United States Army Corps of Engineers New England District

2023 Annual Operations, Maintenance, and Monitoring Report

Main Post
Former Fort Devens Army Installation
Devens, Massachusetts

Contract No. W912WJ-19-D-0014

Contract Delivery Order No. W912WJ-23-F-0055

July 2024

2023 Annual Operations, Maintenance, and Monitoring Report

Main Post Former Fort Devens Army Installation Devens, Massachusetts

July 2024

Prepared By:

SERES-Arcadis 8(a) JV 2, LLC 669 Marina Drive, Suite B-7 Charleston, SC 29492 Tel 843 216 8531 **Prepared For:**

United States Army Corps of Engineers, New England District

CERTIFICATION

Reviewed By:

I hereby certify that the enclosed Report, shown and marked in this submittal, is that proposed to be incorporated with Contract Number W912WJ-19-D-0014. This document was prepared in accordance with the United States Army Corps of Engineers (USACE) Scope of Work and is hereby submitted for Government approval.

MA
Andy Vitolins, PG
Project Manager
Leather Levesque
Heather Levesque, PMP
Deputy Project Manager
Received By:
Penelope Reddy USACE Project Manager

NOTICE |

The United States Department of Defense, Department of Army, funded wholly or in part the preparation of this document and work described herein under Contract No. W912WJ-19-D-0014. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Contents

А	cronvm	is and Abbreviations	VII
1	•	oduction	
	1.1	Long-Term Monitoring Program Background	1
	1.2	Site Description and History	3
	1.3	Groundwater Hydrology	3
	1.4	2023 Long-Term Monitoring Activities	3
	1.4.1	Groundwater Sampling	3
	1.4.2	Laboratory Testing	4
	1.4.3	Data Validation	4
	1.4.4	Data Evaluation	5
2	Area	of Contamination 57	6
	2.1	Site Background	6
	2.2	Groundwater Hydrology	6
	2.3	Groundwater and Surface Water Sampling	7
	2.3.1	Spring 2023 Data Summary	7
	2.3.2	Water Quality Parameters	8
	2.4	Land-Use Controls, Interviews, and Inspection	8
	2.5	Conclusions and Recommendations	9
3	Area	of Contamination 69W	10
	3.1	Site Background	10
	3.2	Groundwater Hydrology	10
	3.3	Groundwater Sampling	10
	3.3.1	Fall 2023 Data Summary	10
	3.3.2	Water Quality Parameters	11
	3.3.3	Land-Use Controls, Interviews, and Inspection	11
	3.4	Conclusions and Recommendations	12
4	Area	of Contamination 43G	13
	4.1	Site Background	13
	4.2	Groundwater Hydrology	13
	4.3	Groundwater Sampling	13
	4.3.1	Fall 2023 Data Summary	13

	4.3.2	Water Quality Parameters	14
	4.4	Land-Use Controls, Interview, and Inspection	15
	4.5	Conclusions and Recommendations	15
5	Area	s of Contamination 32 and 43A	17
	5.1	Site Background	17
	5.2	Groundwater Hydrology	17
	5.3	Groundwater Sampling	18
	5.3.1	Spring 2023 Data Summary	19
	5.3.2	Water Quality Parameters	19
	5.4	Land-Use Controls, Interviews, and Inspection	19
	5.5	Conclusions and Recommendations	20
6	Dev	ens Consolidation Landfill	21
	6.1	Site Background	21
	6.2	Groundwater Hydrology	21
	6.3	Groundwater Sampling	22
	6.3.1	2023 Long-Term Monitoring Data Summary	22
	6.3.2	Water Quality Parameters	22
	6.4	Leachate System Monitoring	23
	6.5	Landfill Inspection and Gas Monitoring	23
	6.6	Land-Use Controls, Interviews, and Inspection	24
	6.7	Conclusions and Recommendations	25
7	Hou	sing Areas and 37-Millimeter Impact Area	26
	7.1	Site Background	26
	7.2	Land-Use Controls	27
	7.2.1	37-Millimeter Impact Area	28
	7.2.2	Restricted Area	28
	7.2.3	Unrestricted/Residential Use Area	28
	7.3	Conclusions and Recommendations	29
8	Area	s of Contamination 44 and 52	30
	8.1	Site Background	30
	8.2	Land-Use Controls, Interviews, and Inspection	30
9	Stuc	ly Area 71	32
	9.1	Site Background	32

9.2 Land	l-Use Controls, Interviews, and Inspection	32
10 Reference	es	34
Exhibits	s (in text)	
Exhibit 2-1 AO	C 57 Area 3 Contaminant of Concern CG Exceedances, Spring 2023	7
Exhibit 3-1 AO	C 69W Contaminant of Concern CG Exceedances, Fall 2023	11
Exhibit 4-1 AO	C 43G Contaminant of Concern CG Exceedances, Fall 2023	14
Exhibit 5-1 AO	C 32/43A Vertical Gradients, Spring 2023	18
Exhibit 5-2 AO	C 32/43A Contaminant of Concern CG Exceedances, Spring 2023	19
Exhibit 6-1 Wa	ter Level Readings for Select DCL Monitoring Wells, Spring and Fall 2023 LTM	22
Tables		
Table 1	Groundwater Elevations Spring 2023 LTM Event	
Table 2	Groundwater Elevations Fall 2023 LTM Event	
Table 3	Monthly Precipitation Data	
Table 4	Analytical Methods, Containers, Holding Times, and Preservatives	
Table 5	Monitoring Wells and Surface Water Locations Selected for Long-Term Monitoring	
Table 6	AOC-Specific Action Levels	
Table 7	DCL Leachate Discharge Permit No. 17 Limits	
Table 8	AOC 57 Area 3 Groundwater Analytical Results, Spring 2023	
Table 9	AOC 57 Area 3 Surface Water Analytical Results, Spring 2023	
Table 10	AOC 69W Groundwater Analytical Results, Fall 2023	
Table 11	AOC 43G Groundwater Analytical Results, Fall 2023	
Table 12	AOC 32/43A Groundwater Analytical Results, Spring 2023	
Table 13	DCL Groundwater Analytical Results, Spring 2023	
Table 14	DCL Groundwater Analytical Results, Fall 2023	
Table 15	DCL Leachate Analytical Results, Fall 2023	
Table 16	DCL Leachate Annual Discharge Quantities	

Figures

Figure 1	Site Location, Former Fort Devens Army Installation
Figure 2	Site Layout, AOC 57 – Areas 1, 2, & 3
Figure 3	Site Layout, AOC 57 – Area 2
Figure 4	Site Layout, AOC 57 – Area 3
Figure 5	Groundwater Elevation Contour Map, AOC 57 – Areas 2 & 3, Spring 2023
Figure 6	Metals Concentrations in Groundwater and Surface Water, AOC 57 – Area 3, Spring 2023
Figure 7	Site Layout, AOC 69W
Figure 8	Groundwater Elevation Contour Map, AOC 69W, Fall 2023
Figure 9	Metals Concentrations in Groundwater, AOC 69W, Fall 2023
Figure 10	Site Layout, AOC 43G
Figure 11	Groundwater Elevation Contour Map, AOC 43G, Fall 2023
Figure 12	VPH and Metals Concentrations in Groundwater, AOC 43G, Fall 2023
Figure 13	Site Layout, AOC 32/43A
Figure 14	Groundwater Elevation Contour Map, Overburden Wells, AOC 32/43A, Spring 2023
Figure 15	Groundwater Elevation Contour Map, Bedrock Wells, AOC 32/43A, Spring 2023
Figure 16	VOCs, VPH, and Metals Concentrations in Groundwater, AOC 32/43A, Spring 2023
Figure 17	Site Layout, Devens Consolidated Landfill
Figure 18	Groundwater Elevation Contour Map, Bedrock Wells, Devens Consolidated Landfill, Spring 2023
Figure 19	Groundwater Elevation Contour Map, Bedrock Wells, Devens Consolidated Landfill, Fall 2023
Figure 20	Site Location, Grant Housing Area/Oak and Maple Housing Area/37-mm Impact Area
Figure 21	Site Location, AOCs 44 and 52 – Barnum Road Maintenance Yards
Figure 22	Site Location, SA 71 – Former Railroad Roundhouse

Appendices

Appendix A	Groundwater Field Forms
Appendix B	Laboratory Analytical Reports
Appendix C	Summary of Quality Control Exceedances and Data Validation Reports
Appendix D	Summary of Historical Groundwater Sampling Results
Appendix E	Mann-Kendall Data Trend Analyses
Appendix F	Annual Land Use Control Documentation

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

Appendix G DCL Inspection Report

Appendix H Response to Comments

Acronyms and Abbreviations

μg/L microgram per liter

AAFES Army Air Force Exchange Service

AOC area of contamination
Army United States Army

BRAC Base Realignment and Closure

BTEX benzene, toluene, ethylbenzene, and xylenes

CCV continuing calibration verification
CFS Commonwealth Fusion Systems

CG cleanup goal

COC contaminant of concern
COD chemical oxygen demand
CSM conceptual site model

DCB dichlorobenzene

DCL Fort Devens Consolidation Landfill

DO dissolved oxygen

DoD Department of Defense

ELAP Environmental Laboratory Accreditation Program

EPH extractable petroleum hydrocarbon
ESMA Excavated Soils Management Area
Eurofins Eurofins TestAmerica Laboratories, Inc.
Fort Devens former Fort Devens Army Installation

FS feasibility study ft/ft foot per foot HA Housing Area

Harding Environmental Science & Engineering, Inc.

HGL HydroGeoLogic, Inc.

HLA Harding Lawson Associates, Inc.
Horne Engineering Services, Inc.

J estimated concentration

KGS KOMAN Government Solutions, LLC

LCS laboratory control sample

LCSD laboratory control sample duplicate LDC Laboratory Data Consultants, Inc.

LTM long-term monitoring

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

LTM Plan Long-Term Monitoring Plan

LTMMP Long-Term Monitoring and Maintenance Plan
LTM Report 2022 Annual Long-Term Monitoring Report

LUC land-use control

LUCIP Land-Use Control Implementation Plan

LUCIP Addendum Land-Use Control Implementation Plan Addendum

Massachusetts Department of Environmental Protection

MassDevelopment Massachusetts Development and Finance Agency

MCL maximum contaminant level

MEC munitions and explosives of concern

mg/L milligram per liter

mm millimeter

MNA monitored natural attenuation
MPE measuring point elevation

MS matrix spike

MSD matrix spike duplicate

mV millivolt

NAUL Notice of Activity and Use Limitation

NAVD88 North American Vertical Datum of 1988

ORP oxidation-reduction potential
RTN Release Tracking Number

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

QAPP Quality Assurance Project Plan for the Annual Long-Term Monitoring and Maintenance

Program

QC quality control

RI remedial investigation ROD Record of Decision

SA Study Area

S-A JV SERES-Arcadis 8(a) Joint Venture 2, LLC

SVOC semivolatile organic compound

TDS total dissolved solids

UJ/J estimated

USAEC United States Army Environmental Command

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

UST underground storage tank

UXO unexploded ordnance

VOC volatile organic compound

VPH volatile petroleum hydrocarbons

Weston Solutions, Inc.

yd³ cubic yard

1 Introduction

This 2023 Annual Long-Term Monitoring Report (LTM Report) details the performance of ongoing long-term monitoring (LTM) activities at the former Fort Devens Army Installation (Fort Devens) Main Post, located in Devens, Massachusetts (Figure 1). LTM activities were performed in accordance with the Long-Term Monitoring and Maintenance Plan (LTMMP; Sovereign/HydroGeoLogic, Inc. [HGL] 2015) and the Quality Assurance Project Plan for the Annual Long-Term Monitoring and Maintenance Program (QAPP; SERES-Arcadis 8(a) Joint Venture 2, LLC [S-A JV] 2020. S-A JV prepared this LTM Report on behalf of the United States Army Corps of Engineers (USACE) – New England District, under Contract Number W912WJ-19-D-0014.

1.1 Long-Term Monitoring Program Background

The LTM program instituted at Fort Devens is a result of the individual Records of Decision (RODs) issued for each area of contamination (AOC) and study area (SA) discussed in this LTM Report. These AOCs consist of:

- AOC 57: Building 3713 Fuel Oil Spill:
 - 2001 ROD by Harding Environmental Science & Engineering, Inc. (Harding [2001])
- AOC 69W: Fort Devens Elementary School (Building 215) Fuel Oil Spill Site:
 - 1999 ROD by Harding Lawson Associates, Inc. (HLA [1999a])
- AOC 43G: Historical Gas Station G:
 - 1996 ROD by United States Environmental Protection Agency (USEPA [1996])
- AOCs 32 and 43A: Defense Reutilization and Marketing Office Yard and former Petroleum, Oils, and Lubricants Storage Area:
 - 1998 ROD by Horne Engineering Services, Inc. (Horne [1998])
- The Fort Devens Consolidation Landfill (DCL):
 - 1999 ROD by HLA (HLA 1999b)
- Grant Housing Area (HA) and 37-millimeter (mm) Impact Area:
 - 2009 ROD by Weston Solutions, Inc. (Weston [2009])
- AOC 44-52: Barnum Road Maintenance Yards
 - 1995 ROD by United States Army Environmental Center (USAEC [1995])
- SA 71: Former Railroad Round House
 - 2015 ROD by Sovereign Consulting, Inc. (Sovereign [2015])

The RODs established site-specific remedial actions for each AOC and SA, as well as the LTM program and landuse controls (LUCs). The effectiveness of the remedial actions is reviewed periodically in Five-Year Review Reports (HLA 2000; Nobis Engineering, Inc. 2005; HGL 2010; H&S Environmental, Inc. 2015; KOMAN Government Solutions, LLC [KGS] 2021).

LTM activities in 2023 were conducted at each of the above AOCs in accordance with the LTMMP (Sovereign/HGL 2015) and included the following:

AOC 57. Annual water level measurements at 19 locations at Areas 2 and 3, and groundwater sampling at
Area 3, were conducted during the spring LTM event. Groundwater samples were analyzed for total metals
(arsenic, iron, and manganese) at two Area 3 monitoring wells. One surface water location was also sampled

during the spring 2023 LTM event and the samples were analyzed for dissolved metals (arsenic, iron, and manganese). Additional water level gauging, groundwater sampling, and surface water sampling work was completed in 2023 as part of a Post-Record of Decision Supplemental Remedial Investigation Work Plan (Post-ROD SRI Work Plan), approved by the USEPA and submitted in June 2023 (S-A JV, 2023a). The results of the SRI will be discussed in the Post-ROD SRI Report, scheduled for submittal in 2024.

- AOC 69W. Annual water level measurements at 17 locations and groundwater sampling at eight monitoring wells and two well points were conducted during the fall LTM event. Samples from eight wells were analyzed for extractable petroleum hydrocarbons (EPHs) and target analyte polycyclic aromatic hydrocarbons (PAHs). Samples from each of the eight monitoring wells and two well points were also analyzed for dissolved metals (arsenic, iron, and/or manganese). Additional monitoring well installation, water level gauging, and groundwater sampling work was completed in 2023 as part of a Post-Record of Decision Supplemental Remedial Investigation Work Plan (Post-ROD SRI Work Plan), approved by the USEPA and submitted in June 2023 (S-A JV, 2023b). The results of the SRI will be discussed in the Post-ROD SRI Report, scheduled for submittal in 2024.
- AOC 43G. Annual water level measurements at 11 monitoring wells and groundwater sampling at five wells were conducted during the fall LTM event. Groundwater samples were analyzed for volatile petroleum hydrocarbons (VPHs); including target analytes: benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene; alkalinity; and total metals (iron and/or manganese). Additional monitoring well installation, water level gauging, and groundwater sampling work was completed in 2023, as part of a Post-Record of Decision Supplemental Remedial Investigation Work Plan (Post-ROD SRI Work Plan) approved by the USEPA and submitted in June 2023 (S-A JV, 2023c). The results of the SRI will be discussed in the Post-ROD SRI Report, scheduled for submittal in 2024.
- AOC 32/43A. Annual water level measurements at 26 locations and groundwater sampling at four monitoring
 wells were conducted during the spring LTM event. One well location was observed to be dry (well 32M-0111XBR). Groundwater samples were analyzed for volatile organic compounds (VOCs), VPHs including target
 analytes BTEX/naphthalene, and total metals (arsenic and manganese).
- DCL. Annual landfill gas vent monitoring, monthly operation and maintenance of the leachate pump station, annual sampling of the leachate, and an annual landfill cap inspection were conducted. The DCL leachate sampling consists of collecting one sample and analyzing the sample for VOCs, semivolatile organic compounds (SVOCs), pesticides/polychlorinated biphenyls (PCBs), total petroleum hydrocarbons, total metals (select list), total suspended solids, pH, total phenolics, and total cyanide. Semiannual water level measurements at seven locations, and semiannual groundwater sampling at four locations were conducted during the spring and fall LTM events. Groundwater samples were analyzed for VPHs including target analytes BTEX/naphthalene, EPHs including target PAHs, pesticides, total metals (select list), total dissolved solids (TDS), anions (chloride and sulfate), nitrate and nitrite, alkalinity, total cyanide, and chemical oxygen demand (COD).
- Grant HA and 37 mm Impact Area. Annual screening for unexploded ordnance (UXO) in the 37 mm Impact Area, performed by sweeping 10% of the site with a metal detector.

In addition to the above activities, annual LUC inspections and interviews were conducted at each of the above AOCs. LUC inspections and interview were also conducted at AOC 44-52 and SA 71 in accordance with LUCIPs prepared in 2023 (S-A JV, 2023d; S-A JV, 2023e). LUC inspections and interviews were also conducted at the former Oak and Maple HAs, as discussed in Section 7.2.

1.2 Site Description and History

The former Fort Devens Army Installation is located in the towns of Ayer and Shirley in Middlesex County, and Harvard and Lancaster in Worcester County, Massachusetts, approximately 35 miles northwest of Boston, Massachusetts. The installation occupied approximately 9,260 acres and was composed of the North, Main, and South Posts (Figure 1). Route 2 divides the South Post from the Main and North Posts. The Nashua River runs through the North, Main, and South Posts. The area surrounding Fort Devens is largely residential.

The area around Fort Devens was occupied by residential homes and farmland until 1917, when Camp Devens was established as a temporary training area for soldiers during World War I and was used for a variety of training missions until 1990. In 1932, the site was named Fort Devens and made a permanent installation with the primary mission of commanding, training, and providing logistical support for non-divisional troop units. The installation also supported the United States Army (Army) Readiness Regional and National Guard units in the New England area. Pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act of 1986, Fort Devens was placed on the National Priorities List on November 21, 1989, because of identified environmental contamination at several sites.

Devens was identified for cessation of operations and closure under Public Law 101-510, the Defense Base Realignment and Closure (BRAC) Act of 1990, and officially closed in March 1996. As part of the Fort Devens BRAC program, portions of the property formerly occupied by Fort Devens were retained by the Army for reserve forces training and renamed the Devens Reserve Forces Training Area. Areas not retained as part of the Devens Reserve Forces Training Area have been either transferred or are in the process of being transferred to the Massachusetts Development and Finance Agency (MassDevelopment) for reuse and redevelopment, and to other federal agencies as noted below.

1.3 Groundwater Hydrology

Depth to groundwater was measured prior to sampling all wells at the AOCs within a 24-hour period. Plotting the synoptic groundwater elevation data allows for determination of groundwater flow direction and gradient, essential in understanding contaminant migration and evaluating the effectiveness of the monitoring well network. Groundwater and surface water elevations for the spring and fall 2023 LTM events are presented in Tables 1 and 2, respectively. The 2023 groundwater gradients are expressed in feet per foot (ft/ft) and AOC-specific groundwater elevation data are presented in sections specific to each AOC.

Annual precipitation data for 2004 through 2023, as reported from the Fitchburg Municipal Airport weather station, are presented in Table 3. The data indicate that precipitation across the area in February, May, October, and November was less than average for the period of record; April and December were near average (within one-half inch) for the period of record; and January, March, June, July, August, and September were greater than average for the period of record. The overall precipitation in 2023 (60.84 inches) was higher than the average of 43.96 inches for the period of record.

1.4 2023 Long-Term Monitoring Activities

1.4.1 Groundwater Sampling

Sampling activities were coordinated with the USACE – New England District, BRAC Environmental Coordinator office, contracted analytical laboratory, and stakeholders for each respective site. The laboratory provided

sampling supplies (sample containers, packing material, custody seals, and coolers) to the sampling team per the specific sample requirements presented in Table 4. Sampling equipment consisted of water quality meters, turbidity meters, bladder pumps, peristaltic pumps, and water levels meters that were tested before use. Well construction details (Table 5) were maintained on site during the sampling events to confirm well screen interval information as needed. The condition of the monitoring well network at each LTM site was inspected during the 2023 sampling events. Observations, if noted, are contained within the field sampling logs provided in Appendix A. Monitoring wells were found to be in good overall condition, and well locks were replaced if needed.

Monitoring wells were purged and sampled in accordance with Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (USEPA 2017b). Low-flow bladder or peristaltic pumps were used, as described in the LTMMP (Sovereign/HGL 2015). Samples submitted for dissolved metals analyses were field filtered through 0.45-micron filters directly into preserved sample bottles.

Non-dedicated sampling and monitoring equipment was decontaminated in accordance with the QAPP (S-A JV 2020). Field duplicate samples were collected during sampling events at each AOC, at the rate of 10% (i.e., one per 10 samples), to evaluate field precision. Matrix spike (MS)/matrix spike duplicate (MSD) pairs (one set per AOC) were also submitted to evaluate matrix effects on field and analytical precision and accuracy.

The field instruments used to measure water quality parameters (temperature, dissolved oxygen [DO], pH, oxidation-reduction potential [ORP], specific conductance, and turbidity) were calibrated twice daily (before and after field use) in accordance with the manufacturer's instructions and the Calibration of Field Instruments Standard Operating Procedure (USEPA 2017a). Equipment calibration log forms are provided in Appendix A. No instrument error was noted during the spring or fall LTM events.

Investigation-derived waste was not generated during the 2023 LTM activities. Purge water from wells was returned to the ground near sample collection locations in accordance with the LTMMP (Sovereign/HGL 2015).

1.4.2 Laboratory Testing

Eurofins TestAmerica Laboratories, Inc. Savannah (Eurofins) was the primary contract laboratory for the analysis of water samples for the spring and fall 2023 LTM events. Eurofins is compliant with the Quality Systems Manual for Environmental Laboratories, Version 5.4 (Department of Defense [DoD] 2021) under the DoD Environmental Laboratory Accreditation Program (ELAP) and holds current accreditation in accordance with the National ELAP for all applicable analytical methods.

For the Fall 2023 LTM event, Eurofins subcontracted all VPH samples to Katahdin Analytical Services, located in Westbrook, Maine, which were analyzed using the Massachusetts Department of Environmental Protection (MassDEP) analytical methods. Katahdin Analytical Services holds the MassDEP certification and DoD ELAP accreditation for these analyses.

Laboratory analytical results for water samples collected during the 2023 LTM events are discussed in Sections 2 through 6. Laboratory analytical reports are provided in Appendix B.

1.4.3 Data Validation

Quality assurance and quality control (QC) samples were collected and analyzed during the spring and fall 2023 groundwater sampling events to evaluate sample collection, transportation, and analysis procedures. Field duplicate samples were collected from monitoring wells 57M-96-11X (AOC 57, spring 2023), ZVM-99-22X (AOC

69W, fall 2023), XGM-97-12X (AOC 43G, fall 2023), 32M-01-18XBR (AOC 32/43A, spring 2023), and LFM-99-05A (DCL, spring and fall 2023).

Data validation was completed on all laboratory deliverables by Laboratory Data Consultants, Inc. (LDC), located in Carlsbad, California. Analytical results from the 2023 LTM events were evaluated for data acceptability in accordance with the Environmental Data Review Program Guidance (USEPA 2018), the Quality Systems Manual for Environmental Laboratories, Version 5.4 (DoD 2021), and the laboratory's defined acceptance limits. The method requirements for the USEPA SW-846 QC guidance and the MassDEP VPH and EPH methods were also used as supplemental information. The data validation reports are provided in Appendix C; a summary of quality control exceedances noted during data validation is also included in Appendix C.

LDC reviewed and updated the database with appropriate data qualifiers as needed. Laboratory analyses were confirmed to have been performed in general compliance with the precision, accuracy, representativeness, completeness, comparability, and sensitivity requirements listed in the QAPP (S-A JV 2020). Sample results that were qualified as estimated (UJ/J) due to quality control exceedances are usable with caution. The nitrate-nitrite as N result in sample LFM-99-02B-FAL23 was qualified as rejected (R) due to matrix spike/matrix spike duplicate (MS/MSD) recoveries less than 30%; the result is not usable. Analytical results reported for the spring and fall 2023 LTM samples were deemed valid and usable for intended purposes with the exception of the nitrate-nitrite as N result in sample LFM-99-02B-FAL23 that was rejected.

1.4.4 Data Evaluation

The analytical results for each AOC were compared to the respective monitoring criteria or cleanup goals (CGs) established in the applicable ROD. Arsenic results in groundwater were compared to the 10 micrograms per liter (µg/L) maximum contaminant level (MCL) that was promulgated in 2006, which is lower than the cleanup standard that was previously established in the site-specific RODs. Results are discussed in the AOC-specific sections that follow. Table 6 presents the site-specific contaminants of concern (COCs) and the associated CGs or comparison criteria for each AOC. Table 7 presents the DCL leachate discharge limits set by MassDevelopment in accordance with the Industrial Discharge Permit.

2 Area of Contamination 57

2.1 Site Background

AOC 57 is located between Barnum Road and Cold Spring Brook on the northeast side of what was formerly the Main Post of Fort Devens in Harvard, Massachusetts (Figure 1). AOC 57 is located within a Zone II aquifer protection area for the Town of Ayer Grove Pond public water supply wells. The area that includes AOC 57 was used primarily for storage and maintenance of military vehicles. AOC 57 consists of three subareas (Areas 1, 2, and 3) located south to southeast of Building 3713 and former Buildings 3756, 3757, and 3758 (Figure 2). Each subarea includes an upland area that slopes downward to a delineated wetland area bordering Cold Spring Brook. The subareas received stormwater runoff and waste from vehicle maintenance at former vehicle storage yards related to former Buildings 3713, 3757, and 3758.

A No Further Action ROD was completed for Area 1 (Harding 2001) following the removal of PAH-contaminated soil in 1997. The associated investigation revealed contaminated groundwater, soil, and sediment in Area 2. The Army completed a limited soil removal action at Area 2 in 1994, and it was discovered that contamination extended beyond the limits originally estimated. Approximately 1,300 cubic yards (yd³) of soil were removed, and the site was transferred to the remedial investigation (RI)/feasibility study (FS) process. During spring 1999, a soil removal action focusing on PCBs and EPH in soil was performed at Area 3 based on data obtained from the RI.

Areas 2 and 3 are shown on Figures 3 and 4, respectively. In June 2000, the Army completed an RI at AOC 57 Areas 2 and 3 that revealed the presence of residual contamination at both sites. A ROD for Areas 2 and 3 was issued in September 2001 and selected excavation (for possible future use) and LUCs for Area 2, and excavation (to accelerate groundwater cleanup) and LUCs for Area 3. The excavations and product recovery activities are discussed in the Interim Removal Action Completion Report – AOC 57 (Conti Environmental, Inc. 2004). The data collected during the RI activities prompted an Explanation of Significant Differences in March 2004 to add EPH as a COC for Area 2.

Construction of a solar panel manufacturing facility between Areas 2 and 3 and Barnum Road (112 Barnum Road; Figure 2) was completed in 2009. The current occupant (Jabil, Inc.) produces healthcare products.

An active irrigation well is located adjacent to the building at 78 Barnum Road (Figure 2). The well is 505 feet deep and is believed to be an open borehole bedrock well. The property manager has indicated that the well is used for lawn care for the property from spring to fall and there is no flow meter to record the daily flow rate or volume of water used.

In March 2019, multiple debris areas were identified at AOC 57 between Areas 2 and 3, southeast of the walking path located behind 112 Barnum Road (Figure 2). Debris included rusted vehicle parts (metal debris, tires, and bumpers) and other smaller piles of rusted scrap metal (empty drums and containers). Large concrete slabs were also found. In November and December 2021, debris was removed from AOC 57 in accordance with the Debris Removal Workplan (S-A JV 2021); additional information is presented in the Final Debris Removal Activities Summary Report submitted to the USEPA in May 2022 (S-A JV 2022a).

2.2 Groundwater Hydrology

During spring 2023 LTM, water levels were collected at a total of 19 wells and piezometers prior to groundwater sampling, as presented in Table 1. A groundwater elevation contour map is shown on Figure 5 (Areas 2 and 3).

Data indicate that shallow groundwater flows toward Cold Spring Brook to the south/southeast, consistent with historical groundwater flow observations.

The groundwater hydraulic gradients for shallow groundwater within Areas 2 and 3 in spring 2023 were approximately 0.013 ft/ft (between upgradient well 57M-03-01X and downgradient well 57M-03-03X) and 0.026 ft/ft (between upgradient well 57M-95-03X and downgradient well 57M-96-11X), respectively (Figure 5). The calculated hydraulic gradients and depicted flow directions are consistent with those for previous years.

2.3 Groundwater and Surface Water Sampling

Groundwater and surface water in Area 3 was sampled historically on a semiannual basis from 2003 to 2007, and on an annual basis in the spring since 2008. The sampling program was modified in the LTMMP (Sovereign/HGL 2015) during 2015 to suspend sampling at Area 2; the LTMMP was finalized in accordance with provisions of the 1991 Devens FFA Section 7.8 and released without USEPA comment. Groundwater at AOC 57 is sampled annually in the spring. The spring 2023 LTM event consisted of collecting groundwater samples from two Area 3 monitoring wells (57M-95-03X and 57M-96-11X). Groundwater samples were analyzed for total metals (arsenic, iron, and manganese). One surface water location was also sampled during the spring 2023 LTM event (57-SW1) and was analyzed for dissolved metals (arsenic, iron, and manganese). The spring 2023 groundwater and surface water analytical results for Area 3 are presented in Tables 8 and 9, respectively.

2.3.1 Spring 2023 Data Summary

Exhibit 2-1, below, summarizes the analytes detected in groundwater samples collected from AOC 57 in spring 2023 that exceed the CG specified in the ROD (Harding 2001). Appendix D provides the data for 2003 through 2023, and Appendix E provides the Mann-Kendall trend analyses.

Exhibit 2-1 AOC 57 Area 3 Contaminant of Concern CG Exceedances, Spring 2023

Well Identification	Analyte	Groundwater CG (μg/L) ¹	Detected Result (µg/L)
57M-95-03X	Arsenic (total)	10	13 J
57M-96-11X	Arsenic (total)	10	20

Notes:

Total arsenic concentrations in well 57M-95-03X have been relatively stable, at or less than 60 μ g/L with an average of 31 μ g/L since the fall 2004 event. Total arsenic concentrations in well 57M-96-11X have varied more broadly through time, fluctuating between 20 and 470 μ g/L from 2004 through 2023 (average of 194 μ g/L). There is not a statistically significant trend for arsenic at either location.

One surface water sample was collected from location 57-SW1; the dissolved iron concentration $(4,900 \, \mu g/L)$ exceeded the surface water benchmark. This is consistent with historical results, which have ranged from 240 to 21,000 μ g/L historically and show variability from year to year.

Results of additional analytes screened against groundwater monitoring criteria and surface water benchmarks are presented in Tables 8 and 9, respectively. Figure 6 shows exceedances of the groundwater CG and surface water results compared to the surface water benchmarks for analyses required per the LTMMP (Sovereign/HGL 2015).

¹ The CG for arsenic in groundwater is the MCL standard.

J = estimated concentration

2.3.2 Water Quality Parameters

General water quality chemistry parameters (pH, temperature, specific conductivity, ORP, DO, and turbidity) were measured at each well while sampling and were used to determine groundwater stabilization prior to sampling. Final readings prior to collection of each sample are presented in Table 8.

ORP and DO data can be used to determine whether reducing or oxidizing conditions are present in groundwater. Low ORP values (less than 50 millivolts [mV]) and DO concentrations less than 1 milligram per liter (mg/L) are generally associated with reducing conditions. Reducing conditions are a typical byproduct of the biodegradation of fuel products and may result in solubilizing of naturally occurring arsenic (and other oxidation-reduction-sensitive metals such as iron and manganese) from native soils to groundwater. This results in elevated concentrations of these metals in groundwater at some locations, while some subsurface zones contain naturally occurring concentrations which are greater than their respective CGs. DO and ORP at well 57M-96-11X (ORP of 9.0 mV and DO of 0.17 mg/L) and well 57M-95-03X (ORP of -106 mV and DO of 0.13 mg/L) indicate that groundwater in these wells is generally reducing or moderately reducing. These locations are hydraulically downgradient of the Area 3 source area.

2.4 Land-Use Controls, Interviews, and Inspection

AOC 57 is owned by the Army but is leased to MassDevelopment per a Lease in Furtherance of Conveyance agreement. Under the Lease in Furtherance of Conveyance agreement, MassDevelopment must comply with the LUCs of the ROD (Harding 2001) to limit the potential exposure to the residual contaminated soil and groundwater under both existing and future site conditions. The LUCs ensure that exposure to any remaining contaminated soils beneath the site is controlled and prohibit groundwater extraction for industrial or potable water supply use. The initial site-specific annual LUC checklist, including physical on-site inspection and interview components, was developed in 2007 for use during LUC verification activities to ensure control requirements are being met. The checklist was updated in 2023 and included in a LUCIP prepared for AOC 57 (S-A JV, 2023f). Appendix F contains the completed checklist.

An annual LUC inspection was completed on November 29, 2023, which confirmed the following (Appendix F):

- No signs of increased exposure potential to the public from groundwater and/or surface water contaminants.
- No damage to on-site monitoring wells
- No evidence that groundwater extraction wells are present.
- Access to the site is sufficient for monitoring. Some minor vegetation clearance is needed adjacent to a subset of monitoring wells.
- No evidence of site use changes or increased exposure potential.

The S-A JV and Army conducted an interview on January 29, 2024 with Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), and Meg Delorier (MassDevelopment) which confirmed the following (Appendix F):

- The interviewees are familiar with the LUCs imposed on the property and documentation of these controls.
- No groundwater extraction wells are present.
- No proposed plans for property sale, future redevelopment and construction, or demolition activities at the site.

No issues with site access for monitoring.

2.5 Conclusions and Recommendations

After removal of the source area in soil, natural attenuation processes have effectively reduced the remaining concentrations of site COCs (tetrachloroethene, cadmium, 1,4 dichlorobenzene, PCBs, and EPH C11-C22 aromatic carbon range) to less than their respective remediation goals (Sovereign/HGL 2015).

The 2023 LTM results at AOC 57 are consistent with the conceptual site model (CSM; HGL 2008). Total arsenic was detected at concentrations greater than the CG in wells 57M-95-03X and 57M-96-11X, which is consistent with historical observations. There is not a statistically significant trend for arsenic at either location. Groundwater at AOC 57 flows towards Cold Spring Brook; surface water samples collected from location 57-SW-1, adjacent to Area 3, have not identified arsenic concentrations at levels greater than the USEPA Water Quality Criterion (monitoring benchmark) of 150 μ g/L since long-term monitoring started in 2003. Dissolved iron concentrations at 57-SW-1 have exceeded the monitoring benchmark of 1,000 μ g/L in 16 of 20 sampling events completed since 2006, including the spring 2023 LTM event.

The remedial action selected in the ROD included the implementation of LUCs to limit potential exposure to contaminated soil and groundwater under both existing and future site use (Harding 2001). The 2023 LUC inspections and interviews indicate that the LUCs continue to be in place and in effect.

The following recommendations are included for AOC 57:

- Continue annual sampling and LUC inspections in accordance with the LTMMP and LUCIP.
- Complete vegetation removal to maintain access to monitoring wells in wooded areas.
- Update the LTMMP to optimize the monitoring program.

3 Area of Contamination 69W

3.1 Site Background

AOC 69W is located by the northeast corner of the intersection of Jackson Road and Antietam Street on the northern portion of what was formerly the Main Post at Fort Devens (Figure 1), within the Zone II area associated with the MacPherson Well (Figure 7). It is currently being used for the Francis W. Parker Charter Essential School (former Devens Elementary School [Building 215]), its associated parking lot, and the adjacent lawn extending approximately 300 feet northwest to Willow Brook (Figure 7).

Historical impacts at AOC 69W are attributed to two separate releases of No. 2 heating oil in 1972 and 1978. The 1972 release occurred during the installation of a new 10,000-gallon underground storage tank (UST). The 1978 release resulted from a failed piping joint in the oil pipes that led to the old boiler. Actions, including installation of an oil recovery system, were performed to recover released fuel and oily water from each release (HLA 1999a). A removal action was performed in 1998 for soils and to remove the oil recovery system. The soil removal action was limited by the presence of the building.

The ROD (HLA 1999a) issued for AOC 69W in June 1999 selected limited action as the remedy for subsurface soils and groundwater, and included LTM, LUCs, and five-year reviews. LTM was developed to monitor for off-site migration of contaminants and verify that concentrations decreased through time. The ROD (HLA 1999a) listed arsenic and VPH/EPH to be analyzed. Sampling for VPH was discontinued in 2014; concentrations were less than criteria from 2009 through 2013. Well point 69WP-13-01 was installed in 2013 to monitor for potential migration of manganese based on manganese detected at 69WP-08-01 in 2008.

3.2 Groundwater Hydrology

During the fall 2023 LTM event, water levels were collected from a total of 17 wells and piezometers (Table 2). A water table elevation contour map is shown on Figure 8. Data from the fall 2023 LTM event indicates that groundwater flows in a north-northwest direction, and a groundwater gradient of 0.007 ft/ft was calculated between upgradient monitoring well ZWM-95-17X and downgradient well ZWM-95-18X (Figure 8). The hydraulic gradients and depicted flow directions are generally consistent with those for previous years.

3.3 Groundwater Sampling

Groundwater at AOC 69W is sampled annually in the fall. The fall 2023 LTM event consisted of collecting groundwater samples from eight monitoring wells and two well points (Table 10). In accordance with the LTMMP (Sovereign/ HGL 2015), the groundwater samples were analyzed for EPH and associated target analyte list PAHs, and/or dissolved metals (arsenic, iron, and/or manganese).

3.3.1 Fall 2023 Data Summary

Exhibit 3-1, below, summarizes the analytes detected in groundwater samples collected from AOC 69W in fall 2023 that exceed the CG specified in the ROD (HLA 1999a). Results of additional analytes screened against monitoring criteria are presented in Table 10. As shown in Table 10, neither EPH nor PAHs were detected above their respective monitoring criteria in the fall 2023 groundwater samples collected at AOC 69W. Figure 9 shows exceedances of the CG and monitoring criteria for analyses required per the LTMMP (Sovereign/HGL 2015).

Historical data at AOC 69W from 2000 through 2023 are provided in Appendix D. Mann-Kendall trend analyses are provided in Appendix E.

Exhibit 3-1 AOC 69W Contaminant of Concern CG Exceedances, Fall 2023

Well Identification	Analyte	Groundwater CG (μg/L) ¹	Detected Result (µg/L)
ZWM-99-22X	Arsenic (dissolved)	10	110
ZWM-99-23X	Arsenic (dissolved)	10	23

Note:

Each of the above dissolved arsenic detections greater than the CG are consistent with historical observations. Out of the four wells (69W-94-13, ZWM-95-15X, ZWM-99-22X, and ZWM-99-23X) evaluated using Mann-Kendall analysis two wells (69W-94-13 and ZWM-99-23X) exhibit a statistically significant decreasing trend for dissolved arsenic.

3.3.2 Water Quality Parameters

Table 10 presents the readings for final field measured general water quality chemistry parameters (pH, temperatures, specific conductivity, ORP, DO, and turbidity) taken before collection of each groundwater sample. At AOC 69W, as described in Section 2.3.2 for AOC 57, low DO and ORP, indicating reducing conditions in groundwater, generally correlate with increased detected concentrations of metals. Monitoring well ZWM-99-22X, for example, had relatively low ORP and DO concentrations (-29.2 mV and 0.46 mg/L, respectively) and the highest concentration of arsenic detected (110 μg/L; 120 μg/L in duplicate sample) in fall 2023.

3.3.3 Land-Use Controls, Interviews, and Inspection

Ownership of AOC 69W was transferred from the Army to MassDevelopment in August 2007. MassDevelopment later transferred ownership of AOC 69W to the Francis W. Parker Charter Essential School, the current owner. LUCs were implemented to limit potential exposure to contaminated soil and groundwater under existing and future site conditions, per the ROD (HLA 1999a) and a subsequent deed (Army and MassDevelopment 2007). LUCs ensure that the remaining contaminated soils beneath and adjacent to the building are not excavated and prohibit groundwater extraction from the site for industrial or potable water supply use. Land use is evaluated as part of the five-year review process to ensure control requirements are being met. A site-specific annual LUC checklist (Appendix F), including physical on-site inspection and interview components, was initially developed in 2007 for use during LUC verification activities. The checklist was updated in 2023 and included in a LUCIP prepared for AOC 69W (S-A JV, 2023g). Appendix F contains the completed checklist.

An annual LUC inspection was performed on November 28, 2023, which confirmed the following (Appendix F):

- No evidence (repaved cut marks or penetrations in the pavement) within the Excavated Soils Management Area (ESMA) that have not been otherwise identified and properly documented by the property owner.
- No evidence of damage to the remedy or change to the area overlying the ESMA.
- No evidence that groundwater extraction wells are present.

¹ The CG for arsenic in groundwater is the MCL standard.

- Access to the site is sufficient for monitoring. The S-A JV completed a vegetation removal event in October 2023 to improve access to monitoring wells in the wooded area north of the ESMA; the work was coordinated with MassDevelopment and the property owner.
- No signs of increased exposure potential.

An interview was conducted on January 29, 2024 with Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), and Meg Delorier (MassDevelopment). In addition, Michelle McKenna (Business Manager of Francis W. Parker Charter Essential School) was contacted via email on January 11, 2024. The interviews confirmed the following (Appendix F):

- The interviewees are familiar with the LUCs imposed on the property and documentation of these controls.
- No groundwater extraction wells are present.
- No proposed plans for property sale, future redevelopment, and construction or demolition activities at the site.
- No excavations (planned or emergency) north of the school were conducted within the ESMA.
- · No issues with site access for monitoring.

Michelle McKenna indicated that a retaining wall/sidewalk project (previously on hold) is anticipated to be completed in 2024. The MassDEP, USEPA and USACE approved a soil management plan and health and safety plan for this project on January 11, 2024.

3.4 Conclusions and Recommendations

The 2023 LTM results are consistent with the CSM (HGL 2008). The LTM dataset indicate that arsenic concentrations have either remained table or exhibited a decreasing trend since 2009, VPH is no longer sampled due to being less than criteria, and EPH results have been less than monitoring criteria since the fall 2019 LTM event. The detected dissolved metal concentrations fluctuate in response to oxidation-reduction conditions in the shallow groundwater.

The ROD (HLA 1999a) remedy includes LUCs to limit potential exposure to contaminated soil and groundwater under both existing and future site use. 2023 LUC inspections and interviews indicate the LUCs continue to be in place and in effect.

The following recommendations are included for AOC 69W:

- Continue annual groundwater sampling and LUC inspections in accordance with the LTMMP and LUCIP.
- Continue annual vegetation removal events to maintain access to monitoring wells in wooded areas.
- Update the LTMMP to optimize the monitoring program.

4 Area of Contamination 43G

4.1 Site Background

AOC 43G is in the central portion of the former Main Post of Fort Devens (Figure 1), at the southwestern corner of Pine Road and Queenstown Street, as shown on Figure 10. AOC 43G consists of the former Army Air Force Exchange Service (AAFES) gas station (Areas 2 and 3) and historical Gas Station G (Area 1) and has been the subject of RIs associated with petroleum contamination resulting from past operations. The former gas station was used as a motor pool fueling station during the World War II era. USTs identified at AOC 43G were removed.

In October 1996, the Army conducted an FS to evaluate potential remedial alternatives and signed a ROD (USEPA 1996) to document the selected remedy. The selected remedial action includes intrinsic bioremediation, groundwater and contaminant modeling, and long-term groundwater monitoring. Intrinsic bioremediation is a remedial approach that relies on natural attenuation processes to remediate contaminants in the subsurface. Components of the selected remedy include assessment, data collection, groundwater modeling, LTM, annual reporting to the USEPA and MassDEP, and performing five-year reviews.

4.2 Groundwater Hydrology

During fall 2023 LTM, water level measurements were performed at a total of 11 wells at AOC 43G. Table 2 presents the groundwater elevations and Figure 11 shows a groundwater elevation contour map. The groundwater flow direction is to the east/southeast consistent with the local topography, eventually discharging to surface water via an unnamed tributary to Robbins Pond and to Robbins Pond itself. The calculated hydraulic gradient (0.051 ft/ft between upgradient well XGM-97-12X and downgradient well AAFES-7; Figure 11) and depicted flow direction are generally consistent with those for previous years.

4.3 Groundwater Sampling

Groundwater at AOC 43G is sampled annually in the fall. Fall 2023 LTM at AOC 43G consisted of collecting groundwater samples from five monitoring wells (Table 11). In accordance with the LTMMP (Sovereign/HGL 2015), the groundwater samples were analyzed for VPH and target analyte VOCs, alkalinity, and total metals (iron and/or manganese).

4.3.1 Fall 2023 Data Summary

Exhibit 4-1, below, presents the analytes detected in groundwater samples collected from AOC 43G in fall 2023 that exceed the CGs specified in the ROD (USEPA 1996). Results of additional analytes screened against monitoring criteria are presented in Table 11. Figure 12 shows exceedances of the CGs and monitoring criteria for analyses required per the LTMMP (Sovereign/HGL 2015). Appendix D contains the AOC 43G historical data from 1999 through 2023, while Appendix E presents the Mann-Kendall statistical trend analyses of selected wells.

Exhibit 4-1 AOC 43G Contaminant of Concern CG Exceedances, Fall 2023

Well Identification	Analyte	Groundwater CG (µg/L) ¹	Detected Result (µg/L)
AAFES-2	Iron (total)	9,100	16,000
	Manganese (total)	375	4,400
XGM-93-02X Manganese (total)		375	940
XGM-94-04X Manganese (total)		375	440
	Iron (total)	9,100	37,000
XGM-97-12X	Manganese (total)	375	2,000
	Benzene	5	6.3

Note:

Total manganese exceeded the $375 \mu g/L$ CG in four of five sampled wells. Concentrations were observed to be consistent with historical data. Of the wells evaluated using Mann-Kendall, three of five wells, AAFES-2, XGM-93-02X, and XGM 97-12X had statistically significant decreasing trends for total manganese. There was not a statistically significant trend at well XGM-94-04X or well AAFES-7.

Total iron exceeded the 9,100 μg/L CG in two of four sampled wells. Out of the three wells, AAFES-2, XGM-93-02X, and XGM 97-12X evaluated using Mann-Kendall, two wells AAFES-2 and XGM-93-02X had statistically significant decreasing trend in total iron concentrations.

Total benzene exceeded the 5 μ g/L CG in one of four sampled wells (XGM-97-12X). Well XGM-97-12X was the only well evaluated using Mann-Kendall and had a statistically significant decreasing trends for benzene.

VPH (C5-C8 Aliphatics, C9-C10 Aromatics, and C9-C12 Aliphatics) did not exceed their respective monitoring criteria in any of the sampled locations. Specific information on each carbon fraction is provided below:

- There was a statistically significant decreasing trend for C5-C8 Aliphatics at three of four wells evaluated (AAFES-2, XGM-93-02X, and XGM-97-12X; there was not a statistically significant trend at well XGM-94-04X).
- There was a statistically significant decreasing trend for C9-C10 Aromatics at two of three wells evaluated (AAFES-2 and XGM-97-12X; there was not a statistically significant trend at well XGM-94-04X).
- There was not a statistically significant trend for C9-C12 Aliphatics at both wells evaluated (AAFES-2 and XGM-97-12X).

4.3.2 Water Quality Parameters

Table 11 presents the readings for final field-measured general water quality chemistry parameters (pH, temperatures, specific conductivity, ORP, DO, and turbidity) taken before collection of each groundwater sample. The ORP and DO data (Table 11) indicate reducing conditions in groundwater at four of the five wells sampled (AAFES-2, XGM-93-02X, XGM-94-04X, and XGM-97-12X). Exceedances of the CGs for iron and manganese are

¹ The CG for iron is the background level. The CG for manganese is a site-specific goal established as part of the Long-Term Monitoring Plan (LTM Plan; HGL 2008).

observed at each of these locations. Historical data indicate that the oxidation-reduction conditions and associated metals concentrations are variable at several locations. However, it is assumed that the natural degradation of the residual petroleum in the subsurface has changed the geochemical conditions of the groundwater, which resulted in elevated concentrations of naturally occurring iron and manganese due to reductive dissolution processes.

4.4 Land-Use Controls, Interview, and Inspection

AOC 43G is currently under Army ownership. Per the ROD (USEPA 1996), substantive requirements of LUCs that restrict access to contaminated groundwater and soil are in place at AOC 43G. The Addendum to the Real Property Master Plan (Army 2007) included supplemental information on LUCs established under BRAC and Comprehensive Environmental Response, Compensation, and Liability Act programs that are applicable to AOC 43G. The LUCs were designed to protect the integrity and effectiveness of the remedy. Any proposed actions that affect the AOC 43G property must meet the following requirements of the ROD (USEPA 1996):

- Ensure that the property is not used for residential purposes and prohibit the use of groundwater beneath the site.
- If the Army transfers the property by lease or deed, an environmental baseline survey will be conducted to
 ensure that the remedy remains protective by incorporating all necessary environmental protection provisions
 within the Finding of Suitability to Transfer and the property transfer deed.
- Any intrusive construction work must consider that residual soil and groundwater contamination has been documented for AOC 43G, and such actions should be coordinated with the Department of Public Works and BRAC.

An annual LUC inspection was performed on November 29, 2023, which confirmed the following (Appendix F):

- No evidence of development or damage in the area of the remedy.
- Minor damage to monitoring wells. Some bollards and wooden stakes installed around monitoring wells are in need of replacement/repair; this was observed previously and well repairs will be scheduled during planned future site activities.
- No evidence that groundwater extraction wells are present.
- The access is sufficient to the site for monitoring.
- No signs of increased exposure potential.

Penelope Reddy (USACE) was contacted via email on January 11, 2024, and confirmed the following (Appendix F):

- The interviewee is familiar with the LUCs imposed on the property and documentation of these controls.
- No groundwater extraction wells are present.
- No proposed plans for property sale, future redevelopment and construction, or demolition activities at the site.
- No issues with site access for monitoring.

4.5 Conclusions and Recommendations

Based on the previous remedial activities performed at AOC 43G and evaluation of the available monitoring data, the 2023 monitoring results are consistent with the CSM (HGL 2008). The LTM dataset indicate that there is a

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

general decreasing trend in total manganese and total iron concentrations at wells that exceed the CGs for these COCs. There was one exceedance of the CGs for benzene during the fall 2023 LTM; benzene is one of the target VOCs listed in the ROD. As shown in Appendix D, the fall 2023 benzene concentrations at this location are within the range of sampling results over the last 10 years, and there is an overall decreasing trend since LTM sampling began in 1999 (Appendix E).

The ROD remedy includes LUCs to limit potential exposure to contaminated soil and groundwater under both existing and future site use. The 2023 LUC inspections and interviews indicate the LUCs continue to be in place and in effect.

The following recommendations are included for AOC 43G:

- Continue annual groundwater sampling and LUC inspections in accordance with the LTMMP.
- Complete monitoring well and bollard repairs, as noted during the 2023 LUC inspection.
- Update the LTMMP to optimize the monitoring program.

5 Areas of Contamination 32 and 43A

5.1 Site Background

AOCs 32 and 43A are located east of Cook Street and north of Independence Drive (Figure 13). A portion of AOC 32 intersects a MassDEP 310 Code of Massachusetts Regulations 22.02 Zone II aquifer protection area associated with the five Grove Pond wells (Public Water Supply IDs 2019000-01G, 2019000-02G [inactive], 2019001-06G, 2019001-07G, and 2019001-08G).

AOC 32 (Defense Reutilization and Marketing Office Yard) was an active materials storage facility from approximately 1964 to 1995. It consisted of three fenced areas where various materials were processed and stored, as well as a former waste oil UST (UST #13). The tank was removed in 1992 and associated contaminated soils were excavated and disposed of off-site. COCs at AOC 32 include select VOCs and metals (arsenic and manganese). Monitored natural attenuation (MNA) is the selected remedy for groundwater contamination. Figure 13 shows the new warehouse at AOC 32 overlying the footprint of the former features.

AOC 43A (Petroleum, Oils, and Lubricants Storage Area) served as the central distribution point for all gasoline stations at Fort Devens during the 1940s and 1950s and was subsequently used to store fuels for various purposes. The distribution facility consisted of a main gasoline station, a pump house, four 12,000-gallon USTs, one 10,000-gallon UST, two 12,000-gallon aboveground storage tanks, and two 8,000-gallon aboveground storage tanks. Gasoline was delivered by rail car and transferred to the tanks. Site investigation indicated that low levels of xylenes and an elevated level of petroleum hydrocarbons was present in the subsurface soils. MNA was chosen as the selected remedy for groundwater and was incorporated into the ROD (Horne 1998).

A remedial action, consisting of in-situ chemical oxidation via persulfate injections, was implemented in February 2009 to augment the MNA remedy at AOC 32 near the former USTs. The remedial action targeted the remaining site COCs, including the dichlorobenzene (DCB) isomers, at well 32M-01-18XBR. The findings and conclusions for this remedial action are discussed in the AOCs 32 and 43A Persulfate Injection Letter Report (HGL 2009).

5.2 Groundwater Hydrology

During the spring 2023 LTM event, water level measurements were collected from a total of 26 monitoring wells and piezometers screened in both the overburden and bedrock aquifers. Table 1 presents the water level measurements. Groundwater elevation contour maps prepared for the overburden and bedrock aquifers in AOC 32/43A (Figures 14 and 15, respectively) show that groundwater generally flows to the south/ southwest with a component of southeasterly flow on the east side of the area, consistent with the site's historical flow patterns. The following hydraulic gradients were calculated based on spring 2023 LTM data:

- Overburden, to the southwest. Approximately 0.021 ft/ft between upgradient monitoring well 32Z-01-08XOB and downgradient well 43M-01-16XOB (Figure 14).
- Overburden, to the southeast. Approximately 0.03 ft/ft between upgradient monitoring well 32Z-01-07XOB and downgradient well 32M-01-14XOB (Figure 14).
- Bedrock, to the south/southwest. Approximately 0.028 ft/ft between upgradient monitoring well 32Z-01-12XBR and downgradient well 43M-01-16XBR (Figure 15).
- Bedrock, to the southeast. Approximately 0.045 ft/ft between upgradient monitoring well 32Z-01-06XBR and downgradient well 32M-01-14XBR (Figure 15).

 Bedrock, to the east. Approximately 0.029 ft/ft between upgradient monitoring well 32M-01-15XBR and downgradient well 32M-01-17XBR (Figure 15).

The calculated hydraulic gradients and depicted flow directions are generally consistent with those for previous years.

Four sets of overburden and bedrock well pairs were assessed with respect to the presence of vertical gradients, as shown in Exhibit 5-1, below.

Exhibit 5-1 AOC 32/43A Vertical Gradients, Spring 2023

Location ¹	Depth to Water (feet below MPE)	Groundwater Elevation (feet NAVD88)	Bottom of Screen (feet NAVD88)	Top of Screen (feet NAVD88)	Mid-Point of Screen (feet NAVD88)	Mid-Point of Screen Separation (feet)	Vertical Gradient Spring 2023 ²
32M-01-14XOB	24.43	232.13	227.10	237.10	232.10	16.80	-0.090
32M-01-14XBR	22.42	233.64	210.30	220.30	215.30		0.000
43M-01-16XOB	24.41	232.47	223.13	233.13	228.13	23.56	0.002
43M-01-16XBR	24.42	232.42	199.57	209.57	204.57		0.002
43M-01-17XOB	26.01	232.07	225.11	235.11	230.11	24.07	-0.002
43M-01-17XBR	26.16	232.13	201.04	211.04	206.04	24.07	0.002
43M-01-20XOB	25.84	231.56	223.64	233.64	228.64	44.05	-0.001
43M-01-20XBR	25.69	231.61	179.59	189.59	184.59	77.00	0.001

Notes:

NAVD88 = North American Vertical Datum of 1988

Most well pairs have negative vertical gradients, which indicate there is an upward flow component. Upward vertical gradients have been observed consistently at all well pairs over the last five years, except for the Spring 2023 LTM event at well pair 43M-01-16XOB/XBR and the Spring 2019 event at well pair 43M-01-20XOB/XBR. This is consistent with the site's historical flow patterns, with the magnitude of the gradients fluctuating somewhat from event to event, possibly due to differences in precipitation (Table 3). There are no COCs in groundwater that exceed CGs at AOC 32/43A where these well pairs are located. In general, groundwater in AOC 32/43A appears to preferentially flow laterally as compared to vertically, as the vertical gradients were observed to be less than the calculated hydraulic gradients.

5.3 Groundwater Sampling

LTM activities at AOC 32/43A were conducted in spring 2023. In accordance with the LTMMP (Sovereign/ HGL 2015), four wells were sampled for VOCs, VPH and BTEX, and total metals (arsenic and manganese).

¹ The OB and BR designations associated with the location (i.e., well identification) denote overburden and bedrock, respectively.

² A negative vertical gradient indicates an upward vertical gradient, and a positive vertical gradient indicates a downward vertical gradient. MPE = measuring point elevation

5.3.1 Spring 2023 Data Summary

Exhibit 5-2, below, presents the analytes detected in groundwater samples collected from AOC 32/43A in spring 2023 that exceed the CGs specified in the ROD (Horne 1998). Results of additional analytes screened against monitoring criteria are presented in Table 12. Figure 16 shows exceedances of the CGs and monitoring criteria for analyses required per the LTMMP (Sovereign/HGL 2015). Appendix D provides historical data from 2006 through 2023, while Appendix E provides the Mann--Kendall statistical trend analyses of selected wells.

Exhibit 5-2 AOC 32/43A Contaminant of Concern CG Exceedances, Spring 2023

Well	Analyte	Groundwater	Detected Result
Identification		CG (μg/L)¹	(μg/L)
32M-01-14XOB	Arsenic (total)	10	12

Note:

Arsenic has been historically detected at concentrations greater than the CG in well 32M-01-14XOB. The current arsenic concentration in well 32M-01-14XOB (12 μ g/L) is greater than the CG but is less than the historical average of 50 μ g/L in samples collected since spring 2006. Arsenic concentrations exhibit a statistically significant decreasing trend in well 32M-01-14XOB.

Following in-situ chemical oxidation injections in 2009, concentrations of 1,2-DCB, 1,3-DCB, 1,4-DCB, and VPH (C9-C10 Aromatics) in well 32M-01-18XBR have decreased significantly. Concentrations of 1,3-DCB, 1,4-DCB, chlorobenzene, VPH (C9-C10 Aromatics), and total manganese in well 32M-01-18XBR exhibit a statistically significant decreasing trend (Appendix E).

5.3.2 Water Quality Parameters

General water quality chemistry parameters (pH, temperature, specific conductivity, ORP, DO, and turbidity) were measured at each of the four sampled wells concurrent with low-flow sampling and were used to verify groundwater stabilization within each well before sampling (Table 12). The ORP and DO data recorded prior to sampling (Table 12) indicate that groundwater at AOC 32/43A is generally oxidizing. Concentrations of arsenic and manganese in groundwater are expected to continue to decrease through time as they come out of solution under oxidizing conditions.

5.4 Land-Use Controls, Interviews, and Inspection

O'Reilly Automotive, Inc. currently owns and operates the property at AOC 32/43A. LUCs were established per the ROD (Horne 1998) and restricted the use of groundwater at the site, preventing both industrial and potable use of groundwater. LUCs are verified during annual sampling events in accordance with the 2015 LTMMP (HGL/Sovereign 2015). Appendix F provides a site-specific annual LUC checklist, including physical onsite inspection and interview components. An annual in-depth LUC inspection was performed on November 29, 2023, which confirmed the following:

• No evidence of development or damage in the area of the remedy.

¹ The CG for arsenic and select VOCs in groundwater is the MCL; the CG for manganese in groundwater is the background level.

- Minor damage to monitoring wells. Some roadboxes were observed to have cracked concrete; these locations will be monitored if/when future repairs are needed.
- No evidence that groundwater extraction wells are present.
- As described in the previous annual report (S-A JV, 2023h), several pavement cut-outs were observed during
 the December 7, 2022, LUC inspection; the cut-outs were in the paved parking/roadway area to the east of
 the O'Reilly building and related to a historical spill of diesel fuel. During the November 29, 2023, LUC
 inspection, all cut-outs were observed to be repaired except for one; O'Reilly Automotive was notified of the
 current site conditions.
- The access is sufficient to the site for monitoring.
- No signs of increased exposure potential.

The S-A JV and Army conducted an interview on January 29, 2024, with Anne-Marie Dowd (MassDevelopment) Meg Delorier (MassDevelopment), and Neil Angus (Devens Enterprise Commission). In addition, John Bounds (O'Reilly Automotive) was contacted separately via email on January 11, 2024, and responded via phone on March 1, 2024. The interviews confirmed the following (Appendix F):

- The interviewees are familiar with the LUCs imposed on the property and documentation of these controls.
- No groundwater extraction wells are present.
- No proposed plans for property sale, future redevelopment, and construction or demolition activities at the site.
- No issues with site access for monitoring.

5.5 Conclusions and Recommendations

Groundwater flow at AOC 32/43A in 2023 was generally consistent with the site's historical flow patterns. The 2023 groundwater elevations indicate a minor upward flow component from bedrock to overburden in most areas, which is consistent with historical observations; the area of strongest upward flow has generally been observed at the 32M-01-14XOB/XBR well couplet. Historical fluctuations in the vertical gradients may be due to changes in precipitation amounts from year to year (Table 3). There are no COCs in groundwater that exceed CGs at AOC 32/43A where the overburden/bedrock well pairs used to calculate vertical gradients are located.

The 2023 LTM results are consistent with the CSM (HGL 2008). At source area well 32M-01-18XBR, Mann-Kendall evaluation indicates 1,3-DCB,1,4-DCB, chlorobenzene, VPH (C9-C10 Aromatics), and total manganese have statistically significant decreasing trends in concentrations through time (Appendix E). Arsenic exceeded the CG in downgradient well 32M-01-14XOB but has statistically significant decreasing trend in concentrations through time (Appendix E) and was detected slightly above the cleanup goal. There were no other exceedances of CGs or monitoring criteria for COCs during the 2023 sampling event.

The following recommendations are included for AOC 32-43A:

- Continue annual groundwater sampling and LUC inspections in accordance with the LTMMP.
- Complete monitoring well repairs, as noted during the 2023 LUC inspection.
- Update the LTMMP to optimize the monitoring program.

6 Devens Consolidation Landfill

6.1 Site Background

The DCL was constructed on the former Fort Devens golf course driving range to accommodate excavated material from seven remedial areas consisting of two study areas (SAs), four AOCs, and one pesticide removal project at three Fort Devens HAs. The seven DCL contributor sites were:

- SA 12. Construction debris and yard waste (approximately 8,700 yd³).
- SA 13. yard-waste (approximately 10,000 yd³).
- AOC 9. Wood, concrete, asphalt, metal, brick, glass, and tree stumps (approximately 121,000 yd³).
- AOC 11. Wood-frame hospital demolition debris (approximately 35,000 yd³).
- AOC 40. Construction debris, ash, stumps, and logs (approximately 125,000 yd³).
- AOC 41. Nonexplosive material and household debris (approximately 1,500 yd³).
- Grant, Locust, and Cavite HAs. Soils and walling material (approximately 3,530 tons).

The DCL contributor sites and the DCL are shown on Figures 1 and 17, respectively.

The ROD (HLA 1999b) included on- or off-site disposal options. The on-site landfill construction alternative was selected as the preferred alternative. Construction of the DCL began in September 2000 and was complete in November 2002. The Remedial Action Closure Report (Shaw Environmental Inc. [formerly Stone and Webster, Inc.] 2003) was accepted, certifying that the DCL was constructed and capped in accordance with the ROD (HLA 1999b), and was meeting the performance standards and/or response objectives of the remedial action. The ROD (HLA 1999b) required subsequent collection of samples from groundwater monitoring wells at DCL, in accordance with 310 Code of Massachusetts Regulations 19-132, to assess remedy effectiveness. LTM has been performed since completion of DCL construction.

In 2023, the USACE operated and inspected the landfill facility, and the S-A JV conducted the groundwater and leachate discharge sampling. Landfill leachate is discharged to the Fort Devens sewage system under an industrial wastewater discharge permit. Effluent criteria (established in 2006 and updated in 2009) and reporting requirements are specified in the leachate discharge permit.

In addition to the monitoring activities (Section 6.5), annual landfill maintenance activities were completed in 2023, including mowing of the landfill cap.

6.2 Groundwater Hydrology

During spring and fall 2023 LTM at DCL, water level measurements were performed at a total of seven monitoring wells. Tables 1 and 2 present the measurements and corresponding calculated groundwater elevations for bedrock wells in the spring and fall 2023, respectively. Groundwater flow is to the northeast, as shown on Figures 18 and 19 for spring and fall 2023, respectively. The gradient was approximately 0.042 ft/ft in both spring 2023 (Figure 18) and fall 2023 (Figure 19), using upgradient monitoring well LFM-99-02B and LFM-99-05B, respectively. These observations are consistent with historical observations at DCL.

6.3 Groundwater Sampling

Groundwater sampling is completed semiannually in accordance with the LTMMP (Sovereign/HGL 2015). A total of four wells were sampled in spring 2023 and fall 2023. Samples were analyzed for the following parameters: VPH, EPH, pesticides, total metals (select list), TDS, chloride/sulfate, nitrate/nitrite, alkalinity, cyanide, and COD. Tables 13 and 14 present the analytical results for the spring and fall 2023 LTM wells.

Water level measurements were performed at monitoring wells LFM-99-01B, LFM-99-03B, and LFM 99-05B during the spring and fall 2023 LTM events to evaluate if these wells should also be sampled. If the depth to water is less than the trigger depth (i.e., higher water table elevation), there is a potential for groundwater to come into contact with the bottom of the landfill, triggering the requirement to also sample these locations. Exhibit 6-1, below, lists the shallow trigger depths, along with groundwater elevations from spring and fall 2023. Sampling of these wells was not required in 2023, because the elevation for all wells was below the trigger depth.

Exhibit 6-1 Water Level Readings for Select DCL Monitoring Wells, Spring and	nd Fall 2023 LTM
--	------------------

Well Identification	Top of Casing Elevation (feet NAVD88)	Groundwater Elevation Trigger for Required Sampling (feet NAVD88)	Groundwater Elevation Spring 2023 (feet NAVD88)	Groundwater Elevation Fall 2023 (feet NAVD88)
LFM-99-01B	350.67	345.00 or greater	325.37	324.82
LFM-99-03B	342.08	335.00 or greater	301.21	302.02
LFM-99-05B	316.58	315.00 or greater	296.64	297.30

6.3.1 2023 Long-Term Monitoring Data Summary

Tables 13 and 14 present analytical results from spring and fall 2023 LTM, respectively. Concentrations of EPH, VPH, pesticides, total metals, and cyanide were either non-detect or less than the monitoring criteria, consistent with historical data collected since 2003. Results of spring and fall 2023 general chemistry parameters (total cyanide, COD, TDS, chloride, sulfate, nitrate/nitrite, and total alkalinity) were consistent with historical data (Tables 13 and 14). Appendix D contains the DCL historical data from 2003 through 2023.

6.3.2 Water Quality Parameters

General water quality chemistry parameters (pH, temperature, specific conductivity, ORP, DO, and turbidity) were measured at each of the sampled wells concurrent with low-flow sampling, and were used to verify groundwater stabilization within each well before sampling. Tables 13 and 14 provide the final field readings taken before collection of each groundwater sample. Groundwater at these wells was oxic in both 2023 events (ORP greater than 50 mV and DO greater than 1 mg/L). Historically, COC detections at DCL wells have been sporadic and low concentration. No definitive correlation has been established between measured water quality parameters and the presence or absence of contamination in the sampled wells.

6.4 Leachate System Monitoring

The DCL is permitted to discharge industrial wastewater to the Fort Devens sewerage system in accordance with Industrial Discharge Permit No. 017 granted by MassDevelopment. Leachate sampling is performed each year between October 1 and December 31, and self-monitoring reports are due to MassDevelopment by January 5 the following year. On November 7 and November 14, 2023, samples were collected from the leachate system building (located to the east of the landfill) and submitted to Eurofins for analysis of VOCs, SVOCs, pesticides, PCBs, gasoline-range organics, total metals (select list), total suspended solids, pH, total phenolics, and total cyanide. Table 15 presents the analytical results. There were no permit exceedances for any parameters.

In addition to leachate sampling, the DCL system is inspected monthly and leachate discharge volumes are recorded. Monitoring results are used to calculate leachate discharge quantities for comparison with historical discharge data. As presented in Table 16, the annual leachate discharge quantity from 2023 (322,448 gallons) was consistent with previous annual quantities (Table 3).

6.5 Landfill Inspection and Gas Monitoring

Since its completion, the DCL has been inspected on a routine basis to ensure controls remain in place to be protective of human health and the environment. The inspection frequency was changed from semiannual to annual in 2008 (HGL 2008). Since the cap was completed in 2002, post-closure inspection and monitoring has now been performed for 22 years. Planning should commence for the performance time and metrics to reduce LTM and sampling activities, or to perform them as a reduced frequency, after 30 years, in accordance with Resource Conservation and Recovery Act Subtitle C landfill cap regulations for post-closure monitoring periods of performance.

S-A JV and USACE personnel inspected the DCL landfill on October 31, 2023, and recorded observations regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of various features. Appendix G provides the fall 2023 inspection report. Primary findings are summarized below:

- The landfill cap and perimeter drainage system were found to be in good condition, with no apparent settlement or significant erosion.
- In general, the vegetative cap appeared healthy. As noted during previous inspections, some small, woody shrub species have invaded the perimeter drainage system and the landfill cap. The woody vegetation is cut low to the ground during annual mowing.
- The perimeter fence is in fair condition adjacent to the security gate. The fence along with the security gate
 and perimeter drainage system minimize potential entry onto the landfill cap by motor vehicles. These access
 limitations appear to be adequate.
- The cap drainage system was observed to be in good condition. Drainage channels were free of sediment and debris, with no significant settlement or stone displacement. The gabion slope drains were in good condition, with minimal vegetation present.
- Perimeter toe drains were in good condition and appeared to be functioning properly, with no visible signs of erosion or stability issues.
- The detention basin northeast of the DCL was also noted to be in good condition. Its pond drains, culvert, and outfall areas were generally free of debris and vegetative growth.
- Gas vents and monitoring wells were observed to be in good condition.

In 2016, the TaraVista Behavioral Health Center was constructed at 85 Patton Road, Devens, Massachusetts, approximately 150 feet east of the southeastern edge of the landfill. The MassDEP requested that gas probes be installed between the landfill and the new structure, and that landfill gas monitoring be conducted to evaluate whether landfill gas is migrating from the landfill through soil and/or in groundwater that could create a hazardous condition in the area of the new structure. The Army prepared the Work Plan for Installation of Perimeter Landfill Gas Monitoring Wells (KGS 2018) and installed and sampled three gas probes (LFGM-18-01, LFGM-18-02, and LFGM-18-03) on December 7, 2018 (Figure 17). Appendix G presents the results of sampling of the three gas probes conducted on December 1, 2023. Methane, the primary explosive landfill gas COC that could be generated from the DCL, was not detected (0% lower explosive limit). VOC results ranged from 0 to 0.3 parts-permillion, and carbon dioxide ranged from 0 to 4.9%. Hydrogen sulfide and carbon monoxide were not detected. Therefore, no soil gas hazard for occupants of the adjacent building was identified.

Primary recommendations are summarized below, and details are provided in Appendix G:

- Routine and general landfill maintenance activities that will continue to be performed include annual mowing
 and control of encroaching vegetation, such as clearing large/woody vegetative growth from the cap, drainage
 channels, and riprap. Small shrubs growing on the landfill cap should continue to be cut low during the annual
 mowing, and/or cut as flush to the ground as feasible during the annual maintenance program.
- Annual mowing of the cap will be done no earlier than September 1 to avoid harming ground-nesting songbirds. Mowing will include the adjacent open field and detention pond areas.
- The annual inspection of landfill cap components will continue. The inspection should continue to be
 performed in the fall, soon after mowing is completed (i.e., within 1 to 2 weeks) and preferably within 48 hours
 after a precipitation event to help inspect the effectiveness of surface runoff in the drainage swales. Landfill
 gas monitoring should be performed on a dry day.

6.6 Land-Use Controls, Interviews, and Inspection

MassDevelopment owns the DCL property and granted the Army a permanent easement in 2001 to build and operate the landfill (Army and MassDevelopment 2001). DCL contributor sites AOC 9, AOC 40, and SA 13 were transferred from the Army to MassDevelopment in March 2006. The March 2006 deed included use restrictions on the contributor sites to prevent residential development of the properties (Army and MassDevelopment 2006).

LUC inspections are conducted per the LTMMP (Sovereign/HGL 2015). Appendix F contains site-specific annual LUC checklists for the DCL and its contributor sites, AOC 9, AOC 40, and SA 13, including physical on-site inspection and interview components.

An LUC inspection was performed of the DCL on October 31, 2023, which confirmed the following:

- No evidence of development or damage in the area of the remedy.
- No damage to monitoring wells.
- No evidence that groundwater extraction wells are present.
- The access is sufficient to the site for monitoring.
- No signs of increased exposure potential.

The S-A JV and Army conducted an interview on January 29, 2024, with Anne-Marie Dowd (MassDevelopment) and Mr. Neil Angus (Devens Enterprise Commission) regarding the following items:

- The interviewees are familiar with the LUCs imposed on the property and documentation of these controls.
- No groundwater extraction wells are present.
- No proposed plans for property sale, future redevelopment, and construction or demolition activities at the site
- No issues with site access for monitoring.

In addition to the on-site DCL inspection, an LUC inspection of the DCL contributor sites (AOC 9, AOC 40, and SA 13) was performed on November 28-29, 2023. Findings revealed no abnormalities or changes in land use (Appendix F), and there was no evidence of residential development.

6.7 Conclusions and Recommendations

The 2023 results for the DCL groundwater monitoring wells are consistent with groundwater results from previous LTM events. There were no exceedances of the DCL Wastewater Discharge Permit No. 017 criteria for leachate in October 2023.

The ROD (HLA 1999b) remedy and LTM Plan (HGL 2008) include LUCs to limit potential exposure to contaminated soil and groundwater under both existing and future site use. The 2023 LUC inspections and interviews indicate the LUCs continue to be in place and in effect for both the DCL and contributor sites (AOC 9, AOC 40, and SA 13). Per the requirements of the 2006 transfer deed, these contributor sites are not being used, or under development, for residential purposes.

The following recommendations are included for DCL:

- Continue semiannual groundwater sampling and annual LUC inspections in accordance with the LTMMP.
- · Continue annual mowing of landfill cap, and landfill gas monitoring.
- Update the LTMMP to optimize the sampling and monitoring program.

7 Housing Areas and 37-Millimeter Impact Area

7.1 Site Background

The Grant HA, Oak HA, Maple HA, and 37 mm Impact Area are located within the Main Post, between Hospital Road, El Carney Street, and the Nashua River. Figure 20 shows the location of the HAs and 37 mm Impact Area. Historical records indicate that training was conducted within the wooded areas from 1917 until a multifamily housing development was constructed in the late 1950s. A 37 mm range was located along the western boundary of the Grant HA with an approximate 2-acre impact area on the northern slope of Oak Hill.

In 1994 and 1995, the USACE completed a facility-wide archival search to document the locations of all training areas and ranges at Fort Devens. Based on the findings of this study, several former weapons training ranges within the former installation were identified. Several potential munitions and explosives of concern (MEC) sites were identified. The Grant HA, along with portions of the Oak and Maple HAs, were designated as Area 11. A 1995 munitions response investigation confirmed the presence of MEC throughout Area 11, with a clustering of MEC located at the southern end of the area (USACE 1995). In 1996, MEC removal actions were performed at the 37 mm Impact Area, extending into the former Oak and Maple HAs. The removal action is summarized in the Final Removal Action Report (Human Factors Applications, Inc. 1996). All historical removal actions were documented in the Preliminary Assessment/Supplemental Site Inspection Comprehensive Report (Weston 2008).

A ROD (Weston 2009) for the Grant HA and 37 mm Impact Area was signed in 2009. The remedial action objective is to prevent direct contact with UXO, which may remain in the soils at the site. As noted in the ROD (Weston 2009), the LUCs are "preventative for direct contact as they educate the contractor and resident as to the potential presence of UXO and the actions to be taken if presumed UXO is encountered, which included not handling the UXO". Pursuant to the ROD (Weston 2009), a Land-Use Control Implementation Plan (LUCIP; Army BRAC 2011) was issued in May 2011. LUCs for the Grant HA are addressed through affirmative actions, which include the following:

- Public education to property owners, residents, as well as any construction and/or utility contractors via utility bill inserts, educational materials posted on a community website, and training for contractors conducting ground-intrusive activities on the property.
- A deed notice that will be inserted into any Grant HA deeds by MassDevelopment to convey there is no
 evidence of additional UXO present at the site, but that the possibility does remain that UXO could be
 discovered in the future.

Additionally, the LUCIP indicates that LUCs for the 37 mm Impact Area are addressed through institutional controls, access restrictions, affirmative measures, and prohibitive directives including the following:

- Institutional controls to be implemented through a Grant of Environmental Restrictions and Easements.
- Access controls would be implemented using signage and fencing to restrict public access.
- Public education to property owners, residents, as well as any construction and/or utility contractors conducting ground-intrusive activities on the property.
- Prohibitive directives to include restrictions on all ground-intrusive activities.
- Annual site inspections to evaluate the access controls, monitor the potential presence of surficial UXO, and evaluate the overall effectiveness of the LUCs.

The Army conducts annual reviews, including interviews and a physical inspection of the 37 mm Impact Area, to confirm the overall effectiveness and compliance with the established LUCs in the Grant HA and the 37 mm Impact Area. If deemed necessary, the annual review of LUCs at the Grant HA may also include a physical inspection. The annual review of LUCs at the Grant HA also includes verification that the website, utility bill inserts, UXO awareness training, inclusion of the supplemental deed notice in deeds conveying the Grant HA (or portions thereof) and other requirements set forth in the LUCIP (Army BRAC 2011) are being properly implemented.

Separately, the Oak and Maple HAs were evaluated and a Focused Feasibility Study Addendum (Sovereign/HGL 2013) was prepared to address the former Oak and Maple HAs, which recommended LUCs. The remedy for the former Oak and Maple HAs was incorporated within the Grant HA and 37 mm Impact Area via an Explanation of Significant Differences (Sovereign/HGL 2014). The application of LUCs was specified in a Land-Use Control Implementation Plan Addendum (USACE 2021), which was prepared for the Oak and Maple HAs, in addition to a portion of the Grant HA, which was rezoned for commercial uses and is currently owned by Commonwealth Fusion Systems (CFS). The subject area of the LUCIP Addendum (USACE 2021) is collectively referred to as the Restricted Area (Figure 20) and is also known as 111 Hospital Road (CFS-1) and 117 Hospital Road (CFS-2). Additions to the ROD for the Restricted Area include the following:

- The inclusion of a deed notice for the prohibition of residential reuse within the LUCs
- Notice of Activity and Use Limitation (NAUL) to address the potential presence of UXO and other MEC
- LUC affirmative measures for public education
- Construction-related activities, including (but not limited to) the following:
 - Provision of a site-specific soil management plan
 - Provision of UXO/MEC awareness briefing
 - Perform MEC investigation prior to the removal of asphalt roads and/or any intrusive activity beneath existing asphalt roads
 - Conduct instrument-assisted visual inspections of construction areas
 - Provide on-call MEC construction support for all intrusive activities.

The portion of the Grant HA subject to the ROD (Weston 2009) and LUCIP (Army BRAC 2011) is currently zoned for residential reuse per the Devens Reuse Plan (Vanasse Hangen Brustlin, Inc. 1994). MassDevelopment executed and recorded a Grant of Environmental Restrictions and Easements for the Grant HA, which was recorded at the Worcester Registry of Deeds on December 19, 2011 (book 48291, page 138).

The Restricted Area (comprising the Oak HA, Maple HA, and remaining portion of the Grant HA) subject to the LUCIP Addendum (USACE 2021) is currently zoned for commercial construction. MassDevelopment executed and recorded a NAUL, which was recorded at the Worcester Registry of Deeds on April 27, 2021, book 65027, page 30. The 37 mm Impact Area continues to be fenced off and restricted from any land use other than utility repair or emergency work.

7.2 Land-Use Controls

The annual LUC checklist (Appendix G) was completed for the former HAs and 37 mm Impact Area, including physical on-site inspections (if deemed necessary) and interviews. An interview was conducted with Anne-Marie Dowd (MassDevelopment), Neil Angus (Devens Enterprise Commission), Rich Holcomb (Commonwealth Fusion

Systems), and Kathleen Brill (Foley Hoag LLP) on January 29, 2024, to discuss compliance with the LUCs. The following items were evaluated:

- Discuss any reports during the reporting year of any objects discovered on site, including any findings of UXO.
- Describe any ground-intrusive activities conducted during the reporting year.
- Verify the existence of an educational website for the public.
- Verify the inclusion of required utility bill inserts.
- Verify the posting of utility bill insert in a conspicuous location.
- Verify distribution of the current soils management policy to construction workers and contractors.
- Verify that UXO awareness training is being conducted (if construction activities occurred during the reporting year).
- Verify that the supplemental deed notice has been included in deeds conveying of the Grant HA.
- Verify if any amendments to the NAUL were recorded/executed for the Restricted Area.

7.2.1 37-Millimeter Impact Area

In the 37 mm Impact Area, LUCs were verified during a site visit on November 27, 2023. The inspection was performed to identify land-use conditions (fencing, signage, and vegetation), any areas of UXO concern, (performed by sweeping 10% of the site with a metal detector), and any evidence of site use changes. The fence around the 37 mm Impact Area was inspected for damage and a metal detector was used to sweep the ground. No UXO was detected, and metal detector findings were limited to other metallic objects. The access gates and signage were observed to be in good condition, except for a small area of fence that was damaged by a fallen tree; the fence will be scheduled for repair in 2024. Overall, the findings of the site inspection revealed no abnormalities.

7.2.2 Restricted Area

In the Restricted Area (former Oak and Maple HA, portion of the former Grant HA), construction activities continued on the CFS manufacturing and research facility. CFS submitted a Completion Summary Report to MassDevelopment and the USEPA on March 25, 2022, which summarized MEC construction support work completed from May through December 2021; a copy of the Completion Report was included in the 2021 Annual Report (S-A JV 2022b). In 2023, construction activities were limited to work on utility buildings; no soil management activities were completed, no site walks or physical inspections were required by MassDevelopment or the Devens Enterprise Commission, and no UXOs were encountered.

7.2.3 Unrestricted/Residential Use Area

In the unrestricted/residential use area (portion of the former Grant HA), no residential construction work was completed in 2023. The Supplemental Deed Notice was included in deeds conveying portions of the unrestricted/residential use area, in accordance with the LUC provisions. Appendix F contains copies of the deed notice and utility bill insert. In addition, all contractors are provided with copies of the Devens Soil Management Policy and are required to implement all requirements within the documents. No UXOs were encountered in the unrestricted/residential use area.

7.3 Conclusions and Recommendations

The remedial action objective for the HAs and the 37 mm Impact Area is to prevent direct contact with UXOs that may remain at the site(s). During the 2023 review period, the former Grant, Oak, and Maple HAs, and the 37 mm Impact Area were subject to annual LUC interviews, on-site inspections, as well as other affirmative measures and prohibitive directives (e.g., distribution of educational materials, providing awareness courses for site workers and residents, implementing deed notices, and maintaining signage). Results of the annual compliance monitoring indicate that no deviations or deficiencies to the LUCs were evident and corrective action(s) were not necessary. No UXO was discovered on site during 2023. Proper signage remains in place and all contractors are required to attend pre-construction meetings where UXO awareness information is presented. Copies of the Soils Management Plan (residential reuse portion of the Grant HA), Site-Specific Soils Management Plan (Restricted Area), and UXO information are available on the Devens Enterprise Commission website (www.devensec.com).

The following recommendations are included for the HAs and 37 mm Impact Area:

- Continue annual LUC inspections (including physical inspection for UXOs in the Impact Area) in accordance with the LUCIP.
- Complete repairs to Impact Area fence and replace locks on Impact Area gates so they are standardized to the same key.

8 Areas of Contamination 44 and 52

The S-A JV developed a LUCIP in September 2023 (S-A JV, 2023d) to guide the implementation of stand-alone LUCs for the Barnum Road Maintenance Yards (AOCs 44 and 52; Figure 21). AOCs 44 and 52 were remediated in 1996 and LUCs were selected as a component of the remedy. A summary of the site background and LUCs are included below and will be included in subsequent annual LTM reports for Main Post sites.

8.1 Site Background

The Barnum Road Maintenance Yards were historically used for Army vehicle storage. AOC 44 was known as the Cannibalization Yard where vehicles were stored prior to being dismantled for usable parts. AOC 52 was a Table of Distribution and Allowance Maintenance Yard where vehicles were stored awaiting repairs. Soils in AOCs 44 and 52 have been exposed to possible releases of automotive fluids over a long duration. These fluids likely include gasoline, motor oil, and other automotive fluids released during vehicle storage or during vehicle dismantling operations in the Cannibalization Yard. Individual releases are not likely to have been of significant volume, but numerous releases during the period in which the yard had been used account for the historical soil contamination.

The ROD for AOCs 44 and 52 (March 1995) set forth the selected remedy to address contaminated soils associated with two known releases (hot spot areas) at the site (USAEC 1995). To achieve specified remedial action objectives specified in the ROD, the remedy selected to address the contamination identified at AOCs 44 and 52 included soil excavation, asphalt batching of soils which exceed site cleanup levels, expansion of the existing stormwater collection system, and deed restrictions.

8.2 Land-Use Controls, Interviews, and Inspection

AOCs 44 and 52 are currently under Army ownership. Per the ROD (USAEC 1995), substantive requirements of LUCs that restrict access to contaminated soil are in place at AOCs 44 and 52. The LUCs were designed to protect the integrity and effectiveness of the remedy. Any proposed actions that affect the AOC 44 and 52 property must meet the following requirements of the ROD (USAEC 1995):

- Residential development/use of the Maintenance Yards is prohibited,
- The possibility of long-term (working lifetime) exposure to subsurface soils must be minimized, and
- Soils resulting from construction related activities must be managed.

An annual LUC inspection was performed on November 28, 2023, which confirmed the following (Appendix F):

- A new gas line was observed to be installed in the eastern part of the property; the current line was replaced with a smaller line due to safety concerns as the line had too much pressure. The S-A JV worked with the Army, MassDevelopment, and the gas provider (National Grid) to obtain additional details on the trenching work. According to the Army 99th division representative and National Grid, no soil was excavated or taken offsite, and no work was conducted below the top 2 feet of soil.
- No evidence of development or damage in the area of the remedy. The asphalt cover was observed to be intact, with no evidence of erosion.
- The access is sufficient to the site for monitoring.
- No signs of increased exposure potential.

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

A phone interview was conducted with Army personnel associated with the facility (Daniel O'Leary, Christopher Hastings, and Michael King) on January 19, 2024, which confirmed the following (Appendix F):

- The interviewee is familiar with the LUCs imposed on the property and documentation of these controls.
- No proposed plans for property sale, future redevelopment and construction, or demolition activities at the site.
- The planned gas line installation work involved trenching/excavations. As mentioned above, the S-A JV
 confirmed that no trenching work extended to soils below two feet in depth.
- No issues with site access for monitoring.

The following recommendations are included for AOCs 44 and 52:

Continue annual LUC inspections in accordance with the LUCIP.

9 Study Area 71

The S-A JV developed a LUCIP in September 2023 (S-A JV, 2023e) to guide the implementation of stand-alone LUCs for the Former Railroad Roundhouse Study Area (SA) 71 (Figure 22). SA 71 has been remediated in 2014 and LUCs were selected as a component of the remedy. A summary of the site background and LUCs are included below and will be included in subsequent annual LTM reports for Main Post sites.

9.1 Site Background

SA 71 is the location of a former railroad roundhouse operated by Boston & Maine Railroad. From 1993 to 1994, the Army conducted site investigations near the former railroad roundhouse (ABB Environmental Services, Inc. [ABB-ES] 1993, 1995). Data gathered during the investigations indicated the widespread presence of coal ash and maintenance byproducts in surface and deeper soil across much of SA 71. High concentrations of inorganic analytes, in particular antimony, copper, and lead, were identified in the observed maintenance byproduct. A removal action was conducted at SA 71 in 1999-2000 and resulted in the removal of approximately 2,400 cubic yards of metals-contaminated soil. In 2013, a second removal action was completed to excavate approximately 900 cubic yards of maintenance by-product below the water line at the southern shoreline of the former railroad roundhouse area. A ROD was issued in September 2015 for AOC 72 and SA 71 (Sovereign 2015).

9.2 Land-Use Controls, Interviews, and Inspection

To mitigate any potential risk to health and welfare from exposure to debris and residual soil contamination associated with activities in the upland area of the former railroad roundhouse, LUCs were selected as the remedy in the ROD for SA 71 (Sovereign 2015). The ROD specified that the LUCs would be addressed through institutional controls, affirmative measures, and prohibitive directives with the objective of limited potential exposure (Sovereign 2015). SA 71 is owned by the Army but is leased to MassDevelopment per a Lease in Furtherance of Conveyance agreement. Under the Lease in Furtherance of Conveyance agreement, MassDevelopment must comply with the LUCs of the ROD (Sovereign 2015) to limit the potential exposure to the residual contaminated soil under both existing and future site conditions. The site-specific annual LUC checklist, including physical on-site inspection and interview components, was developed in 2023 (as part of the LUCIP submittal) for use during LUC verification activities to ensure control requirements are being met. Appendix F contains the completed checklist.

An annual LUC inspection was performed on November 28, 2023, which confirmed the following (Appendix F):

- No evidence of excavation in the Site-Specific Soil Management Area.
- No evidence of damage to the property.
- No groundwater extraction wells present.
- No signs of development on the property.
- No change in the current use of the property.
- The access is sufficient to the site for monitoring. The gate leading to Plow Shop Pond was observed to need a new chain and lock.
- No signs of increased exposure potential.

2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation

The S-A JV and Army conducted an interview on January 29, 2024, with Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), and Meg Delorier (MassDevelopment) which confirmed the following (Appendix F):

- The interviewee is familiar with the LUCs imposed on the property and documentation of these controls.
- No extractions wells at the property.
- No proposed plans for property sale, future redevelopment and construction, or demolition activities at the site.
- No excavations (planned or emergency) were completed that may have extended into the soil surface within the soil disturbance restriction boundary.
- No issues with site access for monitoring.

The following recommendations are included for SA 71:

- Continue annual LUC inspections in accordance with the LUCIP.
- Replace the chain and lock on the gate leading to Plow Shop Pond.

10 References

- Army. 2007. Real Property Management Plan for Devens Reserve Forces Training Area; Addendum, September.
- Army BRAC Environmental Division, Army Garrison Fort Devens. 2011. Land-use Control Implementation Plan, Grant Housing Area and 37-mm Impact Area, Former Fort Devens Army Installation, Devens, Massachusetts. May.
- Army and MassDevelopment. 2001. Easement Agreement for Tract No. 400E. June.
- Army and MassDevelopment. 2006. Quitclaim Deed, Parcels A2A, A4, and A8, Between Defense Base Closure and Realignment Act of 1990, the United States of America, acting by and through the Department of the Army and Massachusetts Development Finance Agency. BK 38514. pg. 121. March.
- Commonwealth Fusion Systems. 2022. Completion Summary Report. Final Land Use Control Implementation Plan Addendum Former Oak and Maple Housing Areas and a Portion of the Former Grant Housing Area ("Restricted Area"), Former Fort Devens Army Installation MA. 111 Hospital Road (CFS-1) and 117 Hospital Road (CFS-2), Devens, MA. March.
- Conti Environmental, Inc. 2004. Final Interim Remedial Action Completion Report AOC 57, Devens, MA. September.
- DoD. 2021. Quality Systems Manual for Environmental Laboratories, Version 5.4, Prepared by DoD Environmental Data Quality Workgroup and Department of Energy Consolidated Audit Program Data Quality Workgroup. March.
- H&S Environmental, Inc. 2015. Five Year Review for Former Fort Devens BRAC Legacy Sites. September.
- Harding. 2001. Record of Decision, Area of Contamination 57, Devens Reserve Forces Training Area, Devens, Massachusetts. September.
- HGL. 2008. Long-Term Monitoring Plan, Former Fort Devens Army Installation, Devens, Massachusetts. October.
- HGL. 2009. AOCs 32 and 43A Persulfate Injection Letter Report. June.
- HGL. 2010. 2010 Five-Year Review Report, Former Fort Devens Army Installation, Devens, Massachusetts. September.
- HLA. 1999a. Record of Decision, Area of Contamination 69W, Devens, Massachusetts. June.
- HLA. 1999b. Record of Decision, Landfill Remediation Study Areas 6, 12, and 13 and Areas of Contamination (AOC) 9, 11, 40, and 41. Devens, Massachusetts. July.
- HLA. 2000. First Five-Year Review Report for Devens Reserve Forces Training Area, Devens, Massachusetts. September.
- Horne. 1998. Record of Decision for the Defense Reutilization and Marketing Office Yard (AOC 32) and Petroleum, Oil, and Lubricants Storage Area (AOC 43A), Devens, Massachusetts. February.
- Human Factors Applications, Inc. 1996. Final Ordnance, Ammunition, and Explosive Removal Action Report.
- KGS. 2018. Work Plan for Installation of Perimeter Landfill Gas Monitoring Wells, Devens Consolidation Landfill, Former Fort Devens Army Installation, Devens, Massachusetts. Prepared for Army Base Realignment

- and Closure Division, U.S. Army Garrison Fort Devens and U.S. Army Corps of Engineers New England District. October.
- KGS. 2021. Fifth 2020 Five-Year Review Report, Former Fort Devens Army Installation, BRAC Legacy Sites. Prepared for U.S. Army Corps of Engineers, New England District. September.
- Nobis Engineering, Inc. 2005. 2005 Five-Year Review Report, Former Fort Devens, Devens, Massachusetts. September.
- S-A JV. 2020. Quality Assurance Project Plan for Annual Long-Term Monitoring and Maintenance Program, Environmental Services at Former Fort Devens Army Installation BRAC Legacy Sites, Devens, Massachusetts. October.
- S-A JV. 2021. Final Debris Removal Work Plan, Area of Contamination 57, 74, and 50. Former Fort Devens, Massachusetts. August.
- S-A JV. 2022a. Final Debris Removal Activities Summary Report, Area of Contamination 57, 74, and 50. Former Fort Devens, Massachusetts, May.
- S-A JV. 2022b. Final 2022 Annual Operations, Maintenance, and Monitoring Report. Former Fort Devens, Massachusetts. August.
- S-A JV. 2023a. Final Post-Record of Decision Supplemental Remedial Investigation Work Plan. Area of Contamination 57, Former Fort Devens Army Installation, Devens, Massachusetts. June.
- S-A JV. 2023b. Final Post-Record of Decision Supplemental Remedial Investigation Work Plan. Area of Contamination 69W, Former Fort Devens Army Installation, Devens, Massachusetts. June.
- S-A JV. 2023c. Final Post-Record of Decision Supplemental Remedial Investigation Work Plan. Area of Contamination 43G, Former Fort Devens Army Installation, Devens, Massachusetts. June.
- S-A JV. 2023d. Final Land Use Control Implementation Plan, Areas of Contamination 44 and 52, Former Fort Devens Army Installation, Devens, Massachusetts. September.
- S-A JV. 2023e. Final Land Use Control Implementation Plan, Study Area 71, Former Fort Devens Army Installation, Devens, Massachusetts. September.
- S-A JV. 2023f. Final Land Use Control Implementation Plan, Area of Contamination 57. Former Fort Devens Army Installation, Devens, Massachusetts. June.
- S-A JV. 2023g. Final Land Use Control Implementation Plan, Area of Contamination 69W. Former Fort Devens Army Installation, Devens, Massachusetts. September.
- S-A JV. 2023h. 2023 Annual Operations, Maintenance, and Monitoring Report. Main Post. Former Fort Devens Army Installation, Devens, Massachusetts. August.
- Shaw Environmental, Inc. 2003. Remedial Action Closure Report. September.
- Sovereign/HGL. 2013. Final Focused Feasibility Study Addendum Former Oak and Maple Housing Areas. March.
- Sovereign/HGL. 2014. Final Explanation of Significant Differences for Grant Housing Area and 37-mm Impact Area. September.
- Sovereign/HGL. 2015. Long Term Monitoring and Maintenance Plan for Former Fort Devens and Sudbury Annex. Final. March.

- Sovereign. 2015. Final Record of Decision for Plow Shop Pond (AOC 72) Red Cove and Former Railroad Round House (SA 71), Former Fort Devens Army Installation, Devens, Massachusetts. September.
- USACE. 1995. Archive Search Report, Fort Devens, Ayer, Massachusetts. May.
- USACE. 2021. Final Land Use Control Implementation Plan Addendum. Former Oak and Maple Housing Area and a Portion of the Former Grant Housing Area ("Restricted Area"). Former Fort Devens Army Installation, Devens, MA. April.
- USAEC. 1995. Record of Decision, Barnum Road Maintenance Yards, Fort Devens, Massachusetts. March.
- USEPA. 1996. Record of Decision, Areas of Contamination 43G and 43J, Devens, Massachusetts. October.
- USEPA. 2017a. Standard Operating Procedure Calibration of Field Instruments, (temperature, pH, dissolved oxygen, conductivity/specific conductance, oxidation/reduction potential [ORP], and turbidity). North Chelmsford, Massachusetts. March.
- USEPA. 2017b. Low Stress (Low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (EQASOP-GW Region 1 Low-Stress). September.
- USEPA. 2018. Environmental Data Review Program Guidance, Region 1 EPA New England. June.
- Vanasse Hangen Brustlin, Inc. 1994. Devens Reuse Plan. November.
- Weston. 2008. Final Preliminary Assessment/Supplemental Site Inspection Comprehensive Report, Study Area Grant, Locust and Cavite Housing Areas, Former Fort Devens Army Installation, Devens, Massachusetts. October.
- Weston. 2009. Record of Decision for Grant Housing Area and 37-mm Impact Area Former Fort Devens Army Installation, Devens, Massachusetts. September.

Tables

Table 1
Groundwater Elevations Spring 2023 LTM Event
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

	Well		Date of	DTW	MPE	Groundwate
Site Name	Identification ¹	Well Type	Gauging	(ft below	(ft NAVD88)	Elevation
				MPE)		(ft NAVD88
	LFM-03-07	overburden	06/07/2023	19.63	315.14	295.51
	LFM-99-01B	bedrock	06/07/2023	25.30	350.67	325.37
501	LFM-99-02B	bedrock	06/07/2023	18.45	353.83	335.38
DCL	LFM-99-03B	bedrock	06/07/2023	40.87	342.08	301.21
	LFM-99-05A	overburden	06/07/2023	22.71	316.58	293.87
	LFM-99-05B	bedrock	06/07/2023	19.94	316.58	296.64
	LFM-99-06ARP	overburden	06/08/2023	15.71	337.84	322.13
	57M-03-01X	overburden	06/07/2023	14.57	235.73	221.16
	57M-03-02X	overburden	06/07/2023	5.32	224.84	219.52
	57M-03-03X	overburden	06/07/2023	1.31	220.00	218.69
	57M-03-04X	overburden	06/07/2023	2.52	221.39	218.87
	57M-03-05X	overburden	06/07/2023	2.98	221.88	218.90
	57M-03-06X	overburden	06/07/2023	2.78	221.87	219.09
	57M-95-03X	overburden	06/07/2023	11.17	232.79	221.62
	57M-95-05X	overburden	06/07/2023	14.71	235.15	220.44
	57M-95-06X	overburden	06/07/2023	12.99	234.39	221.40
AOC 57	57M-95-07X	overburden	06/07/2023	3.20	222.36	219.16
	57M-96-10X	overburden	06/07/2023	7.15	228.75	221.60
	57M-96-11X	overburden	06/07/2023	3.40	222.20	218.80
	57M-96-12X	overburden	06/07/2023	5.08	225.80	220.72
	57M-96-13X	overburden	06/07/2023	4.97	225.58	220.61
	57P-98-03X	overburden	06/07/2023	2.54	220.39	217.85
	57P-98-04X	overburden	06/07/2023	3.32	221.75	218.43
	57WP-05-01	overburden	06/07/2023	2.01	221.71	219.70
	57WP-06-02	overburden	06/07/2023	1.42	220.29	218.87
	57WP-06-03	overburden	06/07/2023	0.80	220.51	219.71
	32M-01-13XBR	bedrock	06/07/2023	17.80	257.88	240.08
	32M-01-14XBR	bedrock	06/08/2023	22.42	256.06	233.64
	32M-01-14XDR	overburden	06/08/2023	24.43	256.56	232.13
	32M-01-15XBR		06/07/2023	20.60	258.36	237.76
		bedrock				
	32M-01-16XBR	bedrock	06/07/2023	22.75	257.50	234.75
	32M-01-17XBR	bedrock	06/07/2023	25.11	259.11	234.00
	32M-01-18XBR	bedrock	06/07/2023	17.10	258.32	241.22
	32M-92-01X	overburden	06/08/2023	17.53	260.17	242.64
	32M-92-03X	overburden	06/07/2023	27.65	260.02	232.37
	32Z-01-05XOB	overburden	06/07/2023	28.72	261.40	232.68
	32Z-01-06XBR	bedrock	06/08/2023	16.49	261.85	245.36
AOC 32/43A	32Z-01-07XOB	overburden	06/08/2023	15.92	259.48	243.56
	32Z-01-08XOB	overburden	06/07/2023	18.10	260.49	242.39
	32Z-01-09XOB	overburden	06/07/2023	25.76	257.37	231.61
	32Z-01-10XBR	bedrock	06/07/2023	17.01	257.41	240.40
	32Z-01-11XBR	bedrock	06/07/2023	DRY	261.50	DRY
	32Z-01-12XBR	bedrock	06/07/2023	19.24	257.85	238.61
	32Z-99-02X	overburden	06/07/2023	19.20	259.71	240.51
	43M-01-16XBR	bedrock	06/07/2023	24.42	256.84	232.42
	43M-01-16XOB	overburden	06/07/2023	24.41	256.88	232.47
	43M-01-17XBR	bedrock	06/07/2023	26.16	258.29	232.13
	43M-01-17XOB	overburden	06/07/2023	26.01	258.08	232.07
	43M-01-20XBR	bedrock	06/07/2023	25.69	257.30	231.61
	43M-01-20XOB	overburden	06/07/2023	25.84	257.40	231.56

Table 1 Groundwater Elevations Spring 2023 LTM Event 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Site Name	Well Identification ¹	Well Type	Date of Gauging	DTW (ft below MPE)	MPE (ft NAVD88)	Groundwater Elevation (ft NAVD88)
AOC 32/43A	SHL-15	overburden	06/08/2023	17.62	258.83	241.21
(cont.)	SHL-25	overburden	06/07/2023	26.21	258.01	231.80

Acronyms and Abbreviations:

AOC = Area of Contamination

DCL = Devens Consolidation Landfill

DTW = depth to water

ft = feet

LTM = long-term monitoring

MPE = measuring point elevation

NAVD88 = North American Vertical Datum of 1988

Table 2 Groundwater Elevations Fall 2023 LTM Event 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Site Name	Well Identification	Well Type	Date of Gauging	DTW (ft below MPE)	MPE (ft NAVD88)	Groundwater Elevation (ft NAVD88)
	AAFES-2	hybrid	11/6/2023	22.99	301.72	278.73
	AAFES-5	overburden	11/6/2023	22.18	299.80	277.62
	AAFES-6R	overburden	11/6/2023	20.39	298.74	278.35
	AAFES-7	overburden	11/6/2023	8.21	258.80	250.59
	XGM-93-02X	hybrid	11/6/2023	28.78	309.01	280.23
AOC 43G	XGM-94-04X	bedrock	11/6/2023	19.45	300.69	281.24
	XGM-94-06X	hybrid	11/6/2023	21.56	284.07	262.51
	XGM-94-07X	hybrid	11/6/2023	21.89	294.82	272.93
	XGM-94-08X	hybrid	11/6/2023	26.35	298.98	272.63
	XGM-94-10X	overburden	11/6/2023	25.25	301.96	276.71
	XGM-97-12X	hybrid	11/6/2023	25.18	308.70	283.52
	LFM-03-07	overburden	11/3/2023	18.95	315.14	296.19
	LFM-99-01B	bedrock	11/3/2023	25.85	350.67	324.82
DOL	LFM-99-02B	bedrock	11/3/2023	18.11	353.83	335.72
DCL	LFM-99-03B	bedrock	11/3/2023	40.06	342.08	302.02
	LFM-99-05A	overburden	11/3/2023	22.2	316.58	294.38
	LFM-99-05B	bedrock	11/3/2023	19.28	316.58	297.30
	LFM-99-06A-RP	overburden	11/3/2023	15.54	337.84	322.30
	69W-94-12	overburden	11/2/2023	5.96	228.14	222.18
	69W-94-13	overburden	11/2/2023	4.87	226.99	222.12
	69W-94-14	overburden	11/2/2023	5.98	227.22	221.24
	69WP-08-01	overburden	11/2/2023	1.83	220.52	218.69
	69WP-13-01	overburden	11/2/2023	1.30	218.59	217.29
	Willow Brook PZ	overburden	11/2/2023	1.68	218.17	216.49
	ZWM-01-25X	overburden	11/2/2023	4.24	224.71	220.47
	ZWM-01-26X	overburden	11/2/2023	5.87	226.81	220.94
AOC 69W	ZWM-95-15X	overburden	11/2/2023	3.97	225.01	221.04
	ZWM-95-16X	overburden	11/2/2023	3.91	227.58	223.67
	ZWM-95-17X	overburden	11/2/2023	12.92	237.83	224.91
	ZWM-95-18X	overburden	11/2/2023	2.47	222.15	219.68
	ZWM-99-22X	overburden	11/2/2023	3.95	226.72	222.77
	ZWM-99-23X	overburden	11/2/2023	3.91	225.08	221.17
	ZWM-99-24X	overburden	11/2/2023	4.02	225.85	221.83
	ZWP-95-01X	overburden	11/2/2023	4.18	226.04	221.86
	ZWP-95-02X	overburden	11/2/2023	2.91	222.83	219.92

Acronyms and Abbreviations:

AOC = Area of Contamination

DCL = Devens Consolidation Landfill

DTW = depth to water

ft = feet

LTM = long-term monitoring

MPE = measuring point elevation

NAVD88 = North American Vertical Datum of 1988

Table 3
Monthly Precipitation Data
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

Month	Year										Average										
WOITH	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	Average
January	0.75	3.46	4.58	2.72	2.38	2.49	3.31	3.66	2.18	1.38	2.18	2.73	1.48	3.00	2.19	3.40	1.68	2.48	2.28	5.40	2.69
February	1.32	2.17	2.28	1.21	8.85	2.51	6.05	4.11	1.12	2.91	3.16	0.55	3.36	2.34	3.07	3.00	3.05	2.22	4.91	1.53	2.99
March	2.97	4.08	0.53	3.97	5.28	2.40	10.61	4.08	1.25	2.31	4.16	1.03	3.12	3.86	2.88	1.95	3.34	1.72	2.71	4.26	3.33
April	7.67	5.47	2.21	7.09	3.61	4.00	1.43	5.05	2.87	1.62	3.25	0.33	1.89	4.85	5.25	6.72	5.40	4.22	3.72	4.21	4.04
May	3.43	4.25	7.32	4.37	1.99	3.97	3.37	3.81	3.13	5.38	3.29	0.10	2.04	6.21	1.61	3.12	1.85	4.22	1.71	2.72	3.39
June	1.67	3.87	9.31	1.56	4.02	6.41	3.53	5.69	4.03	8.53	1.76	2.76	1.04	3.97	4.71	5.56	1.93	0.88	2.16	5.04	3.92
July	4.72	1.67	1.71	6.25	6.35	9.61	4.01	2.27	1.46	3.46	4.10	1.73	1.92	3.37	3.49	3.64	2.94	8.24	1.72	11.80	4.22
August	2.77	2.56	4.38	1.40	4.66	2.64	3.58	10.99	4.92	2.09	2.25	1.17	2.55	1.83	10.10	4.00	1.15	4.04	1.28	5.15	3.68
September	7.35	1.67	2.87	2.25	8.05	1.28	2.48	6.94	3.06	1.64	1.07	3.23	0.05	4.54	7.79	0.48	1.23	5.82	4.75	12.22	3.94
October	1.91	13.46	6.10	3.35	1.81	3.99	6.17	7.12	5.12	1.28	5.22	3.60	4.58	9.12	4.12	6.01	4.18	3.39	4.55	3.15	4.91
November	3.42	4.40	6.38	2.67	3.66	3.43	3.92	3.94	0.47	2.66	3.60	1.66	3.27	1.22	8.81	0.62	4.67	2.05	3.38	1.72	3.30
December	3.89	3.79	1.77	3.67	3.78	3.69	4.08	4.84	3.39	3.46	4.44	2.10	3.40	2.50	3.61	0.28	5.15	3.12	6.44	3.64	3.55
TOTAL	41.87	50.85	49.44	40.51	54.44	46.42	52.54	62.50	33.00	36.72	38.48	20.99	28.70	46.81	57.63	38.78	36.57	42.40	39.61	60.84	43.96

Monthly data retrieved from the National Oceanic and Atmospheric Administration (NOAA) data inventory (https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:04780/detail) Values given in total inches of precipitation per month

Source Location: Fitchburg Municipal Airport, Massachusetts Weather Station

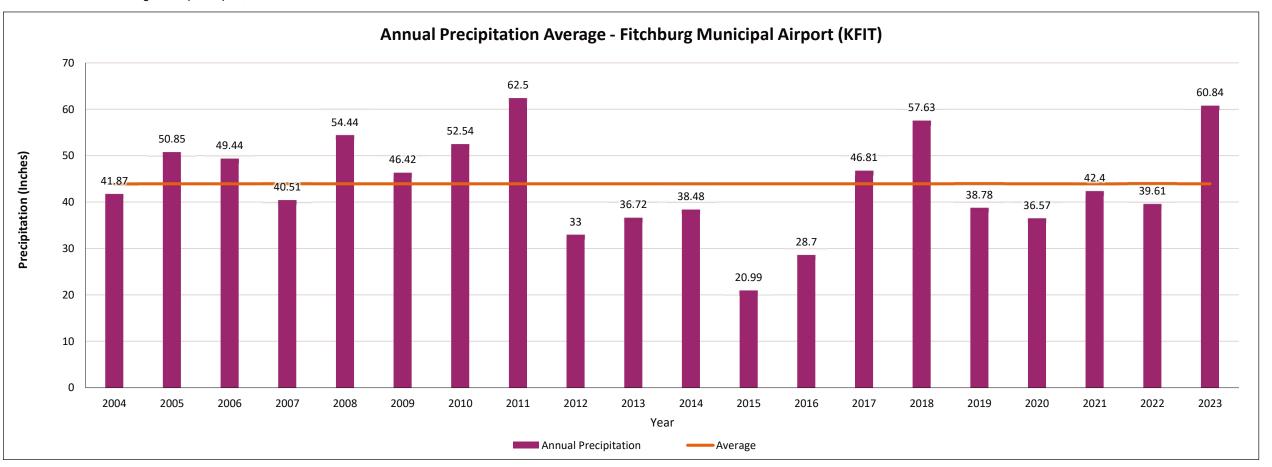


Table 4
Analytical Methods, Containers, Holding Times, and Preservatives
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

Site/Events	Parameter	Analytical Method ¹	Target Analytes	Sample Container ²	Preservative	Holding Time
AOC 57 (Spring)	Dissolved Metals*	SW6010C/6020A	As, Fe, Mn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
ACC 37 (Spring)	Total Metals	SW6010C/6020A	As, Fe, Mn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
AOC 32/43A		3 x 40-ml vials with teflon septa screw caps; no headspace	HCl to pH < 2; 4°± 2°C	14 Days		
AOC 32/43A (Spring)	VPH	MADEP-VPH-04-1.1	VPH/BTEX	3 x 40-ml vials with teflon septa screw caps; no headspace	HCl to pH < 2; 4°± 2°C	14 Days
	Total Metals	SW6010C/6020A	As, Mn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
AOC 69W (Fall)	EPH	MADEP-EPH-04-1.1	EPH	2 x 1-Liter Glass Amber with Teflon- lined lid	HCI to pH < 2; 4°± 2°C	7 Days (extraction) 40 Days (analyses)
	Dissolved Metals*	SW6010C/6020A	As, Fe, Mn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
	VPH	MADEP-VPH-04-1.1	VPH/BTEX	3 x 40-ml vials with teflon septa screw caps; no headspace	HCl to pH < 2; 4°± 2°C	14 Days
AOC 43G (Fall)	Total Metals	SW6010C	Fe, Mn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
	Alkalinity	SM2320B	None	1 x 250-ml Polyethylene	Store at 4°± 2°C	14 Days
	VPH	MADEP-VPH-04-1.1	VPH/BTEX	3 x 40-ml vials with teflon septa screw caps; no headspace	HCl to pH < 2; 4°± 2°C	14 Days
	EPH	MADEP-EPH-04-1.1	EPH	2 x 1-Liter Glass Amber with Teflon- lined lid	HCl to pH < 2; 4°± 2°C	7 Days (extraction) 40 Days (analyses)
	Pesticides	SW8081A	TAL	2 x 1-Liter Glass Amber with Teflon- lined lid	Store at 4°± 2°C	7 Days (extraction) 40 Days (analyses)
DCL (GW) (Spring/Fall)	Select Metals (Total)	SW6010C/6020A	Select Metals for DCL Groundwater: As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Se, Ag	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
	Mercury	SW7470A	Hg			28 days
	Cyanide (Total)	SW9012B	Cyanide (Total)	1 x 250-ml Polyethylene	NAOH to pH > 12; 4°± 2°C	14 Days
	TDS	SM2540C-11	None	1 x 500-ml Polyethylene	Store at 4°± 2°C	7 days
	Anions	SW9056A	Chloride, Sulfate	1 x 125-ml Polyethylene	Store at 4°± 2°C	28 days
	Alkalinity	SM2320B	None	1 x 250-ml Polyethylene	Store at 4°± 2°C	14 Days
DCL (GW)	COD	410.4	None	1 x 250-ml Polyethylene	H ₂ SO ₄ to pH < 2; 4°± 2°C	28 Days
(Spring/Fall, cont.)	Nitrate/Nitrite as N	E353.2	Nitrate/Nitrite as N	1 x 500-ml Polyethylene	H ₂ SO ₄ to pH < 2; 4°± 2°C	28 Days
	Select Metals (Total)	SW6010C/6020A	Select Metals for DCL Leachate: Al, As, Cd, Cr, Cu, Pb, Ni, Ag, Zn	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	180 Days
	Mercury	SW7470A	Hg	1 x 250-ml Polyethylene	HNO ₃ to pH < 2; 4°± 2°C	28 days
	Cyanide (Total)	SW9012B	Cyanide (Total)	1 x 250-ml Polyethylene	NAOH to pH > 12; 4°± 2°C	14 Days
	TSS/pH	SM2540D/SW9040C		1 x 1-liter Polyethylene	Store at 4°± 2°C	7 days
DCL (Leachate)	TPH as DRO	SW8015B	DRO	2 x 1-Liter Glass Amber with Teflon- lined lid	Store at 4°± 2°C	7 Days (extraction) 40 Days (analyses)
(Fall)	Total Phenolics	SW9065	Total Phenols	1 x 250-ml amber	H ₂ SO ₄ to pH < 2; 4°± 2°C	28 days
	TTO (VOCs)	624.00	VOCs	3 x 40-ml vials with teflon septa screw caps; no headspace	HCl to pH < 2; 4°± 2°C	14 Days
	TTO (SVOCs)	625.00	SVOCs	2 x 1-liter amber	Store at 4°± 2°C	7 Days (extraction) 40 Days (analyses)
	TTO (Pesticides/ PCBs)	SW8081B/8082A	Pesticides/PCBs	2 x 1-liter amber	Store at 4°± 2°C	7 Days (extraction) 40 Days (analyses)

Acronyms and Abbreviations:

°C = degrees Celsius

AOC = Area of Contamination

BTEX = benzene, toluene, ethylbenzene, and xylenes

COD = chemical oxygen demand

DCL = Devens Consolidation Landfill DRO = diesel-range organics

EPA = United States Environmental Protection Agency

EPH = extractable petroleum hydrocarbon

GW = groundwater

PCB = polychlorinated biphenyl

SVOC = semi-volatile organic compound

TAL = Target Analyte List TDS = total dissolved solids

TPH = total petroleum hydrocarbons

TSS = total suspended solids

TTO = total toxic organics

VOC = volatile organic compound VPH = volatile petroleum hydrocarbon

^{*} Samples submitted for dissolved metals are field filtered.

¹ "Methods for Chemical Analysis of Water and Wastes", Cincinnati, OH, March 1979, EPA 600-4-79-020.

[&]quot;Test Methods for Evaluating Solid Waste, Physical and Chemical Methods", EPA SW-846, Update 8, 2014.

² Additional sample containers/volumes are required for matrix quality control samples.

