)anthrac	ene Sum	mary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Fluoranthene Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-104		5	9.01	8.6	9.76	8.65	9.75	0.200	0.4	4.40%	-0.98%
29747-101		5	8.87	8.5	9.0		9.73	0.179	0.4	3.34%	
29747-102		5 5	9.17	8.63	9.23 9.71	8.66 8.65	9.36 9.71	0.132	0.296	3.34% 4.74%	1.62% -1.78%
Fluorene Summary	<i>,</i>		0.17	0.00	0.71	0.00	0.71	0.104	0.404	7.770	1.7070
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Indeno(1,2,3-cd)py	rene Sum										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101	110	5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.173	0.296	3.34%	1.62%
29747-102		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%
Naphthalene Sumr	marv		0.11	0.00	0.7.1	0.00	0.7.1	0.101	0.101	1.7.170	111070
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-104	NO	5	9.1	8.6	9.6	8.65	9.75	0.200	0.4	4.40%	-0.98%
29747-101		5 5	9.1 8.87			8.66					
29747-102		5	9.17	8.5 8.63	9.23 9.71	8.65	9.38 9.71	0.132 0.194	0.296 0.434	3.34% 4.74%	1.62% -1.78%
Phenanthrene Sun	nmarv		0.11	0.00	0.7.1	0.00	0.7.1	0.101	0.101	1.7.170	111070
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
	NO										
29747-101		5 5	9.1	8.6 9.5	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98% 1.63%
29747-102 29747-103		5 5	8.87 9.17	8.5 8.63	9.23 9.71	8.66 8.65	9.38 9.71	0.132 0.194	0.296 0.434	3.34% 4.74%	1.62% -1.78%
		<u> </u>	5.17	0.03	3.71	0.00	5.11	0.134	0.434	7.17/0	-1.70/0
Pyrene Summary Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
29747-104											
	RS	5	9.01	8.27	9.76	8.43	9.94	0.268	0.6	6.65%	0.00%
29747-101		5	9.1	8.6	9.6	8.65	9.75	0.179	0.4	4.40%	-0.98%
29747-102		5	8.87	8.5	9.23	8.66	9.38	0.132	0.296	3.34%	1.62%
29747-103		5	9.17	8.63	9.71	8.65	9.71	0.194	0.434	4.74%	-1.78%

Report Date: 16 Jan-18 14:07 (p 5 of 6) **Test Code:** 29754Nv | 03-6296-0488

Bioaccumulatio	n Evaluatior	n - PAHs - N	lereis				EnviroSystems, Inc.
Acenaphthene [Detail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.82	
29747-103		8.82	9.26	8.65	9.42	9.71	
Acenaphthylene	Detail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Anthracene Deta	ail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Benzo(a)anthrac	cene Detail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Benzo(a)pyrene	Detail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Benzo(b)fluoran	thene Detai	I					
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101	-	8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Benzo(g,h,i)per	ylene Detail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101		8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
Benzo(k)fluoran	thene Detai						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
29747-104	RS	9.94	8.58	8.9	9.21	8.43	
29747-101	-	8.99	9.04	8.65	9.07	9.75	
29747-102		8.66	8.73	9.38	8.85	8.71	
29747-103		8.82	9.26	8.65	9.42	9.71	
			-	-			

Report Date: 16 Jan-18 14:07 (p 6 of 6) **Test Code:** 29754Nv | 03-6296-0488

							rest Code.	29734110 03-0290-0480
Bioaccumulatio	on Evaluation	n - PAHs - N	lereis					EnviroSystems, Inc.
Chrysene Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Dibenz(a,h)anth	racene Deta	il						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Fluoranthene D	etail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Fluorene Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Indeno(1,2,3-cd	I)pyrene Deta	ail						
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101	_	8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Naphthalene De	etail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Phenanthrene [Detail							
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
29747-101		8.99	9.04	8.65	9.07	9.75		
29747-102		8.66	8.73	9.38	8.85	8.71		
29747-103		8.82	9.26	8.65	9.42	9.71		
Pyrene Detail								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
29747-104	RS	9.94	8.58	8.9	9.21	8.43		
		8.99	9.04	8.65	9.07	9.75		
29747-101		0.99	9.04	0.00	5.07	0.70		
29747-101 29747-102		8.66	8.73	9.38	8.85	8.71		