Table 5
Monitoring Wells and Surface Water Locations Selected for Long-Term Monitoring 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Location ID	Ground Surface Elevation	Top of Casing Elevation	Top of Screen Interval	Bottom of Screen Interval	Top of Screen Interval	Bottom of Screen Interval
	(ft NAVD88)	(ft NAVD88)	(ft BGS)	(ft BGS)	(ft NAVD88)	(ft NAVD88)
AOC 57 (Annual Sampling)						
57-SW-1						
57M-03-01X	234.44	235.73	10	20	224.44	214.44
57M-03-02X	222.99	224.84	2	12	220.99	210.99
57M-03-03X	218.98	220.00	2	12	216.98	206.98
57M-03-04X	219.46	221.39	2	12	217.46	207.46
57M-03-05X	219.58	221.88	2	12	217.58	207.58
57M-03-06X	220.25	221.87	2	12	218.25	208.25
57M-95-03X	230.80	232.79	7	17	223.80	213.80
57M-95-05X	232.99	235.15	10	20	222.99	212.99
57M-95-06X 57M-95-07X	232.63 221.50	234.39 222.36	12 3	13	220.77 218.50	210.77 208.50
57M-96-10X	226.29	228.75	3	13	223.29	213.29
57M-96-11X	220.04	222.20	2	12	218.04	208.04
57M-96-12X	222.78	225.80	2	12	220.78	210.78
57M-96-13X	223.23	225.58	2	12	221.23	211.23
57P-98-03X	218.62	220.39	2.5	5.5	216.12	213.12
57P-98-04X	218.24	221.75	2	5	216.24	213.24
57WP-05-01	219.34	221.73	0	2	219.34	217.34
57WP-06-02	219.17	220.29	18.92	23.92	200.25	195.25
57WP-06-03	219.31	220.51	13.85	18.85	205.46	200.46
AOC 69W (Annual Sampling)	_ : : : : :					
69W-94-12	225.65	228.14	3	13	222.65	212.65
69W-94-13	224.50	226.99	3	13	221.50	211.50
69W-94-14	224.73	227.22	3	13	221.73	211.73
69WP-08-01	219.17	220.52	10*	13*	209.17	206.17
69WP-13-01	217.43	218.59	10*	13*	207.43	204.43
ZWM-01-25X	222.58	224.71	6.13	16.13	216.45	206.45
ZWM-01-26X	224.36	226.81	6.45	16.45	217.91	207.91
ZWM-95-15X	222.14	225.01	5.87	15.87	216.27	206.27
ZWM-95-16X	228.21	227.58	5.67	15.67	222.54	212.54
ZWM-95-17X	235.27	237.83	14.76	24.76	220.51	210.51
ZWM-95-18X	219.93	222.15	5.22	15.22	214.71	204.71
ZWM-99-22X	226.89	226.72	4.6	14.6	222.29	212.29
ZWM-99-23X	223.40	225.08	4.68	14.68	218.72	208.72
ZWM-99-24X	222.83	225.85	5.52	15.52	217.31	207.31
ZWP-95-01X	223.63	226.04	10	12	213.63	211.63
ZWP-95-02X	219.91	222.83	9.5	11.5	210.41	208.41
Willow Brook Piezometer	216.80	218.17				
AOC 43G (Annual Sampling)						
AAFES 5	299.47	301.72	16.2	31.2	283.27	268.27
AAFES-5 AAFES-6R	300.01 296.77	299.80 298.74	15.5 15	30.5 25	284.51 281.77	269.51 271.77
AAFES-7	256.10	258.80	4.5	14.5	251.60	241.60
XGM-93-02X	309.40	309.01	28	38	281.40	271.40
XGM-94-04X	298.30	300.69	18.2	28.2	280.10	270.10
XGM-94-06X	281.40	284.07	17	27	264.40	254.40
XGM-94-07X	292.20	294.82	17	27	275.20	265.20
XGM-94-08X	296.40	298.98	23.5	33.5	272.90	262.90
XGM-94-10X XGM-97-12X	299.60 309.26	301.96 308.70	21.5 24	31.5 34	278.10 285.26	268.10 275.26
AOCs 32/43A (Annual Sampling)	309.20	300.70	<u> </u>	J -1	200.20	210.20
32M-01-13XBR	228.30	257.88	13.7	23.7	244.60	234.60
32M-01-14XBR	254.11	256.06	35.8	45.8	220.30	210.30
32M-01-14XOB	254.30	256.56	17.3	27.3	237.10	227.10
32M-01-15XBR	257.90	258.36	34.5	44.5	223.40	213.40
32M-01-16XBR	257.70	257.50	21	31	236.70	226.70
32M-01-17XBR	256.85	259.11	41.4	51.4	217.71	207.71
32M-01-18XBR	258.61	258.32	14	24	244.60	234.60
32M-92-01X	258.26	260.17	13	23	243.90	233.90
32M-92-03X	258.23	260.02	23.2	33.2	235.00	225.00
32Z-01-05XOB	260.95	261.40	25.5	35.5	235.90	225.90
32Z-01-06XBR	259.82	261.85	16.7	26.7	243.30	233.30
32Z-01-07XOB	257.68	259.48	12.7	22.7	244.98	236.78
32Z-01-08XOB	258.59	260.49	12	22	246.59	238.49
32Z-01-09XOB	257.80	257.37	23.5	33.5	234.30	223.87
32Z-01-10XBR	257.76	257.41	12.5	22.5	245.26	234.91
32Z-01-11XBR	262.07	261.50	8.4	18.4	253.65	243.08
32Z-01-12XBR	258.24	257.85	27.8	37.8	230.46	220.07
32Z-99-02X	257.48	259.71	14.5	29.5	242.98	230.21
43M-01-16XBR	257.04	256.84	47.5	57.5	209.54	199.34
	257.11	256.88	24	34	233.11	222.88

Table 5 Monitoring Wells and Surface Water Locations Selected for Long-Term Monitoring 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Location ID	Ground Surface Elevation	Top of Casing Elevation	Top of Screen Interval	Bottom of Screen Interval	Top of Screen Interval	Bottom of Screen Interval
	(ft NAVD88)	(ft NAVD88)	(ft BGS)	(ft BGS)	(ft NAVD88)	(ft NAVD88)
43M-01-17XBR	258.53	258.29	47.5	57.5	211.03	200.79
43M-01-17XOB	258.51	258.08	23.5	33.5	235.01	224.58
43M-01-20XBR	257.78	257.30	68.3	78.3	189.48	179.00
43M-01-20XOB	257.78	257.40	24	34	233.78	223.40
SHL-15	258.83	258.83	14	24	244.83	234.83
SHL-25	256.28	258.01	23.5	33.5	232.78	224.51
DCL (Semi-Annual Sampling)						
LFM-03-07	315.68	315.14	10.9	20.9	304.78	294.24
LFM-99-01B	326.20	350.67	23.3	32.6	302.90	318.07
LFM-99-02B	353.03	353.83	14.5	23.8	338.53	330.03
LFM-99-03B	341.28	342.08	38.2	47.5	303.08	294.58
LFM-99-05A	315.78	316.58	19.0	28.3	296.78	288.28
LFM-99-05B	315.78	316.58	51.5	55.8	264.28	260.78
LFM-99-06ARP	335.21	337.84	17.5	32.5	317.71	305.34

Notes:

Acronyms and Abbreviations:

AOC = Area of Contamination
DCL = Devens Consolidation Landfill
ft = feet

BCS = feet below ground surface

ft BGS = feet below ground surface

^{* =} Ground surface estimated based on field measurement of stickup casing.

Table 6
AOC-Specific Action Levels
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

Chemical of Concern	MCP GW-1 ¹ (μg/L)	Background² (μg/L)	MCL ³ (μg/L)	Cleanup Goal ⁴ (µg/L)	Monitoring Criteria ⁴ (μg/L)	Surface Water Benchmark ⁵ (μg/L)
AOC 57 Area 3 - Building 3713 Fuel C	Dil Spill Site			'	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
Arsenic, Total	10	10.5	10	10	NS	NS
Arsenic, Dissolved	NS	NS	NS	NS	NS	150
Iron, Dissolved AOC 69W - Fort Devens Elementary 9	NS Sabaal Fual Oil Sa	NS ill Site	NS	NS	NS	1,000
Arsenic, Dissolved	10	10.5	10	10	NS	NS
Iron, Dissolved	NS	9,100	NS	NS	9,100	NS NS
Manganese, Dissolved	NS	291	NS	NS	291	NS
EPH ⁵						
C9-C18 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C19-C36 Aliphatic Hydrocarbons	14,000	NS	NS	NS	14,000	NS
C11-C22 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
AOC 43G - Historical Gas Station Mo	<u> </u>					
Iron, Total	NS	9,100	NS	9,100	NS	NS
Manganese, Total	NS	291	NS	375 ⁷	NS	NS
VOCs Benzene	5.0	ND	5.0	5.0	NS	NS
Toluene	1,000	ND	1,000	1,000	NS	NS
Ethylbenzene	700	ND	700	700	NS	NS
Xylenes, Total	10,000	ND	10,000	10,000	NS	NS
VPH ⁵						
C5-C8 Aliphatic Hydrocarbons	300	NS	NS	NS	300	NS
C9-C12 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C9-C10 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
AOCs 32/43A - Former POL Storage						
Arsenic, Total	10	10.5	10	10	NS	NS
Manganese, Total	NS	3,500	NS	3,500	NS	NS
VOCs						
Chlorobenzene	100	NS	100	NS	100	NS
Vinyl Chloride	2.0	NS	2.0	2.0	NS	NS
1,2-dichloroethene (trans)	100	NS	100	100	NS	NS
1,2-dichloroethene (cis)	55	NS	70	55 NO	NS 5.0	NS
1,1,1-trichloroethane Trichloroethene	200 5.0	NS NS	200 5.0	NS 5.0	5.0 NS	NS NS
1,2-dichlorobenzene	600	NS	600	600	NS NS	NS
1,3-dichlorobenzene	100	NS	NS	600	NS	NS
1,4-dichlorobenzene	5.0	NS	75	5.0	NS	NS
VPH ⁵						
Benzene	5.0	NS	5.0	NS	5.0	NS
Ethylbenzene	700	NS	700	NS	700	NS
Xylenes, total	10,000	NS	10,000	NS	10,000	NS
Toluene	1,000	NS	1,000	NS	1,000	NS
C5-C8 Aliphatic Hydrocarbons	300	NS	NS	NS	300	NS
C9-C12 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C9-C10 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
EPH ⁵						
C9-C18 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C19-C36 Aliphatic Hydrocarbons	14,000	NS	NS	NS	5,000	NS
C11-C22 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
Devens Consolidation Landfill (DCL)	- Landfilling Wast	e From SAs and AOC	s			
VPH ⁵						
C5-C8 Aliphatic Hydrocarbons	300	NS	NS	NS	300	NS
C9-C12 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C9-C10 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
Methyl tert-butyl ether	70	NS	NS	NS	70	NS
Benzene	5.0	NS	5.0	NS	5.0	NS
Toluene Ethylbenzene	1,000 700	NS NC	1,000 700	NS NS	1,000 700	NS NS
Xylenes, total	10,000	NS NS	10,000	NS NS	10,000	NS NS
Naphthalene	140	NS	10,000 NS	NS NS	140	NS NS
EPH ⁶				.,,0		
C9-C18 Aliphatic Hydrocarbons	700	NS	NS	NS	700	NS
C19-C36 Aliphatic Hydrocarbons	5,000	NS	NS	NS	5,000	NS
C11-C22 Aromatic Hydrocarbons	200	NS	NS	NS	200	NS
Target PAH Analytes						
2-Methylnaphthalene	10	NS	NS	NS	10	NS
Acenaphthene	20	NS	NS	NS	20	NS
Acenaphthylene	30	NS	NS	NS	30	NS
Anthracene	60	NS	NS	NS	60	NS
Benzo(a)anthracene	1.0	NS	NS	NS	1.0	NS
D / - \	0.20	NS	0.2	NS	0.2	NS
Benzo(a)pyrene						
Benzo(b)fluoranthene	1.0	NS	NS	NS	1.0	NS
, ,, ,	1.0 50 1.0	NS NS NS	NS NS NS	NS NS NS	1.0 50 1.0	NS NS NS

		2	3		Monitoring	Surface Water
Chemical of Concern	MCP GW-1 ¹	Background ²	MCL ³	Cleanup Goal ⁴	Criteria ⁴	Benchmark ⁵
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Dibenzo(a,h)anthracene	0.50	NS	NS	NS	0.50	NS
Fluoranthene	90	NS	NS	NS	90	NS
Fluorene	30	NS	NS	NS	30	NS
Indeno(1,2,3-cd)pyrene	0.50	NS	NS	NS	0.50	NS
Naphthalene	140	NS	NS	NS	140	NS
Phenanthrene	40	NS	NS	NS	40	NS
Pyrene	60	NS	NS	NS	60	NS
Pesticides						.,,,
Hexachlorobenzene	1.0	NS	1.0	NS	1.0	NS
4,4'-DDD (p,p'-DDD)	0.20	NS	NS	NS	0.20	NS
4,4'-DDE (p,p'-DDE)	0.05	NS	NS	NS	0.05	NS
4,4'-DDT (p,p'-DDT)	0.30	NS	NS	NS	0.3	NS
Aldrin	0.50	NS	NS	NS	0.5	NS
alpha-BHC	500	NS NS	NS	NS NS	500	NS
beta-BHC	2.0	NS NS	NS	NS	2.0	NS
delta-BHC	100	NS NS	NS NS	NS NS	100	NS NS
Dieldrin		NS NS	NS	NS NS	0.10	NS
Endosulfan	0.10					
Endrin	10	NS	NS	NS	10	NS
	2.0	NS	2.0	NS	2.0	NS
Gamma-BHC (Lindane)	0.20	NS	0.20	NS	0.20	NS
Heptachlor	0.40	NS	0.40	NS	0.40	NS
Heptachlor epoxide	0.20	NS	0.20	NS	0.20	NS
Methoxychlor	40	NS	40	NS	40	NS
Total Chlordane	2.0	NS	2.0	NS	2.0	NS
Toxaphene	100	NS	3.0	NS	100	NS
Metals						
Arsenic, Total	10	NS	10	NS	10	NS
Barium, Total	2,000	NS	2,000	NS	2,000	NS
Cadmium, Total	5.0	NS	5.0	NS	5.0	NS
Chromium, Total	100	NS	100	NS	100	NS
Copper, Total	NS	NS	1,300	NS	1,300	NS
Iron, Total	NS	NS	NS	NS	NS	NS
Lead, Total	15	NS	15	NS	15	NS
Manganese, Total	NS	NS	NS	NS	NS	NS
Silver, Total	100	NS	NS	NS	100	NS
Selenium, Total	50	NS	50	NS	50	NS
Mercury, Total	2.0	NS	2.0	NS	2.0	NS
Wet Chemistry						
Solids, Total Dissolved	NS	NS	NS	NS	500,000	NS
Anions						
Chloride	NS	NS	NS	NS	250,000	NS
Sulfate	NS	NS	NS	NS	250,000	NS
Nitrate/Nitrite					,	
Nitrate/Nitrite (as N)	NS	NS	10,000	NS	10,000	NS
Alkalinity, Total					-,	
As CaCO3	NS	NS	NS	NS	NS	NS
Cyanide	140	110	140	140	110	140
Cyanide, total	200	NS	200	NS	200	NS
COD	200	INO	200	INO	200	140
Chemical Oxygen Demand	NS	NS	NS	NS	NS	NS
Chamical Chygen Demand	INO	INO	INO	INO	INO	INO

Acronyms and Abbreviations:

μg/L = microgram per liter

AOC = Area of Contamination

COD = chemical oxygen demand EPH = extractable petroleum hydrocarbon

MassDEP = Massachusetts Department of Environmental Protection

MCL = maximum contaminant level

MCP = Massachusetts Contingency Plan

ND = not detected

NS = no standard

PAH = polycyclic aromatic hydrocarbon

POL = Petroleum, Oils, and Lubricants

ROD = Record of Decision

SA = Study Area

USEPA - United States Environmental Protection Agency

VOC = volatile organic compound VPH = volatile petroleum hydrocarbon

¹ MassDEP MCL GW-1 Standards: 310.CMR 40.0000, 2014.

² Background concentrations determined from selected locations in each AOC.

³ Drinking Water Standards and Health Advisories", Spring 2012, USEPA Office of Water.

⁴ Cleanup goals were established by respective AOC RODs; Monitoring Criteria are used if the ROD did not include cleanup goals for listed analytes.

⁵ USEPA Aquatic Life Water Quality Criterion for Surface Water benchmarks for iron and arsenic (USEPA 2018).

⁶ EPH and VPH concentrations are evaluated against MCP standards for comparison purposes, but the standards are not considered cleanup goals under the ROD.

⁷Risk-based concentration.

Table 7 DCL Leachate Discharge Permit No. 17 Limits 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Analytical Fraction	Parameter	Discharge Limitation (mg/L) ^a		
	Arsenic	0.20		
	Chromium (total)	0.40		
	Cadmium	0.045		
	Copper	0.75		
Metals Composite	Lead	0.20		
	Nickel	0.60		
	Silver	0.30		
	Zinc	0.70		
	Mercury	0.001		
TSS	Total Suspended Solids	400		
TTO	Total Toxic Organics	5.0		
рН	pH (units)	5.5 - 9.5		
Cyanide	Cyanide (Total)	NL		
TPH	Total Petroleum Hydrocarbons	NL		
Heptachlor-Pesticide		NL		
Phenolics		NL		

Notes:

Acronyms and Abbreviations:

DCL = Devens Consolidation Landfill

mg/L = milligrams per liter

NL = No limit; for monitoring purposes only

PCB = polychlorinated biphenyl

SVOC = semi-volatile organic compound

TPH = total petroleum hydrocarbons

TSS = total suspended solids

TTO = Total toxic organics (sum of VOCs, SVOCs, pesticides, and PCBs)

VOC = volatile organic compound

^a = Discharge Limit from Industrial Wastewater Permit No. 17

Table 8 AOC 57 Area 3 Groundwater Analytical Results, Spring 2023 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation **Devens, Massachusetts**

			Location 57M-95-03X		57M-96-11X		
			Sample ID	57M-95-03X-9	SPR23	57M-96-11X-SPR23	57M-DUP01-SPR23
Analytical Method	Analyte	Units	Cleanup Goal	6/9/2023		06/09/2023	06/09/2023
Metals (Total)	Arsenic	μg/L	10*	13	J	20	17
,	Iron	μg/L	NS	2,400		19,000	20,000
	Manganese	μg/L	NS	84		3,500	3,600
Field Parameters	Dissolved Oxygen	mg/L	NS	0.13		0.17	
	Oxidation Reduction	mv	NS	-106		9	
	рН	pH Units	NS	6.28		5.67	
	Specific Conductivity	mS/cm	NS	0.62		1.78	
	Temperature	°C	NS	11.9		12.3	
	Turbidity	NTU	NS	0.63		2.61	

Notes:

= Above cleanup goal 30 -- Not recorded for duplicate sample

 * Cleanup Goal for arsenic is the MCL standard.

Acronyms and Abbreviations:

°C = degrees Celsius

μg/L = microgram per liter

 μ S/cm = microSiemens per centimeter

AOC = Area of Contamination

mg/L = milligram per liter

mV = millivolt

NS = no standard

NTU = Nephelometric Turbidity Unit SU = standard unit

Table 9 AOC 57 Area 3 Surface Water Analytical Results, Spring 2023 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

			Location	57-SW1
			Sample ID	57-SW1-SPR23
Analytical Method	Analyte	Units	Surface Water Benchmark	06/09/2023
Metals (Dissolved)	Arsenic	μg/L	150*	6.40
	Iron	μg/L	1,000*	4,900
	Manganese	μg/L	NS	5,800
Field Parameters	Dissolved Oxygen	mg/L	NS	5.91
	Oxidation Reduction Potential	mv	NS	23.4
	рН	pH Units	NS	5.96
	Specific Conductivity	mS/cm	NS	0.860
	Temperature	°C	NS	18.4
	Turbidity	NTU	NS	5.17

Notes:

= Above benchmark

Acronyms and Abbreviations:

°C = degrees Celsius

μg/L = microgram per liter

 μ S/cm = microSiemens per centimeter

AOC = Area of Contamination

mg/L = milligram per liter

mV = millivolt

NS = No Standard

NTU = Nephelometric Turbidity Unit

SU = standard unit

USEPA = United States Environmental Protection Agency

^{*} USEPA Aquatic Life Water Quality Criterion for Surface Water benchmarks for iron and arsenic (USEPA 2018).

Table 10
AOC 69W Groundwater Analytical Results, Fall 2023
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

				Locatio	n 69W-94-13	69W-94-14	ZWM-01-25X	ZWM-01-25X ZWM-95-15X		ZWM-99-22X	
				Sample II	69W-94-13-FAL23	69W-94-14-FAL23	ZWM-01-25X- FAL23	ZWM-95-15X- FAL23	ZWM-95-18X- FAL23	AOC69W-DUP03- FAL23	ZWM-99-22X- FAL23
Analytical Method	Analyte	Units	Cleanup Goal ¹	Monitoring Criteria ²	11/14/2023	11/15/2023	11/16/2023	11/15/2023	11/16/2023	11/16/2023	11/16/2023
EPH	2-Methylnaphthalene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		2.2
	Acenaphthene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.2 J
	Acenaphthylene	μg/L	NS	NS	1.3 U	1.3 U	1.4 U	1.3 U	1.4 U		2.1 J
	Anthracene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		0.97 J
	Benzo(a)anthracene	μg/L	NS	NS	1.3 U	1.3 U	1.4 U	1.3 U	1.4 U		1.3 U
	Benzo(a)pyrene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.1 U
	Benzo(b)fluoranthene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.1 U
	Benzo(g,h,i)perylene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.1 U
	Benzo(k)fluoranthene	μg/L	NS	NS	2.8 U	2.8 U	2.9 U	2.9 U	3.0 U		2.8 U
	C11-C22 Aromatics	μg/L	NS	200	9.4 J	28 U	29 U	13 J	30		100 J
	C19-C36 Aliphatics	μg/L	NS	14,000	19 U	9.80 J	11 J	11 J	12		19 U
	C9-C18 Aliphatics	μg/L	NS	700	57 U	57 U	58 U	57 U	60		57 U
	Chrysene	μg/L	NS	NS	0.94 U	0.95 U	0.97 U	0.95 U	1.0 U		0.95 U
	Dibenz(a,h)anthracene	μg/L	NS	NS	0.94 U	0.95 U	0.97 U	0.95 U	1.0 U		0.95 U
	Fluoranthene	μg/L	NS	NS	0.94 U	0.95 U	0.97 U	0.95 U	1.0 U		0.95 U
	Fluorene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.4 J
	Indeno(1,2,3-c,d)pyrene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.1 U
	Naphthalene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		1.1 U
	Phenanthrene	μg/L	NS	NS	1.1 U	1.1 U	1.2 U	1.1 U	1.2 U		0.72 J
	Pyrene	μg/L	NS	NS	9.4 U	9.5 U	9.7 U	9.5 U	10 U		9.5 U
Metals (Dissolved)	Arsenic	μg/L	10	NS	9.1	3.0 U	1.10 J	7.7	1.10 J	120	110
	Iron	μg/L	NS	9,100	570	50.0 U	50.0 U	1,200	50.0 U	11,000	11,000
	Manganese	μg/L	NS	291	320	120	1,100	380	61.0 J	1,100	1,000
Field Parameters	Dissolved Oxygen	mg/L	NS	NS	1.14	1.78	0.83	0.42	4.25		0.46
	Oxidation Reduction Potential	mv	NS	NS	-33.4	-29.8	111.9	-30.3	244.2		-29.2
	рН	pH Units	NS	NS	6.8	5.9	5.79	5.98	6.05		6.67
	Specific Conductivity	mS/cm	NS	NS	2.068	1.635	0.603	0.522	0.922		1.93
	Temperature	°C	NS	NS	14.2	11.9	13.7	10.6	12.6		12.4
	Turbidity	NTU	NS	NS	0.91	0.46	3.61	4.17	4.8		0.79

= Above cleanup goal
-- = not analyzed

Acronyms and Abbreviations:

°C = degrees Celsius

μg/L = microgram per liter

μS/cm = microSiemens per centimeter

AOC = Area of Contamination

EPH = extractable petroleum hydrocarbon

J = Estimated result

MassDEP = Massachusetts Department of Environmental Protection

MCL = Maximum Contaminant Level

mg/L = milligram per liter

NS = no standard

J = Estimated result

U = Non-detect

¹ Cleanup Goal for arsenic is the MCL standard.

² Monitoring criteria for iron and manganese are background levels from the RI (Final Remediation Investigation Report, Area of Contamination (AOC) 57, Devens, Massachusetts, HLA, 2000b).

Table 10
AOC 69W Groundwater Analytical Results, Fall 2023
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

				Location	n ZWM-99-23X	ZWM-99-24X	69WP-08-01	69WP-13-01
EPH Metals (Dissolved)				Sample II	ZWM-99-23X-	ZWM-99-24X-	69WP-08-01-	69WP-13-01-
					FAL23	FAL23	FAL23	FAL23
Analytical Method	Analyte	Units	Cleanup Goal ¹	Monitoring Criteria ²	11/16/2023	11/14/2023	11/16/2023	11/16/2023
EPH	2-Methylnaphthalene	μg/L	NS	NS	1.3 U	1.1 U		
EPH 2 A A A A B B B C C C C C C C C C C C C C	Acenaphthene	μg/L	NS	NS	1.3 U	1.1 U		
	Acenaphthylene	μg/L	NS	NS	1.5 U	1.3 U		
	Anthracene	μg/L	NS	NS	1.3 U	1.1 U		
	Benzo(a)anthracene	μg/L	NS	NS	1.5 U	1.3 U		
	Benzo(a)pyrene	μg/L	NS	NS	1.3 U	1.1 U		
	Benzo(b)fluoranthene	μg/L	NS	NS	1.3 U	1.1 U		
	Benzo(g,h,i)perylene	μg/L	NS	NS	1.3 U	1.1 U		
	Benzo(k)fluoranthene	μg/L	NS	NS	3.1 U	2.9 U		
	C11-C22 Aromatics	μg/L	NS	200	23 J	29 U		
	C19-C36 Aliphatics	μg/L	NS	14,000	10 J	13 J		
	C9-C18 Aliphatics	μg/L	NS	700	63 U	57 U		
	Chrysene	μg/L	NS	NS	1.0 U	0.96 U		
	Dibenz(a,h)anthracene	μg/L	NS	NS	1.0 U	0.96 U		
	Fluoranthene	μg/L	NS	NS	1.0 U	0.96 U		
	Fluorene	μg/L	NS	NS	1.3 U	1.1 U		
	Indeno(1,2,3-c,d)pyrene	μg/L	NS	NS	1.3 U	1.1 U		
	Naphthalene	μg/L	NS	NS	1.3 U	1.1 U		
	Phenanthrene	μg/L	NS	NS	1.3 U	1.1 U		
	Pyrene	μg/L	NS	NS	10 U	9.6 U		
Metals (Dissolved)	Arsenic	μg/L	10	NS	23	2.7 J	3.00 U	
	Iron	μg/L	NS	9,100	2,100	630	6,400	
	Manganese	μg/L	NS	291	1,300	67	370	30.0 U
Field Parameters	Dissolved Oxygen	mg/L	NS	NS	0.02	0.49	1.42	1.4
	Oxidation Reduction Potential	mv	NS	NS	-2	-33.1	-18.4	-23.3
	рН	pH Units	NS	NS	6.14	6.17	6.27	6.28
	Specific Conductivity	mS/cm	NS	NS	0.624	0.273	1.468	0.715
	Temperature	°C	NS	NS	14	12.6	13.4	13.3
	Turbidity	NTU	NS	NS	3.89	1.17	6.1	3.13

= Above cleanup goal
-- = not analyzed

Acronyms and Abbreviations:

°C = degrees Celsius

μg/L = microgram per liter

μS/cm = microSiemens per centimeter

AOC = Area of Contamination

EPH = extractable petroleum hydrocarbon

J = Estimated result

MassDEP = Massachusetts Department of Environmental Protection

MCL = Maximum Contaminant Level

mg/L = milligram per liter

NS = no standard

J = Estimated result

U = Non-detect

¹ Cleanup Goal for arsenic is the MCL standard.

² Monitoring criteria for iron and manganese are background levels from the RI (Final Remediation Investigation Report, Area of Contamination (AOC) 57, Devens, Massachusetts, HLA, 2000b).

Table 11
AOC 43G Groundwater Analytical Results, Fall 2023
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

				Location	AAFES-2	AAFES-7	XGM-93-02X	XGM-94-04X	XGM-	97-12X
				Sample ID	AAFES-2-	AAFES-7-	XGM-93-02X-	XGM-94-04X-	XGM-97-12X-	AOC43G-
					FAL23	FAL23	FAL23	FAL23	FAL23	DUP01-FAL23
Analytical Method	Analyte	Units	Cleanup Goal ¹	Monitoring Criteria ²	11/09/2023	11/10/2023	11/13/2023	11/09/2023	11/13	3/2023
General Chemistry	Alkalinity, Total (as CaCO3)	mg/L	NS	NS	160		140	160	170	
Metals (Total)	Iron	μg/L	9,100	NS	16,000		7,100	200	37,000	36,000
	Manganese	μg/L	375	NS	4,400	160	940	440	2,000	1,900
VPH	Benzene	μg/L	5	NS	1.50 J		2.00 U	2.00 U	6.3	
	C5-C8 Aliphatics	μg/L	NS	300	510		75.0 U	52.0 J	470	
	C9-C10 Aromatics	μg/L	NS	200	430		75.0 U	62.0 J	520	
	C9-C12 Aliphatics	μg/L	NS	700	320		75.0 U	75.0 U	360 J	
	Ethylbenzene	μg/L	700	NS	1.30 J		3.80 U	1.80 J	120	
	m,p-Xylene	μg/L	10,000	NS	7.50 U		7.50 U	7.50 U	62	
	Methyl tert-butyl ether (MTBE)	μg/L	NS	NS	3.80 U		2.40 J	3.80 U	3.80 U	
	Naphthalene	μg/L	NS	NS	2.70 J		3.80 U	3.80 U	95	
	o-Xylene	μg/L	10,000	NS	3.80 U		3.80 U	3.80 U	29	
	Toluene	μg/L	1,000	NS	1.30 J		3.80 U	3.80 U	1.90 J	
Field Parameters	Dissolved Oxygen	mg/L	NS	NS	0.06	3.48	0.2	0.65	0.22	
	Oxidation Reduction Potential	mv	NS	NS	-76.7	149.8	-33.7	30.3	-38.9	
	рН	pH Units	NS	NS	6.45	6.12	6.42	6.87	6.79	
	Specific Conductivity	mS/cm	NS	NS	2.06	1.051	2.539	2.642	2.558	
	Temperature	°C	NS	NS	12.7	12.7	11.3	8.1	13.8	
	Turbidity	NTU	NS	NS	14.2	4.48	0.27	0.88	1.86	

990	= Above cleanup goal
990	= Above monitoring criteria

^{-- =} not analyzed

Acronyms and Abbreviations:

°C = degrees Celsius
μg/L = microgram per liter
μS/cm = microSiemen per centimeter
AOC = Area of Contamination
J = Estimated result
MCL = Maximum Contaminant Level
NS = no standard
U = Non-detect

¹ The cleanup goal for iron is the background level. The cleanup goal for manganese is a site-specific goal established as part of the long-term monitoring plan for the site (Long-Term Monitoring Plan Former Fort Devens Army Installation, HGL, 2008). Benzene, ethylbenzene, xylenes, and toluene are not contaminants of concern but the cleanup goals are the Maximum Contaminant Levels (MCLs).

² The monitoring criteria for iron and manganese is the background from the RI (Final Remedial Investigation Report Area of Contamination (AOC) 43G, ABB Environmental Services, Inc., 1996). The monitoring criterion for arsenic is the MCL.

				32M-01-13XBR 32M-01-13XBR- SPR23	32M-01-14XOB 32M-01-14XOB- SPR23	32M-01-17XBR 32M-01-17XBR- SPR23	32M-01-18XBR 32M-01-18XBR- SPR23	32M-DUP01- SPR23
Analytical Method	Analyte	Units	Cleanup Goal	06/08/2023	06/09/2023	06/07/2023	06/09/2023	06/09/2023
Metals (Total)	Arsenic	μg/L	10*	1.1 J	12	0.94 J	2.5 J	1.9 J
1/00-	Manganese	μg/L	3,500*	17	810	5.9 J	1,300	1,300
VOCs	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	μg/L μg/L	NS NS	1 U 0.5 U	1 U 0.5 U	1 UJ 0.5 UJ	1 U 0.5 U	1 U 0.5 U
	1,1,2,2-Tetrachloroethane	μg/L	NS NS	1 U	1 U	0.5 UJ	1 U	1 U
	1,1,2-Trichloroethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,1-Dichloroethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,1-Dichloroethene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,1-Dichloropropene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,2,3-Trichlorobenzene	μg/L	NS NS	2 U 1 U	2 U 1 U	2 UJ 1 UJ	2 U 1 U	2 U 1 U
	1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	μg/L μg/L	NS NS	2 U	2 U	2 UJ	2 U	2 U
	1,2,4-Trimethylbenzene	µg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,2-Dibromo-3-chloropropane	µg/L	NS	5 U	5 U	5 UJ	5 U	5 U
	1,2-Dibromoethane (EDB)	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,2-Dichlorobenzene	μg/L	600*	1 U	1 U	1 UJ	1 U	0.31 J
	1,2-Dichloroethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,2-Dichloroethene 1,2-Dichloropropane	μg/L	NS NS	1 U 0.5 U	1 U	1 UJ	1 U	1 U 0.5 U
	1,3,5-Trimethylbenzene	μg/L μg/L	NS NS	1 U	0.5 U 1 U	0.5 UJ 1 UJ	0.5 U 1 U	0.5 U
	1,3-Dichlorobenzene	μg/L	600*	1 U	1 U	1 UJ	1 U	1 U
	1,3-Dichloropropane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	1,4-Dichlorobenzene	μg/L	5*	1 U	1 U	1 UJ	1 U	1 U
	2,2-Dichloropropane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	2-Butanone (MEK)	μg/L	NS	20 U	20 U	20 UJ	20 U	20 U
	2-Chlorotoluene	μg/L	NS	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
	2-Hexanone 4-Chlorotoluene	μg/L μg/L	NS NS	10 U 1 U	10 U 1 U	10 UJ 1 UJ	10 U	10 U 1 U
	4-Methyl-2-pentanone (MIBK)	μg/L μg/L	NS NS	10 U	10 U	10 UJ	10 U	10 U
	Acetone	μg/L	NS NS	10 U	10 U	10 UJ	10 U	10 U
	Benzene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Bromobenzene	μg/L	NS	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
	Bromochloromethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Bromodichloromethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Bromoform	μg/L	NS NS	2 U 10 U	2 UJ 10 U	2 UJ 10 UJ	2 UJ	2 UJ 10 U
	Bromomethane Carbon disulfide	μg/L μg/L	NS NS	10 U	10 U	10 03 1 UJ	10 U	10 U
	Carbon Tetrachloride	μg/L	NS NS	1 U	1 U	1 UJ	1 U	1 U
	Chlorobenzene	µg/L	NS	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
	Chloroethane	μg/L	NS	10 U	10 U	10 UJ	10 U	10 U
	Chloroform	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Chloromethane	μg/L	NS	2 U	2 U	2 UJ	2 U	2 U
	cis-1,2-Dichloroethene	μg/L	55*	1 U	1 U	1 UJ	1 U	1 U
	cis-1,3-Dichloropropene Cumene	µg/L	NS NS	1 U 1 U	1 U	1 UJ 1 UJ	1 U	1 U 1 U
	Dibromochloromethane	μg/L μg/L	NS NS	1 U	1 U	1 UJ	1 U	1 U
	Dibromomethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Dichlorodifluoromethane	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Ethylbenzene	μg/L	NS	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
	Hexachlorobutadiene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	m,p-Xylene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Methyl tert-butyl ether (MTBE) Methylene chloride	μg/L μg/L	NS NS	2 U 10 U	2 U 10 U	2 UJ 10 UJ	2 U 10 U	2 U 10 U
	n-Butylbenzene	μg/L	NS	2 U	2 U	2 UJ	2 U	2 U
	n-Propylbenzene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Naphthalene	μg/L	NS	5 U	5 U	5 UJ	5 U	5 U
	o-Xylene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	p-Cymene (p-Isopropyltoluene)	µg/L	NS NS	1 U	1 U	1 UJ	1 U	1 U
	sec-Butylbenzene Styrene	μg/L μg/L	NS NS	2 U 1 U	2 U 1 U	2 UJ 1 UJ	2 U 1 U	2 U 1 U
	tert-Butylbenzene	μg/L μg/L	NS NS	1 U	1 U	1 UJ	1 U	1 U
	Tetrachloroethene (PCE)	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Toluene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	trans-1,2-Dichloroethene	μg/L	100*	1 U	1 U	1 UJ	1 U	1 U
	trans-1,3-Dichloropropene	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
	Trichloroethene (TCE)	μg/L	5*	0.5 U	0.5 U	0.5 UJ	0.5 U	0.35 J
	Trichlorofluoromethane Vinyl acetate	μg/L μg/L	NS NS	1 U 2 U	1 U 2 UJ	1 UJ 2 UJ	1 U 2 UJ	1 U 2 UJ
	Vinyl chloride	μg/L μg/L	2*	1 U	1 U	2 UJ	2 UJ	2 UJ 1 U
	Xylenes, Total	μg/L	NS	1 U	1 U	1 UJ	1 U	1 U
VPH	Benzene	μg/L	NS	2 U	2 UJ	2 UJ	2 U	2 U
	C5-C8 Aliphatics	μg/L	NS	50 U	50 UJ	50 UJ	50 U	50 U
	C9-C10 Aromatics	μg/L	NS	20 U	20 UJ	20 UJ	20 U	20 U
	C9-C12 Aliphatics	μg/L	NS	50 U	50 UJ	50 UJ	50 U	50 U
	Ethylbenzene	µg/L	NS NS	2 U	2 UJ	2 UJ	2 U	2 U
	m,p-Xylene Methyl tert-butyl ether (MTBE)	μg/L μg/L	NS NS	5 U 2 U	5 UJ 2 UJ	5 UJ 2 UJ	5 U 2 U	5 U 2 U
	Naphthalene	μg/L μg/L	NS NS	4 U	4 UJ	4 UJ	4 U	4 U
	o-Xylene	μg/L	NS	2 U	2 UJ	2 UJ	2 U	2 U
	Toluene	µg/L	NS	2 U	2 UJ	2 UJ	2 U	2 U
Field Parameters	Dissolved Oxygen	mg/L	NS	5.7	1.51	0.58	3.86	3.86
	Oxidation Reduction Potential	mv	NS	116	94.4	-41.4	214	214
	pH	pH Units	NS	6.33	5.93	7.02	6.35	6.35
	Specific Conductivity Temperature	mS/cm °C	NS NS	5.54 15.5	0.9 13.9	1.29 14.7	4.3 13.8	4.3 13.8
	Turbidity	NTU	NS NS	15.5	26.7	4.27	13.8	2.6
	. arminy	1	1 110	1 10.0	1 20.1	7.21	1 2.0	2.0

* The cleanup goal for arsenic and select VOCs is the MCL; the cleanup goal for manganese is the background level.

Acronyms and Abbreviations:

 ${}^{\circ}\text{C} = \text{degrees Celsius} \\ \mu\text{g/L} = \text{microgram per liter} \\ \mu\text{S/cm} = \text{microSiemen per centimeter} \\ \text{NTU} = \text{Nephelometric Turbidity Unit}$

AOC = Area of Contamination SU = standard unitJ = Estimated result U = Non-detect

MCL = maximum contaminant level VOCs = volatile organic compounds mg/L = milligram per liter VPH = volatile petroleum hydrocarbon

					LFM-99-02B	LFM-99-05A		LFM-99-06A-RP		
			Sample ID	LFM-03-07-SPR23	LFM-99-02B-SPR23	LFM-99-05A-SPR23	LFM-DUP01- SPR23	LFM-99-06A-RP-SPR23		
Analytical Method	Analyte	Units	Cleanup Goal	06/08/2023	06/08/2023	06/08/2023	06/08/2023	06/08/2023		
EPH	2-Methylnaphthalene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Acenaphthene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Acenaphthylene	μg/L	NS NS	1.4 UJ	1.4 UJ 1.2 UJ	1.4 UJ	1.3 UJ	1.3 UJ		
	Anthracene Benzo(a)anthracene	μg/L μg/L	NS NS	1.2 UJ 1.4 UJ	1.2 UJ 1.4 UJ	1.2 UJ 1.4 UJ	1.2 UJ 1.3 UJ	1.1 UJ 1.3 UJ		
	Benzo(a)pyrene	µg/L	NS	1.4 UJ	1.4 UJ	1.4 UJ	1.2 UJ	1.5 UJ		
	Benzo(b)fluoranthene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Benzo(g,h,i)perylene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Benzo(k)fluoranthene	μg/L	NS	2.9 UJ	2.9 UJ	3.1 UJ	2.9 UJ	2.9 UJ		
	C11-C22 Aromatics	μg/L	200*	29 UJ	29 UJ	31 UJ	29 UJ	29 UJ		
	C19-C36 Aliphatics C9-C18 Aliphatics	μg/L μg/L	14,000* 700*	19 UJ 58 UJ	19 UJ 58 UJ	21 UJ 62 UJ	19 UJ 58 UJ	19 UJ 57 UJ		
	Chrysene	µg/L	NS NS	0.97 UJ	0.97 UJ	1 UJ	0.96 UJ	0.96 UJ		
	Dibenz(a,h)anthracene	μg/L	NS	0.97 UJ	0.97 UJ	1 UJ	0.96 UJ	0.96 UJ		
	Fluoranthene	μg/L	NS	0.97 UJ	0.97 UJ	1 UJ	0.96 UJ	0.96 UJ		
	Fluorene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Indeno(1,2,3-c,d)pyrene	μg/L	NS	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.1 UJ		
	Naphthalene Phenanthrene	μg/L	NS NS	1.2 UJ 1.2 UJ	1.2 UJ 0.93 J	1.2 UJ 1.2 UJ	1.2 UJ 1.2 UJ	1.1 UJ 1.1 UJ		
	Pyrene	μg/L μg/L	NS NS	9.7 UJ	9.7 UJ	1.2 UJ	9.6 UJ	9.6 UJ		
General Chemistry	Alkalinity, Total (as CaCO3)	mg/L	NS	98	81	98	98	92		
,	Chemical Oxygen Demand	mg/L	NS	20 U	20 U	20 U	20 U	20 U		
	Chloride	mg/L	NS	260	250	170	180	310		
	Cyanide	mg/L	0.2*	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
	Nitrate-Nitrite (as N)	mg/L	NS NS	33	0.26	0.41	0.41	0.77		
	Sulfate Total Dissolved Solids	mg/L mg/L	NS NS	620	14 490	16 430	440	30 670		
Metals (Total)	Arsenic	μg/L	10*	3 U	3 U	3 U	3 U	3 U		
,	Barium	μg/L	2,000*	16 J	9.1 J	15 J	14 J	6.9 J		
	Cadmium	μg/L	5*	1 U	1 U	1 U	1 U	1 U		
	Chromium	μg/L	100*	4 U	4 U	4 U	4 U	4 U		
	Copper	μg/L	1,300* NS	10 U 50 U	10 U 50 U	10 U 50 U	10 U 50 U	10 U 50 U		
	Iron Lead	μg/L μg/L	15*	20 U	20 U	20 U	20 U	20 U		
	Manganese	µg/L	NS NS	5 U	5 U	5 U	5 U	5 U		
	Mercury	μg/L	2*	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		
	Selenium	μg/L	100 *	20 U	20 U	20 U	20 U	20 U		
	Silver	μg/L	2*	5 U	5 U	5 U	5 U	5 U		
Pesticides	Aldrin	μg/L	NS NC	0.0039 UJ	0.0039 UJ	0.0042 UJ	0.0043 UJ	0.0038 UJ		
	alpha-BHC (alpha-Hexachlorocyclohexane) alpha-Endosulfan	μg/L μg/L	NS NS	0.0039 UJ 0.0039 UJ	0.0039 UJ 0.0039 UJ	0.0042 UJ 0.0042 UJ	0.0043 UJ 0.0043 UJ	0.0038 UJ 0.0038 UJ		
	beta-BHC (beta-Hexachlorocyclohexane)	µg/L	NS NS	0.0039 U	0.0039 U	0.0042 03 0.0097 J	0.0043 U	0.0038 U		
	beta-Endosulfan	μg/L	NS	0.0039 UJ	0.0039 UJ	0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Chlordane	μg/L	NS	0.39 U	0.39 U	0.42 U	0.43 U	0.38 U		
	delta-BHC (delta-Hexachlorocyclohexane)	μg/L	NS	0.0039 U	0.0039 U	0.0042 U	0.0043 U	0.0038 U		
	Dieldrin	μg/L	NS	0.0039 UJ	0.0039 UJ	0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Endosulfan sulfate Endrin	μg/L μg/L	NS NS	0.0039 UJ 0.0039 UJ	0.0039 UJ 0.0039 UJ	0.0042 UJ 0.0042 UJ	0.0043 UJ 0.0043 UJ	0.0038 UJ 0.0038 UJ		
	Endrin aldehyde	μg/L	NS NS	0.0039 UJ		0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Endrin ketone	μg/L	NS	0.016 UJ		0.017 UJ	0.017 UJ	0.015 UJ		
	gamma-BHC (Lindane)	μg/L	NS	0.0039 UJ	0.0039 UJ	0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Heptachlor	μg/L	NS	0.0039 UJ		0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Heptachlor epoxide	μg/L	NS	0.0039 UJ		0.0042 UJ	0.0043 UJ	0.0038 UJ		
	Methoxychlor p,p'-DDD	μg/L μg/L	NS NS	0.0039 U 0.0039 UJ	0.0039 U 0.0039 UJ	0.0042 U 0.0042 UJ	0.0043 U 0.0043 UJ	0.0038 U 0.0038 UJ		
	p,p'-DDE	µg/L	NS	0.0039 UJ	0.0039 UJ	0.0042 UJ	0.0043 UJ	0.0038 UJ		
	p,p'-DDT	µg/L	0.3*	0.0039 U	0.0039 UJ	0.0042 U	0.0043 U	0.0038 U		
	Toxaphene	μg/L	NS	0.78 U	0.78 U	0.84 U	0.85 U	0.77 U		
VPH	Benzene	μg/L	NS	2 U	2 U	2 U	2 U	2 U		
	C5-C8 Aliphatics	μg/L	300*	50 U	50 U	50 U	50 U	50 U		
	C9-C10 Aromatics C9-C12 Aliphatics	μg/L μg/L	200* 700*	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U	20 U 50 U		
	Ethylbenzene	µg/L	700*	2 U	2 U	2 U	2 U	2 U		
	m,p-Xylene	µg/L	NS	5 U	5 U	5 U	5 U	5 U		
1	Methyl tert-butyl ether (MTBE)	μg/L	70*	2 U	2 U	2 U	2 U	2 U		
		μg/L	140*	4 U	4 U	4 U	4 U	4 U		
	Naphthalene									
	o-Xylene	μg/L	10,000*	2 U	2 U	2 U	2 U	2 U		
Field Day 2014	o-Xylene Toluene	μg/L μg/L	10,000* 1,000*	2 U	2 U	2 U	2 U	2 U		
Field Parameters	o-Xylene Toluene Dissolved Oxygen	μg/L μg/L mg/L	10,000* 1,000* NS	2 U 7.55	2 U 8.87	2 U 5.06	2 U 	2 U 7.5		
Field Parameters	o-Xylene Toluene Dissolved Oxygen Oxidation Reduction Potential	μg/L μg/L mg/L mv	10,000* 1,000* NS NS	2 U 7.55 150	2 U 8.87 225	2 U 5.06 169	2 U 	2 U 7.5 119		
Field Parameters	o-Xylene Toluene Dissolved Oxygen Oxidation Reduction Potential pH	μg/L μg/L mg/L mv pH Units	10,000* 1,000* NS NS NS	2 U 7.55 150 6.17	2 U 8.87 225 6.11	2 U 5.06 169 6.26	2 U 	2 U 7.5 119 6.28		
Field Parameters	o-Xylene Toluene Dissolved Oxygen Oxidation Reduction Potential	μg/L μg/L mg/L mv	10,000* 1,000* NS NS	2 U 7.55 150	2 U 8.87 225	2 U 5.06 169	2 U 	2 U 7.5 119		

* Monitoring Criteria are equal to the MassDEP MCL GW-1 standards (310 CMR 40.0000, 2014) and/or the Drinking Water Standards and Health Advisories (USEPA Office of Water, 2012).

Acronyms and Abbreviations:
°C = degrees Celsius
µg/L = microgram per liter
µS/cm = microsiemens per centimeter

DCL = Devens Consolidation Landfill

EPH = extractable petroleum hydrocarbon
J = Estimated Result
mg/L = milligram per liter
mV = millivolts

NS = No Standard

NTU = Nephelometric Turbidity Unit

SU = Standard Unit

U = The target analyte was not detected at or above the laboratory reporting limit. UJ = Estimated non-detect because of QC outliers.

				LFM-03-07 LFM-03-07-FAL23	LFM-99-02B LFM-99-02B-FAL23	LFM-99-05A LFM-99-05A-FAL23	LFM-DUP01-FAL23	LFM-99-06A-RP LFM-99-06A-RP-	
			Gample 12	EI III-03-07-1 AL23	LI III-33-02B-1 AL23	EI III-33-03A-1 AE23	EI MEDOI OTT ALZO	FAL23	
Analytical Method	Analyte	Units	Monitoring Criteria ¹	11/07/2023	11/07/2023	11/07/2023	11/07/2023	11/07/2023	
PH	2-Methylnaphthalene	μg/L	NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Acenaphthene	μg/L	NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Acenaphthylene Anthracene	μg/L μg/L	NS NS	1.4 U 1.2 U	1.4 U 1.2 U	1.5 U 1.3 U	1.4 U 1.2 U	1.5 U 1.3 U	
	Benzo(a)anthracene	μg/L	NS NS	1.4 U	1.4 U	1.5 U	1.2 U	1.5 U	
	Benzo(a)pyrene	μg/L	NS	1.4 U	1.4 U	1.3 U	1.4 U	1.3 U	
	Benzo(b)fluoranthene	μg/L	NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Benzo(g,h,i)perylene	μg/L	NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Benzo(k)fluoranthene	μg/L	NS	2.9 U	3 U	3.2 U	3.1 U	3.2 U	
	C11-C22 Aromatics	μg/L	200	29 U	30 U	32 U	31 U	32 U	
	C19-C36 Aliphatics	μg/L	14,000	49 U	20 U	21 U	21 U	21 U	
	C9-C18 Aliphatics	μg/L	700	29 J	59 U	63 U	62 U	64 U	
	Chrysene	μg/L	NS	0.98 U	0.99 U	1.1 U	1 U	1.1 U	
	Dibenz(a,h)anthracene	μg/L	NS NC	0.98 U	0.99 U	1.1 U	1 U	1.1 U	
	Fluoranthene	μg/L	NS NS	0.98 U	0.99 U	1.1 U	1 U	1.1 U	
	Fluorene	μg/L	NS NS	1.2 U 1.2 U	1.2 U 1.2 U	1.3 U 1.3 U	1.2 U 1.2 U	1.3 U 1.3 U	
	Indeno(1,2,3-c,d)pyrene Naphthalene	μg/L μg/L	NS NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Phenanthrene	μg/L	NS NS	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	
	Pyrene	μg/L	NS NS	9.8 U	9.9 U	1.3 U	1.2 U	1.3 U	
tals	Alkalinity, Total (as CaCO3)	mg/L	NS NS	110	88	110 J	54 J	110	
 	Chemical Oxygen Demand	mg/L	NS	20 U	13 J	10 J	20 U	20 U	
	Chloride	mg/L	NS	200	180	170	170	230	
	Cyanide	mg/L	0.2	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	
	Nitrate-Nitrite (as N)	mg/L	NS	0.025 U	0.025 R	0.025 U	0.025 U	0.025 U	
tals	Sulfate	mg/L	NS	31	13	14	14	30	
	Total Dissolved Solids	mg/L	NS	460	380	440	400	510	
3	Mercury	μg/L	10	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	
etals	Arsenic	μg/L	2,000	1.1 J	3 U	3 U	3 U	3 U	
	Barium	μg/L	5	13 J	8.2 J	14 J	15 J	4.7 J	
	Cadmium	μg/L	100	1 U	1 U	1 U	1 U	1 U	
	Chromium	μg/L	1,300	4 U	4 U	4 U	4 U	4 U	
	Copper Iron	μg/L μg/L	NS 15	10 U 83 J	10 U 50 U	10 U 50 U	10 U 50 U	10 U 50 U	
	Lead	μg/L	NS	20 U	20 U	20 U	20 U	20 U	
	Manganese	μg/L	2	1.9 J	5 U	5 U	5 U	5 U	
	Selenium	µg/L	100	20 U	20 U	20 U	20 U	20 U	
	Silver	μg/L	2	5 U	5 U	5 U	5 U	5 U	
ST	Aldrin	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	alpha-BHC (alpha-Hexachlorocyclohexane)	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	alpha-Endosulfan	μg/L	NS	0.0041 U	0.004 UJ	0.0042 U	0.0042 U	0.0043 U	
	beta-BHC (beta-Hexachlorocyclohexane)	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	beta-Endosulfan	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	Chlordane	μg/L	NS	0.41 U	0.4 U	0.42 U	0.42 U	0.43 U	
	delta-BHC (delta-Hexachlorocyclohexane)	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	Dieldrin	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	Endosulfan sulfate	μg/L	NS NC	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	Endrin Endrin aldebyde	μg/L	NS NS	0.0041 U 0.016 U	0.004 UJ 0.016 U	0.0042 U 0.017 U	0.0042 U 0.017 U	0.0043 U 0.017 U	
	Endrin aldehyde Endrin ketone	μg/L μg/L	NS NS	0.016 U 0.016 J	0.016 U 0.018 J	0.017 U 0.022 J	0.017 U 0.011 J	0.017 U 0.022 J	
	gamma-BHC (Lindane)	μg/L	NS NS	0.0041 U	0.018 J 0.004 U	0.022 J 0.0042 U	0.011 J 0.0042 U	0.022 J 0.0043 U	
	Heptachlor	μg/L	NS NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 J	
	Heptachlor epoxide	μg/L	NS	0.004 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	Methoxychlor	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	p,p'-DDD	μg/L	NS	0.0041 U	0.004 UJ	0.0042 U	0.0042 U	0.0043 U	
	p,p'-DDE	μg/L	NS	0.0041 U	0.004 U	0.0042 U	0.0042 U	0.0043 U	
	p,p'-DDT	μg/L	0.3	0.0041 U	0.004 UJ	0.0042 U	0.0042 U	0.0043 U	
	Toxaphene	μg/L	NS	0.82 U	0.81 U	0.84 U	0.85 U	0.86 U	
-	Benzene	μg/L	NS	2 U	2 U	2 U	2 U	2 U	
	C5-C8 Aliphatics	μg/L	300	75 U	75 U	75 U	75 U	75 U	
	C9-C10 Aromatics	μg/L	200	75 U	75 U	75 U	75 U	75 U	
	C9-C12 Aliphatics	μg/L	700	75 U	75 U	75 U	75 U	75 U	
	Ethylbenzene m p-Yylene	μg/L	700 NS	3.8 U 7.5 U	3.8 U 7.5 U	3.8 U 7.5 U	3.8 U 7.5 U	3.8 U 7.5 U	
	m,p-Xylene Methyl tert-butyl ether (MTBE)	μg/L	70	7.5 U 3.8 U	7.5 U 3.8 U	7.5 U 3.8 U	7.5 U 3.8 U	7.5 U 3.8 U	
	Naphthalene	μg/L μg/L	140	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	
	o-Xylene	μg/L	10,000	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	
	Toluene	μg/L	1,000	3.8 U	3.8 U	3.8 U	3.8 U	3.8 U	
ld Parameters	Dissolved Oxygen	mg/L	NS	4.42	5.89	5.4	3.6 U	5.89	
.a. aramotola	Oxidation Reduction Potential	mv	NS NS	228	232.9	213.7		152.1	
	pH	pH Units	NS NS	6.24	6.23	6.29		6.26	
	Specific Conductivity	mS/cm	NS	0.941	0.769	0.575		0.658	
	Temperature	°C	NS	15.2	13.7	12.1		12.5	
	Turbidity	NTU	NS	27.3	11.1	2.1		1.65	

Notes:

1 Monitoring Criteria are equal to the MassDEP MCL GW-1 standards (310 CMR 40.0000, 2014) and/or the Drinking Water Standards and Health Advisories (USEPA Office of Water, 2012).

Acronyms and Abbreviations: °C = degrees Celsius

yg/L = microgram per liter
μS/cm = microsiemens per centimeter
DCL = Devens Consolidation Landfill
EPH = extractable petroleum hydrocarbon

J = Estimated Result
mg/L = milligram per liter
mV = millivolts

NS = No Standard

 $\mathsf{NTU} = \mathsf{Nephelometric} \ \mathsf{Turbidity} \ \mathsf{Unit}$

R = data rejected SU = Standard Unit

 $\ensuremath{\mathsf{U}}$ = The target analyte was not detected at or above the laboratory reporting limit.

UJ = Estimated non-detect because of QC outliers.

Table 15 DCL Leachate Analytical Results, Fall 2023 2023 Annual Operations, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

MassDevelopment Indust	rial Wastewa	ter Discharge P	ermit No. 017 (Summary)
Parameter	Units	Discharge Limitation (μg/L) ^a	Annual Sampling Event Date Sampled: 11/7/2023 and 11/14/2023
Metals		(r6/-/	
Aluminum	μg/L	NL	150 U
Arsenic	μg/L	200	4.4 J
Cadmium	μg/L	45	1.0 U
Chromium	μg/L	400	4.0 U
Copper	μg/L	750	9.5 J
Lead	μg/L	200	20 U
Mercury	μg/L	1	0.2 U
Nickel	μg/L	600	10 U
Silver	μg/L	300	5.0 U
Zinc	μg/L	700	20 U
Other			
Total Toxic Organics	μg/L	5,000	0.0199
Total Suspended Solids	mg/L	400	8.3
Cyanide (total)	mg/L	NL	0.005 U
Total Petroleum Hydrocarbons (Diesel- Range Organics)	mg/L	NL	0.22 J
Phenols (total)	mg/L	NL	0.05 U
pH (units)	SU	5.5 – 9.5	7.2

Notes:

1. Total Toxic Organics is the sum of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBS) and pesticides.

Abbreviations:

μg/L = microgram per liter

J = Estimated result

mg/L = milligram per liter

NL = No limit

SU = Standard Unit

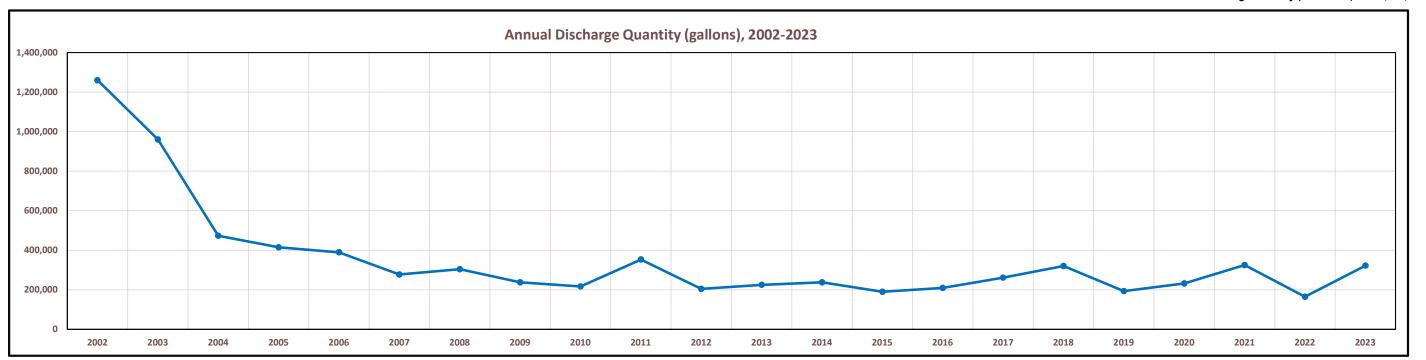
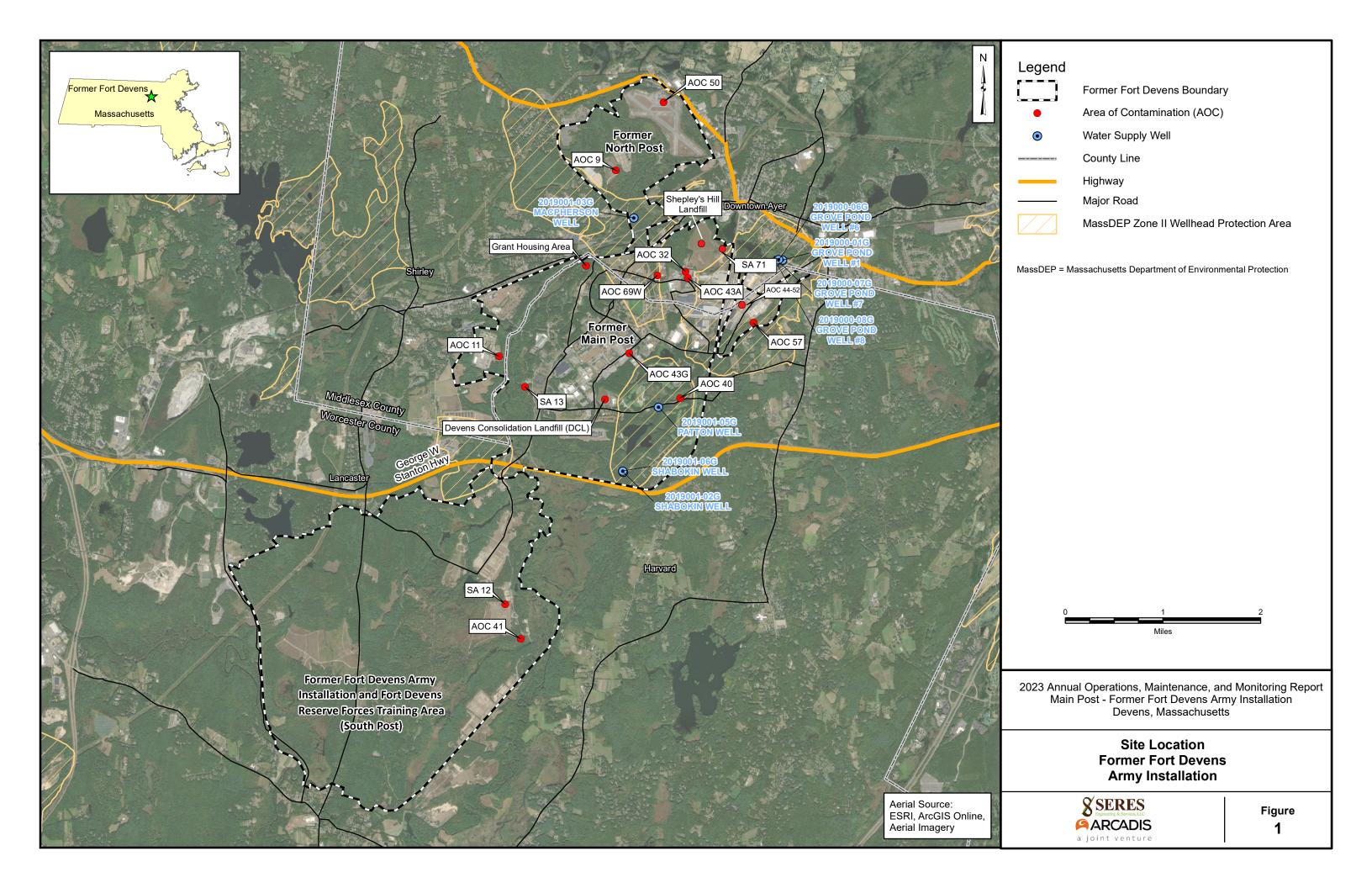
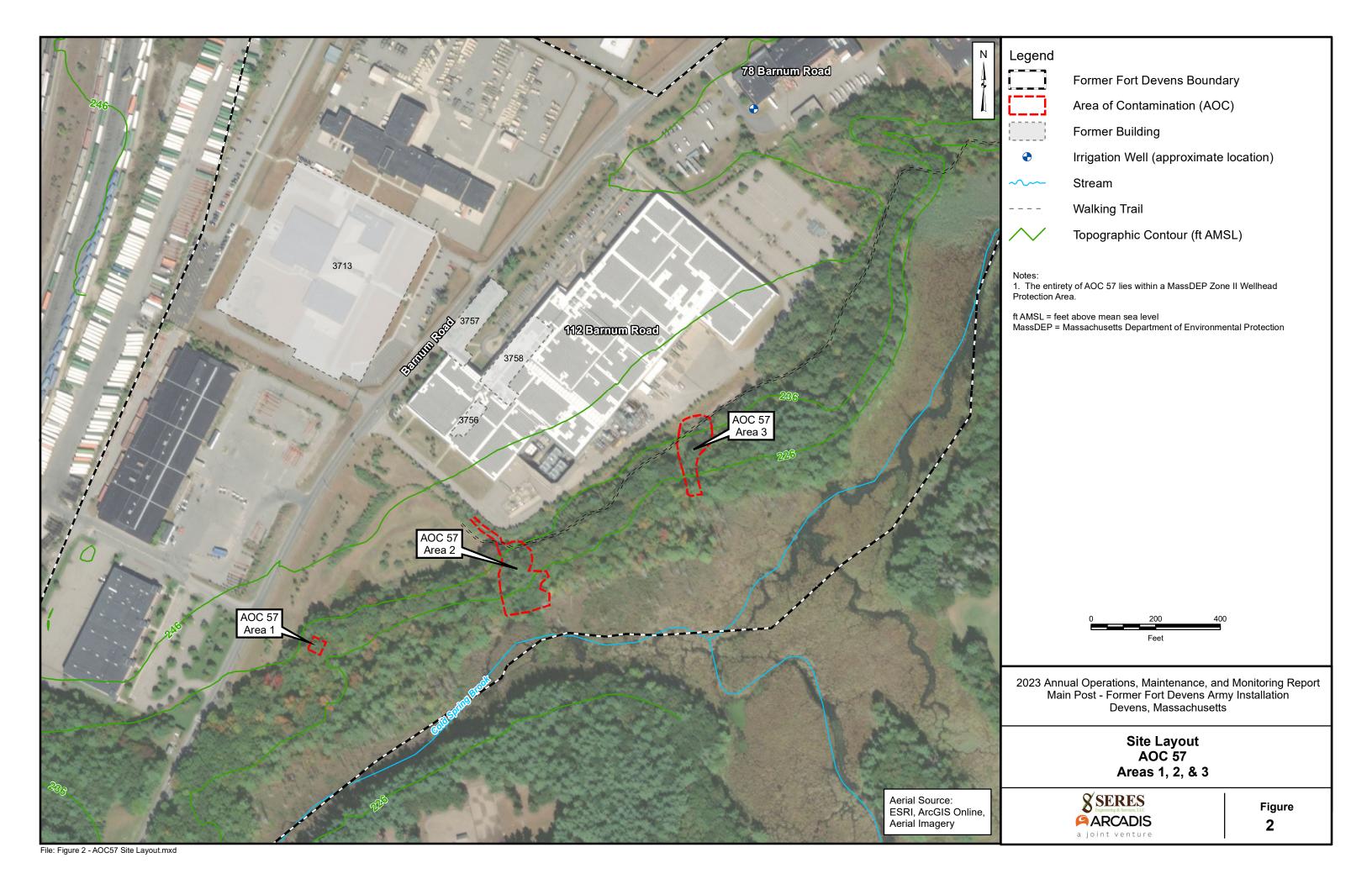
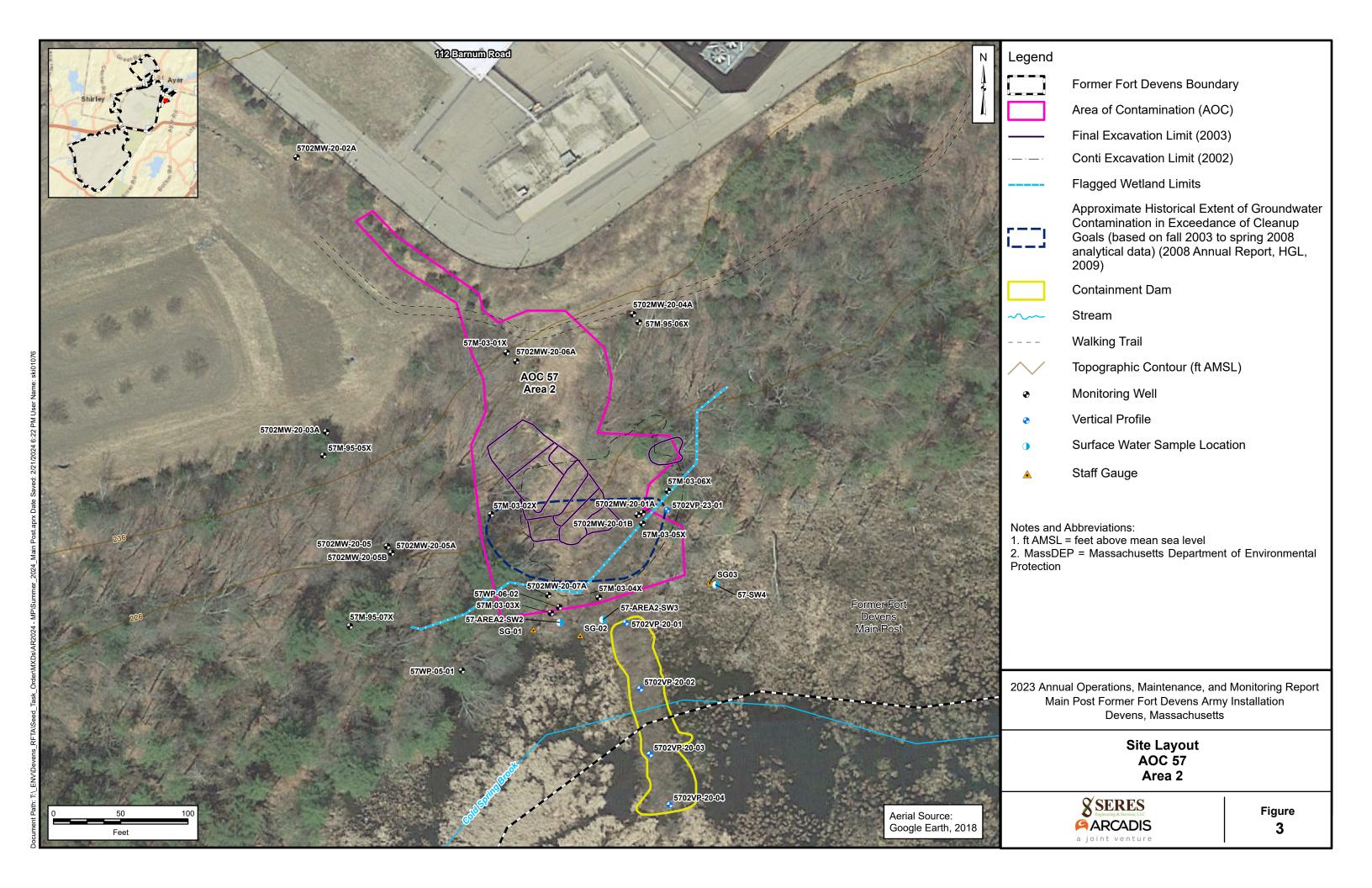
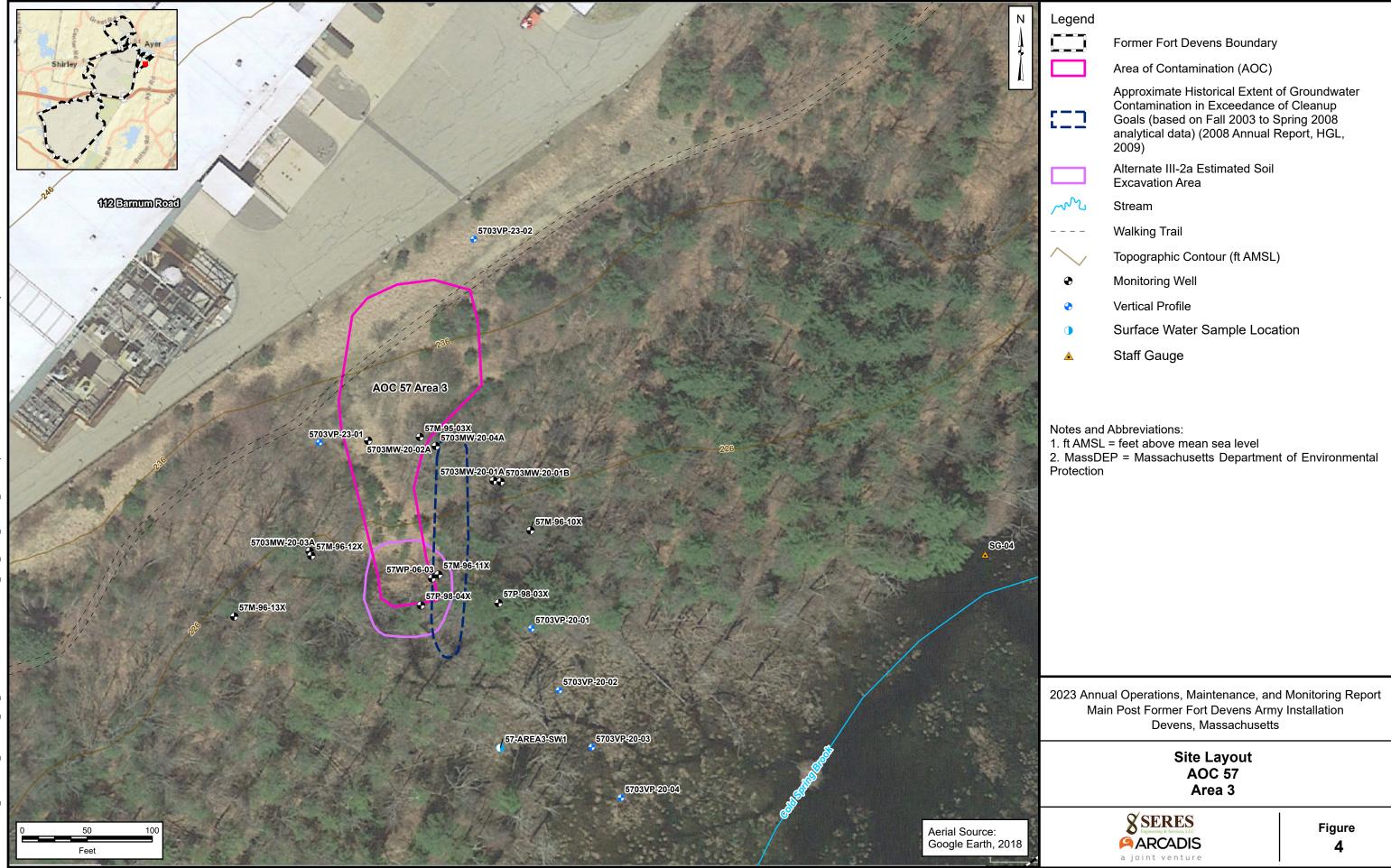

U = The target analyte was not detected at or above the indicated laboratory reporting limit of detection

Table 16
DCL Leachate Annual Discharge Quantities
2023 Annual Operations, Maintenance, and Monitoring Report
Main Post, Former Fort Devens Army Installation
Devens, Massachusetts

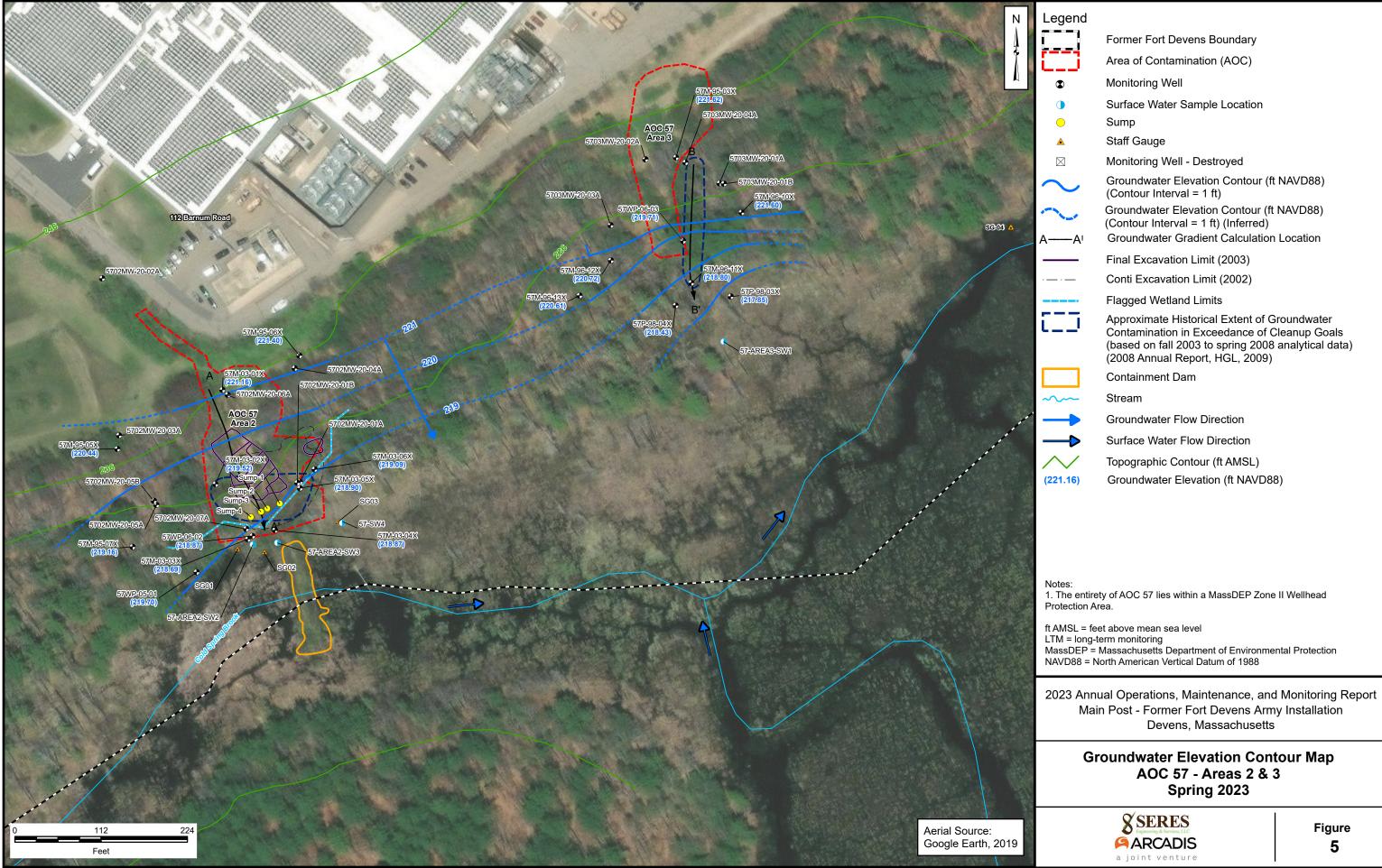


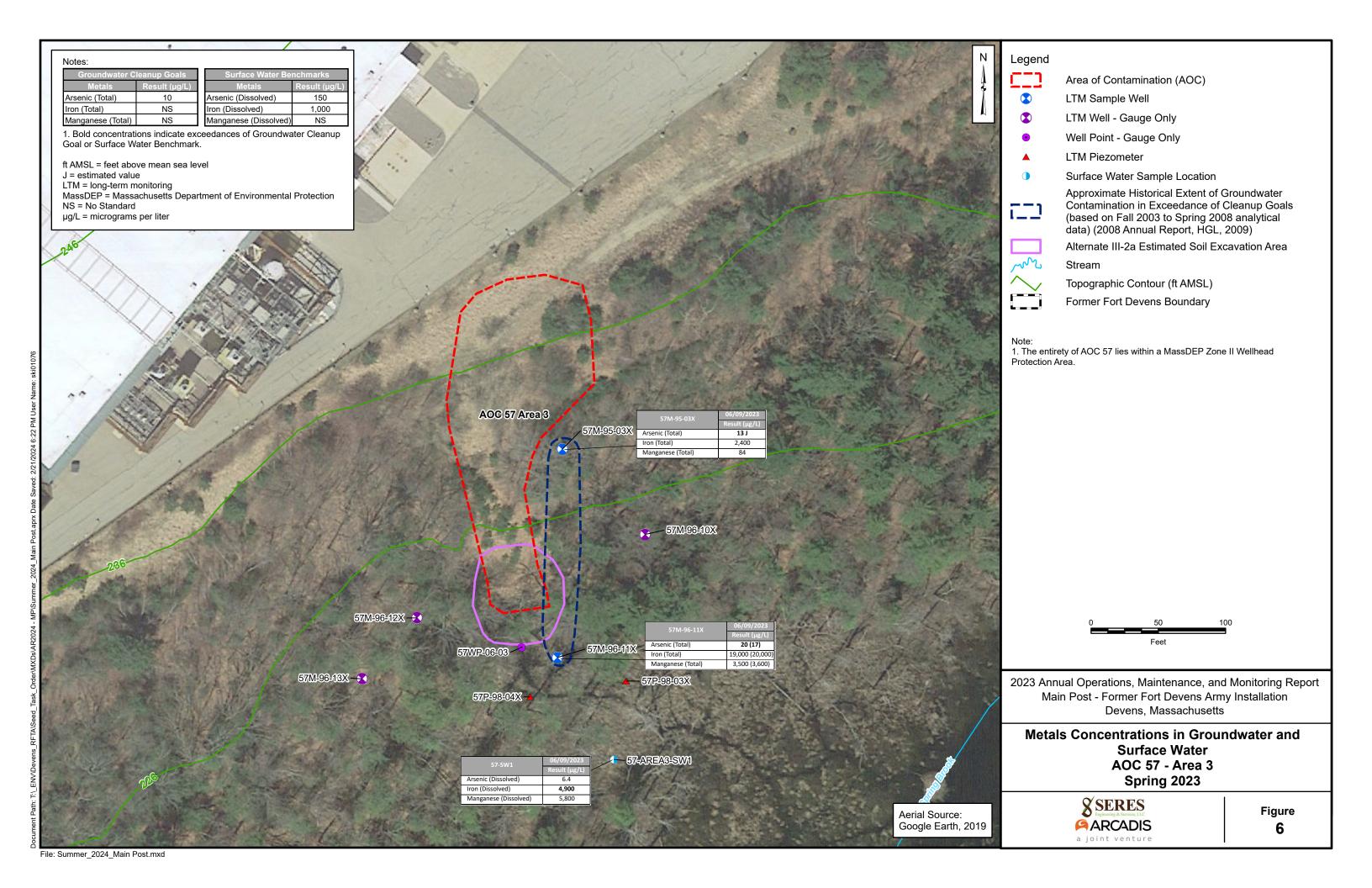

Period		Discharge Quantities (Gallons)																				
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Annual Total	1,259,866	960,394	473,802	414,858	390,085	277,626	304,547	237,983	217,155	353,618	204,483	225,768	237,752	190,403	209,849	261,989	320,357	193,649	232,469	325,249	165,191	322,448

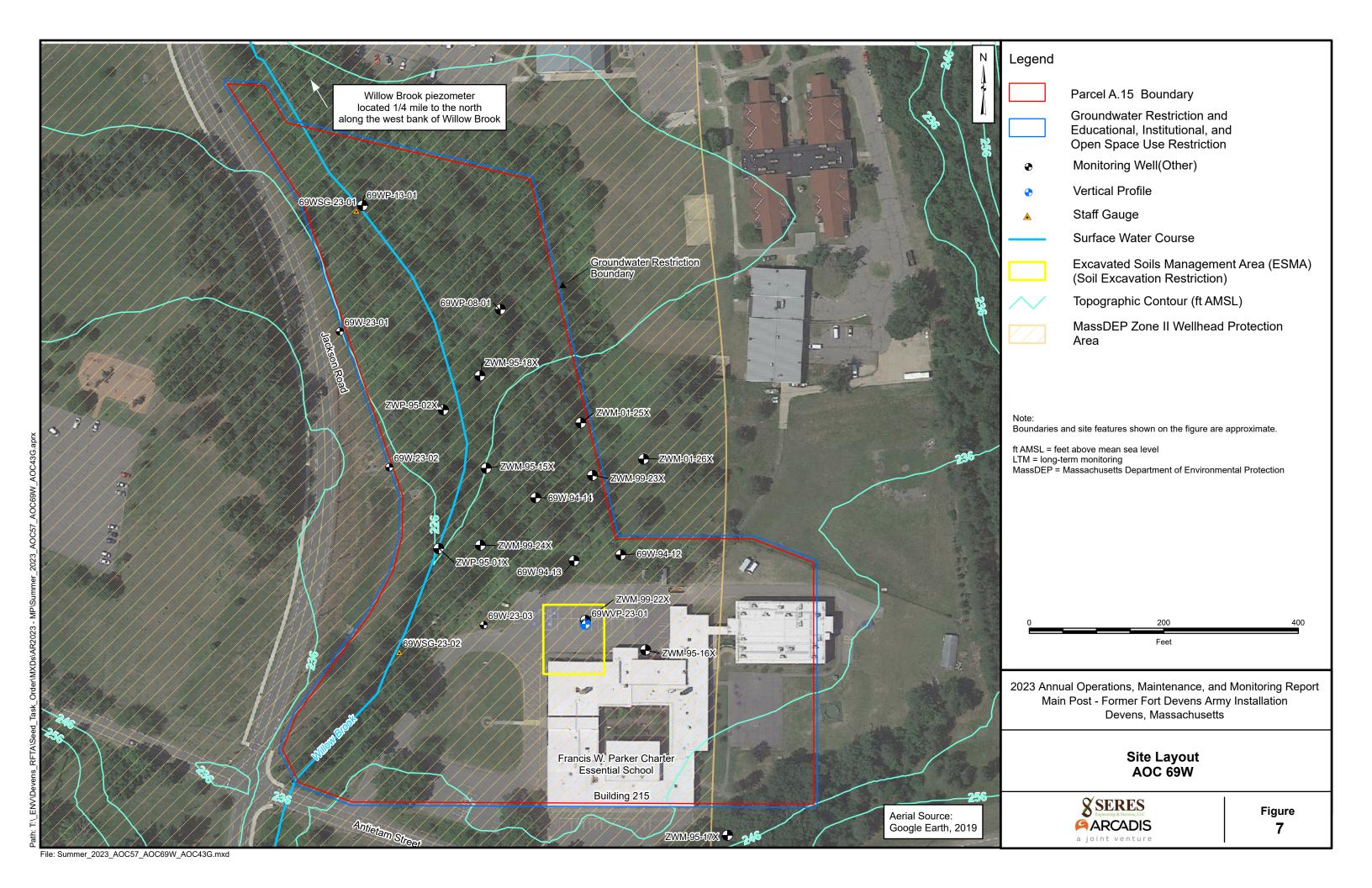

Total Leachate Discharge Quantity (2002-2023) = 7,779,542

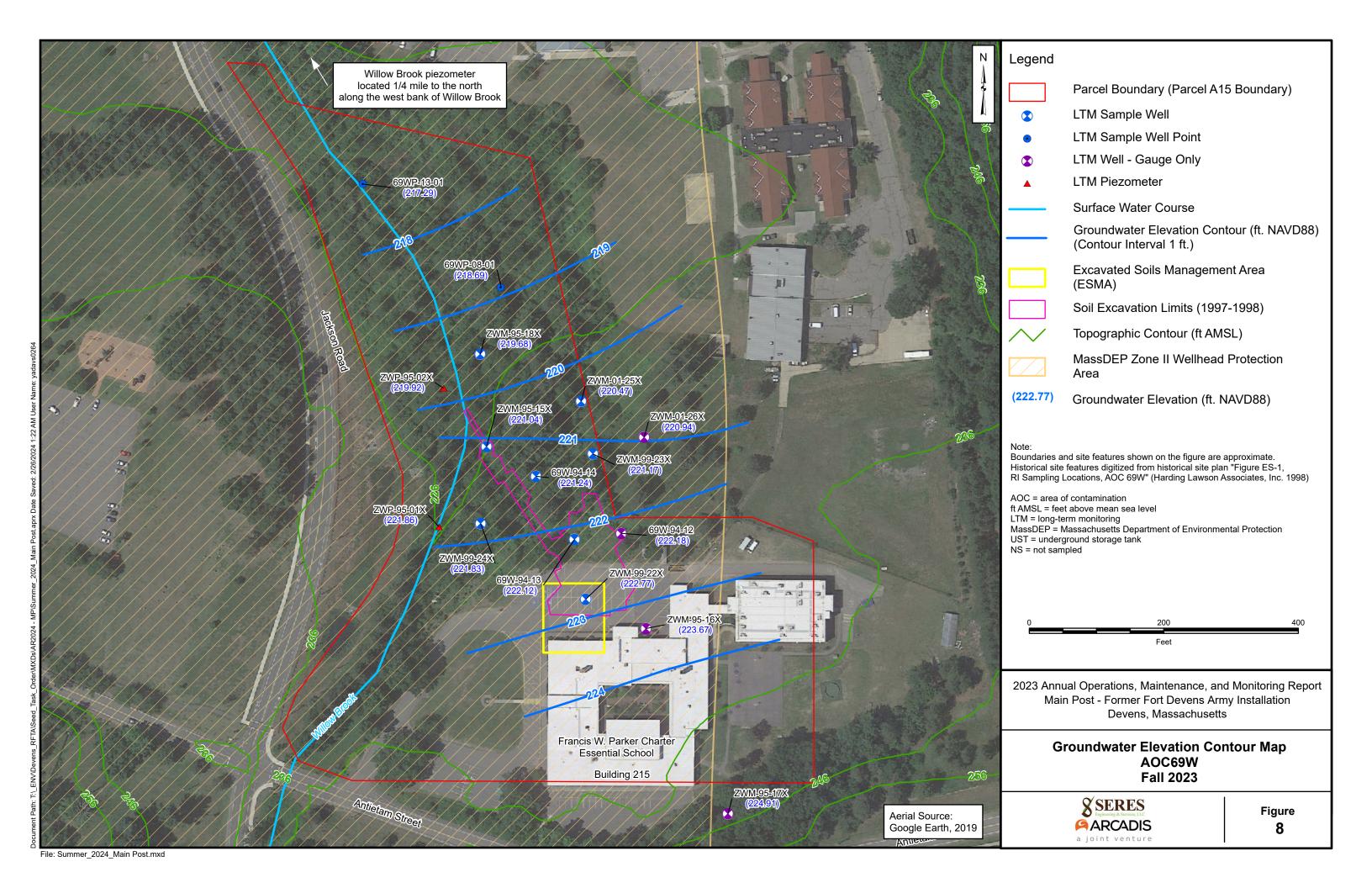


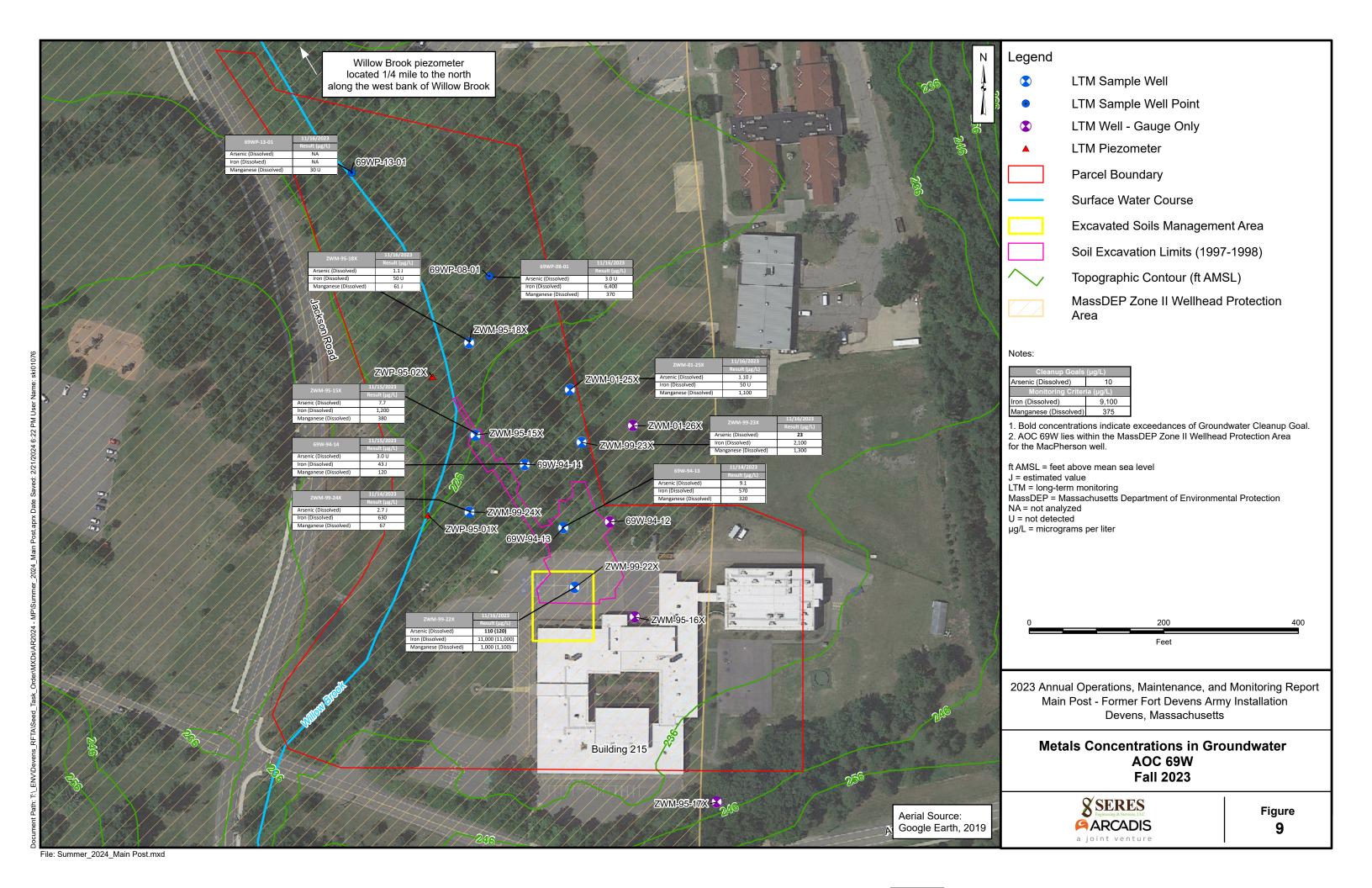
Figures

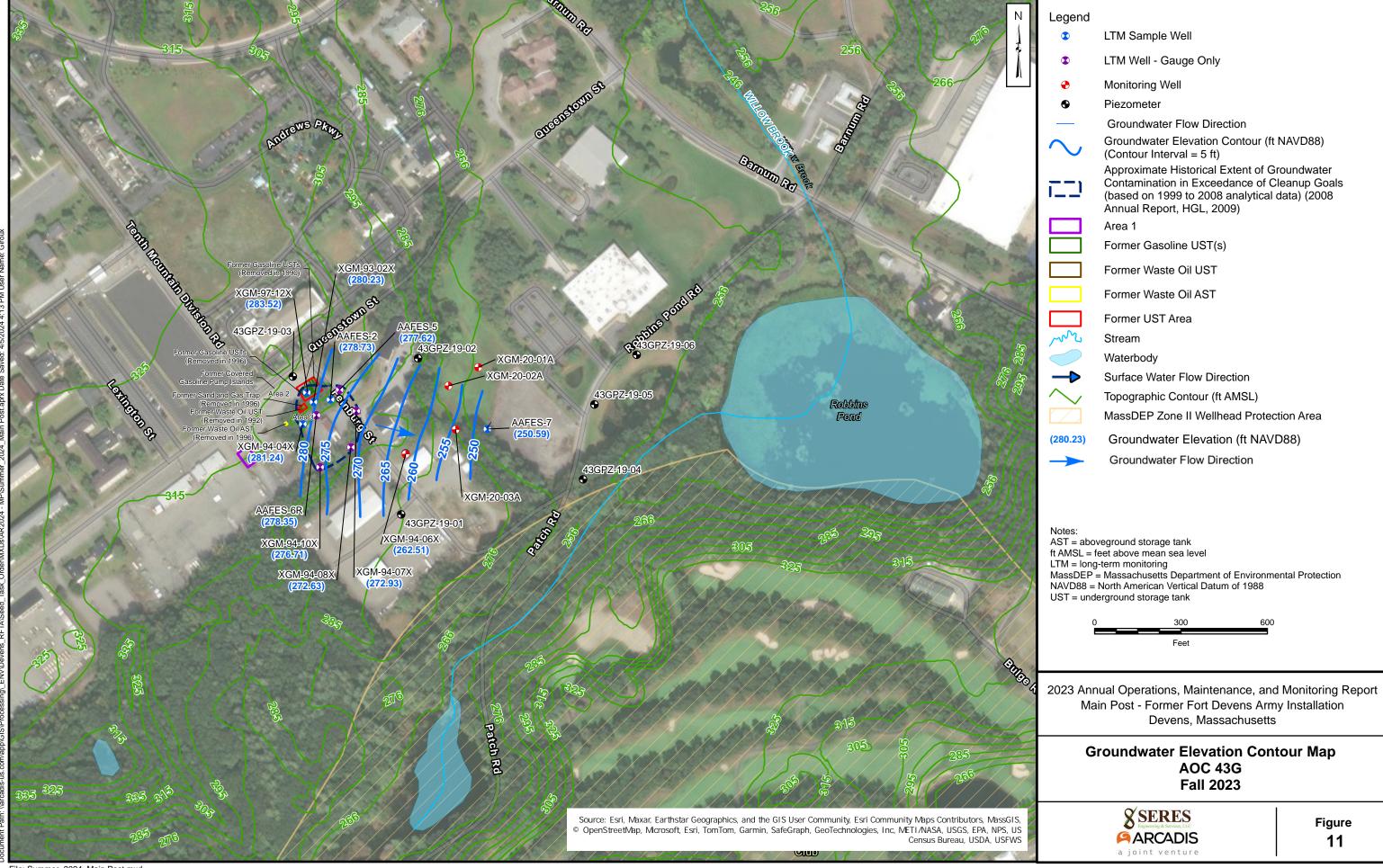


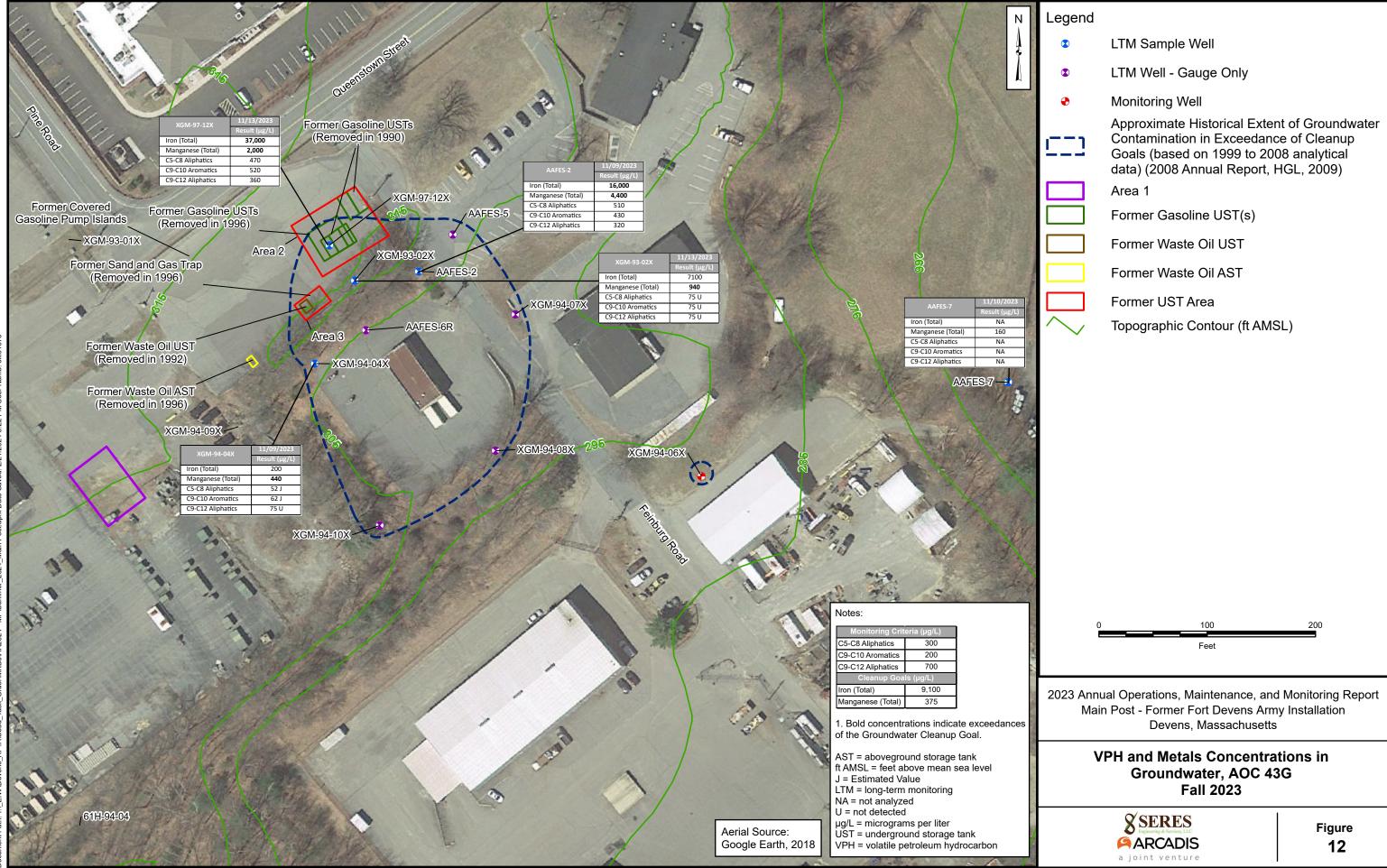


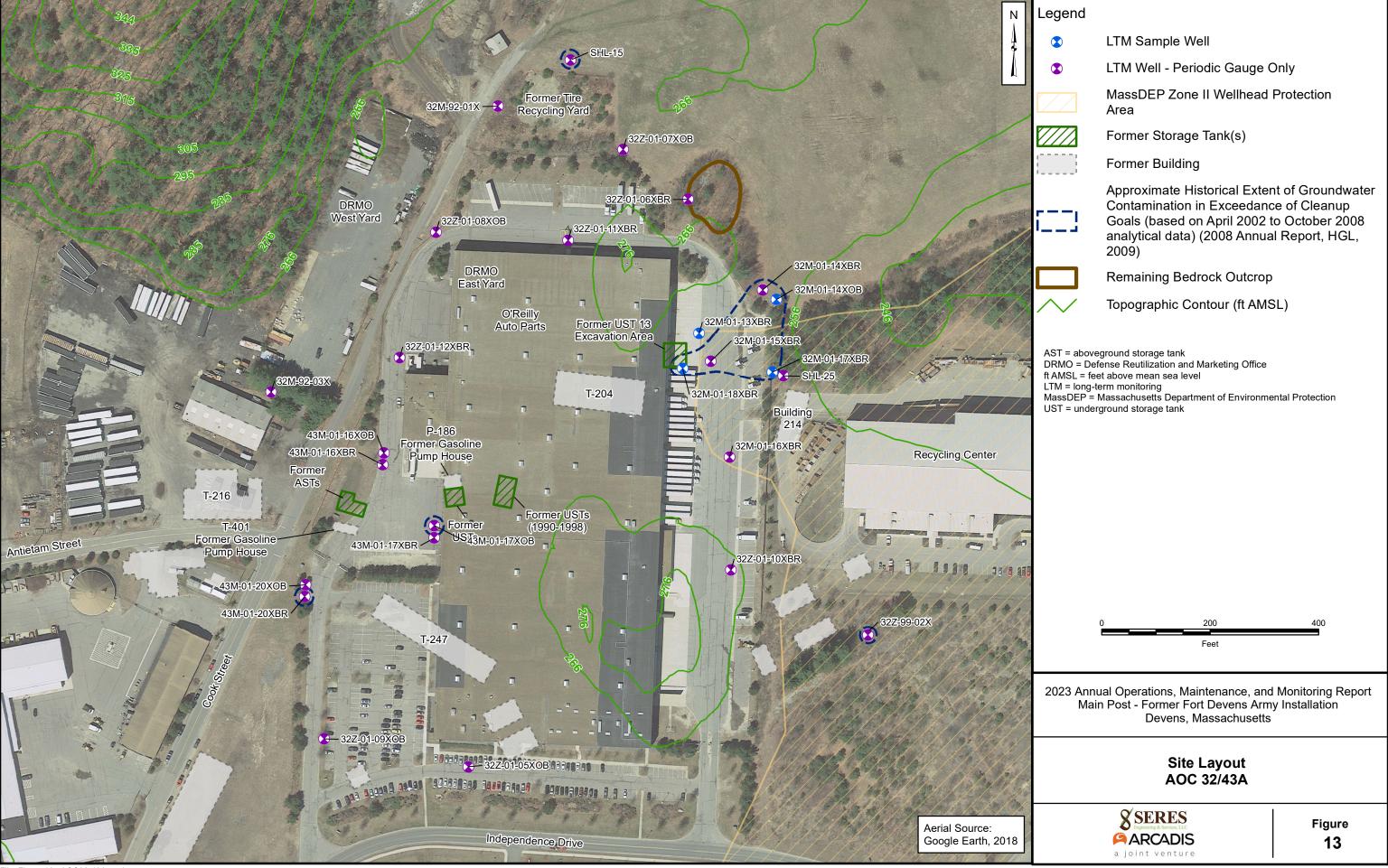


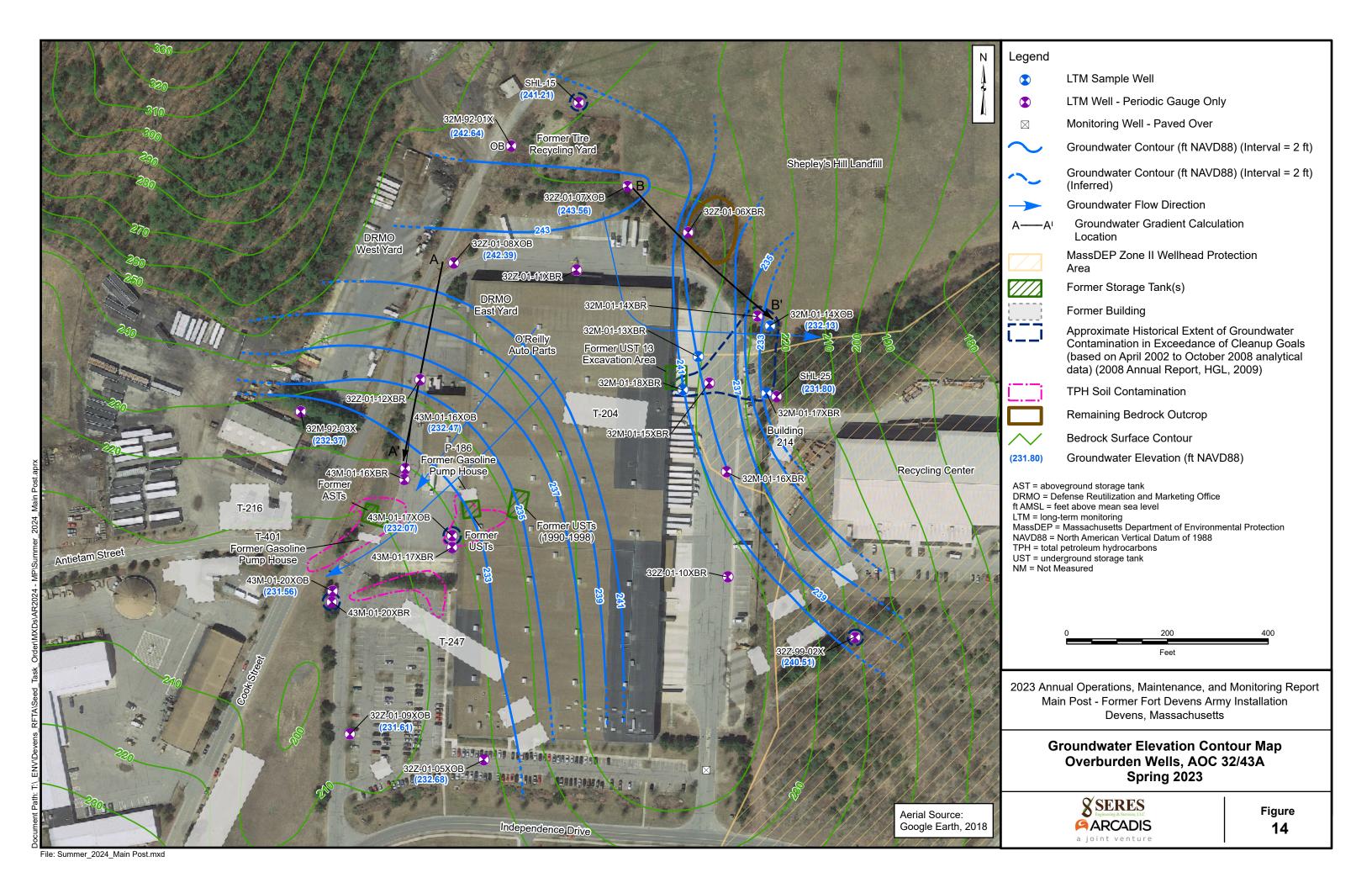

File: Summer_2023_AOC57_AOC69W_AOC43G.mxd

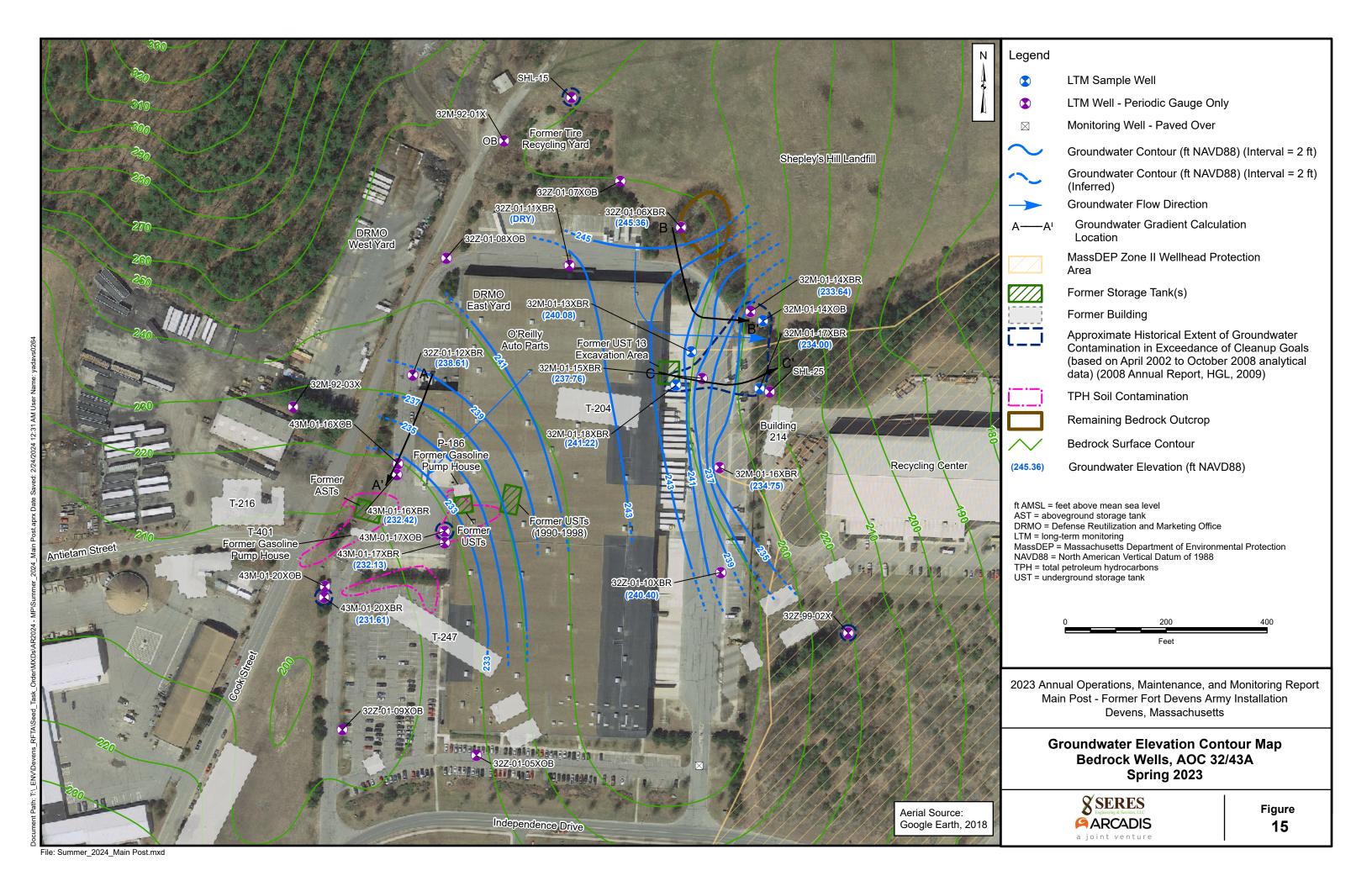


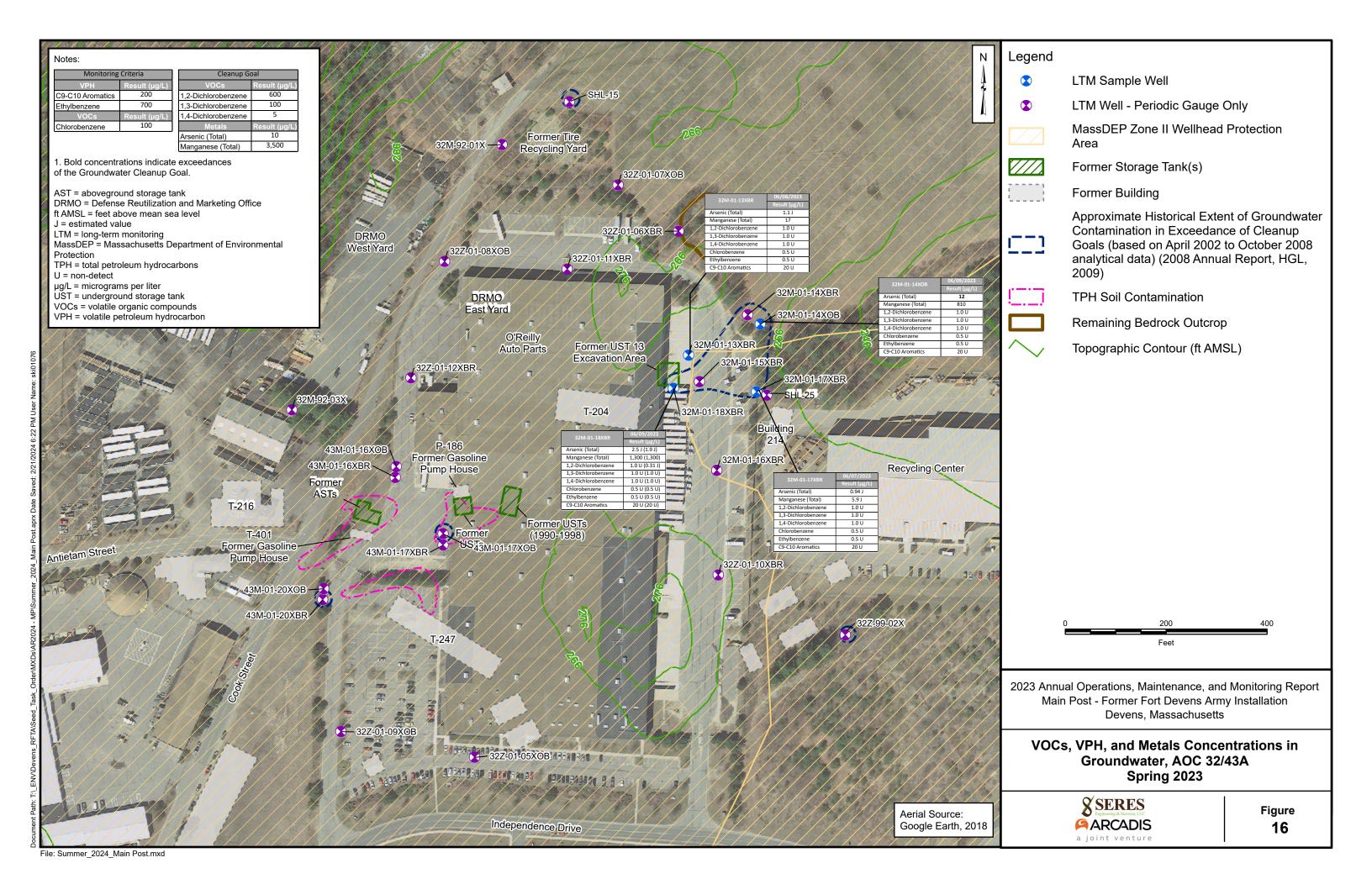

File: Summer_2024_Main Post.mxd






File: Summer_2024_Main Post.mxd




File: Summer_2024_Main Post.mxd

File: Figure 13 - AOC32-43A.mxd

Legend

Gas Vent

LTM Sample Well

LTM Well - Gauge Only

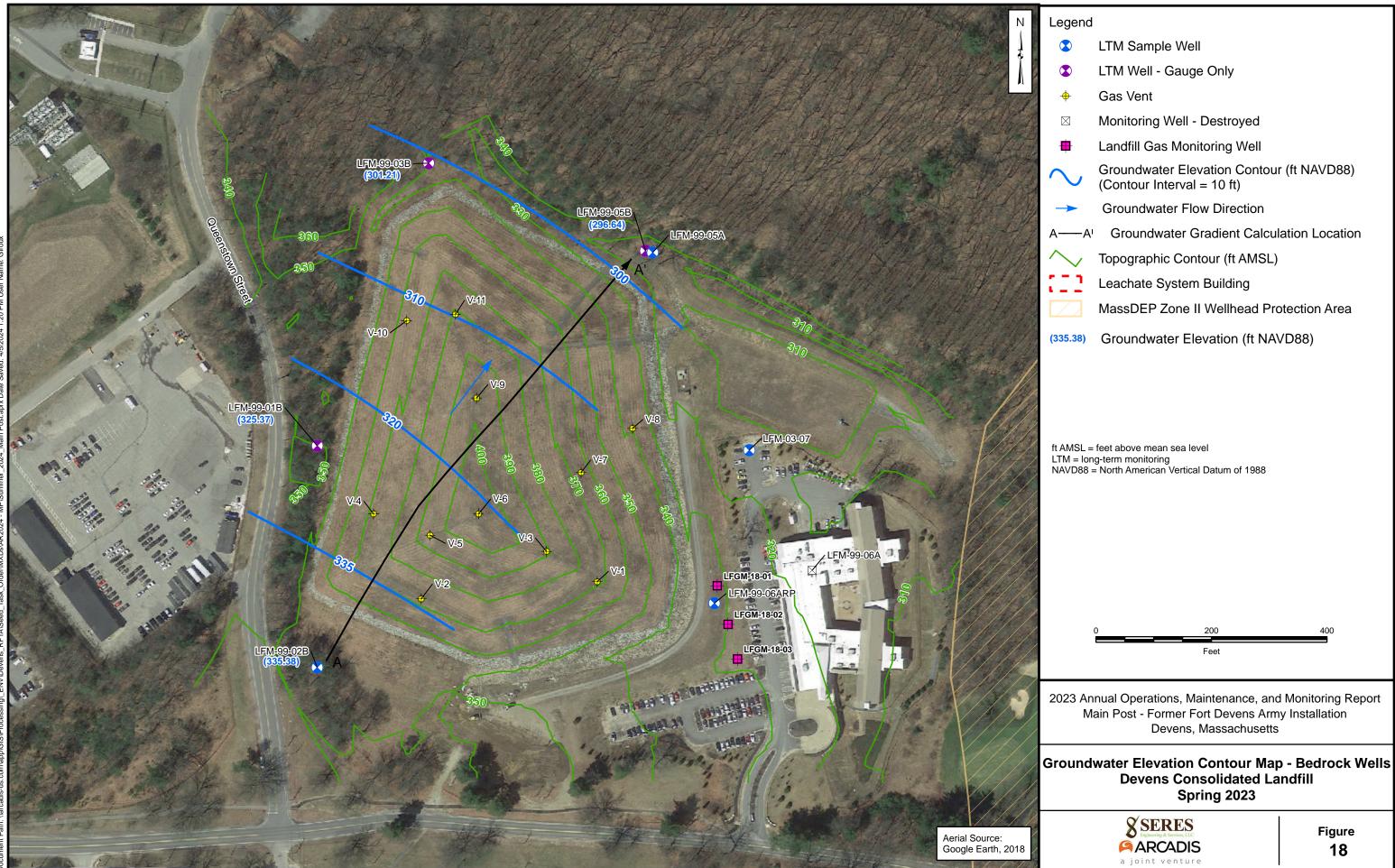
Landfill Gas Monitoring Well

Topographic Contour (ft AMSL)

MassDEP Zone II Wellhead Protection Area

ft AMSL = feet above mean sea level
LTM = long-term monitoring
MassDEP = Massachusetts Department of Environmental Protection

Note: Monitoring wells LFM-99-01B, LFM-99-02B, LFM-99-03B, and LFM-99-05B are screened in bedrock.


0 200 40 Feet

2023 Annual Operations, Maintenance, and Monitoring Report Main Post - Former Fort Devens Army Installation Devens, Massachusetts

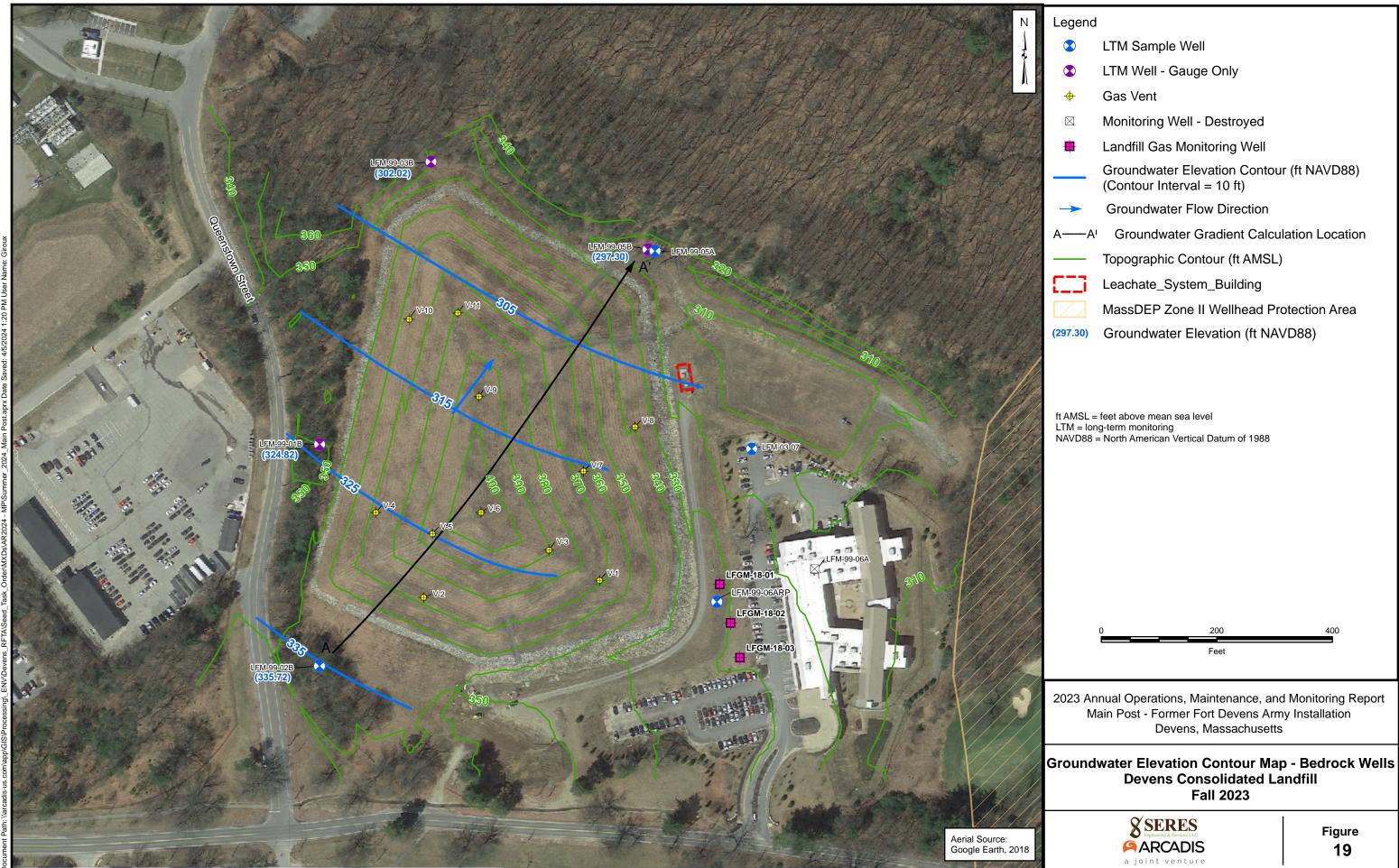

Site Layout Devens Consolidated Landfill

Figure 17

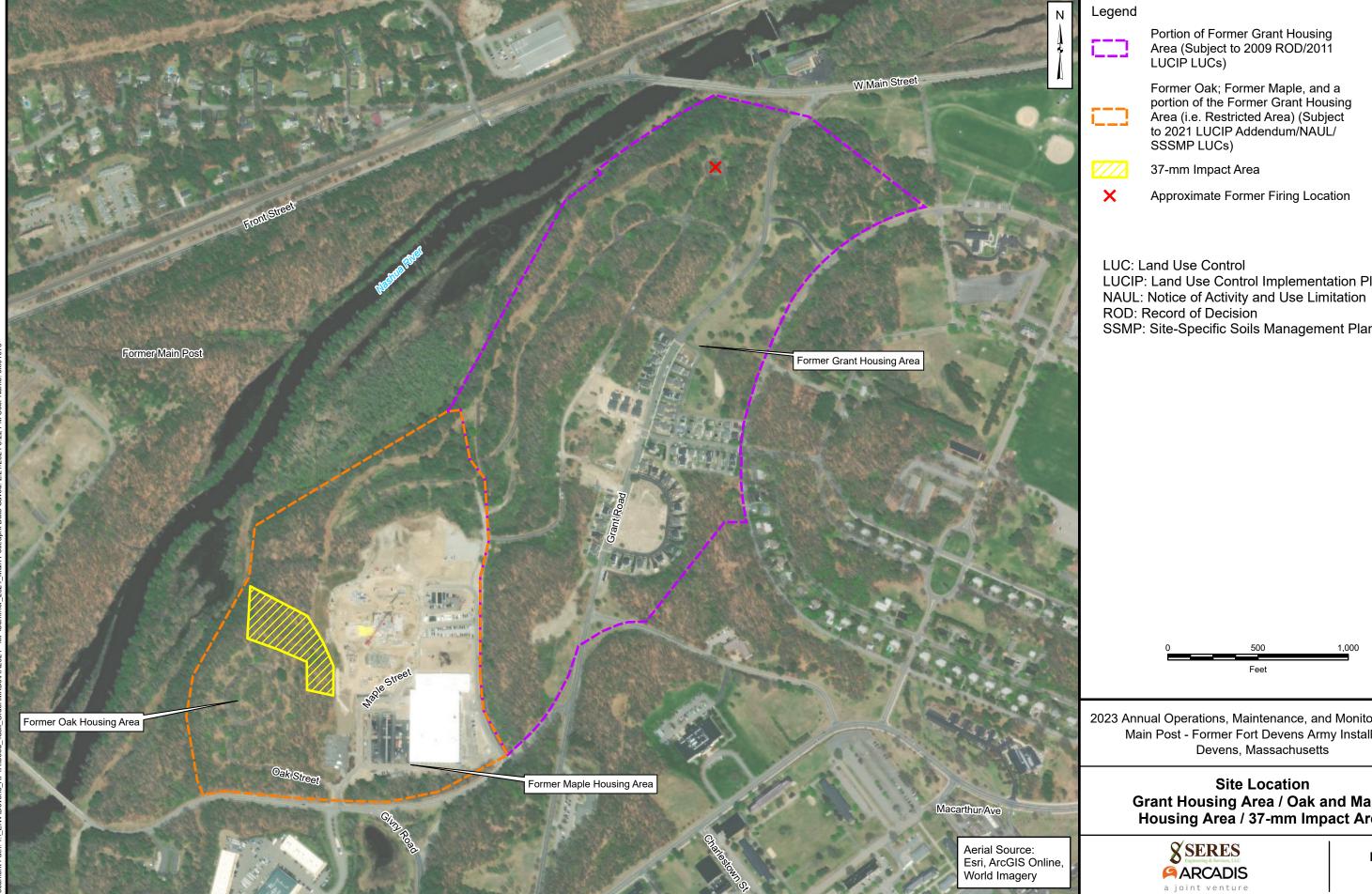
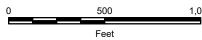


Figure 18

Figure

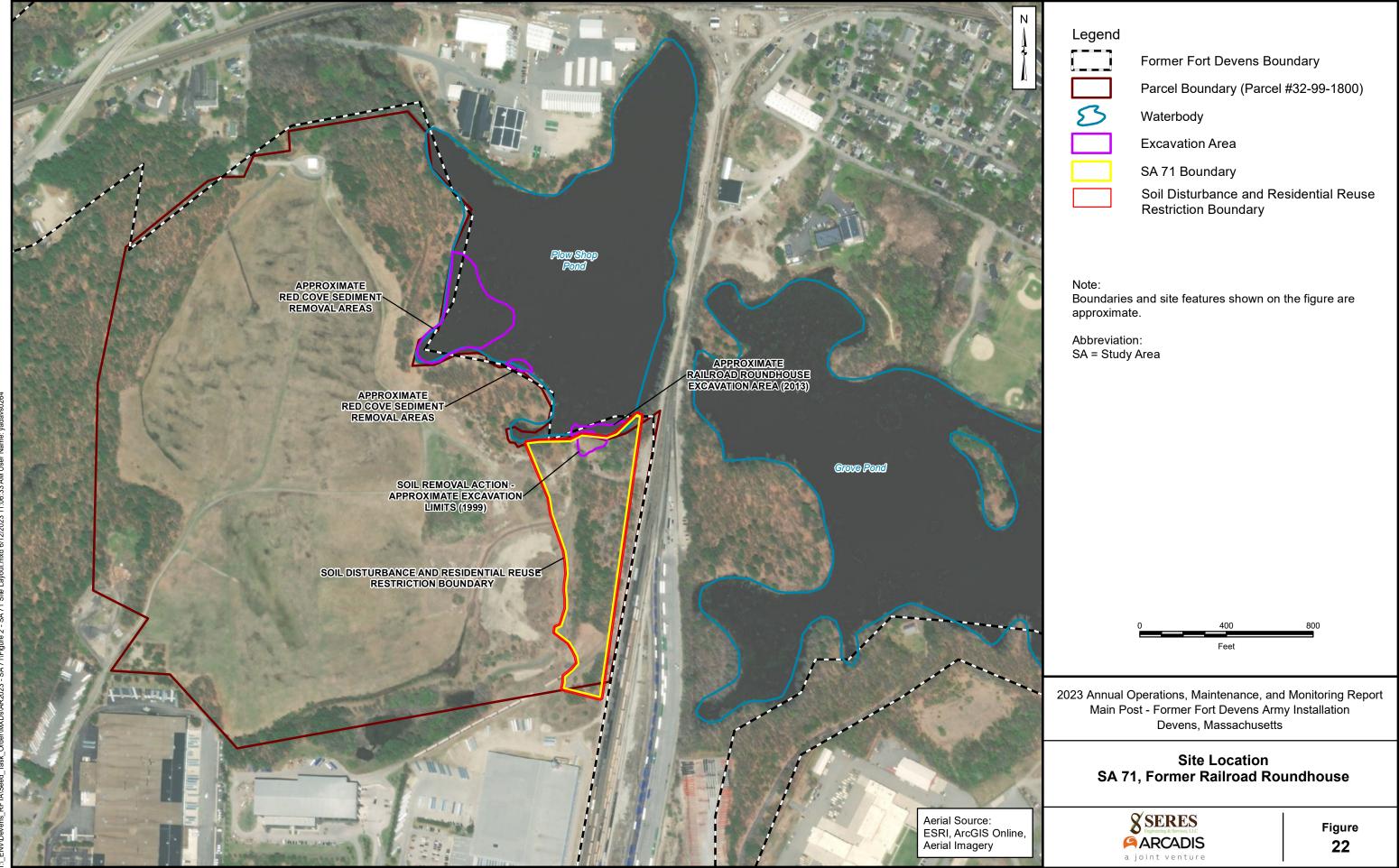
19


Portion of Former Grant Housing Area (Subject to 2009 ROD/2011

Former Oak; Former Maple, and a portion of the Former Grant Housing Area (i.e. Restricted Area) (Subject to 2021 LUCIP Addendum/NAUL/

Approximate Former Firing Location

LUCIP: Land Use Control Implementation Plan


SSMP: Site-Specific Soils Management Plan

2023 Annual Operations, Maintenance, and Monitoring Report Main Post - Former Fort Devens Army Installation Devens, Massachusetts

> **Site Location** Grant Housing Area / Oak and Maple Housing Area / 37-mm Impact Area

> > Figure 20

File: Figure 2 - SA 71 Site Layout.mx

Appendix A

Groundwater Field Forms

Groundwater Gauging Log

 Client:
 USACE
 Date(s):
 06-07-2023 to 06-08-2023

Facility:Former Fort DevensWork Order(s):2023 Spring LTM

Facility Location:Devens, MA, USAArea:Main Post

Field Technician: Spencer Gust, Frank Martinez, Grace Sheckler **Equipment:** Water Level Meter **Depth Below** Well Head PID Scope of Work **Total Depth (ft** Depth to Location **Date** Water Surface (ft Area Time Reading Comments Completed? Product (ft bmp) bmp) bmp) (ppmv) 57M-03-01X 06-07-2023 Yes 14.57 21.14 **AOC 57** 57M-03-02X AOC 57 06-07-2023 13:32 Yes 5.32 13.74 --57M-03-03X AOC 57 06-07-2023 12:20 Yes 1.31 11.60 57M-03-04X AOC 57 06-07-2023 13:21 Yes 2.52 12.64 ----57M-03-05X 06-07-2023 Yes 2 98 12.24 AOC 57 13:41 --06-07-2023 57M-03-06X AOC 57 2.78 14.25 13:52 Yes --57M-95-03X 06-07-2023 11.17 AOC 57 Yes 57M-95-05X 06-07-2023 14.71 22.71 AOC 57 11:53 Yes 57M-95-06X AOC 57 06-07-2023 12.99 24.66 11:29 Yes Locked on arrival. Lock in good 57M-95-07X AOC 57 06-07-2023 12:03 Yes 3.20 14.41 57M-96-10X AOC 57 06-07-2023 7.15 7.51 --Yes ----57M-96-11X AOC 57 06-07-2023 Yes 3.40 Construction depth appears to 57M-96-12X AOC 57 06-07-2023 09:53 Yes 5.08 15.24 be from ground level not TOC. Construction depth appears to 57M-96-13X **AOC 57** 06-07-2023 10:02 4.97 15.00 Yes be taken from ground level not Construction depth from ground 57P-98-03X AOC 57 06-07-2023 2.54 7.06 10:29 Yes not TOC. 57P-98-04X AOC 57 06-07-2023 --Yes 3.32 8.32 --57WP-05-01 06-07-2023 2.01 AOC 57 Yes 57WP-06-02 AOC 57 06-07-2023 Yes 1.42 13:13 5.00 ----57WP-06-03 06-07-2023 0.80 19.87 AOC 57 09:13 Yes 32M 01-13XBR 06-07-2023 17.80 23.05 Flush mount needs bolts AOC 32-43A 12:51 Yes 32M-01-14XBR AOC 32-43A 06-08-2023 14:43 Yes 22.42 46.08 24.43 32M-01-14XOB AOC 32-43A 06-08-2023 14:50 Yes 30.01 ----Yes 20.60 44.15 32M-01-15XBR AOC 32-43A 06-07-2023 12:35 --32M-01-16XBR AOC 32-43A 06-07-2023 12:21 22.75 31.01 Yes --32M-01-17XBR AOC 32-43A 06-07-2023 12:43 Yes 25.11 54.20 32M-01-18XBR 06-07-2023 17.10 24.40 AOC 32-43A 12:40 Yes 32M-92-01X AOC 32-43A 06-08-2023 14:08 17.53 26.10 Yes 27.65 32M-92-03X AOC 32-43A 06-07-2023 11:04 Yes 35.57 28.72 06-07-2023 35.20 32Z-01-05XOB AOC 32-43A 11:41 Yes ----16.49 32Z-01-06XBR 06-08-2023 28.75 AOC 32-43A 14:29 Yes 32Z-01-07XOB 06-08-2023 15.92 24.92 AOC 32-43A 14:24 Yes 32Z-01-08XOB AOC 32-43A 06-07-2023 15:57 Yes 18.10 24.39 32Z-01-09XOB AOC 32-43A 06-07-2023 11:31 Yes 25.76 33.22 32Z-01-10XBR AOC 32-43A 06-07-2023 12:04 Yes 17.01 21.35 ----06-07-2023 DRY 32Z-01-11XBR Yes 16.99 AOC 32-43A 13:42 32Z-01-12XBR 06-07-2023 19.24 37.65 AOC 32-43A 14:15 Yes ----32Z-99-02X 06-07-2023 19.20 19.20 AOC 32-43A 15:59 Yes AOC 32-43A 24.42 43M-01-16XBR 06-07-2023 13:11 Yes 57.04 43M-01-16XOB 06-07-2023 24.41 33.84 AOC 32-43A 14:37 Yes --43M-01-17XBR AOC 32-43A 06-07-2023 16:14 Yes 26.16 57.43 43M-01-17XOB AOC 32-43A 06-07-2023 16:23 Yes 26.01 33.10 ----06-07-2023 25 69 77 95 43M-01-20XBR AOC 32-43A 06-07-2023 Yes 25.84 33.30 43M-01-20XOB AOC 32-43A 15:01 17.62 SHL-15 AOC 32-43A 06-08-2023 14:16 Yes 26.49 SHL-25 AOC 32-43A 06-07-2023 16:09 Yes 26.21 36.33 --LFM-03-07 DCL 06-07-2023 14:45 Yes 19.63 23.25 --06-07-2023 25.30 34.43 LFM-99-01B DCL 14:18 Yes ----06-07-2023 14:12 18.45 26.29 LFM-99-02B DCL Yes __ 06-07-2023 40.87 LFM-99-03B DCL Yes 50.65 14:29 --LFM-99-05A 06-07-2023 22.71 30.80 --DCL 13:40 Yes LFM-99-05B DCL 06-07-2023 13:48 Yes 19.94 58.67 34.91 06-08-2023 Yes 15.71 LFM-99-06ARP DCL 12:35 ----

 Client:
 USACE
 Date(s):
 11-02-2023 to 11-06-2023

 Facility:
 Former Fort Devens
 Work Order(s):
 2023 Fall LTM

 Facility Location:
 Devens, MA, USA Updated
 Area:
 AOC 43G

Field Technician: Allyson Fenton, Nelson Martinez, Frank Martinez Equipment: Water Level Meter

Field Technician: Allyson Fenton, Nelson Martinez, Frank Martinez		ik Martinez	Equipment: Water Lo			vel Meter		
Location	Date	Time	Scope of Work Completed?	Depth to Water(ft bmp)	Total Depth (ft bmp)	Depth to Product (ft bmp)	Well Head PID Reading (ppmv)	Comments
AOC 43G								
AAFES-2	11-06-2023	13:08	Yes	22.99	33.4			
AAFES-5	11-06-2023	13:07	Yes	22.18	29.92			
AAFES-6R	11-06-2023	12:20	Yes	20.39	27.01			
AAFES-7	11-06-2023	14:10	Yes	8.21	17.15			
XGM-93-02X	11-06-2023	13:42	Yes	28.78	37.46			
XGM-94-04X	11-06-2023	12:33	Yes	19.45	31.1			
XGM-94-06X	11-06-2023	13:56	Yes	21.56	30.09			
XGM-94-07X	11-06-2023	12:46	Yes	21.89	29.78			
XGM-94-08X	11-06-2023	12:42	Yes	26.35	35.99			
XGM-94-10X	11-06-2023	12:38	Yes	25.25	33.94			
XGM-97-12X	11-06-2023	13:27	Yes	25.18	33.76			
AOC 69W								
69W-94-12	11-02-2023	10:30	Yes	5.96	16.02			
69W-94-13	11-02-2023	10:21	Yes	4.87	16.26			
69W-94-14	11-02-2023	09:25	Yes	5.98	15.28			
69WP-08-01	11-02-2023	10:02	Yes	1.83	12.32			
69WP-13-01	11-02-2023	11:33	Yes	1.3	12.38			
Willow Brook PZ	11-02-2023	13:36	Yes	1.68	2.07			
ZWM 01-25X	11-02-2023	09:39	Yes	4.24	16.06			
ZWM-01-26X	11-02-2023	09:45	Yes	5.87	16.18			
ZWM-95-15X	11-02-2023	09:31	Yes	3.97	14.69			
ZWM-95-16X	11-02-2023	14:46	Yes	3.91	15.53			
ZWM-95-17X	11-02-2023	08:15	Yes	12.92	16.4			
ZWM-95-18X	11-02-2023	09:54	Yes	2.47	15.38			
ZWM-99-22X	11-02-2023	16:07	Yes	3.95	14.32			
ZWM-99-23X	11-02-2023	10:09	Yes	3.91	15.25			
ZWM-99-24X	11-02-2023	09:18	Yes	4.02	15.92			
ZWP-95-01X	11-02-2023	09:09	Yes	4.18	14.44			
ZWP-95-02X	11-02-2023	11:04	Yes	2.91	14.44			
DCL								
LFM-03-07	11-03-2023	09:07	Yes	18.95	23.25			
LFM-99-01B	11-03-2023	08:41	Yes	25.85	34.61			
LFM-99-02B	11-03-2023	08:49	Yes	18.11	26.28			
LFM-99-03B	11-03-2023	08:31	Yes	40.06	50.66			
LFM-99-05A	11-03-2023	08:17	Yes	22.2	30.75			
LFM-99-05B	11-03-2023	08:21	Yes	19.28	58.5			
LFM 99-06ARP	11-03-2023	08:05	Yes	15.54	34.92			

32M 01-13XBR Date(s): 2023-06-07 Work Order(s): 2023 Spring LTM **Location ID:** Former Fort **Facility** Client: **USACE** Facility: Devens, MA, USA Area: AOC 32-43A Devens Location: CLOUDS, T:61.5 °F, rH:64%, Clouds: 100%, Weather(°F): Field Technician: Frank Martinez Wind:18.41mph W-NW Casing Measuring Pt. **Well Casing** Top of Inner Screen PVC 13.70-23.70 Diameter 2.00 Description: Casing Setting (ft-bgs): Material: (in): **Static Water** Total Depth (ft-Water Gallons in 18.27 23.05 0.85 5.25 Level (ft-bmp): Column(ft) Well: bmp): Purge **Depth to Product Pump Intake Purging** NA 21 Low Flow Peristaltic Pump Depth(ft-bmp): (ft-bmp): Method: Equipment: **Total Volume** 32M-01-13XBR-Sample Time: NA Purge Start Time: Sample ID: 15:10 1.1 Purged (gallons): SPR23 Replicate **Well Volumes Water Quality** YSI Pro DSS / NA **Purge End Time:** 15:49 1.29 Type / Meter/ ID: Purged (total): Replicate ID: Scope of work Yes completed?

Time	Total Elapsed	Flow Flow ' pH ' Turbidity		Dissolved	Temp.	Redox	Appearance					
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
15:15	0	125	mL/min	18.27	6.28	5.348	59	57.1	15.5	115	Clear	No Odor
15:20	5	125	mL/min	18.43	6.3	5.352	6.8	5.65	15.6	113.1	Clear	No Odor
15:25	10	125	mL/min	18.87	6.31	5.424	20.1	5.65	15.7	113.6	Clear	No Odor
15:30	15	125	mL/min	18.98	6.32	5.468	18.2	5.59	15.3	113.9	Clear	No Odor
15:35	20	125	mL/min	19.26	6.33	5.478	19.6	5.74	15.4	115.1	Clear	No Odor

18.6

5.7

15.5

115.6

Clear

No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6010), Metals (SW6020)	Plastic	1	HNO3
VOCs (SW8260)	Clear Glass	3	HCI
VPH	Clear Glass	3	HCI

5.54

Comments: Flush mount - needs bolts. Sampled at 1550

mL/min

19.5

6.33

Well Information:

15:40

25

125

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: NA

32M-01-14XOB Date(s): 2023-06-08 Work Order(s): 2023 Spring LTM **Location ID:** Former Fort **Facility** Client: **USACE** Facility: Devens, MA, USA Area: AOC 32-43A Devens Location: CLOUDS, T:63.37 °F, rH:64%, Clouds: 100%, Weather(°F): Field Technician: Frank Martinez Wind:9.22mph W Casing Measuring Pt. **Well Casing** Top of Inner Screen PVC 17.30-27.30 Diameter 2.00 Description: Casing Setting (ft-bgs): Material: (in): **Static Water** Total Depth (ft-Water Gallons in 24.71 30.01 0.91 5.58 Level (ft-bmp): Column(ft) Well: bmp): Purge **Depth to Product Pump Intake Purging** NA 28 Low Flow Peristaltic Pump Depth(ft-bmp): Equipment: (ft-bmp): Method: **Total Volume** 32M-01-14XOB-Purge Start Time: 09:40 Sample ID: Sample Time: NA 0.5 Purged (gallons): SPR23 Replicate **Well Volumes Water Quality Purge End Time:** 10:14 0.55 Type / YSI Pro DSS / NA Meter/ ID: Purged (total): Replicate ID: Scope of work Yes completed?

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appearance	
Time	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cmc)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:45	0	60	mL/min	24.71	5.87	0.882	30.9	1.78	13.3	106.4	Clear	No Odor
09:50	5	50	mL/min	24.81	5.9	0.886	24.4	1.66	13.8	106.6	Clear	No Odor
09:55	10	50	mL/min	24.89	5.9	0.896	28.8	1.63	13.9	105.9	Clear	No Odor
10:00	15	50	mL/min	24.92	5.92	0.893	26.7	1.58	14.2	104.3	Clear	No Odor
10:05	20	50	mL/min	24.98	5.92	0.894	26.6	1.57	13.9	101.8	Clear	No Odor
10:10	25	50	mL/min	25.05	5.93	0.895	26.7	1.51	13.9	94.4	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6010), Metals (SW6020)	Plastic	1	HNO3
VOCs (SW8260)	Clear Glass	3	HCI
VPH	Clear Glass	3	HCI

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: Well cover broken

32M-01-17XBR Date(s): 2023-06-07 Work Order(s): 2023 Spring LTM **Location ID:** Former Fort **Facility** AOC 32-43A Client: **USACE** Facility: Devens, MA, USA Area: Devens Location: CLOUDS, T:61.5 °F, rH:64%, Clouds: 100%, Weather(°F): Field Technician: Diane Champagne Wind:18.41mph W-NW Casing Measuring Pt. **Well Casing** Top of Inner Screen PVC 41.40-51.40 Diameter 2.00 Description: Casing Setting (ft-bgs): Material: (in): **Static Water** Total Depth (ft-Water Gallons in 29.09 25.29 54.2 4.73 Level (ft-bmp): Column(ft) Well: bmp): **Depth to Product** Purge **Pump Intake Purging** NA 51 Low Flow Portable Bladder Depth(ft-bmp): (ft-bmp): Method: Equipment: **Total Volume** 32M-01-17XBR-Purge Start Time: 13:00 2.4 Sample ID: Sample Time: 14:05 Purged (gallons): SPR23 Replicate **Well Volumes Water Quality Purge End Time:** 14:00 0.51 Type / NA / NA YSI Pro DSS / 22B103383 Meter/ ID: Purged (total): Replicate ID: Scope of work Yes completed?

Time	Total	Flow	Flow	low Water PH Conductivity Turbidity Oxyg		Dissolved	Temp.	Redox	Appea	arance		
Time	Elapsed (min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cmc)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
13:05	0	150	mL/min	25.29	7.04	1.26	65.45	3.01	14.3	-48.3	Clear	No Odor
13:15	10	150	mL/min	25.29	6.99	1.301	21.26	0.92	14.2	-43.8	Clear	No Odor
13:20	15	150	mL/min	25.29	7	1.301	21.75	0.8	14.1	-42.7	Clear	No Odor
13:25	20	150	mL/min	25.29	7	1.297	14.53	0.75	14.5	-42.5	Clear	No Odor
13:30	25	150	mL/min	25.29	7	1.296	13.19	0.71	14.8	-43	Clear	No Odor
13:36	31	150	mL/min	25.29	7.01	1.298	9.8	0.68	15	-43.3	Clear	No Odor
13:40	35	150	mL/min	25.29	7.01	1.297	8.02	0.67	14.9	-43.1	Clear	No Odor
13:45	40	150	mL/min	25.29	7.01	1.297	7.17	0.64	14.6	-42.3	Clear	No Odor
13:50	45	150	mL/min	25.29	7.01	1.291	4.46	0.61	14.6	-41.9	Clear	No Odor
13:55	50	150	mL/min	5.29	7.02	1.289	4.43	0.6	14.6	-41.3	Clear	No Odor
14:00	55	150	mL/min	25.29	7.02	1.287	4.27	0.58	14.7	-41.4	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6010),Metals (SW6020)	Plastic	1	HNO3
VOCs (SW8260)	Clear Glass	3	HCI
VPH	Clear Glass	3	HCI
	-		-

Comments:	None
Well Information:	
Well	Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: NA

Location ID:	32M-01-18XBR	Date(s):	2023-06-09	Work Order(s):		2023 Spring LT	М
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	AOC 32-43A
Weather(°F):	CLOUDS, T:61. Wind:18.41mph	47 °F, rH:64%, Clou W-NW	ıds: 100%,	Field Technic	cian:	Grace Sheckler	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	14.00-24.00	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	17.68	Total Depth (ft- bmp):	24.4	Water Column(ft)	7.3	Gallons in Well:	1.19
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	20	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	09:41	Total Volume Purged (gallons):	0.45	Sample ID:	32M-01-18XBR- SPR23	Sample Time:	10:00
Purge End Time:	09:55	Well Volumes Purged (total):	0.38	Replicate Type / Replicate ID:	Duplicate / 32M- DUP01-SPR23	Water Quality Meter/ ID:	YSI Pro DSS / 18G101313
Scope of work completed?	Yes						

Time	Total	Total Flow		Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	arance
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
09:45	0	110	mL/min	17.68	6.32	4.295	2.5	3.81	13.7	222.6	Clear	No Odor
09:50	5	110	mL/min	17.8	6.34	4.291	2.2	3.87	13.8	217.5	Clear	No Odor
09:55	10	110	mL/min	17.97	6.35	4.297	2.6	3.86	13.8	214	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6010),Metals (SW6020)	Plastic	1	HNO3
VOCs (SW8260)	Clear Glass	3	HCI
VPH	Clear Glass	3	HCI
Comments: Under Bay 28			
Well Information:			
Well Labeled Properly: n	0		
Is Well in Good Condition? p			
Well Inspection Comments: \overline{N}	IA .		

Location ID:	57M-95-03X	Date(s):	2023-06-07	Work Order(Work Order(s):		M
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	AOC 57
Weather(°F):	62 Cloudy. Win	d 10mph SE.		Field Techni	cian:	Spencer Gust	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	7.00-17.00	Casing Diameter (in):	4.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	11.31	Total Depth (ft- bmp):	19.7	Water Column(ft)	4.53	Gallons in Well:	2.94
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	17	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	09:26	Total Volume Purged (gallons):	1.16	Sample ID:	57M-95-03X- SPR23	Sample Time:	10:08
Purge End Time:	10:07	Well Volumes Purged (total):	0.39	Replicate Type / Replicate ID:	MS/MSD / 57M- DUP01-SPR23	Water Quality Meter/ ID:	YSI Pro DSS / 22B103383
Scope of work completed?	Yes						

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appearance	
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:32	0	110	mL/min	11.31	6.3	0.773	3.62	1.23	11.5	-45.1	Clear	Moderate
09:37	5	110	mL/min	11.31	6.29	0.687	4.1	0.61	11.3	-68.2	Clear	Moderate
09:42	10	110	mL/min	11.31	6.28	0.635	0.68	0.32	11.4	-80	Clear	Moderate
09:47	15	110	mL/min	11.31	6.28	0.616	0.61	0.23	11.5	-90.1	Clear	Moderate
09:54	22	110	mL/min	11.31	6.28	0.618	0.35	0.19	11.7	-97.2	Clear	Moderate
10:00	28	110	mL/min	11.31	6.28	0.618	0.44	0.17	11.6	-101.9	Clear	Moderate
10:06	34	110	mL/min	11.31	6.28	0.615	0.63	0.13	11.9	-105.5	Clear	Moderate

Constituent Sampled	Container	Number	Preservative
Metals (SW6010)	Plastic	1	HNO3
Metals (SW6020)	Plastic	1	HNO3

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: Locked on arrival, lock in good shape.

Location ID:	57M-96-11X	Date(s):	2023-06-07	Work Order(s):	2023 Spring LT	M
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	AOC 57
Weather(°F):	60 Overcast.			Field Techni	cian:	NA	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	2.00-12.00	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	3.41	Total Depth (ft- bmp):	14.84	Water Column(ft):	11.24	Gallons in Well:	1.83
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	NA	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	11:10	Total Volume Purged (gallons):	0.65	Sample ID:	57M-96-11X- SPR23	Sample Time:	11:37
Purge End Time:	11:36	Well Volumes Purged (total):	0.36	Replicate Type / Replicate ID	Duplicate / 57M- DUP01-SPR23	Water Quality Meter/ ID:	YSI Pro DSS / 22B103383
Scope of work completed?	Yes						

Time	Total	Flow	Flow	Depth to Water	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	(ft)	(S.U.)	Conductivity (mS/cmc)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
11:15	0	100	mL/min	3.41	5.57	1.799	34.99	0.86	12.2	29.2	Brown	No Odor
11:20	5	100	mL/min	3.41	5.6	1.787	25.5	0.42	12.4	22.5	Reaaisn Brown	No Odor
11:25	10	100	mL/min	3.41	5.63	1.786	3.18	0.29	12.3	16.5	Clear	No Odor
11:30	15	100	mL/min	3.41	5.65	1.786	2.88	0.23	12.2	12.2	Clear	No Odor
11:35	20	100	mL/min	3.41	5.67	1.784	2.61	0.17	12.3	9	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6010)	Plastic	1	HNO3
Metals (SW6020)	Plastic	1	HNO3

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: Locked on arrival, lock in good shape.

Container

Plastic

Preservative

HNO3

Location ID:	57-SW-1	Date(s):	2023-06-09	Work Order(s):	2023 Spring LT	M
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	AOC 57
Weather(°F):	60, clear sky.			Field Technic	cian:	NA	
Measuring Pt. Description:		Screen Setting (ft-bgs):	-	Casing Diameter (in):	NA	Well Casing Material:	NA
Static Water Level (ft-bmp):	NA	Total Depth (ft- bmp):	NA	Water Column(ft):	0	Gallons in Well:	NA
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	NA	Purge Method:	grab	Purging Equipment:	bailer
Purge Start Time:	NA	Total Volume Purged (gallons):	NA	Sample ID:	NA	Sample Time:	12:28
Purge End Time:	NA	Well Volumes Purged (total):	NA	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work completed?	Yes						

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
12:28	0		mL/min		5.96	0.856	5.17	5.91	18.4	23.4	Clear	No Odor

Number

1

Metals (SW6020)		Plastic	1	 NO3
Comments:	None			
Well Information	:			
We	ell Labeled Properly: NA			
Is Well	I in Good Condition? NA			
Well Inspection Comments: NA				

Constituent Sampled

Metals (SW6010)

Location ID:	LFM-03-07	Date(s):	2023-06-08	Work Order(s):	2023 Spring LTM		
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	DCL	
Weather(°F):	CLOUDS, T:55 Wind:0mph N	.29 °F, rH:85%, Clou	ıds: 100%,	Field Techni	cian:	Frank Martinez		
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	10.90-20.90	Casing Diameter (in):	2.00	Well Casing Material:	PVC	
Static Water Level (ft-bmp):	19.69	Total Depth (ft- bmp):	23.23	Water Column(ft):	3.54	Gallons in Well:	0.58	
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	21	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump	
Purge Start Time:	09:55	Total Volume Purged (gallons):	0.72	Sample ID:	LFM-03-07- SPR23	Sample Time:	10:40	
Purge End Time:	10:38	Well Volumes Purged (total):	1.24	Replicate Type / Replicate ID:	:	Water Quality Meter/ ID:	YSI Pro DSS / NA	
Scope of work completed?	Yes							

Time	Total Flow		low Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appearance	
Time	(min) Rate Rate	Rate Unit	(ft)	(S.U.) (mS/cm°)		(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor	
10:00	0	90	mL/min	19.75	6.05	1.49	9	7.64	12.6	159.5	Clear	No Odor
10:05	5	90	mL/min	19.74	6.09	1.49	5.49	7.59	12.7	152.3	Clear	No Odor
10:10	10	90	mL/min	19.74	6.12	1.491	1.98	7.63	12.6	151	Clear	No Odor
10:15	15	90	mL/min	19.74	6.14	1.488	0.54	7.51	12.7	151.1	Clear	No Odor
10:20	20	90	mL/min	19.75	6.15	1.49	0.02	7.57	12.7	150.6	Clear	No Odor
10:25	25	90	mL/min	19.74	6.17	1.489	0.74	7.55	12.8	149.8	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4
			

Comments: Sampled at 10:40

Well Information:

Well Labeled Properly:	no
Is Well in Good Condition?	good
Well Inspection Comments:	NA NA

Location ID:	LFM-99-02B	Date(s):	2023-06-08	Work Order(s):	2023 Spring LT	М
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	DCL
Weather(°F):	CLOUDS, T:61 Wind:12.66mpl	.39 °F, rH:63%, Clou n NW	ıds: 100%,	Field Technic	cian:	Grace Sheckler	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	11:45	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	18.59	Total Depth (ft- bmp):	26.29	Water Column(ft):	7.84	Gallons in Well:	1.27
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	21	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	10:22	Total Volume Purged (gallons):	0.5	Sample ID:	LFM-99-02B- SPR23	Sample Time:	10:45
Purge End Time:	10:41	Well Volumes Purged (total):	0.39	Replicate Type / Replicate ID:	MS/MSD / LFM- 99-02B-SPR23	Water Quality Meter/ ID:	YSI Pro DSS / 18G101313
Scope of work completed?	Yes						

Time	Total	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	rance
Tille	Elapsed (min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
10:25	0	104	mL/min	18.59	6.14	1.313	1.3	8.81	10.3	217	Clear	No Odor
10:30	5	104	mL/min	18.59	6.11	1.309	1.2	8.86	10.2	220.6	Clear	No Odor
10:35	10	104	mL/min	18.59	6.11	1.311	1.3	8.85	10.2	223.3	Clear	No Odor
10:40	15	104	mL/min	18.59	6.11	1.31	1.3	8.87	10.2	224.9	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4

Comments: None

Well Information:

Well Labeled Properly:	yes
Is Well in Good Condition?	good
Well Inspection Comments:	NA NA

Location ID:	LFM-99-05A	Date(s):	6/7/2023	Work Order(s):	2023 Spring LT	M
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	DCL
Weather(°F):	60 Overcast. 1	0mph SE.		Field Techni	cian:	Spencer Gust	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	19.00-28.30	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	22.78	Total Depth (ft- bmp):	30.82	Water Column(ft):	8.04	Gallons in Well:	1.31
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	28	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	10:05	Total Volume Purged (gallons):	0.75	Sample ID:	LFM-99-05A- SPR23	Sample Time:	10:36
Purge End Time:	10:36	Well Volumes Purged (total):	0.57	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work completed?	Yes						

Time	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	rance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cmc)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
10:10	0	110	mL/min	22.76	6.21	0.716	7.42	5.6	11.6	192.5	Clear	No Odor
10:15	5	110	mL/min	22.76	6.22	0.699	5.69	5.17	11.3	184.8	Clear	No Odor
10:20	10	110	mL/min	22.76	6.22	0.694	3.36	5.17	11.3	178.4	Clear	No Odor
10:25	15	110	mL/min	22.76	6.24	0.693	2.24	5.13	11.3	172.6	Clear	No Odor
10:30	20	110	mL/min	22.26	6.26	0.693	1.3	5.06	11.2	169.2	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4
			

Comments:	None	
Well Information	:	
We	ell Labeled Properly: yes	
Is Well	in Good Condition? good	
Well Ins	spection Comments: NA	

Location ID:	LFM 99-06ARP	Date(s):	2023-06-08	Work Order(s):	2023 Spring LT	M
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA	Area:	DCL
Weather(°F):	CLOUDS, T:60. Wind:3.44mph	64 °F, rH:71%, Clou SW	ıds: 100%,	Field Techni	cian:	Frank Martinez	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	17.50-32.50	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	15.76	Total Depth (ft- bmp):	34.91	Water Column(ft):	19.2	Gallons in Well:	3.12
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	NA	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	12:45	Total Volume Purged (gallons):	1.4	Sample ID:	LFM-99-06A-RP- SPR23	Sample Time:	13:25
Purge End Time:	13:23	Well Volumes Purged (total):	0.45	Replicate Type / Replicate ID:	:	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work completed?	Yes						

Time	Total Flow		Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
12:50	0	150	mL/min	15.76	6.23	1.722	2.44	7.35	13.4	111.6	Clear	No Odor
12:55	5	150	mL/min	15.76	6.25	1.723	0.72	7.31	13.2	114.8	Clear	No Odor
13:00	10	150	mL/min	15.76	6.26	1.719	1.69	7.34	12.7	114.7	Clear	No Odor
13:05	15	150	mL/min	15.7	6.26	1.715	0.76	7.32	12.9	114.9	Clear	No Odor
13:10	20	150	mL/min	15.76	6.27	1.714	1.19	7.59	12.8	118	Clear	No Odor
13:15	25	150	mL/min	15.76	6.27	1.716	1.15	7.52	12.9	118.3	Clear	No Odor
13:20	30	150	mL/min	15.76	6.28	1.712	1.52	7.5	12.8	119	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4

Comments:	Sampled at 1325	
Well Informa	ation:	
	Well Labeled Properly: y	res
Is	s Well in Good Condition?	pood
W	ell Inspection Comments: N	VA

Location ID:	LFM-99-06ARP	Date(s):	2023-11-07	Work Order(s)	:	2023 Fall LTM S	ampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	DCL
Weather(°F):	Overcast 50F			Field Technici	an:	Michael Spauldir	ng
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	17.50-32.50	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	15.59	Total Depth (ft-bmp):	34.92	Water Column(ft):	19.33	Liters in Well:	11.94
Depth to Product (ft bmp):	- NA	Pump Intake Depth(ft- bmp):	33.5	Purge Method	: Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	08:15	Total Volume Purged (liters):	6.8	Sample ID:	LFM-99-06ARP-FAL23	Sample Time:	08:52
Purge End Time:	08:52	Well Volumes Purged (total):	0.57	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work	Voc			-			

completed?

Time	Total	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	rance
Time	Elapsed (min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
08:17	0	200	mL/min	15.68	6.63	0.78	212	5.02	12.5	166.8	Gray	No Odor
08:22	5	200	mL/min	15.69	6.34	0.716	10.6	5.76	12.5	159.8	Clear	No Odor
08:27	10	200	mL/min	15.72	6.27	0.73	45.8	5.73	12.6	156.3	Clear	No Odor
08:33	16	200	mL/min	15.7	6.3	0.694	90.4	5.74	12.5	154.2	Gray	No Odor
08:37	20	200	mL/min	15.71	6.26	0.683	5.83	5.88	12.5	153.4	Clear	No Odor
08:41	24	200	mL/min	15.71	6.26	0.676	2.73	5.88	12.6	152.8	Clear	No Odor
08:47	30	200	mL/min	15.71	6.26	0.666	1.9	5.89	12.6	152.2	Clear	No Odor
08:51	34	200	mL/min	15.71	6.26	0.658	1.65	5.89	12.5	152.1	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: NA

Location ID:	LFM-03-07	Date(s):	2023-11-07	Work Order(s)	:	Order #4 - 2023	Fall LTM + SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA Updated	Area:	DCL
Weather(°F):	CLOUDS, T:52.53 N	2 °F, rH:89%, Clouds: 100%	, Wind:3.44mph	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	10.90-20.90	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	19.32	Total Depth (ft-bmp):	23	Water Column(ft):	3.68	Liters in Well:	2.27
Depth to Product (ft bmp):	- NA	Pump Intake Depth(ft- bmp):	20	Purge Method	: Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	09:15	Total Volume Purged (liters):	4.5	Sample ID:	LFM-03-07-FAL23	Sample Time:	10:00
Purge End Time:	10:00	Well Volumes Purged (total):	1.98	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work	Vaa			-			

comple	eted?	Yes										
Time	Total Elapsed	Flow	Flow	Depth to Water	pH	Conductivity	Turbidity Dissolved Oxygen	Temp.	Redox	Appearance		
	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm°)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
09:20	0	100	mL/min	19.41	6.21	0.935	39.8	4.4	15	201.3	Clear	No Odor
09:25	5	100	mL/min	19.41	6.21	0.935	33.1	4.32	15	210.4	Clear	No Odor
09:30	10	100	mL/min	19.41	6.23	0.937	20.6	4.36	15.1	217.4	Clear	No Odor
09:35	15	100	mL/min	19.41	6.23	0.937	22	4.33	15.1	220.1	Clear	No Odor
09:40	20	100	mL/min	19.41	6.23	0.938	34.8	4.41	15.1	221.7	Clear	No Odor
09:45	25	100	mL/min	19.41	6.24	0.938	36.6	4.31	15.1	224.4	Clear	No Odor
09:50	30	100	mL/min	19.41	6.24	0.939	38.7	4.29	15.2	226.2	Clear	No Odor
09:55	35	100	mL/min	19.41	6.24	0.939	24.4	4.31	15.2	227.4	Clear	No Odor
10:00	40	100	mL/min	19.41	6.24	0.941	27.3	4.42	15.2	228	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4

Comments: None

Well Information:

Well Labeled Properly: NA

Is Well in Good Condition? NA

Well Inspection Comments: NA

Location ID:	LFM-99-02B	Date(s):	2023-11-07	Work Order(s):		2023 Fall LTM Sa	ampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	DCL
Weather(°F):	CLOUDS, T:60.62	2 °F, rH:74%, Clouds: 40%,	Wind:4.61mph N	Field Technicia	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	14.50-23.80	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	18.24	Total Depth (ft-bmp):	24	Water Column(ft):	5.76	Liters in Well:	3.56
Depth to Product (ft	- NA	Pump Intake Depth(ft- bmp):	21	Purge Method:	: Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	11:40	Total Volume Purged (liters):	3.5	Sample ID:	LFM-99-02B-FAL23	Sample Time:	12:15
Purge End Time:	12:15	Well Volumes Purged (total):	0.98	Replicate Type / Replicate ID:	MS/MSD / LFM-99-02B- FAL23	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work	Vec			-			

completed?

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	rance
Time	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
11:45	0	100	mL/min	18.37	6.28	0.771	17.4	6.03	13.4	211.3	Clear	No Odor
11:50	5	100	mL/min	18.37	6.25	0.76	27.4	5.82	13.3	218.1	Clear	No Odor
11:55	10	100	mL/min	18.37	6.24	0.763	41.1	5.96	13.5	221.4	Clear	No Odor
12:00	15	100	mL/min	18.37	6.24	0.767	29.1	5.99	13.6	225.7	Clear	No Odor
12:05	20	100	mL/min	18.37	6.23	0.773	13	5.93	13.8	228.8	Clear	No Odor
12:10	25	100	mL/min	18.37	6.23	0.769	6.8	6.04	13.6	231.1	Clear	No Odor
12:15	30	100	mL/min	18.37	6.23	0.769	11.1	5.89	13.7	232.9	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4
-			

Comments: None

Well Information:

Well Labeled Properly: NA

Is Well in Good Condition? NA

Well Inspection Comments: NA

Location ID:	LFM-99-05A	Date(s):	2023-11-07	Work Order(s):		Order #4 - 2023 F	Fall LTM + SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA Updated	Area:	DCL
Weather(°F):	CLOUDS, T:56.3 S	2 °F, rH:85%, Clouds: 100%,	, Wind:6.91mph	Field Technicia	an:	Frank Martinez	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	19.00-28.30	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	22.43	Total Depth (ft-bmp):	30.78	Water Column(ft):	8.35	Gallons in Well:	1.36
Depth to Product (ft bmp):	- NA	Pump Intake Depth(ft- bmp):	NA	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	10:10	Total Volume Purged (gallons):	0.65	Sample ID:	LFM-99-05A-FAL23	Sample Time:	10:35
Purge End Time:	10:34	Well Volumes Purged (total):	0.48	Replicate Type / Replicate ID:	Duplicate / DCL-DUP01-FAL23	Water Quality Meter/ ID:	YSI Pro DSS / NA
Scope of work	.,			-			

Scope of work	Yes
completed?	165

T:	Total	I Flow I F	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appearance	
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
10:15	0	115	mL/min	22.44	6.38	0.582	9.1	5.99	12.2	202.7	Clear	No Odor
10:20	5	115	mL/min	22.46	6.31	0.576	4.9	5.46	12.2	209.6	Clear	No Odor
10:25	10	115	mL/min	22.46	6.3	0.575	2.8	5.39	12.1	212	Clear	No Odor
10:30	15	115	mL/min	22.46	6.29	0.575	2.1	5.4	12.1	213.7	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
OC Pest (SW8081B)	Amber Glass	2	None
Metals (SW6020)	Plastic	1	HNO3
Metals (SW6010)	Plastic	1	HNO3
Metals (SW7470A)	Plastic	1	HNO3
GenChem (SM2540C)	Plastic	1	None
Anions (SW9056A)	Plastic	1	None
Anions (E353.2)	Amber Glass	1	H2SO4
GenChem (A2320)	Plastic	1	None
GenChem (SW9012)	Plastic	1	NAOH
GenChem (E410.4)	Plastic	1	H2SO4
			
	_		

Comments: Sampled at 10:35

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Well Inspection Comments: NA

AAFES-2 2023 Fall LTM + SRI Sampling Location ID: Date(s): 2023-11-10 Work Order(s): Former Fort **Facility** Client: USACE Facility: Devens, MA AOC 43G Area: Location: Devens CLEAR, T:42.98 °F, rH:89%, Clouds: 0%, Wind:1.99mph W-Field Technician: Allyson Fenton Weather(°F): NW Measuring Pt. Top of Inner **Well Casing** Screen Casing 16.20-31.20 PVC 2.00 Description: Setting (ft-bgs): Diameter (in): Material: Casing **Static Water** Water 23.4 Total Depth (ft-bmp): 31 7.6 Liters in Well: 4.7 Level (ft-bmp): Column(ft): Purging **Depth to Product** Pump Intake Depth(ft-Purge NA 27 Low Flow Portable Bladder (ft-bmp): Method: **Equipment:** bmp): Total Volume Purged Purge Start Time: 09:05 4.2 AAFES-2-FAL23 09:40 Sample ID: Sample Time: (liters): Replicate Duplicate / **Well Volumes Purged Water Quality** AOC43G_DUP01-FAL23 YSI Pro DSS / NA Purge End Time: 09:40 0.89 Type / Meter/ ID: (total): Replicate ID:

Scope of work Yes completed?

Time	Total Flow Rate	Flow	Flow	Depth to Water	рН	pH Specific Conductivity	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	arance
Tille		Rate	te Rate Unit	(ft)	(S.U.)	(mS/cm°)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
09:10	0	120	mL/min	23.35	6.45	2.028	24.5	0.18	12.2	-78.4	Clear	Moderate
09:15	5	120	mL/min	23.35	6.46	2.038	21.5	0.11	12.3	-78.9	Clear	Moderate
09:20	10	120	mL/min	23.35	6.48	2.032	19.6	0.07	12.2	-80.7	Clear	Moderate
09:25	15	120	mL/min	23.35	6.48	2.039	17.7	0.05	12.2	-81.5	Clear	Moderate
09:30	20	120	mL/min	23.35	6.45	2.05	17.6	0.07	12.4	-79.4	Clear	Moderate
09:35	25	120	mL/min	23.35	6.45	2.062	15.4	0.06	12.7	-77.7	Clear	Moderate
09:40	30	120	mL/min	23.35	6.45	2.06	14.2	0.06	12.7	-76.7	Clear	Moderate

			Preservative	
Metals (SW6020) - Total	Plastic	1	HNO3	
Metals (SW6020) - Dissolved	Plastic	1	HNO3	
Metals (SW6010) - Total	Plastic	1	HNO3	
Metals (SW6010) - Dissolved	Plastic	1	HNO3	
TPH (ARC-MAVPH)	Clear Glass	3	HCL	
TPH (ARC-MAEPH)	Amber Glass	2	HCL	
Anions (SW9056A)	Plastic	1	none	
TOC (SW9060)	Plastic	1	HNO3	
GenChem (A2320)	Plastic	1	none	

None Comments:

Well Information:

Well Labeled Properly: NA

Is Well in Good Condition? NA

Location ID:	AAFES-7	Date(s):	2023-11-10	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 43G
Weather(°F):	40 F overcast			Field Technici	an:	Michael Spauldi	ng
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	4.50-14.50	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	8.32	Total Depth (ft-bmp):	17.15	Water Column(ft):	8.83	Liters in Well:	5.45
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	16.5	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	10:03	Total Volume Purged (liters):	4	Sample ID:	AAFES-7 -FAL23	Sample Time:	10:25
Purge End Time:	10:24	Well Volumes Purged (total):	0.73	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556
Scope of work	Yes						

3.49

3.48

3.42

4.48

12.8

12.7

149.2

149.8

Clear

Clear

No Odor

No Odor

comple	eted?	Yes												
Time	Total Flow		Total Flow		Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	arance
Tillie	(min)	Rate	Rate Unit	(ft)	(S.U.)	(mS/cm ^c)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor		
10:03	0	200	mL/min	8.5	6.68	1.077	57.9	5.49	12.5	145.2	Clear	No Odor		
10:07	4	200	mL/min	8.52	6.23	1.053	10.9	4.35	12.8	146.8	Clear	No Odor		
10:11	8	200	mL/min	8.52	6.15	1.06	6.41	3.82	12.8	148	Clear	No Odor		
10.15	12	200	ml /min	8 52	6 13	1.058	2 93	3 50	12.8	148 7	Clear	No Odor		

1.053

1.051

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3

Comments: None

16

10:19 10:23

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Yes

200

200

mL/min

mL/min

8.52

8.52

6.13

6.12

2023 Fall LTM + SRI Sampling Location ID: XGM-93-02X Date(s): 2023-11-13 Work Order(s): Devens, MA, USA Former Fort **Facility** Client: **USACE** Facility: AOC 43G Area: Updated Devens Location: CLEAR, T:37.92 °F, rH:59%, Clouds: 0%, Wind:1.01mph N-Field Technician: Allyson Fenton Weather(°F): NE **Well Casing** Screen Measuring Pt. Top of Inner Casing 28.00-39.00 4.00 PVC Description: Casing Setting (ft-bgs): Diameter (in): Material: Static Water Water Liters in Well: 29.08 Total Depth (ft-bmp): 39 9.92 24.49 Level (ft-bmp): Column(ft): **Depth to Product** Pump Intake Depth(ft-Purge Purging NA 36 Low Flow Portable Bladder (ft-bmp): bmp): Method: Equipment: **Total Volume Purged Purge Start Time:** 11:12 6.88 Sample ID: XGM-93-02X-FAL23 Sample Time: 12:00 (liters): Replicate **Well Volumes Purged Water Quality** Purge End Time: 11:55 0.28 NA / NA YSI Pro DSS / 21f102556 Type / Meter/ ID: (total): Replicate ID:

Scope of work completed?

Yes

Time	Total Elapsed	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	(min) Rate	Rate	Rate Unit	Water (ft)	(S.U.) Conductivity (µS/cmc)		(NTU) Oxygen (mg/L)		(°C)	(mV)	Color	Odor
11:15	0	160	mL/min	29.08	6.51	2.665	1.23	1.76	10.6	-30.8	Clear	No Odor
11:20	5	160	mL/min	29.23	6.46	2.602	0.26	1.09	11.4	-32.1	Clear	Strong
11:25	10	160	mL/min	29.49	6.44	2.632	0.01	0.6	11.1	-32.7	Clear	No Odor
11:30	15	160	mL/min	29.68	6.44	2.613	0.2	0.52	11.1	-32.8	Clear	No Odor
11:35	20	160	mL/min	29.83	6.43	2.578	0.01	0.42	11.4	-33.2	Clear	Strong
11:40	25	160	mL/min	29.99	6.43	2.566	0.14	0.37	11.2	-33.3	Clear	No Odor
11:46	31	160	mL/min	29.99	6.43	2.554	0.35	0.33	11	-33.5	Clear	Strong
11:55	40	160	mL/min	29.98	6.42	2.539	0.27	0.2	11.3	-33.7	Clear	Strong

Constituent Sampled	Container	Number	Preservative	
Metals (SW6020) - Total	Plastic	1	HNO3	
Metals (SW6020) - Dissolved	Plastic	1	HNO3	
Metals (SW6010) - Total	Plastic	1	HNO3	
Metals (SW6010) - Dissolved	Plastic	1	HNO3	
TPH (ARC-MAVPH)	Clear Glass	3	HCL	
TPH (ARC-MAEPH)	Amber Glass	2	HCL	
Anions (SW9056A)	Plastic	1	none	
TOC (SW9060)	Plastic	1	HNO3	
GenChem (A2320)	Plastic	1	none	

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? poor

Issues: Flushmount - Bolts Needed, Flushmount - Bolts Need Replacement, Flushmount - Bolt Eyelets Not Useable, Flushmount - Gasket

Not Present

Location ID:	XGM-94-04X	Date(s):	2023-11-09	Work Order(s)):	2023 Fall LTM +	- SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 43G
Weather(°F):	SNOW, T:34.02 NE	°F, rH:87%, Clouds: 100%,	Wind:1.01mph E	Field Technic	ian:	Diane Champag	ine
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	20.50-30.50	Casing Diameter (in):	4.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	19.53	Total Depth (ft-bmp):	30	Water Column(ft):	10.47	Liters in Well:	37.21
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	26	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	09:20	Total Volume Purged (liters):	19	Sample ID:	XGM-94-04X-FAL23	Sample Time:	10:55
Purge End Time:	10:57	Well Volumes Purged (total):	0.51	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556
Scope of work	Yes						

- :	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:25	0	200	mL/min	19.55	6.49	2.761	11.1	1.87	8.1	31.2	Clear	No Odor
09:30	5	200	mL/min	19.62	6.68	2.738	6.45	1.29	8	31.2	Clear	No Odor
09:35	10	200	mL/min	19.69	6.76	2.705	8.54	1.03	8.3	31.4	Clear	No Odor
09:40	15	200	mL/min	19.76	7.78	2.718	2.83	1	7.9	31.3	Clear	No Odor
09:50	25	200	mL/min	19.83	6.83	2.791	0.19	1.11	5.3	30.5	Clear	No Odor
09:55	30	200	mL/min	19.83	6.81	2.69	1.14	0.87	7.3	30.4	Clear	No Odor
10:00	35	200	mL/min	19.83	6.81	2.69	4.94	0.8	8	31.2	Clear	No Odor
10:05	40	200	mL/min	19.83	6.83	2.691	4.67	0.76	7.9	31.3	Clear	No Odor
10:10	45	200	mL/min	19.82	6.83	2.666	0.63	0.75	8.4	31.2	Clear	No Odor
10:15	50	200	mL/min	19.83	6.84	2.685	0.32	0.72	7.9	30.9	Clear	No Odor
10:20	55	200	mL/min	19.83	6.85	2.681	0.01	0.73	8	30.8	Clear	No Odor
10:25	60	200	mL/min	19.84	6.86	2.74	0.18	0.7	8.2	30.9	Clear	No Odor
10:30	65	200	mL/min	19.83	6.86	2.689	0.52	0.74	8.3	30.7	Clear	No Odor
10:35	70	200	mL/min	19.83	6.87	2.694	0.72	0.76	7.9	30.6	Clear	No Odor
10:40	75	200	mL/min	19.83	6.87	2.65	0.31	0.62	8.4	30.7	Clear	No Odor
10:45	80	200	mL/min	19.83	6.87	2.656	0.45	0.69	8.3	30.6	Clear	No Odor
10:50	85	200	mL/min	19.83	6.87	2.646	0.94	0.65	8.3	30.6	Clear	No Odor
10:55	90	200	mL/min	19.83	6.87	2.642	0.88	0.65	8.1	30.3	Clear	No Odor

Constituent Sampled	Container	Number	Preservative	
Metals (SW6020) - Total	Plastic	1	HNO3	
Metals (SW6020) - Dissolved	Plastic	1	HNO3	
Metals (SW6010) - Total	Plastic	1	HNO3	
Metals (SW6010) - Dissolved	Plastic	1	HNO3	
TPH (ARC-MAVPH)	Clear Glass	3	HCL	
TPH (ARC-MAEPH)	Amber Glass	2	HCL	
Anions (SW9056A)	Plastic	1	none	
TOC (SW9060)	Plastic	1	HNO3	
GenChem (A2320)	Plastic	1	none	
		<u> </u>		

Yes

completed?

Comments:	None
Well Information:	
We	Il Labeled Properly: _{yes}
Is Well	in Good Condition? good
Well Ins	pection Comments: NA

Location ID:	XGM-97-12X	Date(s):	2023-11-13	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA Updated	Area:	AOC 43G
Weather(°F):	CLEAR, T:32.05 NW	°F, rH:72%, Clouds: 0%, W	ind:1.01mph N-	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	24.00-34.00	Casing Diameter (in):	4.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	25.73	Total Depth (ft-bmp):	34	Water Column(ft):	8.27	Liters in Well:	20.44
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	32	Purge Method:	Low Flow	Purging Equipment:	Portable Bladder
Purge Start Time:	09:15	Total Volume Purged (liters):	5.64	Sample ID:	XGM-97-12X-FAL23	Sample Time:	09:50
Purge End Time:	09:46	Well Volumes Purged (total):	0.27	Replicate Type / Replicate ID:	Duplicate / XGM-97-12X FAL23	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work completed?

Yes

Times	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (µS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:20	0	225	mL/min	25.73	6.79	3.881	1.91	0.79	13.1	-34.3	Clear	No Odor
09:25	5	225	mL/min	25.97	6.89	3.052	1.53	0.38	13.7	-36.6	Clear	No Odor
09:30	10	225	mL/min	26.13	6.79	2.711	1.87	0.3	13.5	-37.7	Clear	No Odor
09:35	15	225	mL/min	26.26	6.78	2.628	1.93	0.28	13.8	-38	Clear	No Odor
09:40	20	225	mL/min	26.38	6.78	2.565	2.08	0.24	14.1	-38.6	Clear	No Odor
09:45	25	2.25	mL/min	26.48	6.79	2.558	1.86	0.22	13.8	-38.9	Clear	No Odor

Constituent Sampled	Container	Number	Preservative	
Metals (SW6020) - Total	Plastic	1	HNO3	
Metals (SW6020) - Dissolved	Plastic	1	HNO3	
Metals (SW6010) - Total	Plastic	1	HNO3	
Metals (SW6010) - Dissolved	Plastic	1	HNO3	
TPH (ARC-MAVPH)	Clear Glass	3	HCL	
TPH (ARC-MAEPH)	Amber Glass	2	HCL	
Anions (SW9056A)	Plastic	1	none	
TOC (SW9060)	Plastic	1	HNO3	
GenChem (A2320)	Plastic	1	none	
		_		

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	69W-94-13	Date(s):	2023-11-14	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W
Weather(°F):	CLOUDS, T:44.1 W-NW	7 °F, rH:72%, Clouds: 75%,	Wind:6.91mph	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	3.00-13.00	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	5.28	Total Depth (ft-bmp):	13	Water Column(ft):	7.72	Liters in Well:	4.77
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	11	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	11:30	Total Volume Purged (liters):	10	Sample ID:	69W-94-13-FAL23	Sample Time:	12:25
Purge End Time:	12:22	Well Volumes Purged (total):	2.09	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work Yes completed?

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Tille	(min)	Rate	Rate Unit	(ft)	(S.U.)	(μS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
11:35	0	200	mL/min	5.28	6.78	2.496	2.29	1.76	13.3	-30.5	Clear	No Odor
11:40	5	200	mL/min	5.32	6.82	2.322	0.83	1.52	13.3	-31.2	Clear	No Odor
11:50	15	200	mL/min	5.31	6.82	2.181	0.51	1.4	13.7	-31.8	Clear	No Odor
11:55	20	200	mL/min	5.31	6.82	2.129	0.53	1.36	13.3	-32	Clear	No Odor
12:00	25	200	mL/min	5.32	6.82	2.117	0.45	1.33	13.2	-32.1	Clear	No Odor
12:05	30	200	mL/min	5.52	6.81	2.086	0.48	1.29	13.7	-32.3	Clear	No Odor
12:10	35	200	mL/min	5.31	6.81	2.06	0.49	1.23	14.6	-32.9	Clear	No Odor
12:15	40	200	mL/min	5.32	6.81	2.052	0.92	1.2	14.2	-33.2	Clear	No Odor
12:20	45	200	mL/min	5.32	6.8	2.068	0.91	1.14	14.2	-33.4	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH
		_	

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	69W-94-14	Date(s):	2023-11-15	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA Updated	Area:	AOC 69W
Weather(°F):	CLEAR, T:41.81	°F, rH:72%, Clouds: 0%, Wi	nd:4.61mph SE	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	3.00-13.00	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	6.48	Total Depth (ft-bmp):	13	Water Column(ft):	6.52	Liters in Well:	4.01
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	11	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	08:55	Total Volume Purged (liters):	10	Sample ID:	69W-94-14 -FAL23	Sample Time:	9:45
Purge End Time:	09:47	Well Volumes Purged (total):	2.49	Replicate Type / Replicate ID:		Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work completed?

Yes

Time	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (µS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:00	0	200	mL/min	6.48	5.88	2.08	7.27	4.91	10.6	-28.8	Clear	No Odor
09:10	10	200	mL/min	6.48	5.88	1.896	3.1	2.88	11.4	-28.5	Clear	No Odor
09:15	15	200	mL/min	6.49	5.9	1.814	1.86	2.32	11.5	-29.2	Clear	No Odor
09:20	20	200	mL/min	6.49	5.9	1.738	0.81	2.05	11.4	-29.5	Clear	No Odor
09:25	25	200	mL/min	6.49	5.9	1.7	1.04	1.98	11.9	-29.5	Clear	No Odor
09:30	30	200	mL/min	6.5	5.9	1.699	0.73	1.88	11.5	-29.8	Clear	No Odor
09:35	35	200	mL/min	6.5	5.91	1.67	0.61	1.87	11.8	-29.8	Clear	No Odor
09:40	40	200	mL/min	6.5	5.91	1.651	0.49	1.82	12	-29.8	Clear	No Odor
09:45	45	200	mL/min	6.5	5.9	1.635	0.46	1.78	11.9	-29.8	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	69WP-08-01	Date(s):	2023-11-16	Work Order(s):		2023 Fall LTM + SRI Sampling		
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W	
Weather(°F):	CLEAR, T:59.7 °	F, rH:47%, Clouds: 1%, Win	d:4mph W-NW	Field Technici	an:	Frank Martinez		
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	10.00-13.00	Casing Diameter (in):	1.00	Well Casing Material:	PVC	
Static Water Level (ft-bmp):	2.56	Total Depth (ft-bmp):	13	Water Column(ft):	10.44	Gallons in Well:	0.42	
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	12	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump	
Purge Start Time:	12:45	Total Volume Purged (gallons):	2.25	Sample ID:	69WP-08-01-FAL23-SRI	Sample Time:	14:00	
Purge End Time:	13:59	Well Volumes Purged (total):	5.35	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / NA	

Scope of work completed?

Yes

	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
12:50	0	120	mL/min	2.56	6.45	1.452	80.2	3.93	13	-20	Clear	No Odor
12:55	5	120	mL/min	2.59	6.56	1.476	61.3	2.01	13.1	-53.7	Clear	No Odor
13:00	10	120	mL/min	2.56	6.54	1.486	35	1.59	13.4	-61.3	Clear	No Odor
13:05	15	120	mL/min	2.59	6.49	1.479	30.4	1.47	13.2	-57.3	Clear	No Odor
13:10	20	120	mL/min	2.56	6.44	1.47	24.3	1.41	13.3	-50.3	Clear	No Odor
13:15	25	120	mL/min	2.56	6.41	1.478	22.3	1.3	13.3	-45	Clear	No Odor
13:20	30	120	mL/min	2.56	6.39	1.472	13.5	1.36	13.3	-41.4	Clear	No Odor
13:25	35	120	mL/min	2.57	6.37	1.456	11.3	1.36	13.2	-37	Clear	No Odor
13:30	40	120	mL/min	2.57	6.34	1.463	7.15	1.36	13.4	-32.3	Clear	No Odor
13:35	45	120	mL/min	2.56	6.33	1.472	8.3	1.38	13.1	-28.8	Clear	No Odor
13:40	50	120	mL/min	2.56	6.32	1.463	7.4	1.37	13.3	-27	Clear	No Odor
13:45	55	120	mL/min	2.56	6.3	1.469	6.6	1.38	13.4	-23.5	Clear	No Odor
13:50	60	120	mL/min	2.56	6.3	1.466	6.3	1.38	13.4	-24.3	Clear	No Odor
13:55	65	120	mL/min	2.56	6.27	1.468	6.1	1.42	13.4	-18.4	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	69WP-13-01	Date(s):	2023-11-16	Work Order(s):		2023 Fall LTM +	2023 Fall LTM + SRI Sampling		
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W		
Weather(°F):	60 F clear			Field Technici	an:	Michael Spauldir	ng		
Measuring Pt. Description:	Top of Outer Casing	Screen Setting (ft-bgs):	10.00-13.00	Casing Diameter (in):	1.00	Well Casing Material:	PVC		
Static Water Level (ft-bmp):	1.33	Total Depth (ft-bmp):	12.4	Water Column(ft):	11.07	Liters in Well:	1.71		
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	11	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump		
Purge Start Time:	13:49	Total Volume Purged (liters):	18.6	Sample ID:	69WP-13-01-FAL23	Sample Time:	15:23		
Purge End Time:	15:22	Well Volumes Purged (total):	10.88	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556		

Scope of work completed?

- :	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
13:49	0	200	mL/min	2.97	6.14	0.705	850	2.6	13.7	7	Black	No Odor
13:53	4	200	mL/min	3.41	6.26	0.703	351	0.31	13.5	-36	Black	No Odor
13:57	8	200	mL/min	4.18	6.46	0.698	1000	0.02	13.6	-57.8	Black	No Odor
14:01	12	200	mL/min	4.31	6.34	0.695	1000	0.34	13.5	-57.4	Black	No Odor
14:06	17	200	mL/min	4.35	6.34	0.694	83.7	0.36	13.5	-46.5	Black	No Odor
14:11	22	200	mL/min	4.38	6.31	0.695	79.7	0.85	13.4	-42.8	Gray	No Odor
14:16	27	200	mL/min	4.36	6.31	0.698	103	0.77	13.4	-42.7	Gray	No Odor
14:21	32	200	mL/min	4.36	6.3	0.699	75.2	0.93	13.4	-40.2	Gray	No Odor
14:25	36	200	mL/min	4.33	6.3	0.7	47.1	1	13.4	-38.7	Gray	No Odor
14:29	40	200	mL/min	4.33	6.29	0.702	33.8	1.05	13.4	-37.4	Gray	No Odor
14:33	44	200	mL/min	4.33	6.29	0.704	27.9	1.11	13.4	-35.7	Clear	No Odor
14:37	48	200	mL/min	4.33	6.29	0.704	20	1.15	13.4	-34.6	Clear	No Odor
14:41	52	200	mL/min	4.33	6.29	0.706	15	1.17	13.4	-33.8	Clear	No Odor
14:45	56	200	mL/min	4.33	6.29	0.706	13.3	1.21	13.4	-32.7	Clear	No Odor
14:49	60	200	mL/min	4.33	6.28	0.708	13.3	1.24	13.4	-31.3	Clear	No Odor
14:53	64	200	mL/min	4.33	6.29	0.708	11	1.27	13.4	-30.1	Clear	No Odor
14:57	68	200	mL/min	4.33	6.28	0.71	11.2	1.3	13.4	-28.8	Clear	No Odor
15:01	72	200	mL/min	4.33	6.28	0.71	9.4	1.31	13.3	-28	Clear	No Odor
15:05	76	200	mL/min	4.33	6.28	0.711	6.28	1.34	13.3	-27	Clear	No Odor
15:09	80	200	mL/min	4.33	6.28	0.712	5.9	1.36	13.4	-26	Clear	No Odor
15:13	84	200	mL/min	4.33	6.28	0.713	5.57	1.37	13.4	-25.1	Clear	No Odor
15:16	87	200	mL/min	4.33	6.28	0.714	4.97	1.36	13.3	-24.5	Clear	No Odor
15:19	90	200	mL/min	4.33	6.28	0.714	4.42	1.39	13.3	-24	Clear	No Odor
15:22	93	200	mL/min	4.33	6.28	0.715	3.13	1.4	13.3	-23.3	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
			_

Gases (RSK175)	Clear Glass	1	none	
Sulfide (9034)	Plastic	2	ZNAC/NAOH	
Comments: None				
Well Information:				
Well Labeled Properly: no				
Is Well in Good Condition? good	od			
Well Inspection Comments: NA				

Location ID:	ZWM 01-25X	Date(s):	2023-11-16	Work Order(s):		2023 Fall LTM +	2023 Fall LTM + SRI Sampling		
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W		
Weather(°F):	F): 45F Clear			Field Technici	an:	Michael Spauldir	ng		
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	6.13-16.13	Casing Diameter (in):	2.00	Well Casing Material:	PVC		
Static Water Level (ft-bmp):	4.51	Total Depth (ft-bmp):	16.15	Water Column(ft):	11.64	Liters in Well:	7.19		
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	15.5	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump		
Purge Start Time:	09:49	Total Volume Purged (liters):	9.2	Sample ID:	ZWM 01-25X-FAL23	Sample Time:	10:36		
Purge End Time:	10:36	Well Volumes Purged (total):	1.28	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556		

Scope of work Yes completed?

T:	Total F	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
09:49	0	200	mL/min	4.58	6.58	0.282	25.5	5.63	13.5	12.3	Clear	No Odor
09:54	5	200	mL/min	4.58	5.82	0.531	2.37	2.39	13.7	58.9	Clear	No Odor
09:58	9	200	mL/min	4.58	5.79	0.532	2.58	2.17	13.8	73.5	Clear	No Odor
10:02	13	200	mL/min	4.58	5.78	0.545	3.62	1.86	13.7	84.8	Clear	No Odor
10:06	17	200	mL/min	4.58	5.78	0.557	2.79	1.63	13.6	91.4	Clear	No Odor
10:10	21	200	mL/min	4.58	5.78	0.57	3.41	1.4	13.6	97.4	Clear	No Odor
10:15	26	200	mL/min	4.58	5.78	0.585	4.7	1.19	13.6	102.6	Clear	No Odor
10:19	30	200	mL/min	4.58	5.78	0.592	4.47	1.06	13.6	105.3	Clear	No Odor
10:23	34	200	mL/min	4.58	5.78	0.597	4.56	0.96	13.6	107.3	Clear	No Odor
10:27	38	200	mL/min	4.58	5.78	0.602	4.38	0.89	13.7	109.1	Clear	No Odor
10:31	42	200	mL/min	4.58	5.79	0.603	4.28	0.85	13.7	110.7	Clear	No Odor
10:35	46	200	mL/min	4.58	5.79	0.603	3.61	0.83	13.7	111.9	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	ZWM-95-15X	Date(s):	2023-11-15	Work Order(s):		2023 Fall LTM +	2023 Fall LTM + SRI Sampling		
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA, USA Updated	Area:	AOC 69W		
Weather(°F):	Weather(°F): CLEAR, T:41.83 °F, rH:72%, Clouds: 0%, Wind:4.61mph SE				an:	Allyson Fenton	Allyson Fenton		
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	5.87-15.87	Casing Diameter (in):	4.00	Well Casing Material:	PVC		
Static Water Level (ft-bmp):	4.28	Total Depth (ft-bmp):	15.87	Water Column(ft):	11.59	Liters in Well:	7.15		
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	13.5	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump		
Purge Start Time:	10:20	Total Volume Purged (liters):	14	Sample ID:	ZWM-95-15X-FAL23	Sample Time:	11:35		
Purge End Time:	11:34	Well Volumes Purged (total):	1.96	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556		

Scope of work Yes completed?

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	(min)	Rate	Rate Unit	(ft)	(S.U.)	(μS/cm°)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
10:30	0	200	mL/min	4.28	6.04	0.508	11.68	1.09	9.9	-29.4	Clear	No Odor
10:40	10	200	mL/min	4.28	6.01	0.514	9.39	0.69	10.4	-29.5	Clear	No Odor
10:45	15	200	mL/min	4.28	6.01	0.515	7.71	0.58	10.7	-29.9	Clear	No Odor
10:50	20	200	mL/min	4.5	6.01	0.523	6.05	0.53	10.5	-30.3	Clear	No Odor
10:55	25	200	mL/min	4.5	6	0.524	6.88	0.51	10.6	-30.3	Clear	No Odor
11:00	30	200	mL/min	4.5	6	0.526	5.97	0.49	10.7	-30.3	Clear	No Odor
11:10	40	200	mL/min	4.5	5.99	0.527	5.16	0.46	10.7	-30.3	Clear	No Odor
11:15	45	200	mL/min	4.51	5.99	0.528	4.91	0.44	10.8	-30.3	Clear	No Odor
11:20	50	200	mL/min	4.49	5.99	0.527	4.41	0.43	10.4	-30.3	Clear	No Odor
11:25	55	200	mL/min	4.5	5.98	0.526	4.73	0.43	10.4	-30.3	Clear	No Odor
11:30	60	200	mL/min	4.49	5.98	0.522	4.17	0.42	10.6	-30.3	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: NA

Is Well in Good Condition? NA

Work Order(s): 2023 Fall LTM + SRI Sampling Location ID: ZWM-95-18X Date(s): 2023-11-16 Former Fort Facility Client: USACE Facility: Devens, MA Area: AOC 69W Devens Location: Weather(°F): CLEAR, T:54.55 °F, rH:55%, Clouds: 0%, Wind:4mph NW Field Technician: Frank Martinez Measuring Pt. Top of Inner Screen Casing **Well Casing** 5.22-15.22 PVC 4.00 Description: Casing Setting (ft-bgs): Diameter (in): Material: Static Water Water 2.75 Total Depth (ft-bmp): 15.22 12.47 Gallons in Well: 8.14 Level (ft-bmp): Column(ft): Purge **Depth to Product** Pump Intake Depth(ft-Purging NA 15 Peristaltic Pump Low Flow (ft-bmp): bmp): Method: **Equipment: Total Volume Purged** Purge Start Time: Sample ID: ZWM-95-18X-FAL23-SRI Sample Time: 10:45 1.15 11:25 (gallons): Replicate **Well Volumes Purged Water Quality** MS/MSD / ZWM-95-YSI Pro DSS / NA Purge End Time: 11:24 0.14 Type / (total): Meter/ ID: Replicate ID: 18X-FAL23-SRI

Scope of work Yes completed?

Time	Total	Flow	Flow	Depth to Water	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appearance	
Time	Elapsed (min)	Rate	Rate Unit	(ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
10:50	0	120	mL/min	2.75	6.15	0.921	0.2	4.83	11.9	244.2	Clear	No Odor
10:55	5	120	mL/min	2.75	6.1	0.921	0.2	4.59	11.9	244.4	Clear	No Odor
11:00	10	120	mL/min	2.76	6.08	0.921	0.5	4.47	12.3	244.1	Clear	No Odor
11:05	15	120	mL/min	2.76	6.06	0.921	8.7	4.4	12.5	244.3	Clear	No Odor
11:10	20	120	mL/min	2.77	6.06	0.922	4.9	4.35	12.3	244.3	Clear	No Odor
11:15	25	120	mL/min	2.75	6.05	0.922	4.3	4.29	12.6	244.2	Clear	No Odor
11:20	30	120	mL/min	2.75	6.05	0.922	4.8	4.25	12.6	244.2	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	ZWM-99-22X	Date(s):	2023-11-16	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W
Weather(°F):	CLEAR, T:41.83 NW	°F, rH:74%, Clouds: 0%, Wi	nd:1.01mph W-	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	4.60-14.60	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	4.28	Total Depth (ft-bmp):	14.6	Water Column(ft):	10.32	Liters in Well:	6.36
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft-bmp):	13	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	07:55	Total Volume Purged (liters):	7	Sample ID:	ZWM-99-22X-FAL23	Sample Time:	09:10
Purge End Time:	Well Volumes Purged (total):		1.1	Replicate Type / Replicate ID:	Duplicate / AOC69W- DUP01-FAL23	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work Yes completed?

T:	Total	Flow	Flow	Depth to	рН	Specific	Turbidity	Dissolved	Temp.	Redox	Appea	arance
Time	Elapsed (min)	Rate	Rate Unit	Water (ft)	(S.U.)	Conductivity (mS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
08:00	0	100	mL/min	4.28	6.69	3.193	4.25	0.84	10.7	-28.4	Clear	No Odor
08:10	10	100	mL/min	4.3	6.69	2.826	3.67	0.6	11.1	-28.5	Clear	No Odor
08:15	15	100	mL/min	4.31	6.69	2.628	2.7	0.54	11.1	-28.5	Clear	No Odor
08:20	20	100	mL/min	4.32	6.69	2.544	2.34	0.53	11.1	-28.7	Clear	No Odor
08:25	25	100	mL/min	4.32	6.68	2.433	2.1	0.51	11.2	-28.5	Clear	No Odor
08:30	30	100	mL/min	4.33	6.68	2.325	1.74	0.49	11.4	-28.4	Clear	No Odor
08:35	35	100	mL/min	4.33	6.67	2.266	1.33	0.48	11.3	-28.4	Clear	No Odor
08:45	45	100	mL/min	4.33	6.67	2.123	1.18	0.46	12.4	-28.5	Clear	No Odor
08:50	50	100	mL/min	4.33	6.67	2.047	1.18	0.45	12.4	-28.7	Clear	No Odor
08:55	55	100	mL/min	4.34	6.67	1.973	0.8	0.45	12.4	-28.9	Clear	No Odor
09:00	60	100	mL/min	4.34	6.67	1.938	1.09	0.46	12.4	-29	Clear	No Odor
09:05	65	100	mL/min	4.35	6.67	1.93	0.79	0.46	12.4	-29.2	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? poor

Issues: Flushmount - Bolts Needed, Flushmount - Bolts Need Replacement, Flushmount - Bolt Eyelets Not Useable, Flushmount - Gasket Not

Present

Location ID:	ZWM-99-23X	Date(s):	2023-11-16			2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W
Weather(°F):	40 F clear			Field Technici	an:	Michael Spauldir	ng
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	4.68-14.68	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	4.18	Total Depth (ft-bmp):	15.18	Water Column(ft):	11	Liters in Well:	6.8
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	14.5	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	08:16	Total Volume Purged (liters):	10.6	Sample ID:	ZWM-99-23X-FAL23	Sample Time:	09:10
Purge End Time:	09:10	Well Volumes Purged (total):	1.56	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work completed?

Yes

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved Oxygen	Temp.	Redox	Appea	arance
	(min)	I KATE IKATE		(ft)	(S.U.)	(mS/cmc)	(NTU)	(mg/L)	(°C)	(mV)	Color	Odor
08:16	0	200	mL/min	4.2	6.37	0.69	59.7	1.56	13.5	59	Brown	No Odor
08:22	6	200	mL/min	4.21	6.21	0.682	24.4	0.45	13.8	43	Clear	No Odor
08:26	10	200	mL/min	4.21	6.2	0.678	18.8	0.29	13.8	34.7	Clear	No Odor
08:30	14	200	mL/min	4.21	6.19	0.673	13.4	0.21	13.8	25.5	Clear	No Odor
08:34	18	200	mL/min	4.21	6.18	0.67	13.3	0.17	13.8	18.2	Clear	No Odor
08:39	23	200	mL/min	4.21	6.18	0.664	12.8	0.13	13.9	11.9	Clear	No Odor
08:43	27	200	mL/min	4.21	6.17	0.658	9.8	0.11	13.9	7.8	Clear	No Odor
08:49	33	200	mL/min	4.21	6.16	0.651	6.95	0.08	13.9	4.4	Clear	No Odor
08:53	37	200	mL/min	4.21	6.15	0.643	7.05	0.06	13.9	2.3	Clear	No Odor
08:57	41	200	mL/min	4.21	6.15	0.64	6.19	0.05	14	1.1	Clear	No Odor
09:01	45	200	mL/min	4.21	6.14	0.633	4.92	0.04	14	-0.1	Clear	No Odor
09:05	49	200	mL/min	4.21	6.14	0.629	4.96	0.03	14	-1.1	Clear	No Odor
09:09	53	200	mL/min	4.21	6.14	0.624	3.89	0.02	14	-2	Clear	No Odor

Constituent Sampled	Container	Number	Preservative	
Metals (SW6020) - Total	Plastic	1	HNO3	
Metals (SW6020) - Dissolved	Plastic	1	HNO3	_
Metals (SW6010) - Total	Plastic	1	HNO3	_
Metals (SW6010) - Dissolved	Plastic	1	HNO3	_
TPH (ARC-MAVPH)	Clear Glass	3	HCL	_
TPH (ARC-MAEPH)	Amber Glass	2	HCL	_
Anions (SW9056A)	Plastic	1	none	_
TOC (SW9060)	Plastic	1	HNO3	_
GenChem (A2320)	Plastic	1	none	_
Gases (RSK175)	Clear Glass	1	none	_
Sulfide (9034)	Plastic	2	ZNAC/NAOH	_
	-			

Comments: None

Well Information:

Well Labeled Properly: yes

Is Well in Good Condition? good

Location ID:	ZWM-99-24X	Date(s):	2023-11-14	Work Order(s)	:	2023 Fall LTM +	SRI Sampling
Client:	USACE	Facility:	Former Fort Devens	Facility Location:	Devens, MA	Area:	AOC 69W
Weather(°F):	CLOUDS, T:46.4 Wind:12.66mph	14 °F, rH:68%, Clouds: 100% NW	,	Field Technici	an:	Allyson Fenton	
Measuring Pt. Description:	Top of Inner Casing	Screen Setting (ft-bgs):	5.52-15.52	Casing Diameter (in):	2.00	Well Casing Material:	PVC
Static Water Level (ft-bmp):	4.31	Total Depth (ft-bmp):	15	Water Column(ft):	10.69	Liters in Well:	6.59
Depth to Product (ft-bmp):	NA	Pump Intake Depth(ft- bmp):	13.5	Purge Method:	Low Flow	Purging Equipment:	Peristaltic Pump
Purge Start Time:	13:00	Total Volume Purged (liters):	7	Sample ID:	ZWM-99-24X -FAL23	Sample Time:	13:40
Purge End Time:	End Time: 13:39 Well Volumes Purged (total): 1.0		1.06	Replicate Type / Replicate ID:	NA / NA	Water Quality Meter/ ID:	YSI Pro DSS / 21f102556

Scope of work Yes completed?

Time	Total Elapsed	Flow	Flow	Depth to Water	рН	Specific Conductivity	Turbidity	Dissolved	Temp.	Redox	Appearance	
Time	(min)	Rate	Rate Unit	(ft)	(S.U.)	(μS/cm ^c)	(NTU)	Oxygen (mg/L)	(°C)	(mV)	Color	Odor
13:05	0	200	mL/min	4.31	6.23	0.254	1.53	0.67	12.9	-33.2	Clear	No Odor
13:15	10	200	mL/min	4.32	6.21	0.258	0.49	0.62	12.9	-33.1	Clear	No Odor
13:20	15	200	mL/min	4.31	6.2	0.259	0.58	0.57	13	-33.2	Clear	No Odor
13:25	20	200	mL/min	4.31	6.18	0.266	0.47	0.51	12.9	-33.2	Clear	No Odor
13:30	25	200	mL/min	4.31	6.18	0.269	0.74	0.5	12.6	-33.2	Clear	No Odor
13:35	30	200	mL/min	4.31	6.17	0.273	1.17	0.49	12.6	-33.1	Clear	No Odor

Constituent Sampled	Container	Number	Preservative
Metals (SW6020) - Total	Plastic	1	HNO3
Metals (SW6020) - Dissolved	Plastic	1	HNO3
Metals (SW6010) - Total	Plastic	1	HNO3
Metals (SW6010) - Dissolved	Plastic	1	HNO3
TPH (ARC-MAVPH)	Clear Glass	3	HCL
TPH (ARC-MAEPH)	Amber Glass	2	HCL
Anions (SW9056A)	Plastic	1	none
TOC (SW9060)	Plastic	1	HNO3
GenChem (A2320)	Plastic	1	none
Gases (RSK175)	Clear Glass	1	none
Sulfide (9034)	Plastic	2	ZNAC/NAOH

Comments: None

Well Information:

Well Labeled Properly: NA

Is Well in Good Condition? good

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	06/07/2023

[
SINGLE POINT C	SINGLE POINT CALIBRATION						
LOT NUMBER	N/A						
EXPIRATION DATE	N/A						
PARAMETERS	PRE-CALIBRATION	PRE-CALIBRATION POST-CALIBRATION SINGLE POINT CALIBRATION WITHIN RANGE					
рН	7.08	7.04	yes	07:40			
pН	4	4	yes	07:42			
рН	9.9	9.9	yes	07:47			
Conductivity	1.352	1.415	yes	07:51			
ORP	230.5	231	yes	07:57			
DO	100.7	98.3	yes	08:03			

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	4740
SAMPLER	Diane Champagne
DATE	06/07/2023

SINGLE POINT CALIBRATION							
LOT NUMBER	N/A						
EXPIRATION DATE	N/A						
PARAMETERS	PRE-CALIBRATION	PRE-CALIBRATION POST-CALIBRATION SINGLE POINT CALIBRATION WITHIN RANGE					
рН	7.34	7.04	yes	08:18			
рН	4.07	4.04	yes	08:20			
рН	9.83	10.09	yes	08:22			
Conductivity	1.024	1.025	yes	08:16			
ORP	238.6	233.7	yes	08:24			
DO	97.8	97.8	yes	08:11			
DO	2.16	0.02	yes	08:28			
Turbidity	3.39	0	yes	08:14			

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

6/7/2023 SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	18G101313
SAMPLER	Grace Sheckler
DATE	06/07/2023

SINGLE POINT CALIBRATION							
LOT NUMBER	22420139						
EXPIRATION DATE	2024-09-07						
PARAMETERS	PRE-CALIBRATION	PRE-CALIBRATION POST-CALIBRATION SINGLE POINT CALIBRATION WITHIN RANGE					
pН	3.96	4	yes	08:16			
pН	7.11	7	yes	08:18			
pН	10.08	10	yes	08:23			
Conductivity	0.953	1.413	no	08:37			
ORP	231.3	240.49	yes	08:28			
DO	94.4	99.1	yes	08:40			

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

Sund	6/7/2023	
SIGNED	DATE	_

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	06/08/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.09	7	yes	07:56	
рН	3.95	4	yes	07:58	
pН	9.9	10	yes	07:59	
Conductivity	1.109	1.413	yes	08:06	
ORP	233.5	231	yes	08:11	
DO					
Turbidity	0.1	0.1	yes	08:14	
Turbidity	20	20	yes	08:15	
Turbidity	99.6	99.8	yes	08:17	
Turbidity	800	800	yes	08:20	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

6/8/2023 SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	18G101313
SAMPLER	Grace Sheckler
DATE	06/08/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	M066-02				
EXPIRATION DATE	2024-03-08				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	3.98	4	yes	08:53	
pН	7.12	7	yes	08:54	
pН	10	10	yes	08:57	
Conductivity	1.306	1.413	yes	08:33	
ORP	241.7	243.5	yes	08:47	
DO	99.6	99.6	yes	08:24	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

b., 1/4.	6/8/2023		

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	06/09/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.12	7	yes	07:49
pН	3.97	4	yes	07:51
рН	9.92	10	yes	07:53
Conductivity	1.722	1.413	yes	07:57
ORP	232.1	231	yes	08:01
DO	97.7	99	yes	08:04
Turbidity	0.1	0.02	yes	08:04
Turbidity	20	19.5	yes	08:10
Turbidity	100	101	yes	08:10
Turbidity	800	844	yes	08:11

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

J.N.	6/9/2023
SIGNED	DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	18G101313
SAMPLER	Grace Sheckler
DATE	06/09/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	22370021				
EXPIRATION DATE	2024-09-09				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	3.93	4	yes	08:05	
pН	7.05	7	yes	08:07	
pН	9.94	10	yes	08:11	
Conductivity	1.41	1.413	yes	08:16	
ORP	246	243.5	yes	08:38	
DO	99.9	99.8	yes	08:47	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

L a.	
Her Sh	6/9/2023
SIGNED	DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/07/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	6.92	7	yes	07:50	
pН	4.04	4	yes	07:51	
pН	9.94	10	yes	07:58	
Conductivity	1.573	1.413	yes	08:01	
ORP	221.9	231	yes	08:04	
DO	97.8	99.2	yes	08:08	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

F-9 11/7/2023

SIGNED DATE

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/07/2023

SINGLE POINT C	SINGLE POINT CALIBRATION						
LOT NUMBER	N/A						
EXPIRATION DATE	N/A						
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME			
рН	7.03	7	yes	07:06			
pН	4.1	4	yes	07:08			
рН	10.08	10	yes	07:13			
Conductivity	1.952	1.413	yes	07:18			
ORP	228	231	yes	07:21			
DO	98.4	100	yes	07:03			

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/07/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	7.03	7.04	yes	07:59	
pН	4.28	4.08	yes	08:01	
pН	9.89	10.05	yes	08:20	
Conductivity	1.335	1.343	yes	08:29	
ORP	244.8	246.9	yes	08:22	
DO	98.5	1.8	yes	08:32	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

AC.	11/7/2023		

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/09/2023

SINGLE POINT CALIBRATION						
LOT NUMBER	N/A					
EXPIRATION DATE	N/A					
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME		
рН	7.01	7	yes	07:40		
pН	4.11	4	yes	07:42		
рН	10.14	10	yes	07:47		
Conductivity	1.209	1.413	yes	07:55		
ORP	240.1	240.1	yes	08:09		
DO	93.9	99.3	yes	08:35		
Turbidity	1.12	0	yes	08:17		

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:	N	0	Т	Е	S	:
--------	---	---	---	---	---	---

11/9/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/09/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.08	7.04	yes	10:20	
рН	4.35	4.14	yes	10:21	
рН	9.8	10.01	yes	10:34	
Conductivity	1.271	1.303	yes	10:43	
ORP	230.1	245.4	yes	10:51	
DO			-		
Turbidity	0.2	0.01	yes	10:48	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

11/9/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/09/2023

SINGLE POINT CALIBRATION						
LOT NUMBER	N/A					
EXPIRATION DATE	N/A					
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME		
pН	6.94	7	yes	08:00		
pН	4.02	4	yes	08:01		
рН	9.89	10	yes	08:06		
Conductivity	1.501	1.413	yes	08:18		
ORP	211.2	231	yes	08:22		
DO	99.2	99.9	yes	08:28		

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

Fule	11/9/2023	

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/09/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
pН	6.99	7	yes	07:28
pН	4.03	4	yes	07:30
pН	10.03	10	yes	07:35
Conductivity	1.369	1.413	yes	07:38
ORP	236.2	231	yes	07:41
DO	98.3	100.7	yes	07:23

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

Not I have	11/9/2023	_
SIGNED	DATE	=

NOTES:

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/10/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.35	7	yes	07:51
рН	4.18	4	yes	07:55
рН	9.84	10	yes	08:01
Conductivity	1.418	1.413	yes	07:52
ORP	241.9	241	yes	08:59
DO	99.2	99.2	yes	08:05
Turbidity	1.2	0	yes	08:56

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

my Chr 11/10/2023

SIGNED DATE

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/10/2023

SINGLE POINT O	SINGLE POINT CALIBRATION			
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
pН	6.99	7	yes	07:07
pН	3.98	4	yes	07:10
pН	10	10	yes	07:14
Conductivity	1.363	1.413	no	07:18
ORP	236.6	231	yes	07:23
DO	100.6	99.9	yes	07:04

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/10/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.13	7.03	yes	07:35
рН	4.22	4.08		07:46
pН	9.5	10.02		07:54
Conductivity	1.28	1.289		08:02
ORP	242.1	241.8		07:59
DO	44.5	0		08:04
Turbidity	1.2	0.1	-	08:13

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

11/10/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/10/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	7.03	7	yes	07:43	
pН	4.05	4	yes	07:43	
pН	9.71	10	yes	07:51	
Conductivity	0.833	1.413	yes	07:58	
ORP	239.1	231	yes	08:01	
DO	99	100	yes	08:03	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

Fig.	11/10/2023	

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/13/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.12	7	yes	07:39	
рН	4.11	4	yes	07:32	
рН	10.31	10.02	yes	07:34	
Conductivity	1.393	1.413	yes	07:40	
ORP	281.1	240.1	yes	07:25	
DO	99.3	99.3	yes	07:27	
Turbidity	0.62	0	yes	07:15	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:	N	0	Т	Ε	S	:
--------	---	---	---	---	---	---

Rundh	11/13/2023
SIGNED	DATE

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/13/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	6.99	7	yes	07:19	
pН	4.05	4	yes	07:24	
pН	10	10	yes	07:28	
Conductivity	1.407	1.413	yes	07:32	
ORP	228.1	231	yes	07:36	
DO	101.6	100.2	yes	07:15	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

My gray	11/13/2023	

DATE

NOTES:

SIGNED

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/13/2023

SINGLE POINT O	SINGLE POINT CALIBRATION			
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.03	7	yes	08:27
рН	4.3	4.06	yes	08:31
рН	9.6	9.98	yes	08:42
Conductivity	1.39	1.387		08:47
ORP	229.6	237.6	yes	08:44
DO	58	0.04		08:50
Turbidity	0.56	0.02		08:48

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

11/13/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/13/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.01	7	yes	07:49
рН	4	4	yes	07:50
рН	9.84	10	yes	07:53
Conductivity	1.521	1.413	yes	07:58
ORP	232.5	231	yes	08:00
DO	102	101.3	yes	08:02

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

File	11/13/2023	

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/14/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.03	7	yes	07:47
рН	4.04	4	yes	07:42
рН	9.98	9.99	yes	07:38
Conductivity	1.411	1.413	yes	07:31
ORP	238.1	240	yes	07:48
DO	99.8	99.8	yes	07:20
Turbidity	0.15	0	yes	07:49

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

SIGNED DATE

NOTES:

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/14/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.02	6.9		07:40
рН	4.36	4.08		07:51
рН	9.59	10.06		07:52
Conductivity	1.232	1.245		08:10
ORP	204.7	244.1		08:05
DO	78.4	100		08:17
Turbidity	1	1.12		08:28
Turbidity	0	0.02		08:29

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

#2 11/14/2023 SIGNED DATE

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/14/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	6.98	7	yes	07:17
pН	4	4	yes	07:20
рН	10.03	10	yes	07:24
Conductivity	1.406	1.413	yes	07:27
ORP	231.2	231	yes	07:31
DO	100.7	100.8	yes	07:15

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:				
No fee	11/14/2023			
Nu/ ELC SIGNED	DATE	_		

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/14/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
pН	7.17	7	yes	07:55
pН	3.96	4	yes	08:00
рН	9.87	10	yes	08:05
Conductivity	1.427	1.413	yes	08:07
ORP	230	231	yes	08:10
DO	100.1	100	yes	08:14

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

Feli	11/14/2023	

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/15/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
рН	7.02	7	yes	07:22
рН	4.05	4	yes	07:26
рН	9.65	9.93	yes	07:29
Conductivity	1.416	1.414	yes	07:35
ORP	256.5	240.1	yes	07:15
DO	99.1	99.6	yes	07:36
Turbidity	1.02	0	yes	07:34

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES	•
-------	---

mule 11/15/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/15/2023

SINGLE POINT CALIBRATION				
LOT NUMBER	N/A			
EXPIRATION DATE	N/A			
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME
pН	7.13	7	yes	07:48
pН	4	4	yes	07:50
pН	10.47	10	yes	07:56
Conductivity	1.383	1.413	yes	07:57
ORP	221.8	231	yes	08:00
DO	101.3	101	yes	08:06

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

_				

11/15/2023 SIGNED DATE

NOTES:

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/15/2023

SINGLE POINT O	SINGLE POINT CALIBRATION				
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.02	7	yes	07:28	
pН	4.02	4	yes	07:30	
рН	9.99	10	yes	07:34	
Conductivity	1.458	1.413	no	07:36	
ORP	228.6	231	yes	07:41	
DO	104.6	101.7	yes	07:26	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

m/ sy	11/15/2023	

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/15/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.03	7.06		07:34	
рН	4.33	4.18		07:39	
pН	9.57	9.92		07:54	
Conductivity	1.531	1.503		08:13	
ORP	231.2	237.9		08:05	
DO	67.9	100		08:08	
Turbidity	0	0.02		08:06	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

11/15/2023

SIGNED DATE

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Frank Martinez
DATE	11/16/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
pН	10	10		07:51	
рН	6.92	7	yes	07:49	
рН	3.95	4	yes	07:49	
Conductivity	1.361	1.413	yes	07:56	
ORP	229.9	231	yes	08:03	
DO	101.5	100	yes	08:09	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

DATE

NOTES:

SIGNED

fact	11/16/2023	

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Diane Champagne
DATE	11/16/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.14	7	yes	07:17	
рН	4.1	4	yes	07:19	
pН	10	10	yes	07:22	
Conductivity	1.427	1.413	yes	07:25	
ORP	233.2	240	yes	07:54	
DO	100	100	yes	07:39	
Turbidity	1.85	0	yes	07:38	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:	N	0	Т	Ε	S	:
--------	---	---	---	---	---	---

mule 11/16/2023

SIGNED DATE

PROJECT NAME	Former Fort Devens Fall 23
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	21F102556
SAMPLER	Michael Spaulding
DATE	11/16/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	6.99	7	yes	07:11	
pН	4.03	4	yes	07:15	
рН	10	10	yes	07:19	
Conductivity	1.437	1.413	no	07:23	
ORP	231	231	yes	07:26	
DO	99.8	100.9	yes	07:08	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:			
loster	11/16/2023		
SIGNED	DATE		

PROJECT NAME	NE Devens TO LTM RAO SJV
PROJECT NUMBER	30167457
MODEL	YSI ProDSS
SERIAL NUMBER	N/A
SAMPLER	Allyson Fenton
DATE	11/16/2023

SINGLE POINT CALIBRATION					
LOT NUMBER	N/A				
EXPIRATION DATE	N/A				
PARAMETERS	PRE-CALIBRATION	POST-CALIBRATION	SINGLE POINT CALIBRATION WITHIN RANGE	TIME	
рН	7.07	7.03		07:47	
рН	9.59	9.89		08:10	
рН	4.55	4.19		08:06	
Conductivity	1.605	1.45		08:22	
ORP	233.2	241.1		08:20	
DO	75.7	100		07:52	
Turbidity	0.03	0		07:50	

¹ CALIBRATION RANGES ARE SPECIFIC TO THE MODEL OF THE QUALITY METER

NOTES:

11/16/2023
SIGNED DATE

Appendix B

Laboratory Analytical Reports

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

JOB DESCRIPTION

Generated 7/20/2023 7:56:24 PM

Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

JOB NUMBER

680-236086-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/20/2023 7:56:24 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-236086-2

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Qualifiers

G			

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
M	Manual integrated compound.
Q	One or more quality control criteria failed.
U	Undetected at the Limit of Detection.
GC VOA	

GC VOA

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U	Undetected at the Limit of Detection.
Metals	

Metais	
Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
U	Undetected at the Limit of Detection.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL. RA. RE. IN	Indicates a Dilution. Re-analysis. Re-extraction. or additional Initial metals/anion analysis of the sample

DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or FDL if shown	٦١

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit

PRES	Presumptive
QC	Quality Control

RER Relative Error Ratio (Radiochemist	ry)
--	-----

RI	Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Page 3 of 37 7/20/2023

Sample Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-236086-5	32M-01-17XBR-SPR23	Water	06/07/23 14:05	06/09/23 09:46
680-236086-6	32M-RB-01-SPR23	Water	06/07/23 15:00	06/09/23 09:46

Job ID: 680-236086-2

6

0

9

10

11

46

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Job ID: 680-236086-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-236086-2

Receipt

The samples were received on 6/9/2023 9:46 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C

Receipt Exceptions

One or more containers for the following samples were received broken or leaking: G6M-04-02X-SPR23 (680-236086-1), G6M-13-02X-SPR23 (680-236086-2), G6M-13-05X-SPR23 (680-236086-3), AOC50-RB-01-SPR23 (680-236086-4), 32M-01-17XBR-SPR23 (680-236086-5), 32M-01-17XBR-SPR23 (680-236086-5[MS]), 32M-01-17XBR-SPR23 (680-236086-6) and AOC50-TB-02-SPR23 (680-236086-7).

one vial received broken for sample -5 parent.

GC/MS VOA

Method 8260D_DOD5: The laboratory control sample duplicate (LCSD) was biased high for 4-Bromofluorobenzene surrogate by 5%. All other QC and sample recoveries were acceptable and within control limits, and sample target analyte recoveries were acceptable. There is insufficient time to rerun samples in hold time, data has been qualified and reported. (LCSD 680-784770/4)

Method 8260D_DOD5: The continuing calibration verification (CCV) associated with batch 680-785162 recovered outside acceptance criteria, low biased, for Carbon tetrachloride. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260D_DOD5: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to failure of surrogate in the initial analysis. 32M-01-17XBR-SPR23 (680-236086-5) and 32M-RB-01-SPR23 (680-236086-6)

Method 8260D_DOD5: The closing continuing calibration verification (CCVC) associated with batch 680-785162 recovered above the upper control limit for Chloroethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D_DOD5: The closing continuing calibration verification (CCVC) associated with batch 680-785162 recovered outside acceptance criteria, low biased, for Vinyl acetate. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported.

Method 8260D_DOD5: The initial calibration verification (ICV) analyzed in batch 680-784451 was outside method criteria for the following analyte(s): Trichlorofluoromethane. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hydrocarbons

Method MAVPH: The method requirement for no headspace was not met. The following volatile samples were analyzed with headspace in the sample container(s): 32M-01-17XBR-SPR23 (680-236086-5), 32M-01-17XBR-SPR23 (680-236086-5[MSD]) and 32M-RB-01-SPR23 (680-236086-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

Job ID: 680-236086-2

4

6

7

10

11

12

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-17XBR-SPR23

Lab Sample ID: 680-236086-5 Date Collected: 06/07/23 14:05 Matrix: Water

Date Received: 06/09/23 09:46

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Acetone	10	UH	25	10	3.7	ug/L		06/23/23 15:17	
Benzene	1.0	UH	2.0	1.0	0.27	ug/L		06/23/23 15:17	
Bromobenzene	0.50	UH	1.0	0.50	0.24	ug/L		06/23/23 15:17	
Chlorobromomethane	1.0	UH	2.0	1.0	0.34	ug/L		06/23/23 15:17	
Dichlorobromomethane	1.0	UH	2.0	1.0	0.25	ug/L		06/23/23 15:17	
Bromoform	2.0	UH	2.5	2.0	0.59	ug/L		06/23/23 15:17	
Bromomethane	10	UH	20	10	3.7	ug/L		06/23/23 15:17	
2-Butanone (MEK)	20	UH	25	20	6.4	ug/L		06/23/23 15:17	
n-Butylbenzene	2.0	UН	2.5	2.0	0.52	ug/L		06/23/23 15:17	
sec-Butylbenzene	2.0	UMH	2.5	2.0		ug/L		06/23/23 15:17	
ert-Butylbenzene	1.0	UН	2.0	1.0	0.43			06/23/23 15:17	
Carbon disulfide	1.0	UН	2.0	1.0		ug/L		06/23/23 15:17	
Carbon tetrachloride	1.0	UHQ	2.0	1.0		ug/L		06/23/23 15:17	
Chlorobenzene	0.50		1.0	0.50	0.15	_		06/23/23 15:17	
Chloroethane	10	UHQ	20	10		ug/L		06/23/23 15:17	
Chloroform	1.0	UH	2.0	1.0	0.27			06/23/23 15:17	
Chloromethane	2.0	UH	2.5	2.0		ug/L		06/23/23 15:17	
2-Chlorotoluene	0.50		1.0	0.50	0.25	_		06/23/23 15:17	
I-Chlorotoluene	1.0	UH	2.0	1.0	0.41			06/23/23 15:17	
Chlorodibromomethane	1.0	UH	2.0	1.0	0.39			06/23/23 15:17	
	5.0	UH	10	5.0				06/23/23 15:17	
,2-Dibromo-3-Chloropropane Ethylene Dibromide	1.0		2.0	1.0	0.33	ug/L		06/23/23 15:17	
Dibromomethane									
	1.0		2.0	1.0	0.34	•		06/23/23 15:17	
,2-Dichlorobenzene		UH	2.0	1.0		ug/L		06/23/23 15:17	
,3-Dichlorobenzene		UH	2.0	1.0		ug/L		06/23/23 15:17	
,4-Dichlorobenzene		UH	2.0	1.0	0.31	ug/L		06/23/23 15:17	
Dichlorodifluoromethane		UH	2.0	1.0		ug/L		06/23/23 15:17	
,1-Dichloroethane		UH	2.0	1.0	0.33			06/23/23 15:17	
,2-Dichloroethane	1.0		2.0	1.0	0.25	ug/L		06/23/23 15:17	
sis-1,2-Dichloroethene		UH	2.0	1.0		ug/L		06/23/23 15:17	
rans-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 15:17	
,2-Dichloroethene, Total	1.0	UH	2.0	1.0	0.37	ug/L		06/23/23 15:17	
,1-Dichloroethene	1.0	UH	2.0	1.0		ug/L		06/23/23 15:17	
,2-Dichloropropane	0.50		1.0	0.50	0.22	ug/L		06/23/23 15:17	
,3-Dichloropropane		UH	2.0	1.0	0.36	ug/L		06/23/23 15:17	
2,2-Dichloropropane	1.0	UH	2.0	1.0	0.35			06/23/23 15:17	
,1-Dichloropropene	1.0	UH	2.0	1.0	0.28	ug/L		06/23/23 15:17	
is-1,3-Dichloropropene	1.0	UH	2.0	1.0	0.26	ug/L		06/23/23 15:17	
rans-1,3-Dichloropropene	1.0	UH	2.0	1.0	0.23			06/23/23 15:17	
thylbenzene	0.50	UH	1.0	0.50	0.20	ug/L		06/23/23 15:17	
Hexachlorobutadiene	1.0	UH	5.0	1.0	0.22	ug/L		06/23/23 15:17	
?-Hexanone	10	UH	20	10	3.2	ug/L		06/23/23 15:17	
sopropylbenzene	1.0	UH	2.0	1.0	0.26	ug/L		06/23/23 15:17	
-Isopropyltoluene	1.0	UH	2.0	1.0	0.44	ug/L		06/23/23 15:17	
Methylene Chloride	10	UH	20	10	3.2	ug/L		06/23/23 15:17	
-Methyl-2-pentanone (MIBK)	10	UH	20	10	2.7	ug/L		06/23/23 15:17	
Methyl tert-butyl ether	2.0	UH	5.0	2.0	0.81			06/23/23 15:17	
Naphthalene	5.0	UН	10	5.0		ug/L		06/23/23 15:17	
\-Propylbenzene		UH	2.0	1.0		ug/L		06/23/23 15:17	

Eurofins Savannah

Job ID: 680-236086-2

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-17XBR-SPR23

Date Collected: 06/07/23 14:05 Date Received: 06/09/23 09:46 Lab Sample ID: 680-236086-5

Matrix: Water

Job ID: 680-236086-2

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	UH	2.0	1.0	0.27	ug/L		06/23/23 15:17	1
1,1,1,2-Tetrachloroethane	1.0	UH	2.0	1.0	0.36	ug/L		06/23/23 15:17	1
1,1,2,2-Tetrachloroethane	1.0	UH	2.0	1.0	0.40	ug/L		06/23/23 15:17	1
Tetrachloroethene	1.0	UH	2.0	1.0	0.35	ug/L		06/23/23 15:17	1
Toluene	1.0	UH	2.0	1.0	0.25	ug/L		06/23/23 15:17	1
1,2,3-Trichlorobenzene	2.0	UH	5.0	2.0	0.81	ug/L		06/23/23 15:17	1
1,2,4-Trichlorobenzene	2.0	UH	5.0	2.0	0.53	ug/L		06/23/23 15:17	1
1,1,1-Trichloroethane	0.50	UH	1.0	0.50	0.21	ug/L		06/23/23 15:17	1
1,1,2-Trichloroethane	1.0	UH	2.0	1.0	0.32	ug/L		06/23/23 15:17	1
Trichloroethene	0.50	UH	1.0	0.50	0.20	ug/L		06/23/23 15:17	1
Trichlorofluoromethane	1.0	UHQ	2.0	1.0	0.33	ug/L		06/23/23 15:17	1
1,2,3-Trichloropropane	1.0	UH	2.0	1.0	0.48	ug/L		06/23/23 15:17	1
1,2,4-Trimethylbenzene	1.0	UH	2.0	1.0	0.43	ug/L		06/23/23 15:17	1
1,3,5-Trimethylbenzene	1.0	UH	2.0	1.0	0.28	ug/L		06/23/23 15:17	1
/inyl acetate	2.0	UHQ	2.5	2.0	0.69	ug/L		06/23/23 15:17	1
/inyl chloride	1.0	UH	2.0	1.0	0.40	ug/L		06/23/23 15:17	1
o-Xylene	1.0	UH	2.0	1.0	0.26	ug/L		06/23/23 15:17	1
m-Xylene & p-Xylene	1.0	UH	2.0	1.0	0.49	ug/L		06/23/23 15:17	1
Xylenes, Total	1.0	UН	2.0	1.0	0.49	ug/L		06/23/23 15:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	89 - 112		06/23/23 15:17	1
1,2-Dichloroethane-d4 (Surr)	90	81 - 118		06/23/23 15:17	1
4-Bromofluorobenzene (Surr)	97	85 - 114		06/23/23 15:17	1
Dibromofluoromethane (Surr)	95	80 - 119		06/23/23 15:17	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U J1	5.0	2.0	1.0	ug/L		06/21/23 01:48	1
C9-C10 Aromatics	20	U J1	100	20	10	ug/L		06/21/23 01:48	1
Ethylbenzene	2.0	U J1	5.0	2.0	1.0	ug/L		06/21/23 01:48	1
Methyl tert-butyl ether	2.0	U J1	5.0	2.0	1.0	ug/L		06/21/23 01:48	1
Naphthalene	4.0	U J1	6.0	4.0	2.0	ug/L		06/21/23 01:48	1
Toluene	2.0	U J1	5.0	2.0	1.0	ug/L		06/21/23 01:48	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 01:48	1
m-Xylene & p-Xylene	5.0	U J1	10	5.0	2.5	ug/L		06/21/23 01:48	1
o-Xylene	2.0	U J1	5.0	2.0	1.0	ug/L		06/21/23 01:48	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 01:48	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	101		70 - 130		06/21/23 01:48	1
a,a,a-Trifluorotoluene (pid)	99		70 - 130		06/21/23 01:48	1

- "								
Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
5.9	J	10	5.0	1.3	ug/L		06/14/23 15:55	1
	5.9	5.9 J	5.9 J 10	5.9 J 10 5.0	5.9 J 10 5.0 1.3	5.9 J 10 5.0 1.3 ug/L	5.9 J 10 5.0 1.3 ug/L	5.9 J 10 5.0 1.3 ug/L 06/14/23 15:55

Method: SW846 6020A - Metals (ICP/N	VIS) - Total Re	ecoverable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	0.94	J	5.0	3.0	0.86	ug/L		06/14/23 15:18	1

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-RB-01-SPR23

Lab Sample ID: 680-236086-6 Date Collected: 06/07/23 15:00 Matrix: Water

Date Received: 06/09/23 09:46

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Acetone		U H	25	10	3.7	ug/L		06/23/23 14:34	
Benzene	1.0	UН	2.0	1.0	0.27	ug/L		06/23/23 14:34	
Bromobenzene	0.50	UН	1.0	0.50	0.24	ug/L		06/23/23 14:34	
Chlorobromomethane	1.0	UH	2.0	1.0	0.34	ug/L		06/23/23 14:34	
Dichlorobromomethane	1.0	UH	2.0	1.0		ug/L		06/23/23 14:34	
Bromoform	2.0	UН	2.5	2.0	0.59	-		06/23/23 14:34	
Bromomethane	10	UH	20	10		ug/L		06/23/23 14:34	
2-Butanone (MEK)	20	UH	25	20		ug/L		06/23/23 14:34	
n-Butylbenzene	2.0	UH	2.5	2.0	0.52	-		06/23/23 14:34	
sec-Butylbenzene	2.0	UH	2.5	2.0	0.53			06/23/23 14:34	
tert-Butylbenzene	1.0	UH	2.0	1.0		ug/L		06/23/23 14:34	
Carbon disulfide	1.0	UH	2.0	1.0	0.43	_		06/23/23 14:34	
Carbon tetrachloride	1.0	UHQ	2.0	1.0	0.30			06/23/23 14:34	
Chlorobenzene	0.50		1.0	0.50	0.15	ug/L		06/23/23 14:34	
Chloroethane	0.30	UHQ	20	10		ug/L ug/L		06/23/23 14:34	
Chloroform	1.0		2.0	1.0	0.27			06/23/23 14:34	
			2.5					06/23/23 14:34	
Chloromethane	2.0			2.0	0.54	•			
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/23/23 14:34	
4-Chlorotoluene		UH	2.0	1.0	0.41	Ü		06/23/23 14:34	
Chlorodibromomethane	1.0	UH	2.0	1.0	0.39	ug/L		06/23/23 14:34	
1,2-Dibromo-3-Chloropropane	5.0		10	5.0	1.8	ug/L		06/23/23 14:34	
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/23/23 14:34	
Dibromomethane	1.0		2.0	1.0	0.34	ug/L		06/23/23 14:34	
1,2-Dichlorobenzene		UH	2.0	1.0		ug/L		06/23/23 14:34	
1,3-Dichlorobenzene	1.0		2.0	1.0	0.31			06/23/23 14:34	
1,4-Dichlorobenzene	1.0	UH	2.0	1.0	0.31	ug/L		06/23/23 14:34	
Dichlorodifluoromethane	1.0	UH	2.0	1.0		ug/L		06/23/23 14:34	
1,1-Dichloroethane	1.0	UH	2.0	1.0	0.33	ug/L		06/23/23 14:34	
1,2-Dichloroethane	1.0	UH	2.0	1.0	0.25	ug/L		06/23/23 14:34	
cis-1,2-Dichloroethene	1.0	UH	2.0	1.0	0.25	ug/L		06/23/23 14:34	
trans-1,2-Dichloroethene	1.0	UH	2.0	1.0	0.34	ug/L		06/23/23 14:34	
1,2-Dichloroethene, Total	1.0	UH	2.0	1.0	0.37	ug/L		06/23/23 14:34	
1,1-Dichloroethene	1.0	UH	2.0	1.0	0.33	ug/L		06/23/23 14:34	
1,2-Dichloropropane	0.50	UH	1.0	0.50	0.22	ug/L		06/23/23 14:34	
1,3-Dichloropropane	1.0	UH	2.0	1.0	0.36	ug/L		06/23/23 14:34	
2,2-Dichloropropane	1.0	UH	2.0	1.0	0.35	ug/L		06/23/23 14:34	
1,1-Dichloropropene	1.0	UH	2.0	1.0	0.28	ug/L		06/23/23 14:34	
cis-1,3-Dichloropropene	1.0	UH	2.0	1.0	0.26	ug/L		06/23/23 14:34	
trans-1,3-Dichloropropene	1.0	UH	2.0	1.0	0.23	ug/L		06/23/23 14:34	
Ethylbenzene	0.50	UH	1.0	0.50	0.20	ug/L		06/23/23 14:34	
Hexachlorobutadiene	1.0	UН	5.0	1.0		ug/L		06/23/23 14:34	
2-Hexanone	10	UMH	20	10		ug/L		06/23/23 14:34	
sopropylbenzene		UH	2.0	1.0		ug/L		06/23/23 14:34	
4-Isopropyltoluene		UН	2.0	1.0	0.44	-		06/23/23 14:34	
Methylene Chloride		UH	20	10		ug/L		06/23/23 14:34	
4-Methyl-2-pentanone (MIBK)		UH	20	10		ug/L		06/23/23 14:34	
Methyl tert-butyl ether		UH	5.0	2.0		ug/L		06/23/23 14:34	
Naphthalene		UH	10	5.0		ug/L		06/23/23 14:34	
N-Propylbenzene		UH	2.0	1.0		ug/L ug/L		06/23/23 14:34	

Eurofins Savannah

Job ID: 680-236086-2

Client: Seres Engineering & Services LLC

Date Received: 06/09/23 09:46

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

a,a,a-Trifluorotoluene (fid)

a,a,a-Trifluorotoluene (pid)

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-RB-01-SPR23

Date Collected: 06/07/23 15:00

89

101

91

101

100

Lab Sample ID: 680-236086-6

06/23/23 14:34

06/23/23 14:34

06/23/23 14:34

06/21/23 05:54

06/21/23 05:54

Matrix: Water

Job ID: 680-236086-2

Analyte	Result	Qualifier	I	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	UH		2.0	1.0	0.27	ug/L	_	06/23/23 14:34	1
1,1,1,2-Tetrachloroethane	1.0	UH		2.0	1.0	0.36	ug/L		06/23/23 14:34	1
1,1,2,2-Tetrachloroethane	1.0	UH		2.0	1.0	0.40	ug/L		06/23/23 14:34	1
Tetrachloroethene	1.0	UH		2.0	1.0	0.35	ug/L		06/23/23 14:34	1
Toluene	1.0	UH		2.0	1.0	0.25	ug/L		06/23/23 14:34	1
1,2,3-Trichlorobenzene	2.0	UH		5.0	2.0	0.81	ug/L		06/23/23 14:34	1
1,2,4-Trichlorobenzene	2.0	UH		5.0	2.0	0.53	ug/L		06/23/23 14:34	1
1,1,1-Trichloroethane	0.50	UH		1.0	0.50	0.21	ug/L		06/23/23 14:34	1
1,1,2-Trichloroethane	1.0	UH		2.0	1.0	0.32	ug/L		06/23/23 14:34	1
Trichloroethene	0.50	UH		1.0	0.50	0.20	ug/L		06/23/23 14:34	1
Trichlorofluoromethane	1.0	UHQ		2.0	1.0	0.33	ug/L		06/23/23 14:34	1
1,2,3-Trichloropropane	1.0	UH		2.0	1.0	0.48	ug/L		06/23/23 14:34	1
1,2,4-Trimethylbenzene	1.0	UH		2.0	1.0	0.43	ug/L		06/23/23 14:34	1
1,3,5-Trimethylbenzene	1.0	UH		2.0	1.0	0.28	ug/L		06/23/23 14:34	1
Vinyl acetate	2.0	UHQ		2.5	2.0	0.69	ug/L		06/23/23 14:34	1
Vinyl chloride	1.0	UH		2.0	1.0	0.40	ug/L		06/23/23 14:34	1
o-Xylene	1.0	UH		2.0	1.0	0.26	ug/L		06/23/23 14:34	1
m-Xylene & p-Xylene	1.0	UH		2.0	1.0	0.49	ug/L		06/23/23 14:34	1
Xylenes, Total	1.0	UH		2.0	1.0	0.49	ug/L		06/23/23 14:34	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared		Analyzed	Dil Fac
Toluene-d8 (Surr)	98		89 - 112	-					06/23/23 14:34	1

Analyte	Result	Qualifier	L	.oq	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U		5.0	2.0	1.0	ug/L	_	06/21/23 05:54	1
C9-C10 Aromatics	20	U		100	20	10	ug/L		06/21/23 05:54	1
Ethylbenzene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 05:54	1
Methyl tert-butyl ether	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 05:54	1
Naphthalene	4.0	U		6.0	4.0	2.0	ug/L		06/21/23 05:54	1
Toluene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 05:54	1
C9-C12 Aliphatics (adjusted)	50	U		100	50	25	ug/L		06/21/23 05:54	1
m-Xylene & p-Xylene	5.0	U		10	5.0	2.5	ug/L		06/21/23 05:54	1
o-Xylene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 05:54	1
C5-C8 Aliphatics (adjusted)	50	U		100	50	25	ug/L		06/21/23 05:54	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared		Analyzed	Dil Fac

81 - 118

85 - 114

80 - 119

Method: SW846 6010C - Metals (ICP)	- Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Manganese	5.0	U	10	5.0	1.3	ug/L		06/13/23 17:21	1
Method: SW846 6020A - Metals (ICP/I Analyte Arsenic	•	Qualifier	LOQ			Unit ug/L	<u>D</u>	Analyzed 06/14/23 14:58	Dil Fac

70 - 130

70 - 130

Eurofins Savannah

7/20/2023

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-784770/9

Matrix: Water

Analysis Batch: 784770

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 680-236086-2

			ļ
D	Analyzed	Dil Fac	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:59	1	
	06/21/23 15:50	1	

Amalista		MB		1.65	Ε,	1114	_	A 1	D.: -
Analyte		Qualifier	LOQ _	LOD _		Unit	<u>D</u>	Analyzed	Dil Fac
Acetone	10		25	10	3.7	•		06/21/23 15:59	•
Benzene	1.0		2.0	1.0	0.27	ug/L		06/21/23 15:59	•
Bromobenzene	0.50		1.0	0.50		ug/L		06/21/23 15:59	
Chlorobromomethane	1.0		2.0	1.0	0.34	ug/L		06/21/23 15:59	•
Dichlorobromomethane	1.0		2.0	1.0	0.25	ug/L		06/21/23 15:59	•
Bromoform	2.0		2.5	2.0	0.59	ug/L		06/21/23 15:59	
Bromomethane	10		20	10	3.7	ug/L		06/21/23 15:59	•
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/21/23 15:59	
n-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/21/23 15:59	
sec-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/21/23 15:59	•
tert-Butylbenzene	1.0	U	2.0	1.0		ug/L		06/21/23 15:59	
Carbon disulfide	1.0	U	2.0	1.0	0.43	ug/L		06/21/23 15:59	
Carbon tetrachloride	1.0	U	2.0	1.0	0.30	ug/L		06/21/23 15:59	•
Chlorobenzene	0.50	U	1.0	0.50	0.15	ug/L		06/21/23 15:59	
Chloroethane	10	U	20	10	4.6	ug/L		06/21/23 15:59	
Chloroform	1.0	U	2.0	1.0	0.27	ug/L		06/21/23 15:59	
Chloromethane	2.0	U	2.5	2.0	0.54	ug/L		06/21/23 15:59	
2-Chlorotoluene	0.50	U	1.0	0.50	0.25	ug/L		06/21/23 15:59	
4-Chlorotoluene	1.0	U	2.0	1.0	0.41	ug/L		06/21/23 15:59	
Chlorodibromomethane	1.0	U	2.0	1.0	0.39	ug/L		06/21/23 15:59	
1,2-Dibromo-3-Chloropropane	5.0	U	10	5.0	1.8	ug/L		06/21/23 15:59	
Ethylene Dibromide	1.0	U	2.0	1.0	0.33	ug/L		06/21/23 15:59	
Dibromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/21/23 15:59	
1,2-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/21/23 15:59	
1,3-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/21/23 15:59	
1,4-Dichlorobenzene	1.0	U	2.0	1.0		ug/L		06/21/23 15:59	
Dichlorodifluoromethane	1.0	U	2.0	1.0		ug/L		06/21/23 15:59	
1,1-Dichloroethane	1.0	U	2.0	1.0		ug/L		06/21/23 15:59	
1,2-Dichloroethane		UM	2.0	1.0		ug/L		06/21/23 15:59	
cis-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
trans-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
1,2-Dichloroethene, Total	1.0		2.0	1.0		ug/L		06/21/23 15:59	
1,1-Dichloroethene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
1,2-Dichloropropane	0.50		1.0	0.50		ug/L		06/21/23 15:59	
1,3-Dichloropropane	1.0		2.0	1.0		ug/L		06/21/23 15:59	
2,2-Dichloropropane	1.0		2.0	1.0		ug/L		06/21/23 15:59	
1,1-Dichloropropene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
cis-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
trans-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
Ethylbenzene	0.50		1.0	0.50		ug/L		06/21/23 15:59	
•			5.0	1.0		_			
Hexachlorobutadiene	1.0					ug/L		06/21/23 15:59	
2-Hexanone	10		20	10		ug/L		06/21/23 15:59	
Isopropyltelyone	1.0		2.0	1.0		ug/L		06/21/23 15:59	
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/21/23 15:59	
Methylene Chloride	10		20	10		ug/L		06/21/23 15:59	
4-Methyl-2-pentanone (MIBK)	10		20	10		ug/L		06/21/23 15:59	
Methyl tert-butyl ether	2.0		5.0	2.0		ug/L		06/21/23 15:59	
Naphthalene	5.0	U	10	5.0	2.4	ug/L		06/21/23 15:59	

LOQ

2.0

2.0

2.0

2.0

2.0

2.0

5.0

5.0

1.0

2.0

1.0

2.0

2.0

2.0

2.0

2.5

2.0

2.0

2.0

2.0

LOD

1.0

1.0

1.0

1.0

1.0

1.0

2.0

2.0

0.50

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

0.50

0.41

0.27

0.36

0.40

0.35

0.25 ug/L

0.81

0.21

0.32 ug/L

0.20 ug/L

0.33 ug/L

0.48 ug/L

0.43 ug/L

0.28 ug/L

0.69

0.40 ug/L

0.26 ug/L

0.49 ug/L

0.49 ug/L

ug/L

ug/L

ug/L

ug/L

Client: Seres Engineering & Services LLC

Lab Sample ID: MB 680-784770/9

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

2.0 U

2.0 U

0.50 U

1.0 U

0.50 U

1.0 U

1.0 U

1.0 U

1.0 U

2.0 U

1.0 U

1.0 U

1.0 U

Result Qualifier

Matrix: Water

N-Propylbenzene

Tetrachloroethene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m-Xylene & p-Xylene

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

o-Xylene

Analyte

Styrene

Toluene

Analysis Batch: 784770

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236086-2

DL Unit Dil Fac Analyzed ug/L 06/21/23 15:59 ug/L 06/21/23 15:59 ug/L 06/21/23 15:59 ug/L 06/21/23 15:59 ug/L 06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

06/21/23 15:59

6

1.0	U

	MB MI	IB .			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	89 - 112		06/21/23 15:59	1
1,2-Dichloroethane-d4 (Surr)	111	81 - 118		06/21/23 15:59	1
4-Bromofluorobenzene (Surr)	85	85 - 114		06/21/23 15:59	1
Dibromofluoromethane (Surr)	110	80 - 119		06/21/23 15:59	1

Lab Sample ID: LCS 680-784770/3

Matrix: Water

Analysis Batch: 784770

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

7									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Acetone	250	247		ug/L		99	39 - 160		
Benzene	50.0	52.1		ug/L		104	79 - 120		
Bromobenzene	50.0	51.2		ug/L		102	80 - 120		
Chlorobromomethane	50.0	52.9		ug/L		106	78 - 123		
Dichlorobromomethane	50.0	60.0		ug/L		120	79 - 125		
Bromoform	50.0	51.2		ug/L		102	66 - 130		
Bromomethane	50.0	54.6		ug/L		109	53 - 141		
2-Butanone (MEK)	250	259		ug/L		104	56 - 143		
n-Butylbenzene	50.0	54.7		ug/L		109	75 - 128		
sec-Butylbenzene	50.0	50.7		ug/L		101	77 - 126		
tert-Butylbenzene	50.0	50.6		ug/L		101	78 - 124		
Carbon disulfide	50.0	51.9		ug/L		104	64 - 133		
Carbon tetrachloride	50.0	51.8		ug/L		104	72 - 136		
Chlorobenzene	50.0	52.1		ug/L		104	82 - 118		
Chloroethane	50.0	53.2		ug/L		106	60 - 138		
Chloroform	50.0	54.6		ug/L		109	79 - 124		

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-784770/3

Matrix: Water

Client Sample ID: Lab Control Sample

Job ID: 680-236086-2

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	50.0	50.9		ug/L		102	50 - 139
2-Chlorotoluene	50.0	55.9		ug/L		112	79 - 122
4-Chlorotoluene	50.0	55.3		ug/L		111	78 - 122
Chlorodibromomethane	50.0	58.0		ug/L		116	74 - 126
1,2-Dibromo-3-Chloropropane	50.0	54.7		ug/L		109	62 - 128
Ethylene Dibromide	50.0	55.2		ug/L		110	75 - 127
Dibromomethane	50.0	58.3		ug/L		117	79 - 123
1,2-Dichlorobenzene	50.0	55.4		ug/L		111	80 - 119
1,3-Dichlorobenzene	50.0	54.1		ug/L		108	80 - 119
1,4-Dichlorobenzene	50.0	56.9		ug/L		114	79 - 118
Dichlorodifluoromethane	50.0	48.1		ug/L		96	32 - 152
1,1-Dichloroethane	50.0	53.1		ug/L		106	77 - 125
1,2-Dichloroethane	50.0	55.9		ug/L		112	73 - 128
cis-1,2-Dichloroethene	50.0	55.9		ug/L		112	78 - 123
trans-1,2-Dichloroethene	50.0	53.5		ug/L		107	75 - 124
1,2-Dichloroethene, Total	100	109		ug/L		109	79 - 121
1,1-Dichloroethene	50.0	55.6		ug/L		111	71 - 131
1,2-Dichloropropane	50.0	56.7		ug/L		113	78 - 122
1,3-Dichloropropane	50.0	57.2		ug/L		114	80 - 119
2,2-Dichloropropane	50.0	51.6		ug/L		103	60 - 139
1,1-Dichloropropene	50.0	51.8		ug/L		104	79 - 125
cis-1,3-Dichloropropene	50.0	55.2		ug/L		110	75 - 124
trans-1,3-Dichloropropene	50.0	57.7		ug/L ug/L		115	73 - 127
Ethylbenzene	50.0	54.3		ug/L ug/L		109	79 - 121
Hexachlorobutadiene	50.0	58.7		-		117	66 - 134
2-Hexanone	250	234		ug/L ug/L		93	57 ₋ 139
						105	72 - 131
Isopropylbenzene	50.0	52.5		ug/L		105	72 - 131 77 - 127
4-Isopropyltoluene	50.0 50.0	53.3 55.2		ug/L		1107	77 - 127 74 - 124
Methylene Chloride				ug/L			
4-Methyl-2-pentanone (MIBK)	250	269		ug/L		108	67 - 130
Methyl tert-butyl ether	50.0	53.8		ug/L		108	71 - 124
Naphthalene	50.0	56.9		ug/L		114	61 - 128
N-Propylbenzene	50.0	55.0		ug/L		110	76 - 126
Styrene	50.0	53.4		ug/L		107	78 - 123
1,1,1,2-Tetrachloroethane	50.0	54.1		ug/L		108	78 - 124
1,1,2,2-Tetrachloroethane	50.0	49.8		ug/L		100	71 - 121
Tetrachloroethene	50.0	53.1		ug/L		106	74 - 129
Toluene	50.0	54.6		ug/L		109	80 - 121
1,2,3-Trichlorobenzene	50.0	61.9		ug/L		124	69 - 129
1,2,4-Trichlorobenzene	50.0	59.5		ug/L		119	69 - 130
1,1,1-Trichloroethane	50.0	53.8		ug/L		108	74 - 131
1,1,2-Trichloroethane	50.0	56.3		ug/L		113	80 - 119
Trichloroethene	50.0	55.2		ug/L		110	79 - 123
Trichlorofluoromethane	50.0	77.1	Q	ug/L		154	65 - 141
1,2,3-Trichloropropane	50.0	51.2		ug/L		102	73 - 122
1,2,4-Trimethylbenzene	50.0	50.5		ug/L		101	76 - 124
1,3,5-Trimethylbenzene	50.0	52.1		ug/L		104	75 - 124
Vinyl acetate	100	92.4		ug/L		92	54 - 146
Vinyl chloride	50.0	52.9		ug/L		106	58 - 137

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-784770/3

Matrix: Water

Analysis Batch: 784770

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236086-2

%Rec

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	50.0	53.7		ug/L		107	78 - 122	
m-Xylene & p-Xylene	50.0	55.3		ug/L		111	80 - 121	
Xylenes, Total	100	109		ug/L		109	79 - 121	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		89 - 112
1,2-Dichloroethane-d4 (Surr)	114		81 - 118
4-Bromofluorobenzene (Surr)	114		85 - 114
Dibromofluoromethane (Surr)	113		80 - 119

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 680-784770/4 **Matrix: Water**

Analysis Batch: 784770									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	245		ug/L		98	39 - 160	1	20
Benzene	50.0	52.5		ug/L		105	79 - 120	1	20
Bromobenzene	50.0	48.1		ug/L		96	80 - 120	6	20
Chlorobromomethane	50.0	52.9		ug/L		106	78 - 123	0	20
Dichlorobromomethane	50.0	60.6		ug/L		121	79 - 125	1	20
Bromoform	50.0	50.8		ug/L		102	66 - 130	1	20
Bromomethane	50.0	53.0		ug/L		106	53 - 141	3	20
2-Butanone (MEK)	250	259		ug/L		103	56 - 143	0	20
n-Butylbenzene	50.0	62.4		ug/L		125	75 - 128	13	20
sec-Butylbenzene	50.0	40.6	Q	ug/L		81	77 - 126	22	20
tert-Butylbenzene	50.0	39.3	Q	ug/L		79	78 - 124	25	20
Carbon disulfide	50.0	52.9		ug/L		106	64 - 133	2	20
Carbon tetrachloride	50.0	52.6		ug/L		105	72 - 136	2	20
Chlorobenzene	50.0	54.0		ug/L		108	82 - 118	4	20
Chloroethane	50.0	54.0		ug/L		108	60 - 138	1	20
Chloroform	50.0	54.3		ug/L		109	79 - 124	1	20
Chloromethane	50.0	49.5		ug/L		99	50 - 139	3	20
2-Chlorotoluene	50.0	43.9	Q	ug/L		88	79 - 122	24	20
4-Chlorotoluene	50.0	44.3	Q	ug/L		89	78 - 122	22	20
Chlorodibromomethane	50.0	57.8		ug/L		116	74 - 126	0	20
1,2-Dibromo-3-Chloropropane	50.0	53.9		ug/L		108	62 - 128	2	20
Ethylene Dibromide	50.0	54.8		ug/L		110	75 - 127	1	20
Dibromomethane	50.0	57.7		ug/L		115	79 - 123	1	20
1,2-Dichlorobenzene	50.0	56.7		ug/L		113	80 - 119	2	20
1,3-Dichlorobenzene	50.0	52.1		ug/L		104	80 - 119	4	20
1,4-Dichlorobenzene	50.0	55.3		ug/L		111	79 - 118	3	20
Dichlorodifluoromethane	50.0	50.4		ug/L		101	32 - 152	5	20
1,1-Dichloroethane	50.0	53.8		ug/L		108	77 - 125	1	20
1,2-Dichloroethane	50.0	56.0		ug/L		112	73 - 128	0	20
cis-1,2-Dichloroethene	50.0	56.9		ug/L		114	78 - 123	2	20
trans-1,2-Dichloroethene	50.0	54.2		ug/L		108	75 - 124	1	20
1,2-Dichloroethene, Total	100	111		ug/L		111	79 - 121	1	20
1,1-Dichloroethene	50.0	55.9		ug/L		112	71 - 131	1	20

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-784770/4

Matrix: Water

Analysis Batch: 784770

Client Sample ID: Lab Control Sample Dup

Job ID: 680-236086-2

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	50.0	57.3		ug/L		115	78 - 122	1	20
1,3-Dichloropropane	50.0	57.7		ug/L		115	80 - 119	1	20
2,2-Dichloropropane	50.0	51.7		ug/L		103	60 - 139	0	20
1,1-Dichloropropene	50.0	53.0		ug/L		106	79 - 125	2	20
cis-1,3-Dichloropropene	50.0	54.9		ug/L		110	75 - 124	1	20
trans-1,3-Dichloropropene	50.0	57.9		ug/L		116	73 - 127	0	20
Ethylbenzene	50.0	54.2		ug/L		108	79 - 121	0	20
Hexachlorobutadiene	50.0	63.5		ug/L		127	66 - 134	8	20
2-Hexanone	250	222		ug/L		89	57 - 139	5	20
Isopropylbenzene	50.0	38.5	Q	ug/L		77	72 - 131	31	20
4-Isopropyltoluene	50.0	58.4		ug/L		117	77 - 127	9	20
Methylene Chloride	50.0	55.7		ug/L		111	74 - 124	1	20
4-Methyl-2-pentanone (MIBK)	250	267		ug/L		107	67 - 130	1	20
Methyl tert-butyl ether	50.0	53.5		ug/L		107	71 - 124	1	20
Naphthalene	50.0	73.5	Q	ug/L		147	61 - 128	25	20
N-Propylbenzene	50.0	42.3	Q	ug/L		85	76 - 126	26	20
Styrene	50.0	42.7	Q	ug/L		85	78 - 123	22	20
1,1,1,2-Tetrachloroethane	50.0	54.7		ug/L		109	78 - 124	1	20
1,1,2,2-Tetrachloroethane	50.0	58.7		ug/L		117	71 - 121	16	20
Tetrachloroethene	50.0	53.5		ug/L		107	74 - 129	1	20
Toluene	50.0	56.9		ug/L		114	80 - 121	4	20
1,2,3-Trichlorobenzene	50.0	77.0	Q	ug/L		154	69 - 129	22	20
1,2,4-Trichlorobenzene	50.0	76.8	Q	ug/L		154	69 - 130	25	20
1,1,1-Trichloroethane	50.0	55.0		ug/L		110	74 - 131	2	20
1,1,2-Trichloroethane	50.0	56.4		ug/L		113	80 - 119	0	20
Trichloroethene	50.0	57.3		ug/L		115	79 - 123	4	20
Trichlorofluoromethane	50.0	78.2	Q	ug/L		156	65 - 141	1	20
1,2,3-Trichloropropane	50.0	50.2		ug/L		100	73 - 122	2	20
1,2,4-Trimethylbenzene	50.0	49.3		ug/L		99	76 - 124	2	20
1,3,5-Trimethylbenzene	50.0	50.6		ug/L		101	75 - 124	3	20
Vinyl acetate	100	79.1		ug/L		79	54 - 146	15	20
Vinyl chloride	50.0	53.0		ug/L		106	58 - 137	0	20
o-Xylene	50.0	44.2		ug/L		88	78 - 122	19	20
m-Xylene & p-Xylene	50.0	45.5		ug/L		91	80 - 121	20	20
Xylenes, Total	100	89.7		ug/L		90	79 - 121	19	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits		
Toluene-d8 (Surr)	95		89 - 112		
1,2-Dichloroethane-d4 (Surr)	115		81 - 118		
4-Bromofluorobenzene (Surr)	119	Q	85 - 114		
Dibromofluoromethane (Surr)	115		80 - 119		

Lab Sample ID: 680-236086-5 MS

Matrix: Water

Analysis Ratch: 784770

Alialysis Balcii. 104110										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	10	П	250	242		ug/L		97	39 - 160	

Eurofins Savannah

Prep Type: Total/NA

Client Sample ID: 32M-01-17XBR-SPR23

7/20/2023

Client: Seres Engineering & Services LLC

Lab Sample ID: 680-236086-5 MS

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 32M-01-17XBR-SPR23

Prep Type: Total/NA

Job ID: 680-236086-2

Matrix: Water

Analysis Batch: 784770	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Benzene	1.0		50.0	53.9	Quaimer	ug/L	=	108	79 ₋ 120	
Bromobenzene	0.50		50.0	55.4		ug/L ug/L		111	80 - 120	
Chlorobromomethane	1.0		50.0	54.9		ug/L		110	78 - 123	
	1.0		50.0			-				
Dichlorobromomethane				60.8		ug/L		122	79 - 125	
Bromoform	2.0		50.0	47.1		ug/L		94	66 - 130	
Bromomethane	10		50.0	52.6		ug/L		105	53 - 141	
2-Butanone (MEK)	20		250	266		ug/L		106	56 - 143	
n-Butylbenzene	2.0		50.0	49.2		ug/L		98	75 - 128	
sec-Butylbenzene		UQ	50.0	45.9		ug/L		92	77 - 126	
tert-Butylbenzene		UQ	50.0	45.9		ug/L		92	78 - 124	
Carbon disulfide	1.0	U	50.0	55.8		ug/L		112	64 - 133	
Carbon tetrachloride	1.0	U	50.0	57.1		ug/L		114	72 - 136	
Chlorobenzene	0.50		50.0	52.6		ug/L		105	82 - 118	
Chloroethane	10	U Q J1	50.0	103	J1	ug/L		205	60 - 138	
Chloroform	1.0	U	50.0	56.8		ug/L		114	79 - 124	
Chloromethane	2.0	U	50.0	41.4		ug/L		83	50 - 139	
2-Chlorotoluene	0.50	UQ	50.0	58.0		ug/L		116	79 - 122	
4-Chlorotoluene	1.0	UQ	50.0	54.5		ug/L		109	78 - 122	
Chlorodibromomethane	1.0	U	50.0	56.7		ug/L		113	74 - 126	
1,2-Dibromo-3-Chloropropane	5.0	U	50.0	47.1		ug/L		94	62 - 128	
Ethylene Dibromide	1.0	U	50.0	53.6		ug/L		107	75 - 127	
Dibromomethane	1.0	U	50.0	57.4		ug/L		115	79 - 123	
1,2-Dichlorobenzene	1.0	U	50.0	52.1		ug/L		104	80 - 119	
1,3-Dichlorobenzene	1.0	U	50.0	51.4		ug/L		103	80 - 119	
1,4-Dichlorobenzene	1.0	U	50.0	53.2		ug/L		106	79 - 118	
Dichlorodifluoromethane	1.0	U	50.0	44.5		ug/L		89	32 - 152	
1,1-Dichloroethane	1.0	U	50.0	56.2		ug/L		112	77 - 125	
1,2-Dichloroethane	1.0	U M	50.0	57.8		ug/L		116	73 - 128	
cis-1,2-Dichloroethene	1.0	U	50.0	57.5		ug/L		115	78 - 123	
trans-1,2-Dichloroethene	1.0		50.0	57.3		ug/L		115	75 - 124	
1,2-Dichloroethene, Total	1.0		100	115		ug/L		115	79 - 121	
1,1-Dichloroethene	1.0		50.0	59.6		ug/L		119	71 - 131	
1,2-Dichloropropane	0.50		50.0	56.4		ug/L		113	78 - 122	
1,3-Dichloropropane	1.0		50.0	57.7		ug/L		115	80 - 119	
2,2-Dichloropropane	1.0		50.0	42.8		ug/L		86	60 - 139	
1,1-Dichloropropene	1.0		50.0	56.4		ug/L		113	79 - 125	
cis-1,3-Dichloropropene	1.0		50.0	54.8		ug/L		110	75 - 124	
trans-1,3-Dichloropropene	1.0		50.0	53.8		ug/L ug/L		108	73 - 124	
		U Q J1	50.0	63.4				127	79 - 121	
Ethylbenzene					JI	ug/L				
Hexachlorobutadiene	1.0		50.0	43.7		ug/L		87 107	66 ₋ 134	
2-Hexanone	10		250	269		ug/L		107	57 - 139	
Isopropylbenzene		UQ	50.0	55.7		ug/L		111	72 - 131	
4-Isopropyltoluene	1.0		50.0	48.7		ug/L		97	77 - 127	
Methylene Chloride	10		50.0	57.2		ug/L		114	74 - 124	
4-Methyl-2-pentanone (MIBK)	10		250	292		ug/L		117	67 - 130	
Methyl tert-butyl ether	2.0		50.0	55.5		ug/L		111	71 - 124	
Naphthalene		UQ	50.0	47.9		ug/L		96	61 - 128	
N-Propylbenzene		UQ	50.0	51.5		ug/L		103	76 - 126	
Styrene	1.0	UQ	50.0	53.5		ug/L		107	78 - 123	

Eurofins Savannah

Page 15 of 37

MS MS

58.6

60.2

119

ug/L

ug/L

ug/L

Client: Seres Engineering & Services LLC

Lab Sample ID: 680-236086-5 MS

Matrix: Water

Analysis Batch: 784770

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Client Sample ID: 32M-01-17XBR-SPR23

%Rec

Prep Type: Total/NA

Job ID: 680-236086-2

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	1.0	U	50.0	49.1		ug/L		98	78 - 124	
1,1,2,2-Tetrachloroethane	1.0	UQ	50.0	50.6		ug/L		101	71 - 121	
Tetrachloroethene	1.0	U	50.0	51.7		ug/L		103	74 - 129	
Toluene	1.0	U	50.0	60.4		ug/L		121	80 - 121	
1,2,3-Trichlorobenzene	2.0	UQ	50.0	53.5		ug/L		107	69 - 129	
1,2,4-Trichlorobenzene	2.0	UQ	50.0	45.3		ug/L		91	69 - 130	
1,1,1-Trichloroethane	0.50	U	50.0	58.2		ug/L		116	74 - 131	
1,1,2-Trichloroethane	1.0	U	50.0	55.0		ug/L		110	80 - 119	
Trichloroethene	0.50	U	50.0	55.6		ug/L		111	79 - 123	
Trichlorofluoromethane	1.0	U Q J1	50.0	83.8	J1	ug/L		168	65 - 141	
1,2,3-Trichloropropane	1.0	U	50.0	49.3		ug/L		99	73 - 122	
1,2,4-Trimethylbenzene	1.0	U	50.0	45.8		ug/L		92	76 - 124	
1,3,5-Trimethylbenzene	1.0	U	50.0	46.3		ug/L		93	75 - 124	
Vinyl acetate	2.0	UQ	100	106		ug/L		106	54 - 146	
Vinyl chloride	1.0	U	50.0	48.0		ug/L		96	58 - 137	

50.0

50.0

100

Spike

MS MS

1.0 UQJ1

1.0 UQJ1

1.0 UQJ1

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		89 - 112
1,2-Dichloroethane-d4 (Surr)	115		81 - 118
4-Bromofluorobenzene (Surr)	124	Q	85 - 114
Dibromofluoromethane (Surr)	115		80 - 119

Lab Sample ID: 680-236086-5 MSD

Matrix: Water

o-Xylene

m-Xylene & p-Xylene

Xylenes, Total

Analysis Batch: 784770

Client Sample ID: 32M	M-01-17XBR-SPR23
F	Prep Type: Total/NA

78 - 122

80 - 121

79 - 121

117

120

119

Alialysis Datcii. 104110											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	10	U	250	249		ug/L		100	39 - 160	3	20
Benzene	1.0	U	50.0	53.8		ug/L		108	79 - 120	0	20
Bromobenzene	0.50	U	50.0	56.3		ug/L		113	80 - 120	2	20
Chlorobromomethane	1.0	U	50.0	56.0		ug/L		112	78 - 123	2	20
Dichlorobromomethane	1.0	U	50.0	61.6		ug/L		123	79 - 125	1	20
Bromoform	2.0	U	50.0	48.4		ug/L		97	66 - 130	3	20
Bromomethane	10	U	50.0	50.6		ug/L		101	53 - 141	4	20
2-Butanone (MEK)	20	U	250	271		ug/L		109	56 - 143	2	20
n-Butylbenzene	2.0	U	50.0	48.7		ug/L		97	75 - 128	1	20
sec-Butylbenzene	2.0	UQ	50.0	44.9		ug/L		90	77 - 126	2	20
tert-Butylbenzene	1.0	UQ	50.0	47.6		ug/L		95	78 - 124	4	20
Carbon disulfide	1.0	U	50.0	55.6		ug/L		111	64 - 133	0	20
Carbon tetrachloride	1.0	U	50.0	56.0		ug/L		112	72 - 136	2	20
Chlorobenzene	0.50	U	50.0	53.1		ug/L		106	82 - 118	1	20
Chloroethane	10	U Q J1	50.0	101	J1	ug/L		202	60 - 138	1	20
Chloroform	1.0	U	50.0	57.1		ug/L		114	79 - 124	1	20
Chloromethane	2.0	U	50.0	41.4		ug/L		83	50 - 139	0	20
2-Chlorotoluene	0.50	UQ	50.0	59.6		ug/L		119	79 - 122	3	20

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-236086-5 MSD

Matrix: Water

Analysis Batch: 784770

Client Sample ID: 32M-01-17XBR-SPR23

iit Gaiiipic	ID. OZINI-OT-TTADIC-OT ICZO
	Prep Type: Total/NA

Job ID: 680-236086-2

	•	Sample Sample		Spike MSD M					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4-Chlorotoluene	1.0	UQ	50.0	56.7		ug/L		113	78 - 122	4	20
Chlorodibromomethane	1.0	U	50.0	57.0		ug/L		114	74 - 126	1	20
1,2-Dibromo-3-Chloropropane	5.0	U	50.0	50.7		ug/L		101	62 - 128	7	20
Ethylene Dibromide	1.0	U	50.0	55.6		ug/L		111	75 - 127	4	20
Dibromomethane	1.0	U	50.0	58.5		ug/L		117	79 - 123	2	20
1,2-Dichlorobenzene	1.0	U	50.0	54.1		ug/L		108	80 - 119	4	20
1,3-Dichlorobenzene	1.0	U	50.0	54.1		ug/L		108	80 - 119	5	20
1,4-Dichlorobenzene	1.0	U	50.0	53.8		ug/L		108	79 - 118	1	20
Dichlorodifluoromethane	1.0	U	50.0	44.0		ug/L		88	32 - 152	1	20
1,1-Dichloroethane	1.0	U	50.0	56.1		ug/L		112	77 - 125	0	20
1,2-Dichloroethane	1.0	UM	50.0	59.1		ug/L		118	73 - 128	2	20
cis-1,2-Dichloroethene	1.0	U	50.0	57.4		ug/L		115	78 - 123	0	20
trans-1,2-Dichloroethene	1.0	U	50.0	56.5		ug/L		113	75 - 124	1	20
1,2-Dichloroethene, Total	1.0	U	100	114		ug/L		114	79 - 121	1	20
1,1-Dichloroethene	1.0	U	50.0	58.2		ug/L		116	71 - 131	2	20
1,2-Dichloropropane	0.50		50.0	57.1		ug/L		114	78 - 122	1	20
1,3-Dichloropropane	1.0		50.0	57.9		ug/L		116	80 - 119	0	2
2,2-Dichloropropane	1.0		50.0	42.0		ug/L		84	60 - 139	2	2
1,1-Dichloropropene	1.0		50.0	54.9		ug/L		110	79 - 125	3	20
cis-1,3-Dichloropropene	1.0		50.0	55.8		ug/L		112	75 - 124	2	20
trans-1,3-Dichloropropene	1.0		50.0	53.2		ug/L		106	73 - 127	1	20
Ethylbenzene		U Q J1	50.0	62.7		ug/L		125	79 - 121		20
Hexachlorobutadiene	1.0		50.0	42.3	01	ug/L		85	66 - 134	3	20
2-Hexanone	10		250	264		ug/L		106	57 - 139	2	20
Isopropylbenzene		U Q	50.0	59.8		ug/L		120	72 - 131	- 7	20
4-Isopropyltoluene	1.0		50.0	47.5		ug/L		95	77 - 127	2	20
Methylene Chloride	10		50.0	58.7		ug/L		117	74 - 124	3	20
4-Methyl-2-pentanone (MIBK)	10		250	292		ug/L		117	67 - 130		2
Methyl tert-butyl ether	2.0		50.0	56.4		ug/L		113	71 - 124	2	20
Naphthalene	5.0		50.0	52.0		ug/L		104	61 - 128	8	20
N-Propylbenzene	1.0		50.0	53.5		ug/L		107	76 - 126	4	20
Styrene	1.0		50.0	58.6		_		117	78 - 123	9	20
1,1,1,2-Tetrachloroethane	1.0		50.0	49.1		ug/L		98	78 - 123 78 - 124	0	20
						ug/L			71 - 121	1	
1,1,2,2-Tetrachloroethane	1.0	U Q U	50.0 50.0	50.9 52.2		ug/L		102			20
Tetrachloroethene	1.0		50.0	56.4		ug/L		104 113	74 ₋ 129 80 ₋ 121	1 7	20
Toluene		UQ				ug/L					
1,2,3-Trichlorobenzene			50.0	53.8		ug/L		108	69 - 129	1	20
1,2,4-Trichlorobenzene		UQ	50.0	46.0		ug/L		92	69 - 130	1	20
1,1,1-Trichloroethane	0.50		50.0	57.3		ug/L		115	74 - 131		20
1,1,2-Trichloroethane	1.0		50.0	55.2		ug/L		110	80 - 119	0	20
Trichloroethene	0.50		50.0	55.9		ug/L		112	79 - 123	1	20
Trichlorofluoromethane		U Q J1	50.0	83.3	J1	ug/L		167	65 - 141		2
1,2,3-Trichloropropane	1.0		50.0	49.9		ug/L		100	73 - 122	1	2
1,2,4-Trimethylbenzene	1.0		50.0	45.7		ug/L		91	76 - 124	0	2
1,3,5-Trimethylbenzene	1.0		50.0	46.3		ug/L		93	75 - 124	0	2
Vinyl acetate		UQ	100	107		ug/L		107	54 - 146	1	2
Vinyl chloride	1.0		50.0	47.5		ug/L		95	58 - 137	1	20
o-Xylene	1.0	U Q J1	50.0	61.6	J1	ug/L		123	78 - 122	5	20
m-Xylene & p-Xylene	1.0	U Q J1	50.0	62.2	J1	ug/L		124	80 - 121	3	20

Eurofins Savannah

7/20/2023

MSD MSD

124 J1

Result Qualifier

ug/L

Spike

Added

100

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Result Qualifier

1.0 U Q J1

Lab Sample ID: 680-236086-5 MSD

Matrix: Water

Analyte

Xylenes, Total

Analysis Batch: 784770

Client Sample ID: 32M-01-17XBR-SPR23

Prep Type: Total/NA

Job ID: 680-236086-2

%Rec RPD Unit %Rec Limits RPD Limit

79 - 121

124

MSD MSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 90 89 - 112 81 - 118 1,2-Dichloroethane-d4 (Surr) 120 Q 4-Bromofluorobenzene (Surr) 128 Q 85 - 114 Dibromofluoromethane (Surr) 80 - 119 117

Lab Sample ID: MB 680-785162/8

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Method Blank

Prep Type: Total/NA

20

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acetone	10	U	25	10	3.7	ug/L		06/23/23 12:56	1
Benzene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 12:56	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/23/23 12:56	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 12:56	1
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 12:56	1
Bromoform	2.0	U	2.5	2.0	0.59	ug/L		06/23/23 12:56	1
Bromomethane	10	U	20	10	3.7	ug/L		06/23/23 12:56	1
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/23/23 12:56	1
n-Butylbenzene	2.0	U	2.5	2.0	0.52	ug/L		06/23/23 12:56	1
sec-Butylbenzene	2.0	U	2.5	2.0	0.53	ug/L		06/23/23 12:56	1
tert-Butylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 12:56	1
Carbon disulfide	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 12:56	1
Carbon tetrachloride	1.0	U	2.0	1.0	0.30	ug/L		06/23/23 12:56	1
Chlorobenzene	0.50	U	1.0	0.50	0.15	ug/L		06/23/23 12:56	1
Chloroethane	10	U	20	10	4.6	ug/L		06/23/23 12:56	1
Chloroform	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 12:56	1
Chloromethane	2.0	U	2.5	2.0	0.54	ug/L		06/23/23 12:56	1
2-Chlorotoluene	0.50	U	1.0	0.50	0.25	ug/L		06/23/23 12:56	1
4-Chlorotoluene	1.0	U	2.0	1.0	0.41	ug/L		06/23/23 12:56	1
Chlorodibromomethane	1.0	U	2.0	1.0	0.39	ug/L		06/23/23 12:56	1
1,2-Dibromo-3-Chloropropane	5.0	U	10	5.0	1.8	ug/L		06/23/23 12:56	1
Ethylene Dibromide	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 12:56	1
Dibromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 12:56	1
1,2-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/23/23 12:56	1
1,3-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/23/23 12:56	1
1,4-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/23/23 12:56	1
Dichlorodifluoromethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 12:56	1
1,1-Dichloroethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 12:56	1
1,2-Dichloroethane	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 12:56	1
cis-1,2-Dichloroethene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 12:56	1
trans-1,2-Dichloroethene	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 12:56	1
1,2-Dichloroethene, Total	1.0	U	2.0	1.0	0.37	ug/L		06/23/23 12:56	1
1,1-Dichloroethene	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 12:56	1
1,2-Dichloropropane	0.50	U	1.0	0.50	0.22	ug/L		06/23/23 12:56	1
1,3-Dichloropropane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 12:56	1

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-785162/8

MB MB

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Method Blank

Job ID: 680-236086-2

Prep Type: Total/NA

	MB	МВ							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
2,2-Dichloropropane	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 12:56	1
1,1-Dichloropropene	1.0	U	2.0	1.0	0.28	ug/L		06/23/23 12:56	1
cis-1,3-Dichloropropene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 12:56	1
trans-1,3-Dichloropropene	1.0	U	2.0	1.0	0.23	ug/L		06/23/23 12:56	1
Ethylbenzene	0.50	U	1.0	0.50	0.20	ug/L		06/23/23 12:56	1
Hexachlorobutadiene	1.0	U	5.0	1.0	0.22	ug/L		06/23/23 12:56	1
2-Hexanone	10	UM	20	10	3.2	ug/L		06/23/23 12:56	1
Isopropylbenzene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 12:56	1
4-Isopropyltoluene	1.0	U	2.0	1.0	0.44	ug/L		06/23/23 12:56	1
Methylene Chloride	10	U	20	10	3.2	ug/L		06/23/23 12:56	1
4-Methyl-2-pentanone (MIBK)	10	U	20	10	2.7	ug/L		06/23/23 12:56	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 12:56	1
Naphthalene	5.0	U	10	5.0	2.4	ug/L		06/23/23 12:56	1
N-Propylbenzene	1.0	U	2.0	1.0	0.41	ug/L		06/23/23 12:56	1
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 12:56	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 12:56	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 12:56	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 12:56	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 12:56	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 12:56	1
1,2,4-Trichlorobenzene	2.0	U	5.0	2.0	0.53	ug/L		06/23/23 12:56	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/23/23 12:56	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/23/23 12:56	1
Trichloroethene	0.50	U	1.0	0.50	0.20	ug/L		06/23/23 12:56	1
Trichlorofluoromethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 12:56	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/23/23 12:56	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 12:56	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/23/23 12:56	1
Vinyl acetate	2.0	U	2.5	2.0	0.69	ug/L		06/23/23 12:56	1
Vinyl chloride	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 12:56	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 12:56	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49	ug/L		06/23/23 12:56	1
Xylenes, Total	1.0	U	2.0	1.0	0.49	ug/L		06/23/23 12:56	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	89 - 112		06/23/23 12:56	1
1,2-Dichloroethane-d4 (Surr)	98	81 - 118		06/23/23 12:56	1
4-Bromofluorobenzene (Surr)	102	85 - 114		06/23/23 12:56	1
Dibromofluoromethane (Surr)	98	80 - 119		06/23/23 12:56	1

Lab Sample ID: LCS 680-785162/4

Matrix: Water

Analysis Batch: 785162

Client Sample ID: La	ab Control Sample
P	rep Type: Total/NA

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	
Acetone	250	251	ug/l	-	100	39 - 160	
Benzene	50.0	51.9	ug/l	_	104	79 - 120	
Bromobenzene	50.0	54.8	ug/l	-	110	80 - 120	

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-785162/4

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Lab Control Sample

Job ID: 680-236086-2

Prep Type: Total/NA

	Spike	LCS LCS		- ~-	%Rec	
Analyte	Added	Result Quali		<u>D</u> %Rec	Limits	
Chlorobromomethane	50.0	56.3	ug/L	113	78 - 123	
Dichlorobromomethane	50.0	47.3	ug/L	95	79 - 125	
Bromoform	50.0	44.3	ug/L	89	66 - 130	
Bromomethane	50.0	47.0	ug/L	94	53 - 141	
2-Butanone (MEK)	250	257	ug/L	103	56 - 143	
n-Butylbenzene	50.0	56.6	ug/L	113	75 - 128	
sec-Butylbenzene	50.0	54.2	ug/L	108	77 - 126	
tert-Butylbenzene	50.0	53.6	ug/L	107	78 - 124	
Carbon disulfide	50.0	48.2	ug/L	96	64 - 133	
Carbon tetrachloride	50.0	39.4	ug/L	79	72 - 136	
Chlorobenzene	50.0	50.3	ug/L	101	82 - 118	
Chloroethane	50.0	38.4	ug/L	77	60 - 138	
Chloroform	50.0	48.4	ug/L	97	79 - 124	
Chloromethane	50.0	48.8	ug/L	98	50 - 139	
2-Chlorotoluene	50.0	50.5 M	ug/L	101	79 - 122	
4-Chlorotoluene	50.0	52.4	ug/L	105	78 - 122	
Chlorodibromomethane	50.0	45.6	ug/L	91	74 - 126	
1,2-Dibromo-3-Chloropropane	50.0	48.8	ug/L	98	62 - 128	
Ethylene Dibromide	50.0	48.7	ug/L	97	75 - 127	
Dibromomethane	50.0	48.7	ug/L	97	79 - 123	
1,2-Dichlorobenzene	50.0	54.0	ug/L	108	80 - 119	
1,3-Dichlorobenzene	50.0	53.6	ug/L	107	80 - 119	
1,4-Dichlorobenzene	50.0	51.2	ug/L	102	79 - 118	
Dichlorodifluoromethane	50.0	51.0	ug/L	102	32 - 152	
1,1-Dichloroethane	50.0	50.2	ug/L	100	77 - 125	
1,2-Dichloroethane	50.0	46.6	ug/L	93	73 - 128	
cis-1,2-Dichloroethene	50.0	48.7	ug/L	97	78 - 123	
trans-1,2-Dichloroethene	50.0	47.5	ug/L	95	75 - 124	
1,2-Dichloroethene, Total	100	96.2	ug/L	96	79 - 121	
1,1-Dichloroethene	50.0	50.7	ug/L	101	71 - 131	
1,2-Dichloropropane	50.0	54.4	ug/L	109	78 - 122	
1,3-Dichloropropane	50.0	48.9	ug/L	98	80 - 119	
2,2-Dichloropropane	50.0	44.5	ug/L	89	60 - 139	
1,1-Dichloropropene	50.0	50.6	ug/L	101	79 - 125	
cis-1,3-Dichloropropene	50.0	51.3	ug/L	103	75 - 124	
trans-1,3-Dichloropropene	50.0	50.1	ug/L	100	73 - 127	
Ethylbenzene	50.0	53.4	ug/L	107	79 - 121	
Hexachlorobutadiene	50.0	52.2	ug/L	104	66 - 134	
2-Hexanone	250	265	ug/L	106	57 ₋ 139	
Isopropylbenzene	50.0	52.6	ug/L	105	72 - 131	
4-Isopropyltoluene	50.0	55.0	ug/L	110	77 - 127	
Methylene Chloride	50.0	50.5	ug/L	101	74 - 124	
4-Methyl-2-pentanone (MIBK)	250	264	ug/L	106	67 - 130	
Methyl tert-butyl ether	50.0	50.6 M	ug/L	101	71 - 124	
Naphthalene	50.0	48.8	ug/L	98	61 - 128	
N-Propylbenzene	50.0	53.9	ug/L	108	76 - 126	
Styrene	50.0	55.9	ug/L	112	78 - 123	
1,1,1,2-Tetrachloroethane	50.0	48.4	ug/L	97	78 - 124	
• • • •	50.0	54.1	ug/L	108	71 - 121	

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-785162/4

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236086-2

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	50.0	46.7		ug/L		93	74 - 129	
Toluene	50.0	54.1		ug/L		108	80 - 121	
1,2,3-Trichlorobenzene	50.0	55.0		ug/L		110	69 - 129	
1,2,4-Trichlorobenzene	50.0	52.3		ug/L		105	69 - 130	
1,1,1-Trichloroethane	50.0	45.2		ug/L		90	74 - 131	
1,1,2-Trichloroethane	50.0	50.5		ug/L		101	80 - 119	
Trichloroethene	50.0	47.8		ug/L		96	79 - 123	
Trichlorofluoromethane	50.0	41.9		ug/L		84	65 - 141	
1,2,3-Trichloropropane	50.0	49.4		ug/L		99	73 - 122	
1,2,4-Trimethylbenzene	50.0	52.4		ug/L		105	76 - 124	
1,3,5-Trimethylbenzene	50.0	52.8		ug/L		106	75 - 124	
Vinyl acetate	100	101		ug/L		101	54 - 146	
Vinyl chloride	50.0	51.7		ug/L		103	58 - 137	
o-Xylene	50.0	53.5		ug/L		107	78 - 122	
m-Xylene & p-Xylene	50.0	51.4		ug/L		103	80 - 121	
Xylenes, Total	100	105		ug/L		105	79 - 121	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		89 - 112
1,2-Dichloroethane-d4 (Surr)	85		81 - 118
4-Bromofluorobenzene (Surr)	101		85 ₋ 114
Dibromofluoromethane (Surr)	95		80 - 119

Lab Sample ID: LCSD 680-785162/5

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	262		ug/L		105	39 - 160	5	20
Benzene	50.0	50.7		ug/L		101	79 - 120	2	20
Bromobenzene	50.0	54.8		ug/L		110	80 - 120	0	20
Chlorobromomethane	50.0	47.9		ug/L		96	78 - 123	16	20
Dichlorobromomethane	50.0	49.7		ug/L		99	79 - 125	5	20
Bromoform	50.0	48.0		ug/L		96	66 - 130	8	20
Bromomethane	50.0	50.8		ug/L		102	53 - 141	8	20
2-Butanone (MEK)	250	275		ug/L		110	56 - 143	7	20
n-Butylbenzene	50.0	54.5		ug/L		109	75 - 128	4	20
sec-Butylbenzene	50.0	58.5		ug/L		117	77 - 126	8	20
tert-Butylbenzene	50.0	54.8		ug/L		110	78 - 124	2	20
Carbon disulfide	50.0	45.5		ug/L		91	64 - 133	6	20
Carbon tetrachloride	50.0	40.2		ug/L		80	72 - 136	2	20
Chlorobenzene	50.0	50.0		ug/L		100	82 - 118	1	20
Chloroethane	50.0	41.4		ug/L		83	60 - 138	8	20
Chloroform	50.0	49.0		ug/L		98	79 - 124	1	20
Chloromethane	50.0	51.4		ug/L		103	50 - 139	5	20
2-Chlorotoluene	50.0	51.3	M	ug/L		103	79 - 122	2	20
4-Chlorotoluene	50.0	52.4	М	ug/L		105	78 - 122	0	20
Chlorodibromomethane	50.0	48.2		ug/L		96	74 - 126	6	20

Eurofins Savannah

Page 21 of 37

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-785162/5

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Job ID: 680-236086-2

	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromo-3-Chloropropane	50.0	52.0	ug/L		104	62 - 128	6	20
Ethylene Dibromide	50.0	51.8	ug/L		104	75 - 127	6	20
Dibromomethane	50.0	49.3	ug/L		99	79 - 123	1	20
1,2-Dichlorobenzene	50.0	53.5	ug/L		107	80 - 119	1	20
1,3-Dichlorobenzene	50.0	53.6	ug/L		107	80 - 119	0	20
1,4-Dichlorobenzene	50.0	50.5	ug/L		101	79 - 118	1	20
Dichlorodifluoromethane	50.0	52.7	ug/L		105	32 - 152	3	20
1,1-Dichloroethane	50.0	48.5	ug/L		97	77 - 125	3	20
1,2-Dichloroethane	50.0	49.2	ug/L		98	73 - 128	5	20
cis-1,2-Dichloroethene	50.0	49.6	ug/L		99	78 - 123	2	20
trans-1,2-Dichloroethene	50.0	46.1	ug/L		92	75 - 124	3	20
1,2-Dichloroethene, Total	100	95.7	ug/L		96	79 - 121	1	20
1,1-Dichloroethene	50.0	49.8	ug/L		100	71 - 131	2	20
1,2-Dichloropropane	50.0	52.5	ug/L		105	78 - 122	4	20
1,3-Dichloropropane	50.0	50.5	ug/L		101	80 - 119	3	20
2,2-Dichloropropane	50.0	44.3	ug/L		89	60 - 139	0	20
1,1-Dichloropropene	50.0	50.5	ug/L		101	79 - 125	0	20
cis-1,3-Dichloropropene	50.0	50.7	ug/L		101	75 - 124	1	20
trans-1,3-Dichloropropene	50.0	51.3	ug/L		103	73 - 127	2	20
Ethylbenzene	50.0	52.1	ug/L		104	79 - 121	3	20
Hexachlorobutadiene	50.0	50.1	ug/L		100	66 - 134	4	20
2-Hexanone	250	287	ug/L		115	57 - 139	8	20
Isopropylbenzene	50.0	52.6	ug/L		105	72 - 131	0	20
4-Isopropyltoluene	50.0	53.1	ug/L		106	77 - 127	4	20
Methylene Chloride	50.0	48.8	ug/L		98	74 - 124	3	20
4-Methyl-2-pentanone (MIBK)	250	278	ug/L		111	67 - 130	5	20
Methyl tert-butyl ether	50.0	53.1	M ug/L		106	71 - 124	5	20
Naphthalene	50.0	49.7	ug/L		99	61 - 128	2	20
N-Propylbenzene	50.0	52.5	ug/L		105	76 - 126	3	20
Styrene	50.0	55.9	ug/L		112	78 - 123	0	20
1,1,1,2-Tetrachloroethane	50.0	49.7	ug/L		99	78 - 124	3	20
1,1,2,2-Tetrachloroethane	50.0	55.4	ug/L		111	71 - 121	2	20
Tetrachloroethene	50.0	48.1	ug/L		96	74 - 129	3	20
Toluene	50.0	53.8	ug/L		108	80 - 121	1	20
1,2,3-Trichlorobenzene	50.0	56.4	ug/L		113	69 - 129	2	20
1,2,4-Trichlorobenzene	50.0	51.8	ug/L		104	69 - 130	1	20
1,1,1-Trichloroethane	50.0	46.1	ug/L		92	74 - 131	2	20
1,1,2-Trichloroethane	50.0	52.4	ug/L		105	80 - 119	4	20
Trichloroethene	50.0	47.7	ug/L		95	79 - 123	0	20
Trichlorofluoromethane	50.0	44.1	ug/L		88	65 - 141	5	20
1,2,3-Trichloropropane	50.0	52.2	ug/L		104	73 - 122	5	20
1,2,4-Trimethylbenzene	50.0	56.6	ug/L		113	76 - 124	8	20
1,3,5-Trimethylbenzene	50.0	52.8	ug/L		106	75 - 124	0	20
Vinyl acetate	100	102	ug/L		102	54 - 146	1	20
Vinyl chloride	50.0	54.4	ug/L		109	58 - 137	5	20
o-Xylene	50.0	53.0	ug/L		106	78 - 122	1	20
m-Xylene & p-Xylene	50.0	51.1	ug/L		102	80 - 121	1	20
Xylenes, Total	100	104	ug/L		104	79 - 121	1	20

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-785162/5

Matrix: Water

Analysis Batch: 785162

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		89 - 112
1,2-Dichloroethane-d4 (Surr)	91		81 - 118
4-Bromofluorobenzene (Surr)	94		85 - 114
Dibromofluoromethane (Surr)	97		80 - 119

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 410-388890/2

Matrix: Water

Analysis Batch: 388890

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236086-2

7 many one Eurom cocces									
	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U	5.0	2.0	1.0	ug/L		06/20/23 21:42	1
C9-C10 Aromatics	20	U	100	20	10	ug/L		06/20/23 21:42	1
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L		06/20/23 21:42	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L		06/20/23 21:42	1
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L		06/20/23 21:42	1
Toluene	2.0	U	5.0	2.0	1.0	ug/L		06/20/23 21:42	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/20/23 21:42	1
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L		06/20/23 21:42	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L		06/20/23 21:42	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/20/23 21:42	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	101		70 - 130		06/20/23 21:42	1
a,a,a-Trifluorotoluene (pid)	98		70 - 130		06/20/23 21:42	1

Lab Sample ID: LCS 410-388890/3

Matrix: Water

Analysis Batch: 388890

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.1	47.4		ug/L		95	70 - 130	
50.2	49.0	J	ug/L		98	70 - 130	
50.1	48.4		ug/L		97	70 - 130	
50.2	47.8		ug/L		95	70 - 130	
50.2	52.0		ug/L		104	70 - 130	
50.1	47.6		ug/L		95	70 - 130	
101	98.6		ug/L		98	70 - 130	
50.4	48.7		ug/L		97	70 - 130	
	50.1 50.2 50.1 50.2 50.2 50.2 50.1 101	Added Result 50.1 47.4 50.2 49.0 50.1 48.4 50.2 47.8 50.2 52.0 50.1 47.6 101 98.6	Added Result Qualifier 50.1 47.4 50.2 49.0 J 50.1 48.4 50.2 47.8 50.2 52.0 50.1 47.6 101 98.6	Added Result Qualifier Unit 50.1 47.4 ug/L 50.2 49.0 J ug/L 50.1 48.4 ug/L 50.2 47.8 ug/L 50.2 52.0 ug/L 50.1 47.6 ug/L 101 98.6 ug/L	Added Result Qualifier Unit D 50.1 47.4 ug/L ug/L 50.2 49.0 J ug/L 50.1 48.4 ug/L 50.2 47.8 ug/L 50.2 52.0 ug/L 50.1 47.6 ug/L 101 98.6 ug/L	Added Result Qualifier Unit D %Rec 50.1 47.4 ug/L 95 50.2 49.0 J ug/L 98 50.1 48.4 ug/L 97 50.2 47.8 ug/L 95 50.2 52.0 ug/L 104 50.1 47.6 ug/L 95 101 98.6 ug/L 98	Added Result 50.1 Qualifier 47.4 Unit ug/L D %Rec 50.2 Limits 70.130 50.2 49.0 J ug/L 98 70.130 50.1 48.4 ug/L 97 70.130 50.2 47.8 ug/L 95 70.130 50.2 52.0 ug/L 104 70.130 50.1 47.6 ug/L 95 70.130 101 98.6 ug/L 98 70.130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	102	70 - 130
a a a-Trifluorotoluene (nid)	102	70 - 130

Eurofins Savannah

7/20/2023

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCSD 410-388890/4

Matrix: Water

Analysis Batch: 388890

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Job ID: 680-236086-2

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.1	47.1		ug/L		94	70 - 130	1	25
C9-C10 Aromatics	50.2	48.6	J	ug/L		97	70 - 130	1	25
Ethylbenzene	50.1	47.9		ug/L		96	70 - 130	1	25
Methyl tert-butyl ether	50.2	47.6		ug/L		95	70 - 130	0	25
Naphthalene	50.2	52.7		ug/L		105	70 - 130	1	25
Toluene	50.1	47.1		ug/L		94	70 - 130	1	25
m-Xylene & p-Xylene	101	97.7		ug/L		97	70 - 130	1	25
o-Xylene	50.4	48.3		ug/L		96	70 - 130	1	25

LCSD LCSD Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 101 70 - 130 a,a,a-Trifluorotoluene (pid) 102 70 - 130

Lab Sample ID: 680-236086-5 MS

Matrix: Water

Analysis Batch: 388890

Client Sample ID: 32M-01-17XBR-SPR23

Client Sample ID: 32M-01-17XBR-SPR23

70 - 130

70 - 130

70 - 130

52

53

52

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	2.0	U J1	50.1	23.1	J1	ug/L		46	70 - 130	
C9-C10 Aromatics	20	U J1	50.2	31.1	J J1	ug/L		62	70 - 130	
Ethylbenzene	2.0	U J1	50.1	23.2	J1	ug/L		46	70 - 130	
Methyl tert-butyl ether	2.0	U J1	50.2	20.7	J1	ug/L		41	70 - 130	
Naphthalene	4.0	U J1	50.2	22.8	J1	ug/L		45	70 - 130	
Toluene	2.0	U J1	50.1	23.0	J1	ug/L		46	70 - 130	
m-Xylene & p-Xylene	5.0	U J1	101	47.1	J1	ug/L		47	70 - 130	
o-Xylene	2.0	U J1	50.4	23.2	J1	ug/L		46	70 - 130	
	MS	MS								

Surrogate %Recovery Qualifier Limits 70 - 130 a,a,a-Trifluorotoluene (fid) 102 a,a,a-Trifluorotoluene (pid) 103 70 - 130

Lab Sample ID: 680-236086-5 MSD

Toluene

a,a,a-Trifluorotoluene (fid)

Matrix: Water Analysis Batch: 388890									Prep 1	Type: Tot	tal/NA
_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	2.0	U J1	50.1	26.2	J1	ug/L		52	70 - 130	13	25
C9-C10 Aromatics	20	U J1	50.2	34.9	J	ug/L		70	70 - 130	11	25
Ethylbenzene	2.0	U J1	50.1	26.5	J1	ug/L		53	70 - 130	13	25
Methyl tert-butyl ether	2.0	U J1	50.2	24.1	J1	ug/L		48	70 - 130	15	25
Naphthalene	4.0	U J1	50.2	25.6	J1	ug/L		51	70 - 130	12	25

26.1 J1

53.6 J1

26.4 J1

ug/L

ug/L

ug/L

50.1

70 - 130

Surrogate	MSD %Recovery	MSD Qualifier	Limits
o-Xylene	2.0	U J1	50.4
m-Xylene & p-Xylene	5.0	U J1	101

2.0 U J1

101

13

13

13

25

25

25

Prep Batch: 783305

Prep Batch: 783316

Prep Batch: 783316

Client Sample ID: 32M-01-17XBR-SPR23

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 680-236086-5 MSD Client Sample ID: 32M-01-17XBR-SPR23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 388890

MSD MSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 103 70 - 130

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-783305/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 783464

Prep Type: Total Recoverable Prep Batch: 783305

MB MB Result Qualifier LOQ LOD DL Unit Dil Fac Analyte Analyzed 5.0 1.3 06/13/23 17:00 Manganese 5.0 U 10 ug/L

Lab Sample ID: LCS 680-783305/2-A Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 783464

Spike LCS LCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits

Manganese 400 416 ug/L 104 90 - 114

Lab Sample ID: MB 680-783316/1-A Client Sample ID: Method Blank **Prep Type: Total Recoverable Matrix: Water**

Analysis Batch: 783688

MB MB

Analyte Result Qualifier LOQ LOD Unit Analyzed Dil Fac 10 5.0 06/14/23 15:51 Manganese 5.0 1.3 ug/L

Lab Sample ID: LCS 680-783316/2-A Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 783688

LCS LCS Spike %Rec Added Qualifier Analyte Result Unit %Rec Limits

400 431 108 90 - 114 Manganese ug/L

Lab Sample ID: 680-236086-5 MS

Matrix: Water

Analysis Batch: 783688

Prep Batch: 783316 Sample Sample Spike MS MS %Rec Result Qualifier Added Qualifier Analyte Result %Rec Limits Unit 400 Manganese 5.9 J 109 90 - 114 443 ug/L

Client Sample ID: 32M-01-17XBR-SPR23

Lab Sample ID: 680-236086-5 MSD **Matrix: Water**

Analysis Batch: 783688 **Prep Batch: 783316** Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 400 5.9 J 435 107 90 - 114 Manganese ug/L 2

Job ID: 680-236086-2

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-783301/1-A

Analysis Batch: 783691

Matrix: Water

Analyte Arsenic

Result Qualifier 3.0 U

LOO 5.0 LOD 3.0

0.86

DL Unit ug/L

Analyzed Dil Fac 06/14/23 13:41

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

Prep Batch: 783301

Prep Batch: 783315

Prep Batch: 783315

Prep Batch: 783301

Lab Sample ID: LCS 680-783301/2-A **Matrix: Water**

Analysis Batch: 783691

Analyte

Spike Added 100

Result 106

LCS LCS

Qualifier Unit ug/L

D %Rec

Limits 106

%Rec

84 - 116

Lab Sample ID: MB 680-783315/1-A

Matrix: Water

Arsenic

Analysis Batch: 783691

MB MB

Analyte Arsenic

Result Qualifier 3.0 U

LOQ 5.0 LOD 3.0

DL Unit 0.86 ug/L

Analyzed 06/14/23 15:10

Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

%Rec

Limits

84 - 116

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Dil Fac

Lab Sample ID: LCS 680-783315/2-A

Matrix: Water

Arsenic

Analyte

Analysis Batch: 783691

Analyte

Lab Sample ID: 680-236086-5 MS

Matrix: Water

Analysis Batch: 783691

Arsenic Lab Sample ID: 680-236086-5 MSD

Matrix: Water

Analysis Batch: 783691

Sample Sample

0.94 J

Result Qualifier

Spike

Added

Spike

Added

100

100

LCS LCS Result Qualifier 105

MS MS

110

Result Qualifier

Unit

ug/L

Unit ug/L

%Rec 105

Client Sample ID: 32M-01-17XBR-SPR23

Prep Type: Total Recoverable Prep Batch: 783315

%Rec %Rec Limits 109 84 - 116

Client Sample ID: 32M-01-17XBR-SPR23

Prep Type: Total Recoverable

Prep Batch: 783315

Sample Sample Spike MSD MSD %Rec **RPD** Added Result Qualifier Result Limit Analyte Qualifier Unit D %Rec Limits RPD Arsenic 0.94 J. 100 109 ug/L 108 84 - 116 20

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

GC/MS VOA

Analysis Batch: 784770

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-784770/9	Method Blank	Total/NA	Water	8260D	
LCS 680-784770/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 680-784770/4	Lab Control Sample Dup	Total/NA	Water	8260D	
680-236086-5 MS	32M-01-17XBR-SPR23	Total/NA	Water	8260D	
680-236086-5 MSD	32M-01-17XBR-SPR23	Total/NA	Water	8260D	

Analysis Batch: 785162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-5 - RA	32M-01-17XBR-SPR23	Total/NA	Water	8260D	
680-236086-6 - RA	32M-RB-01-SPR23	Total/NA	Water	8260D	
MB 680-785162/8	Method Blank	Total/NA	Water	8260D	
LCS 680-785162/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 680-785162/5	Lab Control Sample Dup	Total/NA	Water	8260D	

GC VOA

Analysis Batch: 388890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-5	32M-01-17XBR-SPR23	Total/NA	Water	MAVPH	
680-236086-6	32M-RB-01-SPR23	Total/NA	Water	MAVPH	
MB 410-388890/2	Method Blank	Total/NA	Water	MAVPH	
LCS 410-388890/3	Lab Control Sample	Total/NA	Water	MAVPH	
LCSD 410-388890/4	Lab Control Sample Dup	Total/NA	Water	MAVPH	
680-236086-5 MS	32M-01-17XBR-SPR23	Total/NA	Water	MAVPH	
680-236086-5 MSD	32M-01-17XBR-SPR23	Total/NA	Water	MAVPH	

Metals

Prep Batch: 783301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-6	32M-RB-01-SPR23	Total Recoverable	Water	3005A	
MB 680-783301/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783301/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 783305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-6	32M-RB-01-SPR23	Total Recoverable	Water	3005A	
MB 680-783305/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783305/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 783315

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
680-236086-5	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	
MB 680-783315/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783315/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236086-5 MS	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	
680-236086-5 MSD	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	

Prep Batch: 783316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-5	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	
MB 680-783316/1-A	Method Blank	Total Recoverable	Water	3005A	

Eurofins Savannah

Job ID: 680-236086-2

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Metals (Continued)

Prep Batch: 783316 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-783316/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236086-5 MS	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	
680-236086-5 MSD	32M-01-17XBR-SPR23	Total Recoverable	Water	3005A	

Analysis Batch: 783464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-6	32M-RB-01-SPR23	Total Recoverable	Water	6010C	783305
MB 680-783305/1-A	Method Blank	Total Recoverable	Water	6010C	783305
LCS 680-783305/2-A	Lab Control Sample	Total Recoverable	Water	6010C	783305

Analysis Batch: 783688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-5	32M-01-17XBR-SPR23	Total Recoverable	Water	6010C	783316
MB 680-783316/1-A	Method Blank	Total Recoverable	Water	6010C	783316
LCS 680-783316/2-A	Lab Control Sample	Total Recoverable	Water	6010C	783316
680-236086-5 MS	32M-01-17XBR-SPR23	Total Recoverable	Water	6010C	783316
680-236086-5 MSD	32M-01-17XBR-SPR23	Total Recoverable	Water	6010C	783316

Analysis Batch: 783691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236086-5	32M-01-17XBR-SPR23	Total Recoverable	Water	6020A	783315
680-236086-6	32M-RB-01-SPR23	Total Recoverable	Water	6020A	783301
MB 680-783301/1-A	Method Blank	Total Recoverable	Water	6020A	783301
MB 680-783315/1-A	Method Blank	Total Recoverable	Water	6020A	783315
LCS 680-783301/2-A	Lab Control Sample	Total Recoverable	Water	6020A	783301
LCS 680-783315/2-A	Lab Control Sample	Total Recoverable	Water	6020A	783315
680-236086-5 MS	32M-01-17XBR-SPR23	Total Recoverable	Water	6020A	783315
680-236086-5 MSD	32M-01-17XBR-SPR23	Total Recoverable	Water	6020A	783315

Job ID: 680-236086-2

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-17XBR-SPR23

Date Collected: 06/07/23 14:05

Lab Sample ID: 680-236086-5

Matrix: Water

Job ID: 680-236086-2

Date Received: 06/09/23 09:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D	RA RA	1	5 mL	5 mL	785162	06/23/23 15:17	Y1S	EET SAV
	Instrume	nt ID: CMSAJ								
Total/NA	Analysis	MAVPH		1	5 mL	5 mL	388890	06/21/23 01:48	X875	ELLE
	Instrume	nt ID: 10149								
Total Recoverable	Prep	3005A			25 mL	25 mL	783316	06/13/23 10:35	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 15:55	BJB	EET SAV
	Instrume	nt ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783315	06/13/23 10:35	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/14/23 15:18	BWR	EET SAV
	Instrume	nt ID: ICPMSC								

Client Sample ID: 32M-RB-01-SPR23

Date Collected: 06/07/23 15:00

Date Received: 06/09/23 09:46

Lab Sample ID: 680-236086-6

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D	RA	1	5 mL	5 mL	785162	06/23/23 14:34	Y1S	EET SAV
	Instrume	nt ID: CMSAJ								
Total/NA	Analysis	MAVPH		1	5 mL	5 mL	388890	06/21/23 05:54	X875	ELLE
	Instrume	nt ID: 10149								
Total Recoverable	Prep	3005A			25 mL	25 mL	783305	06/13/23 10:01	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783464	06/13/23 17:21	BJB	EET SAV
	Instrume	nt ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783301	06/13/23 10:01	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/14/23 14:58	BWR	EET SAV
	Instrume	nt ID: ICPMSC								

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Job ID: 680-236086-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	07-09-23

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24

9

-

4

J

7

10

11

12

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV,LTM, AOC 32/43A, Spring 2023

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds (GC/MS)	SW846	EET SAV
MAVPH	Massachusetts - Volatile Petroleum Hydrocarbons (GC)	MA DEP	ELLE
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
5030C	Purge and Trap	SW846	EET SAV
5030C	Purge and Trap	SW846	ELLE

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Savannah

Job ID: 680-236086-2

COC# AOC32_43A_SP

Seres-Arcadis JV Heather Levesque

669 Marina Drive Suite B7, Charleston, SC 29492 (843) 619-370-0374 jennifer singer@arcadis.com

			(,, 010 010 001	., ,		9														
Proj	ject Name Former Fort Deven	s, Long	Term Monitor	ring		Lab	orat	ory	Euro	fins	Envi	ronm	nent	Testi	ing 1	estAmerica, Savannah, GA				1	eres-Arcadis JV, Long Term
Pro	ect Number DEVNS-LTM					PO	C Je	erry (anie	er, 9°	12-25	50-02	281,	jerry	lani	er@eurofinsus com				Monitorir	ng, AOC 32/43A, Spring 2023
WB:	S Code	***************************************				Shi	p to	Eur	ofins	Tes	tAme	erica	, 510)2 La	Roc	he Avenue, Savannah, GA 3	1404			1	
MADE	nments EPVP (A) = VPH with targets				Analytical Test Method	MADEPVP (A)	SW6010C - Mn	SW6020A - As	SW8260B - VOCs							Code Matrix WG Ground Water Code Container/Preservative 4 3x 40mL glass VOA Vials, F 9 1x 250mL, plastic, FNO3, pl 29 3x 40mL glass VOA Vials F	H < 2, Cool < 6degC				Boston #215
	Event. Seres-Arcadis JV, Long	Term Mo	nitoring, AOC 3	32/43A, Spring	2023	4	9		29												
	Sample ID	Matrix	Date	Time	Samp Init											Lacation ID	Sample		(ft bgs)	Cooler	0
1	32M-01-13XBR-SPR23	WG	Date	rime	Init	X	l $\overline{}$	X	Ţ		Н	\vdash	\vdash		\dashv	Location ID 32M-01-13XBR	Type N1	13 70	Bottom 23 70	Cooler	Comments
2	32M-01-14XOB-SPR23	WG					x		-				-		\dashv	32M-01-14XOB	N1	17 30	27 30		
4	32M-01-17XBR-SPR23	WG	6/7/23	14 05	DC	X	X		_		-			-	\dashv	32M-01-17XBR	N1	41 40	51 40	 	
3	32M-01-17XBR-SPR23	WG	6/7/23	14.05	15C	X	X	-			\Box	\vdash	\vdash	\dashv	\dashv	32M-01-17XBR	MS1	41 40	51 40		
5	32M-01-17XBR-SPR23	WG	6/7/23		70	X	X						\vdash	\dashv	\dashv	32M-01-17XBR	SD1	41 40	51 40	+-+	
6	32M-01-18XBR-SPR23	WG	141162	1		X	Х	_	-				\vdash		\dashv	32M-01-18XBR	N1	14 00	24 00		
7	32M-DUP01-SPR23	WG				x	x	-						7		32M-01-18XBR	FD1	14 00	24 00		
8	32M-RB 01-SPR2	R WG	(2/7/23	15.00	DC	X	X		X						\dashv	Name of the last o					
9	1 156		1 1 1 1 1 1					<u> </u>						\neg	\exists						
10	THE PROPERTY OF THE PROPERTY O																				
11																					
12				-																	
Turi	naround Time: Standard																				

Relinquished by (Signature) Since Shile Date \$6/7/2023 Time 17:20

Received by (Signature)

M 6/8/23/700

Received by Laboratory (Signature) OM 74 6.9, 23 996

Time Page 32 of 37

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

eurofins

Environment Testing

Phone: 912-354-7858 Fax: 912-352-0165												-											
Client Information (Sub Contract Lab)	Sampler				PM: nier,	Jerr	уА						Carrie	er Track	ng No(s)		COC No. 680-740778.1					
Client Contact: Shipping/Receiving	Phone:				Mail.	anie	r@et	euro	finsus	s con	n			of Origi				Page: Page 1 of 1					
Company Company									ired (S									Job #					
Eurofins Lancaster Laboratories Environm	-				D	ept.	of De	efense	e ELA	AP -	A2LA, D	00D -	ANA	3				680-236086-1					
Address 2425 New Holland Pike,	Due Date Requeste 6/20/2023	id:								An	alysis	Red	ques	ted				Preservation Co	des: M - Hexane				
City:	TAT Requested (da	ys):			16	77							\Box					A - HCL B - NaOH	N - None				
Lancaster State, Zip	-		3													C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S						
PA, 17601			6	100												E - NaHSO4	Q - Na2SO3 R - Na2S2O3						
Phone	PO#				PO#																	F - MeOH G - Amchlor	S - H2SO4
717-656-2300(Tel)	WO#				- <u>ê</u>													H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone				
ad Friends.	1100				0	No.	_ I										2	J - DI Water	V - MCAA W - pH 4-5				
Project Name:	Project #				ع خ	0	5										containe	K - EDTA L - EDA	Y - Trizma Z - other (specify)				
Seres-Arcadis JV,LTM, AOC 32/43A. Spring 2023 Site:	68023801 SSOW#:				- 8	چ چ	M.										onta	Other:	2 - other (specify)				
	100011111				Sample (Yes or No	MSD	(МОБ) МА										ofc						
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wewater, Secolid, Oewasts/oil, BT=Tissue, A=/	eld Filtered	rm MS/N	30C	MAVPH_Calc	PRE_SCREEN								Total Number	Special Ir	nstructions/Note:				
		$>\!\!<$	Preserva	tion Code	X	\otimes							1/3				X						
32M-01-17XBR-SPR23 (680-236086-5)	6/7/23	14:05 Eastern		Water			Х	Х	х								2						
32M-01-17XBR-SPR23 (680-236086-5MS)	6/7/23	14:05 Eastern	MS	Water			Х										3						
32M-01-17XBR-SPR23 (680-236086-5MSD)	6/7/23	14:05 Eastern	MSD	Water			х										3						
32M-RB-01-SPR23 (680-236086-6)	6/7/23	15:00 Eastern		Water			X	х	х								3						
Note: Since laboratory accreditations are subject to change, Eurofins Environme does not currently maintain accreditation in the State of Origin listed above for ar status should be brought to Eurofins Environment Testing Southeast, LLC attenti	alysis/tests/matrix bei	ng analyzed, ti	he samples mu:	st be shipped	d back	to th	e Euro	fins E	nviron	ment 1	esting So	outhea	st, LLC	laborat	ory or ot	her instru	ctions w	ill be provided. Any o	hanges to accreditation				
Possible Hazard Identification						Sa	mple	Disp	posal	I(AI	ee may	be a	sses	sed if	samp	les are	retain	ed longer than 1	month)				
Unconfirmed] [\square_R	etum	1 To C	Client			Dispo	sal By	Lab		Arci	hive For	Months				
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2			Sp	ecial	Instr	uction	ns/Q0	Requi	reme	nts:										
Empty Kit Relinquished by:		Date:			Т	ime:								Method	of Ship	ment:							
Relinquished by	Date/Tyme/2/L	13	1600	Company			Rece	eived b	y:						Oal	e/Time:			Company				
Relinquished by	Date/Time			Company			Rece	ived b	У						Dat	e/Time:	_		Company				
Relinquished by	Date/Time			Company			Rece	rived b	у				\neq	_	Dat	e/Tirge:/	13/	23 1005	Piets				
Custody Seals Intact: Custody Seal No.							Cool	ег Тепт	nperati	ure(s)	C and O	ther Re	emarks	;	00	1 (8)	7						

WG

Ver: 06/08/2021

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

🔅 eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler:					Jerry	A						Carrier	racking	No(s)			COC No: 680-740983.1		
Client Contact:	Phone:			E-M									State of	Origin:				Page:		
Shipping/Receiving				Jer				Burofi					Massa	chuse	tts			Page 1 of 1		
Company Eurofins Lancaster Laboratories Environm								Require		a note): 2 - A2I	A : D	nD - 4	NAR					Job #: 680-236086-1		
Address	Due Date Requeste	d:			100	pt. o	1 001	01130	LLA	- 121	JA, DI	00-7	MAND					Preservation Code	8:	
2425 New Holland Pike,	6/20/2023									Anal	ysis	Req	ueste	d					M - Hexane	
City	TAT Requested (da	ys):									П							B · NaOH	N - None O - AsNaO2	
Lancaster																			P - Na2O4S	
State, Zip: PA, 17601															1 1			E - NaMSO4	Q - Na2SO3 R - Na2S2O3	
Phone:	PO #:				-181			1											S - H2SO4	
717-656-2300(Tei)					9							1 (M - Assorbio Acid	T - TSP Dodecahydrate U - Acetone	
Email:	WO #:				O Z														V - MCAA	
	D-14-0-				니일	N.	- 1					1 1					20	W EDTA	W - pH 4-5 Y - Trizma	
Project Name: Seres-Arcadis JV,LTM, AOC 50, Spring 2023	Project #: 68023801				2	9									1 1		를		Z - other (specify)	
Site	SSOW#				쵤	٤						1 1	1			1	100	Other:		
					S	ISD (Yes or No)	- 1							1			6			
			Campia	Matrix	D	MSM											4			
			Sample Type	(Wewster,	1		9034/ Suffide										Total Num			
		Sample	(C=comp,	S-solid, O-waste/oil,	5	form	4 S										=			
Sample identification - Client ID (Lab ID)	Sample Date	Time	G=grab)		()	Page	903				1_						10	Special Ins	tructions/Note:	
		> <	Preserva	tion Code:	X	X							tale of				X	No the latest and the		
G6M-04-02X-SPR23 (680-236086-1)	6/7/23	11:25 Eastern		Water			х										2			
G6M-13-02X-SPR23 (680-236086-2)	6/7/23	11:15 Eastern		Water	Т		Х										2			
G6M-13-05X-SPR23 (680-236086-3)	8/7/23	09:35 Eastern		Water			х										2			
		Lastern															1.00			
									\top	+									_	
							**			+										
						H			+					+			1-(33)			
						H			+	+				+			.005			
					+	H			-	+	+			+	++		26.			
						Ш											5.49			
Note: Since laboratory accreditations are subject to change, Eurofina Environment	it Testing Southeast, I	LC places the	e ownership of r	nethod, analy	te & a	ccred	litation	compl	liance :	upon ou	r subco	ontract	laborato	ries. Th	is sampl	e shipme	nt is fo	onwarded under chain-o	of-custody. If the laborator	
does not currently maintain accreditation in the State of Origin listed above for an status should be brought to Eurofins Environment Testing Southeast, LLC attenti	alysis/tests/matrix bei on immediately. If all	ng analyzed, ti requested acc	the samples mu creditations are (st be shipped current to dat	back e, retu	to the	Euro	fins Env	vironm in of Cu	ent Tes ustody a	ting So	utheas g to sai	t, LLC II d compl	borator iance to	eurofins	Environ	nent T	ill be provided. Any chi resting Southeast, LLC	anges to accreditation	
Possible Hazard Identification			-		117	Sar	nple	Disp	osal (A fee						are re	taine	ed longer than 1 r	month)	
Unconfirmed								etum					ispose	I By L	ab		Arch	ive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2			Spe	scial	Instru	ctions	JQC F	Requir	remer	its:							
Empty Kit Relinquished by:		Date:				me:							N	elhod o	f Shipme	nt:				
Relinquished by \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Date/Time 10/13/2	3 11	0:00	Company	Ç _s	~	Rece	ived by	r	_	7				Date/T	ime			Company	
Relinquished by	Date Fire:			Company			Rece	ived by	r:	. ~			-		Date/T	ima:			Company	
Relinquished by:	Date/Time:			Company			Rece	ived by	A	7-	P				Date/	-/	7-	73 1610	Company	
Custody Seals Intact: Custody Seal No.:	1						Coole	or Temp	peratur	e(s) °C	and Ot	her Re	marks:	Ro	LW	0.	1-		5	

Job Number: 680-236086-2

Login Number: 236086 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Creator: Sims, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Refer to Job Narrative for details.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 680-236086-2

List Source: Eurofins Lancaster Laboratories Environment Testing, LLC Login Number: 236086 List Number: 2

List Creation: 06/13/23 11:31 AM

Creator: Ballard, Megan

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	True	

Job Number: 680-236086-2

Login Number: 236086 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 3 List Creation: 06/14/23 03:19 PM

Creator: Ballard, Megan

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 7/6/2023 9:43:42 AM

JOB DESCRIPTION

Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

JOB NUMBER

680-236128-3

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/6/2023 9:43:42 AM

Authorized for release by Heather Trotter, Project Manager Heather.Trotter@et.eurofinsus.com Designee for Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-236128-3

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Qualifiers

GC		

Qualifier

	<u> </u>
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

J Estimated: The analyte was positively identified; the quantitation is an estimation

J1 Estimated: The guantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

M Manual integrated compound.

Q One or more quality control criteria failed.
U Undetected at the Limit of Detection.

Qualifier Description

GC VOA

Qualifier Qualifier Description

J Estimated: The analyte was positively identified; the quantitation is an estimation

U Undetected at the Limit of Detection.

Metals

J Estimated: The analyte was positively identified; the quantitation is an estimation

U Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Page 3 of 41 7/6/2023

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-236128-10	32M-01-13XBR-SPR23	Water	06/08/23 15:50	06/10/23 09:32
680-236128-11	32M-01-14XOB-SPR23	Water	06/09/23 10:15	06/10/23 09:32
680-236128-12	32M-01-18XBR-SPR23	Water	06/09/23 10:00	06/10/23 09:32
680-236128-13	32M-DUP01-SPR23	Water	06/09/23 10:00	06/10/23 09:32
680-236128-14	32M-TB-01-SPR23	Water	06/09/23 00:00	06/10/23 09:32

Job ID: 680-236128-3

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Job ID: 680-236128-3

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-236128-3

Receipt

The samples were received on 6/10/2023 9:32 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.7°C and 5.7°C

GC/MS VOA

Method 8260D_DOD5: The continuing calibration verification (CCV) associated with batch 680-784926 recovered above the upper control limit for Acetone, Bromomethane, Chloroethane, Chloromethane, Dichlorodifluoromethane, 1,3-Dichloropropane, 2-Hexanone, Trichlorofluoromethane and Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D_DOD5: The laboratory control sample (LCS) for analytical batch 680-784926 recovered outside control limits for the following analytes: Chloromethane, Dichlorodifluoromethane, 1,3-Dichloropropane and Vinyl chloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D_DOD5: The laboratory control sample duplicate (LCSD) for analytical batch 680-784926 recovered outside control limits for the following analytes: Chloroethane, Chloromethane, Dichlorodifluoromethane, 1,3-Dichloropropane and Vinyl chloride. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D_DOD5: The method blank for analytical batch 680-784926 contained Hexachlorobutadiene and 1,2,4-Trichlorobenzene above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than the reporting limit (RL) OR practical quantitation limit (PQL).

Method 8260D_DOD5: The closing continuing calibration verification (CCVC) associated with batch 680-784926 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8260D_DOD5: The initial calibration verification (ICV) analyzed in batch 680-784451 was outside method criteria for the following analyte(s): Trichlorofluoromethane. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D_DOD5: The initial calibration verification (ICV) analyzed in batch 680-784480 was outside method criteria for the following analyte(s): Bromomethane, Chloroethane, Dichlorodifluoromethane, 1,1-Dichloroethane, trans-1,2-Dichloroethene, Trichlorofluoromethane and Vinyl chloride. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D_DOD5: The continuing calibration verification cap (CCVC) analyzed in batch 680-785235 was outside the method criteria for the following analyte(s): Bromomethane and Vinyl acetate. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D_DOD5: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 680-785235 recovered outside control limits for the following analytes: Vinyl acetate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D_DOD5: The continuing calibration verification (CCV) analyzed in batch 680-785235 was outside the method criteria for the following analyte(s): Bromoform and Vinyl acetate. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8260D_DOD5: Surrogate recovery for the following sample was outside the upper control limit: 32M-DUP01-SPR23

-

Job ID: 680-236128-3

_

a

7

_

10

11

12

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Job ID: 680-236128-3 (Continued)

Laboratory: Eurofins Savannah (Continued)

(680-236128-13). The sample was reanalyzed and both sets of data have been reported.

Method 8260D_DOD5: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to failure of quality control parameters in the initial analysis. 32M-DUP01-SPR23 (680-236128-13)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hydrocarbons

Method MAVPH: The method requirement for no headspace was not met. The following volatile sample was analyzed with headspace in the sample container(s): 32M-01-14XOB-SPR23 (680-236128-11).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 680-236128-3

- 0

7

7

0

11

12

Client Sample Results

Client: Seres Engineering & Services LLC

Methylene Chloride

Methyl tert-butyl ether

Naphthalene

N-Propylbenzene

4-Methyl-2-pentanone (MIBK)

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 202(

Method: SW846 8260D - Volatile Organic Compounds (GC/MS)

Client Sample ID: 32M-01-13XBR-SPR23 Lab Sample ID: 680-236128-10

Date Collected: 06/08/23 15:50 Date Received: 06/10/23 09:32

Matrix: Water

Job ID: 680-236128-3

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acetone	10	UQ	25	10	3.7	ug/L		06/22/23 18:10	1
Benzene	1.0	U	2.0	1.0	0.27	ug/L		06/22/23 18:10	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/22/23 18:10	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/22/23 18:10	1
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/22/23 18:10	1
Bromoform	2.0	U	2.5	2.0	0.59	ug/L		06/22/23 18:10	1
Bromomethane	10	UQ	20	10	3.7	ug/L		06/22/23 18:10	1
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/22/23 18:10	1
n-Butylbenzene	2.0	U	2.5	2.0	0.52	ug/L		06/22/23 18:10	1
sec-Butylbenzene	2.0	U	2.5	2.0	0.53	ug/L		06/22/23 18:10	1
tert-Butylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 18:10	1
Carbon disulfide	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 18:10	1
Carbon tetrachloride	1.0	U	2.0	1.0	0.30	ug/L		06/22/23 18:10	1
Chlorobenzene	0.50	U	1.0	0.50	0.15	ug/L		06/22/23 18:10	1
Chloroethane	10	UQ	20	10	4.6	ug/L		06/22/23 18:10	1
Chloroform	1.0	U	2.0	1.0	0.27	ug/L		06/22/23 18:10	1
Chloromethane	2.0	UQ	2.5	2.0	0.54	ug/L		06/22/23 18:10	1
2-Chlorotoluene	0.50	U	1.0	0.50	0.25	ug/L		06/22/23 18:10	1
4-Chlorotoluene	1.0	U	2.0	1.0	0.41	ug/L		06/22/23 18:10	1
Chlorodibromomethane	1.0	U	2.0	1.0	0.39	ug/L		06/22/23 18:10	1
1,2-Dibromo-3-Chloropropane	5.0	U	10	5.0	1.8	ug/L		06/22/23 18:10	1
Ethylene Dibromide	1.0	U	2.0	1.0	0.33	ug/L		06/22/23 18:10	1
Dibromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/22/23 18:10	1
1,2-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/22/23 18:10	1
1,3-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/22/23 18:10	1
1,4-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/22/23 18:10	1
Dichlorodifluoromethane	1.0	UQ	2.0	1.0	0.36	ug/L		06/22/23 18:10	1
1,1-Dichloroethane	1.0	UQ	2.0	1.0	0.33	ug/L		06/22/23 18:10	1
1,2-Dichloroethane	1.0	UM	2.0	1.0	0.25	ug/L		06/22/23 18:10	1
cis-1,2-Dichloroethene	1.0	U	2.0	1.0	0.25	ug/L		06/22/23 18:10	1
trans-1,2-Dichloroethene	1.0	UQ	2.0	1.0	0.34	ug/L		06/22/23 18:10	1
1,2-Dichloroethene, Total	1.0	U	2.0	1.0	0.37	ug/L		06/22/23 18:10	1
1,1-Dichloroethene	1.0	U	2.0	1.0		ug/L		06/22/23 18:10	1
1,2-Dichloropropane	0.50	U	1.0	0.50		ug/L		06/22/23 18:10	1
1,3-Dichloropropane	1.0	UQ	2.0	1.0		ug/L		06/22/23 18:10	1
2,2-Dichloropropane	1.0	U	2.0	1.0		ug/L		06/22/23 18:10	1
1,1-Dichloropropene	1.0	U	2.0	1.0		ug/L		06/22/23 18:10	1
cis-1,3-Dichloropropene	1.0	U	2.0	1.0		ug/L		06/22/23 18:10	1
trans-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/22/23 18:10	1
Ethylbenzene	0.50		1.0	0.50		ug/L		06/22/23 18:10	1
Hexachlorobutadiene		UQ	5.0	1.0		ug/L		06/22/23 18:10	1
2-Hexanone		UQ	20	10		ug/L		06/22/23 18:10	1
Isopropylbenzene	1.0		2.0	1.0		ug/L		06/22/23 18:10	1
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/22/23 18:10	1
1 17						J.,			

20

20

5.0

10

2.0

10 U

10 U

2.0 U

5.0 U

1.0 U

Eurofins Savannah

7/6/2023

06/22/23 18:10

06/22/23 18:10

06/22/23 18:10

06/22/23 18:10

06/22/23 18:10

Page 7 of 41

3.2 ug/L

2.7 ug/L

0.81 ug/L

2.4 ug/L

0.41 ug/L

10

10

2.0

5.0

1.0

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-13XBR-SPR23 Lab Sample ID: 680-236128-10

Date Collected: 06/08/23 15:50 Date Received: 06/10/23 09:32

Matrix: Water

Job ID: 680-236128-3

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/22/23 18:10	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/22/23 18:10	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/22/23 18:10	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/22/23 18:10	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/22/23 18:10	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/22/23 18:10	1
1,2,4-Trichlorobenzene	2.0	U	5.0	2.0	0.53	ug/L		06/22/23 18:10	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/22/23 18:10	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/22/23 18:10	1
Trichloroethene	0.50	U	1.0	0.50	0.20	ug/L		06/22/23 18:10	1
Trichlorofluoromethane	1.0	UQ	2.0	1.0	0.33	ug/L		06/22/23 18:10	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/22/23 18:10	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 18:10	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/22/23 18:10	1
Vinyl acetate	2.0	U	2.5	2.0	0.69	ug/L		06/22/23 18:10	1
Vinyl chloride	1.0	UQ	2.0	1.0	0.40	ug/L		06/22/23 18:10	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/22/23 18:10	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49	ug/L		06/22/23 18:10	1
Xylenes, Total	1.0	U	2.0	1.0	0.49	ug/L		06/22/23 18:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		89 - 112		06/22/23 18:10	1
1,2-Dichloroethane-d4 (Surr)	100		81 - 118		06/22/23 18:10	1
4-Bromofluorobenzene (Surr)	109		85 - 114		06/22/23 18:10	1
Dibromofluoromethane (Surr)	114		80 - 119		06/22/23 18:10	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U –	5.0	2.0	1.0	ug/L		06/21/23 21:11	1
C9-C10 Aromatics	20	U	100	20	10	ug/L		06/21/23 21:11	1
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 21:11	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 21:11	1
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L		06/21/23 21:11	1
Toluene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 21:11	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 21:11	1
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L		06/21/23 21:11	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 21:11	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 21:11	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
l	a,a,a-Trifluorotoluene (fid)	102		70 - 130		06/21/23 21:11	1

Method: SW846 6010C - Metals (ICP) - Total Recoverable									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Manganese	17		10	5.0	1.3	ug/L		06/14/23 14:22	1

Method: SW846 6020A - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac	
	Arsenic	1.1	J	5.0	3.0	0.86 ug/L		06/15/23 00:42	1	

Eurofins Savannah

Page 8 of 41 7/6/2023

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-14XOB-SPR23 Lab Sample ID: 680-236128-11

Date Collected: 06/09/23 10:15 East Sample 15: 666 266 126 11

Date Received: 06/10/23 09:32

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acetone		U	25	10	3.7	ug/L		06/23/23 23:10	
Benzene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 23:10	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/23/23 23:10	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 23:10	1
Dichlorobromomethane	1.0	U	2.0	1.0		ug/L		06/23/23 23:10	1
Bromoform	2.0	U Q	2.5	2.0		ug/L		06/23/23 23:10	
Bromomethane	10	UQ	20	10	3.7	ug/L		06/23/23 23:10	,
2-Butanone (MEK)	20	U	25	20		ug/L		06/23/23 23:10	
n-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/23/23 23:10	
sec-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/23/23 23:10	
tert-Butylbenzene	1.0	U	2.0	1.0		ug/L		06/23/23 23:10	
Carbon disulfide	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Carbon tetrachloride	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Chlorobenzene	0.50		1.0	0.50		ug/L		06/23/23 23:10	
Chloroethane	10		20	10		ug/L		06/23/23 23:10	
Chloroform	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Chloromethane	2.0		2.5	2.0		ug/L		06/23/23 23:10	
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/23/23 23:10	
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Chlorodibromomethane	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,2-Dibromo-3-Chloropropane	5.0		10	5.0		ug/L		06/23/23 23:10	
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Dibromomethane	1.0		2.0	1.0		ug/L		06/23/23 23:10	,
1,2-Dichlorobenzene	1.0		2.0	1.0		ug/L ug/L		06/23/23 23:10	,
1,3-Dichlorobenzene	1.0		2.0	1.0		ug/L ug/L		06/23/23 23:10	· · · · · .
1,4-Dichlorobenzene	1.0		2.0	1.0		-		06/23/23 23:10	
T,4-Dichlorobenzene Dichlorodifluoromethane	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,1-Dichloroethane	1.0					ug/L			
•		UM	2.0 2.0	1.0		ug/L		06/23/23 23:10	
1,2-Dichloroethane	1.0		2.0	1.0		ug/L		06/23/23 23:10	
cis-1,2-Dichloroethene				1.0		ug/L		06/23/23 23:10	
trans-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,2-Dichloroethene, Total	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,1-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,2-Dichloropropane	0.50		1.0	0.50		ug/L		06/23/23 23:10	
1,3-Dichloropropane	1.0		2.0	1.0		ug/L		06/23/23 23:10	
2,2-Dichloropropane	1.0		2.0	1.0		ug/L		06/23/23 23:10	
1,1-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 23:10	•
cis-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
trans-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Ethylbenzene	0.50		1.0	0.50		ug/L		06/23/23 23:10	
Hexachlorobutadiene	1.0		5.0	1.0		ug/L		06/23/23 23:10	
2-Hexanone	10		20	10		ug/L		06/23/23 23:10	
Isopropylbenzene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/23/23 23:10	
Methylene Chloride	10	U	20	10	3.2	ug/L		06/23/23 23:10	
4-Methyl-2-pentanone (MIBK)	10		20	10	2.7	ug/L		06/23/23 23:10	
Methyl tert-butyl ether	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 23:10	•
Naphthalene	5.0	U	10	5.0	2.4	ug/L		06/23/23 23:10	
N-Propylbenzene	1.0	U	2.0	1.0	0.41	ug/L		06/23/23 23:10	

Eurofins Savannah

Job ID: 680-236128-3

Page 9 of 41 7/6/2023

113

104

123 Q

06/23/23 23:10

06/23/23 23:10

06/23/23 23:10

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-14XOB-SPR23

Date Collected: 06/09/23 10:15 Date Received: 06/10/23 09:32

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-236128-11

Matrix: Water

Analyte	Result	Qualifier	L	.OQ	LOD	DL	Unit	D Analyzed	Dil Fac
Styrene	1.0	U	_	2.0	1.0	0.27	ug/L	06/23/23 23:10	1
1,1,1,2-Tetrachloroethane	1.0	U		2.0	1.0	0.36	ug/L	06/23/23 23:10	1
1,1,2,2-Tetrachloroethane	1.0	U		2.0	1.0	0.40	ug/L	06/23/23 23:10	1
Tetrachloroethene	1.0	U		2.0	1.0	0.35	ug/L	06/23/23 23:10	1
Toluene	1.0	U		2.0	1.0	0.25	ug/L	06/23/23 23:10	1
1,2,3-Trichlorobenzene	2.0	U		5.0	2.0	0.81	ug/L	06/23/23 23:10	1
1,2,4-Trichlorobenzene	2.0	U		5.0	2.0	0.53	ug/L	06/23/23 23:10	1
1,1,1-Trichloroethane	0.50	U		1.0	0.50	0.21	ug/L	06/23/23 23:10	1
1,1,2-Trichloroethane	1.0	U		2.0	1.0	0.32	ug/L	06/23/23 23:10	1
Trichloroethene	0.50	U		1.0	0.50	0.20	ug/L	06/23/23 23:10	1
Trichlorofluoromethane	1.0	U		2.0	1.0	0.33	ug/L	06/23/23 23:10	1
1,2,3-Trichloropropane	1.0	U		2.0	1.0	0.48	ug/L	06/23/23 23:10	1
1,2,4-Trimethylbenzene	1.0	U		2.0	1.0	0.43	ug/L	06/23/23 23:10	1
1,3,5-Trimethylbenzene	1.0	U		2.0	1.0	0.28	ug/L	06/23/23 23:10	1
Vinyl acetate	2.0	UQ		2.5	2.0	0.69	ug/L	06/23/23 23:10	1
Vinyl chloride	1.0	U		2.0	1.0	0.40	ug/L	06/23/23 23:10	1
o-Xylene	1.0	U		2.0	1.0	0.26	ug/L	06/23/23 23:10	1
m-Xylene & p-Xylene	1.0	U		2.0	1.0	0.49	ug/L	06/23/23 23:10	1
Xylenes, Total	1.0	U		2.0	1.0	0.49	ug/L	06/23/23 23:10	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			89 - 112	-				06/23/23 23:10	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Benzene	2.0	U	5.0	2.0	1.0	ug/L	06/22/23 09:18	1
C9-C10 Aromatics	20	U	100	20	10	ug/L	06/22/23 09:18	1
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L	06/22/23 09:18	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L	06/22/23 09:18	1
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L	06/22/23 09:18	1
Toluene	2.0	U	5.0	2.0	1.0	ug/L	06/22/23 09:18	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L	06/22/23 09:18	1
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L	06/22/23 09:18	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L	06/22/23 09:18	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L	06/22/23 09:18	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
a a a-Trifluorotoluene (fid)			70 - 130				06/22/23 09:18	

81 - 118

85 - 114

80 - 119

L	a,a,a-Trifluorotoluene (fld) -	101		70 - 130					06/22/23 09:18	1
	Method: SW846 6010C - Metals (ICP)	- Total	Recovera	ble						
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Manganese	810		10	5.0	1.3	ug/L		06/14/23 14:24	1
Γ	Method: SW846 6020A - Metals (ICP/I	VIS) - To	otal Recov	verable						
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Arsenic	12		5.0	3.0	0.86	ug/L		06/15/23 00:46	1

Eurofins Savannah

7

9

14

12

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Lab Sample ID: 680-236128-12

Matrix: Water

Job ID: 680-236128-3

Client Sample ID: 32M-01-18XBR-SPR23

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Acetone			25	10		ug/L	— <u> </u>	06/23/23 20:58	
Benzene	1.0		2.0	1.0	0.27	-		06/23/23 20:58	
Bromobenzene	0.50		1.0	0.50		ug/L		06/23/23 20:58	
Chlorobromomethane	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Dichlorobromomethane	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Bromoform		UQ	2.5	2.0		ug/L		06/23/23 20:58	
Bromomethane		UQ	20	10		ug/L		06/23/23 20:58	
2-Butanone (MEK)	20		25	20		ug/L		06/23/23 20:58	
n-Butylbenzene	2.0		2.5	2.0		ug/L		06/23/23 20:58	
sec-Butylbenzene	2.0		2.5	2.0		ug/L		06/23/23 20:58	
tert-Butylbenzene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Carbon disulfide	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Carbon tetrachloride	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Chlorobenzene	0.50		1.0	0.50		-		06/23/23 20:58	
Chloroethane	0.50		20	10		ug/L ug/L		06/23/23 20:58	
Chloroform	1.0		2.0	1.0		ug/L ug/L		06/23/23 20:58	
Chloronorm	2.0		2.0 2.5	2.0		ug/L ug/L		06/23/23 20:58	
						-			
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/23/23 20:58	
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Chlorodibromomethane	1.0		2.0	1.0		ug/L		06/23/23 20:58	
1,2-Dibromo-3-Chloropropane	5.0		10	5.0		ug/L		06/23/23 20:58	
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Dibromomethane	1.0		2.0	1.0	0.34	•		06/23/23 20:58	
1,2-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
1,3-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
1,4-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Dichlorodifluoromethane	1.0		2.0	1.0		ug/L		06/23/23 20:58	
1,1-Dichloroethane	1.0		2.0	1.0	0.33	ug/L		06/23/23 20:58	
1,2-Dichloroethane		UM	2.0	1.0		ug/L		06/23/23 20:58	
cis-1,2-Dichloroethene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 20:58	
trans-1,2-Dichloroethene	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 20:58	
1,2-Dichloroethene, Total	1.0	U	2.0	1.0	0.37	ug/L		06/23/23 20:58	
1,1-Dichloroethene	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 20:58	
1,2-Dichloropropane	0.50	U	1.0	0.50	0.22	ug/L		06/23/23 20:58	
1,3-Dichloropropane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 20:58	
2,2-Dichloropropane	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 20:58	
1,1-Dichloropropene	1.0	U	2.0	1.0		ug/L		06/23/23 20:58	
cis-1,3-Dichloropropene	1.0	U	2.0	1.0		ug/L		06/23/23 20:58	
trans-1,3-Dichloropropene	1.0	U	2.0	1.0	0.23	ug/L		06/23/23 20:58	
Ethylbenzene	0.50	U	1.0	0.50		ug/L		06/23/23 20:58	
Hexachlorobutadiene	1.0		5.0	1.0		ug/L		06/23/23 20:58	
2-Hexanone	10		20	10		ug/L		06/23/23 20:58	
sopropylbenzene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/23/23 20:58	
Methylene Chloride	10		20	10		ug/L		06/23/23 20:58	
4-Methyl-2-pentanone (MIBK)	10		20	10		ug/L		06/23/23 20:58	
Methyl tert-butyl ether	2.0		5.0	2.0		ug/L		06/23/23 20:58	
Naphthalene	5.0		10	5.0		ug/L ug/L		06/23/23 20:58	
N-Propylbenzene	1.0		2.0	1.0		ug/L ug/L		06/23/23 20:58	

Eurofins Savannah

7/6/2023

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-01-18XBR-SPR23

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236128-12

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 20:58	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 20:58	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 20:58	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 20:58	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 20:58	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 20:58	1
1,2,4-Trichlorobenzene	2.0	U	5.0	2.0	0.53	ug/L		06/23/23 20:58	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/23/23 20:58	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/23/23 20:58	1
Trichloroethene	0.50	U	1.0	0.50	0.20	ug/L		06/23/23 20:58	1
Trichlorofluoromethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 20:58	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/23/23 20:58	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 20:58	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/23/23 20:58	1
Vinyl acetate	2.0	UQ	2.5	2.0	0.69	ug/L		06/23/23 20:58	1
Vinyl chloride	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 20:58	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 20:58	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49	ug/L		06/23/23 20:58	1
Xylenes, Total	1.0	U	2.0	1.0	0.49	ug/L		06/23/23 20:58	1

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
Toluene-d8 (Surr)	119	Q	89 - 112			06/23/23 20:58	1
1,2-Dichloroethane-d4 (Surr)	118		81 - 118			06/23/23 20:58	1
4-Bromofluorobenzene (Surr)	107		85 - 114			06/23/23 20:58	1
Dibromofluoromethane (Surr)	128	Q	80 - 119			06/23/23 20:58	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U	5.0	2.0	1.0	ug/L		06/22/23 09:59	1
C9-C10 Aromatics	20	U	100	20	10	ug/L		06/22/23 09:59	1
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L		06/22/23 09:59	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L		06/22/23 09:59	1
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L		06/22/23 09:59	1
Toluene	2.0	U	5.0	2.0	1.0	ug/L		06/22/23 09:59	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/22/23 09:59	1
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L		06/22/23 09:59	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L		06/22/23 09:59	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/22/23 09:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	102		70 - 130		06/22/23 09:59	1

Method: SW846 6010C - Metals (ICP) - Total Recoverabl	е					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Manganese	1300	10	5.0	1.3 ug/L		06/14/23 14:26	1

Method: SW846 6020A - Metals (ICP/MS) - To	tal Recove	erable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	2.5	J	5.0	3.0	0.86	ug/L		06/15/23 00:50	1

Eurofins Savannah

2

4

6

8

10

11

12

7/6/2023

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-DUP01-SPR23

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236128-13

Matrix: Water

Job ID: 680-236128-3

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Acetone		U	25	10	3.7	ug/L		06/23/23 21:20	
Acetone	10	U H	25	10	3.7	ug/L		06/26/23 15:52	
Benzene	1.0	U	2.0	1.0	0.27	-		06/23/23 21:20	
Benzene	1.0	UH	2.0	1.0		ug/L		06/26/23 15:52	
Bromobenzene	0.50	U	1.0	0.50	0.24	-		06/23/23 21:20	
Bromobenzene	0.50	UН	1.0	0.50	0.24	-		06/26/23 15:52	
Chlorobromomethane	1.0	U	2.0	1.0		ug/L		06/23/23 21:20	
Chlorobromomethane	1.0	UН	2.0	1.0		ug/L		06/26/23 15:52	
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 21:20	
Dichlorobromomethane	1.0	UH	2.0	1.0	0.25	ug/L		06/26/23 15:52	
Bromoform	2.0	U Q	2.5	2.0		ug/L		06/23/23 21:20	
Bromoform	2.0	U H	2.5	2.0		ug/L		06/26/23 15:52	
Bromomethane	10	UQ	20	10		ug/L		06/23/23 21:20	
Bromomethane		UH	20	10		ug/L		06/26/23 15:52	
2-Butanone (MEK)	20	U	25	20		ug/L		06/23/23 21:20	
2-Butanone (MEK)		UHQ	25	20		ug/L		06/26/23 15:52	
n-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/23/23 21:20	
n-Butylbenzene	2.0	U H	2.5	2.0		ug/L		06/26/23 15:52	
sec-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/23/23 21:20	
sec-Butylbenzene	2.0	UН	2.5	2.0		ug/L		06/26/23 15:52	
tert-Butylbenzene	1.0	U	2.0	1.0	0.43	-		06/23/23 21:20	
tert-Butylbenzene	1.0	UH	2.0	1.0		ug/L		06/26/23 15:52	
Carbon disulfide	1.0	U	2.0	1.0		ug/L		06/23/23 21:20	
Carbon disulfide		UH	2.0	1.0		ug/L		06/26/23 15:52	
Carbon tetrachloride	1.0		2.0	1.0		ug/L		06/23/23 21:20	
Carbon tetrachloride	1.0	UН	2.0	1.0		ug/L		06/26/23 15:52	
Chlorobenzene	0.50		1.0	0.50	0.15	-		06/23/23 21:20	
Chlorobenzene	0.50		1.0	0.50		ug/L		06/26/23 15:52	
Chloroethane	10	U	20	10		ug/L		06/23/23 21:20	
Chloroethane	10	UН	20	10		ug/L		06/26/23 15:52	
Chloroform	1.0	U	2.0	1.0		ug/L		06/23/23 21:20	
Chloroform	1.0	UН	2.0	1.0		ug/L		06/26/23 15:52	
Chloromethane	2.0	U	2.5	2.0		ug/L		06/23/23 21:20	
Chloromethane		UH	2.5	2.0		ug/L		06/26/23 15:52	
2-Chlorotoluene	0.50	U	1.0	0.50		ug/L		06/23/23 21:20	
2-Chlorotoluene	0.50	UН	1.0	0.50		ug/L		06/26/23 15:52	
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/23/23 21:20	
4-Chlorotoluene		UН	2.0	1.0		ug/L		06/26/23 15:52	
Chlorodibromomethane	1.0	U	2.0	1.0		ug/L		06/23/23 21:20	
Chlorodibromomethane		UH	2.0	1.0		ug/L		06/26/23 15:52	
1,2-Dibromo-3-Chloropropane	5.0	U	10	5.0		ug/L		06/23/23 21:20	
1,2-Dibromo-3-Chloropropane	5.0	UН	10	5.0		ug/L		06/26/23 15:52	
Ethylene Dibromide	1.0	U	2.0	1.0		ug/L		06/23/23 21:20	
Ethylene Dibromide		UH	2.0	1.0		ug/L		06/26/23 15:52	
Dibromomethane	1.0		2.0	1.0		ug/L		06/23/23 21:20	
Dibromomethane		UH	2.0	1.0		ug/L		06/26/23 15:52	
1,2-Dichlorobenzene	0.31		2.0	1.0		ug/L		06/23/23 21:20	
1,2-Dichlorobenzene		UH	2.0	1.0		ug/L		06/26/23 15:52	
1,3-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 21:20	

Eurofins Savannah

7/6/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-DUP01-SPR23

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32

N-Propylbenzene

Lab Sample ID: 680-236128-13

Matrix: Water

Job ID: 680-236128-3

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3-Dichlorobenzene	1.0	UH	2.0	1.0	0.31	ug/L		06/26/23 15:52	1
1,4-Dichlorobenzene	1.0	U	2.0	1.0	0.31	ug/L		06/23/23 21:20	1
1,4-Dichlorobenzene	1.0	UH	2.0	1.0	0.31	ug/L		06/26/23 15:52	1
Dichlorodifluoromethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 21:20	1
Dichlorodifluoromethane	1.0	UH	2.0	1.0	0.36	ug/L		06/26/23 15:52	1
1,1-Dichloroethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 21:20	1
1,1-Dichloroethane	1.0	UH	2.0	1.0	0.33	ug/L		06/26/23 15:52	1
1,2-Dichloroethane	1.0	UM	2.0	1.0	0.25	ug/L		06/23/23 21:20	1
1,2-Dichloroethane	1.0	UH	2.0	1.0	0.25	ug/L		06/26/23 15:52	1
cis-1,2-Dichloroethene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 21:20	1
cis-1,2-Dichloroethene	1.0	UH	2.0	1.0	0.25	ug/L		06/26/23 15:52	1
trans-1,2-Dichloroethene	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 21:20	1
trans-1,2-Dichloroethene	1.0	UH	2.0	1.0	0.34	ug/L		06/26/23 15:52	1
1,2-Dichloroethene, Total	1.0	U	2.0	1.0	0.37	ug/L		06/23/23 21:20	1
1,2-Dichloroethene, Total	1.0	UH	2.0	1.0	0.37	ug/L		06/26/23 15:52	1
1,1-Dichloroethene	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 21:20	1
1,1-Dichloroethene	1.0	UН	2.0	1.0	0.33	-		06/26/23 15:52	1
1,2-Dichloropropane	0.50	U	1.0	0.50	0.22			06/23/23 21:20	1
1,2-Dichloropropane	0.50	UН	1.0	0.50	0.22	-		06/26/23 15:52	1
1,3-Dichloropropane	1.0	U	2.0	1.0	0.36	-		06/23/23 21:20	1
1,3-Dichloropropane	1.0	UH	2.0	1.0	0.36			06/26/23 15:52	
2,2-Dichloropropane	1.0	U	2.0	1.0	0.35	-		06/23/23 21:20	1
2,2-Dichloropropane	1.0	UН	2.0	1.0	0.35	-		06/26/23 15:52	1
1,1-Dichloropropene	1.0	U	2.0	1.0	0.28			06/23/23 21:20	1
1,1-Dichloropropene	1.0	UН	2.0	1.0	0.28	-		06/26/23 15:52	
cis-1,3-Dichloropropene	1.0	U	2.0	1.0	0.26	-		06/23/23 21:20	
cis-1,3-Dichloropropene	1.0	UH	2.0	1.0	0.26			06/26/23 15:52	
trans-1,3-Dichloropropene	1.0	U	2.0	1.0	0.23	ug/L		06/23/23 21:20	
trans-1,3-Dichloropropene	1.0	UН	2.0	1.0	0.23	-		06/26/23 15:52	
Ethylbenzene	0.50	U	1.0	0.50	0.20			06/23/23 21:20	1
Ethylbenzene	0.50	UН	1.0	0.50	0.20	-		06/26/23 15:52	
Hexachlorobutadiene	1.0	U	5.0	1.0	0.22	-		06/23/23 21:20	1
Hexachlorobutadiene	1.0	UH	5.0	1.0	0.22			06/26/23 15:52	
2-Hexanone	10	U	20	10		ug/L		06/23/23 21:20	
2-Hexanone	10	UHQM	20	10		ug/L		06/26/23 15:52	
Isopropylbenzene	1.0	U	2.0	1.0	0.26			06/23/23 21:20	
Isopropylbenzene	1.0	UН	2.0	1.0	0.26	-		06/26/23 15:52	
4-Isopropyltoluene	1.0		2.0	1.0	0.44	_		06/23/23 21:20	1
4-Isopropyltoluene	1.0	UH	2.0	1.0	0.44			06/26/23 15:52	1
Methylene Chloride	10	U	20	10		ug/L		06/23/23 21:20	
Methylene Chloride	10	UН	20	10		ug/L		06/26/23 15:52	1
4-Methyl-2-pentanone (MIBK)	10		20	10		ug/L		06/23/23 21:20	1
4-Methyl-2-pentanone (MIBK)		UHQ	20	10		ug/L		06/26/23 15:52	
Methyl tert-butyl ether	2.0		5.0	2.0	0.81			06/23/23 21:20	
Methyl tert-butyl ether		UH	5.0	2.0	0.81			06/26/23 15:52	,
Naphthalene	5.0		10	5.0		ug/L		06/23/23 21:20	
Naphthalene		UH	10	5.0		ug/L		06/26/23 15:52	
N-Propylbenzene	1.0		2.0	1.0	0.41			06/23/23 21:20	,
	1.0		2.0	4.0	0.11	//		00/00/00 45 50	

Eurofins Savannah

06/26/23 15:52

Page 14 of 41

2.0

1.0

0.41 ug/L

1.0 UH

2

5

8

9

11

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-DUP01-SPR23 Lab Sample ID: 680-236128-13

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32

Matrix: Water

Job ID: 680-236128-3

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 21:20	1
Styrene	1.0	UH	2.0	1.0	0.27	ug/L		06/26/23 15:52	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 21:20	1
1,1,1,2-Tetrachloroethane	1.0	UH	2.0	1.0	0.36	ug/L		06/26/23 15:52	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 21:20	1
1,1,2,2-Tetrachloroethane	1.0	U H	2.0	1.0	0.40	ug/L		06/26/23 15:52	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 21:20	1
Tetrachloroethene	1.0	UH	2.0	1.0	0.35	ug/L		06/26/23 15:52	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 21:20	1
Toluene	1.0	UH	2.0	1.0	0.25	ug/L		06/26/23 15:52	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 21:20	1
1,2,3-Trichlorobenzene	2.0	UH	5.0	2.0	0.81	ug/L		06/26/23 15:52	1
1,2,4-Trichlorobenzene	2.0	U	5.0	2.0	0.53	ug/L		06/23/23 21:20	1
1,2,4-Trichlorobenzene	2.0	UH	5.0	2.0	0.53	ug/L		06/26/23 15:52	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/23/23 21:20	1
1,1,1-Trichloroethane	0.50	UH	1.0	0.50	0.21	ug/L		06/26/23 15:52	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/23/23 21:20	1
1,1,2-Trichloroethane	1.0	UH	2.0	1.0	0.32	ug/L		06/26/23 15:52	1
Trichloroethene	0.35	J	1.0	0.50	0.20	ug/L		06/23/23 21:20	1
Trichloroethene	0.50	UHM	1.0	0.50	0.20	ug/L		06/26/23 15:52	1
Trichlorofluoromethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 21:20	1
Trichlorofluoromethane	1.0	UHQ	2.0	1.0	0.33	ug/L		06/26/23 15:52	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/23/23 21:20	1
1,2,3-Trichloropropane	1.0	UH	2.0	1.0	0.48	ug/L		06/26/23 15:52	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 21:20	1
1,2,4-Trimethylbenzene	1.0	UH	2.0	1.0	0.43	ug/L		06/26/23 15:52	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/23/23 21:20	1
1,3,5-Trimethylbenzene	1.0	UH	2.0	1.0	0.28	ug/L		06/26/23 15:52	1
Vinyl acetate	2.0	UQ	2.5	2.0	0.69	ug/L		06/23/23 21:20	1
Vinyl acetate	2.0	UH	2.5	2.0	0.69	ug/L		06/26/23 15:52	1
Vinyl chloride	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 21:20	1
Vinyl chloride	1.0	UH	2.0	1.0	0.40	ug/L		06/26/23 15:52	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 21:20	1
o-Xylene	1.0	UН	2.0	1.0	0.26	-		06/26/23 15:52	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49			06/23/23 21:20	1
m-Xylene & p-Xylene	1.0	UН	2.0	1.0	0.49	-		06/26/23 15:52	1
Xylenes, Total	1.0		2.0	1.0		ug/L		06/23/23 21:20	1
Xylenes, Total		UH	2.0	1.0	0.49			06/26/23 15:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	115	Q	89 - 112		06/23/23 21:20	1
Toluene-d8 (Surr)	106		89 - 112		06/26/23 15:52	1
1,2-Dichloroethane-d4 (Surr)	114		81 - 118		06/23/23 21:20	1
1,2-Dichloroethane-d4 (Surr)	98		81 - 118		06/26/23 15:52	1
4-Bromofluorobenzene (Surr)	103		85 - 114		06/23/23 21:20	1
4-Bromofluorobenzene (Surr)	101		85 - 114		06/26/23 15:52	1
Dibromofluoromethane (Surr)	124	Q	80 - 119		06/23/23 21:20	1
Dibromofluoromethane (Surr)	97		80 - 119		06/26/23 15:52	1

Eurofins Savannah

7/6/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-DUP01-SPR23

Date Collected: 06/09/23 10:00
Date Received: 06/10/23 09:32

a,a,a-Trifluorotoluene (fid)

Lab Sample ID: 680-236128-13

Matrix: Water

Job ID: 680-236128-3

06/22/23 10:40

Date 110001104. 00/10/20 00:02	
Method: MA DEP MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC)	

102

motilodi im/tbEi im/tti ii	naccacinacette	· olutilo i	ou oloum	,	Jour 20110	(00)			
Analyte	Result	Qualifier	LO	Q	LOD	DL	Unit	D Analyzed	Dil Fac
Benzene	2.0	U	5	.0	2.0	1.0	ug/L	06/22/23 10:40	1
C9-C10 Aromatics	20	U	10	00	20	10	ug/L	06/22/23 10:40	1
Ethylbenzene	2.0	U	5	.0	2.0	1.0	ug/L	06/22/23 10:40	1
Methyl tert-butyl ether	2.0	U	5	.0	2.0	1.0	ug/L	06/22/23 10:40	1
Naphthalene	4.0	U	6	.0	4.0	2.0	ug/L	06/22/23 10:40	1
Toluene	2.0	U	5	.0	2.0	1.0	ug/L	06/22/23 10:40	1
C9-C12 Aliphatics (adjusted)	50	U	10	00	50	25	ug/L	06/22/23 10:40	1
m-Xylene & p-Xylene	5.0	U	1	10	5.0	2.5	ug/L	06/22/23 10:40	1
o-Xylene	2.0	U	5	.0	2.0	1.0	ug/L	06/22/23 10:40	1
C5-C8 Aliphatics (adjusted)	50	U	10	00	50	25	ug/L	06/22/23 10:40	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac

_ Method: SW846 6010C - Metals (I	CP) - Total Recovera	able				
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Manganese	1300	10	5.0	1.3 ug/L	06/14/23 14:28	1

70 - 130

Method: SW846 6020A - Metals (ICP/MS) - Total Recoverable											
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac		
Arsenic	1.9	J	5.0	3.0	0.86	ug/L		06/15/23 00:54	1		

3

5

7

9

10

11

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-TB-01-SPR23

Date Collected: 06/09/23 00:00 Date Received: 06/10/23 09:32

Lab Sample ID: 680-236128-14

Job ID: 680-236128-3

Matrix: Water

Analyte	Result	mpounds (Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acetone		U	25	10	3.7	ug/L		06/23/23 20:36	1
Benzene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 20:36	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/23/23 20:36	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 20:36	1
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 20:36	
Bromoform	2.0	UQ	2.5	2.0	0.59	ug/L		06/23/23 20:36	
Bromomethane	10	UQ	20	10		ug/L		06/23/23 20:36	
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/23/23 20:36	
n-Butylbenzene	2.0	U	2.5	2.0	0.52	ug/L		06/23/23 20:36	
sec-Butylbenzene	2.0	U	2.5	2.0		ug/L		06/23/23 20:36	•
tert-Butylbenzene	1.0	U	2.0	1.0		ug/L		06/23/23 20:36	
Carbon disulfide	1.0	U	2.0	1.0		ug/L		06/23/23 20:36	
Carbon tetrachloride	1.0	U	2.0	1.0		ug/L		06/23/23 20:36	
Chlorobenzene	0.50	U	1.0	0.50		ug/L		06/23/23 20:36	
Chloroethane	10		20	10		ug/L		06/23/23 20:36	
Chloroform	1.0	U	2.0	1.0		ug/L		06/23/23 20:36	
Chloromethane	2.0		2.5	2.0		ug/L		06/23/23 20:36	
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/23/23 20:36	
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
Chlorodibromomethane	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,2-Dibromo-3-Chloropropane	5.0		10	5.0		ug/L		06/23/23 20:36	
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/23/23 20:36	
Dibromomethane	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,2-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,3-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,4-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
Dichlorodifluoromethane	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,1-Dichloroethane	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,2-Dichloroethane		UM	2.0	1.0		ug/L		06/23/23 20:36	
cis-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
rans-1,2-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,2-Dichloroethene, Total	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,1-Dichloroethene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
1,2-Dichloropropane	0.50		1.0	0.50		ug/L		06/23/23 20:36	
1,3-Dichloropropane	1.0		2.0	1.0	0.22	-		06/23/23 20:36	
	1.0		2.0	1.0		ug/L		06/23/23 20:36	
2,2-Dichloropropane 1,1-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 20:36	· · · · · · .
cis-1,3-Dichloropropene				1.0				06/23/23 20:36	
trans-1,3-Dichloropropene	1.0 1.0		2.0 2.0	1.0		ug/L ug/L		06/23/23 20:36	,
Ethylbenzene	0.50		1.0	0.50		ug/L ug/L		06/23/23 20:36	· · · · · · .
Hexachlorobutadiene						-			
	1.0 10		5.0 20	1.0 10		ug/L		06/23/23 20:36	
2-Hexanone						ug/L		06/23/23 20:36	
sopropylbenzene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/23/23 20:36	
Methylene Chloride	10		20	10		ug/L		06/23/23 20:36	
4-Methyl-2-pentanone (MIBK)	10		20	10		ug/L		06/23/23 20:36	
Methyl tert-butyl ether	2.0		5.0	2.0		ug/L		06/23/23 20:36	
Naphthalene	5.0 1.0		2.0	5.0 1.0		ug/L ug/L		06/23/23 20:36 06/23/23 20:36	

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-TB-01-SPR23

Date Collected: 06/09/23 00:00 Date Received: 06/10/23 09:32

Xylenes, Total

Lab Sample ID: 680-236128-14

Matrix: Water

Job ID: 680-236128-3

06/23/23 20:36

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 20:36	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/23/23 20:36	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 20:36	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/23/23 20:36	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 20:36	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/23/23 20:36	1
1,2,4-Trichlorobenzene	2.0	U	5.0	2.0	0.53	ug/L		06/23/23 20:36	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/23/23 20:36	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/23/23 20:36	1
Trichloroethene	0.50	U	1.0	0.50	0.20	ug/L		06/23/23 20:36	1
Trichlorofluoromethane	1.0	U	2.0	1.0	0.33	ug/L		06/23/23 20:36	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/23/23 20:36	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 20:36	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/23/23 20:36	1
Vinyl acetate	2.0	UQ	2.5	2.0	0.69	ug/L		06/23/23 20:36	1
Vinyl chloride	1.0	U	2.0	1.0	0.40	ug/L		06/23/23 20:36	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/23/23 20:36	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49	ug/L		06/23/23 20:36	1

Surrogate	%Recovery Quar	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)		89 - 112		06/23/23 20:36	1
1,2-Dichloroethane-d4 (Surr)	108	81 - 118		06/23/23 20:36	1
4-Bromofluorobenzene (Surr)	107	85 - 114		06/23/23 20:36	1
Dibromofluoromethane (Surr)	116	80 - 119		06/23/23 20:36	1

2.0

1.0

1.0 U

0.49 ug/L

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-784926/8

Matrix: Water

Analysis Batch: 784926

Client Sample	ID: Method Blank
Pro	ep Type: Total/NA

Job ID: 680-236128-3

		MB							
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Acetone	10		25	10		ug/L		06/22/23 11:37	1
Benzene	1.0	U	2.0	1.0	0.27	ug/L		06/22/23 11:37	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/22/23 11:37	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/22/23 11:37	1
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/22/23 11:37	1
Bromoform	2.0	U	2.5	2.0	0.59	ug/L		06/22/23 11:37	1
Bromomethane	10	U	20	10	3.7	ug/L		06/22/23 11:37	1
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/22/23 11:37	1
n-Butylbenzene	2.0	U	2.5	2.0	0.52	ug/L		06/22/23 11:37	1
sec-Butylbenzene	2.0	U	2.5	2.0	0.53	ug/L		06/22/23 11:37	1
tert-Butylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 11:37	1
Carbon disulfide	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 11:37	1
Carbon tetrachloride	1.0	U	2.0	1.0		ug/L		06/22/23 11:37	1
Chlorobenzene	0.50	U	1.0	0.50	0.15	-		06/22/23 11:37	1
Chloroethane	10	U	20	10		ug/L		06/22/23 11:37	1
Chloroform	1.0	U	2.0	1.0		ug/L		06/22/23 11:37	1
Chloromethane	2.0	U	2.5	2.0		ug/L		06/22/23 11:37	1
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/22/23 11:37	1
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/22/23 11:37	1
Chlorodibromomethane	1.0		2.0	1.0		_		06/22/23 11:37	1
1,2-Dibromo-3-Chloropropane	5.0		10	5.0		ug/L		06/22/23 11:37	1
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/22/23 11:37	
Dibromomethane	1.0		2.0	1.0	0.34	-		06/22/23 11:37	1
1,2-Dichlorobenzene	1.0		2.0	1.0	0.31	_		06/22/23 11:37	1
1,3-Dichlorobenzene	1.0		2.0	1.0	0.31			06/22/23 11:37	
1,4-Dichlorobenzene	1.0		2.0	1.0	0.31	_		06/22/23 11:37	1
Dichlorodifluoromethane	1.0		2.0	1.0	0.36	_		06/22/23 11:37	1
1,1-Dichloroethane	1.0		2.0	1.0		ug/L		06/22/23 11:37	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloroethane		UM	2.0	1.0	0.35	_		06/22/23 11:37	1
cis-1,2-Dichloroethene	1.0		2.0	1.0	0.25	_		06/22/23 11:37	1
trans-1,2-Dichloroethene	1.0		2.0	1.0		ug/L ug/L		06/22/23 11:37	
			2.0			-			1
1,2-Dichloroethene, Total	1.0			1.0	0.37	-		06/22/23 11:37	1
1,1-Dichloroethene	1.0		2.0	1.0	0.33			06/22/23 11:37	
1,2-Dichloropropane	0.50		1.0	0.50	0.22	-		06/22/23 11:37 06/22/23 11:37	1
1,3-Dichloropropane	1.0		2.0	1.0	0.36	-			1
2,2-Dichloropropane	1.0		2.0	1.0	0.35			06/22/23 11:37	1
1,1-Dichloropropene	1.0		2.0	1.0		ug/L		06/22/23 11:37	1
cis-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/22/23 11:37	1
trans-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/22/23 11:37	1
Ethylbenzene	0.50		1.0	0.50		ug/L		06/22/23 11:37	1
Hexachlorobutadiene	0.659		5.0	1.0		ug/L		06/22/23 11:37	1
2-Hexanone	10	U	20	10		ug/L		06/22/23 11:37	1
Isopropylbenzene	1.0	U	2.0	1.0		ug/L		06/22/23 11:37	1
4-Isopropyltoluene	1.0	U	2.0	1.0	0.44	ug/L		06/22/23 11:37	1
Methylene Chloride	10	U	20	10	3.2	ug/L		06/22/23 11:37	1
4-Methyl-2-pentanone (MIBK)	10	U	20	10		ug/L		06/22/23 11:37	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	0.81	ug/L		06/22/23 11:37	1
Naphthalene	5.0	U	10	5.0	2.4	ug/L		06/22/23 11:37	1

Eurofins Savannah

Page 19 of 41

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-784926/8

Matrix: Water

Analysis Batch: 784926

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236128-3

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
N-Propylbenzene	1.0	U	2.0	1.0	0.41	ug/L		06/22/23 11:37	1
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/22/23 11:37	1
1,1,1,2-Tetrachloroethane	1.0	U	2.0	1.0	0.36	ug/L		06/22/23 11:37	1
1,1,2,2-Tetrachloroethane	1.0	U	2.0	1.0	0.40	ug/L		06/22/23 11:37	1
Tetrachloroethene	1.0	U	2.0	1.0	0.35	ug/L		06/22/23 11:37	1
Toluene	1.0	U	2.0	1.0	0.25	ug/L		06/22/23 11:37	1
1,2,3-Trichlorobenzene	2.0	U	5.0	2.0	0.81	ug/L		06/22/23 11:37	1
1,2,4-Trichlorobenzene	0.934	J	5.0	2.0	0.53	ug/L		06/22/23 11:37	1
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.21	ug/L		06/22/23 11:37	1
1,1,2-Trichloroethane	1.0	U	2.0	1.0	0.32	ug/L		06/22/23 11:37	1
Trichloroethene	0.50	U	1.0	0.50	0.20	ug/L		06/22/23 11:37	1
Trichlorofluoromethane	1.0	U	2.0	1.0	0.33	ug/L		06/22/23 11:37	1
1,2,3-Trichloropropane	1.0	U	2.0	1.0	0.48	ug/L		06/22/23 11:37	1
1,2,4-Trimethylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/22/23 11:37	1
1,3,5-Trimethylbenzene	1.0	U	2.0	1.0	0.28	ug/L		06/22/23 11:37	1
Vinyl acetate	2.0	U	2.5	2.0	0.69	ug/L		06/22/23 11:37	1
Vinyl chloride	1.0	U	2.0	1.0	0.40	ug/L		06/22/23 11:37	1
o-Xylene	1.0	U	2.0	1.0	0.26	ug/L		06/22/23 11:37	1
m-Xylene & p-Xylene	1.0	U	2.0	1.0	0.49	ug/L		06/22/23 11:37	1
Xylenes, Total	1.0	U	2.0	1.0	0.49	ug/L		06/22/23 11:37	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	89 - 112		06/22/23 11:37	1
1,2-Dichloroethane-d4 (Surr)	102	81 - 118		06/22/23 11:37	1
4-Bromofluorobenzene (Surr)	112	85 ₋ 114		06/22/23 11:37	1
Dibromofluoromethane (Surr)	111	80 - 119		06/22/23 11:37	1

Lab Sample ID: LCS 680-784926/4

Matrix: Water

Analysis Batch: 784926

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	250	289		ug/L		116	39 - 160
Benzene	50.0	54.0		ug/L		108	79 - 120
Bromobenzene	50.0	57.8		ug/L		116	80 - 120
Chlorobromomethane	50.0	54.9		ug/L		110	78 - 123
Dichlorobromomethane	50.0	51.3		ug/L		103	79 - 125
Bromoform	50.0	47.8		ug/L		96	66 - 130
Bromomethane	50.0	66.9		ug/L		134	53 - 141
2-Butanone (MEK)	250	279		ug/L		112	56 - 143
n-Butylbenzene	50.0	48.6		ug/L		97	75 - 128
sec-Butylbenzene	50.0	51.8		ug/L		104	77 - 126
tert-Butylbenzene	50.0	51.9		ug/L		104	78 - 124
Carbon disulfide	50.0	54.3		ug/L		109	64 - 133
Carbon tetrachloride	50.0	45.5		ug/L		91	72 - 136
Chlorobenzene	50.0	53.3		ug/L		107	82 - 118
Chloroethane	50.0	67.6		ug/L		135	60 - 138
Chloroform	50.0	54.4		ug/L		109	79 - 124

Eurofins Savannah

Page 20 of 41

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

54.6

53.2

46.2

51.9

46.2

50.9

55.3

58.0

292

55.0

51.7

58.8

282

53.4

52.9

52.0

51.7

47.6

51.8

58.0

57.4

57.8

48.7

47.5

55.5

55.4

62.4

54.9

51.2

48.2

98.2

80.6 Q

59.8 Q

ug/L

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 202(

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

109

106

120

104

92

102

111

116

117

110

103

118

113

107

106

104

103

95

104

116

115

116

97

95

111

111

125

110

102

96

98

161

92

71 - 131

78 - 122

80 - 119

60 - 139

79 - 125

75 - 124

73 - 127

79 - 121

66 - 134

57 - 139

72 - 131

77 - 127

74 - 124

67 - 130

71 - 124

61 - 128

76 - 126

78 - 123

78 - 124

71 - 121

74 - 129

80 - 121

69 - 129

69 - 130

74 - 131

80 - 119

79 - 123

65 - 141

73 - 122

76 - 124

75 - 124 54 - 146

58 - 137

Job ID: 680-236128-3

Lab Sample ID: LCS 680-784926/4

Matrix: Water

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

4-Isopropyltoluene

Methylene Chloride

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1.2.4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl acetate

Vinyl chloride

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

2-Hexanone

Naphthalene

Styrene

Toluene

N-Propylbenzene

Tetrachloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Analysis Batch: 784926

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Analyte	Added	Result Qua	lifier Unit	D %Rec	Limits	
Chloromethane	50.0	71.3 Q	ug/L	143	50 - 139	
2-Chlorotoluene	50.0	53.1	ug/L	106	79 - 122	
4-Chlorotoluene	50.0	54.7	ug/L	109	78 - 122	
Chlorodibromomethane	50.0	53.9	ug/L	108	74 - 126	
1,2-Dibromo-3-Chloropropane	50.0	45.3	ug/L	91	62 - 128	
Ethylene Dibromide	50.0	57.6	ug/L	115	75 - 127	
Dibromomethane	50.0	59.3	ug/L	119	79 - 123	
1,2-Dichlorobenzene	50.0	56.1	ug/L	112	80 - 119	
1,3-Dichlorobenzene	50.0	55.4	ug/L	111	80 - 119	
1,4-Dichlorobenzene	50.0	52.6	ug/L	105	79 - 118	
Dichlorodifluoromethane	50.0	80.8 Q	ug/L	162	32 - 152	
1,1-Dichloroethane	50.0	52.6	ug/L	105	77 - 125	
1,2-Dichloroethane	50.0	56.7	ug/L	113	73 - 128	
cis-1,2-Dichloroethene	50.0	52.8	ug/L	106	78 - 123	
trans-1,2-Dichloroethene	50.0	53.8	ug/L	108	75 - 124	
1,2-Dichloroethene, Total	100	107	ug/L	107	79 - 121	

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

250

50.0

50.0

50.0

250

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

100

50.0

Spike

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-784926/4

Matrix: Water

Analysis Batch: 784926

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236128-3

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
o-Xylene	50.0	54.3		ug/L		109	78 - 122
m-Xylene & p-Xylene	50.0	49.9		ug/L		100	80 - 121
Xylenes, Total	100	104		ug/L		104	79 - 121

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	107		89 - 112
1,2-Dichloroethane-d4 (Surr)	103		81 - 118
4-Bromofluorobenzene (Surr)	109		85 - 114
Dibromofluoromethane (Surr)	113		80 - 119

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 680-784926/5

Analysis Batch: 784926									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	287		ug/L		115	39 - 160	1	20
Benzene	50.0	54.1		ug/L		108	79 - 120	0	20
Bromobenzene	50.0	57.4		ug/L		115	80 - 120	1	20
Chlorobromomethane	50.0	54.9		ug/L		110	78 - 123	0	20
Dichlorobromomethane	50.0	50.0		ug/L		100	79 - 125	3	20
Bromoform	50.0	46.8		ug/L		94	66 - 130	2	20
Bromomethane	50.0	70.2		ug/L		140	53 - 141	5	20
2-Butanone (MEK)	250	281		ug/L		112	56 - 143	1	20
n-Butylbenzene	50.0	48.7		ug/L		97	75 - 128	0	20
sec-Butylbenzene	50.0	51.7		ug/L		103	77 - 126	0	20
tert-Butylbenzene	50.0	53.0		ug/L		106	78 - 124	2	20
Carbon disulfide	50.0	51.5		ug/L		103	64 - 133	5	20
Carbon tetrachloride	50.0	46.7		ug/L		93	72 - 136	3	20
Chlorobenzene	50.0	53.7		ug/L		107	82 - 118	1	20
Chloroethane	50.0	71.1	Q	ug/L		142	60 - 138	5	20
Chloroform	50.0	54.1		ug/L		108	79 - 124	1	20
Chloromethane	50.0	74.0	Q	ug/L		148	50 - 139	4	20
2-Chlorotoluene	50.0	54.9		ug/L		110	79 - 122	3	20
4-Chlorotoluene	50.0	55.0		ug/L		110	78 - 122	1	20
Chlorodibromomethane	50.0	54.4		ug/L		109	74 - 126	1	20
1,2-Dibromo-3-Chloropropane	50.0	45.2		ug/L		90	62 - 128	0	20
Ethylene Dibromide	50.0	58.4		ug/L		117	75 - 127	1	20
Dibromomethane	50.0	59.6		ug/L		119	79 - 123	0	20
1,2-Dichlorobenzene	50.0	55.6		ug/L		111	80 - 119	1	20
1,3-Dichlorobenzene	50.0	54.7		ug/L		109	80 - 119	1	20
1,4-Dichlorobenzene	50.0	53.0		ug/L		106	79 - 118	1	20
Dichlorodifluoromethane	50.0	82.9	Q	ug/L		166	32 - 152	3	20
1,1-Dichloroethane	50.0	53.2		ug/L		106	77 - 125	1	20
1,2-Dichloroethane	50.0	55.4		ug/L		111	73 - 128	2	20
cis-1,2-Dichloroethene	50.0	52.7		ug/L		105	78 - 123	0	20
trans-1,2-Dichloroethene	50.0	54.1		ug/L		108	75 - 124	1	20
1,2-Dichloroethene, Total	100	107		ug/L		107	79 - 121	0	20
1,1-Dichloroethene	50.0	55.3		ug/L		111	71 - 131	1	20

Eurofins Savannah

Page 22 of 41

7/6/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-784926/5

Matrix: Water

Analysis Batch: 784926

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-236128-3

7 maryolo Batom 704020	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	50.0	53.2		ug/L		106	78 - 122		20
1,3-Dichloropropane	50.0	60.6	Q	ug/L		121	80 - 119	1	20
2,2-Dichloropropane	50.0	46.7		ug/L		93	60 - 139	1	20
1,1-Dichloropropene	50.0	52.8		ug/L		106	79 - 125	2	20
cis-1,3-Dichloropropene	50.0	47.1		ug/L		94	75 - 124	2	20
trans-1,3-Dichloropropene	50.0	51.0		ug/L		102	73 - 127	0	20
Ethylbenzene	50.0	54.8		ug/L		110	79 - 121	1	20
Hexachlorobutadiene	50.0	60.6		ug/L		121	66 - 134	4	20
2-Hexanone	250	290		ug/L		116	57 - 139	1	20
Isopropylbenzene	50.0	54.0		ug/L		108	72 - 131	2	20
4-Isopropyltoluene	50.0	51.1		ug/L		102	77 - 127	1	20
Methylene Chloride	50.0	56.6		ug/L		113	74 - 124	4	20
4-Methyl-2-pentanone (MIBK)	250	278		ug/L		111	67 - 130	2	20
Methyl tert-butyl ether	50.0	53.4		ug/L		107	71 - 124	0	20
Naphthalene	50.0	54.6		ug/L		109	61 - 128	3	20
N-Propylbenzene	50.0	53.5		ug/L		107	76 - 126	3	20
Styrene	50.0	50.5		ug/L		101	78 - 123	2	20
1,1,1,2-Tetrachloroethane	50.0	47.0		ug/L		94	78 - 124	1	20
1,1,2,2-Tetrachloroethane	50.0	50.2		ug/L		100	71 - 121	3	20
Tetrachloroethene	50.0	58.8		ug/L		118	74 - 129	1	20
Toluene	50.0	58.4		ug/L		117	80 - 121	2	20
1,2,3-Trichlorobenzene	50.0	59.3		ug/L		119	69 - 129	3	20
1,2,4-Trichlorobenzene	50.0	51.2		ug/L		102	69 - 130	5	20
1,1,1-Trichloroethane	50.0	47.2		ug/L		94	74 - 131	1	20
1,1,2-Trichloroethane	50.0	55.9		ug/L		112	80 - 119	1	20
Trichloroethene	50.0	56.1		ug/L		112	79 - 123	1	20
Trichlorofluoromethane	50.0	64.6		ug/L		129	65 - 141	3	20
1,2,3-Trichloropropane	50.0	53.5		ug/L		107	73 - 122	3	20
1,2,4-Trimethylbenzene	50.0	50.9		ug/L		102	76 - 124	1	20
1,3,5-Trimethylbenzene	50.0	49.9		ug/L		100	75 - 124	3	20
Vinyl acetate	100	98.0		ug/L		98	54 - 146	0	20
Vinyl chloride	50.0	84.9	Q	ug/L		170	58 - 137	5	20
o-Xylene	50.0	53.1		ug/L		106	78 - 122	2	20
m-Xylene & p-Xylene	50.0	48.2		ug/L		96	80 - 121	3	20
Xylenes, Total	100	101		ug/L		101	79 - 121	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	110		89 - 112
1,2-Dichloroethane-d4 (Surr)	105		81 - 118
4-Bromofluorobenzene (Surr)	102		85 - 114
Dibromofluoromethane (Surr)	112		80 - 119

Lab Sample ID: MB 680-785235/9

Matrix: Water

Analysis Batch: 785235

мв мв

Analyte		lifier LOQ	LOD	DL Un	t D Analyzed	Dil Fac
Acetone	10 U	25	10	3.7 ug/	L 06/23/23 17:4	1

Eurofins Savannah

Prep Type: Total/NA

Client Sample ID: Method Blank

Page 23 of 41

7/6/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-785235/9

Matrix: Water

Analysis Batch: 785235

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236128-3

		MB							
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Benzene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
Bromobenzene	0.50	U	1.0	0.50	0.24	ug/L		06/23/23 17:41	1
Chlorobromomethane	1.0	U	2.0	1.0	0.34	ug/L		06/23/23 17:41	1
Dichlorobromomethane	1.0	U	2.0	1.0	0.25	ug/L		06/23/23 17:41	1
Bromoform	2.0	U	2.5	2.0	0.59	ug/L		06/23/23 17:41	1
Bromomethane	10	U	20	10	3.7	ug/L		06/23/23 17:41	1
2-Butanone (MEK)	20	U	25	20	6.4	ug/L		06/23/23 17:41	1
n-Butylbenzene	2.0	U	2.5	2.0	0.52	ug/L		06/23/23 17:41	1
sec-Butylbenzene	2.0	U	2.5	2.0	0.53	ug/L		06/23/23 17:41	1
tert-Butylbenzene	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 17:41	1
Carbon disulfide	1.0	U	2.0	1.0	0.43	ug/L		06/23/23 17:41	1
Carbon tetrachloride	1.0	U	2.0	1.0	0.30	ug/L		06/23/23 17:41	1
Chlorobenzene	0.50	U	1.0	0.50	0.15	-		06/23/23 17:41	1
Chloroethane	10	U	20	10		ug/L		06/23/23 17:41	1
Chloroform	1.0	U	2.0	1.0	0.27			06/23/23 17:41	1
Chloromethane	2.0		2.5	2.0	0.54	•		06/23/23 17:41	1
2-Chlorotoluene	0.50		1.0	0.50		ug/L		06/23/23 17:41	1
4-Chlorotoluene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
Chlorodibromomethane	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
1,2-Dibromo-3-Chloropropane	5.0		10	5.0		ug/L		06/23/23 17:41	1
Ethylene Dibromide	1.0		2.0	1.0		ug/L		06/23/23 17:41	· · · · · · · · · · · · · · · · · · ·
Dibromomethane	1.0		2.0	1.0		ug/L		06/23/23 17:41	
1.2-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
1,3-Dichlorobenzene	1.0		2.0	1.0		ug/L		06/23/23 17:41	
1,4-Dichlorobenzene	1.0		2.0	1.0	0.31			06/23/23 17:41	1
Dichlorodifluoromethane	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
1,1-Dichloroethane	1.0		2.0	1.0		ug/L		06/23/23 17:41	
1,2-Dichloroethane		UM	2.0	1.0	0.35	ug/L		06/23/23 17:41	1
cis-1,2-Dichloroethene	1.0		2.0	1.0		ug/L ug/L		06/23/23 17:41	1
trans-1,2-Dichloroethene	1.0		2.0		0.23			06/23/23 17:41	· · · · · · · · · · · · · · · · · · ·
	1.0		2.0	1.0 1.0	0.34	Ū		06/23/23 17:41	1
1,2-Dichloroethene, Total	1.0		2.0	1.0		•			
1,1-Dichloroethene						ug/L		06/23/23 17:41	1
1,2-Dichloropropane	0.50		1.0	0.50		ug/L		06/23/23 17:41	1
1,3-Dichloropropane	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
2,2-Dichloropropane	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
1,1-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
cis-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
trans-1,3-Dichloropropene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
Ethylbenzene	0.50		1.0	0.50		ug/L		06/23/23 17:41	1
Hexachlorobutadiene	1.0		5.0	1.0		ug/L		06/23/23 17:41	1
2-Hexanone	10		20	10		ug/L		06/23/23 17:41	1
Isopropylbenzene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
4-Isopropyltoluene	1.0		2.0	1.0		ug/L		06/23/23 17:41	1
Methylene Chloride	10		20	10		ug/L		06/23/23 17:41	1
4-Methyl-2-pentanone (MIBK)	10		20	10		ug/L		06/23/23 17:41	1
Methyl tert-butyl ether	2.0		5.0	2.0		ug/L		06/23/23 17:41	1
Naphthalene	5.0		10	5.0		ug/L		06/23/23 17:41	1
N-Propylbenzene	1.0	U	2.0	1.0	0.41	ug/L		06/23/23 17:41	1
Styrene	1.0	U	2.0	1.0	0.27	ug/L		06/23/23 17:41	1

Eurofins Savannah

7/6/2023

Page 24 of 41

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 202(

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-785235/9

Matrix: Water

Analysis Batch: 785235

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236128-3

MB MB Result Qualifier LOQ LOD **DL** Unit Analyzed Dil Fac 1,1,1,2-Tetrachloroethane 1.0 U 2.0 1.0 0.36 ug/L 06/23/23 17:41 1,1,2,2-Tetrachloroethane 1.0 U 2.0 1.0 0.40 ug/L 06/23/23 17:41 Tetrachloroethene 1.0 U 0.35 ug/L 06/23/23 17:41 2.0 1.0 Toluene 1.0 U 2.0 1.0 0.25 ug/L 06/23/23 17:41 1,2,3-Trichlorobenzene 2.0 U 5.0 2.0 0.81 ug/L 06/23/23 17:41 1,2,4-Trichlorobenzene 2.0 U 5.0 2.0 0.53 ug/L 06/23/23 17:41 1,1,1-Trichloroethane 0.50 U 1.0 0.50 0.21 ug/L 06/23/23 17:41 1,1,2-Trichloroethane 1.0 U 2.0 1.0 0.32 ug/L 06/23/23 17:41 0.50 Trichloroethene 0.50 U 1.0 0.20 ug/L 06/23/23 17:41 Trichlorofluoromethane 2.0 1.0 1.0 U 0.33 ug/L 06/23/23 17:41 1,2,3-Trichloropropane 1.0 U 2.0 1.0 0.48 ug/L 06/23/23 17:41 1,2,4-Trimethylbenzene 1.0 U 2.0 1.0 0.43 ug/L 06/23/23 17:41 1,3,5-Trimethylbenzene 1.0 U 2.0 06/23/23 17:41 1.0 0.28 ug/L 2.0 U 2.5 2.0 0.69 Vinyl acetate ug/L 06/23/23 17:41 Vinyl chloride 1.0 U 2.0 1.0 0.40 ug/L 06/23/23 17:41 o-Xylene 2.0 1.0 U 1.0 0.26 ug/L 06/23/23 17:41 1 m-Xylene & p-Xylene 1.0 U 2.0 1.0 0.49 ug/L 06/23/23 17:41 Xylenes, Total 1.0 U 2.0 1.0 0.49 ug/L 06/23/23 17:41

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared And	alyzed	Dil Fac
Toluene-d8 (Surr)	116	Q	89 - 112	06/23	/23 17:41	1
1,2-Dichloroethane-d4 (Surr)	111		81 - 118	06/23.	/23 17:41	1
4-Bromofluorobenzene (Surr)	107		85 - 114	06/23.	/23 17:41	1
Dibromofluoromethane (Surr)	119		80 - 119	06/23.	/23 17:41	1

Lab Sample ID: LCS 680-785235/5

Matrix: Water

Analysis Batch: 785235

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analysis Baton. 100200	Caile	1.00	1.00				0/ Doo	
	Spike		LCS		_		%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	243		ug/L		97	39 - 160	
Benzene	50.0	46.8		ug/L		94	79 - 120	
Bromobenzene	50.0	49.0		ug/L		98	80 - 120	
Chlorobromomethane	50.0	42.5		ug/L		85	78 - 123	
Dichlorobromomethane	50.0	44.8		ug/L		90	79 - 125	
Bromoform	50.0	40.3		ug/L		81	66 - 130	
Bromomethane	50.0	54.7		ug/L		109	53 - 141	
2-Butanone (MEK)	250	237		ug/L		95	56 - 143	
n-Butylbenzene	50.0	51.3		ug/L		103	75 - 128	
sec-Butylbenzene	50.0	45.2		ug/L		90	77 - 126	
tert-Butylbenzene	50.0	45.5		ug/L		91	78 - 124	
Carbon disulfide	50.0	43.8		ug/L		88	64 - 133	
Carbon tetrachloride	50.0	43.1		ug/L		86	72 - 136	
Chlorobenzene	50.0	47.8		ug/L		96	82 - 118	
Chloroethane	50.0	46.5		ug/L		93	60 - 138	
Chloroform	50.0	44.4		ug/L		89	79 - 124	
Chloromethane	50.0	43.1		ug/L		86	50 - 139	
2-Chlorotoluene	50.0	46.3		ug/L		93	79 - 122	
				-				

Eurofins Savannah

Page 25 of 41

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-785235/5

Matrix: Water

Analysis Batch: 785235

Client Sample ID: Lab Control Sample

Job ID: 680-236128-3

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chlorotoluene	50.0	47.6		ug/L		95	78 - 122	
Chlorodibromomethane	50.0	49.4		ug/L		99	74 - 126	
1,2-Dibromo-3-Chloropropane	50.0	44.9		ug/L		90	62 - 128	
Ethylene Dibromide	50.0	46.4		ug/L		93	75 - 127	
Dibromomethane	50.0	47.0		ug/L		94	79 - 123	
1,2-Dichlorobenzene	50.0	48.2		ug/L		96	80 - 119	
1,3-Dichlorobenzene	50.0	48.9		ug/L		98	80 - 119	
1,4-Dichlorobenzene	50.0	48.3		ug/L		97	79 - 118	
Dichlorodifluoromethane	50.0	42.5		ug/L		85	32 - 152	
1,1-Dichloroethane	50.0	44.4		ug/L		89	77 - 125	
1,2-Dichloroethane	50.0	43.4		ug/L		87	73 - 128	
cis-1,2-Dichloroethene	50.0	48.1		ug/L		96	78 - 123	
trans-1,2-Dichloroethene	50.0	47.3		ug/L		95	75 - 124	
1,2-Dichloroethene, Total	100	95.4		ug/L		95	79 - 121	
1,1-Dichloroethene	50.0	49.0		ug/L		98	71 - 131	
1,2-Dichloropropane	50.0	48.5		ug/L		97	78 - 122	
1,3-Dichloropropane	50.0	50.9		ug/L		102	80 - 119	
2,2-Dichloropropane	50.0	54.6		ug/L		109	60 - 139	
1,1-Dichloropropene	50.0	46.3		ug/L		93	79 - 125	
cis-1,3-Dichloropropene	50.0	44.3		ug/L		89	75 - 124	
trans-1,3-Dichloropropene	50.0	47.0		ug/L		94	73 - 127	
Ethylbenzene	50.0	47.8		ug/L		96	79 - 121	
Hexachlorobutadiene	50.0	48.6		ug/L		97	66 - 134	
2-Hexanone	250	280		ug/L		112	57 ₋ 139	
Isopropylbenzene	50.0	47.7		ug/L		95	72 - 131	
4-Isopropyltoluene	50.0	48.1		ug/L		96	77 - 127	
Methylene Chloride	50.0	45.0		ug/L		90	74 - 124	
4-Methyl-2-pentanone (MIBK)	250	265		ug/L		106	67 - 130	
Methyl tert-butyl ether	50.0	50.0		ug/L		100	71 - 124	
Naphthalene	50.0	52.1		ug/L		104	61 - 128	
N-Propylbenzene	50.0	46.0		ug/L		92	76 - 126	
Styrene	50.0	50.0		ug/L		100	78 - 123	
1,1,1,2-Tetrachloroethane	50.0	44.7		ug/L		89	78 - 124	
1,1,2,2-Tetrachloroethane	50.0	58.6		ug/L		117	71 - 121	
Tetrachloroethene	50.0	46.2		ug/L		92	74 - 129	
Toluene	50.0	46.0		ug/L		92	80 - 121	
1,2,3-Trichlorobenzene	50.0	50.3		ug/L		101	69 - 129	
1,2,4-Trichlorobenzene	50.0	51.9		ug/L		104	69 - 130	
1,1,1-Trichloroethane	50.0	44.8		ug/L		90	74 - 131	
1,1,2-Trichloroethane	50.0	50.3		ug/L		101	80 - 119	
Trichloroethene	50.0	42.1		ug/L		84	79 - 123	
Trichlorofluoromethane	50.0	44.2		ug/L		88	65 - 141	
1,2,3-Trichloropropane	50.0	51.9		ug/L		104	73 - 122	
1,2,4-Trimethylbenzene	50.0	46.3		ug/L		93	76 - 124	
1,3,5-Trimethylbenzene	50.0	46.5		ug/L ug/L		93	75 - 124 75 - 124	
Vinyl acetate	100		J1 Q	ug/L ug/L		337	54 ₋ 146	
Vinyl acetate Vinyl chloride	50.0	44.8	J 1 Q	ug/L ug/L		90	58 - 137	
o-Xylene	50.0	46.2		ug/L ug/L		90	78 ₋ 122	
m-Xylene & p-Xylene	50.0	46.4				93	80 - 121	
m-Aylette α μ-Aylette	50.0	40.4		ug/L		93	00 - 121	

Eurofins Savannah

7/6/2023

Page 26 of 41

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-785235/5

Lab Sample ID: LCSD 680-785235/6

Matrix: Water

Analysis Batch: 785235

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236128-3

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 92.6 Xylenes, Total 100 ug/L 93 79 - 121

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		89 - 112
1,2-Dichloroethane-d4 (Surr)	90		81 - 118
4-Bromofluorobenzene (Surr)	106		85 - 114
Dibromofluoromethane (Surr)	93		80 - 119

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 785235

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	249		ug/L		100	39 - 160	2	20
Benzene	50.0	46.2		ug/L		92	79 - 120	1	20
Bromobenzene	50.0	48.4		ug/L		97	80 - 120	1	20
Chlorobromomethane	50.0	42.1		ug/L		84	78 - 123	1	20
Dichlorobromomethane	50.0	44.6		ug/L		89	79 - 125	0	20
Bromoform	50.0	39.8		ug/L		80	66 - 130	1	20
Bromomethane	50.0	54.5		ug/L		109	53 - 141	0	20
2-Butanone (MEK)	250	238		ug/L		95	56 - 143	0	20
n-Butylbenzene	50.0	50.0		ug/L		100	75 - 128	3	20
sec-Butylbenzene	50.0	44.5		ug/L		89	77 - 126	2	20
tert-Butylbenzene	50.0	44.9		ug/L		90	78 - 124	1	20
Carbon disulfide	50.0	42.9		ug/L		86	64 - 133	2	20
Carbon tetrachloride	50.0	42.9		ug/L		86	72 - 136	0	20
Chlorobenzene	50.0	47.6		ug/L		95	82 - 118	0	20
Chloroethane	50.0	45.1		ug/L		90	60 - 138	3	20
Chloroform	50.0	42.8		ug/L		86	79 - 124	4	20
Chloromethane	50.0	43.0		ug/L		86	50 - 139	0	20
2-Chlorotoluene	50.0	45.9		ug/L		92	79 - 122	1	20
4-Chlorotoluene	50.0	46.7		ug/L		93	78 - 122	2	20
Chlorodibromomethane	50.0	49.1		ug/L		98	74 - 126	1	20
1,2-Dibromo-3-Chloropropane	50.0	44.8		ug/L		90	62 - 128	0	20
Ethylene Dibromide	50.0	46.5		ug/L		93	75 - 127	0	20
Dibromomethane	50.0	47.0		ug/L		94	79 - 123	0	20
1,2-Dichlorobenzene	50.0	47.5		ug/L		95	80 - 119	1	20
1,3-Dichlorobenzene	50.0	47.9		ug/L		96	80 - 119	2	20
1,4-Dichlorobenzene	50.0	46.9		ug/L		94	79 - 118	3	20
Dichlorodifluoromethane	50.0	42.3		ug/L		85	32 - 152	1	20
1,1-Dichloroethane	50.0	43.5		ug/L		87	77 - 125	2	20
1,2-Dichloroethane	50.0	43.3		ug/L		87	73 - 128	0	20
cis-1,2-Dichloroethene	50.0	47.4		ug/L		95	78 - 123	1	20
trans-1,2-Dichloroethene	50.0	46.3		ug/L		93	75 - 124	2	20
1,2-Dichloroethene, Total	100	93.7		ug/L		94	79 - 121	2	20
1,1-Dichloroethene	50.0	47.6		ug/L		95	71 - 131	3	20
1,2-Dichloropropane	50.0	47.4		ug/L		95	78 - 122	2	20
1,3-Dichloropropane	50.0	51.3		ug/L		103	80 - 119	1	20

Eurofins Savannah

Page 27 of 41

7/6/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method: 8260D - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-785235/6

Matrix: Water

Analysis Batch: 785235

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-236128-3

•	Spike	LCSD LC	CSD			%Rec		RPD
Analyte	Added	Result Q	ualifier Unit	D	%Rec	Limits	RPD	Limit
2,2-Dichloropropane	50.0	52.8	ug/L		106	60 - 139	3	20
1,1-Dichloropropene	50.0	46.6	ug/L		93	79 - 125	1	20
cis-1,3-Dichloropropene	50.0	43.7	ug/L		87	75 - 124	1	20
trans-1,3-Dichloropropene	50.0	46.6	ug/L		93	73 - 127	1	20
Ethylbenzene	50.0	47.0	ug/L		94	79 - 121	2	20
Hexachlorobutadiene	50.0	47.3	ug/L		95	66 - 134	3	20
2-Hexanone	250	286	ug/L		114	57 - 139	2	20
Isopropylbenzene	50.0	47.5	ug/L		95	72 - 131	1	20
4-Isopropyltoluene	50.0	47.0	ug/L		94	77 - 127	2	20
Methylene Chloride	50.0	45.6	ug/L		91	74 - 124	1	20
4-Methyl-2-pentanone (MIBK)	250	271	ug/L		108	67 - 130	2	20
Methyl tert-butyl ether	50.0	50.0	ug/L		100	71 - 124	0	20
Naphthalene	50.0	51.1	ug/L		102	61 - 128	2	20
N-Propylbenzene	50.0	45.6	ug/L		91	76 - 126	1	20
Styrene	50.0	49.2	ug/L		98	78 - 123	2	20
1,1,1,2-Tetrachloroethane	50.0	44.1	ug/L		88	78 - 124	1	20
1,1,2,2-Tetrachloroethane	50.0	59.2	ug/L		118	71 - 121	1	20
Tetrachloroethene	50.0	45.0	ug/L		90	74 - 129	3	20
Toluene	50.0	45.1	ug/L		90	80 - 121	2	20
1,2,3-Trichlorobenzene	50.0	48.6	ug/L		97	69 - 129	3	20
1,2,4-Trichlorobenzene	50.0	50.3	ug/L		101	69 - 130	3	20
1,1,1-Trichloroethane	50.0	44.4	ug/L		89	74 - 131	1	20
1,1,2-Trichloroethane	50.0	50.9	ug/L		102	80 - 119	1	20
Trichloroethene	50.0	41.7	ug/L		83	79 - 123	1	20
Trichlorofluoromethane	50.0	43.4	ug/L		87	65 - 141	2	20
1,2,3-Trichloropropane	50.0	52.3	ug/L		105	73 - 122	1	20
1,2,4-Trimethylbenzene	50.0	45.2	ug/L		90	76 - 124	3	20
1,3,5-Trimethylbenzene	50.0	44.7	ug/L		89	75 - 124	4	20
Vinyl acetate	100	337 J1	Q ug/L		337	54 - 146	0	20
Vinyl chloride	50.0	43.7	ug/L		87	58 - 137	3	20
o-Xylene	50.0	44.9	ug/L		90	78 - 122	3	20
m-Xylene & p-Xylene	50.0	46.3	ug/L		93	80 - 121	0	20
Xylenes, Total	100	91.2	ug/L		91	79 - 121	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		89 - 112
1,2-Dichloroethane-d4 (Surr)	87		81 - 118
4-Bromofluorobenzene (Surr)	105		85 - 114
Dibromofluoromethane (Surr)	92		80 - 119

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 410-389210/2

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 14:21	1
C9-C10 Aromatics	20	U	100	20	10	ug/L		06/21/23 14:21	1

Eurofins Savannah

Page 28 of 41 7/6/2023 Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Job ID: 680-236128-3

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 410-389210/2

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 14:21	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 14:21	1
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L		06/21/23 14:21	1
Toluene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 14:21	1
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 14:21	1
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L		06/21/23 14:21	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 14:21	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 14:21	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 a,a,a-Trifluorotoluene (fid) 101 06/21/23 14:21

> **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Lab Sample ID: LCS 410-389210/3 **Matrix: Water**

Analysis Batch: 389210

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.1	47.6		ug/L		95	70 - 130	
C9-C10 Aromatics	50.2	50.1	J	ug/L		100	70 - 130	
Ethylbenzene	50.1	48.9		ug/L		98	70 - 130	
Methyl tert-butyl ether	50.2	45.9		ug/L		92	70 - 130	
Naphthalene	50.2	52.1		ug/L		104	70 - 130	
Toluene	50.1	48.0		ug/L		96	70 - 130	
m-Xylene & p-Xylene	101	100		ug/L		99	70 - 130	
o-Xylene	50.4	49.4		ug/L		98	70 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate a,a,a-Trifluorotoluene (fid) 101 70 - 130

Lab Sample ID: LCSD 410-389210/4

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.1	47.9		ug/L		96	70 - 130	1	25
C9-C10 Aromatics	50.2	49.7	J	ug/L		99	70 - 130	1	25
Ethylbenzene	50.1	49.0		ug/L		98	70 - 130	0	25
Methyl tert-butyl ether	50.2	45.8		ug/L		91	70 - 130	0	25
Naphthalene	50.2	52.5		ug/L		105	70 - 130	1	25
Toluene	50.1	48.2		ug/L		96	70 - 130	0	25
m-Xylene & p-Xylene	101	100		ug/L		100	70 - 130	0	25
o-Xylene	50.4	49.6		ug/L		98	70 - 130	0	25

LCSD LCSD

%Recovery Qualifier Limits Surrogate 70 - 130 a,a,a-Trifluorotoluene (fid) 101

Eurofins Savannah

Page 29 of 41

LOQ

LOQ

5.0

10

5.0 U

MB MB

3.0 U

Result Qualifier

LOD

LCS LCS

441

Result Qualifier

LOD

3.0

5.0

DL Unit

1.3 ug/L

DL Unit

0.86 ug/L

Unit

ug/L

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 202(

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-783510/1-A

Matrix: Water Analysis Batch: 783688

Manganese

MB MB Analyte Result Qualifier

Lab Sample ID: LCS 680-783510/2-A **Matrix: Water**

Analysis Batch: 783688

Analyte Manganese

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-783511/1-A

Matrix: Water

Analysis Batch: 783691

Analyte

Lab Sample ID: LCS 680-783511/2-A

Matrix: Water

Arsenic

Analysis Batch: 783691

Analyte Arsenic 100

Spike Added

Spike

Added

400

LCS LCS Result Qualifier 111

Unit ug/L

D %Rec 111

D %Rec

110

Limits 84 - 116

%Rec

Client Sample ID: Lab Control Sample

Job ID: 680-236128-3

Prep Batch: 783510

Prep Batch: 783510

Prep Batch: 783511

Prep Batch: 783511

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

90 - 114

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Analyzed

06/14/23 23:33

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Analyzed

06/14/23 13:44

Prep Type: Total Recoverable

Dil Fac

Dil Fac

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

GC/MS VOA

Analysis Batch: 784926

Lab Sample ID 680-236128-10	Client Sample ID 32M-01-13XBR-SPR23	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 680-784926/8	Method Blank	Total/NA	Water	8260D	
LCS 680-784926/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 680-784926/5	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 785235

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-11	32M-01-14XOB-SPR23	Total/NA	Water	8260D	
680-236128-12	32M-01-18XBR-SPR23	Total/NA	Water	8260D	
680-236128-13	32M-DUP01-SPR23	Total/NA	Water	8260D	
680-236128-14	32M-TB-01-SPR23	Total/NA	Water	8260D	
MB 680-785235/9	Method Blank	Total/NA	Water	8260D	
LCS 680-785235/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 680-785235/6	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 785465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-13	32M-DUP01-SPR23	Total/NA	Water	8260D	

GC VOA

Analysis Batch: 389210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-10	32M-01-13XBR-SPR23	Total/NA	Water	MAVPH	
680-236128-11	32M-01-14XOB-SPR23	Total/NA	Water	MAVPH	
680-236128-12	32M-01-18XBR-SPR23	Total/NA	Water	MAVPH	
680-236128-13	32M-DUP01-SPR23	Total/NA	Water	MAVPH	
MB 410-389210/2	Method Blank	Total/NA	Water	MAVPH	
LCS 410-389210/3	Lab Control Sample	Total/NA	Water	MAVPH	
LCSD 410-389210/4	Lab Control Sample Dup	Total/NA	Water	MAVPH	

Metals

Prep Batch: 783510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-10	32M-01-13XBR-SPR23	Total Recoverable	Water	3005A	
680-236128-11	32M-01-14XOB-SPR23	Total Recoverable	Water	3005A	
680-236128-12	32M-01-18XBR-SPR23	Total Recoverable	Water	3005A	
680-236128-13	32M-DUP01-SPR23	Total Recoverable	Water	3005A	
MB 680-783510/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783510/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 783511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-10	32M-01-13XBR-SPR23	Total Recoverable	Water	3005A	
680-236128-11	32M-01-14XOB-SPR23	Total Recoverable	Water	3005A	
680-236128-12	32M-01-18XBR-SPR23	Total Recoverable	Water	3005A	
680-236128-13	32M-DUP01-SPR23	Total Recoverable	Water	3005A	
MB 680-783511/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783511/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Eurofins Savannah

Page 31 of 41 7/6/2023

2

Job ID: 680-236128-3

3

4

6

7

ŏ

10

11

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Metals

Analysis Batch: 783688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-10	32M-01-13XBR-SPR23	Total Recoverable	Water	6010C	783510
680-236128-11	32M-01-14XOB-SPR23	Total Recoverable	Water	6010C	783510
680-236128-12	32M-01-18XBR-SPR23	Total Recoverable	Water	6010C	783510
680-236128-13	32M-DUP01-SPR23	Total Recoverable	Water	6010C	783510
MB 680-783510/1-A	Method Blank	Total Recoverable	Water	6010C	783510
LCS 680-783510/2-A	Lab Control Sample	Total Recoverable	Water	6010C	783510

Analysis Batch: 783691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-10	32M-01-13XBR-SPR23	Total Recoverable	Water	6020A	783511
680-236128-11	32M-01-14XOB-SPR23	Total Recoverable	Water	6020A	783511
680-236128-12	32M-01-18XBR-SPR23	Total Recoverable	Water	6020A	783511
680-236128-13	32M-DUP01-SPR23	Total Recoverable	Water	6020A	783511
MB 680-783511/1-A	Method Blank	Total Recoverable	Water	6020A	783511
LCS 680-783511/2-A	Lab Control Sample	Total Recoverable	Water	6020A	783511

Job ID: 680-236128-3

4

6

4 6

4 4

Lab Chronicle

Client: Seres Engineering & Services LLC

Client Sample ID: 32M-01-13XBR-SPR23

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Lab Sample ID: 680-236128-10

Matrix: Water

Job ID: 680-236128-3

Date Collected: 06/08/23 15:50

Date Received: 06/10/23 09:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	784926	06/22/23 18:10	P1C	EET SAV
	Instrumen	t ID: CMSU								
Total/NA	Analysis	MAVPH		1	5 mL	5 mL	389210	06/21/23 21:11	X875	ELLE
	Instrumen	it ID: 10149								
Total Recoverable	Prep	3005A			25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 14:22	BJB	EET SAV
	Instrumen	t ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/15/23 00:42	BWR	EET SAV
	Instrumen	t ID: ICPMSC								

Client Sample ID: 32M-01-14XOB-SPR23 Lab Sample ID: 680-236128-11 **Matrix: Water**

Date Collected: 06/09/23 10:15

Date Received: 06/10/23 09:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	785235	06/23/23 23:10	MLL	EET SAV
	Instrumen	t ID: CMSAA								
Total/NA	Analysis	MAVPH		1	5 mL	5 mL	389210	06/22/23 09:18	X875	ELLE
	Instrumen	t ID: 10149								
Total Recoverable	Prep	3005A			25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 14:24	BJB	EET SAV
	Instrumen	t ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/15/23 00:46	BWR	EET SAV
	Instrumen	t ID: ICPMSC								

Client Sample ID: 32M-01-18XBR-SPR23 Lab Sample ID: 680-236128-12 **Matrix: Water**

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	785235	06/23/23 20:58	MLL	EET SAV
	Instrumen	t ID: CMSAA								
Total/NA	Analysis	MAVPH		1	5 mL	5 mL	389210	06/22/23 09:59	X875	ELLE
	Instrumen	it ID: 10149								
Total Recoverable	Prep	3005A			25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 14:26	BJB	EET SAV
	Instrumen	t ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/15/23 00:50	BWR	EET SAV
	Instrumen	t ID: ICPMSC								

Page 33 of 41

7/6/2023

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Client Sample ID: 32M-DUP01-SPR23

Date Collected: 06/09/23 10:00 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236128-13

Lab Sample ID: 680-236128-14

Job ID: 680-236128-3

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260D at ID: CMSAA		1	5 mL	5 mL	785235	06/23/23 21:20	MLL	EET SAV
Total/NA	Analysis Instrumer	8260D at ID: CMSAJ		1	5 mL	5 mL	785465	06/26/23 15:52	P1C	EET SAV
Total/NA	Analysis Instrumer	MAVPH at ID: 10149		1	5 mL	5 mL	389210	06/22/23 10:40	X875	ELLE
Total Recoverable	Prep	3005A		4	25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C at ID: ICPH		1			783688	06/14/23 14:28	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis Instrumer	6020A at ID: ICPMSC		1			783691	06/15/23 00:54	BWR	EET SAV

Client Sample ID: 32M-TB-01-SPR23

Date Collected: 06/09/23 00:00

Date Received: 06/10/23 09:32

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260D	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 785235	Prepared or Analyzed 06/23/23 20:36	Analyst MLL	- Lab EET SAV
1010,,,,,,,	,	t ID: CMSAA		·	·	·	. 55255	00,20,20 20.00		

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Savannah

Page 34 of 41

Matrix: Water

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
A2LA	Dept. of Defense ELAP	0001.01	11-30-24
A2LA	ISO/IEC 17025	0001.01	11-30-24
Alabama	State	43200	01-31-24
Alaska	State	PA00009	06-30-23
Alaska (UST)	State	17-027	02-28-24
Arizona	State	AZ0780	03-12-24
Arkansas DEQ	State	88-00660	08-09-23
California	State	2792	11-30-23
Colorado	State	PA00009	06-30-23
Connecticut	State	PH-0746	06-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-24
Delaware (DW)	State	N/A	01-31-24
Florida	NELAP	E87997	06-30-23
Georgia (DW)	State	C048	01-31-24
Hawaii	State	N/A	01-31-24
Illinois	NELAP	200027	01-31-24
lowa	State	361	03-01-24
Kansas	NELAP	E-10151	10-31-23
Kentucky (DW)	State	KY90088	12-31-23
Kentucky (UST)	State	0001.01	11-30-24
Kentucky (WW)	State	KY90088	12-31-23
Louisiana (All)	NELAP	02055	06-30-23
Maine	State	2019012	03-12-25
Maryland	State	100	06-30-24
Massachusetts	State	M-PA009	06-30-24
Michigan	State	9930	01-31-24
Minnesota	NELAP	042-999-487	12-31-23
Mississippi	State	023	01-31-24
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-24
Nebraska	State	NE-OS-32-17	01-31-24
New Hampshire	NELAP	2730	01-10-24
New Jersey	NELAP	PA011	06-30-23
New York	NELAP	10670	04-01-24
North Carolina (DW)	State	42705	07-31-23
North Carolina (WW/SW)	State	521	12-31-23
North Dakota	State	R-205	01-31-24
Oklahoma	NELAP	9804	08-31-23
Oregon	NELAP	PA200001	09-11-23
PALA	Canada	1978	09-11-23
Pennsylvania	NELAP	36-00037	01-31-24
Rhode Island	State	LAO00338	12-31-23
South Carolina	State	89002	01-31-24
Tennessee	State	02838	01-31-24

Eurofins Savannah

Job ID: 680-236128-3

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Job ID: 680-236128-3

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704194-23-46	08-31-23
USDA	US Federal Programs	525-22-298-19481	10-25-25
Vermont	State	VT - 36037	10-28-23
Virginia	NELAP	460182	06-14-24
Washington	State	C457	04-11-24
West Virginia (DW)	State	9906 C	12-31-23
West Virginia DEP	State	055	07-31-24
Wyoming	State	8TMS-L	01-31-24
Wyoming (UST)	A2LA	0001.01	11-30-24

- 5

4

5

6

8

9

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds (GC/MS)	SW846	EET SAV
MAVPH	Massachusetts - Volatile Petroleum Hydrocarbons (GC)	MA DEP	ELLE
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
5030C	Purge and Trap	SW846	EET SAV
5030C	Purge and Trap	SW846	ELLE

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Savannah

7/6/2023

_

Job ID: 680-236128-3

3

4

_

9

10

11

Seres-Arcadis JV Heather Levesque 669 Marina Drive Suite B7, Charleston SC 29492 (843) 619-370-0374 jennifer singer@arcadis com

Pro	ect Name Former Fort Deven	s, Long	Term Monitor	ring		Lab	orat	ory E	uro	fins	Envir	onme	ent 7	esti	ng T	restAmerica, Savannah, GA					Seres-Arcadis JV, Long Term
Pro	ect Number DEVNS-LTM					PO	C Je	erry L	anie	er, 91	2-25	0-02	81,]	erry	lani	er@eurofinsus com				Monitori	ng, AOC 32/43A, Spring 2023
WB:	S Code					Shi	p to	Euro	fins	Tes	tAme	rica,	510	2 La	Roc	che Avenue, Savannah, GA 3	1404	1112	water the same of		
Comments																		1			
	EPVP (A) = VPH with targets															Code Matrix WG Ground Water					
												ı				Glound Water					
							l									Code Container/Preservative	···········				
													- 1			4 3x 40mL glass VOA Vials I	fCl, pH < 2⁺ Cool < 6	degC			
							ŀ	ll						1	1	9 1x 250mL, plastic, HNO3 p	H < 2 Cool < 6degC				
					Method		ŀ								ı	29 3x 40mL glass VOA Vials F	ICI, pH < 2, Cool < 6	degC			
					_ et		ŀ		g												
Equ	ipment				est	€	Α̈́	- As	VOCs			- 1									
					=	و	15														
					¥	<u>[</u>	16	20,	90												
					Analytical Test	MADEPVP	SW6010C	8	SW8260B												
	The thirties of the same of th				1 4			1 1						-	-					<u> </u>	
	Event. Seres-Arcadis JV, Long	Term Mo	onitoring, AOC	32/43A, Spring	2023	4	9	9	29												
					Samp												Sample	Depth	(ft bgs)		
	Sample ID	Matrix	Date	Time	Init.											Location ID	Туре	Top -	Bottom	Cooler	Comments
1	32M-01-13XBR-SPR23	WG	6/8/23	15:50	FG	Х	Х	Х	Х				T			32M-01-13XBR	N1	13 70	23 70		
2	32M-01-14XOB-SPR23	WG	4/9/23	10 15	FG	Х	Х	Х	Х							32M-01-14XOB	N1	17 30	27 30		
4	32M-01-17XBR-SPR23	WG				Х	Х	Х	Х							32M-01-17XBR	N1	41 40	51 40		
3	32M-01-17XBR-SPR23	WG				Х	Х	Х	Х							32M-01-17XBR	MS1	41 40	51 40		
5	32M-01-17XBR-SPR23	WG				х	Х	Х	Х				T			32M-01-17XBR	SD1	41 40	51 40		
6	32M-01-18XBR-SPR23	WG	6/9/23	10:00	GS.	Х	х	х	Х		T				\neg	32M-01-18XBR	N1	14 00	24 00		
7	32M-DUP01-SPR23	WG	6/9/23	10:00		Х	х	х	Х			一	丁			32M-01-18XBR	FD1	14 00	24 00		
8						Ī		П													
9					<u> </u>	=			-				- -								
10						T		П							\Box				***		
11								П						\neg							
12					<u> </u>	T	1					T	7	\dashv							
Tur	naround Time Standard		***		<u> </u>	•	_				·		4-								

Relinquished by (Signature) Funce Shifting 10 37
Time (0 37)
Received by (Signature)

Part 6/4/23/637

Received by Laboratory (Signature)

Page 38 of 41

DM TA \$1023 932

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

eurofins:

Environment Testing

Phone: 912-354-7858 Fax: 912-352-0165												L		-								
Client Information (Sub Contract Lab)	Sampler:				PM: nier,	Jerry	/ A						Carri	er Traci	king No(8):			OC No: 80-740983.1			
Client Contact: Shipping/Receiving	Phone:			E-k Je	rry La			euro						of Original				P	age: Page 1 of 1			
Company: Eurofins Lancaster Laboratories Environm								Requi				DoD -	ANA	В					80-236128-3			
Address: 2425 New Holland Pike,	Due Date Requeste 6/21/2023	d:								An	alvsi	s Re	aues	ted	-			-1	reservation Co	odes: M - He	vane	
City: Lancaster	TAT Requested (da	ays):				2-40						T						E	A - HCL B - NaOH C - Zn Acetate	N - Nor O - Ash P - Na2	ne NaO2	
State, Zip. PA, 17601																	8	E 1	0 - Nitric Acid E - NaHSO4 E - MeOH	Q - Na2 R - Na2	2503	
Phone 717-656-2300(Tel)	PO #:				6												1000		G - Amchior H - Ascorbic Acid		P Dodecahyo	drate
Email.	WO #				N J		_											, J	- Ice I - Di Water	U - Ace V - MC W - pH	AA	
Project Name. Seres-Arcadis JV, LTM, AOC 32/43A, Spring 2023	Project #: 68023801				CY es	es or 3	AA VPI												(- EDTA EDA	Y - Triz		
Site:	SSOW#:				Ample (Y	SD (Y	(GOV											of too	ther:			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, 8-solid, O-waste/oli, IT-Tlesus, A-A		Perform MS/MSD (Yes or Will	MAVPH/5030C (MOD) MA VPH	MAVPH_Calc									1 11	Total Number o	Special	instructi	ons/Note	a:
		$\geq \leq$	Preservat	on Code:	X	X		100								0 6 8		XI.	1500			
32M-01-13XBR-SPR23 (680-236128-10)	6/8/23	15:50 Eastern		Water			Х	х										3				
32M-01-14XOB-SPR23 (680-236128-11)	6/9/23	10;15 Eastern		Water			Х	×									7	3				
32M-01-18XBR-SPR23 (680-236128-12)	6/9/23	10:00 Eastern		Water	1		х	х								\perp		3				
					_						_	_	-			-	1					
					+	Н			_	-	\perp	+	+-			+						
					+	Н				-	-	+	+	\square		+	5					
					+	Н					-	+	+-	Н		+	5. 1	0.5				
					+	\vdash				\dashv	\dashv	+	+	\vdash	_	+	100	100 mg				
Note: Since laboratory accreditations are subject to change, Eurofins Environgment of the state of Origin listed above status should be brought to Eurofins Environment Testing Southeast, LLC at the status should be brought to Eurofins Environment Testing Southeast, LLC at the status should be brought to Eurofins Environment Testing Southeast, LLC at the status should be brought to Eurofins Environment Testing Southeast, LLC at the status and the status	for analysis/tests/matrix bei	ng analyzed,	the samples mus	t be shipped	i back	to the	Euro sign	ofins Er ed Chi	nvirona ain of (ment T Custod	esting ly attes	Souther ting to s	ast, LLC aid con	labora	tory or o	ther inst	tructions vironmes	s will t int Ter	be provided. Any sting Southeast, t	changes to	o accreditation	boratory
Possible Hazard Identification						San		Disp Return			ee m					oles ar			longer than			
Unconfirmed Deliverable Requested I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		_	Spe				_	Req	uireme		sal B _j	/ Lab		Ar	rchiv	e For	Moi	nths	
Empty Kit Relinquisher by:		Date:			Ti	me:								Metho	d of Ship	ment:						
Relinquished by:	Pate/Time: 011312:		01.00	Company	_ i		Rece	ived b	y:		-		7		Da	te/Time			_	Сотра	iny	
Relinquished by:	Date/Time:	14		ompany	4		Rece	ived b	у:			1	_	_	Da	te/Time:				Compa	ıny	
Relinquished by	Date/Time:		4	ompany			Race	ived b	A	H	2				Da //	te/Time	1-7	7.5	(010	Compa	2 C	
Custody Seals Intact: Custody Seal No.:							Cool	er Terr	parati	ne(s)	C and	Other R	emarkı	0,	w '	3.5	- 1	11	R 33			

Client: Seres Engineering & Services LLC

Job Number: 680-236128-3

Login Number: 236128 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Savannah

Client: Seres Engineering & Services LLC

Job Number: 680-236128-3

Login Number: 236128 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC List Creation: 06/14/23 03:19 PM

List Number: 2

Creator: Ballard, Megan

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	True	

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492 Generated 6/29/2023 3:13:28 PM Revision 1

JOB DESCRIPTION

Seres-Arcadis JV, LTM, AOC 57, Spring 2023

JOB NUMBER

680-236128-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 6/29/2023 3:13:28 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281 2

3

4

6

1

9

10

. .

11

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Job ID: 680-236128-2

Qualifiers

Metals	
Qualifier	

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable

J1 Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

U Undetected at the Limit of Detection.

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-236128-6	57-SW1-SPR23	Water		06/10/23 09:32
680-236128-7	57M-95-03X-SPR23	Water	06/09/23 10:08	06/10/23 09:32
680-236128-8	57M-96-11X-SPR23	Water	06/09/23 11:37	06/10/23 09:32
680-236128-9	57M-DUP01-SPR23	Water	06/09/23 11:37	06/10/23 09:32

Job ID: 680-236128-2

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Job ID: 680-236128-2

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-236128-2

Receipt

The samples were received on 6/10/2023~9:32~AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.7° C and 5.7° C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 680-236128-2

3

4

_

6

R

9

10

11

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Lab Sample ID: 680-236128-6 Client Sample ID: 57-SW1-SPR23

Date Collected: 06/09/23 12:28 Date Received: 06/10/23 09:32

Analyte

Arsenic

Matrix: Water

Job ID: 680-236128-2

Analyzed

06/28/23 15:58

Method: SW846 6010C - Metals	Metals (ICP) - Dissolved								
Analyte	Result (Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	4900		100	50	20	ug/L		06/28/23 12:56	1
Manganese	5800	J1	10	5.0	1.3	ug/L		06/28/23 12:56	1
Method: SW846 6020A - Metals	(ICP/MS) - Dis	ssolved							

Result Qualifier

6.4

LOQ

5.0

LOD

3.0

DL Unit

0.86 ug/L

Dil Fac

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Client Sample ID: 57M-95-03X-SPR23 Lab Sample ID: 680-236128-7

Date Received: 06/10/23 09:32

Date Collected: 06/09/23 10:08 **Matrix: Water**

Method: SW846 6010C - Metals (ICP) - Total Recoverable Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Iron 100 50 20 ug/L 06/14/23 13:48 2400 5.0 06/14/23 13:48 10 1.3 ug/L Manganese 84

Method: SW846 6020A - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte LOQ LOD DL Unit Analyzed Dil Fac 06/14/23 23:41 13 J1 5.0 3.0 0.86 ug/L Arsenic

Job ID: 680-236128-2

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Lab Sample ID: 680-236128-8

Matrix: Water

Job ID: 680-236128-2

Client Sample ID: 57M-96-11X-SPR23 Date Collected: 06/09/23 11:37

Date Received: 06/10/23 09:32

N	Method: SW846 6010C - Metals (ICP) - Total Recoverable							
_ A	Analyte	Result Qualifier	LOQ	LOD	DL Ur	nit D	Analyzed	Dil Fac
ī	ron	19000	100	50	20 ug	/L	06/14/23 14:14	1
L	<i>l</i> langanese	3500	10	5.0	1.3 ug	/L	06/14/23 14:14	1

Method: SW846 6020A - Metals (ICP/MS) - Total Recoverable									
Analyte	Result Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	
Arsenic	20	5.0	3.0	0.86	ug/L		06/15/23 00:34	1	

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Lab Sample ID: 680-236128-9

Matrix: Water

Job ID: 680-236128-2

Client Sample ID: 57M-DUP01-SPR23 Date Collected: 06/09/23 11:37

Date Received: 06/10/23 09:32

Method: SW846 6010C - Met	als (ICP) - Total Recoverabl	е					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Iron	20000	100	50	20 ug/L		06/14/23 14:16	1
Manganese	3600	10	5.0	1.3 ug/L		06/14/23 14:16	1

Method: SW846 6020A - Metals (ICP/MS) - Tot	tal Recove	erable						
Analyte	Result (Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	17		5.0	3.0	0.86	ug/L		06/15/23 00:38	1

Job ID: 680-236128-2

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-783510/1-A

Matrix: Water

Analysis Batch: 783688

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 783510**

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L	 06/14/23 13:44	1
Manganese	5.0	U	10	5.0	1.3	ug/L	06/14/23 13:44	1

MB MB

QC Sample Results

Lab Sample ID: LCS 680-783510/2-A

Matrix: Water

Iron Manganese

Analysis Batch: 783688

Analyte

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Client Sample ID: 57M-95-03X-SPR23

Prep Type: Total Recoverable

Prep Batch: 783510

Prep Batch: 783510

Batom 700000									100111 7 000 10
		Spike	LCS	LCS				%Rec	
		Added	Result	Qualifier	Unit	D	%Rec	Limits	
		5000	5340		ug/L		107	87 - 115	
		400	441		ug/L		110	90 - 114	

Lab Sample ID: 680-236128-7 MS

Matrix: Water

Ar

Analysis Batch: 783688				
-	Sample	Sample	Spike	
Analyte	Result	Qualifier	Added	
Iron	2400		5000	

MS MS %Rec Result Qualifier D %Rec Limits Unit 2400 5000 7520 ug/L 103 87 - 115 400 505 105 84 ug/L 90 - 114

MSD MSD

7710

521

Result Qualifier

Unit

ug/L

ug/L

Lab Sample ID: 680-236128-7 MSD

Matrix: Water

Manganese

Analyte

Manganese

Iron

Analysis Batch: 783688

Client Sample ID: 57M-95-03X-SPR23
Door Town Total December

Prep Type: Total Recoverable **Prep Batch: 783510**

RPD %Rec %Rec Limits **RPD** Limit 87 - 115 2 20 107 90 - 114 20 109

Lab Sample ID: MB 680-785722/1-A

Matrix: Water

Analysis Batch: 785987

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 785722

MB MB

Sample Sample

2400

84

Result Qualifier

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		06/28/23 12:46	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/28/23 12:46	1

Spike

Added

5000

400

Lab Sample ID: LCS 680-785722/2-A

Matrix: Water

Analysis Batch: 785987

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 785722

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	4990	5310		ug/L		106	87 - 115	
Manganese	400	435		ug/L		109	90 - 114	

Lab Sample ID: 680-236128-6 MS

Matrix: Water

Analysis Batch: 785987

Client Sample ID: 57-SW1-SPR23

Prep Type: Dissolved Prep Batch: 785722

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	4900		4990	9640		ug/L		95	87 - 115	
Manganese	5800	J1	400	5850	4	ug/L		14	90 - 114	

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: 680-236128-6 MSD Client Sample ID: 57-SW1-SPR23

Matrix: Water

Analysis Batch: 785987

Prep Type: Dissolved Prep Batch: 785722

Job ID: 680-236128-2

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Iron 4900 4990 10200 ug/L 105 87 - 1155 20 Manganese 5800 J1 400 6210 4 ug/L 104 90 - 114 20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-783511/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 783691 MB MB **Prep Type: Total Recoverable**

Prep Batch: 783511

LOQ LOD **Analyte** Result Qualifier DL Unit D Analyzed Dil Fac 5.0 06/14/23 23:33 Arsenic 3.0 U 3.0 0.86 ug/L

Lab Sample ID: LCS 680-783511/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 783691 **Prep Batch: 783511**

Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit Limits Arsenic 100 111 ug/L 111 84 - 116

Lab Sample ID: 680-236128-7 MS Client Sample ID: 57M-95-03X-SPR23

Matrix: Water

Analysis Batch: 783691

Prep Type: Total Recoverable

Prep Batch: 783511

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits 13 J1 100 108 84 - 116 Arsenic 121 ug/L

Lab Sample ID: 680-236128-7 MSD Client Sample ID: 57M-95-03X-SPR23

Matrix: Water

Analysis Batch: 783691

Prep Type: Total Recoverable

Prep Batch: 783511

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit 13 J1 100 Arsenic 131 J1 118 84 - 116 8 ug/L

Lab Sample ID: MB 680-785723/1-A **Client Sample ID: Method Blank Matrix: Water**

Analysis Batch: 786071

Prep Type: Total Recoverable Prep Batch: 785723

MB MB Result Qualifier LOQ LOD Dil Fac Analyte DL Unit Analyzed

Arsenic 3.0 U 5.0 3.0 0.86 ug/L 06/28/23 15:50

Lab Sample ID: LCS 680-785723/2-A **Matrix: Water**

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Analysis Batch: 786071

Prep Batch: 785723

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Arsenic 100 109 ug/L 109 84 - 116

Eurofins Savannah

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Job ID: 680-236128-2

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-236128	8-6 MS						Clier	nt Sam _l	ple ID: 57	-SW1-SPR23
Matrix: Water									Prep Typ	e: Dissolved
Analysis Batch: 786071									Prep Ba	atch: 785723
_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	6.4		100	118		ug/L		111	84 - 116	

Lab Sample ID: 680-236128	8-6 MSD						Clier	nt Samp	ole ID: 57-	SW1-S	PR23
Matrix: Water									Prep Type	e: Diss	olved
Analysis Batch: 786071									Prep Ba	atch: 78	35723
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	6.4		100	116		ug/L		110	84 - 116	2	20

Eurofins Savannah

2

4

-

Ω

9

10

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Metals

Prep Batch: 783510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-7	57M-95-03X-SPR23	Total Recoverable	Water	3005A	
680-236128-8	57M-96-11X-SPR23	Total Recoverable	Water	3005A	
680-236128-9	57M-DUP01-SPR23	Total Recoverable	Water	3005A	
MB 680-783510/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783510/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236128-7 MS	57M-95-03X-SPR23	Total Recoverable	Water	3005A	
680-236128-7 MSD	57M-95-03X-SPR23	Total Recoverable	Water	3005A	

Prep Batch: 783511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-7	57M-95-03X-SPR23	Total Recoverable	Water	3005A	
680-236128-8	57M-96-11X-SPR23	Total Recoverable	Water	3005A	
680-236128-9	57M-DUP01-SPR23	Total Recoverable	Water	3005A	
MB 680-783511/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783511/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236128-7 MS	57M-95-03X-SPR23	Total Recoverable	Water	3005A	
680-236128-7 MSD	57M-95-03X-SPR23	Total Recoverable	Water	3005A	

Analysis Batch: 783688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-7	57M-95-03X-SPR23	Total Recoverable	Water	6010C	783510
680-236128-8	57M-96-11X-SPR23	Total Recoverable	Water	6010C	783510
680-236128-9	57M-DUP01-SPR23	Total Recoverable	Water	6010C	783510
MB 680-783510/1-A	Method Blank	Total Recoverable	Water	6010C	783510
LCS 680-783510/2-A	Lab Control Sample	Total Recoverable	Water	6010C	783510
680-236128-7 MS	57M-95-03X-SPR23	Total Recoverable	Water	6010C	783510
680-236128-7 MSD	57M-95-03X-SPR23	Total Recoverable	Water	6010C	783510

Analysis Batch: 783691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-7	57M-95-03X-SPR23	Total Recoverable	Water	6020A	783511
680-236128-8	57M-96-11X-SPR23	Total Recoverable	Water	6020A	783511
680-236128-9	57M-DUP01-SPR23	Total Recoverable	Water	6020A	783511
MB 680-783511/1-A	Method Blank	Total Recoverable	Water	6020A	783511
LCS 680-783511/2-A	Lab Control Sample	Total Recoverable	Water	6020A	783511
680-236128-7 MS	57M-95-03X-SPR23	Total Recoverable	Water	6020A	783511
680-236128-7 MSD	57M-95-03X-SPR23	Total Recoverable	Water	6020A	783511

Prep Batch: 785722

Lab Sample ID 680-236128-6	Client Sample ID 57-SW1-SPR23	Prep Type Dissolved	Water	Method 3005A	Prep Batch
MB 680-785722/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-785722/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236128-6 MS	57-SW1-SPR23	Dissolved	Water	3005A	
680-236128-6 MSD	57-SW1-SPR23	Dissolved	Water	3005A	

Prep Batch: 785723

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-6	57-SW1-SPR23	Dissolved	Water	3005A	
MB 680-785723/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-785723/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Eurofins Savannah

Job ID: 680-236128-2

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Metals (Continued)

Prep Batch: 785723 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236128-6 MS	57-SW1-SPR23	Dissolved	Water	3005A	
680-236128-6 MSD	57-SW1-SPR23	Dissolved	Water	3005A	

Analysis Batch: 785987

Lab Sample ID 680-236128-6	· · · · · · · · · · · · · · · · · · ·		Matrix Water	Method 6010C	Prep Batch 785722
MB 680-785722/1-A	Method Blank	Total Recoverable	Water	6010C	785722
LCS 680-785722/2-A	Lab Control Sample	Total Recoverable	Water	6010C	785722
680-236128-6 MS	57-SW1-SPR23	Dissolved	Water	6010C	785722
680-236128-6 MSD	57-SW1-SPR23	Dissolved	Water	6010C	785722

Analysis Batch: 786071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch 785723	
680-236128-6	57-SW1-SPR23	Dissolved	Water	6020A		
MB 680-785723/1-A	Method Blank	Total Recoverable	Water	6020A	785723	
LCS 680-785723/2-A	Lab Control Sample	Total Recoverable	Water	6020A	785723	
680-236128-6 MS	57-SW1-SPR23	Dissolved	Water	6020A	785723	
680-236128-6 MSD	57-SW1-SPR23	Dissolved	Water	6020A	785723	

Job ID: 680-236128-2

2

5

4

0

q

10

11

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Client Sample ID: 57-SW1-SPR23

Date Collected: 06/09/23 12:28

Lab Sample ID: 680-236128-6

Matrix: Water

Job ID: 680-236128-2

Date Received: 06/10/23 09:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	785722	06/27/23 10:53	RR	EET SAV
Dissolved	Analysis Instrumer	6010C nt ID: ICPH		1			785987	06/28/23 12:56	BJB	EET SAV
Dissolved	Prep	3005A			25 mL	125 mL	785723	06/27/23 10:53	RR	EET SAV
Dissolved	Analysis	6020A		1			786071	06/28/23 15:58	BJB	EET SAV
	Instrumer	nt ID: ICPMSC								

Client Sample ID: 57M-95-03X-SPR23

Date Collected: 06/09/23 10:08 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236128-7
Matrix: Water

Dil Initial Batch Batch Final Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed **Analyst** Lab 3005A Total Recoverable Prep 25 mL 25 mL 783510 06/14/23 08:41 RR **EET SAV** Total Recoverable 6010C Analysis 1 783688 06/14/23 13:48 BJB **EET SAV** Instrument ID: ICPH Total Recoverable Prep 3005A 25 mL 125 mL 783511 06/14/23 08:41 RR **EET SAV** Total Recoverable 6020A 783691 06/14/23 23:41 BWR **EET SAV** Analysis

Client Sample ID: 57M-96-11X-SPR23

Instrument ID: ICPMSC

Date Collected: 06/09/23 11:37 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236128-8

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 14:14	BJB	EET SAV
	Instrumer	nt ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/15/23 00:34	BWR	EET SAV
	Instrumer	nt ID: ICPMSC								

Client Sample ID: 57M-DUP01-SPR23

Date Collected: 06/09/23 11:37

Date Received: 06/10/23 09:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	783510	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6010C		1			783688	06/14/23 14:16	BJB	EET SAV
	Instrumer	it ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	783511	06/14/23 08:41	RR	EET SAV
Total Recoverable	Analysis	6020A		1			783691	06/15/23 00:38	BWR	EET SAV
	Instrumer	t ID: ICPMSC								

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

2

5

7

Ŏ

10

11

12

Lab Sample ID: 680-236128-9

Matrix: Water

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
ANAB	Dept. of Defense ELAP	L2463	09-22-24	

Job ID: 680-236128-2

-

4

6

8

9

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, AOC 57, Spring 2023

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-236128-2

-3

4

7

8

40

44

Seres-Arcadis JV Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer singer@arcadis.com

Project Name. Former Fort Devens, Long Term Monitoring Laboratory Eurofins Environment Testing TestAmerica, Savannah, GA Event Seres-Arcadis JV, Long Term Monitoring, AOC 57, Spring 2023 Project Number DEVNS-LTM POC Jerry Lanier, 912-250-0281, jerry lanier@eurofinsus com WBS Code. Ship to Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Comments Code Matrix SW6010C/FLDFLT (B) = Fe Mn WG Ground Water SW6020A/FLDFLT (B) = As WS Surface Water Code Container/Preservative Analytical Test Method 1x 250mL, plastic, HNO3 pH < 2, Cool < 6degC (B) <u>@</u> SW6010C/FLDFLT SW6010C - Fe Mn Equipment SW6020A -9 9 9 9 Event. Seres-Arcadis JV, Long Term Monitoring, AOC 57, Spring 2023 Sample Depth (ft bgs) Samp Sample ID Matrix Date Time Init Location ID Type Top - Bottom Cooler Comments 57-SW1-SPR23 WS 12.28 57-SW1 0 00 Х Х 0 00 N1 57M-95-03X-SPR23 WG 7 00 17 00 57M-95-03X 10.08 Х Х N1 57M-95-03X-SPR23 WG SG 7 00 3 57M-95-03X 17 00 10,08 Х Х MS1 57M-95-03X-SPR23 WG 10.08 Х Х 57M-95-03X SD1 7 00 17 00 57M-96-11X-SPR23 SG WG 2 00 12 00 Х 57M-96-11X N1 57M-DUP01-SPR23 6 WG Х 57M-96-11X 2 00 12 00 FD1 7 8 9 10 11 Turnaround Time Standard

Relinquished by (Signature)

Date (y 1, 2023)

Time (6, 37)

Received by (Signature)

1/4 6/9/23 /637

Received by Laboratory (Signature) Call (19/23 /637)
Date
Page Time Page 18 of 19

8M TA 610.23 932

Client: Seres Engineering & Services LLC

Job Number: 680-236128-2

Login Number: 236128 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Grouter: Gille, Report B		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

JOB DESCRIPTION

Generated 7/20/2023 7:50:25 PM

Seres-Arcadis JV, LTM, DCL, Spring 2023

JOB NUMBER

680-236120-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 7/20/2023 7:50:25 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

3

4

5

9

10

1 1

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Qualifiers

_	\sim			
G	U	V	U	Α

Qualifier	Qualifier Description				
J	Estimated: The analyte was positively identified; the quantitation is an estimation				
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.				
U	Undetected at the Limit of Detection.				

GC Semi VOA

GC Semi VOA	
Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
M	Manual integrated compound.
Q	One or more quality control criteria failed.
U	Undetected at the Limit of Detection.
HPLC/IC	

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
D	The reported value is from a dilution.
M	Manual integrated compound.
U	Undetected at the Limit of Detection.
Metals	

Qualifier	Qualifier Description			
J	Estimated: The analyte was positively identified; the quantitation is an estimation			
U	Undetected at the Limit of Detection.			

General Chemistry

Qualifier	Qualifier Description
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CFU	Colony Forming Unit					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					
Dil Fac	Dilution Factor					
DL	Detection Limit (DoD/DOE)					
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample					
DLC	Decision Level Concentration (Radiochemistry)					
EDL	Estimated Detection Limit (Dioxin)					
LOD	Limit of Detection (DoD/DOE)					
LOQ	Limit of Quantitation (DoD/DOE)					
MCL	EPA recommended "Maximum Contaminant Level"					
MDA	Minimum Detectable Activity (Radiochemistry)					
MDC	Minimum Detectable Concentration (Radiochemistry)					
MDL	Method Detection Limit					
ML	Minimum Level (Dioxin)					
MPN	Most Probable Number					
MQL	Method Quantitation Limit					
NC	Not Calculated					
ND	Not Detected at the reporting limit (or MDL or EDL if shown)					

Eurofins Savannah

Page 3 of 65 7/20/2023

Definitions/Glossary

Client: Seres Engineering & Services LLC

Job ID: 680-236120-1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Too Numerous To Count

Glossary (Continued)

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.			
NEG	Negative / Absent			
POS	Positive / Present			
PQL	Practical Quantitation Limit			
PRES	Presumptive			
QC	Quality Control			
RER	Relative Error Ratio (Radiochemistry)			
RL	Reporting Limit or Requested Limit (Radiochemistry)			
RPD	Relative Percent Difference, a measure of the relative difference between two points			
TEF	Toxicity Equivalent Factor (Dioxin)			
TEQ	Toxicity Equivalent Quotient (Dioxin)			

Eurofins Savannah

Sample Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-236120-1	LFM-03-07-SPR23	Water	06/08/23 10:40	06/10/23 09:32
680-236120-2	LFM-99-02B-SPR23	Water	06/08/23 10:45	06/10/23 09:32
680-236120-3	LFM-99-05A-SPR23	Water	06/08/23 10:36	06/10/23 09:32
680-236120-4	LFM-DUP01-SPR23	Water	06/08/23 10:36	06/10/23 09:32
680-236120-5	LFM-99-06A-RP-SPR23	Water	06/08/23 13:25	06/10/23 09:32

3

4

5

7

8

9

. .

11

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-236120-1

Receipt

The samples were received on 6/10/2023 9:32 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 3.7°C, 4.2°C, 4.8°C and 5.5°C

Receipt Exceptions

The following samples were listed on the Chain of Custody (COC); however, no samples were received: LFM-03-07-SPR23 (680-236120-1), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2[MS]), LFM-99-02B-SPR23 (680-236120-2), LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5).

No container received marked for 2320 analysis for sample -5

Hydrocarbons

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method MAEPH_DOD: C11-C22 Aromatics (unadjusted) and C11-C22 Aromatics (Adjusted) was detected above the MDL in the method blank associated with preparation batch 410-388980 and 410-391587 and analytical batch 410-391880 as well as in the following samples: LFM-03-07-SPR23 (680-236120-1), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2[MS]), LFM-99-02B-SPR23 (680-236120-2[MSD]), LFM-99-05A-SPR23 (680-236120-2), LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5). All affected samples were re-extracted and re-analyzed outside of holding time. Both sets of data have been reported.

Method MAEPH_DOD: For analytical batch 410-391881, the breakthrough for naphthalene and 2-methylnaphthalene in the LCS and LCSD is <1%. The method requirement for breakthrough is <5%. LFM-03-07-SPR23 (680-236120-1), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2[MS]), LFM-99-02B-SPR23 (680-236120-2[MSD]), LFM-99-05A-SPR23 (680-236120-3), LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5)

Method MAEPH_DOD: Surrogate recovery was outside acceptance limits for the following matrix spike/matrix spike duplicate (MS/MSD) sample: LFM-99-02B-SPR23 (680-236120-2[MS]). The parent sample's surrogate recovery was within limits. The MS/MSD sample has been qualified and reported.

Method MAEPH_DOD: Breakthrough requirements were not met for analytical batch 410-394765. The breakthrough for naphthalene is <1% and the breakthrough for 2-methylnaphthalene is 1% in the LCS. The breakthrough for naphthalene is 6% and the breakthrough for 2-methylnaphthalene is 2% in the LCSD. The method requirement for breakthrough is <5%. LFM-03-07-SPR23 (680-236120-1), LFM-99-05A-SPR23 (680-236120-3). LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5)

Method MAEPH_DOD: The laboratory control sample (LCS) for preparation batch 410-388980 and 410-391587 and analytical batch 410-391881 recovered outside control limits for the following analytes: C9-C18 Aliphatics. The associated sample(s) was re-prepared and/or re-analyzed outside holding time. Both sets of data have been reported. LFM-03-07-SPR23 (680-236120-1), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2[MSD]), LFM-99-05A-SPR23 (680-236120-3), LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5)

Method MAEPH_DOD: The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: LFM-03-07-SPR23 (680-236120-1), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2), LFM-99-02B-SPR23 (680-236120-2), LFM-99-05A-SPR23 (680-236120-3), LFM-DUP01-SPR23 (680-236120-4) and LFM-99-06A-RP-SPR23 (680-236120-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

Job ID: 680-236120-1

4

E

6

10

11

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1 (Continued)

Laboratory: Eurofins Savannah (Continued)

Pesticides/PCBs

Method 8081B_8082A_D5: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 680-783438 and analytical batch 680-783593 recovered outside control limits for the following analyte: Chlordane (technical).

Method 8081B_8082A_D5: The laboratory control sample duplicate (LCSD) for preparation batch 680-783438 and analytical batch 680-783593 recovered outside control limits for the following analyte: Chlordane (technical). Re-extraction would have been outside of holding time. The LCS was within recovery limits for the affected analyte.

Method 8081B_8082A_D5: The laboratory control sample (LCS) associated with preparation batch 680-783438 and analytical batch 680-783593 was outside acceptance criteria. Re-extraction could not be performed within holding time; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8081B_8082A_D5: The following analytes have been identified, in the reference method and/or via historical data, to be poor and/or erratic performers: <AffectedAnalytes>

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 680-236120-1

3

4

5

7

9

10

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-03-07-SPR23

Date Collected: 06/08/23 10:40 Date Received: 06/10/23 09:32

Lab Sample ID: 680-236120-1

Matrix: Water

Job ID: 680-236120-1

Analyte	Resul	t Qualifier	L	_OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U U		5.0	2.0	1.0	ug/L	_	06/21/23 16:24	1
C9-C10 Aromatics	20) U		100	20	10	ug/L		06/21/23 16:24	1
Ethylbenzene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 16:24	1
Methyl tert-butyl ether	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 16:24	1
Naphthalene	4.0) U		6.0	4.0	2.0	ug/L		06/21/23 16:24	1
Toluene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 16:24	1
C9-C12 Aliphatics (adjusted)	50) U		100	50	25	ug/L		06/21/23 16:24	1
m-Xylene & p-Xylene	5.0) U		10	5.0	2.5	ug/L		06/21/23 16:24	1
o-Xylene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 16:24	1
C5-C8 Aliphatics (adjusted)	50) U		100	50	25	ug/L		06/21/23 16:24	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared		Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	101		70 - 130	-					06/21/23 16:24	1
a,a,a-Trifluorotoluene (pid)	98		70 - 130						06/21/23 16:24	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0039	UMQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
4,4'-DDE	0.0039	UMQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
4,4'-DDT	0.0039	UQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
Aldrin	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
alpha-BHC	0.0039	UQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
beta-BHC	0.0039	U	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
delta-BHC	0.0039	U	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Dieldrin	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Endosulfan I	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Endosulfan II	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Endosulfan sulfate	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Endrin	0.0039	UMQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
Endrin aldehyde	0.016	UQ	0.048	0.016	0.0039	ug/L		06/21/23 17:06	1
Endrin ketone	0.016	UQ	0.048	0.016	0.0039	ug/L		06/21/23 17:06	1
gamma-BHC (Lindane)	0.0039	UQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
Heptachlor	0.0039	UQ	0.048	0.0039	0.00097	ug/L		06/21/23 17:06	1
Heptachlor epoxide	0.0039	UQ	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Methoxychlor	0.0039	U	0.048	0.0039	0.0019	ug/L		06/21/23 17:06	1
Chlordane (technical)	0.39	UMQ	0.48	0.39	0.16	ug/L		06/21/23 17:06	1
Toxaphene	0.78	U	4.8	0.78	0.30	ug/L		06/21/23 17:06	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	113		14 - 130	06/13/23 17:04	06/21/23 17:06	1
Tetrachloro-m-xylene	87		44 - 124	06/13/23 17:04	06/21/23 17:06	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 00:57	1
Pyrene	9.7	UH	12	9.7	4.9	ug/L		06/29/23 00:57	1
Benzo[g,h,i]perylene	1.2	UH	1.9	1.2	0.58	ug/L		06/29/23 00:57	1
Indeno[1,2,3-cd]pyrene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 00:57	1
Benzo[b]fluoranthene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 00:57	1
Fluoranthene	0.97	UH	1.9	0.97	0.49	ug/L		06/29/23 00:57	1

Eurofins Savannah

Page 8 of 65 7/20/2023

Job ID: 680-236120-1

Date Collected: 06/08/23 10:40 Date Received: 06/10/23 09:32

1-Chlorooctadecane (Surr)

2-Fluorobiphenyl (Surr)

o- terphenyl (Surr)

Lab Sample ID: 680-236120-1

Matrix: Water

Analyte	Res	ult Qualifier	I	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Benzo[k]fluoranthene		2.9 UH		3.9	2.9	1.5	ug/L	06/29/23 00:57	1
Acenaphthylene		.4 UHQ		1.9	1.4	0.68	ug/L	06/29/23 00:57	1
Chrysene	0.	97 UH		1.9	0.97	0.49	ug/L	06/29/23 00:57	1
Benzo[a]pyrene		.2 UH		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
Dibenz(a,h)anthracene	0.	97 UH		1.9	0.97	0.49	ug/L	06/29/23 00:57	1
Benzo[a]anthracene	•	.4 U H		1.9	1.4	0.68	ug/L	06/29/23 00:57	1
Acenaphthene		.2 UHQ		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
Phenanthrene	•	.2 UHQ		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
Fluorene	•	.2 UHQ		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
Naphthalene		.2 UHQ		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
2-Methylnaphthalene	•	.2 UHQ		1.9	1.2	0.58	ug/L	06/29/23 00:57	1
C11-C22 Aromatics (Adjusted)		29 UH		39	29	9.7	ug/L	06/29/23 00:57	1
C19-C36 Aliphatics		19 U H M Q		49	19	9.7	ug/L	06/29/23 00:34	1
C9-C18 Aliphatics		58 UHQ		88	58	29	ug/L	06/29/23 00:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	65	M	40 - 140	-			06/21/23 08:13	06/29/23 00:34	1
2-Fluorobiphenyl (Surr)	83		40 - 140				06/21/23 08:13	06/29/23 00:57	1
o- terphenyl (Surr)	75		40 - 140				06/21/23 08:13	06/29/23 00:57	1

71

66

57

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
Anthracene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Pyrene	9.5	UHQ		11	9.5	4.7	ug/L	07/08/23 00:06	1
Benzo[g,h,i]perylene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Indeno[1,2,3-cd]pyrene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Benzo[b]fluoranthene	1.1	UH		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Fluoranthene	0.95	UHQ		1.9	0.95	0.47	ug/L	07/08/23 00:06	1
Benzo[k]fluoranthene	2.8	UHQ		3.8	2.8	1.4	ug/L	07/08/23 00:06	1
Acenaphthylene	1.3	UHQ		1.9	1.3	0.66	ug/L	07/08/23 00:06	1
Chrysene	0.95	UHQ		1.9	0.95	0.47	ug/L	07/08/23 00:06	1
Benzo[a]pyrene	1.1	UH		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Dibenz(a,h)anthracene	0.95	UH		1.9	0.95	0.47	ug/L	07/08/23 00:06	1
Benzo[a]anthracene	1.3	UH		1.9	1.3	0.66	ug/L	07/08/23 00:06	1
Acenaphthene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Phenanthrene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Fluorene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
Naphthalene	1.1	UHMQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
2-Methylnaphthalene	1.1	UHQ		1.9	1.1	0.57	ug/L	07/08/23 00:06	1
C11-C22 Aromatics (Adjusted)	28	UH		38	28	9.5	ug/L	07/08/23 00:06	1
C19-C36 Aliphatics	19	UH		47	19	9.5	ug/L	07/08/23 00:06	1
C9-C18 Aliphatics	57	UH		85	57	28	ug/L	07/08/23 00:06	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Savannah

07/08/23 00:06

07/08/23 00:06

07/08/23 00:06

06/30/23 14:30

06/30/23 14:30

06/30/23 14:30

40 - 140

40 - 140

40 - 140

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-03-07-SPR23

Date Collected: 06/08/23 10:40 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-1

Matrix: Water

Job ID: 680-236120-1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Sulfate	33	M	1.0	1.0	0.40	mg/L		06/16/23 19:48	
Method: SW846 9056A - Anions, Ion	Chromatogra	phy - DL							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Chloride	260	D	2.5	2.5	1.0	mg/L		06/17/23 16:13	
Method: SW846 6010C - Metals (ICP)	- Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Barium	16	J	20	10	4.4	ug/L		06/12/23 13:17	
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/12/23 13:17	
Chromium	4.0	U	10	4.0	1.1	ug/L		06/12/23 13:17	
Copper	10	U	20	10	3.2	ug/L		06/12/23 13:17	
Iron	50	U	100	50	20	ug/L		06/12/23 13:17	
Lead	20	U	40	20	6.6	ug/L		06/12/23 13:17	
Manganese	5.0	U	10	5.0	1.3	ug/L		06/12/23 13:17	
Selenium	20	U	25	20	10	ug/L		06/12/23 13:17	
Silver	5.0	U	10	5.0	1.5	ug/L		06/12/23 13:17	,
- Method: SW846 6020A - Metals (ICP/	MS) - Total Re	coverable							
Analyte	•	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		06/12/23 13:32	1
Method: SW846 7470A - Mercury (CV	/AA)								
Method: SW846 7470A - Mercury (CV Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
			LOQ 0.25	LOD 0.20	DL 0.080		<u>D</u>	Analyzed 06/15/23 11:24	Dil Fac
Analyte	Result						<u>D</u>		
Analyte Mercury	0.20				0.080		<u>D</u>		
Analyte Mercury General Chemistry	0.20	U	0.25	0.20	0.080 DL	ug/L		06/15/23 11:24	Dil Fac
Analyte Mercury General Chemistry Analyte Alkalinity (SM 2320B-2011) Total Dissolved Solids (SM	Result 0.20 Result	U	0.25 LOQ	0.20 LOD	0.080 DL 2.2	ug/L Unit		06/15/23 11:24 Analyzed	Dil Fa
Analyte Mercury General Chemistry Analyte Alkalinity (SM 2320B-2011) Total Dissolved Solids (SM 2540C-2011)	Result 0.20 Result 98	U	0.25 LOQ 5.0	0.20 LOD 5.0	0.080 DL 2.2	Unit mg/L mg/L		06/15/23 11:24 Analyzed 06/14/23 02:20	Dil Fa
Analyte Mercury General Chemistry Analyte Alkalinity (SM 2320B-2011) Total Dissolved Solids (SM 2540C-2011) Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	Result 98 620 1.0	Qualifier	0.25 LOQ 5.0 24 0.10	0.20 LOD 5.0 20 0.025	0.080 DL 2.2 24 0.010	Unit mg/L mg/L mg/L		06/15/23 11:24 Analyzed 06/14/23 02:20 06/13/23 12:47 06/22/23 17:19	Dil Fac
Analyte Mercury General Chemistry Analyte Alkalinity (SM 2320B-2011) Total Dissolved Solids (SM 2540C-2011) Nitrate Nitrite as N (MCAWW	Result 98 620	Qualifier	0.25 LOQ 5.0 24	0.20 LOD 5.0 20	0.080 DL 2.2 24 0.010	ug/L Unit mg/L mg/L mg/L		06/15/23 11:24 Analyzed 06/14/23 02:20 06/13/23 12:47	

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-02B-SPR23

Date Collected: 06/08/23 10:45 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-2

Matrix: Water

Job ID: 680-236120-1

Jnit	D	Analyzed	Dil Fac
ıg/L		06/21/23 17:05	1
ıg/L		06/21/23 17:05	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 17:05	1
C9-C10 Aromatics	20	U J1	100	20	10	ug/L		06/21/23 17:05	1
Ethylbenzene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 17:05	1
Methyl tert-butyl ether	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 17:05	
Naphthalene	4.0	U	6.0	4.0	2.0	ug/L		06/21/23 17:05	
Toluene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 17:05	•
C9-C12 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 17:05	
m-Xylene & p-Xylene	5.0	U	10	5.0	2.5	ug/L		06/21/23 17:05	1
o-Xylene	2.0	U	5.0	2.0	1.0	ug/L		06/21/23 17:05	1
C5-C8 Aliphatics (adjusted)	50	U	100	50	25	ug/L		06/21/23 17:05	,

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	100		70 - 130	_		06/21/23 17:05	1
a,a,a-Trifluorotoluene (pid)	98		70 - 130			06/21/23 17:05	1

Method: SW846 8081B 8082A - Organ	nochlorine Pes	sticides & I	PCBs (GC)
Analyte	Result	Qualifier	LOQ

Method: MA DEP MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
4,4'-DDE	0.0039	UMQ	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
4,4'-DDT	0.0039	UM	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
Aldrin	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
alpha-BHC	0.0039	UQ	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
beta-BHC	0.0039	UM	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
delta-BHC	0.0039	U J1	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Dieldrin	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Endosulfan I	0.0039	U J1 Q	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Endosulfan II	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Endosulfan sulfate	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Endrin	0.0039	UQ	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
Endrin aldehyde	0.016	UQ	0.049	0.016	0.0039	ug/L		06/14/23 21:12	1
Endrin ketone	0.016	UQ	0.049	0.016	0.0039	ug/L		06/14/23 21:12	1
gamma-BHC (Lindane)	0.0039	UQ	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
Heptachlor	0.0039	UQ	0.049	0.0039	0.00098	ug/L		06/14/23 21:12	1
Heptachlor epoxide	0.0039	UQ	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Methoxychlor	0.0039	U	0.049	0.0039	0.0020	ug/L		06/14/23 21:12	1
Chlordane (technical)	0.39	UMQ	0.49	0.39	0.16	ug/L		06/14/23 21:12	1
Toxaphene	0.78	U	4.9	0.78	0.30	ug/L		06/14/23 21:12	1

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87	14 - 130	06/13/23 17:04	06/14/23 21:12	1
Tetrachloro-m-xylene	72	44 - 124	06/13/23 17:04	06/14/23 21:12	1

Method: MA DEP MA-EPH - Massachusetts - Extractat	ble Petroleum Hydrocarbons (GC)
---	---------------------------------

			•	, ,					
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Pyrene	9.7	UH	12	9.7	4.8	ug/L		06/29/23 01:20	1
Benzo[g,h,i]perylene	1.2	UH	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Indeno[1,2,3-cd]pyrene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Benzo[b]fluoranthene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Fluoranthene	0.97	UH	1.9	0.97	0.48	ug/L		06/29/23 01:20	1

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-02B-SPR23

Date Collected: 06/08/23 10:45 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-2

Matrix: Water

Job ID: 680-236120-1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzo[k]fluoranthene	2.9	UH	3.9	2.9	1.4	ug/L		06/29/23 01:20	1
Acenaphthylene	1.4	UHQ	1.9	1.4	0.68	ug/L		06/29/23 01:20	1
Chrysene	0.97	UH	1.9	0.97	0.48	ug/L		06/29/23 01:20	1
Benzo[a]pyrene	1.2	UH	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Dibenz(a,h)anthracene	0.97	UH	1.9	0.97	0.48	ug/L		06/29/23 01:20	1
Benzo[a]anthracene	1.4	UH	1.9	1.4	0.68	ug/L		06/29/23 01:20	1
Acenaphthene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Phenanthrene	0.93	JHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Fluorene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
Naphthalene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
2-Methylnaphthalene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 01:20	1
C11-C22 Aromatics (Adjusted)	17	JH	39	29	9.7	ug/L		06/29/23 01:20	1
C19-C36 Aliphatics	19	UHMQ	48	19	9.7	ug/L		06/29/23 00:57	1
C9-C18 Aliphatics	58	UHQ	87	58	29	ug/L		06/29/23 00:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	63	M	40 - 140	06/21/23 08:13	06/29/23 00:57	1
2-Fluorobiphenyl (Surr)	91		40 - 140	06/21/23 08:13	06/29/23 01:20	1
o- terphenyl (Surr)	83		40 - 140	06/21/23 08:13	06/29/23 01:20	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Pyrene	9.6	UHQ	12	9.6	4.8	ug/L		07/08/23 00:28	1
Benzo[g,h,i]perylene	1.2	UHQ	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Indeno[1,2,3-cd]pyrene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Benzo[b]fluoranthene	1.2	UH	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Fluoranthene	0.96	U H J1 Q	1.9	0.96	0.48	ug/L		07/08/23 00:28	1
Benzo[k]fluoranthene	2.9	UHQ	3.8	2.9	1.4	ug/L		07/08/23 00:28	1
Acenaphthylene	1.3	U H J1 Q	1.9	1.3	0.67	ug/L		07/08/23 00:28	1
Chrysene	0.96	UHQ	1.9	0.96	0.48	ug/L		07/08/23 00:28	1
Benzo[a]pyrene	1.2	U H J1	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Dibenz(a,h)anthracene	0.96	UH	1.9	0.96	0.48	ug/L		07/08/23 00:28	1
Benzo[a]anthracene	1.3	U H J1	1.9	1.3	0.67	ug/L		07/08/23 00:28	1
Acenaphthene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Phenanthrene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Fluorene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
Naphthalene	1.2	U H M J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
2-Methylnaphthalene	1.2	U H J1 Q	1.9	1.2	0.58	ug/L		07/08/23 00:28	1
C11-C22 Aromatics (Adjusted)	29	UH	38	29	9.6	ug/L		07/08/23 00:28	1
C19-C36 Aliphatics	19	UH	48	19	9.6	ug/L		07/08/23 00:28	1
C9-C18 Aliphatics	58	UHM	86	58	29	ug/L		07/08/23 00:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	77		40 - 140	06/30/23 14:30	07/08/23 00:28	1
2-Fluorobiphenyl (Surr)	75		40 - 140	06/30/23 14:30	07/08/23 00:28	1
o- terphenyl (Surr)	65		40 - 140	06/30/23 14:30	07/08/23 00:28	1

Eurofins Savannah

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-02B-SPR23

Lab Sample ID: 680-236120-2 Date Collected: 06/08/23 10:45

Date Received: 06/10/23 09:32

Method: SW846 9056A - Anions, Ion C	hromatogra	phy							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Chloride	250	D	2.5	2.5	1.0	mg/L		06/17/23 11:47	5
Sulfate	14	D M	5.0	5.0	2.0	mg/L		06/17/23 11:47	5
	Total Boson	roroblo							
i ivietitou. Syvo46 6010C - ivietais (ICP) -	TOTAL RECOV	/erable							

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	9.1	J	20	10	4.4	ug/L		06/12/23 12:56	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/12/23 12:56	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/12/23 12:56	1
Copper	10	U	20	10	3.2	ug/L		06/12/23 12:56	1
Iron	50	U	100	50	20	ug/L		06/12/23 12:56	1
Lead	20	U	40	20	6.6	ug/L		06/12/23 12:56	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/12/23 12:56	1
Selenium	20	U	25	20	10	ug/L		06/12/23 12:56	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/12/23 12:56	1

Method: SW846 6020A - Metals (ICP/N	MS) - Total Re	coverable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L	 06/12/23 12:19	1

Method: SW846 7470A - Mercury (CVA	A)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L		06/15/23 11:26	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Alkalinity (SM 2320B-2011)	81		5.0	5.0	2.2	mg/L		06/14/23 02:11	1
Total Dissolved Solids (SM	490		24	20	24	mg/L		06/13/23 12:47	1
2540C-2011)									
Nitrate Nitrite as N (MCAWW	0.26		0.10	0.025	0.010	mg/L		06/22/23 17:13	1
353.2-1993 R2.0)									
Chemical Oxygen Demand (EPA 410.4)	20	U J1	20	20	8.7	mg/L		06/20/23 12:11	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		06/16/23 09:15	1

Job ID: 680-236120-1

Matrix: Water

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-05A-SPR23

Date Collected: 06/08/23 10:36 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-3

Matrix: Water

Job ID: 680-236120-1

Analyte	Res	ult Qualifier	L	_OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene		2.0 U		5.0	2.0	1.0	ug/L		06/21/23 19:08	1
C9-C10 Aromatics		20 U		100	20	10	ug/L		06/21/23 19:08	1
Ethylbenzene	2	2.0 U		5.0	2.0	1.0	ug/L		06/21/23 19:08	1
Methyl tert-butyl ether		2.0 U		5.0	2.0	1.0	ug/L		06/21/23 19:08	1
Naphthalene	4	4.0 U		6.0	4.0	2.0	ug/L		06/21/23 19:08	1
Toluene	2	2.0 U		5.0	2.0	1.0	ug/L		06/21/23 19:08	1
C9-C12 Aliphatics (adjusted)		50 U		100	50	25	ug/L		06/21/23 19:08	1
m-Xylene & p-Xylene	!	5.0 U		10	5.0	2.5	ug/L		06/21/23 19:08	1
o-Xylene	2	2.0 U		5.0	2.0	1.0	ug/L		06/21/23 19:08	1
C5-C8 Aliphatics (adjusted)		50 U		100	50	25	ug/L		06/21/23 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	d	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	102		70 - 130	-			-		06/21/23 19:08	1
a,a,a-Trifluorotoluene (pid)	99		70 - 130						06/21/23 19:08	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0042	UMQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
4,4'-DDE	0.0042	UMQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
4,4'-DDT	0.0042	UQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
Aldrin	0.0042	UQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
alpha-BHC	0.0042	UQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
beta-BHC	0.0097	J	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
delta-BHC	0.0042	U	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Dieldrin	0.0042	UQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Endosulfan I	0.0042	UQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Endosulfan II	0.0042	UMQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Endosulfan sulfate	0.0042	UQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Endrin	0.0042	UQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
Endrin aldehyde	0.017	UQ	0.052	0.017	0.0042	ug/L		06/21/23 17:21	1
Endrin ketone	0.017	UQ	0.052	0.017	0.0042	ug/L		06/21/23 17:21	1
gamma-BHC (Lindane)	0.0042	UQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
Heptachlor	0.0042	UQ	0.052	0.0042	0.0010	ug/L		06/21/23 17:21	1
Heptachlor epoxide	0.0042	UQ	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Methoxychlor	0.0042	U	0.052	0.0042	0.0021	ug/L		06/21/23 17:21	1
Chlordane (technical)	0.42	UMQ	0.52	0.42	0.17	ug/L		06/21/23 17:21	1
Toxaphene	0.84	U	5.2	0.84	0.32	ug/L		06/21/23 17:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	111		14 - 130	06/13/23 17:04	06/21/23 17:21	1
Tetrachloro-m-xylene	69		44 - 124	06/13/23 17:04	06/21/23 17:21	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Pyrene	10	UH	12	10	5.1	ug/L		06/29/23 02:27	1
Benzo[g,h,i]perylene	1.2	UH	2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Indeno[1,2,3-cd]pyrene	1.2	UHQ	2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Benzo[b]fluoranthene	1.2	UHQ	2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Fluoranthene	1.0	UH	2.1	1.0	0.51	ug/L		06/29/23 02:27	1

Eurofins Savannah

7/20/2023

Job ID: 680-236120-1

Client Sample ID: LFM-99-05A-SPR23

Date Collected: 06/08/23 10:36 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-3

Matrix: Water

Analyte	Result	Qualifier		LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzo[k]fluoranthene	3.1	UH		4.1	3.1	1.5	ug/L	_	06/29/23 02:27	1
Acenaphthylene	1.4	UHQ		2.1	1.4	0.72	ug/L		06/29/23 02:27	1
Chrysene	1.0	UH		2.1	1.0	0.51	ug/L		06/29/23 02:27	1
Benzo[a]pyrene	1.2	UH		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Dibenz(a,h)anthracene	1.0	UH		2.1	1.0	0.51	ug/L		06/29/23 02:27	1
Benzo[a]anthracene	1.4	UH		2.1	1.4	0.72	ug/L		06/29/23 02:27	1
Acenaphthene	1.2	UHQ		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Phenanthrene	1.2	UHQ		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Fluorene	1.2	UHQ		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
Naphthalene	1.2	UHQ		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
2-Methylnaphthalene	1.2	UHQ		2.1	1.2	0.62	ug/L		06/29/23 02:27	1
C11-C22 Aromatics (Adjusted)	31	UH		41	31	10	ug/L		06/29/23 02:27	1
C19-C36 Aliphatics	21	UHQ		51	21	10	ug/L		06/29/23 02:05	1
C9-C18 Aliphatics	62	UHQ		93	62	31	ug/L		06/29/23 02:05	1
0	0/5		1 : : 4				D		A I I	D# 5

Surrogate	%Recovery	Qualifier	Limits			Preparea	Anaiyzea	DII Fac
1-Chlorooctadecane (Surr)	56		40 - 140			06/21/23 08:13	06/29/23 02:05	1
2-Fluorobiphenyl (Surr)	61		40 - 140			06/21/23 08:13	06/29/23 02:27	1
o- terphenyl (Surr)	47		40 - 140			06/21/23 08:13	06/29/23 02:27	1
Method: MA DEP MA-EPH - N Analyte		tractable Pult Qualifier	•	carbons (GC LOD) - RE DL	Unit D	Analyzed	Dil Fac
Anthracene		1.2 UHQ	2.0	1.2	0.60	ug/L	07/08/23 01:35	1
Direne		10 UHQ	12	4.0	F 0	ug/L	07/00/00 04 05	
Pyrene		10 011 0	12	10	5.0	ug/L	07/08/23 01:35	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Pyrene	10	UHQ	12	10	5.0	ug/L		07/08/23 01:35	1
Benzo[g,h,i]perylene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Indeno[1,2,3-cd]pyrene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Benzo[b]fluoranthene	1.2	UH	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Fluoranthene	1.0	UHQ	2.0	1.0	0.50	ug/L		07/08/23 01:35	1
Benzo[k]fluoranthene	3.0	UHQ	4.0	3.0	1.5	ug/L		07/08/23 01:35	1
Acenaphthylene	1.4	UHQ	2.0	1.4	0.70	ug/L		07/08/23 01:35	1
Chrysene	1.0	UHQ	2.0	1.0	0.50	ug/L		07/08/23 01:35	1
Benzo[a]pyrene	1.2	UH	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Dibenz(a,h)anthracene	1.0	UH	2.0	1.0	0.50	ug/L		07/08/23 01:35	1
Benzo[a]anthracene	1.4	UH	2.0	1.4	0.70	ug/L		07/08/23 01:35	1
Acenaphthene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Phenanthrene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Fluorene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
Naphthalene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
2-Methylnaphthalene	1.2	UHQ	2.0	1.2	0.60	ug/L		07/08/23 01:35	1
C11-C22 Aromatics (Adjusted)	30	UH	40	30	10	ug/L		07/08/23 01:35	1
C19-C36 Aliphatics	20	UH	50	20	10	ug/L		07/08/23 01:35	1
C9-C18 Aliphatics	60	UHM	90	60	30	ug/L		07/08/23 01:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	78	·	40 - 140	06/30/23 14:30	07/08/23 01:35	1
2-Fluorobiphenyl (Surr)	76		40 - 140	06/30/23 14:30	07/08/23 01:35	1
o- terphenyl (Surr)	67		40 - 140	06/30/23 14:30	07/08/23 01:35	1

Eurofins Savannah

2

4

6

8

40

1

Client Sample Results

Client: Seres Engineering & Services LLC

Date Received: 06/10/23 09:32

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-05A-SPR23

Date Collected: 06/08/23 10:36

Lab Sample ID: 680-236120-3

Matrix: Water

Job ID: 680-236120-1

Method: SW846 9056A - Anions, Ion Chromatography										
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	
Chloride	170	D	1.0	1.0	0.40	mg/L		06/17/23 12:38	2	
Sulfate	16	D	2.0	2.0	0.80	mg/L		06/17/23 12:38	2	
_										

Method: SW846 6010C - Meta	als (ICP) - Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	15	J	20	10	4.4	ug/L		06/14/23 16:27	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/14/23 16:27	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/14/23 16:27	1
Copper	10	U	20	10	3.2	ug/L		06/14/23 16:27	1
Iron	50	U	100	50	20	ug/L		06/14/23 16:27	1
Lead	20	U	40	20	6.6	ug/L		06/14/23 16:27	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/14/23 16:27	1
Selenium	20	U	25	20	10	ug/L		06/14/23 16:27	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/14/23 16:27	1

Method: SW846 6020A - Metals (ICP/N	IS) - Total Re	coverable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L	06/14/23 18:17	1

Method: SW846 7470A - Mercury (CVA	AA)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L		06/15/23 11:30	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Alkalinity (SM 2320B-2011)	98		5.0	5.0	2.2	mg/L		06/14/23 02:30	1
Total Dissolved Solids (SM	430		24	20	24	mg/L		06/13/23 12:47	1
2540C-2011)									
Nitrate Nitrite as N (MCAWW	0.41		0.10	0.025	0.010	mg/L		06/22/23 17:21	1
353.2-1993 R2.0)									
Chemical Oxygen Demand (EPA 410.4)	20	U	20	20	8.7	mg/L		06/15/23 11:42	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		06/16/23 09:15	1

7/20/2023

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-DUP01-SPR23

Date Collected: 06/08/23 10:36

Matrix: Water Date Received: 06/10/23 09:32

Analyte	Result	Qualifier	L	.OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 19:49	1
C9-C10 Aromatics	20	U		100	20	10	ug/L		06/21/23 19:49	1
Ethylbenzene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 19:49	1
Methyl tert-butyl ether	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 19:49	1
Naphthalene	4.0	U		6.0	4.0	2.0	ug/L		06/21/23 19:49	1
Toluene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 19:49	1
C9-C12 Aliphatics (adjusted)	50	U		100	50	25	ug/L		06/21/23 19:49	1
m-Xylene & p-Xylene	5.0	U		10	5.0	2.5	ug/L		06/21/23 19:49	1
o-Xylene	2.0	U		5.0	2.0	1.0	ug/L		06/21/23 19:49	1
C5-C8 Aliphatics (adjusted)	50	U		100	50	25	ug/L		06/21/23 19:49	1
Surrogate	%Recovery Qu	ualifier	Limits				Prepare	d	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	100		70 - 130					_	06/21/23 19:49	1
a,a,a-Trifluorotoluene (pid)	98		70 - 130						06/21/23 19:49	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
4,4'-DDE	0.0043	UMQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
4,4'-DDT	0.0043	UQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
Aldrin	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
alpha-BHC	0.0043	UQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
beta-BHC	0.0043	U	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
delta-BHC	0.0043	U	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Dieldrin	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Endosulfan I	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Endosulfan II	0.0043	UMQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Endosulfan sulfate	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Endrin	0.0043	UQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
Endrin aldehyde	0.017	UQ	0.053	0.017	0.0043	ug/L		06/21/23 17:35	1
Endrin ketone	0.017	UQ	0.053	0.017	0.0043	ug/L		06/21/23 17:35	1
gamma-BHC (Lindane)	0.0043	UQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
Heptachlor	0.0043	UQ	0.053	0.0043	0.0011	ug/L		06/21/23 17:35	1
Heptachlor epoxide	0.0043	UQ	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Methoxychlor	0.0043	U	0.053	0.0043	0.0021	ug/L		06/21/23 17:35	1
Chlordane (technical)	0.43	UMQ	0.53	0.43	0.17	ug/L		06/21/23 17:35	1
Toxaphene	0.85	U	5.3	0.85	0.33	ug/L		06/21/23 17:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	100		14 - 130	06/13/23 17:04	06/21/23 17:35	1
Tetrachloro-m-xylene	83		44 - 124	06/13/23 17:04	06/21/23 17:35	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 02:50	1
Pyrene	9.6	UH	12	9.6	4.8	ug/L		06/29/23 02:50	1
Benzo[g,h,i]perylene	1.2	UH	1.9	1.2	0.58	ug/L		06/29/23 02:50	1
Indeno[1,2,3-cd]pyrene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 02:50	1
Benzo[b]fluoranthene	1.2	UHQ	1.9	1.2	0.58	ug/L		06/29/23 02:50	1
Fluoranthene	0.96	UH	1.9	0.96	0.48	ug/L		06/29/23 02:50	1

Eurofins Savannah

7/20/2023

Job ID: 680-236120-1

Lab Sample ID: 680-236120-4

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-DUP01-SPR23

Lab Sample ID: 680-236120-4 Date Collected: 06/08/23 10:36 Matrix: Water Date Received: 06/10/23 09:32

Analyte	Result	Qualifier	L	.oq	LOD	DL	Unit D	Analyzed	Dil Fac
Benzo[k]fluoranthene	2.9	UH		3.9	2.9	1.4	ug/L	06/29/23 02:50	1
Acenaphthylene	1.3	UHQ		1.9	1.3	0.67	ug/L	06/29/23 02:50	1
Chrysene	0.96	UH		1.9	0.96	0.48	ug/L	06/29/23 02:50	1
Benzo[a]pyrene	1.2	UH		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
Dibenz(a,h)anthracene	0.96	UH		1.9	0.96	0.48	ug/L	06/29/23 02:50	1
Benzo[a]anthracene	1.3	UH		1.9	1.3	0.67	ug/L	06/29/23 02:50	1
Acenaphthene	1.2	UHQ		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
Phenanthrene	1.2	UHQ		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
Fluorene	1.2	UHQ		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
Naphthalene	1.2	UHQ		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
2-Methylnaphthalene	1.2	UHQ		1.9	1.2	0.58	ug/L	06/29/23 02:50	1
C11-C22 Aromatics (Adjusted)	29	UH		39	29	9.6	ug/L	06/29/23 02:50	1
C19-C36 Aliphatics	19	UHMQ		48	19	9.6	ug/L	06/29/23 02:27	1
C9-C18 Aliphatics	58	UHQ		87	58	29	ug/L	06/29/23 02:27	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	68 M		40 - 140	•			06/21/23 08:13	06/29/23 02:27	1
2-Fluorobiphenyl (Surr)	74		40 - 140				06/21/23 08:13	06/29/23 02:50	1

Method: MA DEP MA-EPH - Massa			•						
Analyte		Qualifier	LOQ	LOD	DL.	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	1
Pyrene	9.9	UHQ	12	9.9	5.0	ug/L		07/08/23 01:57	1
Benzo[g,h,i]perylene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	4
Indeno[1,2,3-cd]pyrene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	
Benzo[b]fluoranthene	1.2	UH	2.0	1.2	0.59	ug/L		07/08/23 01:57	4
Fluoranthene	0.99	UHQ	2.0	0.99	0.50	ug/L		07/08/23 01:57	•
Benzo[k]fluoranthene	3.0	UHQ	4.0	3.0	1.5	ug/L		07/08/23 01:57	
Acenaphthylene	1.4	UHQ	2.0	1.4	0.69	ug/L		07/08/23 01:57	
Chrysene	0.99	UHQ	2.0	0.99	0.50	ug/L		07/08/23 01:57	•
Benzo[a]pyrene	1.2	UH	2.0	1.2	0.59	ug/L		07/08/23 01:57	
Dibenz(a,h)anthracene	0.99	UH	2.0	0.99	0.50	ug/L		07/08/23 01:57	•
Benzo[a]anthracene	1.4	UH	2.0	1.4	0.69	ug/L		07/08/23 01:57	•
Acenaphthene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	
Phenanthrene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	•
Fluorene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	•
Naphthalene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	,
2-Methylnaphthalene	1.2	UHQ	2.0	1.2	0.59	ug/L		07/08/23 01:57	,
C11-C22 Aromatics (Adjusted)	30	UH	40	30	9.9	ug/L		07/08/23 01:57	
C19-C36 Aliphatics	20	UH	50	20	9.9	ug/L		07/08/23 01:57	
C9-C18 Aliphatics	59	UН	89	59	30	ug/L		07/08/23 01:57	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	72		40 - 140	06/30/23 14:30	07/08/23 01:57	1
2-Fluorobiphenyl (Surr)	73		40 - 140	06/30/23 14:30	07/08/23 01:57	1
o- terphenyl (Surr)	67		40 - 140	06/30/23 14:30	07/08/23 01:57	1

Eurofins Savannah

Client Sample Results

Client: Seres Engineering & Services LLC

Cyanide, Total (EPA 9012B)

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-DUP01-SPR23

Lab Sample ID: 680-236120-4 Date Collected: 06/08/23 10:36

Matrix: Water Date Received: 06/10/23 09:32

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Chloride	180	D	1.0	1.0	0.40	mg/L		06/17/23 12:50	2
Sulfate	17	D M	2.0	2.0	0.80	mg/L		06/17/23 12:50	2
Method: SW846 6010C - Metals (ICP)	- Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	14	J	20	10	4.4	ug/L		06/14/23 16:37	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/14/23 16:37	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/14/23 16:37	1
Copper	10	U	20	10	3.2	ug/L		06/14/23 16:37	1
Iron	50	U	100	50	20	ug/L		06/14/23 16:37	1
Lead	20	U	40	20	6.6	ug/L		06/14/23 16:37	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/14/23 16:37	1
Selenium	20	U	25	20	10	ug/L		06/14/23 16:37	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/14/23 16:37	1
Method: SW846 6020A - Metals (ICP/	MS) - Total Re	coverable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		06/14/23 18:21	1
Method: SW846 7470A - Mercury (CV	/AA)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L		06/15/23 11:32	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Alkalinity (SM 2320B-2011)	98		5.0	5.0	2.2	mg/L		06/16/23 17:38	1
Total Dissolved Solids (SM 2540C-2011)	440		24	20	24	mg/L		06/13/23 12:47	1
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.41		0.10	0.025	0.010	mg/L		06/22/23 17:22	1
Chemical Oxygen Demand (EPA 410.4)	20	U	20	20	8.7	mg/L		06/15/23 11:42	1

0.010

0.0050

0.0025 mg/L

0.0050 U

06/16/23 09:15

Job ID: 680-236120-1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-06A-RP-SPR23

Lab Sample ID: 680-236120-5 Date Collected: 06/08/23 13:25

Matrix: Water Date Received: 06/10/23 09:32

Analyte	Resul	t Qualifier	L	_OQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzene	2.0	Ū U		5.0	2.0	1.0	ug/L	_	06/21/23 20:30	1
C9-C10 Aromatics	20) U		100	20	10	ug/L		06/21/23 20:30	1
Ethylbenzene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 20:30	1
Methyl tert-butyl ether	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 20:30	1
Naphthalene	4.0) U		6.0	4.0	2.0	ug/L		06/21/23 20:30	1
Toluene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 20:30	1
C9-C12 Aliphatics (adjusted)	50) U		100	50	25	ug/L		06/21/23 20:30	1
m-Xylene & p-Xylene	5.0) U		10	5.0	2.5	ug/L		06/21/23 20:30	1
o-Xylene	2.0) U		5.0	2.0	1.0	ug/L		06/21/23 20:30	1
C5-C8 Aliphatics (adjusted)	50) U		100	50	25	ug/L		06/21/23 20:30	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared		Analyzed	Dil Fac
a a a Trifluorataluana (fid)	101		70 120	-					06/21/22 20:20	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	101		70 - 130	_		06/21/23 20:30	1
a,a,a-Trifluorotoluene (pid)	99		70 - 130			06/21/23 20:30	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0038	UMQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
4,4'-DDE	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
4,4'-DDT	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
Aldrin	0.0038	UQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
alpha-BHC	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
beta-BHC	0.0038	U	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
delta-BHC	0.0038	U	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Dieldrin	0.0038	UQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Endosulfan I	0.0038	UQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Endosulfan II	0.0038	UMQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Endosulfan sulfate	0.0038	UQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Endrin	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
Endrin aldehyde	0.015	UMQ	0.048	0.015	0.0038	ug/L		06/21/23 17:50	1
Endrin ketone	0.015	UQ	0.048	0.015	0.0038	ug/L		06/21/23 17:50	1
gamma-BHC (Lindane)	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
Heptachlor	0.0038	UQ	0.048	0.0038	0.00096	ug/L		06/21/23 17:50	1
Heptachlor epoxide	0.0038	UQ	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Methoxychlor	0.0038	U	0.048	0.0038	0.0019	ug/L		06/21/23 17:50	1
Chlordane (technical)	0.38	UMQ	0.48	0.38	0.15	ug/L		06/21/23 17:50	1
Toxaphene	0.77	U	4.8	0.77	0.30	ug/L		06/21/23 17:50	1

Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	84	14 - 130	06/13/23 17:04	06/21/23 17:50	1
Tetrachloro-m-xylene	69	44 - 124	06/13/23 17:04	06/21/23 17:50	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Pyrene	9.6	UH	11	9.6	4.8	ug/L		06/29/23 03:12	1
Benzo[g,h,i]perylene	1.1	UH	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Indeno[1,2,3-cd]pyrene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Benzo[b]fluoranthene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Fluoranthene	0.96	UН	1.9	0.96	0.48	ug/L		06/29/23 03:12	1

Eurofins Savannah

Job ID: 680-236120-1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-06A-RP-SPR23

Date Collected: 06/08/23 13:25 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-5

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Benzo[k]fluoranthene	2.9	UH	3.8	2.9	1.4	ug/L		06/29/23 03:12	1
Acenaphthylene	1.3	UHQ	1.9	1.3	0.67	ug/L		06/29/23 03:12	1
Chrysene	0.96	UH	1.9	0.96	0.48	ug/L		06/29/23 03:12	1
Benzo[a]pyrene	1.1	UH	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Dibenz(a,h)anthracene	0.96	UH	1.9	0.96	0.48	ug/L		06/29/23 03:12	1
Benzo[a]anthracene	1.3	UH	1.9	1.3	0.67	ug/L		06/29/23 03:12	1
Acenaphthene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Phenanthrene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Fluorene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
Naphthalene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
2-Methylnaphthalene	1.1	UHQ	1.9	1.1	0.57	ug/L		06/29/23 03:12	1
C11-C22 Aromatics (Adjusted)	29	UH	38	29	9.6	ug/L		06/29/23 03:12	1
C19-C36 Aliphatics	19	UHMQ	48	19	9.6	ug/L		06/29/23 02:50	1
C9-C18 Aliphatics	57	UHQ	86	57	29	ug/L		06/29/23 02:50	1

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	68 N	М	40 - 140	06/21/23 08:13	06/29/23 02:50	1
2-Fluorobiphenyl (Surr)	79		40 - 140	06/21/23 08:13	06/29/23 03:12	1
o- terphenyl (Surr)	74		40 - 140	06/21/23 08:13	06/29/23 03:12	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Pyrene	9.5	UHQ	11	9.5	4.8	ug/L		07/08/23 02:20	1
Benzo[g,h,i]perylene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Indeno[1,2,3-cd]pyrene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Benzo[b]fluoranthene	1.1	UH	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Fluoranthene	0.95	UHQ	1.9	0.95	0.48	ug/L		07/08/23 02:20	1
Benzo[k]fluoranthene	2.9	UHQ	3.8	2.9	1.4	ug/L		07/08/23 02:20	1
Acenaphthylene	1.3	UHQ	1.9	1.3	0.67	ug/L		07/08/23 02:20	1
Chrysene	0.95	UHQ	1.9	0.95	0.48	ug/L		07/08/23 02:20	1
Benzo[a]pyrene	1.1	UH	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Dibenz(a,h)anthracene	0.95	UH	1.9	0.95	0.48	ug/L		07/08/23 02:20	1
Benzo[a]anthracene	1.3	UH	1.9	1.3	0.67	ug/L		07/08/23 02:20	1
Acenaphthene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Phenanthrene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Fluorene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
Naphthalene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
2-Methylnaphthalene	1.1	UHQ	1.9	1.1	0.57	ug/L		07/08/23 02:20	1
C11-C22 Aromatics (Adjusted)	29	UH	38	29	9.5	ug/L		07/08/23 02:20	1
C19-C36 Aliphatics	19	UH	48	19	9.5	ug/L		07/08/23 02:20	1
C9-C18 Aliphatics	57	UHM	86	57	29	ug/L		07/08/23 02:20	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	d Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	68		40 - 140	06/30/23 14	4:30 07/08/23 02:20	1
2-Fluorobiphenyl (Surr)	70		40 - 140	06/30/23 14	4:30 07/08/23 02:20	1
o- terphenyl (Surr)	66		40 - 140	06/30/23 14	1:30 07/08/23 02:20	1

Eurofins Savannah

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-06A-RP-SPR23

Lab Sample ID: 680-236120-5 Date Collected: 06/08/23 13:25

Matrix: Water

Job ID: 680-236120-1

Date Received: 06/10/23 09:32

	Method: SW846 9056A - Anions, Ion Chi	omatogra	phy							
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Chloride	310	D	2.5	2.5	1.0	mg/L		06/17/23 13:03	5
L	Sulfate	30	D M	5.0	5.0	2.0	mg/L		06/17/23 13:03	5

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	6.9	J	20	10	4.4	ug/L		06/14/23 16:39	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/14/23 16:39	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/14/23 16:39	1
Copper	10	U	20	10	3.2	ug/L		06/14/23 16:39	1
Iron	50	U	100	50	20	ug/L		06/14/23 16:39	1
Lead	20	U	40	20	6.6	ug/L		06/14/23 16:39	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/14/23 16:39	1
Selenium	20	U	25	20	10	ug/L		06/14/23 16:39	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/14/23 16:39	1

Method: SW846 6020A - Metals (ICP/N	IS) - Total Re	coverable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	I	O Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		06/14/23 18:25	1

Method: SW846 7470A - Mercury (CVA	4A)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit) Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L	06/15/23 11:33	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Alkalinity (SM 2320B-2011)	92		5.0	5.0	2.2	mg/L		06/17/23 01:45	1
Total Dissolved Solids (SM 2540C-2011)	670		24	20	24	mg/L		06/13/23 12:47	1
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.77		0.10	0.025	0.010	mg/L		06/22/23 17:24	1
Chemical Oxygen Demand (EPA 410.4)	20	U	20	20	8.7	mg/L		06/15/23 11:42	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		06/16/23 09:15	1

Lab Sample ID: MB 410-389210/2

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC)

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 680-236120-1

мв мв LOD Analyte Result Qualifier LOQ DL Unit Analyzed Dil Fac Benzene 2.0 U 5.0 2.0 1.0 ug/L 06/21/23 14:21 C9-C10 Aromatics 20 U 100 20 10 ug/L 06/21/23 14:21 2.0 U 2.0 Ethylbenzene 5.0 1.0 ug/L 06/21/23 14:21 Methyl tert-butyl ether 2.0 U 5.0 2.0 1.0 ug/L 06/21/23 14:21 Naphthalene 4.0 U 6.0 4.0 06/21/23 14:21 2.0 ug/L Toluene 2.0 U 2.0 5.0 1.0 ug/L 06/21/23 14:21 C9-C12 Aliphatics (adjusted) 50 U 100 50 25 ug/L 06/21/23 14:21 m-Xylene & p-Xylene 5.0 U 10 5.0 2.5 ug/L 06/21/23 14:21 o-Xylene 2.0 U 5.0 2.0 06/21/23 14:21 1.0 ug/L C5-C8 Aliphatics (adjusted) 50 U 100 50 25 ug/L 06/21/23 14:21

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	a,a,a-Trifluorotoluene (fid)	101		70 - 130		06/21/23 14:21	1
ı	a,a,a-Trifluorotoluene (pid)	97		70 - 130		06/21/23 14:21	1

Lab Sample ID: LCS 410-389210/3

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.1	47.6		ug/L		95	70 - 130	
C9-C10 Aromatics	50.2	50.1	J	ug/L		100	70 - 130	
Ethylbenzene	50.1	48.9		ug/L		98	70 - 130	
Methyl tert-butyl ether	50.2	45.9		ug/L		92	70 - 130	
Naphthalene	50.2	52.1		ug/L		104	70 - 130	
Toluene	50.1	48.0		ug/L		96	70 - 130	
m-Xylene & p-Xylene	101	100		ug/L		99	70 - 130	
o-Xylene	50.4	49.4		ug/L		98	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	101		70 - 130
a,a,a-Trifluorotoluene (pid)	101		70 - 130

Lab Sample ID: LCSD 410-389210/4

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.1	47.9		ug/L		96	70 - 130	1	25
C9-C10 Aromatics	50.2	49.7	J	ug/L		99	70 - 130	1	25
Ethylbenzene	50.1	49.0		ug/L		98	70 - 130	0	25
Methyl tert-butyl ether	50.2	45.8		ug/L		91	70 - 130	0	25
Naphthalene	50.2	52.5		ug/L		105	70 - 130	1	25
Toluene	50.1	48.2		ug/L		96	70 - 130	0	25
m-Xylene & p-Xylene	101	100		ug/L		100	70 - 130	0	25
o-Xylene	50.4	49.6		ug/L		98	70 - 130	0	25

Eurofins Savannah

Page 23 of 65

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MAVPH - Massachusetts - Volatile Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCSD 410-389210/4

Matrix: Water

Matrix: Water

Analysis Batch: 389210

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-236120-1

LCSD LCSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (fid) 101 70 - 130 a,a,a-Trifluorotoluene (pid) 101 70 - 130

Lab Sample ID: 680-236120-2 MS Client Sample ID: LFM-99-02B-SPR23

70 - 130

104

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 389210

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 2.0 U 50.1 51.3 102 70 - 130 Benzene ug/L C9-C10 Aromatics 20 U J1 50.2 75.1 J J1 150 70 - 130 ug/L 2.0 U 50.1 52.6 105 70 - 130 Ethylbenzene ug/L Methyl tert-butyl ether 2.0 U 50.2 46.4 ug/L 93 70 - 130 Naphthalene 4.0 U 50.2 52.6 ug/L 105 70 - 130 Toluene 2.0 U 50.1 51.6 ug/L 103 70 - 130 m-Xylene & p-Xylene 5.0 U 101 107 ug/L 106 70 - 130

50.4

2.0 U MS MS

Surrogate	%Recovery Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	103	70 _ 130
a,a,a-Trifluorotoluene (pid)	103	70 - 130

Lab Sample ID: 680-236120-2 MSD Client Sample ID: LFM-99-02B-SPR23

52.4

ug/L

Matrix: Water

o-Xylene

Analysis Batch: 389210

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	2.0	U	50.1	45.2		ug/L		90	70 - 130	13	25
C9-C10 Aromatics	20	U J1	50.2	66.5	J J1	ug/L		133	70 - 130	12	25
Ethylbenzene	2.0	U	50.1	46.2		ug/L		92	70 - 130	13	25
Methyl tert-butyl ether	2.0	U	50.2	41.5		ug/L		83	70 - 130	11	25
Naphthalene	4.0	U	50.2	46.3		ug/L		92	70 - 130	13	25
Toluene	2.0	U	50.1	45.3		ug/L		90	70 - 130	13	25
m-Xylene & p-Xylene	5.0	U	101	93.9		ug/L		93	70 - 130	13	25
o-Xylene	2.0	U	50.4	46.0		ug/L		91	70 - 130	13	25

MSD MSD

Surrogate	%Recovery	Quaimer	Limits
a,a,a-Trifluorotoluene (fid)	101		70 - 130
a,a,a-Trifluorotoluene (pid)	104		70 - 130

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC)

Lab Sample ID: MB 680-783438/1-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 783438

мв мв Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 4,4'-DDD 0.050 0.0040 0.0020 ug/L 06/14/23 18:08 0.0040 U 4,4'-DDE 0.050 06/14/23 18:08 0.0040 UM 0.0040 0.0010 ug/L

Eurofins Savannah

Page 24 of 65

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: MB 680-783438/1-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 783438

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDT	0.0040	U	0.050	0.0040	0.0010	ug/L		06/14/23 18:08	1
Aldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
alpha-BHC	0.0040	UM	0.050	0.0040	0.0010	ug/L		06/14/23 18:08	1
beta-BHC	0.0040	UM	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
delta-BHC	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Dieldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Endosulfan I	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Endosulfan II	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Endosulfan sulfate	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Endrin	0.0040	U	0.050	0.0040	0.0010	ug/L		06/14/23 18:08	1
Endrin aldehyde	0.016	U	0.050	0.016	0.0040	ug/L		06/14/23 18:08	1
Endrin ketone	0.016	U	0.050	0.016	0.0040	ug/L		06/14/23 18:08	1
gamma-BHC (Lindane)	0.0040	UM	0.050	0.0040	0.0010	ug/L		06/14/23 18:08	1
Heptachlor	0.0040	UM	0.050	0.0040	0.0010	ug/L		06/14/23 18:08	1
Heptachlor epoxide	0.0040	U	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Methoxychlor	0.0040	UM	0.050	0.0040	0.0020	ug/L		06/14/23 18:08	1
Chlordane (technical)	0.40	UM	0.50	0.40	0.16	ug/L		06/14/23 18:08	1
Toxaphene	0.80	U	5.0	0.80	0.31	ug/L		06/14/23 18:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	83		14 - 130	06/13/23 17:04	06/14/23 18:08	1
Tetrachloro-m-xylene	85		44 - 124	06/13/23 17:04	06/14/23 18:08	1

Lab Sample ID: LCS 680-783438/12-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 783438

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	87	14 - 130
Tetrachloro-m-xylene	86	44 - 124

Lab Sample ID: LCS 680-783438/2-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0400	0.0202	JQ	ug/L		50	56 - 143
4,4'-DDE	0.0400	0.0185	JQ	ug/L		46	57 - 135
4,4'-DDT	0.0400	0.0225	J	ug/L		56	51 - 143
Aldrin	0.0400	0.0153	JQ	ug/L		38	45 - 134
alpha-BHC	0.0400	0.0162	JQ	ug/L		40	54 - 138
beta-BHC	0.0400	0.0259	J	ug/L		65	56 - 136
delta-BHC	0.0400	0.0355	J	ug/L		89	52 - 142
Dieldrin	0.0400	0.0180	JQ	ug/L		45	60 - 136
Endosulfan I	0.0400	0.0160	JQ	ug/L		40	62 - 126
Endosulfan II	0.0400	0.0175	JQ	ug/L		44	52 - 135
Endosulfan sulfate	0.0400	0.0211	JQ	ug/L		53	62 - 133
Endrin	0.0400	0.0199	JQ	ug/L		50	60 - 138

Eurofins Savannah

Page 25 of 65

Prep Batch: 783438

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: LCS 680-783438/2-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 783438

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin aldehyde	0.0400	0.0166	JQ	ug/L		41	51 - 132	
Endrin ketone	0.0400	0.0186	JQ	ug/L		46	58 - 134	
gamma-BHC (Lindane)	0.0400	0.0171	JQ	ug/L		43	59 - 134	
Heptachlor	0.0400	0.0193	JQ	ug/L		48	54 - 130	
Heptachlor epoxide	0.0400	0.0177	JQ	ug/L		44	61 - 133	
Methoxychlor	0.0400	0.0262	J	ug/L		66	54 - 145	

LCS LCS

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	58	14 - 130
Tetrachloro-m-xvlene	49	44 - 124

Lab Sample ID: LCSD 680-783438/13-A

Matrix: Water

Analysis Batch: 783593

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 783438**

Surrogate

%Recovery Qualifier Limits 14 - 130 DCB Decachlorobiphenyl 87 Tetrachloro-m-xylene 73 44 - 124

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 783593

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Prep Batch: 783438

Allalysis Datcil. 100000									Frep Daten. 703430
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0039	UQ	0.0378	0.0309	J M	ug/L		82	56 - 143
4,4'-DDE	0.0039	UMQ	0.0378	0.0295	J	ug/L		78	57 - 135
4,4'-DDT	0.0039	UM	0.0378	0.0319	J	ug/L		84	51 - 143
Aldrin	0.0039	UQ	0.0378	0.0225	J	ug/L		59	45 - 134
alpha-BHC	0.0039	UQ	0.0378	0.0241	J	ug/L		64	54 - 138
beta-BHC	0.0039	UM	0.0378	0.0300	J	ug/L		79	56 - 136
delta-BHC	0.0039	U J1	0.0378	0.0300	J	ug/L		79	52 - 142
Dieldrin	0.0039	UQ	0.0378	0.0266	J M	ug/L		70	60 - 136
Endosulfan I	0.0039	U J1 Q	0.0378	0.0233	J	ug/L		62	62 - 126
Endosulfan II	0.0039	UQ	0.0378	0.0251	J	ug/L		66	52 - 135
Endosulfan sulfate	0.0039	UQ	0.0378	0.0339	J	ug/L		89	62 - 133
Endrin	0.0039	UQ	0.0378	0.0297	J	ug/L		78	60 - 138
Endrin aldehyde	0.016	UQ	0.0378	0.0201	J	ug/L		53	51 - 132
Endrin ketone	0.016	UQ	0.0378	0.0281	J	ug/L		74	58 - 134
gamma-BHC (Lindane)	0.0039	UQ	0.0378	0.0249	J	ug/L		66	59 - 134
Heptachlor	0.0039	UQ	0.0378	0.0248	J	ug/L		66	54 - 130
Heptachlor epoxide	0.0039	UQ	0.0378	0.0274	J	ug/L		72	61 - 133
Methoxychlor	0.0039	U	0.0378	0.0343	J	ug/L		91	54 - 145

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	86		14 - 130
Tetrachloro-m-xylene	77		44 - 124

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 783593

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Prep Batch: 783438

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.0039	U Q	0.0395	0.0318	J M	ug/L		80	56 - 143	3	30
4,4'-DDE	0.0039	UMQ	0.0395	0.0298	J	ug/L		75	57 - 135	1	30
4,4'-DDT	0.0039	UM	0.0395	0.0310	J	ug/L		78	51 - 143	3	30
Aldrin	0.0039	UQ	0.0395	0.0220	J	ug/L		56	45 - 134	2	30
alpha-BHC	0.0039	UQ	0.0395	0.0263	J	ug/L		67	54 - 138	9	30
beta-BHC	0.0039	UM	0.0395	0.0346	J	ug/L		87	56 - 136	14	30
delta-BHC	0.0039	U J1	0.0395	0.0413	J J1	ug/L		105	52 - 142	32	30
Dieldrin	0.0039	UQ	0.0395	0.0250	J	ug/L		63	60 - 136	6	30
Endosulfan I	0.0039	UQ	0.0395	0.0263	J	ug/L		67	62 - 126	4	30
Endosulfan II	0.0039	UQ	0.0395	0.0240	J	ug/L		61	52 - 135	5	30
Endosulfan sulfate	0.0039	UQ	0.0395	0.0327	J	ug/L		83	62 - 133	3	30
Endrin	0.0039	UQ	0.0395	0.0323	J	ug/L		82	60 - 138	8	30
Endrin aldehyde	0.016	UQ	0.0395	0.0245	J	ug/L		62	51 - 132	20	30
Endrin ketone	0.016	U Q	0.0395	0.0266	J	ug/L		67	58 - 134	5	30
gamma-BHC (Lindane)	0.0039	U Q	0.0395	0.0260	J	ug/L		66	59 - 134	4	30
Heptachlor	0.0039	UQ	0.0395	0.0252	J	ug/L		64	54 - 130	2	30
Heptachlor epoxide	0.0039	U Q	0.0395	0.0252	J	ug/L		64	61 - 133	8	30
Methoxychlor	0.0039	U	0.0395	0.0340	J	ug/L		86	54 - 145	1	30

MSD MSD

Qualifier Limits Surrogate %Recovery 14 - 130 DCB Decachlorobiphenyl 77 72 44 - 124 Tetrachloro-m-xylene

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 410-388980/1-B

Matrix: Water

Analysis Batch: 391881

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 388980

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac C19-C36 Aliphatics 20 20 U M 50 10 ug/L 06/28/23 20:49 C9-C18 Aliphatics 60 U 90 60 ug/L 06/28/23 20:49

MB MB

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 40 - 140 06/21/23 08:13 39 MQ 06/28/23 20:49 1-Chlorooctadecane (Surr)

Lab Sample ID: MB 410-388980/1-C

Matrix: Water

Analysis Batch: 391880

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 388980

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Pyrene	10	U	12	10	5.0	ug/L		06/28/23 21:11	1
Benzo[g,h,i]perylene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Indeno[1,2,3-cd]pyrene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Benzo[b]fluoranthene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Fluoranthene	1.0	U	2.0	1.0	0.50	ug/L		06/28/23 21:11	1
Benzo[k]fluoranthene	3.0	U	4.0	3.0	1.5	ug/L		06/28/23 21:11	1

Eurofins Savannah

Page 27 of 65

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 410-388980/1-C

Matrix: Water

Analysis Batch: 391880

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 388980

	MB	MR							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthylene	1.4	U	2.0	1.4	0.70	ug/L		06/28/23 21:11	1
Chrysene	1.0	U	2.0	1.0	0.50	ug/L		06/28/23 21:11	1
Benzo[a]pyrene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Dibenz(a,h)anthracene	1.0	U	2.0	1.0	0.50	ug/L		06/28/23 21:11	1
Benzo[a]anthracene	1.4	U	2.0	1.4	0.70	ug/L		06/28/23 21:11	1
Acenaphthene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Phenanthrene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Fluorene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
Naphthalene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
2-Methylnaphthalene	1.2	U	2.0	1.2	0.60	ug/L		06/28/23 21:11	1
C11-C22 Aromatics (Adjusted)	19.9	J	40	30	10	ug/L		06/28/23 21:11	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	80		40 - 140	06/21/23 08:13	06/28/23 21:11	1
o- terphenyl (Surr)	47		40 - 140	06/21/23 08:13	06/28/23 21:11	1

Lab Sample ID: LCS 410-388980/2-B

Matrix: Water

Analysis Batch: 391881

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 388980

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
C19-C36 Aliphatics		321	141	M	ug/L		44	40 - 140	
C9-C18 Aliphatics		241	90.5	M Q	ug/L		38	40 - 140	

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctadecane (Surr) 41 M 40 - 140

Lab Sample ID: LCS 410-388980/2-C

Matrix: Water

Analysis Batch: 391880

Client Sample ID: Lab Control Sample

Prep Batch: 388980

Analysis Datell. 33 1000							i iep Dateii.	300300
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	40.1	18.7		ug/L		47	40 - 140	
Pyrene	40.1	19.2		ug/L		48	40 - 140	
Benzo[g,h,i]perylene	40.0	18.5		ug/L		46	40 - 140	
Indeno[1,2,3-cd]pyrene	40.1	17.0		ug/L		42	40 - 140	
Benzo[b]fluoranthene	40.2	19.0		ug/L		47	40 - 140	
Fluoranthene	40.1	19.4		ug/L		48	40 - 140	
Benzo[k]fluoranthene	40.1	19.4		ug/L		48	40 - 140	
Acenaphthylene	40.1	16.3		ug/L		41	40 - 140	
Chrysene	40.2	18.8		ug/L		47	40 - 140	
Benzo[a]pyrene	40.2	18.0		ug/L		45	40 - 140	
Dibenz(a,h)anthracene	40.0	18.5		ug/L		46	40 - 140	
Benzo[a]anthracene	40.1	19.1		ug/L		48	40 - 140	
Acenaphthene	40.2	16.3		ug/L		41	40 - 140	
Phenanthrene	40.1	19.0		ug/L		47	40 - 140	
Fluorene	40.1	17.5		ug/L		44	40 - 140	
Naphthalene	40.1	13.3	Q	ug/L		33	40 - 140	

Eurofins Savannah

Prep Type: Total/NA

Lab Sample ID: LCS 410-388980/2-C

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Matrix: Water

Surrogate

2-Fluorobiphenyl (Surr)

o- terphenyl (Surr)

Matrix: Water

C9-C18 Aliphatics

Analysis Batch: 391880

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 388980

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits Analyte D 2-Methylnaphthalene 40.1 14.4 0 36 40 - 140 ug/L

40 - 140

LCS LCS

50

%Recovery Qualifier Limits 88 40 - 140

Client Sample ID: Lab Control Sample Dup

40 - 140

Prep Type: Total/NA

41

Prep Batch: 388980

Analysis Batch: 391881 LCSD LCSD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D C19-C36 Aliphatics 321 185 MQ ug/L 58 40 - 140 27 25

137 M Q

ug/L

241

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctadecane (Surr) 55 Μ 40 - 140

Lab Sample ID: LCSD 410-388980/3-C

Lab Sample ID: LCSD 410-388980/3-B

Matrix: Water

Analysis Batch: 391880

Client Sample ID: Lab Control Sample Dup

57

Prep Type: Total/NA

Prep Batch: 388980

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Anthracene 40.1 25.0 40 - 140 25 ug/L 62 29 Pyrene 40.1 24.5 61 40 - 140 25 ug/L 24 40.0 23.5 ug/L 59 40 - 140 24 25 Benzo[g,h,i]perylene Indeno[1,2,3-cd]pyrene 40.1 21.9 Q 55 40 - 140 25 ug/L 26 Benzo[b]fluoranthene 40.2 24.9 62 40 - 140 27 25 ug/L Fluoranthene 40.1 24.7 62 40 - 140 24 25 ug/L Benzo[k]fluoranthene 40.1 24.1 ug/L 60 40 - 140 22 25 Acenaphthylene 40.1 23.1 Q 58 40 - 140 34 25 ug/L Chrysene 40.2 23.7 ug/L 59 40 - 140 23 25 Benzo[a]pyrene 40.2 23.2 ug/L 58 40 - 140 25 25 Dibenz(a,h)anthracene 40.0 23.8 ug/L 59 40 - 140 25 25 Benzo[a]anthracene 40.1 24.7 ug/L 62 40 - 140 25 25 40.2 22.8 Q 57 40 - 140 Acenaphthene ug/L 33 25 Phenanthrene 40.1 25 1 Q ug/L 63 40 - 140 28 25 60 32 Fluorene 40.1 24.1 Q ug/L 40 - 140 25 Naphthalene 40.1 21.7 Q ug/L 54 40 - 140 48 25 2-Methylnaphthalene 40 1 21.9 Q 55 40 - 140 41 25 ug/L

LCSD LCSD

Surrogate	%Recovery Quali	fier Limits
2-Fluorobiphenyl (Surr)	82	40 - 140
o- terphenvl (Surr)	63	40 - 140

Eurofins Savannah

25

Spike

babbA

309

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 680-236120-2 MS

Matrix: Water

C19-C36 Aliphatics

C9-C18 Aliphatics

Matrix: Water

Analyte

Analysis Batch: 391881

Client Sample ID: LFM-99-02B-SPR23

40 - 140

Prep Type: Total/NA

Prep Batch: 388980

Job ID: 680-236120-1

%Rec Limits D 77 40 - 140

78

58 UHQ 232 181 H M ug/L

MS MS

Result Qualifier

237 HM

Unit

ug/L

ug/L

ug/L

ug/L

24.0 H

25.8 H

MS MS

Sample Sample

Result Qualifier

19 UHMQ

%Recovery Qualifier Limits Surrogate 1-Chlorooctadecane (Surr) 70 M 40 - 140

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA **Prep Batch: 388980**

%Rec

Analysis Batch: 391880 Analyte

Lab Sample ID: 680-236120-2 MS

Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec Limits Anthracene 1.2 UHQ 38.6 28.3 H 73 40 - 140 ug/L 9.7 U H 38.6 28.5 H 74 Pvrene ug/L 40 - 140 1.2 UН 38.5 27.3 71 40 - 140 Benzo[g,h,i]perylene ug/L 1.2 UHQ 38.6 40 - 140 Indeno[1,2,3-cd]pyrene 25.4 H ug/L 66 Benzo[b]fluoranthene 1.2 UHQ 38.6 28.7 H M ug/L 74 40 - 140 Fluoranthene 0.97 UH 38.6 28.7 H ug/L 74 40 - 140 Benzo[k]fluoranthene 2.9 UH 38.6 28.3 H M ug/L 73 40 - 140 Acenaphthylene 1.4 UHQ 38.6 26.6 H ug/L 69 40 - 140 72 Chrysene 0.97 UH 38.7 27.8 H ug/L 40 - 140 Benzo[a]pyrene 1.2 UH 38.6 26.9 H ug/L 70 40 - 140 Dibenz(a,h)anthracene 0.97 U.H 38.5 27 2 H 71 40 - 140 ug/L Benzo[a]anthracene 1.4 U H 38.6 28.0 H ug/L 73 40 - 140 Acenaphthene 1.2 UHQ 38.6 26.8 H ug/L 69 40 - 140 Phenanthrene 38.6 72 0.93 JHQ 28.7 H ug/L 40 - 140 38.6 27.8 H 72 40 - 140

38.6

38.6

MS MS

1.2 UHQ

1.2 UHQ

1.2 UHQ

Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl (Surr) 40 - 140 80 76 o- terphenyl (Surr) 40 - 140

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Fluorene

Naphthalene

2-Methylnaphthalene

Analysis Batch: 391881

Client Sample ID: LFM-99-02B-SPR23

40 - 140

40 - 140

62

67

Prep Type: Total/NA **Prep Batch: 388980**

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit C19-C36 Aliphatics 19 U H M Q 310 195 H M ug/L 63 40 - 140 19 50 C9-C18 Aliphatics 58 UHQ 233 141 HM ug/L 61 40 - 140 25 50

MSD MSD

%Recovery Qualifier Limits Surrogate 40 - 140 1-Chlorooctadecane (Surr) 57 M

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 391880

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 388980

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene	1.2	UHQ	38.7	19.9	Н	ug/L		51	40 - 140	35	50
Pyrene	9.7	UH	38.7	20.2	Н	ug/L		52	40 - 140	34	50
Benzo[g,h,i]perylene	1.2	UH	38.6	19.4	Н	ug/L		50	40 - 140	34	50
Indeno[1,2,3-cd]pyrene	1.2	UHQ	38.7	17.8	Н	ug/L		46	40 - 140	35	50
Benzo[b]fluoranthene	1.2	UHQ	38.8	20.1	Н	ug/L		52	40 - 140	35	50
Fluoranthene	0.97	UH	38.7	20.3	Н	ug/L		53	40 - 140	34	50
Benzo[k]fluoranthene	2.9	UH	38.7	20.2	Н	ug/L		52	40 - 140	33	50
Acenaphthylene	1.4	UHQ	38.7	18.6	Н	ug/L		48	40 - 140	35	50
Chrysene	0.97	UH	38.8	19.8	Н	ug/L		51	40 - 140	34	50
Benzo[a]pyrene	1.2	UH	38.8	19.0	Н	ug/L		49	40 - 140	34	50
Dibenz(a,h)anthracene	0.97	UH	38.6	19.7	Н	ug/L		51	40 - 140	32	50
Benzo[a]anthracene	1.4	UH	38.7	19.8	Н	ug/L		51	40 - 140	34	50
Acenaphthene	1.2	UHQ	38.8	18.5	Н	ug/L		48	40 - 140	36	50
Phenanthrene	0.93	JHQ	38.7	20.2	Н	ug/L		50	40 - 140	34	50
Fluorene	1.2	UHQ	38.7	19.3	Н	ug/L		50	40 - 140	36	50
Naphthalene	1.2	UHQ	38.7	17.1	Н	ug/L		44	40 - 140	34	50
2-Methylnaphthalene	1.2	UHQ	38.7	17.7	Н	ug/L		46	40 - 140	37	50

MSD MSD

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	63	40 - 140
o- terphenyl (Surr)	53	40 - 140

Lab Sample ID: MB 410-392793/1-B

Matrix: Water

Analysis Batch: 394765

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 392793

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
C19-C36 Aliphatics	20	U	50	20	10	ug/L		07/07/23 19:15	1
C9-C18 Aliphatics	60	UM	90	60	30	ug/L		07/07/23 19:15	1

MB MB

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	76	40 - 140	06/30/23 14:30	07/07/23 19:15	1

Lab Sample ID: MB 410-392793/1-C

Matrix: Water

Analysis Batch: 394760

Client Sa	ample ID:	Method	Blank
-----------	-----------	--------	-------

Prep Type: Total/NA **Prep Batch: 392793**

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Pyrene	10	U	12	10	5.0	ug/L		07/07/23 19:15	1
Benzo[g,h,i]perylene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Indeno[1,2,3-cd]pyrene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Benzo[b]fluoranthene	1.2	UM	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Fluoranthene	1.0	U	2.0	1.0	0.50	ug/L		07/07/23 19:15	1
Benzo[k]fluoranthene	3.0	UM	4.0	3.0	1.5	ug/L		07/07/23 19:15	1
Acenaphthylene	1.4	U	2.0	1.4	0.70	ug/L		07/07/23 19:15	1
Chrysene	1.0	U	2.0	1.0	0.50	ug/L		07/07/23 19:15	1
Benzo[a]pyrene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1

Eurofins Savannah

Page 31 of 65

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 410-392793/1-C

Matrix: Water

Analysis Batch: 394760

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 392793

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Dibenz(a,h)anthracene	1.0	U	2.0	1.0	0.50	ug/L		07/07/23 19:15	1
Benzo[a]anthracene	1.4	U	2.0	1.4	0.70	ug/L		07/07/23 19:15	1
Acenaphthene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Phenanthrene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Fluorene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
Naphthalene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
2-Methylnaphthalene	1.2	U	2.0	1.2	0.60	ug/L		07/07/23 19:15	1
C11-C22 Aromatics (Adjusted)	30	U	40	30	10	ug/L		07/07/23 19:15	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	91		40 - 140	06/30/23 14:30	07/07/23 19:15	1
o- terphenyl (Surr)	80		40 - 140	06/30/23 14:30	07/07/23 19:15	1

Lab Sample ID: LCS 410-392793/2-B

Matrix: Water

Analysis Batch: 394765

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 392793

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C19-C36 Aliphatics	321	244		ug/L		76	40 - 140	
C9-C18 Aliphatics	241	179		ug/L		74	40 - 140	

LCS LCS

%Recovery Qualifier Limits 1-Chlorooctadecane (Surr) 71 40 - 140

Lab Sample ID: LCS 410-392793/2-C

Matrix: Water

Analysis Batch: 394760

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 392793

							•
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Anthracene	40.1	31.7		ug/L		79	40 - 140
Pyrene	40.1	34.4		ug/L		86	40 - 140
Benzo[g,h,i]perylene	40.0	33.3		ug/L		83	40 - 140
Indeno[1,2,3-cd]pyrene	40.1	31.9	М	ug/L		80	40 - 140
Benzo[b]fluoranthene	40.2	27.6	M	ug/L		69	40 - 140
Fluoranthene	40.1	32.2		ug/L		80	40 - 140
Benzo[k]fluoranthene	40.1	40.4	М	ug/L		101	40 - 140
Acenaphthylene	40.1	29.5		ug/L		74	40 - 140
Chrysene	40.2	35.6		ug/L		89	40 - 140
Benzo[a]pyrene	40.2	31.6		ug/L		79	40 - 140
Dibenz(a,h)anthracene	40.0	32.5		ug/L		81	40 - 140
Benzo[a]anthracene	40.1	30.4		ug/L		76	40 - 140
Acenaphthene	40.2	30.6		ug/L		76	40 - 140
Phenanthrene	40.1	31.8		ug/L		79	40 - 140
Fluorene	40.1	31.3		ug/L		78	40 - 140
Naphthalene	40.1	26.7		ug/L		67	40 - 140
2-Methylnaphthalene	40.1	28.5		ug/L		71	40 - 140

Eurofins Savannah

Page 32 of 65

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 410-392793/2-C

Matrix: Water

Analysis Batch: 394760

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 392793

LCS LCS

Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl (Surr) 91 40 - 140 o- terphenyl (Surr) 82 40 - 140

Lab Sample ID: LCSD 410-392793/3-B

Matrix: Water

Analysis Batch: 394765

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 392793

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 40 - 140 C19-C36 Aliphatics 321 241 75 1 25 ug/L C9-C18 Aliphatics 241 176 ug/L 73 40 - 140 25

LCSD LCSD

%Recovery Qualifier Limits Surrogate 1-Chlorooctadecane (Surr) 40 - 140 76

Lab Sample ID: LCSD 410-392793/3-C

Matrix: Water

Analysis Batch: 394760

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 392793

		•							
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene	40.1	24.5	Q	ug/L		61	40 - 140	26	25
Pyrene	40.1	26.2	Q	ug/L		65	40 - 140	27	25
Benzo[g,h,i]perylene	40.0	25.7	Q	ug/L		64	40 - 140	26	25
Indeno[1,2,3-cd]pyrene	40.1	24.2	MQ	ug/L		60	40 - 140	28	25
Benzo[b]fluoranthene	40.2	26.2	M	ug/L		65	40 - 140	5	25
Fluoranthene	40.1	24.8	Q	ug/L		62	40 - 140	26	25
Benzo[k]fluoranthene	40.1	26.4	MQ	ug/L		66	40 - 140	42	25
Acenaphthylene	40.1	22.5	Q	ug/L		56	40 - 140	27	25
Chrysene	40.2	26.7	Q	ug/L		66	40 - 140	29	25
Benzo[a]pyrene	40.2	24.7		ug/L		61	40 - 140	25	25
Dibenz(a,h)anthracene	40.0	25.4		ug/L		63	40 - 140	24	25
Benzo[a]anthracene	40.1	24.4		ug/L		61	40 - 140	22	25
Acenaphthene	40.2	23.4	Q	ug/L		58	40 - 140	27	25
Phenanthrene	40.1	24.5	Q	ug/L		61	40 - 140	26	25
Fluorene	40.1	24.0	Q	ug/L		60	40 - 140	27	25
Naphthalene	40.1	20.1	Q	ug/L		50	40 - 140	28	25
2-Methylnaphthalene	40.1	21.8	Q	ug/L		54	40 - 140	27	25

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	72	40 - 140
o- terphenyl (Surr)	63	40 - 140

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) - RE

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 394760

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Prep Batch: 392793

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene - RE	1.2	U H J1 Q	38.2	14.6	H J1	ug/L		38	40 - 140	
Pyrene - RE	9.6	UHQ	38.3	15.6	Н	ug/L		41	40 - 140	
Benzo[g,h,i]perylene - RE	1.2	UHQ	38.1	15.3	Н	ug/L		40	40 - 140	
Indeno[1,2,3-cd]pyrene - RE	1.2	U H J1 Q	38.2	14.2	H J1	ug/L		37	40 - 140	
Benzo[b]fluoranthene - RE	1.2	UH	38.3	15.8	НМ	ug/L		41	40 - 140	
Fluoranthene - RE	0.96	U H J1 Q	38.2	14.8	H J1	ug/L		39	40 - 140	
Benzo[k]fluoranthene - RE	2.9	UHQ	38.3	15.2	НМ	ug/L		40	40 - 140	
Acenaphthylene - RE	1.3	U H J1 Q	38.2	13.5	H J1	ug/L		35	40 - 140	
Chrysene - RE	0.96	UHQ	38.3	15.9	Н	ug/L		41	40 - 140	
Benzo[a]pyrene - RE	1.2	U H J1	38.3	14.5	H J1	ug/L		38	40 - 140	
Dibenz(a,h)anthracene - RE	0.96	UH	38.2	15.1	Н	ug/L		40	40 - 140	
Benzo[a]anthracene - RE	1.3	U H J1	38.2	14.6	H J1	ug/L		38	40 - 140	
Acenaphthene - RE	1.2	U H J1 Q	38.3	14.0	H J1	ug/L		37	40 - 140	
Phenanthrene - RE	1.2	U H J1 Q	38.2	14.5	H J1	ug/L		38	40 - 140	
Fluorene - RE	1.2	U H J1 Q	38.2	14.2	H J1	ug/L		37	40 - 140	
Naphthalene - RE	1.2	U H M J1 Q	38.2	12.7	H J1	ug/L		33	40 - 140	
2-Methylnaphthalene - RE	1.2	U H J1 Q	38.2	13.5	H J1	ug/L		35	40 - 140	
C19-C36 Aliphatics - RE	19	UH	306	152	Н	ug/L		50	40 - 140	
C9-C18 Aliphatics - RE	58	UHM	230	124	Н	ug/L		54	40 - 140	

MS MS

Surrogate	%Recovery Q	ualifier	Limits
1-Chlorooctadecane (Surr) - RE	47		40 - 140
2-Fluorobiphenyl (Surr) - RE	71		40 - 140
o- terphenyl (Surr) - RF	36 Q)	40 - 140

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 394760

Client Sam	ple ID: I	LFM-99-0	2B-SPR23

Prep Type: Total/NA

Prep Batch: 392793

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene - RE	1.2	U H J1 Q	38.4	23.0	Н	ug/L		60	40 - 140	45	50
Pyrene - RE	9.6	UHQ	38.4	24.4	Н	ug/L		64	40 - 140	44	50
Benzo[g,h,i]perylene - RE	1.2	UHQ	38.3	23.8	Н	ug/L		62	40 - 140	44	50
Indeno[1,2,3-cd]pyrene - RE	1.2	U H J1 Q	38.4	22.3	НМ	ug/L		58	40 - 140	45	50
Benzo[b]fluoranthene - RE	1.2	UH	38.4	23.3	Н	ug/L		61	40 - 140	38	50
Fluoranthene - RE	0.96	U H J1 Q	38.4	23.2	Н	ug/L		60	40 - 140	44	50
Benzo[k]fluoranthene - RE	2.9	UHQ	38.4	25.2	Н	ug/L		66	40 - 140	49	50
Acenaphthylene - RE	1.3	UHJ1Q	38.4	21.8	Н	ug/L		57	40 - 140	47	50
Chrysene - RE	0.96	UHQ	38.5	23.6	Н	ug/L		61	40 - 140	39	50
Benzo[a]pyrene - RE	1.2	U H J1	38.4	22.7	Н	ug/L		59	40 - 140	44	50
Dibenz(a,h)anthracene - RE	0.96	UH	38.3	23.3	Н	ug/L		61	40 - 140	43	50
Benzo[a]anthracene - RE	1.3	U H J1	38.4	23.4	Н	ug/L		61	40 - 140	46	50
Acenaphthene - RE	1.2	UHJ1Q	38.4	22.5	Н	ug/L		58	40 - 140	47	50
Phenanthrene - RE	1.2	UHJ1Q	38.4	23.0	Н	ug/L		60	40 - 140	45	50
Fluorene - RE	1.2	U H J1 Q	38.4	22.8	Н	ug/L		59	40 - 140	46	50
Naphthalene - RE	1.2	U H M J1 Q	38.4	22.2	H J1	ug/L		58	40 - 140	55	50
2-Methylnaphthalene - RE	1.2		38.4	22.0	Н	ug/L		57	40 - 140	48	50

Eurofins Savannah

Page 34 of 65

9

6

8

10

11

1/2

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) - RE (Continued)

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 394765

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Job ID: 680-236120-1

Prep Batch: 392793

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C19-C36 Aliphatics - RE	19	UH	308	220	Н	ug/L		72	40 - 140	36	50
C9-C18 Aliphatics - RE	58	UHM	231	189	Н	ug/L		82	40 - 140	41	50

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctadecane (Surr) - RE	69		40 - 140
2-Fluorobiphenyl (Surr) - RE	75		40 - 140
o- terphenyl (Surr) - RE	62		40 - 140

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-783989/33

Matrix: Water

Analysis Batch: 783989

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

87 - 112

Client Sample ID: Lab Control Sample Dup

98

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

MR MR

Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Chloride	0.50	U	0.50	0.50	0.20 mg/L		06/16/23 17:16	1
Sulfate	1.0	U	1.0	1.0	0.40 mg/L		06/16/23 17:16	1

Lab Sample ID: LCS 680-783989/34

Matrix: Water

Analyte Chloride Sulfate

Analysis Batch: 783989

	Spike	LCS	LCS				%Rec	
	Added	Result	Qualifier	Unit	D	%Rec	Limits	
 	10.0	9.89		mg/L		99	87 - 111	

mg/L

9.81

Lab Sample ID: LCSD 680-783989/35

Matrix: Water

Analysis Batch: 783989

	\$	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	A	dded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride		10.0	9.87		mg/L		99	87 - 111	0	15	
Sulfate		10.0	9.80		mg/L		98	87 - 112	0	15	

10.0

Lab Sample ID: MB 680-784086/2

Matrix: Water

Analysis Batch: 784086

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

MR MR

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Chloride	0.50	U	0.50	0.50	0.20	mg/L		06/17/23 10:11	1
Sulfate	1.0	U	1.0	1.0	0.40	mg/L		06/17/23 10:11	1

Lab Sample ID: LCS 680-784086/4

Matrix: Water

Analysis Batch: 784086

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spike	LCS	LCS					
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.82		mg/L		98	87 - 111	
Sulfate	10.0	9.72	M	mg/L		97	87 - 112	

Eurofins Savannah

Page 35 of 65

Client: Seres Engineering & Services LLC

Job ID: 680-236120-1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 680-784086/5

Matrix: Water

Analysis Batch: 784086

Spike LCSD LCSD %Rec RPD RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Chloride 10.0 9.86 mg/L 99 87 - 111 0 15 Sulfate 10.0 9.73 mg/L 97 87 - 112 15

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 784086

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	D	50.0	297	4 D	mg/L		98	87 - 111	
Sulfate	14	D M	50.0	62.8	DM	mg/L		97	87 - 112	

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 784086

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	D	50.0	301	4 D	mg/L		106	87 - 111	1	15
Sulfate	14	DM	50.0	64.2	D M	mg/L		100	87 - 112	2	15

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-782980/1-A

Matrix: Water

Analysis Batch: 783291

Client Sample ID: Method Blank
Prep Type: Total Recoverable
 Prep Batch: 782980

	IVID	IVID							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	10	U	20	10	4.4	ug/L		06/12/23 12:46	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/12/23 12:46	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/12/23 12:46	1
Copper	10	U	20	10	3.2	ug/L		06/12/23 12:46	1
Iron	50	U	100	50	20	ug/L		06/12/23 12:46	1
Lead	20	U	40	20	6.6	ug/L		06/12/23 12:46	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/12/23 12:46	1
Selenium	20	U	25	20	10	ug/L		06/12/23 12:46	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/12/23 12:46	1
Copper Iron Lead Manganese Selenium	10 50 20 5.0 20	U U U U	20 100 40 10 25	10 50 20 5.0 20	3.2 20 6.6 1.3 10	ug/L ug/L ug/L ug/L ug/L		06/12/23 12:46 06/12/23 12:46 06/12/23 12:46 06/12/23 12:46 06/12/23 12:46	1 1 1 1 1 1 1

Lab Sample ID: LCS 680-782980/2-A

Matrix: Water

Analysis Batch: 783291

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample Dup

Client Sample ID: LFM-99-02B-SPR23

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 782980

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	100	106	-	ug/L		106	88 - 113	_
Cadmium	50.0	53.6		ug/L		107	88 - 113	
Chromium	100	106		ug/L		106	90 - 113	
Copper	100	110		ug/L		110	86 - 114	
Iron	5000	5130		ug/L		103	87 - 115	
Lead	500	500		ug/L		100	86 - 113	
Manganese	400	424		ug/L		106	90 - 114	
Selenium	100	96.9		ug/L		97	83 - 114	
Silver	50.0	48.3		ug/L		97	84 - 115	

Eurofins Savannah

Page 36 of 65 7/20/2023

2

3

6

9

10

12

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 783291

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total Recoverable

Prep Batch: 782980

Job ID: 680-236120-1

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	9.1	J	100	114		ug/L		105	88 - 113	
Cadmium	1.0	U	50.0	53.5		ug/L		107	88 - 113	
Chromium	4.0	U	100	107		ug/L		107	90 - 113	
Copper	10	U	100	107		ug/L		107	86 - 114	
Iron	50	U	5000	5130		ug/L		103	87 ₋ 115	
Lead	20	U	500	514		ug/L		103	86 - 113	
Manganese	5.0	U	400	418		ug/L		104	90 - 114	
Selenium	20	U	100	102		ug/L		102	83 - 114	
Silver	5.0	U	50.0	50.1		ug/L		100	84 - 115	

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 783291

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total Recoverable

Prep Batch: 782980

7											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	9.1	J	100	114		ug/L		105	88 - 113	1	20
Cadmium	1.0	U	50.0	53.1		ug/L		106	88 - 113	1	20
Chromium	4.0	U	100	106		ug/L		106	90 - 113	1	20
Copper	10	U	100	108		ug/L		108	86 - 114	1	20
Iron	50	U	5000	5090		ug/L		102	87 - 115	1	20
Lead	20	U	500	508		ug/L		102	86 - 113	1	20
Manganese	5.0	U	400	414		ug/L		103	90 - 114	1	20
Selenium	20	U	100	101		ug/L		101	83 - 114	1	20
Silver	5.0	U	50.0	49.8		ug/L		100	84 - 115	1	20

Lab Sample ID: MB 680-783457/1-A

Matrix: Water

Analysis Batch: 783688

Client Sample ID: Method Blank
Prep Type: Total Recoverable

Prep Batch: 783457

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	10	U	20	10	4.4	ug/L		06/14/23 16:17	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		06/14/23 16:17	1
Chromium	4.0	U	10	4.0	1.1	ug/L		06/14/23 16:17	1
Copper	10	U	20	10	3.2	ug/L		06/14/23 16:17	1
Iron	50	U	100	50	20	ug/L		06/14/23 16:17	1
Lead	20	U	40	20	6.6	ug/L		06/14/23 16:17	1
Manganese	5.0	U	10	5.0	1.3	ug/L		06/14/23 16:17	1
Selenium	20	U	25	20	10	ug/L		06/14/23 16:17	1
Silver	5.0	U	10	5.0	1.5	ug/L		06/14/23 16:17	1

Lab Sample ID: LCS 680-783457/2-A

Matrix: Water

Analysis Batch: 783688

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 783457

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	100	109		ug/L		109	88 - 113	
Cadmium	50.0	55.4		ug/L		111	88 - 113	
Chromium	100	109		ug/L		109	90 - 113	
Copper	100	108		ug/L		108	86 - 114	

Eurofins Savannah

Page 37 of 65

9

3

4

6

8

11

11

1 4

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 680-783457/2-A

Matrix: Water

Analysis Batch: 783688

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Batch: 783457

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	5000	5220		ug/L		104	87 - 115	
Lead	500	521		ug/L		104	86 - 113	
Manganese	400	435		ug/L		109	90 - 114	
Selenium	100	94.0		ug/L		94	83 - 114	
Silver	50.0	47.8		ug/L		96	84 - 115	

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-782979/1-A

Matrix: Water

Analysis Batch: 783273

мв мв

Prep Type: Total Recoverable
Prep Batch: 782979

Analyte Result Qualifier LOQ LOD Dil Fac Analyzed Arsenic 3.0 U 5.0 3.0 0.86 ug/L 06/12/23 12:11

Lab Sample ID: LCS 680-782979/2-A

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 783273 **Prep Batch: 782979** Spike LCS LCS %Rec

Analyte Added Result Qualifier Limits Unit %Rec 100 112 Arsenic 112 84 - 116 ug/L

Lab Sample ID: 680-236120-2 MS	Client Sample ID: LFM-99-02B-SPR23
Matrix: Water	Prep Type: Total Recoverable
Analysis Batch: 783273	Prep Batch: 782979

	Sample	Sample	Spike	IVIO	INIO				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	3.0	U	100	113		ug/L		113	84 - 116	

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 783273

1	Client Sample ID: LFM-99-02B-SPR23
	Prep Type: Total Recoverable
	Prep Batch: 782979

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	3.0	U	100	113		ug/L	_	113	84 - 116	0	20

Lab Sample ID: MB 680-783458/1-A

Matrix: Water

Analysis Batch: 783691

Client Sample ID: Method Blank	
Pren Type: Total Recoverable	

Prep Batch: 783458

Analyte

IVID	IVID							
Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
3.0	П	5.0	3.0	0.86	ua/l		06/14/23 17:48	1

Lab Sample ID: LCS 680-783458/2-A

Matrix: Water

Arsenic

Analysis Batch: 783691

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable

Prep Batch: 783458

7 minutes 2 minutes 1 minu									
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	 	100	115		ug/L		115	84 - 116	

Eurofins Savannah

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-783678/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 783828

Analysis Batch: 783828

Prep Type: Total/NA

Prep Batch: 783678

Job ID: 680-236120-1

мв мв Analyte Result Qualifier LOO LOD DL Unit Analyzed Dil Fac Mercury 0.20 U 0.25 0.20 0.080 ug/L 06/15/23 11:21

Lab Sample ID: LCS 680-783678/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Prep Batch: 783678

Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

Mercury 2.50 2.56 ug/L 102 80 - 124

Lab Sample ID: 680-236120-2 MS Client Sample ID: LFM-99-02B-SPR23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783828

Prep Batch: 783678 Spike MS MS %Rec Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.20 U Mercury 1.00 0.972 ug/L 80 - 124

Lab Sample ID: 680-236120-2 MSD Client Sample ID: LFM-99-02B-SPR23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783828

Prep Batch: 783678 MSD MSD Sample Sample Spike %Rec RPD

Result Qualifier Added Limit Analyte Result Qualifier Unit %Rec Limits Mercury 0.20 1.00 0.981 80 - 124 20 ug/L

Method: 2320B-2011 - Alkalinity, Total

Lab Sample ID: MB 680-783585/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 783585

MB MB LOQ LOD Dil Fac Analyte Result Qualifier Analyzed Alkalinity 5.0 U 5.0 5.0 2.2 mg/L 06/13/23 23:59

Lab Sample ID: LCS 680-783585/6 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783585

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits 250 Alkalinity 243 mg/L 97 90 - 112

Lab Sample ID: LCSD 680-783585/31 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 783585

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity 250 244 mg/L 98 90 - 112 30

Eurofins Savannah

Prep Type: Total/NA

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Prep Type: Total/NA

Prep Type: Total/NA

Method: 2320B-2011 - Alkalinity, Total (Continued)

Lab Sample ID: MB 680-784252/4 Client Sample ID: Method Blank

мв мв

Matrix: Water Prep Type: Total/NA

Analysis Batch: 784252

Analyte Result Qualifier LOO LOD DL Unit Analyzed Dil Fac Alkalinity 5.0 U 5.0 5.0 2.2 mg/L 06/16/23 17:18

Lab Sample ID: LCS 680-784252/6 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 784252

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Alkalinity 250 241 mg/L 96 90 - 112

Lab Sample ID: LCSD 680-784252/31 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 784252

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit Limits RPD Limit 250 Alkalinity 246 mg/L 90 - 112

Lab Sample ID: 680-236120-4 DU Client Sample ID: LFM-DUP01-SPR23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 784252

DU DU RPD Sample Sample Limit Analyte Result Qualifier Result Qualifier Unit Alkalinity 98 97.5 30 mg/L

Lab Sample ID: MB 680-784254/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 784254

мв мв LOQ Analyte Result Qualifier LOD DL Unit Analyzed Dil Fac 5.0 Alkalinity 5.0 U 5.0 2.2 mg/L 06/16/23 22:59

Lab Sample ID: LCS 680-784254/6 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 784254

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Alkalinity 250 242 97 90 - 112

Lab Sample ID: LCSD 680-784254/31 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 784254

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Limits RPD Limit Unit D %Rec Alkalinity 250 246 mg/L 98 90 - 112

Lab Sample ID: MB 680-783381/1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 2540C-2011 - Total Dissolved Solids (Dried at 180 °C)

мв мв

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-236120-1

Analysis Batch: 783381

Matrix: Water

Analyte Result Qualifier LOO LOD DL Unit Analyzed Dil Fac **Total Dissolved Solids** 5.0 U 6.0 5.0 6.0 mg/L 06/13/23 12:47

Lab Sample ID: LCS 680-783381/2 Client Sample ID: Lab Control Sample **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 783381

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 2410 2410 mg/L 100 80 - 120

Lab Sample ID: LCSD 680-783381/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 783381

LCSD LCSD RPD Spike %Rec Added Result Qualifier Unit %Rec Limits RPD Limit Total Dissolved Solids 2410 2410 mg/L 100 80 - 120

Lab Sample ID: 680-236120-2 DU Client Sample ID: LFM-99-02B-SPR23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783381

DU DU RPD Sample Sample Result Qualifier Analyte Result Qualifier Unit Limit Total Dissolved Solids 490 492 mg/L 5

Method: 353.2-1993 R2.0 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-785197/17 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 785197

MB MB LOQ LOD Dil Fac Analyte Result Qualifier Analyzed Nitrate Nitrite as N 0.025 U 0.10 0.025 0.010 mg/L 06/22/23 17:10

Lab Sample ID: LCS 680-785197/18 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 785197

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit D %Rec Limits 1.00 Nitrate Nitrite as N 0.996 mg/L 100 90 - 110

Lab Sample ID: 680-236120-2 MS Client Sample ID: LFM-99-02B-SPR23

Matrix: Water

Analysis Batch: 785197

Sample Sample Spike MS MS %Rec Analyte Result Qualifier babbA Result Qualifier Unit D %Rec Limits Nitrate Nitrite as N 0.26 1.00 1.27 mg/L 101 90 - 110

Eurofins Savannah

Prep Type: Total/NA

Job ID: 680-236120-1

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 353.2-1993 R2.0 - Nitrogen, Nitrate-Nitrite (Continued)

Lab Sample ID: 680-236120-2 MSD

Client Sample ID: LFM-99-02B-SPR23

Prep Type: Total/NA

Analysis Batch: 785197

Matrix: Water

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate Nitrite as N	0.26		1.00	1.30		mg/L		104	90 - 110	2	10

Method: 410.4 - COD

Lab Sample ID: MB 280-616255/5 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 616255

MD MD

	III.D	1410									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Anal	yzed	Dil Fac	
Chemical Oxygen Demand	20	U	20	20	8.7	mg/L		06/15/2	3 11:42	1	

Lab Sample ID: LCS 280-616255/3 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 616255

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	100	104		mg/L		104	90 - 110	

Lab Sample ID: LCSD 280-616255/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 616255

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chemical Oxygen Demand	100	104		mg/L		104	90 - 110	0	11

Lab Sample ID: MB 280-616783/5 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 616783

	MB	MB						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Chemical Oxygen Demand	20	U	20	20	8.7	ma/l	06/20/23 12:11	1

Lab Sample ID: LCS 280-616783/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 616783

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	 100	105		mg/L		105	90 - 110	

Lab Sample ID: LCSD 280-616783/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 616783

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier U	nit	D	%Rec	Limits	RPD	Limit
Chemical Oxygen Demand	100	103	m	ıg/L	_	103	90 - 110	2	11

Eurofins Savannah

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 783892

Prep Batch: 783892

Prep Type: Total/NA

RPD

Limit

20

Client Sample ID: LFM-99-02B-SPR23

Limits

83 - 116

%Rec

105

Client Sample ID: LFM-99-02B-SPR23

Client Sample ID: LFM-99-02B-SPR23

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Method: 410.4 - COD (Continued)

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 616783

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chemical Oxygen Demand	20	U J1	50.0	52.9		mg/L	_	106	90 - 110	

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analysis Batch: 616783

		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
L	Chemical Oxygen Demand	20	U J1	50.0	53.5		mg/L		107	90 - 110	1	11

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 680-783892/12-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783962

MB MB

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0025	mg/L	_	06/16/23 09:09	1

Lab Sample ID: LCS 680-783892/13-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 783962

	Spike	LCS	LCS			%Rec
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Cyanide, Total	0.0500	0.0477	mg/L		95	83 - 116

Added

0.0500

Result Qualifier

0.0050 U

Lab Sample ID: 680-236120-2 MS

Matrix: Water

Analysis Batch: 783962								Prep	Batch: 783892
	Sample	Sample	Spike	MS	MS			%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	%Red	Limits	
Cyanide, Total	0.0050	U	0.0500	0.0539		mg/L	108	83 - 116	

Lab Sample ID: 680-236120-2 MSD

Matrix: Water

Analyte

Cyanide, Total

Analysis Batch: 783962

ט			Client Sample ID: LFM-99-02E	3-SPR23
			Prep Type:	Total/NA
			Prep Batch	: 783892
Sample Sample	Spike	MSD MSD	%Rec	RPD

Unit

mg/L

Result Qualifier

0.0524

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

GC VOA

Analysis Batch: 389210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	MAVPH	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	MAVPH	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	MAVPH	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	MAVPH	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	MAVPH	
MB 410-389210/2	Method Blank	Total/NA	Water	MAVPH	
LCS 410-389210/3	Lab Control Sample	Total/NA	Water	MAVPH	
LCSD 410-389210/4	Lab Control Sample Dup	Total/NA	Water	MAVPH	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	MAVPH	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	MAVPH	

GC Semi VOA

Prep Batch: 388980

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	3510C	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	3510C	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	3510C	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	3510C	
MB 410-388980/1-B	Method Blank	Total/NA	Water	3510C	
MB 410-388980/1-C	Method Blank	Total/NA	Water	3510C	
LCS 410-388980/2-B	Lab Control Sample	Total/NA	Water	3510C	
LCS 410-388980/2-C	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-388980/3-B	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 410-388980/3-C	Lab Control Sample Dup	Total/NA	Water	3510C	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	3510C	

Cleanup Batch: 391587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	3630C	388980
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	3630C	388980
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	3630C	388980
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	3630C	388980
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	3630C	388980
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	3630C	388980
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	3630C	388980
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	3630C	388980
MB 410-388980/1-B	Method Blank	Total/NA	Water	3630C	388980
MB 410-388980/1-C	Method Blank	Total/NA	Water	3630C	388980
LCS 410-388980/2-B	Lab Control Sample	Total/NA	Water	3630C	388980
LCS 410-388980/2-C	Lab Control Sample	Total/NA	Water	3630C	388980
LCSD 410-388980/3-B	Lab Control Sample Dup	Total/NA	Water	3630C	388980
LCSD 410-388980/3-C	Lab Control Sample Dup	Total/NA	Water	3630C	388980
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	3630C	388980

Eurofins Savannah

7/20/2023

Page 44 of 65

Job ID: 680-236120-1

6

Δ

5

7

9

10

4 1

15

12

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

GC Semi VOA

Analysis Batch: 391880

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	MA-EPH	391587
MB 410-388980/1-C	Method Blank	Total/NA	Water	MA-EPH	391587
LCS 410-388980/2-C	Lab Control Sample	Total/NA	Water	MA-EPH	391587
LCSD 410-388980/3-C	Lab Control Sample Dup	Total/NA	Water	MA-EPH	391587
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587

Analysis Batch: 391881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	MA-EPH	391587
MB 410-388980/1-B	Method Blank	Total/NA	Water	MA-EPH	391587
LCS 410-388980/2-B	Lab Control Sample	Total/NA	Water	MA-EPH	391587
LCSD 410-388980/3-B	Lab Control Sample Dup	Total/NA	Water	MA-EPH	391587
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	391587

Prep Batch: 392793

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-236120-1 - RE	LFM-03-07-SPR23	Total/NA	Water	3510C	
680-236120-2 - RE	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-3 - RE	LFM-99-05A-SPR23	Total/NA	Water	3510C	
680-236120-4 - RE	LFM-DUP01-SPR23	Total/NA	Water	3510C	
680-236120-5 - RE	LFM-99-06A-RP-SPR23	Total/NA	Water	3510C	
MB 410-392793/1-B	Method Blank	Total/NA	Water	3510C	
MB 410-392793/1-C	Method Blank	Total/NA	Water	3510C	
LCS 410-392793/2-B	Lab Control Sample	Total/NA	Water	3510C	
LCS 410-392793/2-C	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-392793/3-B	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 410-392793/3-C	Lab Control Sample Dup	Total/NA	Water	3510C	
680-236120-2 MS - RE	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-2 MSD - RE	LFM-99-02B-SPR23	Total/NA	Water	3510C	

Cleanup Batch: 394479

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1 - RE	LFM-03-07-SPR23	Total/NA	Water	3630C	392793
680-236120-1 - RE	LFM-03-07-SPR23	Total/NA	Water	3630C	392793
680-236120-2 - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793
680-236120-2 - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793
680-236120-3 - RE	LFM-99-05A-SPR23	Total/NA	Water	3630C	392793
680-236120-3 - RE	LFM-99-05A-SPR23	Total/NA	Water	3630C	392793
680-236120-4 - RE	LFM-DUP01-SPR23	Total/NA	Water	3630C	392793
680-236120-4 - RE	LFM-DUP01-SPR23	Total/NA	Water	3630C	392793
680-236120-5 - RE	LFM-99-06A-RP-SPR23	Total/NA	Water	3630C	392793

Eurofins Savannah

Page 45 of 65 7/20/2023

Job ID: 680-236120-1

3

4

5

7

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

GC Semi VOA (Continued)

Cleanup Batch: 394479 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-5 - RE	LFM-99-06A-RP-SPR23	Total/NA	Water	3630C	392793
MB 410-392793/1-B	Method Blank	Total/NA	Water	3630C	392793
MB 410-392793/1-C	Method Blank	Total/NA	Water	3630C	392793
LCS 410-392793/2-B	Lab Control Sample	Total/NA	Water	3630C	392793
LCS 410-392793/2-C	Lab Control Sample	Total/NA	Water	3630C	392793
LCSD 410-392793/3-B	Lab Control Sample Dup	Total/NA	Water	3630C	392793
LCSD 410-392793/3-C	Lab Control Sample Dup	Total/NA	Water	3630C	392793
680-236120-2 MS - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793
680-236120-2 MS - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793
680-236120-2 MSD - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793
680-236120-2 MSD - RE	LFM-99-02B-SPR23	Total/NA	Water	3630C	392793

Analysis Batch: 394760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1 - RE	LFM-03-07-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-2 - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-3 - RE	LFM-99-05A-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-4 - RE	LFM-DUP01-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-5 - RE	LFM-99-06A-RP-SPR23	Total/NA	Water	MA-EPH	394479
MB 410-392793/1-C	Method Blank	Total/NA	Water	MA-EPH	394479
LCS 410-392793/2-C	Lab Control Sample	Total/NA	Water	MA-EPH	394479
LCSD 410-392793/3-C	Lab Control Sample Dup	Total/NA	Water	MA-EPH	394479
680-236120-2 MS - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-2 MSD - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479

Analysis Batch: 394765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1 - RE	LFM-03-07-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-2 - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-3 - RE	LFM-99-05A-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-4 - RE	LFM-DUP01-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-5 - RE	LFM-99-06A-RP-SPR23	Total/NA	Water	MA-EPH	394479
MB 410-392793/1-B	Method Blank	Total/NA	Water	MA-EPH	394479
LCS 410-392793/2-B	Lab Control Sample	Total/NA	Water	MA-EPH	394479
LCSD 410-392793/3-B	Lab Control Sample Dup	Total/NA	Water	MA-EPH	394479
680-236120-2 MS - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479
680-236120-2 MSD - RE	LFM-99-02B-SPR23	Total/NA	Water	MA-EPH	394479

Prep Batch: 783438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	3510C	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	3510C	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	3510C	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	3510C	
MB 680-783438/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-783438/12-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 680-783438/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-783438/13-A	Lab Control Sample Dup	Total/NA	Water	3510C	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	3510C	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	3510C	

Eurofins Savannah

Page 46 of 65

Job ID: 680-236120-1

3

7

8

9

1(

11

12

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

GC Semi VOA

Analysis Batch: 783593

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	8081B 8082A	783438
MB 680-783438/1-A	Method Blank	Total/NA	Water	8081B 8082A	783438
LCS 680-783438/12-A	Lab Control Sample	Total/NA	Water	8081B 8082A	783438
LCS 680-783438/2-A	Lab Control Sample	Total/NA	Water	8081B 8082A	783438
LCSD 680-783438/13-A	Lab Control Sample Dup	Total/NA	Water	8081B 8082A	783438
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	8081B 8082A	783438
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	8081B 8082A	783438

Analysis Batch: 784780

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	8081B 8082A	783438
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	8081B 8082A	783438
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	8081B 8082A	783438
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	8081B 8082A	783438

HPLC/IC

Analysis Batch: 783989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	9056A	
MB 680-783989/33	Method Blank	Total/NA	Water	9056A	
LCS 680-783989/34	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-783989/35	Lab Control Sample Dup	Total/NA	Water	9056A	

Analysis Batch: 784086

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-236120-1 - DL	LFM-03-07-SPR23	Total/NA	Water	9056A	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	9056A	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	9056A	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	9056A	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	9056A	
MB 680-784086/2	Method Blank	Total/NA	Water	9056A	
LCS 680-784086/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-784086/5	Lab Control Sample Dup	Total/NA	Water	9056A	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	9056A	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	9056A	

Metals

Prep Batch: 782979

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total Recoverable	Water	3005A	
680-236120-2	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	
MB 680-782979/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-782979/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236120-2 MS	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	
680-236120-2 MSD	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	

Prep Batch: 782980

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total Recoverable	Water	3005A	
680-236120-2	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	

Eurofins Savannah

Job ID: 680-236120-1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Metals (Continued)

Prep Batch: 782980 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-782980/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-782980/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-236120-2 MS	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	
680-236120-2 MSD	LFM-99-02B-SPR23	Total Recoverable	Water	3005A	

Analysis Batch: 783273

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total Recoverable	Water	6020A	782979
680-236120-2	LFM-99-02B-SPR23	Total Recoverable	Water	6020A	782979
MB 680-782979/1-A	Method Blank	Total Recoverable	Water	6020A	782979
LCS 680-782979/2-A	Lab Control Sample	Total Recoverable	Water	6020A	782979
680-236120-2 MS	LFM-99-02B-SPR23	Total Recoverable	Water	6020A	782979
680-236120-2 MSD	LFM-99-02B-SPR23	Total Recoverable	Water	6020A	782979

Analysis Batch: 783291

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total Recoverable	Water	6010C	782980
680-236120-2	LFM-99-02B-SPR23	Total Recoverable	Water	6010C	782980
MB 680-782980/1-A	Method Blank	Total Recoverable	Water	6010C	782980
LCS 680-782980/2-A	Lab Control Sample	Total Recoverable	Water	6010C	782980
680-236120-2 MS	LFM-99-02B-SPR23	Total Recoverable	Water	6010C	782980
680-236120-2 MSD	LFM-99-02B-SPR23	Total Recoverable	Water	6010C	782980

Prep Batch: 783457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-3	LFM-99-05A-SPR23	Total Recoverable	Water	3005A	
680-236120-4	LFM-DUP01-SPR23	Total Recoverable	Water	3005A	
680-236120-5	LFM-99-06A-RP-SPR23	Total Recoverable	Water	3005A	
MB 680-783457/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783457/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 783458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-3	LFM-99-05A-SPR23	Total Recoverable	Water	3005A	
680-236120-4	LFM-DUP01-SPR23	Total Recoverable	Water	3005A	
680-236120-5	LFM-99-06A-RP-SPR23	Total Recoverable	Water	3005A	
MB 680-783458/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-783458/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 783678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	7470A	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	7470A	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	7470A	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	7470A	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	7470A	
MB 680-783678/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-783678/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	7470A	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	7470A	

Eurofins Savannah

Page 48 of 65

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Analysis Batch: 783688

Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-3	LFM-99-05A-SPR23	Total Recoverable	Water	6010C	783457
680-236120-4	LFM-DUP01-SPR23	Total Recoverable	Water	6010C	783457
680-236120-5	LFM-99-06A-RP-SPR23	Total Recoverable	Water	6010C	783457
MB 680-783457/1-A	Method Blank	Total Recoverable	Water	6010C	783457
LCS 680-783457/2-A	Lab Control Sample	Total Recoverable	Water	6010C	783457

Analysis Batch: 783691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-3	LFM-99-05A-SPR23	Total Recoverable	Water	6020A	783458
680-236120-4	LFM-DUP01-SPR23	Total Recoverable	Water	6020A	783458
680-236120-5	LFM-99-06A-RP-SPR23	Total Recoverable	Water	6020A	783458
MB 680-783458/1-A	Method Blank	Total Recoverable	Water	6020A	783458
LCS 680-783458/2-A	Lab Control Sample	Total Recoverable	Water	6020A	783458

Analysis Batch: 783828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	7470A	783678
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	7470A	783678
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	7470A	783678
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	7470A	783678
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	7470A	783678
MB 680-783678/1-A	Method Blank	Total/NA	Water	7470A	783678
LCS 680-783678/2-A	Lab Control Sample	Total/NA	Water	7470A	783678
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	7470A	783678
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	7470A	783678

General Chemistry

Analysis Batch: 616255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	410.4	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	410.4	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	410.4	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	410.4	
MB 280-616255/5	Method Blank	Total/NA	Water	410.4	
LCS 280-616255/3	Lab Control Sample	Total/NA	Water	410.4	
LCSD 280-616255/4	Lab Control Sample Dup	Total/NA	Water	410.4	

Analysis Batch: 616783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	410.4	
MB 280-616783/5	Method Blank	Total/NA	Water	410.4	
LCS 280-616783/3	Lab Control Sample	Total/NA	Water	410.4	
LCSD 280-616783/4	Lab Control Sample Dup	Total/NA	Water	410.4	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	410.4	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	410.4	

Analysis Batch: 783381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	2540C-2011	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	2540C-2011	

Eurofins Savannah

Page 49 of 65 7/20/2023

Job ID: 680-236120-1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

General Chemistry (Continued)

Analysis Batch: 783381 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	2540C-2011	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	2540C-2011	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	2540C-2011	
MB 680-783381/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-783381/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-783381/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	
680-236120-2 DU	LFM-99-02B-SPR23	Total/NA	Water	2540C-2011	

Analysis Batch: 783585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	2320B-2011	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	2320B-2011	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	2320B-2011	
MB 680-783585/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-783585/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-783585/31	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

Prep Batch: 783892

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	9012B	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	9012B	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	9012B	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	9012B	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	9012B	
MB 680-783892/12-A	Method Blank	Total/NA	Water	9012B	
LCS 680-783892/13-A	Lab Control Sample	Total/NA	Water	9012B	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	9012B	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	9012B	

Analysis Batch: 783962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	9012B	783892
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	9012B	783892
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	9012B	783892
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	9012B	783892
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	9012B	783892
MB 680-783892/12-A	Method Blank	Total/NA	Water	9012B	783892
LCS 680-783892/13-A	Lab Control Sample	Total/NA	Water	9012B	783892
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	9012B	783892
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	9012B	783892

Analysis Batch: 784252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	2320B-2011	
MB 680-784252/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-784252/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-784252/31	Lab Control Sample Dup	Total/NA	Water	2320B-2011	
680-236120-4 DU	LFM-DUP01-SPR23	Total/NA	Water	2320B-2011	

Eurofins Savannah

Job ID: 680-236120-1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

General Chemistry

Analysis Batch: 784254

Lab Sample ID 680-236120-5	Client Sample ID	Prep Type Total/NA	Matrix Water	Method 2320B-2011	Prep Batch
MB 680-784254/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-784254/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-784254/31	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

Analysis Batch: 785197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-236120-1	LFM-03-07-SPR23	Total/NA	Water	353.2-1993 R2.0	
680-236120-2	LFM-99-02B-SPR23	Total/NA	Water	353.2-1993 R2.0	
680-236120-3	LFM-99-05A-SPR23	Total/NA	Water	353.2-1993 R2.0	
680-236120-4	LFM-DUP01-SPR23	Total/NA	Water	353.2-1993 R2.0	
680-236120-5	LFM-99-06A-RP-SPR23	Total/NA	Water	353.2-1993 R2.0	
MB 680-785197/17	Method Blank	Total/NA	Water	353.2-1993 R2.0	
LCS 680-785197/18	Lab Control Sample	Total/NA	Water	353.2-1993 R2.0	
680-236120-2 MS	LFM-99-02B-SPR23	Total/NA	Water	353.2-1993 R2.0	
680-236120-2 MSD	LFM-99-02B-SPR23	Total/NA	Water	353.2-1993 R2.0	

Page 51 of 65

Job ID: 680-236120-1

Eurofins Savannah

6

7

8

9

10

11

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-03-07-SPR23

Date Collected: 06/08/23 10:40 Date Received: 06/10/23 09:32

Job ID: 680-236120-1

Lab Sample ID: 680-236120-1

Matrix: Water

Lab	5
ELLE	

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	_ Lab
Total/NA	Analysis Instrume	MAVPH nt ID: 10149		1	5 mL	5 mL	389210	06/21/23 16:24	X875	ELLE
Total/NA	Prep	3510C			257.8 mL	1 mL	783438	06/13/23 17:04	MR	EET SAV
Total/NA	Analysis	8081B 8082A		1	1 mL	1 mL	784780	06/21/23 17:06	JCK	EET SAV
	•	nt ID: CSGAA								
Total/NA	Prep	3510C			1028.2 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-W		1	1 mL	1 mL	391880	06/29/23 00:57	UHEW	ELLE
Total/NA	Prep	3510C			1028.2 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-X		1	1 mL	1 mL	391881	06/29/23 00:34	UHEW	ELLE
Total/NA	Prep	3510C	RE		1054.2 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-S	RE	1	1 mL	1 mL	394760	07/08/23 00:06	UHEW	ELLE
Total/NA	Prep	3510C	RE		1054.2 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-T	RE	1	1 mL	1 mL	394765	07/08/23 00:06	UHEW	ELLE
Total/NA	Analysis Instrume	9056A nt ID: CICK		1	5 mL	5 mL	783989	06/16/23 19:48	UI	EET SAV
Total/NA	Analysis Instrume	9056A nt ID: CICK	DL	5	5 mL	5 mL	784086	06/17/23 16:13	UI	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	782980	06/11/23 11:01	RR	EET SAV
Total Recoverable	Analysis	6010C nt ID: ICPH		1			783291	06/12/23 13:17	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	782979	06/11/23 11:01	RR	EET SAV
Total Recoverable	Analysis	6020A nt ID: ICPMSC		1			783273	06/12/23 13:32	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	783678	06/15/23 04:44	JKL	EET SAV
Total/NA	Analysis Instrume	7470A nt ID: QuickTrace2		1			783828	06/15/23 11:24	JKL	EET SAV
Total/NA	Analysis Instrume	2320B-2011 nt ID: MANTECH 2		1			783585	06/14/23 02:20	PG	EET SAV
Total/NA	Analysis Instrume	2540C-2011 nt ID: NOEQUIP		1	50 mL	200 mL	783381	06/13/23 12:47	PG	EET SAV
Total/NA	Analysis Instrume	353.2-1993 R2.0 nt ID: SEAL 1		1	2 mL	2 mL	785197	06/22/23 17:19	NVF	EET SAV
Total/NA	Analysis Instrume	410.4 nt ID: WC_Genesys20)	1	2 mL	2 mL	616255	06/15/23 11:42	BCR	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	783892	06/16/23 05:30	JAS	EET SAV
Total/NA	Analysis	9012B		1			783962	06/16/23 09:15	JAS	EET SAV

Eurofins Savannah

Instrument ID: KONELAB4

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-02B-SPR23

Date Collected: 06/08/23 10:45 Date Received: 06/10/23 09:32

Lab Sample ID: 680-236120-2

Job ID: 680-236120-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	MAVPH nt ID: 10149		1	5 mL	5 mL	389210	06/21/23 17:05	X875	ELLE
Total/NA	Prep	3510C			255.6 mL	1 mL	783438	06/13/23 17:04	MR	EET SA
Total/NA	Analysis Instrume	8081B 8082A nt ID: CSGJ		1	1 mL	1 mL	783593	06/14/23 21:12	DBM	EET SA
Total/NA	Prep	3510C			1035.1 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-W		1	1 mL	1 mL	391880	06/29/23 01:20	UHEW	ELLE
Total/NA	Prep	3510C			1035.1 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-X		1	1 mL	1 mL	391881	06/29/23 00:57	UHEW	ELLE
Total/NA	Prep	3510C	RE		1043.4 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-S	RE	1	1 mL	1 mL	394760	07/08/23 00:28	UHEW	ELLE
Total/NA	Prep	3510C	RE		1043.4 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-T	RE	1	1 mL	1 mL	394765	07/08/23 00:28	UHEW	ELLE
Total/NA	Analysis Instrume	9056A nt ID: CICK		5	5 mL	5 mL	784086	06/17/23 11:47	UI	EET SA
Total Recoverable	Prep	3005A			25 mL	25 mL	782980	06/11/23 11:01	RR	EET SA
Total Recoverable	Analysis Instrume	6010C nt ID: ICPH		1			783291	06/12/23 12:56	BJB	EET SA
Total Recoverable	Prep	3005A			25 mL	125 mL	782979	06/11/23 11:01	RR	EET SA
Total Recoverable	Analysis Instrume	6020A nt ID: ICPMSC		1			783273	06/12/23 12:19	BWR	EET SA
Total/NA	Prep	7470A			50 mL	50 mL	783678	06/15/23 04:44	JKL	EET SA
Total/NA	Analysis Instrume	7470A nt ID: QuickTrace2		1			783828	06/15/23 11:26	JKL	EET SA
Total/NA	Analysis Instrume	2320B-2011 nt ID: MANTECH 2		1			783585	06/14/23 02:11	PG	EET SA
Total/NA	Analysis Instrume	2540C-2011 nt ID: NOEQUIP		1	50 mL	200 mL	783381	06/13/23 12:47	PG	EET SA
Total/NA	Analysis Instrume	353.2-1993 R2.0 nt ID: SEAL 1		1	2 mL	2 mL	785197	06/22/23 17:13	NVF	EET SA
Total/NA	Analysis Instrume	410.4 nt ID: WC_Genesys20		1	2 mL	2 mL	616783	06/20/23 12:11	BCR	EET DE
Total/NA	Prep	9012B			6 mL	6 mL	783892	06/16/23 05:30	JAS	EET SA
Total/NA	Analysis	9012B		1			783962	06/16/23 09:15	JAS	EET SA
	Instrume	nt ID: KONELAB4								

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Lab Sample ID: 680-236120-3

Job ID: 680-236120-1

Client Sample ID: LFM-99-05A-SPR23

Date Collected: 06/08/23 10:36 Date Received: 06/10/23 09:32 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	MAVPH nt ID: 10149		1	5 mL	5 mL	389210	06/21/23 19:08	X875	ELLE
Total/NA	Prep	3510C			239 mL	1 mL	783438	06/13/23 17:04	MR	EET SAV
Total/NA	Analysis	8081B 8082A nt ID: CSGAA		1	1 mL	1 mL	784780	06/21/23 17:21	JCK	EET SAV
Total/NA	Prep	3510C			972.4 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-W		1	1 mL	1 mL	391880	06/29/23 02:27	UHEW	ELLE
Total/NA	Prep	3510C			972.4 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-X		1	1 mL	1 mL	391881	06/29/23 02:05	UHEW	ELLE
Total/NA	Prep	3510C	RE		1004.7 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-S	RE	1	1 mL	1 mL	394760	07/08/23 01:35	UHEW	ELLE
Total/NA	Prep	3510C	RE		1004.7 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-T	RE	1	1 mL	1 mL	394765	07/08/23 01:35	UHEW	ELLE
Total/NA	Analysis Instrume	9056A nt ID: CICK		2	5 mL	5 mL	784086	06/17/23 12:38	UI	EET SAV
Total Recoverable Total Recoverable	Prep Analysis Instrume	3005A 6010C nt ID: ICPH		1	25 mL	25 mL	783457 783688	06/14/23 06:46 06/14/23 16:27	RR BJB	EET SAV EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	783458	06/14/23 06:46	RR	EET SAV
Total Recoverable	Analysis Instrume	6020A nt ID: ICPMSC		1			783691	06/14/23 18:17	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	783678	06/15/23 04:44	JKL	EET SAV
Total/NA	Analysis Instrume	7470A nt ID: QuickTrace2		1			783828	06/15/23 11:30	JKL	EET SAV
Total/NA	Analysis Instrume	2320B-2011 nt ID: MANTECH 2		1			783585	06/14/23 02:30	PG	EET SAV
Total/NA	Analysis Instrume	2540C-2011 nt ID: NOEQUIP		1	50 mL	200 mL	783381	06/13/23 12:47	PG	EET SAV
Total/NA	Analysis Instrume	353.2-1993 R2.0 nt ID: SEAL 1		1	2 mL	2 mL	785197	06/22/23 17:21	NVF	EET SAV
Total/NA	Analysis Instrume	410.4 nt ID: WC_Genesys20		1	2 mL	2 mL	616255	06/15/23 11:42	BCR	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	783892	06/16/23 05:30	JAS	EET SAV
Total/NA	Analysis	9012B nt ID: KONELAB4		1	-		783962	06/16/23 09:15	JAS	EET SAV

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-DUP01-SPR23 Lab Sample ID: 680-236120-4

Matrix: Water

Job ID: 680-236120-1

Date Collected: 06/08/23 10:36 Date Received: 06/10/23 09:32

Total/NA Total/NA Total/NA Total/NA	Prep Analysis	Method MAVPH at ID: 10149 3510C	Run	Factor 1	Amount 5 mL	Amount 5 mL	Number 389210	or Analyzed 06/21/23 19:49	Analyst	_ Lab
Total/NA Total/NA	Instrumer Prep Analysis	nt ID: 10149		1	5 ML					
Total/NA	Prep Analysis					JIIL	303210	JUIZ 11ZJ 13.49	X875	ELLE
	•				234.1 mL	1 mL	783438	06/13/23 17:04	MR	EET SAV
Total/NA	Instrumer	8081B 8082A		1	1 mL	1 mL	784780	06/21/23 17:35	JCK	EET SAV
Total/NA		nt ID: CSGAA								
	Prep	3510C			1037.5 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	391880	06/29/23 02:50	UHEW	ELLE
	Instrumer	nt ID: 18433-W								
Total/NA	Prep	3510C			1037.5 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrumer	MA-EPH nt ID: 18433-X		1	1 mL	1 mL	391881	06/29/23 02:27	UHEW	ELLE
Total/NA	Prep	3510C	RE		1010.1 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrumer	MA-EPH nt ID: 19875-S	RE	1	1 mL	1 mL	394760	07/08/23 01:57	UHEW	ELLE
Total/NA	Prep	3510C	RE		1010.1 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrumer	MA-EPH nt ID: 19875-T	RE	1	1 mL	1 mL	394765	07/08/23 01:57	UHEW	ELLE
Total/NA	Analysis Instrumer	9056A nt ID: CICK		2	5 mL	5 mL	784086	06/17/23 12:50	UI	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	783457	06/14/23 06:46	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C nt ID: ICPH		1			783688	06/14/23 16:37	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	783458	06/14/23 06:46	RR	EET SAV
Total Recoverable	Analysis Instrumer	6020A nt ID: ICPMSC		1			783691	06/14/23 18:21	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	783678	06/15/23 04:44	JKL	EET SAV
Total/NA	Analysis Instrumer	7470A nt ID: QuickTrace2		1			783828	06/15/23 11:32	JKL	EET SAV
Total/NA	Analysis Instrumer	2320B-2011 nt ID: MANTECH 2		1			784252	06/16/23 17:38	PG	EET SAV
Total/NA	Analysis Instrumer	2540C-2011 nt ID: NOEQUIP		1	50 mL	200 mL	783381	06/13/23 12:47	PG	EET SAV
Total/NA	Analysis Instrumer	353.2-1993 R2.0 nt ID: SEAL 1		1	2 mL	2 mL	785197	06/22/23 17:22	NVF	EET SAV
Total/NA	Analysis	410.4 nt ID: WC_Genesys2	0	1	2 mL	2 mL	616255	06/15/23 11:42	BCR	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	783892	06/16/23 05:30	JAS	EET SAV
Total/NA	Analysis	9012B		1			783962	06/16/23 09:15	JAS	EET SAV

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Client Sample ID: LFM-99-06A-RP-SPR23

Date Collected: 06/08/23 13:25 Date Received: 06/10/23 09:32 Lab Sample ID: 680-236120-5

Matrix: Water

Job ID: 680-236120-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	MAVPH nt ID: 10149		1	5 mL	5 mL	389210	06/21/23 20:30	X875	ELLE
Total/NA	Prep	3510C			259.8 mL	1 mL	783438	06/13/23 17:04	MR	EET SAV
Total/NA	Analysis Instrume	8081B 8082A nt ID: CSGAA		1	1 mL	1 mL	784780	06/21/23 17:50	JCK	EET SAV
Total/NA	Prep	3510C			1044.4 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 18433-W		1	1 mL	1 mL	391880	06/29/23 03:12	UHEW	ELLE
Total/NA	Prep	3510C			1044.4 mL	1 mL	388980	06/21/23 08:13	A2VL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	391587	06/28/23 07:19	YDF5	ELLE
Total/NA	Analysis	MA-EPH nt ID: 18433-X		1	1 mL	1 mL	391881	06/29/23 02:50	UHEW	ELLE
Total/NA	Prep	3510C	RE		1047.4 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis	MA-EPH nt ID: 19875-S	RE	1	1 mL	1.0 IIIL	394760	07/08/23 02:20	UHEW	ELLE
Total/NA	Prep	3510C	RE		1047.4 mL	1 mL	392793	06/30/23 14:30	K2IL	ELLE
Total/NA	Cleanup	3630C	RE		1.0 mL	1.0 mL	394479	07/07/23 07:22	YDF5	ELLE
Total/NA	Analysis Instrume	MA-EPH nt ID: 19875-T	RE	1	1 mL	1 mL	394765	07/08/23 02:20	UHEW	ELLE
Total/NA	Analysis Instrume	9056A nt ID: CICK		5	5 mL	5 mL	784086	06/17/23 13:03	UI	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	783457	06/14/23 06:46	RR	EET SAV
Total Recoverable	Analysis	6010C nt ID: ICPH		1			783688	06/14/23 16:39	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	783458	06/14/23 06:46	RR	EET SAV
Total Recoverable	Analysis Instrume	6020A nt ID: ICPMSC		1			783691	06/14/23 18:25	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	783678	06/15/23 04:44	JKL	EET SAV
Total/NA	Analysis Instrume	7470A nt ID: QuickTrace2		1			783828	06/15/23 11:33	JKL	EET SAV
Total/NA	Analysis Instrume	2320B-2011 nt ID: MANTECH 2		1			784254	06/17/23 01:45	PG	EET SAV
Total/NA	Analysis Instrume	2540C-2011 nt ID: NOEQUIP		1	50 mL	200 mL	783381	06/13/23 12:47	PG	EET SAV
Total/NA	Analysis Instrume	353.2-1993 R2.0 nt ID: SEAL 1		1	2 mL	2 mL	785197	06/22/23 17:24	NVF	EET SAV
Total/NA	Analysis Instrume	410.4 nt ID: WC_Genesys20		1	2 mL	2 mL	616255	06/15/23 11:42	BCR	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	783892	06/16/23 05:30	JAS	EET SAV
Total/NA	Analysis	9012B		1			783962	06/16/23 09:15	JAS	EET SAV

¹ This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Eurofins Savannah

2

5

9

10

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

3

4

0

40

11

10

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	07-09-23

Laboratory: Eurofins Denver

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-23

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24
A2LA	ISO/IEC 17025	0001.01	11-30-24
Alabama	State	43200	01-31-24
Alaska	State	PA00009	06-30-24
Alaska (UST)	State	17-027	02-28-24
Arizona	State	AZ0780	03-12-24
Arkansas DEQ	State	88-00660	08-09-23
California	State	2792	11-30-23
Colorado	State	PA00009	06-30-24
Connecticut	State	PH-0746	06-30-25
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-24
Delaware (DW)	State	N/A	01-31-24
Florida	NELAP	E87997	06-30-24
Georgia (DW)	State	C048	01-31-24
Hawaii	State	N/A	01-31-24
Illinois	NELAP	200027	01-31-24
lowa	State	361	03-01-24
Kansas	NELAP	E-10151	10-31-23
Kentucky (DW)	State	KY90088	12-31-23
Kentucky (UST)	State	0001.01	11-30-24
Kentucky (WW)	State	KY90088	12-31-23
Louisiana (All)	NELAP	02055	06-30-24
Maine	State	2019012	03-12-25
Maryland	State	100	06-30-24
Massachusetts	State	M-PA009	06-30-24
Michigan	State	9930	01-31-24
Minnesota	NELAP	042-999-487	12-31-23
Mississippi	State	023	01-31-24
Missouri	State	450	01-31-25
Montana (DW)	State	0098	01-01-24
Nebraska	State	NE-OS-32-17	01-31-24
New Hampshire	NELAP	2730	01-10-24
New Jersey	NELAP	PA011	06-30-24
New York	NELAP	10670	04-01-24
North Carolina (DW)	State	42705	07-31-23
North Carolina (WW/SW)	State	521	12-31-23
North Dakota	State	R-205	01-31-24
Oklahoma	NELAP	9804	08-31-23
Oregon	NELAP	PA200001	09-11-23

Eurofins Savannah

7/20/2023

Job ID: 680-236120-1

3

4

7

Ö

10

11

| 4

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

Job ID: 680-236120-1

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
PALA	Canada	1978	09-16-24
Pennsylvania	NELAP	36-00037	01-31-24
Rhode Island	State	LAO00338	12-31-23
South Carolina	State	89002	01-31-24
Tennessee	State	02838	01-31-24
Texas	NELAP	T104704194-23-46	08-31-23
USDA	US Federal Programs	525-22-298-19481	10-25-25
Vermont	State	VT - 36037	10-28-23
Virginia	NELAP	460182	06-14-24
Washington	State	C457	04-11-24
West Virginia (DW)	State	9906 C	12-31-23
West Virginia DEP	State	055	07-31-24
Wyoming	State	8TMS-L	01-31-24
Wyoming (UST)	A2LA	0001.01	11-30-24

4

5

7

8

9

10

11

4.6

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM, DCL, Spring 2023

ı	Laboratory
•	ELLE
	EET SAV
•	ELLE
	FFT SAV

Job ID: 680-236120-1

Method	Method Description	Protocol	Laboratory
//AVPH	Massachusetts - Volatile Petroleum Hydrocarbons (GC)	MA DEP	ELLE
081B 8082A	Organochlorine Pesticides & PCBs (GC)	SW846	EET SAV
IA-EPH	Massachusetts - Extractable Petroleum Hydrocarbons (GC)	MA DEP	ELLE
056A	Anions, Ion Chromatography	SW846	EET SAV
010C	Metals (ICP)	SW846	EET SAV
)20A	Metals (ICP/MS)	SW846	EET SAV
170A	Mercury (CVAA)	SW846	EET SAV
320B-2011	Alkalinity, Total	SM	EET SAV
540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	EET SAV
3.2-1993 R2.0	Nitrogen, Nitrate-Nitrite	MCAWW	EET SAV
0.4	COD	EPA	EET DEN
12B	Cyanide, Total and/or Amenable	EPA	EET SAV
05A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SAV
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ELLE
30C	Silica Gel Cleanup	SW846	ELLE
30C	Purge and Trap	SW846	ELLE
70A	Preparation, Mercury	SW846	EET SAV
)12B	Cyanide, Total and/or Amenable, Distillation	SW846	EET SAV

Protocol References:

EPA = US Environmental Protection Agency

MA DEP = Massachusetts Department Of Environmental Protection

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Cooler Temperature(s) °C and Other Remarks:

Environment Testing

🔅 eurofins

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

Eurofins Savannah

1010 01 000 1 av. 015 000 0100													
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Lanier, Jerry A	lerry A			Carrier Tra	Carrier Tracking No(s):	COC No: 680-740763.	63.1		
Client Contact: Shipping/Receiving	Phane:			E-Mail: Jerry.La	nier@et	E-Mail: Jerry.Lanier@et.eurofinsus.com	IS.com	State of Origin: Massachusetts	rigin: husetts	Page: Page 1 of 1	f 1		_
Company. TestAmerica Laboratories, Inc.				Acc	reditations pt. of De	Accreditations Required (See note) Dept. of Defense ELAP - A2	Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD	1 `		Job #: 680-236120-1	20-1		
Address: 4955 Yarrow Street,	Due Date Requested 6/22/2023	ij					Analy	Analysis Requested	_	Preservati	ĕ	- Hexane	
City: Arvada	TAT Requested (days):	ys):			entres.					B - NaOH C - Zn Acetate		None AsNaO2	
State, Zip CO, 80002										D - Nitric Acid E - NaHSO4		P - Na2O4S Q - Na2SO3 R - Na2S2O3	
Phone. 303-736-0100(Tel) 303-431-7171(Fax)	PO #:			(G - Amchlor H - Ascorbic Acid	A.	H2SO4 TSP Dodecahydrate	
Email:	WO #:			OF No	(0)						Į	U - Acetone V - MCAA W - pH 4-5	
Project Name: Seres-Arcadis JV, LTM, DCL, Spring 2023	Project #: 68023801			sə _A) ə	1 10 29					K - EDTA L - EDA	- Z	vv - pri 4-3 Y - Trizma Z - other (specify)	
Site:	SSOW#:			Iqma	zD (X					of con			
Sample Identification . Client ID (Lab ID)	Samula Data	Sample (0	Sample Type (C=comp,	Matrix eed (w=water, S=solid, O=wasto'oli, eed	10.4/ COD			****		redimuM listo	<u>.</u>		
our production of the last in	Value Date		(0)	-	-		dis allowan	100			aciai instru	Special instructions/Note:	
LFM-03-07-SPR23 (680-236120-1)	6/8/23	10:40 Eastern		Water	×					-			
LFM-99-02B-SPR23 (680-236120-2)	6/8/23	10:45 Eastern		Water	×					<i>J</i>			
LFM-99-02B-SPR23 (680-236120-2MS)	6/8/23	11:45 Eastern	MS	Water	×					-			
LFM-99-02B-SPR23 (680-236120-2MSD)	6/8/23	12:40 Eastern	MSD	Water	×					÷			
LFM-99-05A-SPR23 (680-236120-3)	6/8/23	10:36 Eastern		Water	×					-			
LFM-99-DUP01-SPR23 (680-236120-4)	6/8/23	10:36 Eastern		Water	×								
LFM-99-06A-RP-SPR23 (680-236120-5)	6/8/23	13:25 Eastern		Water	×					-			
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	t Testing Southeast, Ll alysis/tests/matrix bein on immediately. If all re	LC places the ow g analyzed, the s equested accredi	nership of me ramples must I tations are cur	thod, analyte & ac be shipped back t rent to date, retur	creditation the Euro the sign	compliance fins Environed contractioned	e upon our s ment Testin Custody atte	J. L. J.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nent is forwarded und stions will be provided inment Testing South	der chain-of-cu d. Any change neast, LLC.	stody. If the laboratory is to accreditation	
Possible Hazard Identification					Sample	Disposa	I (A fee r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	if samples are	retained longer	than 1 mon	ıth)	-
Unconfirmed Deliverable Requested: I, III, IV, Other (specify)	Primary Deliverab	ble Rank: 2			Special	Return To Client al Instructions/QC	Client ns/QC Re	Special Instructions/QC Requirements:	3y Lab	Archive For	V	Months	
Emat, Vit Dalina in the Land						ļ		Г					_
Empty Kit Kelinquished by:		Date:		Time:	ı			Meth	Method of Shipment:				
Relinquished by:	Date/Time: ////2	5 150	00	Company	26 7	Received by:	1,	, <u> </u>	Date/Time:	13067/	15-41 15-41	Company	
Relinquished by:	Date/Time:	•	Ö	Company	Rece	Received by:	à		Date/Time:		Con	Company	
Relinquished by:	Date/Time:		3	Company	Rece	Received by:			Date/Time:		Con	Company	

Custody Seal No.:

Custody Seals Intact: △ Yes △ No

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

🔆 eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler:					ггу А	Carrier Tracking				Tracking No(s):		COC No: 680-740766.1					
Client Contact:	Phone			E-M	ail:		State of Origin:							Page:				
Shipping/Receiving Company:				Jei			er@et.eurofinsus.com Massachuset litations Required (See note):				etts			Page 1 of 1				
Eurofins Lancaster Laboratories Environm							of Defense ELAP - A2LA; DoD - ANAB						680-236120-1					
Address 2425 New Holland Pike	Due Date Requeste 6/21/2023	ıd:							An	alysi	s Re	ques	ted				Preservation Code	M - Hexane
City. Lancaster	TAT Requested (da	TAT Requested (days):														l l	B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: PA, 17601									1								D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 717-656-2300(Tel)	PO#:	·-															F - MeOH G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
Email:	WO#				or No)	EPH	_									10	I - Ice J - Di Water	U - Acetone V - MCAA W - pH 4-5
Project Name: Seres-Arcadis JV, LTM, DCL, Spring 2023	Project #: 68023801				Cyes	D) MA	MA VPH									himer	K - EDTA L - EDA	Y - Trizma Z - other (specify)
Site:	SSOW#:				- Admir	14d (MOD) MA E	(MOD)									of con	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	B. crimelia (barriera marriera del	Matrix (W-water, 8-acidd, O-waste/oil, BT-Tissue, A-A	eld Filtered	MAEPH/3510C_14d (MOD) MA EPH	MAVPH/5030C (N	MAVPH_Calc	27			and a figure de production of				Total Number of		structions/Note:
	_><	10.40	Preserva	tion Code:	X			123		lia.	3					X		
LFM-03-07-SPR23 (680-236120-1)	6/8/23	10:40 Eastern		Water		X	Х	Х								5	i .	
LFM-99-02B-SPR23 (680-236120-2)	6/8/23	10:45 Eastern		Water		×	Х	х								5		
LFM-99-02B-SPR23 (680-236120-2MS)	6/8/23	11:45 Eastern	MS	Water		X	х	х								5	.5	
LFM-99-02B-SPR23 (680-236120-2MSD)	6/8/23	12:40 Eastern	MSD	Water	\perp	×	Х	×								5		
LFM-99-05A-SPR23 (680-236120-3)	6/8/23	10:36 Eastern		Water	\coprod	×	Х	х							Ш	5		
LFM-99-DUP01-SPR23 (680-236120-4)	6/8/23	10:36 Eastern		Water	\perp	X	Х	X		_					Ш	5		
LFM-99-06A-RP-SPR23 (680-236120-5)	6/8/23	13:25 Eastern		Water	$\perp \!\!\! \perp$	×	X	X		_					-	5	3	
					+	\perp				_		-		\perp	\sqcup	1 10	80	
																5-11		
Note: Since laboratory accreditations are subject to change, Eurofins Environ does not currently maintain accreditation in the State of Origin listed above for status should be brought to Eurofins Environment Testing Southeast, LLC at	or analysis/tests/matrix bei	ing analyzed, ti	ne samples mu	ist be shipped	back to	the Eur	ofins E	nviron	ment 7	Testing S	Southe	ast, LLC	laborate	ory or ot	her inst	ructions 1	will be provided. Any ch	nanges to accreditation
Possible Hazard Identification					5										les ar	_	ned longer than 1	month)
Unconfirmed								n To (-		sal By	Lab		Arc	chive For	Months
Deliverable Requested. I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		S	pecia	inst	ruction	ns/Q(C Requ	uirem	ents						
Empty Kit Relinquished by: //		Date:			Tim								Method					
Relinquished by	Date/Time:	23	1380	Company		Rec	aived	by:						Dat	e/Time:			Company
Relinquished by	Date/Time			Cumpany		Rec	eived	by:						Dat	e/Time:			Company
Relinquished by:	Date/Time:			Company		Rec	eived	-in			7			Dat	6/1	13/2	19:05	Company
Custody Seals Intact: Custody Seal No.:						Con		_		°C and	00000	Remarks	2.		111	7	12/1/16	willow

Ver: 06/08/2021

2

3

6

9

10

11

Client: Seres Engineering & Services LLC

Job Number: 680-236120-1

Login Number: 236120 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Seres Engineering & Services LLC

Job Number: 680-236120-1

List Source: Eurofins Denver
List Number: 3
List Creation: 06/13/23 03:51 PM

Creator: Cannon, Charles D

ordator. Gainlon, Onarios B		
Question	Answer Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

3

4

6

8

10

11

Job Number: 680-236120-1

Client: Seres Engineering & Services LLC

Login Number: 236120

List Number: 2

List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Creation: 06/13/23 12:57 PM

Creator: McCaskey, Jonathan

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	True	

Eurofins Savannah

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 1/31/2024 6:24:12 PM Revision 1

JOB DESCRIPTION

Fort Devens, SRI, AOC43G, Fall 2023

JOB NUMBER

680-242928-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 1/31/2024 6:24:12 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC

Job ID: 680-242928-2 Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Qualifiers

Metals

Qualifier **Qualifier Description**

Undetected at the Limit of Detection.

General Chemistry

Qualifier **Qualifier Description**

Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242928-6	AAFES-2-FAL23	Water	11/09/23 09:40	11/14/23 10:05
680-242928-9	AAFES-7-FAL23	Water	11/10/23 10:25	11/14/23 10:05
680-242928-17	XGM-94-04X-FAL23	Water	11/09/23 11:00	11/14/23 10:05

Job ID: 680-242928-2

Case Narrative

Client: Seres Engineering & Services LLC Project: Fort Devens, SRI, AOC43G, Fall 2023

Job ID: 680-242928-2 Eurofins Savannah

Job Narrative 680-242928-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/14/2023 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 5 coolers at receipt time were 1.1°C, 1.9°C, 2.7°C, 3.3°C and 5.7°C

Revision

The report being provided is a revision of the original report sent on 1/30/2024. The report (revision 1) is being revised due to: Case Narrative required updates.

Subcontract Work

Method MAVPH: This method was subcontracted to Katahdin Analytical Services. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

2

Job ID: 680-242928-2

3

4

7

10

11

Client Sample Results

Client: Seres Engineering & Services LLC Job ID: 680-242928-2

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Client Sample ID: AAFES-2-FAL23 Lab Sample ID: 680-242928-6

Date Collected: 11/09/23 09:40 Matrix: Water

Date Received: 11/14/23 10:05

Method: SW846 6010C - M	etals (ICP) - Total	Recoverabl	е						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	16000		100	50	20	ug/L		11/15/23 17:25	1
Manganese	4400		10	5.0	1.3	ug/L		11/15/23 17:25	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	160		5.5	5.0	2.2	mg/L		11/21/23 13:15	1

O C

0

10

11

Client Sample Results

Client: Seres Engineering & Services LLC Job ID: 680-242928-2

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Client Sample ID: AAFES-7-FAL23 Lab Sample ID: 680-242928-9

Date Collected: 11/10/23 10:25 Matrix: Water

Date Received: 11/14/23 10:05

4

5

_

8

40

11

12

Client Sample Results

Client: Seres Engineering & Services LLC Job ID: 680-242928-2

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Client Sample ID: XGM-94-04X-FAL23

Date Collected: 11/09/23 11:00 Date Received: 11/14/23 10:05 Lab Sample ID: 680-242928-17

Matrix: Water

Method: SW846 6010C - N	letals (ICP) - Total Recoverab	le					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Iron	200	100	50	20 ug/L		11/15/23 16:45	1
Manganese	440	10	5.0	1.3 ua/L		11/15/23 16:45	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	160		5.5	5.0	2.2	mg/L		11/21/23 13:05	1

4

6

7

8

4.0

11

12

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-808277/1-A

Matrix: Water

Analysis Batch: 808561

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 808277

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/15/23 16:41	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/15/23 16:41	1

399

MB MB

Lab Sample ID: LCS 680-808277/2-A

Matrix: Water

Analyte

Manganese

Iron

Analysis Batch: 808561

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 808277 Spike

ug/L

LCS LCS %Rec Result Qualifier Unit %Rec Limits 87 - 115 4930 ug/L 99

100

Lab Sample ID: 680-242928-17 MS

Matrix: Water

Analysis Batch: 808561

Client Sample ID: XGM-94-04X-FAL23

90 - 114

Prep Type: Total Recoverable

Prep Batch: 808277

MS MS %Rec Sample Sample Spike Added Result Qualifier Result Qualifier D Limits Analyte Unit %Rec Iron 200 4990 4980 96 87 - 115 ug/L 440 400 858 90 _ 114 Manganese ug/L 104

Added

4990

400

Lab Sample ID: 680-242928-17 MSD

Matrix: Water

Analysis Batch: 808561

Client Sample ID: XGM-94-04X-FAL23

Prep Type: Total Recoverable

Prep Batch: 808277 %Rec **RPD**

MSD MSD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Iron 200 4990 5010 87 - 115 20 ug/L 96 440 400 869 Manganese ug/L 106 90 - 114 20

Method: 2320B-2011 - Alkalinity, Total

Lab Sample ID: MB 680-809458/4

Matrix: Water

Analysis Batch: 809458

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Total Alkalinity as CaCO3 to pH 4.5 5.0 U 5.5 5.0 2.2 mg/L 11/21/23 12:00

Lab Sample ID: LCS 680-809458/6

Matrix: Water

Analysis Batch: 809458

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Added Result Qualifier Unit Limits %Rec Total Alkalinity as CaCO3 to pH 250 240 mg/L 96 90 - 112 4.5

Lab Sample ID: LCSD 680-809458/19

Matrix: Water

Analysis Batch: 809458

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits Unit D %Rec RPD I imit **Analyte** 250 98 90 - 112 Total Alkalinity as CaCO3 to pH 244 mg/L

4.5

Eurofins Savannah

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Job ID: 680-242928-2

Metals

Prep Batch: 808277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242928-6	AAFES-2-FAL23	Total Recoverable	Water	3005A	
680-242928-9	AAFES-7-FAL23	Total Recoverable	Water	3005A	
680-242928-17	XGM-94-04X-FAL23	Total Recoverable	Water	3005A	
MB 680-808277/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808277/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-242928-17 MS	XGM-94-04X-FAL23	Total Recoverable	Water	3005A	
680-242928-17 MSD	XGM-94-04X-FAL23	Total Recoverable	Water	3005A	

Analysis Batch: 808561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242928-6	AAFES-2-FAL23	Total Recoverable	Water	6010C	808277
680-242928-9	AAFES-7-FAL23	Total Recoverable	Water	6010C	808277
680-242928-17	XGM-94-04X-FAL23	Total Recoverable	Water	6010C	808277
MB 680-808277/1-A	Method Blank	Total Recoverable	Water	6010C	808277
LCS 680-808277/2-A	Lab Control Sample	Total Recoverable	Water	6010C	808277
680-242928-17 MS	XGM-94-04X-FAL23	Total Recoverable	Water	6010C	808277
680-242928-17 MSD	XGM-94-04X-FAL23	Total Recoverable	Water	6010C	808277

General Chemistry

Analysis Batch: 809458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242928-6	AAFES-2-FAL23	Total/NA	Water	2320B-2011	·
680-242928-17	XGM-94-04X-FAL23	Total/NA	Water	2320B-2011	
MB 680-809458/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-809458/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-809458/19	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

6

A

7

8

10

11

12

1:

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Lab Sample ID: 680-242928-6

Lab Sample ID: 680-242928-17

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 680-242928-2

Client Sample ID: AAFES-2-FAL23 Date Collected: 11/09/23 09:40

Date Received: 11/14/23 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	808277	11/15/23 06:53	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C nt ID: ICPH		1			808561	11/15/23 17:25	BJB	EET SAV
Total/NA	Analysis Instrumer	2320B-2011 at ID: MANTECH 2		1			809458	11/21/23 13:15	AS	EET SAV

Lab Sample ID: 680-242928-9 **Client Sample ID: AAFES-7-FAL23**

Date Collected: 11/10/23 10:25

Date Received: 11/14/23 10:05

	Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
	Total Recoverable	Prep	3005A			25 mL	25 mL	808277	11/15/23 06:53	RR	EET SAV
'	Total Recoverable	Analysis	6010C		1			808561	11/15/23 17:30	BJB	EET SAV
		Instrumen	t ID: ICPH								

Client Sample ID: XGM-94-04X-FAL23

Date Collected: 11/09/23 11:00

Date Received: 11/14/23 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	808277	11/15/23 06:53	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C at ID: ICPH		1			808561	11/15/23 16:45	BJB	EET SAV
Total/NA	Analysis Instrumer	2320B-2011 at ID: MANTECH 2		1			809458	11/21/23 13:05	AS	EET SAV

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Job ID: 680-242928-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

. .

3

4

8

9

11

14

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC43G, Fall 2023

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
2320B-2011	Alkalinity, Total	SM	EET SAV
ЛА-VPH	MADEP VPH Volatile Petroleum Hydrocarbon	MA DEP	
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 Job ID: 680-242928-2

2

_

6

7

8

10

11

12

		Ма	ssDEP Analytica	al Protocol Certifi	cation Form		
Labo	ratory Na	ıme: Katahdin Ana	lytical Services, LL	.C.	Project #:		
Proie	ect Location	on: Fort Devens			RTN:		
This	Form pro	vides certificatio		ng data set: list Lab 350-2 and -9	ooratory Sample ID Nu	mber(s):	
Matri	ces: X Gr	oundwater/Surface	Water Soil/Sedir	ment Drinking Wa	ater Air Other:		
CAM	Protoco	l (check all that a	oply below):				
8260 CAM		7470/7471 Hg CAM III B	MassDEP VPH CAM IV A X	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP CAM IX A	APH
8270 CAM	SVOC II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VO CAM IX B	С
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
A	\ffirmativ	e Responses to 0	Questions A throu	ugh F are required t	for "Presumptive Cert	ainty" statu	us
Α	Custody,		ed (including temp		cribed on the Chain-of- ld or laboratory, and	X Yes	No
В		e analytical method(tocol(s) followed?	(s) and all associate	ed QC requirements s	specified in the selected	X Yes	No
С				cal response actions s formance standard no	specified in the selected n-conformances?	X Yes	No
D		Assurance and Qu			specified in CAM VII A, sition and Reporting of	X Yes	No
E	a. VPH,	•	lethods only: Was		icted without significant	X Yes	No
) for a list of significant ete analyte list reported		Yes	No
F					-conformances identified Questions A through E)?	X Yes	No
Res	ponses	to Questions G, H	l and I below are i	required for "Presu	mptive Certainty" sta	tus	
G	Were the protocol(. •	r below all CAM repo	orting limits specified in	the selected CAM	X Yes	No ¹
				inty" status may not ne R 40. 1056 (2)(k) and WS	cessarily meet the data us SC-07-350.	ability and	
Н	Were all	QC performance sta	andards specified in t	the CAM protocol(s) ac	chieved?	X Yes	No ¹
I	Were res	ults reported for the	complete analyte lis	t specified in the select	ted CAM protocol(s)?	X Yes	No ¹
¹All r	negative re	esponses must be a	addressed in an atta	ached laboratory narra	ative.		
					sed upon my personal in		

i, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature:

Printed Name: Jennifer Prescott REISSUE

Position: Q.A. Officer

Date: 01/24/2024

TEST AMERICA SAVANNAH

FORT DEVENS - LTM

SQ6350

Jennifer Prescott 207-874-2400

KATAHDIN ANALYTICAL SERVICES 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074

3

4

5

6

0

0

10

ш

SAMPLE DATA PACKAGE

1:

NARRATIVE KATAHDIN ANALYTICAL SERVICES TEST AMERICA SAVANNAH FORT DEVENS - LTM SQ6350

Sample Receipt

The following samples were received on November 16, 2023 and were logged in under Katahdin Analytical Services work order number SQ6350 for a hardcopy due date of December 07, 2023.

KATAHDIN	TEST AMERICA SAVANNAH
Sample No.	Sample Identification
SQ6350-2	AAFES-2-FAL23
SQ6350-9	XGM-94-04X-FAL23

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2017 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Heather Manz**. This narrative is an integral part of the Report of Analysis.

Reissue 01/24/2024

This report is being reissued to correct the client sample IDs for Katahdin Sample numbers SQ6350-2 and -9 and to move these sample to a separate report.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

600 Technology Way, Scarborough, ME 04074

NH ELAP Lab ID 2001 (DW, NPW, SCM)

Organics Analysis

The samples of Work Order SQ6350 were analyzed in accordance with Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MADEP, May 2004, Revision 1.1 and/or for the specific methods listed below or on the Report of Analysis.

MA VPH Analysis

Samples SQ6350-2, 2DL and 9 were manually integrated for the surrogate 2,5-dibromotoluene on the PID and FID, the target analytes benzene, toluene, ethylbenzene, naphthalene, and/or the C9-C10 aromatic, C5-C8 aliphatic, and C9-C12 aliphatic ranges. The specific reason for the manual integration is indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The independent check standard (file 2QI10012), associated with the initial calibration analyzed on the GC02 instrument on 9/8/23 had a high concentration for the target analyte naphthalene on the PID, which exceeded the laboratory acceptance limit of $\pm 20\%$ of the expected value from the ICAL.

There were no other protocol deviations or observations noted by the organics laboratory staff.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized the Quality Assurance Officer, or their designee, as verified by the following signature.

01/24/2024

Jennifer Prescott Quality Assurance Officer

REISSUE

2

4

9

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
МЗ	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Katandın Analytical Se	rvice	S, LL	U,			3	ampie Kec	eipt C	pnait	IOII IXE	POIL
Client: Eurofins Sava	unuh	ii.		KA	S PM		HHM .	Sampled	Ву:	Clien	+
Project:	(TiB	1/16		KIN	1S Enti	y By:	SCB	Delivere	By:	Fede	*
KAS Work Order#: SQ 634			6351	KIM	IS Rev	iew By:	thom.	Receive	Ву:	EP	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0-01	Lab	eled B	y:	[1]	1			
SDG #:		Cooler:	1	of _)		Date/Time	e Rec.:	11-	16-23	094
Receipt Criteria			Y	N	EX*	NA	Com	ments ar	d/or R	esolution	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
1. Custody seals present / intact?			1/	- I V			John	THOMO EI	0.01.14		,
Chain of Custody present in co			1/								
Chain of Custody signed by clie		N.	1/			 					
	_		1			 					
4. Chain of Custody matches sam			1/,		ļ	 	Temp (°C):			- 1	mometer
Temperature Blanks present? temperature of any sample w/ IR	it not, i jun.	аке						1.4°		ID:	IR-1
Samples received at <6 °C w/	o freezi	ng?	/				Note: Not requir	ed for metal	s (except	Hg soil) and	alysis.
Ice packs or ice present?	i de		1				The lack of ic begin cooling	e or ice pa process)	acks (i.e or insuf	e. no atter ficient ice	npt to may
If yes, was there sufficient ice temperature requirements?	to meet		/				not meet certi may invalidate	ain regula	tory req		
If temp. out, has the cooling pr (i.e. ice or packs present) and collection times <6hrs., but sar yet cool?	sample			- 200	ē	,	Note: No coo (except Hg so			ired for m	etals
6. Volatiles: Aqueous: No bubble larger than a Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hou					:					p akenna dana	
7. Trip Blank present in cooler?	100					/.					
8. Proper sample containers and vo	olume?		/								
9. Samples within hold time upon re	eceipt?		/								
10. Aqueous samples properly pres Metals, COD, NH3, TKN, O/G TPO4, N+N, TOC, DRO, TPH – Sulfide - >9 Cyanide – pH >12	phenol,					1,	,				
11. Bottleware Prepped on:									***************************************		
Log-In Notes to Exceptions: do	cumen	it any pi	roblems	with	samp	oles or	discrepancië	s or pH &	idjustm	ents.	
					-						
A-048 - Revision 8 - 09/11/2020	A variable of physical lines.						ē				

SR 6356 seurofins | Environment Testing

Chain of Custody Record

	Sampler:			Lab PM:			Carrie	Carrier Tracking No(s):	:(s	COC No:	
Client Onlard	04000		-	Lanie	Lanier, Jerry A					680-756344.1	
Shipping/Receiving	5			Jerry.	anier@	E-Mail: Jerry.Lanier@et.eurofinsus.com		State of Origin: Massachusetts		Page: Page 1 of 2	
Company: Katahdin Analytical Services					ccreditation	Accreditations Required (See note) Dept. of Defense ELAP - A2	Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD - ANAB	В В		Job #: 680-242928-1	
Address: 600 Technology Way,	Due Date Requested: 11/28/2023	d:				4	Analysis Reguested	ted		Preservation Codes	98:
City: Scarborarch	TAT Requested (days):	ys):								A - HCL B - NaOH	M - Hexane N - None
State, ZP: ME. 04074										C - Zn Acetate D - Nitric Acid	O - AsnaO2 P - Na2O4S Q - Na2SO3
Phone:	PO #:									F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4 T - TSP Dodecabydrate
Email:	WO#:										U - Acetone V - MCAA
Project Name: Fort Devens, Long Term Monitoring	Project #: 68023801	-			/ 10 se				sa a u is		W - pH 4-5 Y - Trizma Z - other (specify)
Site:	SSOW#:				ap (k	11 14 41			il con	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wastefoli, BT=Tissue, A=Air)	: benedlik bleik M/2M mnofrek Lyugyyan, gus	I ((HAVAM) BUZ			radmiN latoT	North Number	Snecial Instructions/Note:
		X	es me	on Code:	X						
43GPZ-19-03-FAL23 (680-242928-2)	11/10/23	09:03 Eastern		Water		×				3	
AAFES-2-FAL23-SRI (680-242928-6)	11/9/23	09:40 Eastern		Water		×				3	
AAFES-5-FA23 (680-242928-7)	11/9/23	14:50 Eastern		Water		×				3	
AAFES-6R-FAL23 (680-242928-8)	11/10/23	12:25 Eastern		Water		×			l di	3	
AOC43G-DUP02-FAL23 (680-242928-10)	11/10/23	09:40 Eastern		Water		×				C.	
XGM-23-01-FAL23 (680-242928-14)	11/10/23	12:25 Eastern		Water		×				60	
XGM-23-02-FAL23 (680-242928-15)	11/10/23	12:00 Eastern		Water		×				3	
XGM-23-03-FAL23 (680-242928-16)	11/9/23	13:45 Eastern		Water		×			92	83	
XGM-94-04X-FAL23-SRI (680-242928-17)	11/9/23	11:00 Eastern		Water		×				e,	
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	nt Testing Southeast, L nalysis/tests/matrix bein ion immediately. If all n	LC places the c g analyzed, the equested accre	wnership of me samples must ditations are cu	thod, analyte 8 be shipped bac rrent to date, re	accredita k to the E lurn the si	ion compliance up urofins Environmen gned Chain of Cust	on our subcontract labora it Testing Southeast, LLC tody attesting to said com	atories. This sar laboratory or of apliance to Euro	mple shipment is ther instructions fins Environment	forwarded under chain will be provided. Any cl Testing Southeast, LL	of-custody. If the laboratory langes to accreditation
Possible Hazard Identification					Samp	le Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sed if samp	les are retail	ned longer than 1	month)
Unconfirmed Deliverable Remiested: 1.11.11 M. Other (snewity)	C shoot of shoots	old old				Return To Client	nt Dispo	Disposal By Lab	Arc	Archive For	Months
Converged (Specify)	rillialy Delivera	DIE KAIIK. Z			Speci	al instructions/t	Special Instructions/UC Requirements:				
Empty Kit Relinquished by:		Date:		П	Time:			Method of Shipment:	ment		
Relinquisted by: Relinquisted bu:	77 15 23	160	50	Company	8	Received by:).	Dat	Date/Time: 1-13	5460	Company
· Commonwealth and comm	Date:		3	Company	<u> </u>	Received by:		Dat	Date/Time:		Company
- 1	Date/Time:		ŭ	Company	8	Received by:		Dat	Date/Time:		Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					8	oler Temperature(s	Cooler Temperature(s) °C and Other Remarks				
					1						

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah 5102 LaRoche Avenue

Client Information (Sub Contract Lab)		Lar	Lanier, Jerry A		. (2)	680-756344.2	
Olient Contact:	Phone:	E-Mail:	ail:		State of Origin:	Page:	
Company		Jer	Jerry.Lanier@et.eurofinsus.com		Massachusetts	Page 2 of 2	
Katahdin Analytical Services			Accreditations Required (See note): Dept. of Defense ELAP - A2	Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD - ANAB	8	Job #: 680-242928-1	
Address: 600 Technology Way,	Due Date Requested: 11/28/2023			Analysis Requested	sted	Preservation Codes:	M. Havana
City:	TAT Requested (days):					A - HCL B - NaOH	N - None
State Zin:							0 - Asna02 P - Na204S
ME, 04074			2				Q - Na2SO3
Phone:	PO#:						S - H2SO4
Email:	WO#		SCA SENTENNIA ACTOR			H - Ascorbic Acid	U - Acetone V - MCAA
Project Name:	Project #:		CA MYSSING 3			K - EDTA	W - pH 4-5 Y - Trizma
Fort Devens, Long Term Monitoring	68023801		ı sə			risair L-EDA	Z - other (specify)
Sile:	SSOW#:		r) ası			of coi	
	Sample	Sample Matrix Type (W=water, S=solid, O=waste/oll,	beredliq bla M.SM mnoth V(H9VAM) 8			redmuM lg	
Sample Identification - Client ID (Lab ID)	Sample Date Time	G=grab) BT=Tissus, A=Air) Bresenvation Code:	iii ∍q >				Special Instructions/Note:
		ייים בין	8				
XGM-94-07X-FAL23 (680-242928-19)	11/10/23 Eastern	Water	×			8	
XGM-94-08X-FAL23 (680-242928-20)	11/9/23 10:05 Eastern	Water	×			ဇာ	
						1	
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laborato does not currently maintain accreditation in the State of Origin listed above for analysis/least-matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC	Testing Southeast, LLC places the ovalysis/fests/matrix being analyzed, the in immediately. If all requested accree	wnership of method, analy samples must be shipped ittations are current to date	e & accreditation complic back to the Eurofins Envi	ance upon our subcontract laboi ironment Testing Southeast, LL! of Custody attesting to said co	ratories. This sample shipme C laboratory or other instructi mpliance to Eurofins Environ	nt is forwarded under chain ons will be provided. Any ci nent Testing Southeast, LL	of-custody. If the laborato nanges to accreditation C.
Possible Hazard Identification			Sample Dispo	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssed if samples are re	tained longer than 1	month)
Unconfirmed			Return 7	Return To Client Dispo	Disposal By Lab	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instruc	Requirem		- Company of the Comp	
nquished by:	Date:		Time:		Method of Shipment:		
25-	11/15·23 1609	Сотрапу	Received by:	Sur	Date/Time:	5460 Ez-	Company
Relinquished by:		Company	Received by:		Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:			Cooler Tempe	Cooler Temperature(s) ^o C and Other Remarks:	;;		

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Eurofins Savannah 5102 LaRoche Avenue

Environment Testing

JCB NI6 Seurofins

SQ 6349

Chain of Custody Record

Login Number: SQ6350

Account: TESTAMERICASAVLAB001

Test America Savannah

Katahdin Analytical Services

Login Chain of Custody (In01)

Jan. 12, 2024

04:51 PM

Quote/Incoming: TASAV-DEVENS

Login Information

ANALYSIS INSTRUCTIONS : FDS, DOD QSM 5.3 reporting with DOD limits.

ND to LOD. "J" flag between MDL and PQL. Need LCS/LCSD. Follow MA MCP CAM.

Page: 1

of

Include level 4 narrative.

CHECK NO.

CLIENT PO# : US1672979726 CLIENT PROJECT MANAGE: Jerry Lanier

CONTRACT : 68023801, 680-242928

COOLER TEMPERATURE **DELIVERY SERVICES** : FedEx

: ECC-091317-TXT EDD FORMAT

ISM INSTRUCTIONS

LOGIN INITIALS : JCB PM: HHM

PROJECT NAME : Fort Devens - LTM

QC LEVEL

REPORT INSTRUCTIONS : SDS needs all forms. Include Level 4 narrative

and MCP forms (from Leslie). Send level 4 PDF & level 2 PDF. Level 2= SDP & SDS. Upload EDD to Ft. Devens Database. Email PDF, EDD, and invoice to Beth.Daughtry@Eurofinset.com &

Jerry.Lanier@et.eurofinsus.com. No HC.

SDG ID

SDG STATUS **TEMPLATE VERBAL TAT**

Project: TASAV-DEVENS Primary Report Address:

Jerry Lanier

Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

Jerry.Lanier@testamericainc.com

Primary Invoice Address:

Accounts Payable Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

email project manager and beth.daughtry@et.eurofinsus.com

Report CC Addresses: Invoice CC Addresses:

Run Reports: Logindetail

Katahdin Analytical Services Login Chain of Custody (In01)

Jan. 12, 2024 04:51 PM

Collect

Login Number: SQ6350

Account: TESTAMERICASAVLAB001
Test America Savannah

Project: TASAV-DEVENS

Laboratory Client

Quote/Incoming: TASAV-DEVENS

Receive

Due

Bottle Type

40mL Vial+HCI

07-DEC-23

Bottle Type

40mL Vial+HCI

07-DEC-23

Bottle Type

40mL Vial+HCI

Sample ID Sample Number Date/Time Date Date **Due Date** Mailed PR SQ6350-1 43GPZ-19-03-FAL23 10-NOV-23 09:03 16-NOV-23 07-DEC-23 Sample Comments: Matrix Product Hold Date (shortest) Notes Bottle Type Aqueous S MA-VPH-LOD 24-NOV-23 40mL Vial+HCl S REPORTING Service SQ6350-2 AAFES-2-FAL23 09-NOV-23 09:40 16-NOV-23 07-DEC-23 Sample Comments: vial "A" fell and broke Matrix Product Hold Date (shortest) Notes Bottle Type S MA-VPH-LOD 23-NOV-23 40mL Vial+HCI Aqueous AAFES-5-FAL23 07-DEC-23 SQ6350-3 09-NOV-23 14:50 16-NOV-23 Sample Comments: Hold Date (shortest) Matrix Product Bottle Type Aqueous S MA-VPH-LOD 23-NOV-23 40mL Vial+HCI SQ6350-4 AAFES-6R-FAL23 10-NOV-23 12:25 16-NOV-23 07-DEC-23 Sample Comments: Matrix Notes Bottle Type Product Hold Date (shortest) Aqueous S MA-VPH-LOD 24-NOV-23 40mL Vial+HCI SQ6350-5 AOC43G-DUP02-FAL23 10-NOV-23 09:40 16-NOV-23 07-DEC-23 Sample Comments: Matrix Product Hold Date (shortest) Notes Bottle Type Aqueous S MA-VPH-LOD 24-NOV-23 40mL Vial+HCl SQ6350-6 XGM-23-01-FAL23 10-NOV-23 12:25 16-NOV-23 07-DEC-23 Sample Comments: Matrix Product Hold Date (shortest) Notes Bottle Type MA-VPH-LOD Aqueous 24-NOV-23 40mL Vial+HCI XGM-23-02-FAL23 SQ6350-7 10-NOV-23 12:00 16-NOV-23 07-DEC-23 Sample Comments: Hold Date (shortest) S MA-VPH-LOD 24-NOV-23 40mL Vial+HCI Aqueous XGM-23-03-FAL23 09-NOV-23 13:45 16-NOV-23 07-DEC-23 SQ6350-8 Sample Comments:

09-NOV-23 11:00 16-NOV-23

Notes

10-NOV-23 09:45 16-NOV-23

Notes

Hold Date (shortest)

Hold Date (shortest)

Hold Date (shortest)

23-NOV-23

23-NOV-23

24-NOV-23

Run Reports: Logindetail

Matrix

Aqueous

Matrix

Aqueous SQ6350-10

Matrix

Aqueous

SQ6350-9

Sample Comments:

Sample Comments:

Product

Product

S MA-VPH-LOD

Product

S MA-VPH-LOD

MA-VPH-LOD

XGM-94-04X-FAL23

XGM-94-07X-FAL23

Page: 2 of 3

Verbal

3

5

0

40

11

12

Katahdin Analytical Services Login Chain of Custody (In01)

Jan. 12, 2024 04:51 PM

Login Number: SQ6350

Account: TESTAMERICASAVLAB001 Test America Savannah

Project: TASAV-DEVENS

Quote/Incoming: TASAV-DEVENS

Laboratory Sample ID	Client Sample Number	Collect Date/Time	Receive Date PR	Due Date	Verbal Due Date	Mailed
SQ6350-11	XGM-94-08X-FAL23	09-NOV-23 10:0	05 16-NOV-23	07-DEC-23		
Sample Com	ments:					
Matrix	Product	Hold Date (shortest) Not	es	Bottle Type		
Aqueous	S MA-VPH-LOD	23-NOV-23		40mL Vial+HCI		

Total Samples: 11 Total Analyses: 12

Run Reports: Logindetail

Page: 3 of 3

3

4

5

7

10

SAMPLE DATA SUMMARY PACKAGE

10

11

12

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL, "U" LOQ or "U" LOD, where the rate of false negatives is <1%.
- * Compound recovery or percent RPD (relative percent difference) was outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), but above the Method Detection Limit (MDL).

And/or

- J Used for Dual Column analytes when there is a greater than 40% difference for detected concentrations between the two GC/HPLC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- I Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration (ICAL).
- D Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration Verification (ICV).
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding opening Calibration Verification (CV).
- V Indicates that the flagged compound did not meet DoD criteria in the corresponding closing Calibration Verification (CV).
- L/LL Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M/MM Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike (MS) and/or Matrix Spike Duplicate MSD) prepared and/or analyzed concurrently with the native sample.
- H Indicates the flagged compound was detected on the primary column but was not detected on the confirmation column therefore the compound is not reported as a positive detection. (SW846 8330A/B only)

DM-002 - Revision 8 - 11/02/2022

Report of Analytical Results

SDG: SQ6350 **Lab ID:**SQ6350-2

Client ID: AAFES-2-FAL23

Matrix:AQ

Lab File ID: 2QK10055.D

Sample Date: 09-NOV-23 Extract Date: 16-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

Report Date: 23-JAN-24 **Analysis Date:** 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics		510	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	E	400	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	E	500	ug/L	1	100	100	50.	75.
Benzene	J	1.5	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	J	1.3	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	J	2.7	ug/L	1	5	5.0	1.6	3.8
Toluene	J	1.3	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		86.6	%					
2,5-Dibromotoluene (PID)		90.4	%					

Page 1 of 1

Client ID: AAFES-2-FAL23

Lab File ID: 2QK10073.D

SDG: SQ6350

Matrix:AQ

Lab ID:SQ6350-2DL

Report of Analytical Results

Sample Date: 09-NOV-23 **Extract Date:** 17-NOV-23

Extracted By:DL

Extraction Method: MA-VPH **Lab Prep Batch:** WG345631

Report Date: 23-JAN-24 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics		300	ug/L	2	100	200	100	150
C9-C12 Aliphatics		320	ug/L	2	100	200	100	150
C9-C10 Aromatics		430	ug/L	2	100	200	100	150
Benzene	U	4.0	ug/L	2	3	6.0	0.62	4.0
Ethylbenzene	J	1.8	ug/L	2	5	10.	0.84	7.6
Methyl tert-butylether	U	7.6	ug/L	2	5	10.	0.62	7.6
Naphthalene	U	7.6	ug/L	2	5	10.	3.2	7.6
Toluene	J	1.0	ug/L	2	5	10.	0.68	7.6
m+p-Xylenes	U	15	ug/L	2	10	20.	1.8	15.
o-Xylene	J	1.3	ug/L	2	5	10.	0.94	7.6
2,5-Dibromotoluene (FID)		84.0	%					
2,5-Dibromotoluene (PID)		79.3	%					

Page 1 of 1

Report of Analytical Results

SDG: SQ6350 **Lab ID:**SQ6350-9

Client ID: XGM-94-04X-FAL23

Matrix:AQ

Lab File ID: 2QK10062.D

Sample Date: 09-NOV-23 Extract Date: 17-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

Report Date: 23-JAN-24 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	J	52	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	J	62	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	J	1.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		102.	%					
2,5-Dibromotoluene (PID)		102.	%					

Page 1 of 1

1:

Report of Analytical Results

SDG: SQ6350 Lab ID:WG345564-1 Client ID:Method Blank

Matrix:AQ

Lab File ID: 2QK10051.D

Sample Date: N/A Extract Date: 16-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

Report Date: 04-DEC-23 **Analysis Date:** 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		89.9	%					
2,5-Dibromotoluene (PID)		92.5	%					

Page 1 of 1

12

Report of Analytical Results

SDG: SQ6350 Lab ID:WG345631-1 Client ID:Method Blank

Matrix:AQ

Lab File ID: 2QK10070.D

Sample Date: N/A Extract Date: 17-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345631

Report Date: 04-DEC-23 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		83.8	%					
2,5-Dibromotoluene (PID)		89.2	%					

Page 1 of 1

Form 2
System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services SDG: SQ6350 Matrix: AQ

Client Sample ID	Lab Sample ID	Col. ID	DBT-FIL #	DBT-PII #
AAFES-2-FAL23	SQ6350-2	В	86.6	90.4
AAFES-2-FAL23	SQ6350-2DL	В	84.0	79.3
XGM-94-04X-FAL23	SQ6350-9	В	102.	102.
Method Blank	WG345564-1	В	89.9	92.5
Laboratory Control S	WG345564-2	В	110.	115.
Laboratory Control S	WG345564-3	В	110.	112.
Method Blank	WG345631-1	В	83.8	89.2
Laboratory Control S	WG345631-2	В	112.	111.
Laboratory Control S	WG345631-3	В	115.	107.

Abbr.	Surrogate Compound	QC Limits
DBT-FID	2,5-Dibromotoluene (FID)	70-130
DBT-PID	2,5-Dibromotoluene (PID)	70-130

= Column to be used to flag recovery limits.

4

Δ

5

7

a

. .

12

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

ANALYTICAL SERVICES

LCS/LCSD Recovery Report

LCS ID: WG345564-2 LCSD ID: WG345564-3

SDG: SQ6350

LCS File ID: 2QK10052.D

Extract Date: 16-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

LCSD File ID: 2QK10053.D

Analysis Date: 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 04-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300.	289.	96.3	289.	96.3	ug/L	0	25	70-130
Unadjusted C9-C12 Aliphatics	200.	232.	116.	232.	116.	ug/L	0	25	70-130
C9-C10 Aromatics	100.	112.	112.	113.	113.	ug/L	1	25	70-130
Benzene	100.	98.7	98.7	100.	100.	ug/L	1	25	70-130
Ethylbenzene	100.	103.	103.	104.	104.	ug/L	1	25	70-130
Methyl tert-butylether	100.	96.4	96.4	96.3	96.3	ug/L	0	25	70-130
Naphthalene	100.	109.	109.	109.	109.	ug/L	0	25	70-130
Toluene	100.	101.	101.	103.	103.	ug/L	2	25	70-130
m+p-Xylenes	200.	202.	101.	205.	102.	ug/L	1	25	70-130
o-Xylene	100.	105.	105.	106.	106.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			110.		110.				70-130
2,5-Dibromotoluene (PID)			115.		112.				70-130

http://www.katahdinlab.com

Page 1 of 1

ANALYTICAL SERVICES

LCS/LCSD Recovery Report

LCS ID: WG345631-2 LCSD ID: WG345631-3

SDG: SQ6350

LCS File ID: 2QK10071.D

Extract Date: 17-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345631

LCSD File ID: 2QK10072.D

Analysis Date: 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 04-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300.	279.	93.0	270.	90.0	ug/L	3	25	70-130
Unadjusted C9-C12 Aliphatics	200.	228.	114.	227.	114.	ug/L	0	25	70-130
C9-C10 Aromatics	100.	110.	110.	110.	110.	ug/L	0	25	70-130
Benzene	100.	98.3	98.3	97.2	97.2	ug/L	1	25	70-130
Ethylbenzene	100.	102.	102.	102.	102.	ug/L	0	25	70-130
Methyl tert-butylether	100.	95.2	95.2	95.7	95.7	ug/L	0	25	70-130
Naphthalene	100.	107.	107.	105.	105.	ug/L	2	25	70-130
Toluene	100.	100.	100.	100.	100.	ug/L	0	25	70-130
m+p-Xylenes	200.	200.	100.	197.	98.5	ug/L	2	25	70-130
o-Xylene	100.	104.	104.	103.	103.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			112.		115.				70-130
2,5-Dibromotoluene (PID)			111.		107.				70-130

http://www.katahdinlab.com

Page 1 of 1

600 Technology Way

Form 4 **Method Blank Summary**

Lab Name: Katahdin Analytical Services **SDG**: SQ6350 Lab Sample ID: WG345564-1 Date Analyzed: 16-NOV-23 Lab File ID: 2QK10051.D **Time Analyzed:** 17:01 **Instrument ID**: GC02 **Date Extracted:** 16-NOV-23

This Method Blank applies to the following samples and QC Samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG345564-2	2QK10052.D	11/16/23	17:43
Laboratory Control S	WG345564-3	2QK10053.D	11/16/23	18:24
AAFES-2-FAL23	SQ6350-2	2QK10055.D	11/16/23	21:53
XGM-94-04X-FAL23	SQ6350-9	2QK10062.D	11/17/23	02:49

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical ServicesSDG: SQ6350Lab Sample ID: WG345631-1Date Analyzed: 17-NOV-23Lab File ID: 2QK10070.DTime Analyzed: 14:18Instrument ID: GC02Date Extracted: 17-NOV-23

This Method Blank applies to the following samples and QC Samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG345631-2	2QK10071.D	11/17/23	14:59
Laboratory Control S	WG345631-3	2QK10072.D	11/17/23	15:40
AAFES-2-FAL23	SQ6350-2DL	2QK10073.D	11/17/23	17:47

5

7

8

10

11

12

1:

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SQ6350

Instrument ID: GC02 **Column ID:** A

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D **Calibration Date(s)**: 08-SEP-23 11:40

2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve				%RSD	nr R^2	
	1.0000	5.0000	10.0000	50.0000	100.0000	300.0000	Type	b	m1	m2	Result		
C9-C10 Aromatic	967	830	925	1037	1086	770	AVG		936		12.87041	25	О
Methyl tert-butylether	643	650	664	672	675	484	AVG		631		11.59012	25	О
Benzene	1284	1153	1230	1239	1246	873	AVG		1171		12.99251	25	O
Toluene	1077	998	1087	1130	1135	790	AVG		1036		12.58364	25	О
Ethylbenzene	1031	825	912	984	1004	700	AVG		909		13.93204	25	О
m+p-Xylene	1280	1073	1172	1224	1227	847	AVG		1137		13.93579	25	О
o-Xylene	980	914	1008	1056	1063	743	AVG		961		12.47813	25	О
1,2,4-trimethylbenzene	967	830	925	1037	1086	770	AVG		936		12.87041	25	О
Naphthalene	1131	931	965	1148	1264	1053	AVG		1082		11.47660	25	О
2,5-Dibromotoluene (PID)	868	610	669	803	920	714	AVG		764		15.69288	25	

Legend: O = Acceptable; W = Failed %RSD Value; X = Failed R^2 Value; Y = Failed Minimum RF

4

3

6

8

10

11

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: SQ6350

Instrument ID: GC02 **Column ID:** B

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D **Calibration Date(s)**: 08-SEP-23 11:40

2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve				%RSD	nr D^2	
	1.0000	5.0000	10.0000	50.0000	100.0000	300.0000	Type	b	m1	m2	Result		
C5-C8 Aliphatic	1368	1462	1510	1515	1550	1110	AVG		1419		11.55808	25	О
C9-C12 Aliphatic	1382	987	1139	1412	1613	1351	AVG		1314		16.76788	25	О
n-Pentane	1678	1360	1331	1423	1436	1022	AVG		1375		15.42459	25	О
2-Methylpentane	1325	1489	1568	1504	1565	1104	AVG		1426		12.68114	25	О
Methyl tert-butylether	1263	1466	1350	1342	1364	980	AVG		1294		12.92115	25	О
2,2,4-Trimethylpentane	1102	1535	1630	1619	1650	1205	AVG		1457		16.50443	25	О
Benzene	2236	1912	2014	2062	2078	1440	AVG		1957		14.02254	25	О
Toluene	2246	1805	1973	2008	2022	1402	AVG		1909		14.97234	25	О
n-Nonane	1233	1074	1149	1315	1445	1251	AVG		1244		10.38257	25	О
n-Decane	1302	833	875	1165	1553	1352	AVG		1180		23.90207	25	О
Ethylbenzene	1982	1598	1747	1898	1949	1366	AVG		1757		13.60981	25	О
m+p-Xylene	2144	1814	1973	2094	2091	1446	AVG		1927		13.69605	25	О
o-Xylene	2030	1823	2010	2129	2137	1484	AVG		1935		12.83633	25	О
1,2,4-trimethylbenzene	1886	1537	1710	1887	1985	1413	AVG		1736		12.94449	25	О
n-Butylcyclohexane	1461	1141	1402	1660	1673	1350	AVG		1448		13.85802	25	О
Naphthalene	1511	1246	1284	1588	1686	1382	AVG		1450		12.03582	25	О
2,5-Dibromotoluene (FID)	653	397	443	529	572	438	AVG		505		19.17753	25	

Legend: O = Acceptable; W = Failed %RSD Value; X = Failed R^2 Value; Y = Failed Minimum RF

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345564-4

Analytical Date: 11/16/23 14:28

Lab File ID: 2QK10050.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
•							VI -
C9-C10 Aromatic	936	998	998	0.100	6.60402	25.000	Averaged
Methyl tert-butylether	631	634	634	0.100	0.47833	25.000	Averaged
Benzene	1171	1167	1167	0.100	-0.35408	25.000	Averaged
Toluene	1036	1066	1066	0.100	2.83514	25.000	Averaged
Ethylbenzene	909	930	930	0.100	2.31487	25.000	Averaged
m+p-Xylene	1137	1158	1158	0.100	1.86422	25.000	Averaged
o-Xylene	961	1009	1009	0.100	5.04246	25.000	Averaged
1,2,4-trimethylbenzene	936	998	998	0.100	6.60272	25.000	Averaged
Naphthalene	1082	1075	1075	0.100	-0.60736	25.000	Averaged
2,5-Dibromotoluene (PID)	764	738	738	0.100	-3.38657	25.000	Averaged

^{*} = Compound out of QC criteria

9

6

R

9

11

12

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345564-4 **Lab File ID:** 2QK10050.D

Analytical Date: 11/16/23 14:28

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1465	1465	0.100	3.21119	25.000	Averaged
C9-C12 Aliphatic	1314	1310	1310	0.100	-0.26845	25.000	Averaged
n-Pentane	1375	1337	1337	0.100	-2.72731	25.000	Averaged
2-Methylpentane	1426	1466	1466	0.100	2.82124	25.000	Averaged
Methyl tert-butylether	1294	1382	1382	0.100	6.79350	25.000	Averaged
2,2,4-Trimethylpentane	1457	1591	1591	0.100	9.19703	25.000	Averaged
Benzene	1957	2098	2098	0.100	7.19890	25.000	Averaged
Toluene	1909	2049	2049	0.100	7.30622	25.000	Averaged
n-Nonane	1244	1286	1286	0.100	3.35508	30.000	Averaged
n-Decane	1180	1039	1039	0.100	-11.99269	25.000	Averaged
Ethylbenzene	1757	1940	1940	0.100	10.43258	25.000	Averaged
m+p-Xylene	1927	2106	2106	0.100	9.28072	25.000	Averaged
o-Xylene	1935	2162	2162	0.100	11.72170	25.000	Averaged
1,2,4-trimethylbenzene	1736	1962	1962	0.100	12.98448	25.000	Averaged
n-Butylcyclohexane	1448	1582	1582	0.100	9.28741	25.000	Averaged
Naphthalene	1450	1551	1551	0.100	6.97204	25.000	Averaged
2,5-Dibromotoluene (FID)	505	499	499	0.100	-1.34508	25.000	Averaged

^{* =} Compound out of QC criteria

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029 **REISSUE**

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345564-5

Analytical Date: 11/17/23 06:20

Lab File ID: 2QK10067.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06 **Instrument ID:** GC02

Column	ID: A
--------	-------

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	1007	1007	0.100	7.62309	25.000	Averaged
Methyl tert-butylether	631	656	656	0.100	3.89383	25.000	Averaged
Benzene	1171	1200	1200	0.100	2.51745	25.000	Averaged
Toluene	1036	1097	1097	0.100	5.90807	25.000	Averaged
Ethylbenzene	909	949	949	0.100	4.40221	25.000	Averaged
m+p-Xylene	1137	1180	1180	0.100	3.74619	25.000	Averaged
o-Xylene	961	1030	1030	0.100	7.17216	25.000	Averaged
1,2,4-trimethylbenzene	936	1007	1007	0.100	7.62218	25.000	Averaged
Naphthalene	1082	1127	1127	0.100	4.21040	25.000	Averaged
2,5-Dibromotoluene (PID)	764	786	786	0.100	2.83321	25.000	Averaged

^{* =} Compound out of QC criteria

REISSUE

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345564-5 **Lab File ID:** 2QK10067.D

Analytical Date: 11/17/23 06:20

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1431	1431	0.100	0.84261	25.000	Averaged
C9-C12 Aliphatic	1314	1162	1162	0.100	-11.56995	25.000	Averaged
n-Pentane	1375	1316	1316	0.100	-4.30261	25.000	Averaged
2-Methylpentane	1426	1451	1451	0.100	1.76376	25.000	Averaged
Methyl tert-butylether	1294	1476	1476	0.100	14.05257	25.000	Averaged
2,2,4-Trimethylpentane	1457	1527	1527	0.100	4.79708	25.000	Averaged
Benzene	1957	2156	2156	0.100	10.16816	25.000	Averaged
Toluene	1909	2104	2104	0.100	10.19962	25.000	Averaged
n-Nonane	1244	1128	1128	0.100	-9.31881	30.000	Averaged
n-Decane	1180	909	909	0.100	-22.98068	25.000	Averaged
Ethylbenzene	1757	1978	1978	0.100	12.61623	25.000	Averaged
m+p-Xylene	1927	2158	2158	0.100	11.98575	25.000	Averaged
o-Xylene	1935	2208	2208	0.100	14.10882	25.000	Averaged
1,2,4-trimethylbenzene	1736	1977	1977	0.100	13.88641	25.000	Averaged
n-Butylcyclohexane	1448	1415	1415	0.100	-2.26961	25.000	Averaged
Naphthalene	1450	1682	1682	0.100	16.03228	25.000	Averaged
2,5-Dibromotoluene (FID)	505	545	545	0.100	7.80993	25.000	Averaged

^{* =} Compound out of QC criteria

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029 **REISSUE** 3

4

5

9

11

12

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345631-4

Analytical Date: 11/17/23 12:53

Lab File ID: 2QK10069.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	998	998	0.100	6.66963	25.000	Averaged
Methyl tert-butylether	631	639	639	0.100	1.23241	25.000	Averaged
Benzene	1171	1161	1161	0.100	-0.80505	25.000	Averaged
Toluene	1036	1046	1046	0.100	0.90490	25.000	Averaged
Ethylbenzene	909	916	916	0.100	0.74221	25.000	Averaged
m+p-Xylene	1137	1142	1142	0.100	0.38854	25.000	Averaged
o-Xylene	961	998	998	0.100	3.91828	25.000	Averaged
1,2,4-trimethylbenzene	936	998	998	0.100	6.66898	25.000	Averaged
Naphthalene	1082	1088	1088	0.100	0.60171	25.000	Averaged
2,5-Dibromotoluene (PID)	764	761	761	0.100	-0.33165	25.000	Averaged

^{* =} Compound out of QC criteria

Л

5

6

8

9

11

12

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345631-4 **Lab File ID:** 2QK10069.D

Analytical Date: 11/17/23 12:53

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	/ Curve Type Qual
C5-C8 Aliphatic	1419	1546	1546	0.100	8.92253	25.000	Averaged
C9-C12 Aliphatic	1314	1377	1377	0.100	4.79435	25.000	Averaged
n-Pentane	1375	1422	1422	0.100	3.40514	25.000	Averaged
2-Methylpentane	1426	1546	1546	0.100	8.40177	25.000	Averaged
Methyl tert-butylether	1294	1411	1411	0.100	9.01279	25.000	Averaged
2,2,4-Trimethylpentane	1457	1670	1670	0.100	14.63897	25.000	Averaged
Benzene	1957	2104	2104	0.100	7.55051	25.000	Averaged
Toluene	1909	2023	2023	0.100	5.96218	25.000	Averaged
n-Nonane	1244	1303	1303	0.100	4.70508	30.000	Averaged
n-Decane	1180	1092	1092	0.100	-7.41817	25.000	Averaged
Ethylbenzene	1757	1926	1926	0.100	9.63222	25.000	Averaged
m+p-Xylene	1927	2096	2096	0.100	8.77003	25.000	Averaged
o-Xylene	1935	2156	2156	0.100	11.40445	25.000	Averaged
1,2,4-trimethylbenzene	1736	1983	1983	0.100	14.20433	25.000	Averaged
n-Butylcyclohexane	1448	1661	1661	0.100	14.74819	25.000	Averaged
Naphthalene	1450	1617	1617	0.100	11.57873	25.000	Averaged
2,5-Dibromotoluene (FID)	505	513	513	0.100	1.53243	25.000	Averaged

^{* =} Compound out of QC criteria

600 Technology Way
P.O. Box 540, Scarborough, ME 04070
Tel:(207) 874-2400 Fax:(207) 775-4029 **REISSUE**

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345631-5

Analytical Date: 11/18/23 00:09

Lab File ID: 2QK10082.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	978	978	0.100	4.51053	25.000	Averaged
Methyl tert-butylether	631	642	642	0.100	1.66647	25.000	Averaged
Benzene	1171	1166	1166	0.100	-0.44290	25.000	Averaged
Toluene	1036	1062	1062	0.100	2.47804	25.000	Averaged
Ethylbenzene	909	917	917	0.100	0.86319	25.000	Averaged
m+p-Xylene	1137	1140	1140	0.100	0.27773	25.000	Averaged
o-Xylene	961	999	999	0.100	3.99114	25.000	Averaged
1,2,4-trimethylbenzene	936	978	978	0.100	4.51038	25.000	Averaged
Naphthalene	1082	1108	1108	0.100	2.45227	25.000	Averaged
2,5-Dibromotoluene (PID)	764	774	774	0.100	1.36203	25.000	Averaged

^{* =} Compound out of QC criteria

4

_

0

10

11

12

4:

Lab Name: Katahdin Analytical Services

SDG: SQ6350

Lab ID: WG345631-5 Lab File ID: 2QK10082.D **Analytical Date:** 11/18/23 00:09

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1485	1485	0.100	4.63327	25.000	Averaged
C9-C12 Aliphatic	1314	1249	1249	0.100	-4.95680	25.000	Averaged
n-Pentane	1375	1368	1368	0.100	-0.52801	25.000	Averaged
2-Methylpentane	1426	1498	1498	0.100	5.06523	25.000	Averaged
Methyl tert-butylether	1294	1436	1436	0.100	10.96163	25.000	Averaged
2,2,4-Trimethylpentane	1457	1589	1589	0.100	9.08172	25.000	Averaged
Benzene	1957	2146	2146	0.100	9.68674	25.000	Averaged
Toluene	1909	2086	2086	0.100	9.27776	25.000	Averaged
n-Nonane	1244	1214	1214	0.100	-2.42901	30.000	Averaged
n-Decane	1180	997	997	0.100	-15.47739	25.000	Averaged
Ethylbenzene	1757	1966	1966	0.100	11.89215	25.000	Averaged
m+p-Xylene	1927	2158	2158	0.100	12.00547	25.000	Averaged
o-Xylene	1935	2223	2223	0.100	14.85803	25.000	Averaged
1,2,4-trimethylbenzene	1736	1957	1957	0.100	12.71609	25.000	Averaged
n-Butylcyclohexane	1448	1500	1500	0.100	3.61803	25.000	Averaged
Naphthalene	1450	1677	1677	0.100	15.68874	25.000	Averaged
2,5-Dibromotoluene (FID)	505	565	565	0.100	11.74030	25.000	Averaged

^{* =} Compound out of QC criteria

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029 REISSUE

Form 8 GC Analytical Sequence

Lab Name: Katahdin Analytical Services SDG: SQ6350

Instrument ID: GC02

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	DBT (FID)	DBT (PID)
Initial Calibration	WG342400-4	09/08/23	11:40		31.608
Initial Calibration	WG342400-4	09/08/23	11:40	31.597	
Initial Calibration	WG342400-1	09/08/23	12:21		31.591
Initial Calibration	WG342400-1	09/08/23	12:21	31.577	
Initial Calibration	WG342400-2	09/08/23	13:02		31.599
Initial Calibration	WG342400-2	09/08/23	13:02	31.589	
Initial Calibration	WG342400-3	09/08/23	13:43		31.593
Initial Calibration	WG342400-3	09/08/23	13:43	31.583	
Initial Calibration	WG342400-5	09/08/23	14:25		31.599
Initial Calibration	WG342400-5	09/08/23	14:25	31.588	
Initial Calibration	WG342400-6	09/08/23	15:06		31.597
Initial Calibration	WG342400-6	09/08/23	15:06	31.587	
Independent Source	WG342400-7	09/08/23	17:40	31.599	31.612
Continuing Calibrati	WG345564-4	11/16/23	14:28	31.497	31.507
Method Blank	WG345564-1	11/16/23	17:01	31.523	31.534
Laboratory Control S	WG345564-2	11/16/23	17:43	31.512	31.522
Laboratory Control S	WG345564-3	11/16/23	18:24	31.504	31.514
AAFES-2-FAL23	SQ6350-2	11/16/23	21:53	31.462	31.474
XGM-94-04X-FAL23	SQ6350-9	11/17/23	02:49	31.443	31.453
Continuing Calibrati	WG345564-5	11/17/23	06:20	31.442	31.452
Continuing Calibrati	WG345631-4	11/17/23	12:53	31.5	31.51
Method Blank	WG345631-1	11/17/23	14:18	31.517	31.528
Laboratory Control S	WG345631-2	11/17/23	14:59	31.513	31.523
Laboratory Control S	WG345631-3	11/17/23	15:40	31.51	31.52
AAFES-2-FAL23	SQ6350-2DL	11/17/23	17:47	31.522	31.531
Continuing Calibrati	WG345631-5	11/18/23	00:09	31.469	31.479

2

3

6

0

9

11

12

ARVC Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com

US Army Corps of Engineers •

Project Name: Former Fort Devens, Long Term Monitoring							Lab	Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA												Event: Seres-Arcadis JV, Supplemental		
roj	ect Number: DEVNS-LTM	PO 2	106 - 00	000001			PO	C: Je	erry L	anier,	912	-250-	028	1, jerr	y.lani	er@eurofinsus.com				Remedial Investigation, AOC 43G, Fall 2023		
VB:	S Code:						Ship	p to:	Euro	fins T	estA	meric	a, 5	102 L	aRoc	he Avenue, Savannah, GA 3	1404					
Comments: IADEPEP (A) = EPH with PAHs IADEPPP (A) = VPH with targets W6010C (L) = AI Fe Mn W6010C/FLDFLT (L) = AI Fe Mn W6020B/FLDFLT (B) = As Equipment: Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 43G, Fall					MADEPEP (A)	MADEPVP (A)	SW6010C - AI			SW6010C/FLDFLT (L)	1 4		SW9060A - TOC	Code Matrix WG Ground Water Code Container/Preservative 2 2x1 Liter, amber, glass, 4 3x 40mL glass VOA Vials 5 1x 125mL plestic, Cool < 9 1x 250mL, plestic, HNO3, 10 1x 250mL, plestic, HNO3,	, HCl, pH < 2; Cool < 6 6degC , pH < 2; Cool < 6degC	BdegC						
	Event: Seres-Arcadis JV, S 2023	Suppler	mental R	Remedial Investi	igation, AOC		2	4	9	-		9 9			10							
						Sama							T				Sample	Depth	(ft bgs)			
	Sample ID		Matrix	Date	Time	Samp Init.										Location ID	Туре	Top -	Bottom	Cooler	Comments	
1	43GPZ-19-01-FAL23	×	WG							寸	x i	x x	×	X	Х	43GPZ-19-01	N1	9.83	19.83	1		
2	43GPZ-19-02-FAL23	X	WG	11-9-23	1250	AF					x :	x x	X			43GPZ-19-02	N1	19.33	29.33	1	Metals only (D	
3	43GPZ-19-03-FAL23	×	WG	11-10-23	0903	ms	Х	Х			X .	x x	X	X	х	43GPZ-19-03	N1	15.00	25.00	1	16	
4	43GPZ-19-04-FAL23	×	WG	11-9-23	0925	ms					x :	x x	X	X	Х	43GPZ-19-04	N1	2.00	12.00	1		
5	43GPZ-19-05-FAL23	×	WG	11-9-23	1046	MS					X :	x x	X	X	Х	43GPZ-19-05	N1	6.00	16.00	1		
6	43GPZ-19-06-FAL23	*	WG	11-9-23	1211	ms					x i	x x	×	X	Х	43GPZ-19-06	N1	10.00	20.00	1		
7	AAFES-2-FAL23-SRI	V	WG	11-10-23	0940	AF	X	4	x			x x	×	X	х	AAFES-2	N1	16.20	33.30	1		
8	AAFES-5-FAL23	~	WG	119-23	1450	AF	Х	х			x :	x x	×	X	Х	AAFES-5	N1	15.22	30.50	1		
9	AAFES-6R-FAL23	~	WG	11-10-23	1225	AF	X	х			x .	x x	×	X	х	AAFES-6R	N1	15.00	26.97	1		
10	AAFES-7-FAL23-SRI	¥	WG	1-10-27	1025	MS				х		x x	X	X	X	AAFES-7	N1	4.50	14.50	1		
1	AOC43G-DUP02-FAL23	×	WG	11-10-23	0940	AF	x		X			x x	X		П	AAFES-2	FD1	16.20	33.30	1		
2	AOC43G-DUP03-FAL23	7	WG						х			x x	X		П	XGM-97-12X	FD1	24.00	34.00	1		
13	XGM-20-01A-FAL23	~	WG	11-10-23	113.3	MS					x :	x x	X	X	x	XGM-20-01A	N1	10.50	20.50	1		
14	XGM-20-02A-FAL23	X	WG	11-10-23	0928	FM					x i	x x	X	X	х	XGM-20-02A	N1	13.00	23.00	1		
15	XGM-20-03A-FAL23	Y	WG	11-9-23	1405	Tm				\neg	-	x x	+	+-	x	XGM-20-03A	N1	20.00		4		
16	XGM-23-01-FAL23	×	WG	11-10-23	1225	PM	x	х	\Box		x i	x x	×	X	x	XGM-23-01	N1	23.00	111111		III BBII (18818 (1811 BIBIS 11818 11818	
17	XGM-23-02-FAL23	×	WG	11-10-23	1200	De	x	x			x i	x x	×	X	x	XGM-23-02	N1	0.00				
18	XGM-23-03-FAL23	7	WG	11-9-23	1345	Do	_	x			-	x x	_	+-	x	XGM-23-03	N1	0.00	T //////			
19	XGM-93-02X-FAL23-SRI	7	WG				Х		x			x x	_	X	X	XGM-93-02X	N1	28.00				
13							-		\vdash	-	_		1		1	XGM-94-04X	MS1	18.20	+ 680-2	42928 C	Chain of Custody	
20	XGM-94-04X-FAL23-SRI	<	WG	11-9-23	1100	O	X		x	-	- 12	x x	X		1 1	VOIAL-24-04V	MOI	10.20			rialli of Custody	

Relinquished by: (Signature)

Date Time

Received by: (Signature)

Drune Clar 11-10-23

Received by Laboratory: (Signature)
Date
Page integ of 51
| 6/1.9 5.4/5.7 2.4/2.7 3.6/31/31/2024 (Rev. 1)

COC# 43G-SRI-FAL23

ARVC Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com

				Lab	orato	ory: E	urofi	ns E	nviro	estir	ng T	estAme	rica, Savannah, GA			Event: Seres-Arcadis JV, Supplemental								
Pro	ect Number: DEVNS-LTM	PO 2	106 - 00	000001			PO	C: Je	rry L	anie	r, 91	2-25	0-02	81, j	erry.	.lani	er@eun	ofinsus.com				Remedial Investigation, AOC 43G, Fall 2023		
WB	Code:						Shi	o to:	Euro	fins	Test	Ame	rica,	5102	2 La	Roc	he Aver	ue, Savannah, GA 3	1404				***	
MADE SW66 SW66	MADEPEP (A) = EPH with PAHs MADEPVP (A) = VPH with targets SW6010C (L) = AI Fe Mn SW6010C/FLDFLT (L) = AI Fe Mn SW6020B/FLDFLT (B) = As					Analytical Test Method	MADEPEP (A)	1 ^ 1	SW6010C - Al	SW6010C - AI Fe	SW6010C (L)	SW6010C/FLDFLT (L)	SW6020B - As	SW6020B/FLDFLT (B)	SW9056A - SO4	SW9060A - TOC	Code 2 4 5 9 10	Ground Water	HCl, pH < 2; Cool < 6degC pH < 2; Cool < 6degC	degC				
	Event: Seres-Arcadis JV, S 2023	Supple	mental F	Remedial Investi	igation, AOC 4		2 MAI	4 WAE	e SW6	e SW	F-1				-,7	10								
	Sample ID		Matrix	Date	Time	Samp Init.												Location ID	Sample Type		(ft bgs) Bottom	Cooler	Comments	
22	XGM-94-04X-FAL23-SRI	X	WG	114.23	1100	D.	x		X			x	x	x	7		_	XGM-94-04X	SD1	18.20	30.50	1	Constitution	
23	XGM-94-06X-FAL23	Y	WG	11-0.12	1235	FM				+	-		\rightarrow	-	x	x		XGM-94-06X	N1	17.00	27.00	1		
24	XGM-94-07X-FAL23	×	WG	11-123	0945	OL	x	×		\dashv	\rightarrow	\rightarrow	_	_	_	x		XGM-94-07X	N1	17.00	29.60	1		
25	XGM-94-08X-FAL23	~	WG	11-2-23	1005	FM	+	-		\neg	-+	-+	-	-+	-	x		XGM-94-08X	N1	23.50	36.10	1		
26	XGM-94-10X-FAL23	X	WG	11-10-23		FM				\dashv	-+	-+	\rightarrow	\rightarrow	\rightarrow	x		XGM-94-10X	N1	21.50	33.80	1		
27	XGM-97-12X-FAL23-SRI	V	WG.			1	×		x		\rightarrow	\rightarrow	\rightarrow	\rightarrow	-	x		XGM-97-12X	N1	24.00	34.00	1		
28				-				П		\dashv	寸		十	十	\dashv									
29													\top	\top	\dashv									
30										\dashv			\top	\top	\dashv									
31										_	\dashv	_	\dashv	\top	\neg				1			 		
32				101121			Т	П			7	7	十	十	ヿ									
33											1	7	\top	十	寸				 			 		
34							\vdash	\sqcap			\dashv	\dashv	7	\top	\dashv	T						 		
35								\Box			_	7	\dashv	\top	\dashv							1		
36					-			П			\dashv	\dashv	+	\top	\dashv	\neg	_							
37								\Box					\top	\top	\neg									
Turi	naround Time: Standard			• • •	1-4 H																			

Date Time

Received by: (Signature)

Drau Clip 11-10-23 1400

Received by Laboratory: (Signature)

Page 50 of 51

OM 74 11-14-23 1005

Client: Seres Engineering & Services LLC

Job Number: 680-242928-2

Login Number: 242928 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

J

9

10

12

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 12/29/2023 4:56:10 PM

JOB DESCRIPTION

Fort Devens, Long Term Monitoring

JOB NUMBER

680-242934-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/29/2023 4:56:10 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

3

4

5

7

40

1 1

12

Definitions/Glossary

Client: Seres Engineering & Services LLC
Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2

Qualifiers

Metals

Qualifier Qualifier Description

Undetected at the Limit of Detection.

General Chemistry

Qualifier Qualifier Description

Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Page 3 of 47 12/29/2023

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242934-1	XGM-93-02X-FAL23	Water	11/13/23 12:00	11/14/23 10:05
680-242934-2	XGM-97-12X-FAL23	Water	11/13/23 09:50	11/14/23 10:05

4

5

9

10

Case Narrative

Client: Seres Engineering & Services LLC Project: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2 Eurofins Savannah

Job Narrative 680-242934-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/14/2023 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.1°C

Subcontract Work

Method MAVPH: This method was subcontracted to Katahdin Analytical Services. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Page 5 of 47 12/29/2023

2

Job ID: 680-242934-2

3

4

5

7

8

9

4 4

Client Sample Results

Client: Seres Engineering & Services LLC Job ID: 680-242934-2

Project/Site: Fort Devens, Long Term Monitoring

Client Sample ID: XGM-93-02X-FAL23 Lab Sample ID: 680-242934-1

Date Collected: 11/13/23 12:00 East Sample 15: 000-242554-1

Date Received: 11/14/23 10:05

Method: SW846 6010C - Meta	als (ICP) - Total Red	coverable						
Analyte	Result Qua	alifier LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	7100	100	50	20	ug/L		11/16/23 13:25	1
Manganese	940	10	5.0	1.3	ug/L		11/16/23 13:25	1
General Chemistry								

General Chemistry										
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D)	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5	140		5.5	5.0	2.2	mg/L			11/21/23 12:55	1

_(SM 2320B-2011)

5

6

0

10

10

Client Sample Results

Client: Seres Engineering & Services LLC

Job ID: 680-242934-2

Project/Site: Fort Devens, Long Term Monitoring

Client Sample ID: XGM-97-12X-FAL23 Lab Sample ID: 680-242934-2

Date Collected: 11/13/23 09:50 Matrix: Water Date Received: 11/14/23 10:05

Method: SW846 6010C - Me	tals (ICP) - Total Recoverab	le					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Iron	37000	100	50	20 ug/L		11/16/23 13:28	1
Manganese	2000	10	5.0	1.3 ug/L		11/16/23 13:28	1

						_			
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5	170		5.5	5.0	2.2	mg/L		11/21/23 12:46	1
(SM 2320B-2011)									

7

10

12

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-242934-2

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-808513/1-A

Matrix: Water

Analysis Batch: 808771

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 808513

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/16/23 12:46	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/16/23 12:46	1

Lab Sample ID: LCS 680-808513/2-A **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Matrix: Water**

Analyte Iron Manganese

Analysis Batch: 808771

							Prep B	atch: 8085	13
	Spike	LCS	LCS				%Rec		
	Added	Result	Qualifier	Unit	D	%Rec	Limits		
-	4990	4740		ug/L		95	87 - 115		_
	400	387		ug/L		97	90 - 114		

Method: 2320B-2011 - Alkalinity, Total

Lab Sample ID: MB 680-809458/4 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 809458

_	MB	MB						
Analyte	Result	Qualifier	LOQ	LOD	DL U	Init D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5	5.0	U	5.5	5.0	2.2 m	ng/L	11/21/23 12:00	1

Lab Sample ID: LCS 680-809458/6 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 809458

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Alkalinity as CaCO3 to pH	250	240		mg/L		96	90 - 112	
4.5								

Lab Sample ID: LCSD 680-809458/19 **Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA**

Analysis Batch: 809458

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Alkalinity as CaCO3 to pH	250	244		mg/L		98	90 - 112	2	30

4.5

Eurofins Savannah

12/29/2023

QC Association Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2

Metals

Prep Batch: 808513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242934-1	XGM-93-02X-FAL23	Total Recoverable	Water	3005A	
680-242934-2	XGM-97-12X-FAL23	Total Recoverable	Water	3005A	
MB 680-808513/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808513/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 808771

Lab Sample ID 680-242934-1	Client Sample ID XGM-93-02X-FAL23	Prep Type Total Recoverable	Matrix Water	Method 6010C	Prep Batch 808513
680-242934-2	XGM-97-12X-FAL23	Total Recoverable	Water	6010C	808513
MB 680-808513/1-A	Method Blank	Total Recoverable	Water	6010C	808513
LCS 680-808513/2-A	Lab Control Sample	Total Recoverable	Water	6010C	808513

General Chemistry

Analysis Batch: 809458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242934-1	XGM-93-02X-FAL23	Total/NA	Water	2320B-2011	
680-242934-2	XGM-97-12X-FAL23	Total/NA	Water	2320B-2011	
MB 680-809458/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-809458/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-809458/19	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

12/29/2023

2

4

6

9

10

11

12

Lab Chronicle

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Lab Sample ID: 680-242934-1

Client Sample ID: XGM-93-02X-FAL23 Date Collected: 11/13/23 12:00

Matrix: Water

Date Received: 11/14/23 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	808513	11/16/23 06:21	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C at ID: ICPH		1			808771	11/16/23 13:25	BJB	EET SAV
Total/NA	Analysis Instrumer	2320B-2011 at ID: MANTECH 2		1			809458	11/21/23 12:55	AS	EET SAV

Client Sample ID: XGM-97-12X-FAL23 Lab Sample ID: 680-242934-2

Date Collected: 11/13/23 09:50 **Matrix: Water**

Date Received: 11/14/23 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	808513	11/16/23 06:21	RR	EET SAV
Total Recoverable	Analysis Instrumer	6010C at ID: ICPH		1			808771	11/16/23 13:28	BJB	EET SAV
Total/NA	Analysis Instrumer	2320B-2011 at ID: MANTECH 2		1			809458	11/21/23 12:46	AS	EET SAV

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 Job ID: 680-242934-2

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

١	Authority	Program	Identification Number	Expiration Date	
١	ANAB	Dept. of Defense ELAP	L2463	09-22-24	

00-242934-2

-

4

5

7

0

J

11

12

Method Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242934-2

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
2320B-2011	Alkalinity, Total	SM	EET SAV
MA-VPH	MADEP VPH Volatile Petroleum Hydrocarbon	MA DEP	
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 3

4

5

6

8

40

11

12

Laboratory Name: Katahdin Analytical Services, LLC. Project #:							
Proje	ect Location	on: Fort Devens			RTN:		
This	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): SQ6351-1 and -2						
Matri	ces: X Gr	oundwater/Surface	Water Soil/Sedir	ment Drinking Wa	ater Air Other:		
CAM	Protoco	l (check all that ap	oply below):				
8260 CAM		7470/7471 Hg CAM III B	MassDEP VPH CAM IV A X	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP A	ΛPH
8270 SVOC CAM II B		7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B	;
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B		
Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status							
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?					No	
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?			X Yes	No		

MassDEP Analytical Protocol Certification Form

С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	X Yes	No		
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	X Yes	No		
E	VPH, EPH, APH, and TO-15 only: a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?	X Yes Yes	No No		
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	X Yes	No		
Res	Responses to Questions G, H and I below are required for "Presumptive Certainty" status				
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	X Yes	No ¹		
<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	X Yes	No ¹		
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	X Yes	No ¹		

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: Position: Q.A. Officer

Printed Name: Jennifer Prescott Date:_ 12/18/2023

¹All negative responses must be addressed in an attached laboratory narrative.

TEST AMERICA SAVANNAH

FORT DEVENS - LTM

SQ6351

Jennifer Prescott 207-874-2400

KATAHDIN ANALYTICAL SERVICES 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074 2

3

5

6

Q

9

12

SAMPLE DATA PACKAGE

Ę

0

9

11

13

NARRATIVE KATAHDIN ANALYTICAL SERVICES TEST AMERICA SAVANNAH FORT DEVENS - LTM SQ6351

Sample Receipt

The following samples were received on November 16, 2023 and were logged in under Katahdin Analytical Services work order number SQ6351 for a hardcopy due date of December 07, 2023.

TEST AMERICA SAVANNAH
Sample Identification
XGM-93-02X-FAL23-SRI
XGM-97-12X-FAL23-SRI

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2017 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Heather Manz**. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of Work Order SQ6351 were analyzed in accordance with Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MADEP, May 2004, Revision 1.1. and/or for the specific methods listed below or on the Report of Analysis.

MA VPH Analysis

Samples SQ6351-1, 2, and 2DL were manually integrated for the surrogate 2,5-dibromotoluene on the PID and FID, the target analytes methyl tert-butyl ether, benzene, toluene, naphthalene, and/or the C9-C10 aromatic and C9-C12 aliphatic ranges. The specific reason for the manual integration is indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The independent check standard (file 2QI10012), associated with the initial calibration analyzed on the GC02 instrument on 9/8/23 had a high concentration for the target analyte naphthalene on the PID, which exceeded the laboratory acceptance limit of $\pm 20\%$ of the expected value from the ICAL.

There were no other protocol deviations or observations noted by the organics laboratory staff.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized the Quality Assurance Officer, or their designee, as verified by the following signature.

12/18/2023

Jennifer Prescott
Quality Assurance Officer

P.O. Box 540, Scarborough, ME 04070

600 Technology Way, Scarborough, ME 04074

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
МЗ	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Client: Eurofins Sau	anne	14		KA	S PM:		HHM .	Sampled	Ву:	Clien	+
Project:		(B11/16)		KIN	MS Entr	у Ву:	TCB	Delivere	Ву:	Feols	*
KAS Work Order#: SQ L34	10	6350,	6351	KIN	//S Revi	ew By:	them	Received	Ву:	EP	
	1//	0,,,,	0001		peled By	<i>i</i> :	61	1			
SDG #: :		Cooler:	1	of			Date/Time	Rec.:	11-1	6-23	094
Receipt Criteria	а .		Υ	N	EX*	NA	Comr	ments ar	d/or Res	solution)
1. Custody seals present / intact	3		/	-							
2. Chain of Custody present in co	ooler	N	/								
3. Chain of Custody signed by cl	ent?		/								
4. Chain of Custody matches sar	nples	?								Then	mometer
5. Temperature Blanks present? temperature of any sample w/ IR	If n gun.	ot, take	/				Temp (°C):	1.40	_	11	IR-1
Samples received at <6 °C w	o fre	ezing?	/				Note: Not require	ed for metal	s (except H	g soil) and	alysis.
Ice packs or ice present?			/				The lack of ice				
If yes, was there sufficient ice temperature requirements?	to m	eet	/				not meet certa may invalidate	in regula	tory requi		
If temp. out, has the cooling p (i.e. ice or packs present) and collection times <6hrs., but sa yet cool?	sam	ple		فكالله استيم		<i>/</i>	Note: No cool (except Hg so			ed for m	etals
6. Volatiles: Aqueous: No bubble larger than Soil/Sediment:		?	/			/					
Received in airtight container Received in methanol? Methanol covering soil?		*			:						
D.I. Water - Received within 48 ho	ur H	Γ?				4					
7. Trip Blank present in cooler?	100 (100 (100 (100 (100 (100 (100 (100						4				
3. Proper sample containers and v	olum	e?	1								
Samples within hold time upon	recei	ot?									
 Aqueous samples properly pre Metals, COD, NH3, TKN, O/G TPO4, N+N, TOC, DRO, TPH Sulfide - >9 Cyanide pH >12 	pher	nol,				/,					
11. Bottleware Prepped on:									11 1		
Log-In Notes to Exceptions: d	ocun	nent any p	roblem	s with	samp	les or	discrepancies	s or pH #	idjustme	nts.	
A-048 - Revision 8 - 09/11/2020	Street County (Manual Manual Color)										

Katandin Analytical Services, LLC.

Sample Receipt Condition Report

Ver: 06/08/2021

Cooler Temperature(s) °C and Other Remarks

Received by:

Company

Date/Time:

Custody Seal No.

Custody Seals Infact: Δ Yes Δ No

elinquished by:

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue

SQ 635/ Seurofins | Environment Testing

Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165	נ	onain oi custody Record	isno i	ody Ke	202	-							-	Environment Testing
(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Sampler			Lab PM:					Carrier Tra	Carrier Tracking No(s):		COC No:		
Client Information (Sub Contract Lab)	Dhono.			Lanier	Lanier, Jerry A							680-756344.1		
Shipping/Receiving	FIIONE:			E-Mail: Jerry.l	anier@	E-Mail: Jerry.Lanier@et.eurofinsus.com	mos.com		State of Origin: Massachusetts	igin: nusetts		Page: Page 1 of 1		
Company: Katahdin Analytical Services				4 1	ept. of [Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD - ANAB	(See note): LAP - A2I	A; DoD	- ANAB			Job #: 680-242934-1		
Address: 600 Technology Way,	Due Date Requested: 11/28/2023						Anal	vsis R	Analysis Requested			Preservation Codes:	codes:	
City: Scarborough	TAT Requested (days):	18):				L						A - HCL B - NaOH		800
State, Ztp: ME, 04074	1									-		C - Zn Acetate D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3	
Phone:	PO #.											F - MeOH G - Amchlor		3 lecahydrate
Email:	WO#:				THE RESERVE									
Project Name: Fort Devens, Long Term Monitoring	Project #: 68023801				4 10 s							Selfa balan sana	w - pH 4-5 Y - Trizma Z - other (specify)	ecify)
Site:	SSOW#:				SD (Ye		* *					Other:		
			Sample Type (C=comp,	Matrix (W-water, S-solid, O-waste/oil,	2 benediid ble :MI2M mnoth M (H9VAM) 8							Tedmuk la		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) B	3	ьч								Special Instructions/Note:	/Note:
			Preservation Code	on Code:	X									
XGM-93-02X-FAL23 (680-242934-1)	11/13/23	12:00 Eastern		Water	×							e		
XGM-97-12X-FAL23 (680-242934-2)	11/13/23	09:50 Eastern		Water	×							3		
											4			
											201			
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of mathod, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/maintx being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	nt Testing Southeast, LL nalysis/tests/matrix being ion immediately. If all re	C places the ow g analyzed, the s quested accredi	nership of me iamples must tations are cu	thod, analyte & be shipped bac rrent to date, re	accreditati	on complian rofins Enviro	ce upon our noment Test of Custody a	subcontra ing Southe ttesting to	ct laboratories ast, LLC laboraid	This samp atony or othe ce to Eurofin	l ble shipment er instructions s Environme	s forwarded under ch will be provided. An nt Testing Southeast,	iain-of-custody. If y changes to acci LLC.	the laboratory reditation
Possible Hazard Identification					Samp	le Dispos	al (A fee	may be	assessed	if sample	s are refa	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)	
Unconfirmed						Return To Client	Client	_	Disposal By Lab	y Lab] -	Archive For	Months	
Deliverable Requested∷ i, II, IV, Other (specify)	Primary Deliveral	able Rank: 2			Specia	Special Instructions/QC Requirements:	ons/QC R	equirem	ents:					
Empty Kit Relinquished by:		Date:			Time:		١,		Meth	Method of Shipment	ent			
Kellinduğuru uz.	Date/Fine: 23	1609		Сотрапу	Rei	Received by:	1			Date/Time	2-9	3 0945	Company	asoly
Relinquished by:	Date/Time:		٥	Company	Rei	Received by:				Date/Time	Time:		Company	

Katahdin Analytical Services

Login Chain of Custody (In01)

Nov. 16, 2023 03:48 PM Page: 1 of 2

Login Number: SQ6351

Account: TESTAMERICASAVLAB001 Test America Savannah

Project: TASAV-DEVENS

Primary Report Address:

Jerry Lanier

Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

Jerry.Lanier@testamericainc.com

Primary Invoice Address:

Accounts Payable Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

email project manager and beth.daughtry@et.eurofinsus.com

Report CC Addresses: Invoice CC Addresses: Quote/Incoming: TASAV-DEVENS

Login Information

ANALYSIS INSTRUCTIONS : FDS, DOD QSM 5.3 reporting with DOD limits.

ND to LOD. "J" flag between MDL and PQL. Need LCS/LCSD. Follow MA MCP CAM.

Include level 4 narrative.

CHECK NO.

CLIENT PO# : US1672979726
CLIENT PROJECT MANAGE : Jerry Lanier

CONTRACT : 68023801, 680-242934

COOLER TEMPERATURE : 1.4

DELIVERY SERVICES : FedEx

EDD FORMAT : ECC-091317-TXT

ISM INSTRUCTIONS

LOGIN INITIALS : JCB
PM : HHM

PROJECT NAME : Fort Devens - LTM

QC LEVEL : IV

REPORT INSTRUCTIONS : SDS needs all forms. Include Level 4 narrative

and MCP forms (from Leslie). Send level 4 PDF & level 2 PDF. Level 2= SDP & SDS. Upload EDD to Ft. Devens Database. Email PDF, EDD, and invoice to Beth.Daughtry@Eurofinset.com &

Jerry.Lanier@et.eurofinsus.com. No HC.

SDG ID

SDG STATUS : TEMPLATE : VERBAL TAT :

Run Reports: Logindetail

2

3

4

5

7

9

10

11

Katahdin Analytical Services Login Chain of Custody (In01)

Nov. 16, 2023 03:48 PM

Login Number: SQ6351

Account: TESTAMERICASAVLAB001 Test America Savannah

Project: TASAV-DEVENS

Quote/Incoming: TASAV-DEVENS

Laboratory Sample ID	Client Sample Number	Collect Date/Time	Receive Date	PR	Due Date	Verbal Due Date	Mailed
SQ6351-1	XGM-93-02X-FAL23-SRI	13-NOV-23	12:00 16-NOV-23		07-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	27-NOV-23			40mL Vial+HCI		
Service	S REPORTING						
SQ6351-2	XGM-97-12X-FAL23-SRI	13-NOV-23 (09:50 16-NOV-23		07-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	27-NOV-23			40mL Vial+HCI		

Total Samples: 2 Total Analyses: 3

Run Reports: Logindetail

Page: 2 of 2

3

4

6

8

11

12

SAMPLE DATA SUMMARY PACKAGE

11

12

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL, "U" LOQ or "U" LOD, where the rate of false negatives is <1%.
- * Compound recovery or percent RPD (relative percent difference) was outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), but above the Method Detection Limit (MDL).

And/or

- J Used for Dual Column analytes when there is a greater than 40% difference for detected concentrations between the two GC/HPLC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- I Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration (ICAL).
- D Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration Verification (ICV).
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding opening Calibration Verification (CV).
- V Indicates that the flagged compound did not meet DoD criteria in the corresponding closing Calibration Verification (CV).
- L/LL Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M/MM Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike (MS) and/or Matrix Spike Duplicate MSD) prepared and/or analyzed concurrently with the native sample.
- H Indicates the flagged compound was detected on the primary column but was not detected on the confirmation column therefore the compound is not reported as a positive detection. (SW846 8330A/B only)

DM-002 - Revision 8 - 11/02/2022

Report of Analytical Results

SDG: SQ6351 **Lab ID:**SQ6351-1

Client ID: XGM-93-02X-FAL23-SRI

Matrix:AQ

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Lab File ID: 2QK10065.D

Sample Date: 13-NOV-23 Extract Date: 17-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

Report Date: 04-DEC-23 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	J	2.4	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		111.	%					
2,5-Dibromotoluene (PID)		105.	%					

Page 1 of 1

http://www.katahdinlab.com

Report of Analytical Results

SDG: SQ6351 **Lab ID:**SQ6351-2

Client ID: XGM-97-12X-FAL23-SRI

Matrix:AO

Lab File ID: 2QK10066.D

Sample Date: 13-NOV-23 Extract Date: 17-NOV-23

Extracted By:DL

Extraction Method: MA-VPH Lab Prep Batch: WG345564

Analysis Date: 17-NOV-23

Report Date: 11-DEC-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics		470	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	E	900	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	E	1200	ug/L	1	100	100	50.	75.
Benzene		6.3	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	E	330	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene		95	ug/L	1	5	5.0	1.6	3.8
Toluene	J	1.9	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes		62	ug/L	1	10	10.	0.92	7.5
o-Xylene		29	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		99.8	%					
2,5-Dibromotoluene (PID)		97.2	%					

Page 1 of 1

Report of Analytical Results

SDG: SQ6351 **Lab ID:**SQ6351-2DL

Client ID: XGM-97-12X-FAL23-SRI

Matrix:AQ

Lab File ID: 2QK10075.D

Sample Date: 13-NOV-23 Extract Date: 17-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345631

Report Date: 04-DEC-23 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	380	ug/L	5	100	500	250	380
C9-C12 Aliphatics	J	360	ug/L	5	100	500	250	380
C9-C10 Aromatics		520	ug/L	5	100	500	250	380
Benzene	U	10	ug/L	5	3	15.	1.6	10.
Ethylbenzene		120	ug/L	5	5	25.	2.1	19.
Methyl tert-butylether	U	19	ug/L	5	5	25.	1.6	19.
Naphthalene		36	ug/L	5	5	25.	8.0	19.
Toluene	U	19	ug/L	5	5	25.	1.7	19.
m+p-Xylenes	J	26	ug/L	5	10	50.	4.6	38.
o-Xylene	J	11	ug/L	5	5	25.	2.4	19.
2,5-Dibromotoluene (FID)		88.1	%					
2,5-Dibromotoluene (PID)		81.2	%					

Page 1 of 1

Report of Analytical Results

SDG: SQ6351 Lab ID:WG345564-1 Client ID:Method Blank

Matrix:AQ

Lab File ID: 2QK10051.D

Sample Date: N/A Extract Date: 16-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564

Report Date: 04-DEC-23 **Analysis Date:** 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		89.9	%					
2,5-Dibromotoluene (PID)		92.5	%					

Page 1 of 1

Report of Analytical Results

SDG: SQ6351 Lab ID:WG345631-1 Client ID:Method Blank

Matrix: AQ

Lab File ID: 2QK10070.D

Sample Date: N/A Extract Date: 17-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345631

Report Date: 04-DEC-23 **Analysis Date:** 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		83.8	%					
2,5-Dibromotoluene (PID)		89.2	%					

Page 1 of 1

Form 2
System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services SDG: SQ6351 Matrix: AQ

Client Sample ID	Lab Sample ID	Col. ID	DBT-FIL #	DBT-PII #
XGM-93-02X-FAL23-SRI	SQ6351-1	В	111.	105.
XGM-97-12X-FAL23-SRI	SQ6351-2	В	99.8	97.2
XGM-97-12X-FAL23-SRI	SQ6351-2DL	В	88.1	81.2
Method Blank	WG345564-1	В	89.9	92.5
Laboratory Control S	WG345564-2	В	110.	115.
Laboratory Control S	WG345564-3	В	110.	112.
Method Blank	WG345631-1	В	83.8	89.2
Laboratory Control S	WG345631-2	В	112.	111.
Laboratory Control S	WG345631-3	В	115.	107.

Abbr.	Surrogate Compound	QC Limits
DBT-FID	2,5-Dibromotoluene (FID)	70-130
DBT-PID	2,5-Dibromotoluene (PID)	70-130

^{# =} Column to be used to flag recovery limits.

4

- 4

0

9

11

12

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

LCS/LCSD Recovery Report

LCS ID: WG345564-2 **LCSD ID:** WG345564-3

SDG: SQ6351

LCS File ID: 2QK10052.D

Extract Date: 16-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345564 **LCSD File ID:** 2QK10053.D

Analysis Date: 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 04-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300.	289.	96.3	289.	96.3	ug/L	0	25	70-130
Unadjusted C9-C12 Aliphatics	200.	232.	116.	232.	116.	ug/L	0	25	70-130
C9-C10 Aromatics	100.	112.	112.	113.	113.	ug/L	1	25	70-130
Benzene	100.	98.7	98.7	100.	100.	ug/L	1	25	70-130
Ethylbenzene	100.	103.	103.	104.	104.	ug/L	1	25	70-130
Methyl tert-butylether	100.	96.4	96.4	96.3	96.3	ug/L	0	25	70-130
Naphthalene	100.	109.	109.	109.	109.	ug/L	0	25	70-130
Toluene	100.	101.	101.	103.	103.	ug/L	2	25	70-130
m+p-Xylenes	200.	202.	101.	205.	102.	ug/L	1	25	70-130
o-Xylene	100.	105.	105.	106.	106.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			110.		110.				70-130
2,5-Dibromotoluene (PID)			115.		112.				70-130

1:

LCS/LCSD Recovery Report

LCS ID: WG345631-2 LCSD ID: WG345631-3

SDG: SQ6351

LCS File ID: 2QK10071.D

Extract Date: 17-NOV-23

Extracted By: DL **Extraction Method: MA-VPH**

Lab Prep Batch: WG345631

LCSD File ID: 2QK10072.D

Analysis Date: 17-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 04-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300.	279.	93.0	270.	90.0	ug/L	3	25	70-130
Unadjusted C9-C12 Aliphatics	200.	228.	114.	227.	114.	ug/L	0	25	70-130
C9-C10 Aromatics	100.	110.	110.	110.	110.	ug/L	0	25	70-130
Benzene	100.	98.3	98.3	97.2	97.2	ug/L	1	25	70-130
Ethylbenzene	100.	102.	102.	102.	102.	ug/L	0	25	70-130
Methyl tert-butylether	100.	95.2	95.2	95.7	95.7	ug/L	0	25	70-130
Naphthalene	100.	107.	107.	105.	105.	ug/L	2	25	70-130
Toluene	100.	100.	100.	100.	100.	ug/L	0	25	70-130
m+p-Xylenes	200.	200.	100.	197.	98.5	ug/L	2	25	70-130
o-Xylene	100.	104.	104.	103.	103.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			112.		115.				70-130
2,5-Dibromotoluene (PID)			111.		107.				70-130

http://www.katahdinlab.com

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical ServicesSDG: SQ6351Lab Sample ID: WG345564-1Date Analyzed: 16-NOV-23Lab File ID: 2QK10051.DTime Analyzed: 17:01Instrument ID: GC02Date Extracted: 16-NOV-23

This Method Blank applies to the following samples and QC Samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG345564-2	2QK10052.D	11/16/23	17:43
Laboratory Control S	WG345564-3	2QK10053.D	11/16/23	18:24
XGM-93-02X-FAL23-SRI	SQ6351-1	2QK10065.D	11/17/23	04:56
XGM-97-12X-FAL23-SRI	SQ6351-2	2QK10066.D	11/17/23	05:38

9

5

6

9

1:

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical ServicesSDG: SQ6351Lab Sample ID: WG345631-1Date Analyzed: 17-NOV-23Lab File ID: 2QK10070.DTime Analyzed: 14:18Instrument ID: GC02Date Extracted: 17-NOV-23

This Method Blank applies to the following samples and QC Samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG345631-2	2QK10071.D	11/17/23	14:59
Laboratory Control S	WG345631-3	2QK10072.D	11/17/23	15:40
XGM-97-12X-FAL23-SRI	SQ6351-2DL	2QK10075.D	11/17/23	19:11

4

5

7

9

10

11

1:

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: SQ6351

Instrument ID: GC02 Column ID: A

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D **Calibration Date(s)**: 08-SEP-23 11:40

2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1 1.0000	Level 2 5.0000	Level 3 10.0000	Level 4 50.0000	Level 5 100.0000	Level 6 300.0000	Curve Type	b	m1	m2	%RSD Result		
C9-C10 Aromatic	967	830	925	1037	1086	770	AVG		936		12.87041	25	О
Methyl tert-butylether	643	650	664	672	675	484	AVG		631		11.59012	25	О
Benzene	1284	1153	1230	1239	1246	873	AVG		1171		12.99251	25	О
Toluene	1077	998	1087	1130	1135	790	AVG		1036		12.58364	25	О
Ethylbenzene	1031	825	912	984	1004	700	AVG		909		13.93204	25	О
m+p-Xylene	1280	1073	1172	1224	1227	847	AVG		1137		13.93579	25	O
o-Xylene	980	914	1008	1056	1063	743	AVG		961		12.47813	25	О
1,2,4-trimethylbenzene	967	830	925	1037	1086	770	AVG		936		12.87041	25	O
Naphthalene	1131	931	965	1148	1264	1053	AVG		1082		11.47660	25	О
2,5-Dibromotoluene (PID)	868	610	669	803	920	714	AVG		764		15.69288	25	

 $Legend: O = Acceptable; \ W = Failed \ \% \ RSD \ Value; \ X = Failed \ R^2 \ Value; \ Y = Failed \ Minimum \ RF$

4

3

5

_

9

10

46

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: SQ6351

Instrument ID: GC02 Column ID: B

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D **Calibration Date(s)**: 08-SEP-23 11:40

2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1 1.0000	Level 2 5.0000	Level 3 10.0000	Level 4 50.0000	Level 5 100.0000	Level 6 300.0000	Curve Type	b	m1	m2	%RSD o		
C5-C8 Aliphatic	1368	1462	1510	1515	1550	1110	AVG		1419		11.55808	25	О
C9-C12 Aliphatic	1382	987	1139	1412	1613	1351	AVG		1314		16.76788	25	О
n-Pentane	1678	1360	1331	1423	1436	1022	AVG		1375		15.42459	25	О
2-Methylpentane	1325	1489	1568	1504	1565	1104	AVG		1426		12.68114	25	О
Methyl tert-butylether	1263	1466	1350	1342	1364	980	AVG		1294		12.92115	25	О
2,2,4-Trimethylpentane	1102	1535	1630	1619	1650	1205	AVG		1457		16.50443	25	О
Benzene	2236	1912	2014	2062	2078	1440	AVG		1957		14.02254	25	О
Toluene	2246	1805	1973	2008	2022	1402	AVG		1909		14.97234	25	О
n-Nonane	1233	1074	1149	1315	1445	1251	AVG		1244		10.38257	25	О
n-Decane	1302	833	875	1165	1553	1352	AVG		1180		23.90207	25	О
Ethylbenzene	1982	1598	1747	1898	1949	1366	AVG		1757		13.60981	25	О
m+p-Xylene	2144	1814	1973	2094	2091	1446	AVG		1927		13.69605	25	О
o-Xylene	2030	1823	2010	2129	2137	1484	AVG		1935		12.83633	25	О
1,2,4-trimethylbenzene	1886	1537	1710	1887	1985	1413	AVG		1736		12.94449	25	О
n-Butylcyclohexane	1461	1141	1402	1660	1673	1350	AVG		1448		13.85802	25	О
Naphthalene	1511	1246	1284	1588	1686	1382	AVG		1450		12.03582	25	О
2,5-Dibromotoluene (FID)	653	397	443	529	572	438	AVG		505		19.17753	25	

Legend: O = Acceptable; W = Failed %RSD Value; X = Failed R^2 Value; Y = Failed Minimum RF

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345564-4

Analytical Date: 11/16/23 14:28

Lab File ID: 2QK10050.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C9-C10 Aromatic	936	998	998	0.100	6.60402	25.000	Averaged
Methyl tert-butylether	631	634	634	0.100	0.47833	25.000	Averaged
Benzene	1171	1167	1167	0.100	-0.35408	25.000	Averaged
Toluene	1036	1066	1066	0.100	2.83514	25.000	Averaged
Ethylbenzene	909	930	930	0.100	2.31487	25.000	Averaged
m+p-Xylene	1137	1158	1158	0.100	1.86422	25.000	Averaged
o-Xylene	961	1009	1009	0.100	5.04246	25.000	Averaged
1,2,4-trimethylbenzene	936	998	998	0.100	6.60272	25.000	Averaged
Naphthalene	1082	1075	1075	0.100	-0.60736	25.000	Averaged
2,5-Dibromotoluene (PID)	764	738	738	0.100	-3.38657	25.000	Averaged

^{* =} Compound out of QC criteria

3

Λ

5

O

10

11

12

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345564-4 **Lab File ID:** 2QK10050.D

Analytical Date: 11/16/23 14:28

Lab File ID: 2QK10050.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1465	1465	0.100	3.21119	25.000	Averaged
C9-C12 Aliphatic	1314	1310	1310	0.100	-0.26845	25.000	Averaged
n-Pentane	1375	1337	1337	0.100	-2.72731	25.000	Averaged
2-Methylpentane	1426	1466	1466	0.100	2.82124	25.000	Averaged
Methyl tert-butylether	1294	1382	1382	0.100	6.79350	25.000	Averaged
2,2,4-Trimethylpentane	1457	1591	1591	0.100	9.19703	25.000	Averaged
Benzene	1957	2098	2098	0.100	7.19890	25.000	Averaged
Toluene	1909	2049	2049	0.100	7.30622	25.000	Averaged
n-Nonane	1244	1286	1286	0.100	3.35508	30.000	Averaged
n-Decane	1180	1039	1039	0.100	-11.99269	25.000	Averaged
Ethylbenzene	1757	1940	1940	0.100	10.43258	25.000	Averaged
m+p-Xylene	1927	2106	2106	0.100	9.28072	25.000	Averaged
o-Xylene	1935	2162	2162	0.100	11.72170	25.000	Averaged
1,2,4-trimethylbenzene	1736	1962	1962	0.100	12.98448	25.000	Averaged
n-Butylcyclohexane	1448	1582	1582	0.100	9.28741	25.000	Averaged
Naphthalene	1450	1551	1551	0.100	6.97204	25.000	Averaged
2,5-Dibromotoluene (FID)	505	499	499	0.100	-1.34508	25.000	Averaged

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345564-5

Analytical Date: 11/17/23 06:20

Lab File ID: 2QK10067.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	1007	1007	0.100	7.62309	25.000	Averaged
Methyl tert-butylether	631	656	656	0.100	3.89383	25.000	Averaged
Benzene	1171	1200	1200	0.100	2.51745	25.000	Averaged
Toluene	1036	1097	1097	0.100	5.90807	25.000	Averaged
Ethylbenzene	909	949	949	0.100	4.40221	25.000	Averaged
m+p-Xylene	1137	1180	1180	0.100	3.74619	25.000	Averaged
o-Xylene	961	1030	1030	0.100	7.17216	25.000	Averaged
1,2,4-trimethylbenzene	936	1007	1007	0.100	7.62218	25.000	Averaged
Naphthalene	1082	1127	1127	0.100	4.21040	25.000	Averaged
2,5-Dibromotoluene (PID)	764	786	786	0.100	2.83321	25.000	Averaged

^{* =} Compound out of QC criteria

4

5

6

8

9

11

12

1:

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345564-5 **Lab File ID:** 2QK10067.D

Analytical Date: 11/17/23 06:20

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1431	1431	0.100	0.84261	25.000	Averaged
C9-C12 Aliphatic	1314	1162	1162	0.100	-11.56995	25.000	Averaged
n-Pentane	1375	1316	1316	0.100	-4.30261	25.000	Averaged
2-Methylpentane	1426	1451	1451	0.100	1.76376	25.000	Averaged
Methyl tert-butylether	1294	1476	1476	0.100	14.05257	25.000	Averaged
2,2,4-Trimethylpentane	1457	1527	1527	0.100	4.79708	25.000	Averaged
Benzene	1957	2156	2156	0.100	10.16816	25.000	Averaged
Toluene	1909	2104	2104	0.100	10.19962	25.000	Averaged
n-Nonane	1244	1128	1128	0.100	-9.31881	30.000	Averaged
n-Decane	1180	909	909	0.100	-22.98068	25.000	Averaged
Ethylbenzene	1757	1978	1978	0.100	12.61623	25.000	Averaged
m+p-Xylene	1927	2158	2158	0.100	11.98575	25.000	Averaged
o-Xylene	1935	2208	2208	0.100	14.10882	25.000	Averaged
1,2,4-trimethylbenzene	1736	1977	1977	0.100	13.88641	25.000	Averaged
n-Butylcyclohexane	1448	1415	1415	0.100	-2.26961	25.000	Averaged
Naphthalene	1450	1682	1682	0.100	16.03228	25.000	Averaged
2,5-Dibromotoluene (FID)	505	545	545	0.100	7.80993	25.000	Averaged

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345631-4

Analytical Date: 11/17/23 12:53

Lab File ID: 2QK10069.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C9-C10 Aromatic	936	998	998	0.100	6.66963	25.000	Averaged
Methyl tert-butylether	631	639	639	0.100	1.23241	25.000	Averaged
Benzene	1171	1161	1161	0.100	-0.80505	25.000	Averaged
Toluene	1036	1046	1046	0.100	0.90490	25.000	Averaged
Ethylbenzene	909	916	916	0.100	0.74221	25.000	Averaged
m+p-Xylene	1137	1142	1142	0.100	0.38854	25.000	Averaged
o-Xylene	961	998	998	0.100	3.91828	25.000	Averaged
1,2,4-trimethylbenzene	936	998	998	0.100	6.66898	25.000	Averaged
Naphthalene	1082	1088	1088	0.100	0.60171	25.000	Averaged
2,5-Dibromotoluene (PID)	764	761	761	0.100	-0.33165	25.000	Averaged

^{* =} Compound out of QC criteria

3

4

__

6

8

9

1 1

12

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345631-4 **Lab File ID:** 2QK10069.D

Analytical Date: 11/17/23 12:53

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1546	1546	0.100	8.92253	25.000	Averaged
C9-C12 Aliphatic	1314	1377	1377	0.100	4.79435	25.000	Averaged
n-Pentane	1375	1422	1422	0.100	3.40514	25.000	Averaged
2-Methylpentane	1426	1546	1546	0.100	8.40177	25.000	Averaged
Methyl tert-butylether	1294	1411	1411	0.100	9.01279	25.000	Averaged
2,2,4-Trimethylpentane	1457	1670	1670	0.100	14.63897	25.000	Averaged
Benzene	1957	2104	2104	0.100	7.55051	25.000	Averaged
Toluene	1909	2023	2023	0.100	5.96218	25.000	Averaged
n-Nonane	1244	1303	1303	0.100	4.70508	30.000	Averaged
n-Decane	1180	1092	1092	0.100	-7.41817	25.000	Averaged
Ethylbenzene	1757	1926	1926	0.100	9.63222	25.000	Averaged
m+p-Xylene	1927	2096	2096	0.100	8.77003	25.000	Averaged
o-Xylene	1935	2156	2156	0.100	11.40445	25.000	Averaged
1,2,4-trimethylbenzene	1736	1983	1983	0.100	14.20433	25.000	Averaged
n-Butylcyclohexane	1448	1661	1661	0.100	14.74819	25.000	Averaged
Naphthalene	1450	1617	1617	0.100	11.57873	25.000	Averaged
2,5-Dibromotoluene (FID)	505	513	513	0.100	1.53243	25.000	Averaged

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345631-5

Analytical Date: 11/18/23 00:09

Lab File ID: 2QK10082.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
					,021110	,021110	July 1 - J. P. Cum
C9-C10 Aromatic	936	978	978	0.100	4.51053	25.000	Averaged
Methyl tert-butylether	631	642	642	0.100	1.66647	25.000	Averaged
Benzene	1171	1166	1166	0.100	-0.44290	25.000	Averaged
Toluene	1036	1062	1062	0.100	2.47804	25.000	Averaged
Ethylbenzene	909	917	917	0.100	0.86319	25.000	Averaged
m+p-Xylene	1137	1140	1140	0.100	0.27773	25.000	Averaged
o-Xylene	961	999	999	0.100	3.99114	25.000	Averaged
1,2,4-trimethylbenzene	936	978	978	0.100	4.51038	25.000	Averaged
Naphthalene	1082	1108	1108	0.100	2.45227	25.000	Averaged
2,5-Dibromotoluene (PID)	764	774	774	0.100	1.36203	25.000	Averaged

^{* =} Compound out of QC criteria

4

5

0

ŏ

40

11

12

Lab Name: Katahdin Analytical Services

SDG: SQ6351

Lab ID: WG345631-5 **Lab File ID:** 2QK10082.D

Analytical Date: 11/18/23 00:09 **Instrument ID:** GC02

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1485	1485	0.100	4.63327	25.000	Averaged
C9-C12 Aliphatic	1314	1249	1249	0.100	-4.95680	25.000	Averaged
n-Pentane	1375	1368	1368	0.100	-0.52801	25.000	Averaged
2-Methylpentane	1426	1498	1498	0.100	5.06523	25.000	Averaged
Methyl tert-butylether	1294	1436	1436	0.100	10.96163	25.000	Averaged
2,2,4-Trimethylpentane	1457	1589	1589	0.100	9.08172	25.000	Averaged
Benzene	1957	2146	2146	0.100	9.68674	25.000	Averaged
Toluene	1909	2086	2086	0.100	9.27776	25.000	Averaged
n-Nonane	1244	1214	1214	0.100	-2.42901	30.000	Averaged
n-Decane	1180	997	997	0.100	-15.47739	25.000	Averaged
Ethylbenzene	1757	1966	1966	0.100	11.89215	25.000	Averaged
m+p-Xylene	1927	2158	2158	0.100	12.00547	25.000	Averaged
o-Xylene	1935	2223	2223	0.100	14.85803	25.000	Averaged
1,2,4-trimethylbenzene	1736	1957	1957	0.100	12.71609	25.000	Averaged
n-Butylcyclohexane	1448	1500	1500	0.100	3.61803	25.000	Averaged
Naphthalene	1450	1677	1677	0.100	15.68874	25.000	Averaged
2,5-Dibromotoluene (FID)	505	565	565	0.100	11.74030	25.000	Averaged

^{* =} Compound out of QC criteria

Form 8 GC Analytical Sequence

Lab Name: Katahdin Analytical Services

Instrument ID: GC02

SDG: SQ6351

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	DBT (FID)	DBT (PID)
Initial Calibration	WG342400-4	09/08/23	11:40	(112)	31.608
Initial Calibration	WG342400-4	09/08/23	11:40	31.597	21.000
Initial Calibration	WG342400-1	09/08/23	12:21		31.591
Initial Calibration	WG342400-1	09/08/23	12:21	31.577	
Initial Calibration	WG342400-2	09/08/23	13:02		31.599
Initial Calibration	WG342400-2	09/08/23	13:02	31.589	
Initial Calibration	WG342400-3	09/08/23	13:43		31.593
Initial Calibration	WG342400-3	09/08/23	13:43	31.583	
Initial Calibration	WG342400-5	09/08/23	14:25		31.599
Initial Calibration	WG342400-5	09/08/23	14:25	31.588	
Initial Calibration	WG342400-6	09/08/23	15:06		31.597
Initial Calibration	WG342400-6	09/08/23	15:06	31.587	
Independent Source	WG342400-7	09/08/23	17:40	31.599	31.612
Continuing Calibrati	WG345564-4	11/16/23	14:28	31.497	31.507
Method Blank	WG345564-1	11/16/23	17:01	31.523	31.534
Laboratory Control S	WG345564-2	11/16/23	17:43	31.512	31.522
Laboratory Control S	WG345564-3	11/16/23	18:24	31.504	31.514
XGM-93-02X-FAL23-SRI	SQ6351-1	11/17/23	04:56	31.445	31.455
XGM-97-12X-FAL23-SRI	SQ6351-2	11/17/23	05:38	31.443	31.452
Continuing Calibrati	WG345564-5	11/17/23	06:20	31.442	31.452
Continuing Calibrati	WG345631-4	11/17/23	12:53	31.5	31.51
Method Blank	WG345631-1	11/17/23	14:18	31.517	31.528
Laboratory Control S	WG345631-2	11/17/23	14:59	31.513	31.523
Laboratory Control S	WG345631-3	11/17/23	15:40	31.51	31.52
XGM-97-12X-FAL23-SRI	SQ6351-2DL	11/17/23	19:11	31.482	31.496
Continuing Calibrati	WG345631-5	11/18/23	00:09	31.469	31.479

4

5

9

11

12

ARVC

US Army Corps of Engineers o

Heather Levesque	 FAH
669 Marina Drive, Suite B7, Charleston, SC 29492	
(843) 619-370-0374, jennifer.singer@arcadis.com	

Project Name: Former Fort Devens, Long Term Monitoring							Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA												Event: Seres-Arcadis JV, Long Term			
Project Number: DEVNS-LTM PO 2312 - 00000001						POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com										Monitoring, AOC 43G, Fall 2023						
VBS Code:					Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404																	
Comments:				Ť					_	$\overline{}$			Code	Matrix				T				
2320B (A) = Alkalinity													WG									
ADEPVP (A) = VPH with targets													110	Ground Water								
													Code	Container/Preservative								
									-			- 1		3x 40mL glass VOA Vial	s, HCl, pH < 2; Cool < 60	degC						
													9	1x 250mL, plastic, HNO	3, pH < 2; Cool < 6degC				•			
				9									46	1x 250mL, plastic, Cool	< 6degC							
				Method			اءا															
quipment:] {			e M	اءِ			1											
				=	12	MADEPVP (A)	SW6010C - Fe	SW6010C - Mn														
				Analytical	A2320B (A)	ا ج	5	5														
				lafy	332	Å.	N60	09V														
				<u> </u> ₹	×	ž	S		_		\vdash							200				
Event: Seres-Arcadis JV, Lor	ng Term Mor	nitoring, AOC 43	3G, Fall 2023		46	4	9	9		8		100						8				
				6											Sample	Depth	(ft bgs)					
Sample ID	Matrix	Date	Time	Samp Init.										Location ID	Туре	Top -	Bottom	Cooler	Comments			
1 AAFES-2-FAL23	WG				X	х	х				1			AAFES-2	N1	16.20	33.30	1				
2 AAFES-7-FAL23	WG				†			x	寸	+			1	AAFES-7	N1	4.50	14.50	1				
3 AOC43G_DUP01-FAL23	WG	-			x	х	х							AAFES-2	FD1	16.20	33.30	1				
4 XGM-93-02X-FAL23	WG	11-13-23	1200	DC	+	х	х				1			XGM-93-02X	N1	28.00	38.00	1				
5 XGM-94-04X-FAL23	WG	11 12-61			$\overline{}$	х	X				1		1	XGM-94-04X	MS1	18.20	30.50	1				
6 XGM-94-04X-FAL23	WG				x	х	х							XGM-94-04X	N1	18.20	30.50	1				
7 XGM-94-04X-FAL23	WG				X	Х	Х		_	1	\Box			XGM-94-04X	SD1	18.20	30.50	1				
8 XGM-97-12X-FAL23	WG	II-13-23	0950	De	X	х	x							XGM-97-12X	N1	24.00	34.00	1				
9			1.20																			
10									\neg	\top							THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	 	WWW			
11				1	T			\neg	\neg			_										
12				1	T				- +	+	1		—									
13					+-				\neg	_	1											
14	_				\vdash				\dashv		\vdash		1				934 Chain of	Custody				
15				 	+				\dashv	+	H		+			680-242	504 0.10 0.					
16		-							+	+	\vdash	-	1		- 							
17				-	+	H	-		\dashv	+	\vdash		+		-				·····			
18	-			+	+	\vdash	\vdash		-	-		-			+			1				
urnaround Time: NA		L				ш	ш										<u> </u>	1				

Relinquished by: (Signature) Date

Received by: (Signature)

Time

melin 11-13-23 1700

Received by Laboratory: (Signature)

Page 46 of 47

C. M. 11/14/23 1005

Login Sample Receipt Checklist

Client: Seres Engineering & Services LLC

Job Number: 680-242934-2

Login Number: 242934 List Source: Eurofins Savannah

List Number: 1

Creator: Munro, Caroline

Creator: Munro, Caroline		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

6

ا

9

11

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 11/22/2023 8:16:03 PM

JOB DESCRIPTION

Fort Devens, Long Term Monitoring

JOB NUMBER

680-242974-3

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 11/22/2023 8:16:03 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-242974-3 Project/Site: Fort Devens, Long Term Monitoring

Qualifiers

Metals

Qualifier **Qualifier Description** Estimated: The analyte was positively identified; the quantitation is an estimation

U Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCI MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242974-3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242974-11	AOC43G-DUP01-FAL23	Water	11/13/23 09:50	11/14/23 10:05

3

Δ

6

R

9

10

11

Case Narrative

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-242974-3

Job ID: 680-242974-3

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-242974-3

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/14/2023 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 3.0° C, 3.4° C and 3.9° C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

7

10

11

Client Sample Results

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Lab Sample ID: 680-242974-11

Matrix: Water

Job ID: 680-242974-3

Client Sample	ID: AOC43G-DU	P01-FAL23
---------------	---------------	-----------

Date Collected: 11/13/23 09:50 Date Received: 11/14/23 10:05

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	36000		100	50	20	ug/L		11/16/23 15:55	1
Manganese	1900		10	5.0	1.3	ug/L		11/16/23 15:55	1
Method: SW846 6010C - M	etals (ICP) - Dissolved								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	35000		100	50	20	ug/L		11/16/23 16:43	1
Manganese	1900		10	5.0	1.3	ug/L		11/16/23 16:43	1
- Method: SW846 6020A - M	etals (ICP/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	18		5.0	3.0	0.86	ug/L		11/16/23 19:41	1
- Method: SW846 6020A - M	etals (ICP/MS) - Dissolv	ed							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic			5.0	3.0	0.86	ug/L		11/17/23 01:54	

11/22/2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-808512/1-A

Analysis Batch: 808771

Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Prep Batch: 808512

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/16/23 15:21	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/16/23 15:21	1

Lab Sample ID: LCS 680-808512/2-A

Matrix: Water

Analysis Batch: 808771							Prep	Batch: 8	308512
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Iron	4990	4590		ug/L		92	87 - 115		
Manganese	400	376		ug/L		94	90 - 114		

Lab Sample ID: MB 680-808523/1-A

Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 808771

Prep Batch: 808523

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Type: Total Recoverable

	IVID	MID							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/16/23 16:02	1
Manganese	1.62	J	10	5.0	1.3	ug/L		11/16/23 16:02	1

Lab Sample ID: LCS 680-808523/2-A

Matrix: Water						Prep	Type: Total Reco	verable
Analysis Batch: 808771							Prep Batch:	808523
	Spike	LCS	LCS				%Rec	
Amaluta	Added	Daguile	Ouglifier	11	_ n	0/ Daa	Limita	

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	4990	4610		ug/L		92	87 - 115
Manganese	400	380		ug/L		95	90 - 114

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-808516/1-A

Matrix: Water

Analysis Batch: 808833

Prep Type: Total Recoverable
Prep Batch: 808516

	IVID	IVID						
Analyte	Result	Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86 ug/L		11/16/23 18:52	1

Lab Sample ID: LCS 680-808516/2-A

Matrix: Water

Analysis Batch: 808833

	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac	
	3.0	U	5.0	3.0	0.86	ug/L		11/16/23 18:52	1	
D: LCS 680-808516/2-A						Client S	Sample IE): Lab Control	Sample	

Prep Batch: 808516

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	100	111		ug/L		111	84 - 116	

Lab Sample ID: MB 680-808524/1-A

Matrix: Water

Analysis Batch: 808833

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 808524

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 0.86 ug/L 11/17/23 00:45 3.0 U 5.0 3.0 Arsenic

Eurofins Savannah

QC Sample Results

Spike

Added

100

LCS LCS

105

Result Qualifier

Unit

ug/L

Client: Seres Engineering & Services LLC
Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242974-3

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 680-808524/2-A

Matrix: Water

Analyte

Arsenic

Analysis Batch: 808833

Client Sample ID: Lab Control Sample

84 - 116

Pr	ep Type: Total Recoverable
	Prep Batch: 808524
	0/ 5

%Rec D %Rec Limits

105

_

8

9

11

QC Association Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-242974-3

Metals

Prep Batch: 808512	2
--------------------	---

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242974-11	AOC43G-DUP01-FAL23	Total Recoverable	Water	3005A	
MB 680-808512/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808512/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 808516

Lab Sample ID 680-242974-11	Client Sample ID AOC43G-DUP01-FAL23	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-808516/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808516/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 808523

Lab Sample ID 680-242974-11	Client Sample ID AOC43G-DUP01-FAL23	Prep Type Dissolved	Matrix Water	Method 3005A	Prep Batch
MB 680-808523/1-A	Method Blank	Total Recoverable	Water	3005A 3005A	
LCS 680-808523/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 808524

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242974-11	AOC43G-DUP01-FAL23	Dissolved	Water	3005A	
MB 680-808524/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808524/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 808771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242974-11	AOC43G-DUP01-FAL23	Dissolved	Water	6010C	808523
680-242974-11	AOC43G-DUP01-FAL23	Total Recoverable	Water	6010C	808512
MB 680-808512/1-A	Method Blank	Total Recoverable	Water	6010C	808512
MB 680-808523/1-A	Method Blank	Total Recoverable	Water	6010C	808523
LCS 680-808512/2-A	Lab Control Sample	Total Recoverable	Water	6010C	808512
LCS 680-808523/2-A	Lab Control Sample	Total Recoverable	Water	6010C	808523

Analysis Batch: 808833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242974-11	AOC43G-DUP01-FAL23	Dissolved	Water	6020A	808524
680-242974-11	AOC43G-DUP01-FAL23	Total Recoverable	Water	6020A	808516
MB 680-808516/1-A	Method Blank	Total Recoverable	Water	6020A	808516
MB 680-808524/1-A	Method Blank	Total Recoverable	Water	6020A	808524
LCS 680-808516/2-A	Lab Control Sample	Total Recoverable	Water	6020A	808516
LCS 680-808524/2-A	Lab Control Sample	Total Recoverable	Water	6020A	808524

Eurofins Savannah

11/22/2023

Lab Chronicle

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Lab Sample ID: 680-242974-11

Matrix: Water

Job ID: 680-242974-3

Client Sample ID: AOC43G-DUP01-FAL23

Date Collected: 11/13/23 09:50 Date Received: 11/14/23 10:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	808523	11/16/23 07:48	RR	EET SAV
Dissolved	Analysis	6010C		1			808771	11/16/23 16:43	BJB	EET SAV
	Instrume	ent ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	25 mL	808512	11/16/23 06:17	RR	EET SAV
Total Recoverable	Analysis	6010C		1			808771	11/16/23 15:55	BJB	EET SAV
	Instrume	ent ID: ICPH								
Dissolved	Prep	3005A			25 mL	125 mL	808524	11/16/23 07:48	RR	EET SAV
Dissolved	Analysis	6020A		1			808833	11/17/23 01:54	BWR	EET SAV
	Instrume	ent ID: ICPMSC								
Total Recoverable	Prep	3005A			25 mL	125 mL	808516	11/16/23 06:17	RR	EET SAV
Total Recoverable	Analysis	6020A		1			808833	11/16/23 19:41	BWR	EET SAV
	Instrume	ent ID: ICPMSC								

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Job ID: 680-242974-3

Project/Site: Fort Devens, Long Term Monitoring

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

. . . .

3

5

6

8

9

10

Method Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-242974-3

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

US Army Corps of Engineers

Event: Serse-Arcadis JV; Supplemental Remedial Investigation, AOC 57, Fell

Heatner Levesque 659 Marine Drive, Suite B7 Charleston, SC 29492 659 Marine Drive, Suite B7 Charleston, SC 29492 (843) 619-370-0374, Jennifer.singer@arcadis.com

Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA

POC: Jerry Lenier 912-250-0281 jerry.lanier@eurofinaus.com

Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404

Code Matrix

9 9 9

over Name: Former Fort Devens, Long Term Monitoring France Number: DEVISLTM PO 2106 - 00000001 WBS Code:

tel Remedial Investigation, AOC 57, Fall

CUSTODY RECORD

680-242974 Chain of Custody

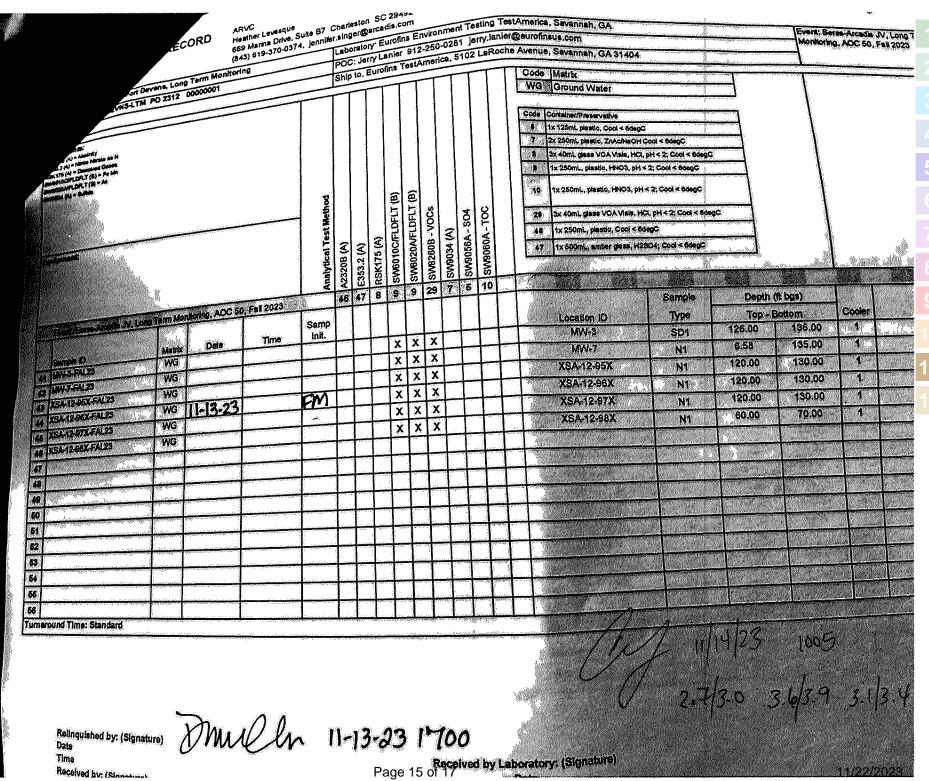
WG Ground Water WS Surface Water

	ASSAULT AND
Code	Container/Preservative
2	2x 1 Liler, amber, glass, 1:1 HCl to pH =2; Cool < 6degC
4	3x 40mL gless VOA Vials, HCL pH < 2; Gool < 6degC
5	1x 125mL plastic, Cool < 8dagC
•	9x 40mL place VOA Visis, HCl, pH < 2; Cool < 8depC,
é.	1x 250mL, plestic, HNQ3, pH < 2; Cool < 6degC
10	1x 250mL, plastic, HNO3, pH < 2; Cool < 6depC

SW9056A - SO4, NO2, NO3 Analytical Test Method SW6020B/FLDFLT (B) SW6010C/FLDFLT (L) SW9060A - TOC SW6020B - As MADEPEP (A) MADEPVP (A) SW6010C (L) RSK175 (A) 10 9 5

	-othinesses					1			4	magazi Parte		يسون	٠					and a second				
		Date	Time	Samp Init.											Location ID	Sample Type	Depth (f) Top - Bo	TORREST TORREST OF THE PARTY	ен	ar .	Camin	ients
Semple ID	Matrix WG	Dale	A HHAR		X	X	x	х	Х	Х	X	X	X		57M-03-03X	SD1	2.06	12.00	1			
26 57M-05-09X-FAL09	WG	And and the second second	The same of the sa	10.00	x	-	х	X	X	X	X	×	X		. 67M-03-04X	N1	2,00	12.00	7			
21 57M-03-04X-FAL23	WG	Silver Silver and State of Sta	e of the control of t		x	x	X	Х	Х	X	X	X	×		67M-03-06X	N1	2,00	12,00				
22 57M-03-05X-FAL23 23 57M-03-08X-FAL23	WG	Approphist to an experience of the con-	Reference of the second	A-200-A	Τx	x	x	X	х	X	x	×	X		57M-03-06X	Nr	2,60	12.00				
24 57M-95-03X-FAL23	and the second s	VI 14.12	0935	ms		х	х	x	x	×	X	X	1×		67M-95-03X	NI	7.00	17,00	T			
25 57M-95-08X-FAL23	WG	regioniero - sp pro- pri pi		143	x	X	х	x	x	x	x	x	ĺχ	1000	57N+95406X		1.87	21,87				
26 57M-96-11X-FAL23	WG	11-13-23	1540	FM	Ιx	x	x	X	x	X	X	X	İχ	9 (19)	67/N-98-111X		2.00	12.60	4			
27 57M-96-12X-FAL23	WG	11-13-23		AF	x	¥	x	x	x	X	X	X	x	(m)	57N-96-12X		2,00	12.00	- 4			
8 57P-98-03X-FAL23		11-13-23		Ar.	X	Ŷ	÷	X	v		X	Ž	T.		57F498-03X	CAN DESCRIPTION OF THE PARTY OF	2/50	5,60	1			
9 57P-98-04X-FAL23	WG	11-13-52			X	♦	~	X	V	A.		X	X		J67P-08-04X	M	2000	5.00				
0 57WP-06-03-FAL23	WG	**************************************			X	0.220 (0.5)	0	^	(A)) (8)	57WP-06-06	N/I	(0)(0)5	18,85				
1 AOC57-DUP01-FAL23	WG		worth or the state of		10Table	A	A	^	Х	Λ.	X		A	y I	5703MW-20-01E		F(0.070	60.00				
2 AOC57-DUP02-FAL23		11-12-04	A40 -		X	Х	Х	Х	Х	X	X	X	X			FDM	7(0)	17,00				
3 AOC57-DUP03-FAL23	WG	11-13.27	とのシ	MS	X	3273.4	X	Х	Х	X	X	X	X		57N-95-08X	STATE OF THE PERSON NAMED OF TAXABLE PARTY.	200	12,00				
			**************************************		X	X	X	X	Х	X	X	X	X		67/M-98-11X	FDI		7.7				
	-			V-4-100						sacradible.)										
		e v Samp de la Constantina del Constantina de la Constantina de la Constantina de la Constantina del Constantina de la C	and the same of the galactic party of the same of								Are.	A .		100 M	A Company of the Comp							
L		the careton que valor principal			- 0,5	344/ Fals	CHINGS.	-cetthee	V-03-02-9	and Bit	wiend	100	177	277 ****								

Turnaround Time: Standard


Relinquished by: (Signature) Date 11-13-23 1100 Page 13 of 1

US Army Corps of Engineers .

mestner Levesque 669 Marins Drive, Sulte B7, Charleston, SC 29492 ON NOF-CUSTODY RECORD (843) 519-370-0374, jennifer.singer@arcadis.com Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA POC: Jerry Lanler, 912-250-0281, Jerry lanler@eurofinsus.com Event: Seres-Arcadis JV, Supplemental Neme: Former Fort Devens, Long Term Monitoring POC: Jerry Larrier, 3.12
Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Remedial Investigation, AOC 57, Fall 2023 Ment Number: DEWIS-LTM PO 2108 - 00000001 Code Matrix WG Ground Water Surface Water Code Container/Preservative 2x 1 Liter, amber, glass, 1:1 HCl to pH #2; Cool < 6degC 3x 40mL gless VOA Visis, HCl, pH < 2; Cool < 8degC SW9056A - SO4, NO2, NO3 1x 125mL plastic, Cool < 6degC 5 SW6010C/FLDFLT (L) SW6020B/FLDFLT (B) 3x 40mL glass VOA Visis, HCl, pH < 2; Cool < 6degC SW9060A - TOC 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC SW6020B - As SW6010C (L) MADEPVP (A) MADEPEP (A) RSK175 (A) 1x 250mL, pleatic, HNO3, pH <2; Cool < 6degC 10 Event Seres Arcade JV, Supplemental Remedia Investigation, AOC 57, Fall 9 9 5 10 9 9 Sample Depth (ft bgs) Samp Location ID Init. Type Time Top - Bottom Cooler Comments Date Matrix 57-SW1 X X X X XX X X 0.00 N1 0.00 TI TAWARADA WS 57-SW2 X X X X X N1 0.00 0.00 WS 57-SW2-FAL23 57-SW3 X X X X X X X X 0.00 0.00 3 57-9W3-FAL23 WS N1 1 57-SW4 X 1520 MS 0.00 0.00 11-13-23 N1 1 4 57-SW4-FAL23 5702MW-20-01A X X 5 5702MW-20-01A-FAL23 30.00 WG N1 40.00 1 5702MW-20-01B 6 5702MW-20-01B-FAL23 WG X X X X X X 70,00 80.00 N1 5702MW-20-02A 5702MW-20-02A-FAL23 WG X X X X X 30.00 40.00 MS1 8 5702MW-20-02A-FAL23 WG 5702MW-20-02A 30.00 40.00 X X N1 5702MW-20-02A-FAL23 WG 5702MW-20-02A 30.00 40.00 X X X 1 SD1 10 5702MW-20-03A-FAL23 WG 5702MW-20-03A 26.00 36.00 X X X X X N1 5702MW-20-04A-FAL23 WG X 5702MW-20-04A 70.00 80.00 X X X X X N1 5703MW-20-01A-FAL23 11-13-23 1409 MS 5703MW-20-01A 2.00 12.00 X X N1 5703MW-20-01B-FAL23 WG 50.00 60.00 X X X X 5703MW-20-01B 14 5703MW-20-02A-FAL23 N1 X X WG 10.00 20.00 5703MW-20-02A 15 5703MW-20-03A-FAL23 X N1 X WG 11-13-23 AF 60.00 18 5703MW-20-04A-FAL23 50.00 X 5703MW-20-03A N1 WG MS 57M-03-02X-FAL23 70:00 60.00 X X 5703MW-20-04A N1 X X WG 57M-03-03X-FAL23 2,00 12.00 X X X 57M-03-02X N1 X X WG 57M-03-03X-FAL23 12.00 2.00 X X 57M-03-03X MS1 WG 12.00 2.00 X 57M-03-03X NJ.

12

11/22/2023

COC# 43G-SRI-FAL23

ARVC Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com

US Army Corps of Engineers o

Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Event: Seres-Arcadis JV. Supplemental Project Name: Former Fort Devens, Long Term Monitoring Remedial Investigation, AOC 43G, Fall POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com Project Number: DEVNS-LTM PO 2106 - 00000001 2023 WBS Code: Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Code Matrix Comments: MADEPEP (A) = EPH with PAHs WG Ground Water MADEPVP (A) = VPH with targets SW6010C (L) = Al Fe Mn SW6010C/FLDFLT (L) = Al Fe Mn Code Container/Preservative SW6020B/FLDFLT (B) = As 2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC **B** 1x 125mL plastic, Cool < 6degC SW6010C/FLDFLT SW6020B/FLDFLT 9 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC SW6010C - AI Fe SW9056A - SO4 **Analytical Test** SW6020B - As € 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC MADEPVP Equipment: SW9060A SW6010C SW6010C Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 43G, Fall 5 9 9 9 9 10 2023 Sample Depth (ft bgs) Samp Type Top - Bottom Cooler Sample ID Matrix Date Time Init. Location ID Comments XGM-94-04X-FAL23-SRI XGM-94-04X 18.20 WG 30.50 1 22 Х Х Х X X SD1 XGM-94-06X-FAL23 WG XGM-94-06X 17.00 27.00 1 X X Х X N1 XGM-94-07X-FAL23 XGM-94-07X 17.00 WG 29.60 24 Х Х Х Х Х N1 1 Х XGM-94-08X-FAL23 WG XGM-94-08X 23.50 36.10 1 25 Х Х X х Х N1 XGM-94-10X-FAL23 WG Х Х Х XGM-94-10X 21.50 33.80 1 26 N1 XGM-97-12X-FAL23-SRI WG XGM-97-12X 24.00 27 34.00 1 0950 Dr. X Х Х N1 28 29 30 31 32 33 34 35 36 37 Turnaround Time: Standard

Relinquished by: (Signature) Date

Time

Received by: (Signature)

Duelle 11/13/23 1700

Received by Laboratory: (Signature)

Page Time of 17

7.7/3.0 3.6/3.9 3.1/3.4

11/22/2023

Client: Seres Engineering & Services LLC

Job Number: 680-242974-3

Login Number: 242974 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

oreator. Somison, Corey in	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
ls the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

JOB DESCRIPTION

Generated 12/28/2023 9:27:19 AM

Fort Devens, SRI, AOC69W, Fall 2023

JOB NUMBER

680-243065-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/28/2023 9:27:19 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-243065-2

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Qualifiers

M	eta	Is

Qualifier **Qualifier Description** Estimated: The analyte was positively identified; the quantitation is an estimation

U Undetected at the Limit of Detection.

Glossary

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-243065-2	69W-94-14-FAL23	Water	11/15/23 09:50	11/16/23 10:30
680-243065-3	ZWM-95-15X-FAL23	Water	11/15/23 11:35	11/16/23 10:30

Job ID: 680-243065-2

Case Narrative

Client: Seres Engineering & Services LLC Project: Fort Devens, SRI, AOC69W, Fall 2023

Job ID: 680-243065-2 Eurofins Savannah

Job Narrative 680-243065-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
 unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/16/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.9°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-243065-2

Page 5 of 14 12/28/2023

Client Sample Results

Client: Seres Engineering & Services LLC

Client Sample ID: 69W-94-14-FAL23

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Lab Sample ID: 680-243065-2

Matrix: Water

Job ID: 680-243065-2

Date Collected: 11/15/23 09:50 Date Received: 11/16/23 10:30

Method: SW846 6010C - Metals (ICP) - Dissolved									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	150	U	200	150	54	ug/L		11/21/23 08:06	1
Iron	43	J	100	50	20	ug/L		11/21/23 08:06	1
Manganese	120		10	5.0	1.3	ug/L		11/21/23 08:06	1

Method: SW846 6020A - Metals (I	CP/MS) - Dissolved						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Arsenic	3.0 U	5.0	3.0	0.86 ug/L		11/21/23 23:49	1

8

9

Client Sample Results

Client: Seres Engineering & Services LLC

Arsenic

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Client Sample ID: ZWM-95-15X-FAL23

Lab Sample ID: 680-243065-3

11/21/23 23:53

Job ID: 680-243065-2

Date Collected: 11/15/23 11:35 **Matrix: Water** Date Received: 11/16/23 10:30

Method: SW846 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Aluminum 94 J 200 150 54 ug/L 11/21/23 08:08 100 50 20 ug/L 11/21/23 08:08 Iron 1200 1 Manganese 380 10 5.0 1.3 ug/L 11/21/23 08:08 Method: SW846 6020A - Metals (ICP/MS) - Dissolved LOQ LOD Analyte Result Qualifier DL Unit D Analyzed Dil Fac

7.7

5.0

3.0

0.86 ug/L

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-809153/1-A

Matrix: Water Analysis Batch: 809393

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 809153

Job ID: 680-243065-2

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	150	U	200	150	54	ug/L		11/21/23 07:42	1
Iron	50	U	100	50	20	ug/L		11/21/23 07:42	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/21/23 07:42	1

Lab Sample ID: LCS 680-809153/2-A **Client Sample ID: Lab Control Sample Prep Type: Total Recoverable**

Matrix: Water

Manganese

Analysis Batch: 809393

LCS LCS %Rec Spike Added Analyte Result Qualifier Unit D %Rec Limits Aluminum 5050 5090 86 - 115 ug/L 101 4990 5000 ug/L 100 87 - 115 Iron

400

407

ug/L

102

90 - 114

Prep Batch: 809153

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Job ID: 680-243065-2

Metals

Prep Batch: 809153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243065-2	69W-94-14-FAL23	Dissolved	Water	3005A	
680-243065-3	ZWM-95-15X-FAL23	Dissolved	Water	3005A	
MB 680-809153/	1-A Method Blank	Total Recoverable	Water	3005A	
LCS 680-809153	/2-A Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 809155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243065-2	69W-94-14-FAL23	Dissolved	Water	3005A	
680-243065-3	ZWM-95-15X-FAL23	Dissolved	Water	3005A	

Analysis Batch: 809393

Lab Sample ID 680-243065-2	Client Sample ID 69W-94-14-FAL23	Prep Type Dissolved	Matrix Water	Method 6010C	Prep Batch 809153
680-243065-3	ZWM-95-15X-FAL23	Dissolved	Water	6010C	809153
MB 680-809153/1-A	Method Blank	Total Recoverable	Water	6010C	809153
LCS 680-809153/2-A	Lab Control Sample	Total Recoverable	Water	6010C	809153

Analysis Batch: 809672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243065-2	69W-94-14-FAL23	Dissolved	Water	6020A	809155
680-243065-3	ZWM-95-15X-FAL23	Dissolved	Water	6020A	809155

12/28/2023

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Client Sample ID: 69W-94-14-FAL23 Lab Sample ID: 680-243065-2

Date Collected: 11/15/23 09:50 Date Received: 11/16/23 10:30

Lab Sample ID: 680-243065-3

Matrix: Water

Matrix: Water

EET SAV

Job ID: 680-243065-2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809153	11/20/23 06:18	RR	EET SAV
Dissolved	Analysis	6010C		1			809393	11/21/23 08:06	BCB	EET SAV
	Instrumer	nt ID: ICPH								
Dissolved	Prep	3005A			25 mL	125 mL	809155	11/20/23 06:18	RR	EET SAV
Dissolved	Analysis	6020A		1			809672	11/21/23 23:49	BJB	EET SAV
	Instrumer	nt ID: ICPMSC								

Dil

1

1

Factor

Run

Initial

Amount

25 mL

25 mL

809672

Client Sample ID: ZWM-95-15X-FAL23

Batch

Type

Prep

Prep

Analysis

Analysis

Batch

3005A

6010C

3005A

6020A

Instrument ID: ICPH

Instrument ID: ICPMSC

Method

Date Collected: 11/15/23 11:35

Date Received: 11/16/23 10:30

Final	Batch	Prepared		
Amount	Number	or Analyzed	Analyst	Lab
25 mL	809153	11/20/23 06:18	RR	EET SAV
	809393	11/21/23 08:08	BCB	EET SAV
125 mL	809155	11/20/23 06:18	RR	EET SAV

11/21/23 23:53 BJB

Laboratory References:

Prep Type

Dissolved

Dissolved

Dissolved

Dissolved

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Job ID: 680-243065-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

3

4

9

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-243065-2

3

4

J

7

8

10

11

ARVC

COC# 69W-SRI-FAL23

US Army Corps of Engineers o

Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 478.0336, jennifer.singer@arcadis.com

Project Name: Former Fort Devens	s, Long Te	erm Monitoring	1		Laborat	ory: I	Eurof	fins 8	Enviro	nmen	t Te	sting	Test	Ame	rica,	Savannah, GA	18				eres-Arcadis JV, Supplemental
Project Number: DEVNS-LTM PO 2106 - 00000001 WBS Code:					POC: Je	erry L	anie	er, 91	2-250	-0281	1, jer	rry.lai	nier@	eur	ofinsu	s.com			34	Remedia Fall 2023	I Investigation, AOC 69W,
WBS Code:	/BS Code:					Euro	ofins	Test	Ameri	ca, 5	102	LaRo	che .	Aver	nue, S	Savannah, GA 31404				- Fall 2023	
Comments: MADEPEP (A) = EPH with PAHs MADEPVP (A) = VPH with targets RSK175 (A) = Dissolved Gases SW8010C (L) = AI Fe Mn SW8010C/FLDFLT (J) = AI Fe SW8010C/FLDFLT (K) = AI SW8010C/FLDFLT (L) = AI Fe Mn SW8010C/FLDFLT (L) = AI Fe Mn SW8010C/FLDFLT (B) = AS SW9034 (A) = Suffide				Analytical Test Method	MADEPEP (A)	MADEPVP (A)	RSK175 (A)	SW6010C (L)	SW6010C/FLDFLT (J)	SW6010C/FLDFLT (L)	SW6020B - As	SW6020B/FLDFLT (B)	SW9034 (A)	SW9056A - SO4, NO2, NO3	SW9060A - TOC	Code Matrix WG Ground Water Code Container/Preservative 2 2x 1 Liter, ambor, glass, 1:1 4 3x 40mL glass VOA Vials, H 8 3x 40mL glass VOA Vials, H 9 1x 250mL, plastic, HNO3, pl 1x 125mL plastic, Cool < 6d 7 2x 250mL plastic, Cool < 6d 1x 125mL plastic, Cool < 6d 1x 250mL, plastic, HNO3, pl	CI, pH < 2; Cool < 6 HCI, pH < 2; Cool < 6 H < 2; Cool < 6degC HegC DH Cool < 6degC HegC	dogC			
Event: Seres-Arcadis JV, Supple 2023	mental Re	medial Investig	ation, AOC 69		2	4	8 RS	AS on		9 9	Τ.	7			10	. , , , , , , , , , , , , , , , , , , ,					
2020				T					_	+	+	+	+		H		Sample	Depth	(ft bgs)		
Sample ID	Matrix	Date	Time	Samp Init.							-					Location ID	Туре		Bottom	Cooler	Comments
1 69W-23-01-FAL23	WG			1	×	x	х	х	1	1 _×	X	X	X	X	x	69W-23-01	N1	2.00	12.00	1	Commonia
2 69W-23-02-FAL23	WG			1	×	+	-	x		T _x	-	+	+-	-		69W-23-02	N1	4.00	14.00	1	Tv.
3 69W-23-03-FAL23	WG					x	_	х		T _×	+	(x	X	_		69W-23-03	N1	4.00	14.00	1	
4 69W-94-12-FAL23	WG	11-15-23	1335	DC	X	Х	-	x		×	: x	X	X	X	х	69W-94-12	N1	3.00	13.00	1	
5 69W-94-13-FAL23-SRI	WG					Х	х	X	,	\	1 _x		X	x	x	69W-94-13	N1	3.00	13.00	1	
6 69W-94-14-FAL23-SRI	WG	11-15-23	950	DC		х	х	x	١,	<	×		X	X	x	69W-94-14	N1	3.00	13.00	1	
7 69WP-08-01-FAL23-SRI	WG	11 12	1.//./		×	x	х	х	,	<	İχ		X	Х	x	69WP-08-01	N1	10.00	13.00	1	
8 69WP-13-01-FAL23-SRI	WG			1	X	X	х	Х	×		Τx	X	X	X	X	69WP-13-01	N1	0.00	0.00	1	
9 AOC69W-DUP02-FAL23-SRI	WG			-		X		х	,	7	T _X		1			69W-94-13	FD1	3.00	13.00	1	
10 AOC69W-DUP03-FAL23-SRI	WG					Х		Х	,	₹ <u></u>	X				Ħ	ZWM-99-22X	FD1	4.60	14.63	1	
11 ZWM-01-25X-FAL23-SRI	WG					X	X	x	7	<	X		X	X	x	ZWM-01-25X	N1	4.00	16.13	1	
12 ZWM-01-26X-FAL23	WG				X	х	х	X		1 _x	: x	X	X	×	×	ZWM-01-26X	N1	4.00	16.45	1	
13 ZWM-95-15X-FAL23-SRI	WG	11-15-23	1135	D.	110	x	х	х	,	<	T _x		X	_	x	ZWM-95-15X	N1	2.00	15.87	1	
14 ZWM-95-16X-FAL23	WG	10 10	1100		×	x	х	X		X	: x	(x	X	X	x	ZWM-95-16X	N1		## 174# ##10## (#### ###		
15 ZWM-95-17X-FAL23	WG				×	x	х	х		T _x	X	_	-	-	x	ZWM-95-17X	N1	-			
16 ZWM-95-18X-FAL23-SRI	WG					x		x	٦,	(+		\top			ZWM-95-18X	MS1	- 111111			
17 ZWM-95-18X-FAL23-SRI	WG					x	x	х		<u> </u>	T _x	-	X	×	x	ZWM-95-18X	N1	-			
18 ZWM-95-18X-FAL23-SRI	WG					х		×	_	<	×	-	T			ZWM-95-18X	SD1	680-2	243065 Chai		
19 ZWM-99-22X-FAL23-SRI	WG					Х	х	X	,	<	×		X	X	х	ZWM-99-22X	N1		. soos char	ii of Cus	tody
20 ZWM-99-23X-FAL23-SRI	WG		16			Х	х	х	7	\	X		X	×	x	ZWM-99-23X	N1	3.00	14.68	1	
21 ZWM-99-24X-FAL23-SRI	WG					х	х	Х	7	₹ <u></u>	×		X	×	x	ZWM-99-24X	N1	2.50	15.52	1	
												1	1						•		

Relinquished by: (Signature) Dun Clyp 11/15/23 1700 Date

Received by: (Signature)

Time

Received by Laboratory: (Signature)

Page 199 of 14

7A 11-16-23 1030 3. c/3.9

12/28/2023

Client: Seres Engineering & Services LLC

Job Number: 680-243065-2

Login Number: 243065 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492 Generated 2/15/2024 10:49:43 AM Revision 1

JOB DESCRIPTION

Fort Devens, SRI, AOC69W, Fall 2023

JOB NUMBER

680-243142-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Buth a Daughty

Generated 2/15/2024 10:49:43 AM Revision 1

Authorized for release by
Beth Daughtry, Project Management Assistant II
Beth.Daughtry@et.eurofinsus.com
Designee for
Jerry Lanier, Project Manager I
Jerry.Lanier@et.eurofinsus.com
(912)250-0281

_

2

4

5

7

0

10

11

Definitions/Glossary

Client: Seres Engineering & Services LLC

Job ID: 680-243142-2 Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Qualifiers

Metals

Qualifier **Qualifier Description** J Estimated: The analyte was positively identified; the quantitation is an estimation

U Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dilution Factor Dil Fac

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-243142-1	69W-94-13-FAL23-SRI	Water	11/14/23 12:25	11/15/23 10:07
680-243142-3	ZWM-99-24X-FAL23-SRI	Water	11/14/23 13:40	11/15/23 10:07

Job ID: 680-243142-2

Case Narrative

Client: Seres Engineering & Services LLC Project: Fort Devens, SRI, AOC69W, Fall 2023

Eurofins Savannah Job ID: 680-243142-2

> Job Narrative 680-243142-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Revision

Revised report - missing data for Dissolved Al for samples 1 & 3.

The samples were received on 11/15/2023 10:07 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.7°C

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-243142-2

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Lab Sample ID: 680-243142-1

Job ID: 680-243142-2

Client Sample ID: 69W-94-13-FAL23-SRI

Date Collected: 11/14/23 12:25 **Matrix: Water** Date Received: 11/15/23 10:07

Method: SW846 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Aluminum 150 U 200 150 54 ug/L 11/21/23 08:20 100 50 20 ug/L 11/21/23 08:20 Iron **570** Manganese 320 10 5.0 1.3 ug/L 11/21/23 08:20

Method: SW846 6020A - Metals (ICP/MS) - Dissolved LOD Analyte Result Qualifier LOQ DL Unit D Analyzed Dil Fac 11/22/23 08:38 9.1 5.0 3.0 0.86 ug/L **Arsenic**

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Client Sample ID: ZWM-99-24X-FAL23-SRI Lab Sample ID: 680-243142-3 **Matrix: Water**

Date Collected: 11/14/23 13:40

Date Received: 11/15/23 10:07 Method: SW846 6010C - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	340		200	150	54	ug/L	_	11/21/23 08:25	1
Iron	630		100	50	20	ug/L		11/21/23 08:25	1
Manganese	67		10	5.0	1.3	ug/L		11/21/23 08:25	1

Method: SW846 6020A - Metals (ICP/MS) - Dissolved						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Arsenic	2.7 J	5.0	3.0	0.86 ug/L		11/22/23 08:53	1

Job ID: 680-243142-2

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-809153/1-A

Analysis Batch: 809393

Matrix: Water

Prep Batch: 809153 MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Aluminum 150 U 200 150 54 ug/L 11/21/23 07:42 Iron 50 U 100 50 20 ug/L 11/21/23 07:42 5.0 U 10 5.0 11/21/23 07:42 Manganese 1.3 ug/L

Lab Sample ID: LCS 680-809153/2-A

Matrix: Water

Analysis Batch: 809393							Prep Batch:	809153
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5090		ug/L		101	86 - 115	
Iron	4990	5000		ug/L		100	87 - 115	
Manganese	400	407		ug/L		102	90 - 114	

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-809155/1-A

Matrix: Water

Analysis Batch: 809672

•	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL U	Jnit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86 u	ıg/L	_	11/21/23 23:08	1

Lab Sample ID: LCS 680-809155/2-A

Matrix: Water						Prep Ty	pe: Total Recoverable
Analysis Batch: 809672							Prep Batch: 809155
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	100	105		ug/L		105	84 - 116

Job ID: 680-243142-2

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 809155

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Metals

Prep Batch: 809153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243142-1	69W-94-13-FAL23-SRI	Dissolved	Water	3005A	
680-243142-3	ZWM-99-24X-FAL23-SRI	Dissolved	Water	3005A	
MB 680-809153/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-809153/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 809155

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-243142-1	69W-94-13-FAL23-SRI	Dissolved	Water	3005A
680-243142-3	ZWM-99-24X-FAL23-SRI	Dissolved	Water	3005A
MB 680-809155/1-A	Method Blank	Total Recoverable	Water	3005A
LCS 680-809155/2-A	Lab Control Sample	Total Recoverable	Water	3005A

Analysis Batch: 809393

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243142-1	69W-94-13-FAL23-SRI	Dissolved	Water	6010C	809153
680-243142-3	ZWM-99-24X-FAL23-SRI	Dissolved	Water	6010C	809153
MB 680-809153/1-A	Method Blank	Total Recoverable	Water	6010C	809153
LCS 680-809153/2-A	Lab Control Sample	Total Recoverable	Water	6010C	809153

Analysis Batch: 809672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243142-1	69W-94-13-FAL23-SRI	Dissolved	Water	6020A	809155
680-243142-3	ZWM-99-24X-FAL23-SRI	Dissolved	Water	6020A	809155
MB 680-809155/1-A	Method Blank	Total Recoverable	Water	6020A	809155
LCS 680-809155/2-A	Lab Control Sample	Total Recoverable	Water	6020A	809155

Job ID: 680-243142-2

2/15/2024 (Rev. 1)

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Client Sample ID: 69W-94-13-FAL23-SRI

Lab Sample ID: 680-243142-1

Date Collected: 11/14/23 12:25 Date Received: 11/15/23 10:07 Matrix: Water

Lab Sample ID: 680-243142-3

Job ID: 680-243142-2

Batch Batch Dil Initial Batch Final Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab Dissolved 3005A 809153 11/20/23 06:43 EET SAV Prep 25 mL 25 mL RR 6010C 809393 11/21/23 08:20 BCB **EET SAV** Dissolved Analysis 1 Instrument ID: ICPH Dissolved Prep 3005A 25 mL 125 mL 809155 11/20/23 06:42 RR **EET SAV** Dissolved Analysis 6020A 809672 11/22/23 08:38 BJB **EET SAV** Instrument ID: ICPMSC

Client Sample ID: ZWM-99-24X-FAL23-SRI

Date Collected: 11/14/23 13:40

Date Received: 11/15/23 10:07

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809153	11/20/23 06:43	RR	EET SAV
Dissolved	Analysis Instrumer	6010C at ID: ICPH		1			809393	11/21/23 08:25	ВСВ	EET SAV
Dissolved	Prep	3005A			25 mL	125 mL	809155	11/20/23 06:42	RR	EET SAV
Dissolved	Analysis	6020A		1			809672	11/22/23 08:53	BJB	EET SAV
	Instrumer	t ID: ICPMSC								

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

3

4

6

8

Matrix: Water

11

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Job ID: 680-243142-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

_ _

5

4

5

6

8

9

4 4

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W, Fall 2023

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation Total Recoverable or Dissolved Metals	SW846	FFT SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

5

Job ID: 680-243142-2

3

4

J

7

_

10

44

CHAIN-OF-CUSTODY RECORD	CORD	ARVC Heathe 669 Ma (843) 4	ARVC Heather Levesque 669 Marina Drive, Sulie B7, Charleston, SC 29492 (843) 478.0336, jenniler.singer@arcadis.com	ite B7, Ch ifer.singer	harlest r@arc	on, S adis.	C 29	492				-						9 0	of Engineers®	Corps ers _®
Project Name: Former Fort Devens, Long Term Monitoring	, Long Term !	Monitoring		La	Laboratory: Eurofins	λ. Ε	urofi	ns E	Viro	nme	리	stin	g Te	SIA	nerio	à S	Environment Testing TestAmerica, Savannah, GA		event: Seres-	Event: Seres-Arcadis JV, Supplemental
Project Number: DEVNS-LTM PO 2106 - 00000001	106 - 0000000	1		R	POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com	Ϊη L	anier	912	-250	-028		2	anie	@	rofi	susn			Remedial Inve	Remedial Investigation, AOC 69W,
WBS Code:				St	ip to:	Euro	I suit	estA	meri	ca, s	5102	La l	°C S	e A	nue/	e, Si	Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404		Fall 2023	
Comments:				4			4	-	\dashv	-		۱ ا	-	-	\dashv	\dashv	Code Matrix			
MADEPEP (A) = EPH with PAHs MADEPVP (A) = VPH with targets									_							_	WG Ground Water			
V6010C (L) = DISSOVED GASES									-	-						_	Code Container/Preservative			
SW6010C/FLDFLT (K) = A					2				_	_	-		_	_						
SW6010C/FLDFLT (L) = AJ Fe Mn SW6020B/FLDFLT (B) = As							_		_			_		_			ω ×			
V9034 (A) = Suffde									_	-		_	_		<u> </u>		ပ္သ			
				d				╄	+	┿	+	+	╀	110	NO	+	9 1x 250mL, plastic, I+NO3, pH < 2; Cool < 8degC			
				tho				<i>(</i> 1)	_		(L)	(D)	(B)	22	02,	-	5 1x 125mL plastic, Cool < 6degC			
Equipment:				t Me						_	-LI	-1 -		4 51		•	7 2x 250mL plastic, ZnAc/NaOH Cool < 6degC			
				Tes	(A)	(A)		_							_	100	5 1x 125mL plastic, Cool < 6degC			
				cal '	EP	VP	-	_		-	-	-				JM -	10 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC			
				nalyti	IADEF	ADEF	SK17	W601	W601	W601	W601	W602	W602	W903	W905	W906				
Event: Seres-Arcadis JV, Suppler 2023	Supplemental Remedial Investigation, AOC	al Investigati	on, AOC 69W, Fall	Fall	N	4			_	-		-				6				
				Samp					_								Sample Dept	Depth (ft bgs)	-	
_	Matrix	Date	Time	Init.			-	\vdash	+	+	+	╄	-	-			Location ID Type Top		Cooler	ody
	WG				×	×	×	×	┝	L	×	×	×	×	×	×		12.00	_	usto
2 69W-23-02-FAL23	WG				×	×	×	×			×	×	×	×	×	×	69W-23-02 N1 4.00	14.00	_	Cu
3 69W-23-03-FAL23	wG				×	×	×	×	_	-	×	×	×	×	×	×	69W-23-03 N1 4.00	14.00	-1	n of
4 69W-94-12-FAL23	WG				×	×	×	×	\vdash		×	×	×	×	×	×	69W-94-12 N1 3.00	13.00	-	hair
5 69W-94-13-FAL23-SRI	WG 11	114-23	725	00		×	×	×		×	\exists	×		×	×	×	69W-94-13 N1 3.00	13.00	-	2 C
6 69W-94-14-FAL23-SRI	WG					×	×	×	J	×		×		×	×	×		13.00	-	314
7 69WP-08-01-FAL23-SRI	WG			٠.	×	×	×	×	J	×		×	\exists	×	×	×	-	13.00	_	-24:
8 69WP-13-01-FAL23-SRI	WG				×	×	×	×	×	\vdash		×	×	×	×	×	69WP-13-01 N1 0.00	0.00	-	580-
9 AOC69W-DUP02-FAL23-SRI	wg [[-19-23	1225	DC		×		×	J	×	\exists	×	\dashv	\dashv	\dashv	_	69W-94-13 FD1 3.00	13.00	-	-
10 AOC69W-DUP03-FAL23-SRI	WG		-			X		×	J	×		×	-	\dashv	\dashv	_	ZWM-99-22X FD1 4.60	14.63	-	
11 ZWM-01-25X-FAL23-SRI	WG					×	×	×	J	×	J	×	_	×	×	×	ZWM-01-25X N1 4.00	16.13	_	
12 ZWM-01-26X-FAL23	WG				×	×	×	×	-	J	×	×	×	×	×	×	ZWM-01-26X N1 4.00	16.45	_	
13 ZWM-95-15X-FAL23-SRI	₩G					×	×	×	J	×		×		×	×	×	ZWM-95-15X N1 3.00	15.87	_	
14 ZWM-95-16X-FAL23	WG				×	×	×	×	\dashv	J	×	×	×	-	×	×	ZWM-95-16X N1 5.67	16.30	_	
15 ZWM-95-17X-FAL23	WG				×	×	\rightarrow	×	\dashv	+	\rightarrow	\rightarrow	-+	\dashv	-	×	2	24.76	-	
16 ZWM-95-18X-FAL23-SRI	WG					×	\rightarrow	×	↲	×	-	\rightarrow	\rightarrow	-	\dashv	+	MS1	15.22	-	
17 ZWM-95-18X-FAL23-SRI	WG				+	×	×	×	↲	×	_	×	_	×	×	×	Z	15.22	_	
18 ZWM-95-18X-FAL23-SRI	WG			_		×	\rightarrow	×	╣	×	╣	×	\dashv	\rightarrow	\rightarrow	+	SD1	15.22	_	
19 ZWM-99-22X-FAL23-SRI	WG				1	×	×	×	↲	×	+	×	_	×	×	×	Z	14.63	_	
20 ZWM-99-23X-FAL23-SRI	WG				+	×	\rightarrow	×	↲	×	_	×		\rightarrow	\dashv	×	2	14.68	_	
	WG •1	11 14 72	1200	?	\dashv	×	╛	4	+	×	+	+	+	+	+	1	TOO DAY	15.53	-	

Relinquished by: (Signature) DIWD 2 11-14-23

[700] Received by Laboratory: (Signature)

Time Received by: (Signature)

CHAIN-OF-CUSTODY RECORD

Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 478.0336, jennifer.singer@arcadis.com

COC# 69W-SRI-FAL23

匿

US Army Corps of Engineers

MADEPEP (A) = EPH with PANS
MADEPYP (A) = VPH with targets
RSK(176 (A) = Disschwed Gasses
SYM0010C (L) = AI Fe Min
SYM0010CFLDFLT (K) = AI Fe
SYM0010CFLDFLT (K) = AI Fe Min
SYM0010CFLDFLT (B) = As
SYM0020BFLDFLT (B) = As
SYM00204 (A) = Suffide Equipment: Turnaround Time: Standard 22 ZWP-95-01X-FAL23 Comments: WBS Code: Project Number: DEVNS-LTM PO 2106 - 00000001 Project Name: Former Fort Devens, Long Term Monitoring 23 ZWP-95-02X-FAL23 Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Fall 2023 Sample ID Matrix ₩G WG Date Time Samp Init. **Analytical Test Method** Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com × N MADEPEP (A) MADEPVP (A) × × 4 × 8 RSK175 (A) 9 SW6010C (L) 9 SW6010C/FLDFLT (J) SW6010C/FLDFLT (K) 8 9 SW6010C/FLDFLT (L) × 9 × × 9 SW6020B/FLDFLT (B) × × 7 SW9034 (A) × SW9056A - SO4, NO2, NO3 × O × × 10 SW9060A - TOC WG Ground Water Code Code Matrix ZWP-95-02X 3x 40mL glass VOA Vals, HCl, pH < 2; Cool < 6degC ZWP-95-01X Container/Preservative Location ID 2x 250mL plastic, ZnAc/NaOH Cool < 6degC 2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC 1x 125mL plastic, Cool < 6degC 1x 125mL plastic, Cool < 8degC 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 8degC Sample Type Ξ Z 10.00 9.50 Depth (ft bgs) Top - Bottom 14.42 14.41 Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Fall 2023 Cooler Comments

29 28 27 26 25 24

30

Received by Laboratory: (Signature)

Received by: (Signature)

Client: Seres Engineering & Services LLC

Job Number: 680-243142-2

Login Number: 243142 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Question	Answer	Comment
		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque
Seres Engineering & Services LLC
669 Marina Drive
Suite B7
Charleston, South Carolina 29492
Generated 12/29/2023 4:32:06 PM Revision 1

JOB DESCRIPTION

Fort Devens, SRI, AOC69W Fall 2023

JOB NUMBER

680-243154-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/29/2023 4:32:06 PM Revision 1

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Job ID: 680-243154-2

Qualifiers

wetais

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U	Undetected at the Limit of Detection.

Glossary

LOQ

MCL MDA

,	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

12

MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if al

ND Not Detected at the reporting limit (or MDL or EDL if shown)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

Limit of Quantitation (DoD/DOE)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-243154-4	69WP-08-01-FAL23	Water	11/16/23 14:00	11/17/23 10:14
680-243154-5	69WP-13-01-FAL23	Water	11/16/23 15:23	11/17/23 10:14
680-243154-6	AOC69W-DUP03-FAL23	Water	11/16/23 09:10	11/17/23 10:14
680-243154-7	ZWM-01-25X-FAL23	Water	11/16/23 10:36	11/17/23 10:14
680-243154-11	ZWM-95-18X-FAL23	Water	11/16/23 11:25	11/17/23 10:14
680-243154-12	ZWM-99-22X-FAL23	Water	11/16/23 09:10	11/17/23 10:14
680-243154-13	ZWM-99-23X-FAL23	Water	11/16/23 09:10	11/17/23 10:14

Job ID: 680-243154-2

Case Narrative

Client: Seres Engineering & Services LLC Project: Fort Devens, SRI, AOC69W Fall 2023

Job ID: 680-243154-2 Eurofins Savannah

Job Narrative 680-243154-2

REVISION

The report being provided is a revision of the original report sent on 12/27/2023. The report (revision 1) is being revised due to Case Narrative update required..

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/17/2023 10:14 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.3°C, 2.8°C, 4.6°C and 5.1°C

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

.

Job ID: 680-243154-2

4

6

R

9

11

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Lab Sample ID: 680-243154-4

Client Sample ID: 69WP-08-01-FAL23 Date Collected: 11/16/23 14:00

Matrix: Water

Job ID: 680-243154-2

Date Received: 11/17/23 10:14

Method: SW846 6010C -	Metals (ICP) - Dissolved							
Analyte	Result Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	6400	100	50	20	ug/L		11/20/23 20:30	1
Manganese	370	10	5.0	1.3	ug/L		11/20/23 20:30	1

Method: SW846 6020A - Metals (ICP/MS) - D	issolved							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		11/22/23 18:50	1

Client: Seres Engineering & Services LLC Job ID: 680-243154-2

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Date Collected: 11/16/23 15:23 Matrix: Water Date Received: 11/17/23 10:14

-

6

Q

9

4 4

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Client Sample ID: AOC69W-DUP03-FAL23

Lab Sample ID: 680-243154-6

Date Collected: 11/16/23 09:10 Date Received: 11/17/23 10:14

Method: SW846 6010C - I	Metals (ICP) - Dissolved						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Iron	11000	100	50	20 ug/L		11/20/23 20:42	1
Manganese	1100	10	5.0	1.3 ug/L		11/20/23 20:42	1

Method: SW846 6020A - Metals ((ICP/MS) - Dis	ssolved							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	120		5.0	3.0	0.86	ug/L		11/22/23 19:02	1

Job ID: 680-243154-2

Matrix: Water

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Client Sample ID: ZWM-01-25X-FAL23

Lab Sample ID: 680-243154-7

Matrix: Water

Job ID: 680-243154-2

Date Collected: 11/16/23 10:36 Date Received: 11/17/23 10:14

Method: SW846 6010C - Met									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/20/23 20:44	1
Manganese	1100		10	5.0	1.3	ug/L		11/20/23 20:44	1

Method: SW846 6020A - Metals ((ICP/MS) - Di	issolved							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	1.1	J	5.0	3.0	0.86	ug/L		11/22/23 19:06	1

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Lab Sample ID: 680-243154-11

Job ID: 680-243154-2

Client Sample ID: ZWM-95-18X-FAL23 Date Collected: 11/16/23 11:25

Matrix: Water Date Received: 11/17/23 10:14

Method: SW846 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Iron 50 U 100 50 20 ug/L 11/20/23 20:11 10 5.0 11/20/23 20:11 61 J1 1.3 ug/L Manganese

Method: SW846 6020A - Metals (ICP/MS) - Dissolved											
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac					
Arsenic	1.1 J	5.0	3.0	0.86 ug/L	11/22/23 18:0	9 1					

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Client Sample ID: ZWM-99-22X-FAL23

Lab Sample ID: 680-243154-12

Matrix: Water

Job ID: 680-243154-2

Date Collected: 11/16/23 09:10 Date Received: 11/17/23 10:14

Method: SW846 6010C - Me	etals (ICP) - Dissolved						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	t D	Analyzed	Dil Fac
Iron	11000	100	50	20 ug/L		11/20/23 20:54	1
Manganese	1000	10	5.0	1.3 ug/L	=	11/20/23 20:54	1
Method: SW846 6020A - Me	stale (ICP/MS) - Dissolved						

Method: SW846 6020A - Metals (ICP/MS) - D	issolved							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	110		5.0	3.0	0.86	ug/L		11/22/23 19:31	1

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Lab Sample ID: 680-243154-13

Client Sample ID: ZWM-99-23X-FAL23

Date Collected: 11/16/23 09:10 **Matrix: Water** Date Received: 11/17/23 10:14

Method: SW846 6010C - Metals (ICP) - Dissolved Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Iron 100 50 20 ug/L 11/20/23 20:32 2100 10 5.0 11/20/23 20:32 1.3 ug/L Manganese 1300

Method: SW846 6020A - Metals (ICP/MS) - Dissolved						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Δrsenic	23	5.0	3.0	0.86 ug/l		11/22/23 18:54	1

Job ID: 680-243154-2

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-809152/1-A

Matrix: Water

Analysis Batch: 809393 MB MB

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 809152**

Unit

ug/L

ug/L

Unit

ug/L

ug/L

Unit

ug/L

ug/L

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Iron	50	U	100	50	20	ug/L		11/20/23 20:01	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/20/23 20:01	1

400

Spike

Added

4990

400

Spike

Added

4990

400

389

MS MS

388 J1

MSD MSD

4860

438

LOQ

5.0

Result Qualifier

4840

Result Qualifier

Lab Sample ID: LCS 680-809152/2-A

Matrix: Water

Analysis Batch: 809393

Allalysis Datcil. 003333		
	Spike	LCS LCS
Analyte	Added	Result Qualifier
Iron	4990	4860

Sample Sample

50 U

61 J1

Sample Sample

50 U

Result Qualifier

MB MB Result Qualifier

3.0 U

Result Qualifier

Manganese

Lab Sample ID: 680-243154-11 MS

Matrix: Water

Analysis	Batch:	809393

Analyte		
Iron		

Lab Sample ID: 680-243154-11 MSD

Matrix: Water

Manganese

Analyte

Analyte

Iron

Analysis	Batch:	809393

Manganese	61	J1
Method: 6020A - Metals (ICP/I	IS)

Lab Sample ID: MB 680-809539/1-A

Matrix: Water

Analysis Batch: 809864

Analyte		

Analyte	
Arsenic	

Lab Sample ID: LCS 680-809539/2-A

Matrix: Water

Analysis Batch: 809864

Arsenic		
_		

Lab Sample ID: 680-243154-11 MS **Matrix: Water**

Analysis Batch: 809864

Sample Sample Result Qualifier Analyte 1.1 J Arsenic

Added 100

MS MS Spike Result Qualifier 106

Spike

Added

100

LOD

LCS LCS

101

Result Qualifier

3.0

Unit ug/L

Unit

ug/L

%Rec 105

%Rec

101

%Rec Limits 84 - 116

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Limits

87 - 115

Prep Batch: 809152

%Rec

97 90 - 114

Client Sample ID: ZWM-95-18X-FAL23

%Rec

D %Rec

D

DL Unit

0.86 ug/L

97

Prep Type: Dissolved

Prep Batch: 809152 %Rec Limits

97 87 - 115 82 90 - 114

Client Sample ID: ZWM-95-18X-FAL23

Prep Type: Dissolved Prep Batch: 809152

12

20

RPD %Rec %Rec Limits RPD Limit 87 - 115 0 20 97

90 - 114

94

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 809539

D Analyzed Dil Fac

11/22/23 18:01

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Limits

Prep Batch: 809539

%Rec

84 - 116 Client Sample ID: ZWM-95-18X-FAL23

> **Prep Type: Dissolved** Prep Batch: 809539

Eurofins Savannah

QC Sample Results

Client: Seres Engineering & Services LLC Job ID: 680-243154-2

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 680-243154-11 MSD Client Sample ID: ZWM-95-18X-FAL23

Matrix: Water

Analysis Batch: 809864

Prep Type: Dissolved Prep Batch: 809539

Sample Sample MSD MSD %Rec RPD Spike Result Qualifier Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec 100 84 - 116 20 Arsenic 1.1 J 102 ug/L 101 4

2

5

6

8

9

4 4

QC Association Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Prep Batch: 809152

Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243154-4	69WP-08-01-FAL23	Dissolved	Water	3005A	_
680-243154-5	69WP-13-01-FAL23	Dissolved	Water	3005A	
680-243154-6	AOC69W-DUP03-FAL23	Dissolved	Water	3005A	
680-243154-7	ZWM-01-25X-FAL23	Dissolved	Water	3005A	
680-243154-11	ZWM-95-18X-FAL23	Dissolved	Water	3005A	
680-243154-12	ZWM-99-22X-FAL23	Dissolved	Water	3005A	
680-243154-13	ZWM-99-23X-FAL23	Dissolved	Water	3005A	
MB 680-809152/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-809152/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-243154-11 MS	ZWM-95-18X-FAL23	Dissolved	Water	3005A	
680-243154-11 MSD	ZWM-95-18X-FAL23	Dissolved	Water	3005A	

Analysis Batch: 809393

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243154-4	69WP-08-01-FAL23	Dissolved	Water	6010C	809152
680-243154-5	69WP-13-01-FAL23	Dissolved	Water	6010C	809152
680-243154-6	AOC69W-DUP03-FAL23	Dissolved	Water	6010C	809152
680-243154-7	ZWM-01-25X-FAL23	Dissolved	Water	6010C	809152
680-243154-11	ZWM-95-18X-FAL23	Dissolved	Water	6010C	809152
680-243154-12	ZWM-99-22X-FAL23	Dissolved	Water	6010C	809152
680-243154-13	ZWM-99-23X-FAL23	Dissolved	Water	6010C	809152
MB 680-809152/1-A	Method Blank	Total Recoverable	Water	6010C	809152
LCS 680-809152/2-A	Lab Control Sample	Total Recoverable	Water	6010C	809152
680-243154-11 MS	ZWM-95-18X-FAL23	Dissolved	Water	6010C	809152
680-243154-11 MSD	ZWM-95-18X-FAL23	Dissolved	Water	6010C	809152

Prep Batch: 809539

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243154-4	69WP-08-01-FAL23	Dissolved	Water	3005A	
680-243154-6	AOC69W-DUP03-FAL23	Dissolved	Water	3005A	
680-243154-7	ZWM-01-25X-FAL23	Dissolved	Water	3005A	
680-243154-11	ZWM-95-18X-FAL23	Dissolved	Water	3005A	
680-243154-12	ZWM-99-22X-FAL23	Dissolved	Water	3005A	
680-243154-13	ZWM-99-23X-FAL23	Dissolved	Water	3005A	
MB 680-809539/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-809539/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-243154-11 MS	ZWM-95-18X-FAL23	Dissolved	Water	3005A	
680-243154-11 MSD	ZWM-95-18X-FAL23	Dissolved	Water	3005A	

Analysis Batch: 809864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243154-4	69WP-08-01-FAL23	Dissolved	Water	6020A	809539
680-243154-6	AOC69W-DUP03-FAL23	Dissolved	Water	6020A	809539
680-243154-7	ZWM-01-25X-FAL23	Dissolved	Water	6020A	809539
680-243154-11	ZWM-95-18X-FAL23	Dissolved	Water	6020A	809539
680-243154-12	ZWM-99-22X-FAL23	Dissolved	Water	6020A	809539
680-243154-13	ZWM-99-23X-FAL23	Dissolved	Water	6020A	809539
MB 680-809539/1-A	Method Blank	Total Recoverable	Water	6020A	809539
LCS 680-809539/2-A	Lab Control Sample	Total Recoverable	Water	6020A	809539
680-243154-11 MS	ZWM-95-18X-FAL23	Dissolved	Water	6020A	809539
680-243154-11 MSD	ZWM-95-18X-FAL23	Dissolved	Water	6020A	809539

Eurofins Savannah

Job ID: 680-243154-2

Client Sample ID: 69WP-08-01-FAL23

Date Collected: 11/16/23 14:00 Date Received: 11/17/23 10:14 Lab Sample ID: 680-243154-4

Matrix: Water

Dil Batch Batch Batch Initial Final **Prepared** Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Dissolved 3005A 809152 EET SAV Prep 25 mL 25 mL 11/20/23 06:10 RR Dissolved 6010C 809393 11/20/23 20:30 BCB **EET SAV** Analysis 1 Instrument ID: ICPH Dissolved Prep 3005A 25 mL 125 mL 809539 11/21/23 16:12 BCB **EET SAV** Dissolved Analysis 6020A 1 809864 11/22/23 18:50 BJB **EET SAV** Instrument ID: ICPMSC

Client Sample ID: 69WP-13-01-FAL23

Date Collected: 11/16/23 15:23 Date Received: 11/17/23 10:14 Lab Sample ID: 680-243154-5 Matrix: Water

Lab Sample ID: 680-243154-6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809152	11/20/23 06:10	RR	EET SAV
Dissolved	Analysis	6010C		1			809393	11/20/23 20:39	BCB	EET SAV
	Instrumer	t ID: ICPH								

Client Sample ID: AOC69W-DUP03-FAL23

Date Collected: 11/16/23 09:10 Date Received: 11/17/23 10:14

Batch Batch Dil Initial Final Batch Prepared Factor Method Amount **Prep Type** Type Run Amount Number or Analyzed Analyst Lab Dissolved Prep 3005A 25 mL 25 mL 809152 11/20/23 06:10 RR **EET SAV** Dissolved Analysis 6010C 809393 11/20/23 20:42 BCB **EET SAV** 1 Instrument ID: ICPH Dissolved Prep 3005A 25 mL 125 mL 809539 11/21/23 16:12 BCB FFT SAV Dissolved Analysis 6020A 1 809864 11/22/23 19:02 BJB **EET SAV** Instrument ID: ICPMSC

Client Sample ID: ZWM-01-25X-FAL23

Date Collected: 11/16/23 10:36

Date Received: 11/17/23 10:14

Batch Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809152	11/20/23 06:10	RR	EET SAV
Dissolved	Analysis	6010C		1			809393	11/20/23 20:44	BCB	EET SAV
	Instrumer	t ID: ICPH								
Dissolved	Prep	3005A			25 mL	125 mL	809539	11/21/23 16:12	ВСВ	EET SAV
Dissolved	Analysis	6020A		1			809864	11/22/23 19:06	BJB	EET SAV
	Instrumer	t ID: ICPMSC								

Eurofins Savannah

_

4

8

10

11

12

Lab Sample ID: 680-243154-7

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Client Sample ID: ZWM-95-18X-FAL23

Lab Sample ID: 680-243154-11

Lab Sample ID: 680-243154-12

Lab Sample ID: 680-243154-13

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 680-243154-2

Date Collected: 11/16/23 11:25 Date Received: 11/17/23 10:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809152	11/20/23 06:10	RR	EET SAV
Dissolved	Analysis	6010C		1			809393	11/20/23 20:11	BCB	EET SAV
	Instrumer	nt ID: ICPH								
Dissolved	Prep	3005A			25 mL	125 mL	809539	11/21/23 16:12	ВСВ	EET SAV
Dissolved	Analysis	6020A		1			809864	11/22/23 18:09	BJB	EET SAV
	Instrumer	nt ID: ICPMSC								

Client Sample ID: ZWM-99-22X-FAL23

Date Collected: 11/16/23 09:10

Date Received: 11/17/23 10:14

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809152	11/20/23 06:10	RR	EET SAV
Dissolved	Analysis Instrumer	6010C nt ID: ICPH		1			809393	11/20/23 20:54	ВСВ	EET SAV
Dissolved	Prep	3005A			25 mL	125 mL	809539	11/21/23 16:12	ВСВ	EET SAV
Dissolved	Analysis	6020A		1			809864	11/22/23 19:31	BJB	EET SAV
	Instrumer	nt ID: ICPMSC								

Client Sample ID: ZWM-99-23X-FAL23

Date Collected: 11/16/23 09:10

Date Received: 11/17/23 10:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			25 mL	25 mL	809152	11/20/23 06:10	RR	EET SAV
Dissolved	Analysis	6010C		1			809393	11/20/23 20:32	BCB	EET SAV
	Instrumer	t ID: ICPH								
Dissolved	Prep	3005A			25 mL	125 mL	809539	11/21/23 16:12	всв	EET SAV
Dissolved	Analysis	6020A		1			809864	11/22/23 18:54	BJB	EET SAV
	Instrumer	t ID: ICPMSC								

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

8

10

11

SAV

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Job ID: 680-243154-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

3

4

6

8

9

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, SRI, AOC69W Fall 2023

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

2

Job ID: 680-243154-2

3

4

7

8

10

44

Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Fall

WG

WG

Comments:

COC# 69W-SRI-FAL23

Code Matrix

US Army Corps of Engineers o

ARVC Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492

(843) 478.0336, jennifer.singer@arcadis.com Project Name: Former Fort Devens, Long Term Monitoring Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Project Number: DEVNS-LTM PO 2106 - 00000001 POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com Fall 2023 WBS Code: Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404

	1 1 1		1 1		1 1	1 1	1 1	00.	ao induix	
MADEPEP (A) = EPH with PAHs MADEPVP (A) = VPH with targets								W	Ground Water	
RSK175 (A) = Dissolved Gases			-							40
SW6010C (L) = Al Fe Mn SW6010C/FLDFLT (J) = Al Fe						11		Code	Container/Preservative	
SW6010C/FLDFLT (K) = AI			11					2	2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC	
SW6010C/FLDFLT (L) = AI Fo Mn SW6020B/FLDFLT (B) = A3								4	3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC	
SW9034 (A) = Sulfide								8	3x 40mL glass VOA Vizis, HCl, pH < 2; Cool < 6degC	
							NOS I	9	1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC	
	P Pod			হ হ	[E]	<u>@</u>	NO2, 1	5	1x 125mL plastic, Cool < 6degC	
Equipment:	₩			LT (=	5	¥	7	2x 250mL plastic, ZnAc/NaOH Cool < 6degC	
	Fest (§		SW6010C (L)		<u> </u> <u> </u>	SW6020B/FLDFLT (SW9034 (A)	½ 5	5	1x 125mL plastic, Cool < 6degC	
		: e		팅팅	R GE	S H 3	A A	10	1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC	
	Analytical	MADEPVP RSK175 (A)	1618	010	010	3 8 8	056			7
	AD AD	8 8	Mei S	W6(Ñ Ñ	8 8	8 8	'-		-
	∢ ≥	:]≥[α	1 0 1 3	S S	100 100	νισισ	100 100			

				Samp													Sample	Depth	(ft bgs)		
Sample ID	Matrix	Date	Time	Init.												Location ID	Туре		Bottom	Cooler	Comments
1 69W-23-01-FAL23	WG	11-16-23	1100	DC	×	X	X	X		Х	Х	х	X :	×	x	69W-23-01	N1	2.00	12.00	1	100
2 69W-23-02-FAL23	WG	11-16-23		AF	×	X	Х	х		X	Х	X	X .	x	x	69W-23-02	N1	4.00	14.00	1	
69W-23-03-FAL23	WG	11-16-23	1320	DC	×	X	Х	х		X	Х	Х	X .	×	X	69W-23-03	N1	4.00	14.00	1	
4 69W-94-12-FAL23	WG				×	X	X	X		X	Х	Х	X :	x	x	69W-94-12	N1	3.00	13.00	1 1	
5 69W-94-13-FAL23-SRI	WG					X	X	X	×		Х	П	X :	×	x	69W-94-13	N1	3.00	13.00	1	
6 69W-94-14-FAL23-SRI	WG					X	X	X	×		Х	П	X :	×	x	69W-94-14	N1	3.00	13.00	1	
7 69WP-08-01-FAL23-SRI	WG	11-16-23	1400	FM	×	X	X	х	X		Х	П	X	x	x	69WP-08-01	N1	10.00	13.00	1	
8 69WP-13-01-FAL23-SRI	WG	M-16-23		MS	×	X	X	X X			Х	X	X :	×	x	69WP-13-01	N1	0.00	0.00	1	
9 AOC69W-DUP02-FAL23-SRI	WG					X		X	X		Х	П			\top	69W-94-13	FD1	3.00	13.00	1	}
AOC69W-DUP03-FAL23-SRI	WG	11-16-23	0910	DC		X		X	×		Х			T		ZWM-99-22X	FD1	4.60	14.63	1	
ZWM-01-25X-FAL23-SRI	WG	11-16-23	1036	ms		X	X	х	X		х		X	x	x	ZWM-01-25X	N1	4.00	16.13	1	
12 ZWM-01-26X-FAL23	WG	11-16-23	1234	Ms	X	(x	Х	X		X	Х	Х	X :	×	x	ZWM-01-26X	N1	4.00	16.45	1	
13 ZWM-95-15X-FAL23-SRI	WG					X	Х	Х	X		Х		X :	X	x	ZWM-95-15X	N1	3.00	15.87	1	
14 ZWM-95-16X-FAL23	WG	11-16-23	1350	AF	×	X	Х	X		X	х	X	X .	x	x	ZWM-95-16X	N1	5.67	16.30	1	
15 ZWM-95-17X-FAL23	WG	11-14-23	1140	AF	×	: x	X	х		X	Х	X	X :	x	x	ZWM-95-17X	N1	12.20	24.76	1	
16 ZWM-95-18X-FAL23-SRI	WG	11-16-23	1125	FM		X		Х	X		Х			T		ZWM-95-18X	MS1	3.00	15.22	1	
7 ZWM-95-18X-FAL23-SRI	WG	11-16-23	1125	FM		X	Х	х	X		Х		X .	x	x	ZWM-95-18X	N1	3.00	15.22	1	
8 ZWM-95-18X-FAL23-SRI	WG	[H4-23	1125	FM		X		х	X		Х					ZWM-95-18X	SD1	3.00	15.22	1	
9 ZWM-99-22X-FAL23-SRI	WG	11-16-23	0910	DC		X	X	X	X		Х		X	x l	х	ZWM-99-22X	N1	4.60	14.63	1	

Relinquished by: (Signature)

Date Time

ZWM-99-23X-FAL23-SRI

ZWM-99-24X-FAL23-SRI

Received by: (Signature)

Х

0910

ZWM-99-23X

ZWM-99-24X

Dive Clip 11/6[23 1700 Received by Laboratory: (Signature) Diversity 10/13 10/13 10/14 10/13 10/14 Page 200 of 22 1.0/1.3 1.3/1.6 1.8/5.1 2.5/2.8 12/29/2023 (Rev. 1)

N1

3.00

2.50

14.68

15.52

1

ARVC

Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492

COC# 69W-SRI-FAL23

US Army Corps of Engineers o

(843) 478.0336, jennifer.singer@arcadis.com Project Name: Former Fort Devens, Long Term Monitoring Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Project Number: DEVNS-LTM PO 2106 - 00000001 POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com Fall 2023 WBS Code: Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Comments: Code Matrix MADEPEP (A) = EPH with PAHs WG Ground Water MADEPVP (A) = VPH with targets RSK175 (A) = Dissolved Gases SW6010C (L) = Al Fe Mn Code Container/Preservative SW6010C/FLDFLT (J) = AI Fo SW6010C/FLDFLT (K) = AI 2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC SW6010C/FLDFLT (L) = Al Fe Mn 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC SW6020B/FLDFLT (B) = As SW9034 (A) = Suffide 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC 9 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC SO4, NO2, 5 1x 125mL plastic, Cool < 6degC SW6010C/FLDFLT (K) SW6010C/FLDFLT (L) SW6020B/FLDFLT (B) SW6010C (L) SW6010C/FLDFLT (Equipment: 2x 250mL plastic, ZnAc/NaOH Cool < 6degC SW9060A - TOC **Analytical Test** MADEPEP (A) 5 1x 125mL plastic, Cool < 6degC RSK175 (A) SW9034 (A) 10 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Fall 8 9 9 2 9 9 9 7 10 2023 Sample Depth (ft bgs) Samp Sample ID Matrix Date Time Init. Type Cooler Location ID Top - Bottom Comments ZWP-95-01X-FAL23 ZWP-95-01X 10.00 1.16.23 0935 EM $x \mid x$ Х Х $x \mid x$ Х X X 14.41 1 N1 ZWP-95-02X-FAL23 WG ZWP-95-02X 9.50 Х l x l х Х Х Х 14.42 1 Х Х N1 24 25 26 27 28 29 30 31

Date Time

Turnaround Time: Standard

32 33

Received by: (Signature)

Relinquished by: (Signature) Dun Oyou Ulus 1700

Received by Laboratory: (Signature)

Page 27 of 22

Oll n 19-17-23 1014

Client: Seres Engineering & Services LLC

Job Number: 680-243154-2

Login Number: 243154 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

ordior. omis, Robert B		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 12/27/2023 5:39:45 PM

JOB DESCRIPTION

Seres-Arcadis JV Supp. Rem. Inv AOC 69W Fall2023

JOB NUMBER

680-243266-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/27/2023 5:39:45 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Qualifiers

GC Semi VOA

Qualifier Description

J Estimated: The analyte was positively identified; the quantitation is an estimation

M Manual integrated compound.

Q One or more quality control criteria failed.
U Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 680-243266-2

3

7

8

4.0

a a

11

Sample Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-243266-1	69W-94-13-FAL23	Water	11/17/23 12:20	11/21/23 10:28
680-243266-2	69W-94-14-FAL23	Water	11/17/23 12:30	11/21/23 10:28
680-243266-3	ZWM-01-25X-FAL23	Water	11/17/23 12:47	11/21/23 10:28
680-243266-4	ZWM-95-15X-FAL23	Water	11/17/23 12:37	11/21/23 10:28
680-243266-6	ZWM-99-22X-FAL23	Water	11/17/23 12:49	11/21/23 10:28
680-243266-7	ZWM-99-23X-FAL23	Water	11/17/23 12:20	11/21/23 10:28
680-243266-8	ZWM-99-24X-FAL23	Water	11/17/23 12:30	11/21/23 10:28

Job ID: 680-243266-2

3

4

E

6

6

0

10

11

Case Narrative

Client: Seres Engineering & Services LLC

Project: Seres-Arcadis JV Supp. Rem. Inv AOC 69W Fall2023

Job ID: 680-243266-2 Eurofins Savannah

680-243154-1

- \ni Separate the following into a separate login and remove "-SRI" from the ends of the sample IDs:
 - э 69W-94-13-FAL23: ЕРН
 - э 69W-94-14-FAL23: EPH
 - э ZWM-01-25X-FAL23: ЕРН
 - э ZWM-95-15X-FAL23: ЕРН
 - э ZWM-99-22X-FAL23: ЕРН
 - э ZWM-99-23X-FAL23: ЕРН
 - э ZWM-99-24X-FAL23: ЕРН

Eurofins Savannah

12/27/2023

2

Job ID: 680-243266-2

3

4

5

b

Ω

9

4 4

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: 69W-94-13-FAL23

Lab Sample ID: 680-243266-1 **Matrix: Water** Date Collected: 11/17/23 12:20

Date Received: 11/21/23 10:28

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Pyrene	9.4	UQ	11	9.4	4.7	ug/L		12/05/23 11:48	1
Benzo[g,h,i]perylene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Indeno[1,2,3-cd]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Benzo[b]fluoranthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Fluoranthene	0.94	UQ	1.9	0.94	0.47	ug/L		12/05/23 11:48	1
Benzo[k]fluoranthene	2.8	UQ	3.8	2.8	1.4	ug/L		12/05/23 11:48	1
Acenaphthylene	1.3	UQ	1.9	1.3	0.66	ug/L		12/05/23 11:48	1
Chrysene	0.94	UQ	1.9	0.94	0.47	ug/L		12/05/23 11:48	1
Benzo[a]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Dibenz(a,h)anthracene	0.94	UQ	1.9	0.94	0.47	ug/L		12/05/23 11:48	1
Benzo[a]anthracene	1.3	UQ	1.9	1.3	0.66	ug/L		12/05/23 11:48	1
Acenaphthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Phenanthrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Fluorene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
Naphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
2-Methylnaphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 11:48	1
C11-C22 Aromatics (unadjusted)	10	J Q	38	28	9.4	ug/L		12/05/23 11:48	1
C11-C22 Aromatics (Adjusted)	9.4	J	38	28	9.4	ug/L		12/05/23 11:48	1
C19-C36 Aliphatics	19	UQ	47	19	9.4	ug/L		12/05/23 11:48	1
C9-C18 Aliphatics	57	U	85	57	28	ug/L		12/05/23 11:48	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	67	40 - 140	11/29/23 08:54	12/05/23 11:48	1
2-Fluorobiphenyl (Surr)	100	40 - 140	11/29/23 08:54	12/05/23 11:48	1
o- terphenyl (Surr)	87	40 - 140	11/29/23 08:54	12/05/23 11:48	1

Job ID: 680-243266-2

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

C9-C18 Aliphatics

Client Sample ID: 69W-94-14-FAL23

Date Collected: 11/17/23 12:30 Date Received: 11/21/23 10:28

Job ID: 680-243266-2

12/05/23 12:11

Lab Sample ID: 680-243266-2

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Pyrene	9.5	UQ	11	9.5	4.7	ug/L		12/05/23 12:11	1
Benzo[g,h,i]perylene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Indeno[1,2,3-cd]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Benzo[b]fluoranthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Fluoranthene	0.95	UQ	1.9	0.95	0.47	ug/L		12/05/23 12:11	1
Benzo[k]fluoranthene	2.8	UQ	3.8	2.8	1.4	ug/L		12/05/23 12:11	1
Acenaphthylene	1.3	UQ	1.9	1.3	0.66	ug/L		12/05/23 12:11	1
Chrysene	0.95	UQ	1.9	0.95	0.47	ug/L		12/05/23 12:11	1
Benzo[a]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Dibenz(a,h)anthracene	0.95	UQ	1.9	0.95	0.47	ug/L		12/05/23 12:11	1
Benzo[a]anthracene	1.3	UQ	1.9	1.3	0.66	ug/L		12/05/23 12:11	1
Acenaphthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Phenanthrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Fluorene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
Naphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
2-Methylnaphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:11	1
C11-C22 Aromatics (unadjusted)	28	UQ	38	28	9.5	ug/L		12/05/23 12:11	1
C11-C22 Aromatics (Adjusted)	28	U	38	28		ug/L		12/05/23 12:11	1
C19-C36 Aliphatics	9.8	JQ	47	19	9.5	ug/L		12/05/23 12:11	1

Surrogate	%Recovery	Qualifier L	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	66		40 - 140	11/29/23 08:54	12/05/23 12:11	1
2-Fluorobiphenyl (Surr)	99	4	40 - 140	11/29/23 08:54	12/05/23 12:11	1
o- terphenyl (Surr)	86	4	40 - 140	11/29/23 08:54	12/05/23 12:11	1

85

57

28 ug/L

57 U M

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

2-Methylnaphthalene

C19-C36 Aliphatics

C9-C18 Aliphatics

C11-C22 Aromatics (unadjusted)

C11-C22 Aromatics (Adjusted)

Client Sample ID: ZWM-01-25X-FAL23

Date Collected: 11/17/23 12:47 Date Received: 11/21/23 10:28 Lab Sample ID: 680-243266-3

Matrix: Water

Job ID: 680-243266-2

Method: MA DEP MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) Result Qualifier LOD Dil Fac Analyte LOQ DL Unit Analyzed 1.2 U Q 1.9 1.2 Anthracene 0.58 ug/L 12/05/23 12:33 Pyrene 9.7 U Q 12 9.7 4.9 ug/L 12/05/23 12:33 Benzo[g,h,i]perylene 1.2 UQ 1.9 1.2 0.58 ug/L 12/05/23 12:33 Indeno[1,2,3-cd]pyrene 1.2 UQ 1.9 1.2 0.58 ug/L 12/05/23 12:33 Benzo[b]fluoranthene 1.2 1.2 UQ 1.9 0.58 ug/L 12/05/23 12:33 Fluoranthene 0.97 U Q 1.9 0.97 0.49 ug/L 12/05/23 12:33 Benzo[k]fluoranthene 3.9 2.9 1.5 ug/L 12/05/23 12:33 2.9 U Q Acenaphthylene 1.4 U Q 1.9 1.4 0.68 ug/L 12/05/23 12:33 Chrysene 0.97 UQ 1.9 0.97 0.49 ug/L 12/05/23 12:33 Benzo[a]pyrene 1.2 UQ 1.9 1.2 0.58 ug/L 12/05/23 12:33 0.97 Dibenz(a,h)anthracene 0.97 UQ 1.9 0.49 ug/L 12/05/23 12:33 Benzo[a]anthracene 1.4 U Q 1.9 1.4 0.68 ug/L 12/05/23 12:33 Acenaphthene 1.2 UQ 1.9 1.2 0.58 ug/L 12/05/23 12:33 Phenanthrene 1.2 1.2 UQ 1.9 0.58 ug/L 12/05/23 12:33 Fluorene 1.9 1.2 1.2 UQ 0.58 ug/L 12/05/23 12:33 Naphthalene 1.2 UQ 1.9 1.2 0.58 ug/L 12/05/23 12:33

1.9

39

39

49

88

1.2

29

29

19

58

0.58 ug/L

9.7 ug/L

9.7 ug/L

9.7 ug/L

29 ug/L

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctadecane (Surr)	66		40 - 140
2-Fluorobiphenyl (Surr)	83		40 - 140
o- terphenyl (Surr)	72		40 - 140

1.2 UQ

29 U Q

11 J Q

58 U M

29 U

Prepared	Analyzed	Dil Fac
11/29/23 08:54	12/05/23 12:33	1
11/29/23 08:54	12/05/23 12:33	1
11/29/23 08:54	12/05/23 12:33	1

12/05/23 12:33

12/05/23 12:33

12/05/23 12:33

12/05/23 12:33

12/05/23 12:33

3

į.

0

9

1 4

15

Olli is Savarii lai

12/27/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: ZWM-95-15X-FAL23

Date Collected: 11/17/23 12:37 Date Received: 11/21/23 10:28 Lab Sample ID: 680-243266-4

Job ID: 680-243266-2

Matrix: Water

Method: MA DEP MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC)									
Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fac
Anthracene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Pyrene	9.5	U Q	11	9.5	4.8	ug/L		12/05/23 12:56	1
Benzo[g,h,i]perylene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Indeno[1,2,3-cd]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Benzo[b]fluoranthene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Fluoranthene	0.95	U Q	1.9	0.95	0.48	ug/L		12/05/23 12:56	1
Benzo[k]fluoranthene	2.9	UQ	3.8	2.9	1.4	ug/L		12/05/23 12:56	1
Acenaphthylene	1.3	U Q	1.9	1.3	0.67	ug/L		12/05/23 12:56	1
Chrysene	0.95	U Q	1.9	0.95	0.48	ug/L		12/05/23 12:56	1
Benzo[a]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Dibenz(a,h)anthracene	0.95	U Q	1.9	0.95	0.48	ug/L		12/05/23 12:56	1
Benzo[a]anthracene	1.3	U Q	1.9	1.3	0.67	ug/L		12/05/23 12:56	1
Acenaphthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Phenanthrene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Fluorene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
Naphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
2-Methylnaphthalene	1.1	U Q	1.9	1.1	0.57	ug/L		12/05/23 12:56	1
C11-C22 Aromatics (unadjusted)	13	JQ	38	29	9.5	ug/L		12/05/23 12:56	1
C11-C22 Aromatics (Adjusted)	13	J	38	29	9.5	ug/L		12/05/23 12:56	1
C19-C36 Aliphatics	11	JQ	48	19	9.5	ug/L		12/05/23 12:56	1
C9-C18 Aliphatics	57	U M	86	57	29	ug/L		12/05/23 12:56	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	69	40 - 140	11/29/23 08:54	12/05/23 12:56	1
2-Fluorobiphenyl (Surr)	92	40 - 140	11/29/23 08:54	12/05/23 12:56	1
o- terphenyl (Surr)	83	40 - 140	11/29/23 08:54	12/05/23 12:56	1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

C9-C18 Aliphatics

Client Sample ID: ZWM-99-22X-FAL23

Date Collected: 11/17/23 12:49

Date Received: 11/21/23 10:28

Lab Sample ID: 680-243266-6

Matrix: Water

Job ID: 680-243266-2

12/05/23 13:41

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	0.97	JMQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Pyrene	9.5	UMQ	11	9.5	4.7	ug/L		12/05/23 13:41	1
Benzo[g,h,i]perylene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Indeno[1,2,3-cd]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Benzo[b]fluoranthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Fluoranthene	0.95	UMQ	1.9	0.95	0.47	ug/L		12/05/23 13:41	1
Benzo[k]fluoranthene	2.8	UQ	3.8	2.8	1.4	ug/L		12/05/23 13:41	1
Acenaphthylene	2.1	M Q	1.9	1.3	0.66	ug/L		12/05/23 13:41	1
Chrysene	0.95	UMQ	1.9	0.95	0.47	ug/L		12/05/23 13:41	1
Benzo[a]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Dibenz(a,h)anthracene	0.95	UQ	1.9	0.95	0.47	ug/L		12/05/23 13:41	1
Benzo[a]anthracene	1.3	UMQ	1.9	1.3	0.66	ug/L		12/05/23 13:41	1
Acenaphthene	1.2	JMQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Phenanthrene	0.72	JMQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Fluorene	1.4	JMQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
Naphthalene	1.1	UMQ	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
2-Methylnaphthalene	2.2	M Q	1.9	1.1	0.57	ug/L		12/05/23 13:41	1
C11-C22 Aromatics (unadjusted)	110	M Q	38	28	9.5	ug/L		12/05/23 13:41	1
C11-C22 Aromatics (Adjusted)	100		38	28	9.5	ug/L		12/05/23 13:41	1
C19-C36 Aliphatics	19	UQ	47	19	9.5	ug/L		12/05/23 13:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	56	40 - 140	11/29/23 08:54	12/05/23 13:41	1
2-Fluorobiphenyl (Surr)	100	40 - 140	11/29/23 08:54	12/05/23 13:41	1
o- terphenyl (Surr)	75	40 - 140	11/29/23 08:54	12/05/23 13:41	1

57 U M

57

28 ug/L

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: ZWM-99-23X-FAL23

Date Collected: 11/17/23 12:20

Date Received: 11/21/23 10:28

Job ID: 680-243266-2

Lab Sample ID: 680-243266-7

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Pyrene	10	UQ	13	10	5.2	ug/L		12/05/23 14:04	1
Benzo[g,h,i]perylene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Indeno[1,2,3-cd]pyrene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Benzo[b]fluoranthene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Fluoranthene	1.0	UQ	2.1	1.0	0.52	ug/L		12/05/23 14:04	1
Benzo[k]fluoranthene	3.1	UQ	4.2	3.1	1.6	ug/L		12/05/23 14:04	1
Acenaphthylene	1.5	UQ	2.1	1.5	0.73	ug/L		12/05/23 14:04	1
Chrysene	1.0	UQ	2.1	1.0	0.52	ug/L		12/05/23 14:04	1
Benzo[a]pyrene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Dibenz(a,h)anthracene	1.0	UQ	2.1	1.0	0.52	ug/L		12/05/23 14:04	1
Benzo[a]anthracene	1.5	UQ	2.1	1.5	0.73	ug/L		12/05/23 14:04	1
Acenaphthene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Phenanthrene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Fluorene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
Naphthalene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
2-Methylnaphthalene	1.3	UQ	2.1	1.3	0.63	ug/L		12/05/23 14:04	1
C11-C22 Aromatics (unadjusted)	24	JQ	42	31	10	ug/L		12/05/23 14:04	1
C11-C22 Aromatics (Adjusted)	23	J	42	31	10	ug/L		12/05/23 14:04	1
C19-C36 Aliphatics	10	JQ	52	21	10	ug/L		12/05/23 14:04	1
C9-C18 Aliphatics	63	U	94	63	31	ug/L		12/05/23 14:04	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	63		40 - 140	11/29/23 08:54	12/05/23 14:04	1
2-Fluorobiphenyl (Surr)	81		40 - 140	11/29/23 08:54	12/05/23 14:04	1
o- terphenyl (Surr)	70		40 - 140	11/29/23 08:54	12/05/23 14:04	1

9

10

4 4

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: ZWM-99-24X-FAL23

Date Collected: 11/17/23 12:30 Date Received: 11/21/23 10:28

Job ID: 680-243266-2

Lab Sample ID: 680-243266-8

Matrix: Water

Method: MA DEP MA-EPH - Ma Analyte		Qualifier	LOQ	LOD	DL	•	D	Analyzed	Dil Fac
Anthracene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Pyrene	9.6	UQ	11	9.6	4.8	ug/L		12/05/23 14:26	1
Benzo[g,h,i]perylene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Indeno[1,2,3-cd]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Benzo[b]fluoranthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Fluoranthene	0.96	UQ	1.9	0.96	0.48	ug/L		12/05/23 14:26	1
Benzo[k]fluoranthene	2.9	UQ	3.8	2.9	1.4	ug/L		12/05/23 14:26	1
Acenaphthylene	1.3	UQ	1.9	1.3	0.67	ug/L		12/05/23 14:26	1
Chrysene	0.96	UQ	1.9	0.96	0.48	ug/L		12/05/23 14:26	1
Benzo[a]pyrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Dibenz(a,h)anthracene	0.96	UQ	1.9	0.96	0.48	ug/L		12/05/23 14:26	1
Benzo[a]anthracene	1.3	UQ	1.9	1.3	0.67	ug/L		12/05/23 14:26	1
Acenaphthene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Phenanthrene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Fluorene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
Naphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
2-Methylnaphthalene	1.1	UQ	1.9	1.1	0.57	ug/L		12/05/23 14:26	1
C11-C22 Aromatics (unadjusted)	29	UQ	38	29	9.6	ug/L		12/05/23 14:26	1
C11-C22 Aromatics (Adjusted)	29	U	38	29	9.6	ug/L		12/05/23 14:26	1
C19-C36 Aliphatics	13	JQ	48	19	9.6	ug/L		12/05/23 14:26	1
C9-C18 Aliphatics	57	U	86	57	29	ug/L		12/05/23 14:26	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	62		40 - 140	11/29/23 08:54	12/05/23 14:26	1
2-Fluorobiphenyl (Surr)	83		40 - 140	11/29/23 08:54	12/05/23 14:26	1
o- terphenyl (Surr)	72		40 - 140	11/29/23 08:54	12/05/23 14:26	1

Fall2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC)

Lab Sample ID: MB 410-447864/1-B **Matrix: Water**

Analysis Batch: 449888

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-243266-2

Prep Batch: 447864

	MB	MR							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
C19-C36 Aliphatics	20	U	50	20	10	ug/L		12/05/23 10:40	1
C9-C18 Aliphatics	60	U	90	60	30	ug/L		12/05/23 10:40	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed 1-Chlorooctadecane (Surr) 63 40 - 140 <u>11/29/23 08:54</u> <u>12/05/23 10:40</u>

Lab Sample ID: MB 410-447864/1-C

Matrix: Water

Analysis Batch: 449883

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 447864

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Pyrene	10	U	12	10	5.0	ug/L		12/05/23 10:40	1
Benzo[g,h,i]perylene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Indeno[1,2,3-cd]pyrene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Benzo[b]fluoranthene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Fluoranthene	1.0	U	2.0	1.0	0.50	ug/L		12/05/23 10:40	1
Benzo[k]fluoranthene	3.0	U	4.0	3.0	1.5	ug/L		12/05/23 10:40	1
Acenaphthylene	1.4	U	2.0	1.4	0.70	ug/L		12/05/23 10:40	1
Chrysene	1.0	U	2.0	1.0	0.50	ug/L		12/05/23 10:40	1
Benzo[a]pyrene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Dibenz(a,h)anthracene	1.0	U	2.0	1.0	0.50	ug/L		12/05/23 10:40	1
Benzo[a]anthracene	1.4	U	2.0	1.4	0.70	ug/L		12/05/23 10:40	1
Acenaphthene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Phenanthrene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Fluorene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
Naphthalene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
2-Methylnaphthalene	1.2	U	2.0	1.2	0.60	ug/L		12/05/23 10:40	1
C11-C22 Aromatics (unadjusted)	30	U	40	30	10	ug/L		12/05/23 10:40	1
C11-C22 Aromatics (Adjusted)	30	U	40	30	10	ug/L		12/05/23 10:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	80		40 - 140	11/29/23 08:54	12/05/23 10:40	1
o- terphenyl (Surr)	72		40 - 140	11/29/23 08:54	12/05/23 10:40	1

Lab Sample ID: LCS 410-447864/2-B

Matrix: Water

Analysis Batch: 449888

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 447864

-	Sp	ike	LCS	LCS				%Rec
Analyte	Add	ed	Result	Qualifier	Unit	D	%Rec	Limits
C19-C36 Aliphatics	;	321	172		ug/L		54	40 - 140
C9-C18 Aliphatics	:	241	139	M	ug/L		58	40 - 140

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctadecane (Surr) 46 40 - 140

Eurofins Savannah

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCS 410-447864/2-C

Matrix: Water

Analysis Batch: 449883

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-243266-2

Prep Batch: 447864

	Spike	LUS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	40.1	21.7		ug/L		54	40 - 140	
Pyrene	40.1	22.0		ug/L		55	40 - 140	
Benzo[g,h,i]perylene	40.0	21.5		ug/L		54	40 - 140	
Indeno[1,2,3-cd]pyrene	40.1	20.6		ug/L		51	40 - 140	
Benzo[b]fluoranthene	40.2	21.8	M	ug/L		54	40 - 140	
Fluoranthene	40.1	22.3		ug/L		56	40 - 140	
Benzo[k]fluoranthene	40.1	22.2	М	ug/L		55	40 - 140	
Acenaphthylene	40.1	22.4		ug/L		56	40 - 140	
Chrysene	40.2	21.3		ug/L		53	40 - 140	
Benzo[a]pyrene	40.2	20.6		ug/L		51	40 - 140	
Dibenz(a,h)anthracene	40.0	21.5		ug/L		54	40 - 140	
Benzo[a]anthracene	40.1	21.6		ug/L		54	40 - 140	
Acenaphthene	40.2	21.2		ug/L		53	40 - 140	
Phenanthrene	40.1	22.4		ug/L		56	40 - 140	
Fluorene	40.1	22.0		ug/L		55	40 - 140	
Naphthalene	40.1	20.4		ug/L		51	40 - 140	
2-Methylnaphthalene	40.1	20.6		ug/L		51	40 - 140	
C11-C22 Aromatics (unadjusted)	681	365	M	ug/L		54	40 - 140	

Spike

Added

321

241

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	83	40 - 140
o- terphenyl (Surr)	53	40 - 140

Lab Sample ID: LCSD 410-447864/3-B

Matrix: Water

C19-C36 Aliphatics

C9-C18 Aliphatics

Analyte

Analysis Batch: 449888

CI	ient	Samp	le ID:	Lab	Contro	l Sampl	e Dup
----	------	------	--------	-----	--------	---------	-------

Prep Type: Total/NA Prep Batch: 447864

22

25

%Rec **RPD** D %Rec Limits RPD Limit 75 40 - 140 25

40 - 140

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctadecane (Surr)	64		40 - 140

Lab Sample ID: LCSD 410-447864/3-C

Matrix: Water

Analysis Batch: 449883

Client Sample	ID: Lab	Control	Sampl	e Dup
---------------	---------	---------	-------	-------

72

Prep Type: Total/NA Prep Batch: 447864

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene	40.1	31.6	Q	ug/L		79	40 - 140	37	25
Pyrene	40.1	32.2	Q	ug/L		80	40 - 140	38	25
Benzo[g,h,i]perylene	40.0	32.0	Q	ug/L		80	40 - 140	39	25
Indeno[1,2,3-cd]pyrene	40.1	31.5	M Q	ug/L		79	40 - 140	42	25
Benzo[b]fluoranthene	40.2	33.2	M Q	ug/L		83	40 - 140	41	25
Fluoranthene	40.1	32.6	Q	ug/L		81	40 - 140	37	25
Benzo[k]fluoranthene	40.1	31.9	MQ	ug/L		79	40 - 140	36	25
Acenaphthylene	40.1	32.0	M Q	ug/L		80	40 - 140	35	25

LCSD LCSD

242 Q

173 M

Result Qualifier Unit

ug/L

ug/L

Eurofins Savannah

Page 14 of 26

12/27/2023

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCSD 410-447864/3-C

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 447864

Job ID: 680-243266-2

Analysis Batch: 449883							Prep Ba	atch: 44	4 786 4
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chrysene	40.2	31.4	M Q	ug/L		78	40 - 140	38	25
Benzo[a]pyrene	40.2	30.5	Q	ug/L		76	40 - 140	39	25
Dibenz(a,h)anthracene	40.0	31.1	M Q	ug/L		78	40 - 140	37	25
Benzo[a]anthracene	40.1	32.5	M Q	ug/L		81	40 - 140	40	25
Acenaphthene	40.2	30.1	Q	ug/L		75	40 - 140	34	25
Phenanthrene	40.1	32.4	Q	ug/L		81	40 - 140	36	25
Fluorene	40.1	31.3	Q	ug/L		78	40 - 140	35	25
Naphthalene	40.1	28.7	Q	ug/L		72	40 - 140	34	25
2-Methylnaphthalene	40.1	28.7	Q	ug/L		72	40 - 140	33	25
C11-C22 Aromatics (unadjusted)	681	530	M Q	ua/L		78	40 - 140	37	25

LCSD LCSD

Surrogate	%Recovery Qualifie	r Limits
2-Fluorobiphenyl (Surr)	83	40 - 140
o- terphenyl (Surr)	76	40 - 140

 3

7

8

9

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

GC Semi VOA

Prep Batch: 447864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243266-1	69W-94-13-FAL23	Total/NA	Water	3510C	
680-243266-2	69W-94-14-FAL23	Total/NA	Water	3510C	
680-243266-3	ZWM-01-25X-FAL23	Total/NA	Water	3510C	
680-243266-4	ZWM-95-15X-FAL23	Total/NA	Water	3510C	
680-243266-6	ZWM-99-22X-FAL23	Total/NA	Water	3510C	
680-243266-7	ZWM-99-23X-FAL23	Total/NA	Water	3510C	
680-243266-8	ZWM-99-24X-FAL23	Total/NA	Water	3510C	
MB 410-447864/1-B	Method Blank	Total/NA	Water	3510C	
MB 410-447864/1-C	Method Blank	Total/NA	Water	3510C	
LCS 410-447864/2-B	Lab Control Sample	Total/NA	Water	3510C	
LCS 410-447864/2-C	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-447864/3-B	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 410-447864/3-C	Lab Control Sample Dup	Total/NA	Water	3510C	

Cleanup Batch: 449383

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243266-1	69W-94-13-FAL23	Total/NA	Water	3630C	447864
680-243266-1	69W-94-13-FAL23	Total/NA	Water	3630C	447864
680-243266-2	69W-94-14-FAL23	Total/NA	Water	3630C	447864
680-243266-2	69W-94-14-FAL23	Total/NA	Water	3630C	447864
680-243266-3	ZWM-01-25X-FAL23	Total/NA	Water	3630C	447864
680-243266-3	ZWM-01-25X-FAL23	Total/NA	Water	3630C	447864
680-243266-4	ZWM-95-15X-FAL23	Total/NA	Water	3630C	447864
680-243266-4	ZWM-95-15X-FAL23	Total/NA	Water	3630C	447864
680-243266-6	ZWM-99-22X-FAL23	Total/NA	Water	3630C	447864
680-243266-6	ZWM-99-22X-FAL23	Total/NA	Water	3630C	447864
680-243266-7	ZWM-99-23X-FAL23	Total/NA	Water	3630C	447864
680-243266-7	ZWM-99-23X-FAL23	Total/NA	Water	3630C	447864
680-243266-8	ZWM-99-24X-FAL23	Total/NA	Water	3630C	447864
680-243266-8	ZWM-99-24X-FAL23	Total/NA	Water	3630C	447864
MB 410-447864/1-B	Method Blank	Total/NA	Water	3630C	447864
MB 410-447864/1-C	Method Blank	Total/NA	Water	3630C	447864
LCS 410-447864/2-B	Lab Control Sample	Total/NA	Water	3630C	447864
LCS 410-447864/2-C	Lab Control Sample	Total/NA	Water	3630C	447864
LCSD 410-447864/3-B	Lab Control Sample Dup	Total/NA	Water	3630C	447864
LCSD 410-447864/3-C	Lab Control Sample Dup	Total/NA	Water	3630C	447864

Analysis Batch: 449883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243266-1	69W-94-13-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-2	69W-94-14-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-3	ZWM-01-25X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-4	ZWM-95-15X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-6	ZWM-99-22X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-7	ZWM-99-23X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-8	ZWM-99-24X-FAL23	Total/NA	Water	MA-EPH	449383
MB 410-447864/1-C	Method Blank	Total/NA	Water	MA-EPH	449383
LCS 410-447864/2-C	Lab Control Sample	Total/NA	Water	MA-EPH	449383
LCSD 410-447864/3-C	Lab Control Sample Dup	Total/NA	Water	MA-EPH	449383

Eurofins Savannah

Job ID: 680-243266-2

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

GC Semi VOA

Analysis Batch: 449888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243266-1	69W-94-13-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-2	69W-94-14-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-3	ZWM-01-25X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-4	ZWM-95-15X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-6	ZWM-99-22X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-7	ZWM-99-23X-FAL23	Total/NA	Water	MA-EPH	449383
680-243266-8	ZWM-99-24X-FAL23	Total/NA	Water	MA-EPH	449383
MB 410-447864/1-B	Method Blank	Total/NA	Water	MA-EPH	449383
LCS 410-447864/2-B	Lab Control Sample	Total/NA	Water	MA-EPH	449383
LCSD 410-447864/3-B	Lab Control Sample Dup	Total/NA	Water	MA-EPH	449383

Job ID: 680-243266-2

- 0

4

Q

1 N

11

Job ID: 680-243266-2

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: 69W-94-13-FAL23

Client: Seres Engineering & Services LLC

Date Collected: 11/17/23 12:20 Date Received: 11/21/23 10:28 Lab Sample ID: 680-243266-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1058.7 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 11:48	UHEW	ELLE
	Instrumer	it ID: 18433-W								
Total/NA	Prep	3510C			1058.7 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 11:48	UHEW	ELLE
	Instrumer	nt ID: 18433-X								

Client Sample ID: 69W-94-14-FAL23 Lab Sample ID: 680-243266-2

Date Collected: 11/17/23 12:30 Date Received: 11/21/23 10:28 ab Sample الله 600-243206-2. Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1057.4 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 12:11	UHEW	ELLE
	Instrumen	nt ID: 18433-W								
Total/NA	Prep	3510C			1057.4 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 12:11	UHEW	ELLE
	Instrumen	nt ID: 18433-X								

Client Sample ID: ZWM-01-25X-FAL23 Lab Sample ID: 680-243266-3

Date Collected: 11/17/23 12:47 Date Received: 11/21/23 10:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1026.2 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 12:33	UHEW	ELLE
	Instrumer	nt ID: 18433-W								
Total/NA	Prep	3510C			1026.2 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 12:33	UHEW	ELLE
	Instrumer	nt ID: 18433-X								

Client Sample ID: ZWM-95-15X-FAL23 Lab Sample ID: 680-243266-4

Date Collected: 11/17/23 12:37 Date Received: 11/21/23 10:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1049 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 12:56	UHEW	ELLE
	Instrumer	it ID: 18433-W								

Eurofins Savannah

Page 18 of 26

2

3

5

9

10

4 6

Matrix: Water

no ouvannun

Matrix: Water

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Client Sample ID: ZWM-95-15X-FAL23

Date Collected: 11/17/23 12:37 Date Received: 11/21/23 10:28 Lab Sample ID: 680-243266-4

Matrix: Water

Job ID: 680-243266-2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1049 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis Instrumen	MA-EPH at ID: 18433-X		1	1 mL	1 mL	449888	12/05/23 12:56	UHEW	ELLE

Client Sample ID: ZWM-99-22X-FAL23 Lab Sample ID: 680-243266-6

Date Collected: 11/17/23 12:49 Date Received: 11/21/23 10:28 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1057 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 13:41	UHEW	ELLE
	Instrumer	it ID: 18433-W								
Total/NA	Prep	3510C			1057 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 13:41	UHEW	ELLE
	Instrumer	t ID: 18433-X								

Client Sample ID: ZWM-99-23X-FAL23 Lab Sample ID: 680-243266-7

Date Collected: 11/17/23 12:20 Date Received: 11/21/23 10:28 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			957.8 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 14:04	UHEW	ELLE
	Instrumen	it ID: 18433-W								
Total/NA	Prep	3510C			957.8 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 14:04	UHEW	ELLE
	Instrumen	t ID: 18433-X								

Client Sample ID: ZWM-99-24X-FAL23 Lab Sai

Date Collected: 11/17/23 12:30 Date Received: 11/21/23 10:28 Lab Sample ID: 680-243266-8 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1046.4 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449883	12/05/23 14:26	UHEW	ELLE
	Instrumen	t ID: 18433-W								
Total/NA	Prep	3510C			1046.4 mL	1 mL	447864	11/29/23 08:54	U7CG	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	449383	12/02/23 07:31	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	449888	12/05/23 14:26	UHEW	ELLE
	Instrumen	it ID: 18433-X								

Eurofins Savannah

Page 19 of 26

2

3

5

7

8

10

11

ah

12/27/2023

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

¹ This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

1

Job ID: 680-243266-2

3

4

5

6

8

9

10

11

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24

Job ID: 680-243266-2

4

5

9

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV Supp. Rem. Inv AOC 69W

Fall2023

Method **Method Description Protocol** Laboratory Massachusetts - Extractable Petroleum Hydrocarbons (GC) MA-EPH MA DEP ELLE 3510C Liquid-Liquid Extraction (Separatory Funnel) SW846 **ELLE** Silica Gel Cleanup 3630C SW846 **ELLE**

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Job ID: 680-243266-2

COC# 69W-SRI-FAL23

ARVC Heather Levesque

Drun Clips

669 Marina Drive, Suite B7, Charleston, SC 29492

(843) 478.0336, jennifer.singer@arcadis.com

US Army Corps of Engineers o

Project Name: Former Fort Devens, Long Term Monitoring Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Project Number: DEVNS-LTM PO 2106 - 00000001 POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com Fall 2023 WBS Code: Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Comments: Code Matrix MADEPEP (A) = EPH with PAHs WG Ground Water MADEPVP (A) = VPH with targets RSK175 (A) = Dissolved Gases SW6010C (L) = Al Fe Mn Code Container/Preservative SW6010C/FLDFLT (J) = AI Fe SW6010C/FLDFLT (K) = Al 2 2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC SW6010C/FLDFLT (L) = Al Fe Mn 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC SW6020B/FLDFLT (B) = As SW9034 (A) = Suffice 3x 40mL glass VOA Vials, HCl, pH < 2; Cool < 6degC 9 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC Method 5 1x 125mL plastic, Cool < 6degC NO2, 3 SW6010C/FLDFLT (K) \exists SW6020B/FLDFLT (B) Equipment: SW6010C/FLDFLT 7 2x 250mL plastic, ZnAc/NaOH Cool < 6degC SW6010C/FLDFLT SO4, - TOC 5 1x 125mL plastic, Cool < 6degC € € \exists RSK175 (A) SW9034 (A) SW9056A -10 1x 250mL, plastic, HNO3, pH < 2; Cool MADEPEP Analytical SW6010C SW9060A Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 69W, Fall 2 4 8 9 9 9 9 5 10 9 680-243266 Chain of Custody 2023 Sample Depth (π bgs) Samp Sample ID Matrix Date Time Init. Location ID Type Top - Bottom Cooler Comments 69W-23-01-FAL23 WG 69W-23-01 2.00 $x \mid x \mid$ Х х Х Ιx Х lx lx lx N1 12.00 69W-23-02-FAL23 WG 69W-23-02 2 х 4.00 14.00 1 х Х Х Х Х Х х N1 69W-23-03-FAL23 WG 3 Х X 69W-23-03 4.00 14.00 1 Χ Х Х X Х Х х X N1 4 69W-94-12-FAL23 WG Х Х Х Х Х 69W-94-12 3.00 13.00 1 Х Х Х Х N1 69W-94-13-FAL23-SRI WG 1-17-23 12-20 MS 69W-94-13 3.00 13.00 1 EPHONIY Х Х Х Х Х Х N1 69W-94-14-FAL23-SRI WG 12.50 Х х х Х 69W-94-14 3.00 13.00 1 Х Х X N1 EPH on 14 69WP-08-01-FAL23-SRI WG Х 69WP-08-01 10.00 13.00 1 Х Х Х Х Х Х Х Х N1 69WP-13-01-FAL23-SRI 69WP-13-01 8 WG 0.00 0.00 Х Х Х X X Х $x \mid x$ Х N1 1 AOC69W-DUP02-FAL23-SRI WG 69W-94-13 3.00 13.00 1 Х Х Х X FD1 AOC69W-DUP03-FAL23-SRI WG Х Х х Х ZWM-99-22X FD1 4.60 14.63 1 ZWM-01-25X-FAL23-SRI WG 11 х х Х х Х х ZWM-01-25X 4.00 16.13 1 EPH ONLY х N1 WG 12 ZWM-01-26X-FAL23 Х х Х Х ZWM-01-26X 4.00 16.45 1 $x \mid x$ Х Х N1 13 ZWM-95-15X-FAL23-SRI WG Х ZWM-95-15X 3.00 15.87 11-17-23 х X Х Х Х Х Х N1 1 EPH only 14 ZWM-95-16X-FAL23 WG Х ZWM-95-16X 5.67 16.30 1 XX Х XX Х Х Х Х N1 ZWM-95-17X-FAL23 WG 12.20 Х X х х x l Х Х Х ZWM-95-17X 24.76 1 N1 ZWM-95-18X-FAL23-SRI WG ZWM-95-18X 15.22 Х Х 3.00 1 EPH Only Х MS1 ZWM-95-18X-FAL23-SRI WG Х Х Х Х x x ZWM-95-18X 3.00 15.22 1 Х Х N1 18 ZWM-95-18X-FAL23-SRI WG Х Х ZWM-95-18X 3.00 15.22 1 Х Х SD1 ZWM-99-22X-FAL23-SRI WG MS Х Х Х Х Х ZWM-99-22X 4.60 14.63 1 XX Х N1 ZWM-99-23X-FAL23-SRI 20 WG Х х ZWM-99-23X 3.00 14.68 1 Х Х Х Х Х Х N1 21 ZWM-99-24X-FAL23-SRI WG ZWM-99-24X Х Х 2.50 15.52 Х 1 N1

Relinquished by: (Signature)

Date Time

Received by: (Signature)

Received by Laboratory: (Signature)

12/27/2023

ARVC

Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 478.0336, jennifer.singer@arcadis.com

US Army Corps of Engineers $_{\circ}$

Project Name: Former Fort Devens, Long Term Monitoring						Labora	atory:	Euro	ofins E	Envir	ronme	ent T	estin	g Te	stAm	erica,	Savannah, GA				Event: Seres-Arcadis JV, Supplementa		
Pro	ject Number: DEVNS-LT	M PO 2106 - 000	000001			POC:	Jerry	Lanie	er, 91	2-25	50-02	81, je	erry.la	anier	@eui	ofinsu	us.com				Remedial Investigation, AOC 69W, Fall 2023		
WE	S Code:					Ship to	o: Eu	rofins	Test	Ame	erica,	5102	2 LaF	Roche	e Ave	nue, S	Savannah, GA 31404				raii 20	20	
				I Analytical Test Method	MADEDED (A)	MADEPVP (A)	RSK175 (A)	SW6010C (L)	SW6010C/FLDFLT (J)	SW6010C/FLDFLT (K)	SW6010C/FLDFLT (L)	SW6020B - As	SW60Z0B/FLDFLI (B)	SW9056A - SO4, NO2, NO3	SW9060A - TOC	Code Matrix WG Ground Water Code Container/Preservative 2 2x 1 Liter, amber, glass, 1 4 3x 40mL glass VOA Vials, 8 3x 40mL glass VOA Vials, 9 1x 250mL, plastic, HNO3, 5 1x 125mL plastic, ZnAc/N 5 1x 125mL plastic, Cool < 1 10 1x 250mL, plastic, HNO3,	, HCl, pH < 2; Cool < 6 , HCl, pH < 2; Cool < 6 pH < 2; Cool < 6degC 6degC aOH Cool < 6degC 6degC	degC					
	Event: Seres-Arcadis JV, 2023	, Supplemental Re	emedial Investig	gation, AOC 69			2 4			9				9 7		10							
	Sample ID	Matrix	Date	Time	Samp Init.												Location ID	Sample Type		(ft bgs) Bottom	Cooler	Comments	
22	ZWP-95-01X-FAL23	WG				7	⟨ x	X	X			x :	x >	××	₹ X	X	ZWP-95-01X	N1	10.00	14.41	1		
23	ZWP-95-02X-FAL23	WG	11-17-23	0920	FM	7	⟨ x	X	X			x :	x >	x x	₹ X	X	ZWP-95-02X	N1	9.50	14.42	1		
24																П			111				
25												\Box	T	T							11		
26																			ī I I				
27																							
28															T								
29							T	Т				T	T	\top	\top	П							
30								T	\Box				\top	\top	\top	\Box							
31					1		+	T			\vdash	+	\top	\top	\top	\dagger							
32					1 1	_	+	+	+	\dashv	\vdash	+	+	+	+	+							
33				 	 	\dashv	+	+	+	\dashv	\vdash	+	+	+	+	\vdash					-		
	rnaround Time: Standard	d			ــــــــــــــــــــــــــــــــــــــ			т_	لــــــــــــــــــــــــــــــــــــــ		ш										1		
				•															2 61 15				
																		á	1-0/a	2.3	0.	1/0.4	

Durella 11/11/23 1400 Relinquished by: (Signature)

Time Received by: (Signature)

Date

Page 24 of 26

Received by Laboratory: (Signature)

Date

11)2123 1028

Client: Seres Engineering & Services LLC

Job Number: 680-243266-2

Login Number: 243266 **List Source: Eurofins Savannah**

List Number: 1

Eurofins Savannah

Creator: Munro, Caroline

ordator. maino, caronic		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Page 25 of 26

12/27/2023

Client: Seres Engineering & Services LLC

Job Number: 680-243266-2

Login Number: 243266 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 2 List Creation: 11/28/23 11:51 AM

Creator: McCaskey, Jonathan

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 11/30/2023 7:52:59 PM

JOB DESCRIPTION

Seres-Arcadis JV, LTM DCL Leach, Fall 2023

JOB NUMBER

680-242837-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 11/30/2023 7:52:59 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-242837-1

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Qualifiers

GC/MS VOA

Qualifier Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

Undetected at the Limit of Detection. U

Qualifier Description

GC Semi VOA

Qualifier Qua	ualifier Description
J Est	stimated: The analyte was positively identified; the quantitation is an estimation
M Ma	anual integrated compound.
Q One	ne or more quality control criteria failed.
U Und	ndetected at the Limit of Detection.

Metals

C	Qualifier	Qualifier Description
J	1	Estimated: The analyte was positively identified; the quantitation is an estimation
ι	J	Undetected at the Limit of Detection.

General Chemistry

Qualifier	Qualifier Description
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit Minimum Level (Dioxin)

Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

MPN

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Eurofins Savannah

Page 3 of 25

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Glossary (Continued)

Abbreviation

These commonly used abbreviations may or may not be present in this report.

TNTC

Too Numerous To Count

242837-1

2

5

6

8

9

10

11

Sample Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242837-1	DCL LEACHATE-FAL23	Water	11/07/23 10:40	11/10/23 10:06

3

4

5

7

10

11

Case Narrative

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-242837-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/10/2023 10:06 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

GC/MS VOA

Method 624_5ml_DOD5: The following sample in batch 280-635040 was received one day outside of holding time due to a shipping delay: DCL LEACHATE-FAL23 (680-242837-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides/PCBs

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 680-242837-1

_

5

6

9

10

11

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Client Sample ID: DCL LEACHATE-FAL23

Lab Sample ID: 680-242837-1 Date Collected: 11/07/23 10:40 Matrix: Water

Date Received: 11/10/23 10:06

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
1,1,1-Trichloroethane	0.50	UH	1.0	0.50	0.39	ug/L	11/22/23 20:10	•
1,1,2,2-Tetrachloroethane	0.80	UH	1.0	0.80	0.21	ug/L	11/22/23 20:10	
1,1,2-Trichloroethane	0.80	UH	1.0	0.80	0.27	ug/L	11/22/23 20:10	
1,1-Dichloroethane	0.80	UH	1.0	0.80	0.22	ug/L	11/22/23 20:10	
1,1-Dichloroethene	0.80	UH	1.0	0.80	0.23	ug/L	11/22/23 20:10	
1,2-Dichlorobenzene	0.50	UH	1.0	0.50	0.37	ug/L	11/22/23 20:10	
1,2-Dichloroethane	0.80	UH	1.0	0.80	0.54	ug/L	11/22/23 20:10	
1,2-Dichloroethene, Total	0.40	UH	1.0	0.40	0.32	ug/L	11/22/23 20:10	
1,2-Dichloropropane	0.80	UH	1.0	0.80	0.52	ug/L	11/22/23 20:10	
1,3-Dichlorobenzene	0.40	UH	1.0	0.40	0.33	ug/L	11/22/23 20:10	
1,4-Dichlorobenzene	0.50	UH	1.0	0.50	0.39	ug/L	11/22/23 20:10	
2-Butanone (MEK)	12	UH	15	12	6.0	ug/L	11/22/23 20:10	
2-Hexanone	4.0	UH	5.0	4.0	1.7	ug/L	11/22/23 20:10	
4-Methyl-2-pentanone (MIBK)	3.2	UH	5.0	3.2	0.98	ug/L	11/22/23 20:10	
Acetone	8.0	UH	15	8.0	6.6	ug/L	11/22/23 20:10	
Benzene	0.80	UH	1.0	0.80	0.31	ug/L	11/22/23 20:10	
Bromoform	1.8	UH	2.0	1.8	1.2	ug/L	11/22/23 20:10	
Bromomethane	4.0	UH	5.0	4.0	2.4	ug/L	11/22/23 20:10	
Carbon disulfide	0.80	UH	2.0	0.80	0.63	ug/L	11/22/23 20:10	
Carbon tetrachloride	0.80	UH	1.0	0.80	0.57	ug/L	11/22/23 20:10	
Chlorobenzene	0.80	UH	1.0	0.80	0.42	ug/L	11/22/23 20:10	
Chlorodibromomethane	1.8	UH	2.0	1.8	0.62	ug/L	11/22/23 20:10	
Chloroethane	1.6	UH	4.0	1.6	1.4	ug/L	11/22/23 20:10	
Chloroform	0.80	UH	1.0	0.80	0.36	ug/L	11/22/23 20:10	
Chloromethane	1.0	UH	2.0	1.0	0.75	ug/L	11/22/23 20:10	
cis-1,2-Dichloroethene	0.40	UH	1.0	0.40	0.32	ug/L	11/22/23 20:10	
cis-1,3-Dichloropropene	1.8	UH	2.0	1.8	0.63	ug/L	11/22/23 20:10	
Dichlorobromomethane	0.50	UH	1.0	0.50	0.39	ug/L	11/22/23 20:10	
Dichlorodifluoromethane	2.5	UH	3.0	2.5	0.96	ug/L	11/22/23 20:10	
Ethylbenzene	0.40	UH	1.0	0.40	0.30	ug/L	11/22/23 20:10	
Ethylene Dibromide	0.80	UH	1.0	0.80	0.40	ug/L	11/22/23 20:10	
Methyl tert-butyl ether	0.80	UH	5.0	0.80	0.25	ug/L	11/22/23 20:10	
Methylene Chloride	1.8	UH	2.0	1.8	0.94	ug/L	11/22/23 20:10	
m-Xylene & p-Xylene	0.80	UH	2.0	0.80	0.36	ug/L	11/22/23 20:10	
o-Xylene	0.40	UH	1.0	0.40	0.33	ug/L	11/22/23 20:10	
Styrene	0.80	UH	1.0	0.80	0.36	ug/L	11/22/23 20:10	
Tetrachloroethene	0.80	UH	1.0	0.80		ug/L	11/22/23 20:10	
Toluene	0.40	UН	1.0	0.40	0.32	ug/L	11/22/23 20:10	
trans-1,2-Dichloroethene	0.50	UH	1.0	0.50	0.37	ug/L	11/22/23 20:10	
trans-1,3-Dichloropropene	1.8	UH	2.0	1.8	0.65	ug/L	11/22/23 20:10	
Trichloroethene	0.40	UH	1.0	0.40		ug/L	11/22/23 20:10	
Trichlorofluoromethane	0.80	UН	2.0	0.80		ug/L	11/22/23 20:10	
Vinyl chloride	1.0	UH	2.0	1.0	0.51	ug/L	11/22/23 20:10	
Xylenes, Total	0.80		1.0	0.80		ug/L	11/22/23 20:10	

Eurofins Savannah

11/30/2023

11/22/23 20:10

11/22/23 20:10

11/22/23 20:10

73 - 122

79 - 119

80 - 120

96

93

98

Job ID: 680-242837-1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Client Sample ID: DCL LEACHATE-FAL23

Lab Sample ID: 680-242837-1 Date Collected: 11/07/23 10:40 Matrix: Water

Date Received: 11/10/23 10:06

Mercury

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
Chlordane (technical)	0.42	U	0.52	0.42	0.17	ug/L	11/16/23 18:50	1
delta-BHC	0.0042	U M	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Dieldrin	0.0069	J	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Endosulfan I	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Endosulfan II	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Endosulfan sulfate	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Endrin	0.0042	U	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
Endrin aldehyde	0.017	U	0.052	0.017	0.0042	ug/L	11/16/23 18:50	1
Endrin ketone	0.017	U	0.052	0.017	0.0042	ug/L	11/16/23 18:50	1
gamma-BHC (Lindane)	0.0042	U	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
Heptachlor	0.0047	J	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
Heptachlor epoxide	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Methoxychlor	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
PCB-1016	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1221	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1232	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1242	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1248	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1254	0.25	U	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
PCB-1260	0.25	UMQ	0.52	0.25	0.10	ug/L	11/16/23 18:50	1
Toxaphene	0.84	UM	5.2	0.84	0.33	ug/L	11/16/23 18:50	1
4,4'-DDD	0.0042	UM	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
4,4'-DDE	0.0042	U	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
4,4'-DDT	0.0042	U	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
Aldrin	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
alpha-BHC	0.0083	J	0.052	0.0042	0.0010	ug/L	11/16/23 18:50	1
beta-BHC	0.0042	U	0.052	0.0042	0.0021	ug/L	11/16/23 18:50	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	78		14 - 130			11/14/23 10:36	11/16/23 18:50	1
Tetrachloro-m-xylene	46		44 - 124			11/14/23 10:36	11/16/23 18:50	1

Method: SW846 6010C - Metals (I	CP) - Total Recov	verable							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	150	U	200	150	54	ug/L		11/15/23 15:11	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/15/23 15:11	1
Chromium	4.0	U	10	4.0	1.1	ug/L		11/15/23 15:11	1
Copper	9.5	J	20	10	3.2	ug/L		11/15/23 15:11	1
Lead	20	U	40	20	6.6	ug/L		11/15/23 15:11	1
Nickel	10	U	40	10	3.3	ug/L		11/15/23 15:11	1
Silver	5.0	U	10	5.0	1.5	ug/L		11/15/23 15:11	1
Zinc	20	U	25	20	8.7	ug/L		11/15/23 15:11	1

Method: SW846 6020A - Metals (ICP/N	//S) - Total Recoverable			-			
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Arsenic	4.4 J	5.0	3.0	0.86 ug/L		11/15/23 16:04	1
Method: SW846 7470A - Mercury (CV	AA)						
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac

0.25

0.20

0.20 U

Eurofins Savannah

11/30/2023

11/20/23 14:02

Job ID: 680-242837-1

0.080 ug/L

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Client Sample ID: DCL LEACHATE-FAL23

Lab Sample ID: 680-242837-1 Date Collected: 11/07/23 10:40

Matrix: Water

Job ID: 680-242837-1

Date Received: 11/10/23 10:06

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		11/17/23 10:05	1
pH (SW846 9040C)	7.2	HF		2.0		SU		11/15/23 11:02	1
Temperature (SW846 9040C)	16.2	HF		2.0		Degrees C		11/15/23 11:02	1

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 280-635040/9

Matrix: Water

Surrogate

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Analysis Batch: 635040

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.50	U	1.0	0.50	0.39	ug/L		11/22/23 18:48	
1,1,2,2-Tetrachloroethane	0.80	U	1.0	0.80	0.21	ug/L		11/22/23 18:48	
1,1,2-Trichloroethane	0.80	U	1.0	0.80	0.27	ug/L		11/22/23 18:48	
1,1-Dichloroethane	0.80	U	1.0	0.80	0.22	ug/L		11/22/23 18:48	
1,1-Dichloroethene	0.80	U	1.0	0.80	0.23	ug/L		11/22/23 18:48	
1,2-Dichlorobenzene	0.50	U	1.0	0.50	0.37	ug/L		11/22/23 18:48	
1,2-Dichloroethane	0.80	U	1.0	0.80	0.54	ug/L		11/22/23 18:48	
1,2-Dichloroethene, Total	0.40	U	1.0	0.40	0.32	ug/L		11/22/23 18:48	
1,2-Dichloropropane	0.80	U	1.0	0.80	0.52	ug/L		11/22/23 18:48	
1,3-Dichlorobenzene	0.40	U	1.0	0.40	0.33	ug/L		11/22/23 18:48	
1,4-Dichlorobenzene	0.50	U	1.0	0.50	0.39	ug/L		11/22/23 18:48	
2-Butanone (MEK)	12	U	15	12	6.0	ug/L		11/22/23 18:48	
2-Hexanone	4.0	U	5.0	4.0	1.7	ug/L		11/22/23 18:48	
4-Methyl-2-pentanone (MIBK)	3.2	U	5.0	3.2	0.98	ug/L		11/22/23 18:48	
Acetone	8.0	U	15	8.0	6.6	ug/L		11/22/23 18:48	
Benzene	0.80	U	1.0	0.80	0.31	ug/L		11/22/23 18:48	
Bromoform	1.8	U	2.0	1.8	1.2	ug/L		11/22/23 18:48	
Bromomethane	4.0	U	5.0	4.0	2.4	ug/L		11/22/23 18:48	
Carbon disulfide	0.80	U	2.0	0.80	0.63	ug/L		11/22/23 18:48	
Carbon tetrachloride	0.80	U	1.0	0.80	0.57	ug/L		11/22/23 18:48	
Chlorobenzene	0.80	U	1.0	0.80	0.42	ug/L		11/22/23 18:48	
Chlorodibromomethane	1.8	U	2.0	1.8	0.62	ug/L		11/22/23 18:48	
Chloroethane	1.6	U	4.0	1.6	1.4	ug/L		11/22/23 18:48	
Chloroform	0.80	U	1.0	0.80	0.36	ug/L		11/22/23 18:48	
Chloromethane	1.0	U	2.0	1.0	0.75	ug/L		11/22/23 18:48	
cis-1,2-Dichloroethene	0.40	U	1.0	0.40	0.32	ug/L		11/22/23 18:48	
cis-1,3-Dichloropropene	1.8	U	2.0	1.8	0.63	ug/L		11/22/23 18:48	
Dichlorobromomethane	0.50	U	1.0	0.50	0.39	ug/L		11/22/23 18:48	
Dichlorodifluoromethane	2.5	U	3.0	2.5	0.96	ug/L		11/22/23 18:48	
Ethylbenzene	0.40	U	1.0	0.40	0.30	ug/L		11/22/23 18:48	
Ethylene Dibromide	0.80	U	1.0	0.80	0.40	ug/L		11/22/23 18:48	
Methyl tert-butyl ether	0.80	U	5.0	0.80	0.25	ug/L		11/22/23 18:48	
Methylene Chloride	1.8	U	2.0	1.8	0.94	ug/L		11/22/23 18:48	
m-Xylene & p-Xylene	0.80	U	2.0	0.80	0.36	ug/L		11/22/23 18:48	
o-Xylene	0.40	U	1.0	0.40	0.33	ug/L		11/22/23 18:48	
Styrene	0.80	U	1.0	0.80	0.36	ug/L		11/22/23 18:48	
Tetrachloroethene	0.80	U	1.0	0.80	0.40	ug/L		11/22/23 18:48	
Toluene	0.40	U	1.0	0.40	0.32	ug/L		11/22/23 18:48	
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	0.37	ug/L		11/22/23 18:48	
trans-1,3-Dichloropropene	1.8	U	2.0	1.8	0.65	ug/L		11/22/23 18:48	
Trichloroethene	0.40	U	1.0	0.40	0.30	ug/L		11/22/23 18:48	
Trichlorofluoromethane	0.80	U	2.0	0.80	0.57	ug/L		11/22/23 18:48	
Vinyl chloride	1.0	U	2.0	1.0	0.51	ug/L		11/22/23 18:48	
Xylenes, Total	0.80	U	1.0	0.80	0.33	ug/L		11/22/23 18:48	

11/22/23 18:48 1

Eurofins Savannah

Analyzed

11/22/23 18:48

Prepared

Limits

73 - 122

79 - 119

%Recovery

101

93

Qualifier

Dil Fac

6

6

8

10

11

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 280-635040/9

Matrix: Water

Analysis Batch: 635040

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 97 80 - 120 11/22/23 18:48

LCS LCS

Spike

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Lab Sample ID: LCS 280-635040/4 **Matrix: Water**

Analysis Batch: 635040

trans-1,2-Dichloroethene

Trichloroethene

trans-1,3-Dichloropropene

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	50.4	-	ug/L		101	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	44.3		ug/L		89	60 - 140	
1,1,2-Trichloroethane	50.0	48.2		ug/L		96	70 - 130	
1,1-Dichloroethane	50.0	45.1		ug/L		90	70 - 130	
1,1-Dichloroethene	50.0	49.6		ug/L		99	50 - 150	
1,2-Dichlorobenzene	50.0	48.0		ug/L		96	65 - 135	
1,2-Dichloroethane	50.0	45.5		ug/L		91	70 - 130	
1,2-Dichloroethene, Total	100	92.0		ug/L		92	75 - 130	
1,2-Dichloropropane	50.0	45.2		ug/L		90	35 - 165	
1,3-Dichlorobenzene	50.0	46.8		ug/L		94	70 - 130	
1,4-Dichlorobenzene	50.0	46.2		ug/L		92	65 - 135	
2-Butanone (MEK)	200	184		ug/L		92	49 - 153	
2-Hexanone	200	192		ug/L		96	50 - 154	
4-Methyl-2-pentanone (MIBK)	200	190		ug/L		95	48 - 157	
Acetone	200	171		ug/L		85	44 - 168	
Benzene	50.0	46.2		ug/L		92	65 - 135	
Bromoform	50.0	46.6		ug/L		93	70 - 130	
Bromomethane	50.0	55.1		ug/L		110	15 - 185	
Carbon disulfide	50.0	44.5		ug/L		89	61 - 138	
Carbon tetrachloride	50.0	51.6		ug/L		103	70 - 130	
Chlorobenzene	50.0	47.5		ug/L		95	65 - 135	
Chlorodibromomethane	50.0	48.5		ug/L		97	70 - 135	
Chloroethane	50.0	42.6		ug/L		85	40 - 160	
Chloroform	50.0	46.7		ug/L		93	70 - 135	
Chloromethane	50.0	53.6		ug/L		107	10 - 205	
cis-1,2-Dichloroethene	50.0	46.6		ug/L		93	76 - 128	
cis-1,3-Dichloropropene	50.0	46.5		ug/L		93	25 - 175	
Dichlorobromomethane	50.0	46.7		ug/L		93	65 - 135	
Dichlorodifluoromethane	50.0	41.9		ug/L		84	32 - 152	
Ethylbenzene	50.0	48.5		ug/L		97	60 - 140	
Ethylene Dibromide	50.0	47.7		ug/L		95	77 - 126	
Methyl tert-butyl ether	50.0	45.8		ug/L		92	74 - 128	
Methylene Chloride	50.0	43.9		ug/L		88	60 - 140	
m-Xylene & p-Xylene	50.0	48.5		ug/L		97	78 - 128	
o-Xylene	50.0	47.3		ug/L		95	80 - 127	
Styrene	50.0	48.2		ug/L		96	76 - 130	
Tetrachloroethene	50.0	52.7		ug/L		105	70 - 130	
Toluene	50.0	46.3		ug/L		93	70 - 130	

Eurofins Savannah

91

90

93

70 - 130

50 - 150

65 - 135

50.0

50.0

50.0

45.4

44.9

46.5

ug/L

ug/L

ug/L

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-635040/4

Matrix: Water

Analysis Batch: 635040

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Бріке	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichlorofluoromethane	50.0	50.4	-	ug/L		101	50 - 150
Vinyl chloride	50.0	58.6		ug/L		117	10 - 195
Xylenes, Total	100	95.8		ug/L		96	80 - 127

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		73 - 122
4-Bromofluorobenzene (Surr)	91		79 - 119
Toluene-d8 (Surr)	99		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 635040

Lab Sample ID: LCSD 280-635040/6

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	50.3		ug/L		101	70 - 130	0	30
1,1,2,2-Tetrachloroethane	50.0	46.0		ug/L		92	60 - 140	4	30
1,1,2-Trichloroethane	50.0	51.7		ug/L		103	70 - 130	7	30
1,1-Dichloroethane	50.0	46.3		ug/L		93	70 - 130	3	30
1,1-Dichloroethene	50.0	50.7		ug/L		101	50 - 150	2	30
1,2-Dichlorobenzene	50.0	47.6		ug/L		95	65 - 135	1	30
1,2-Dichloroethane	50.0	46.6		ug/L		93	70 - 130	2	30
1,2-Dichloroethene, Total	100	94.3		ug/L		94	75 - 130	2	30
1,2-Dichloropropane	50.0	47.2		ug/L		94	35 - 165	4	30
1,3-Dichlorobenzene	50.0	47.6		ug/L		95	70 - 130	2	30
1,4-Dichlorobenzene	50.0	45.8		ug/L		92	65 - 135	1	30
2-Butanone (MEK)	200	200		ug/L		100	49 - 153	8	32
2-Hexanone	200	200		ug/L		100	50 - 154	5	30
4-Methyl-2-pentanone (MIBK)	200	202		ug/L		101	48 - 157	6	30
Acetone	200	188		ug/L		94	44 - 168	10	30
Benzene	50.0	47.3		ug/L		95	65 - 135	2	30
Bromoform	50.0	48.9		ug/L		98	70 - 130	5	30
Bromomethane	50.0	61.7		ug/L		123	15 - 185	11	30
Carbon disulfide	50.0	45.8		ug/L		92	61 - 138	3	30
Carbon tetrachloride	50.0	51.8		ug/L		104	70 - 130	0	30
Chlorobenzene	50.0	48.5		ug/L		97	65 - 135	2	30
Chlorodibromomethane	50.0	50.3		ug/L		101	70 - 135	3	30
Chloroethane	50.0	46.3		ug/L		93	40 - 160	8	30
Chloroform	50.0	48.7		ug/L		97	70 - 135	4	30
Chloromethane	50.0	57.7		ug/L		115	10 - 205	7	30
cis-1,2-Dichloroethene	50.0	48.2		ug/L		96	76 - 128	4	30
cis-1,3-Dichloropropene	50.0	47.7		ug/L		95	25 - 175	3	30
Dichlorobromomethane	50.0	49.4		ug/L		99	65 - 135	6	30
Dichlorodifluoromethane	50.0	50.6		ug/L		101	32 - 152	19	30
Ethylbenzene	50.0	48.8		ug/L		98	60 - 140	1	30
Ethylene Dibromide	50.0	49.1		ug/L		98	77 - 126	3	30
Methyl tert-butyl ether	50.0	46.8		ug/L		94	74 - 128	2	30
Methylene Chloride	50.0	45.6		ug/L		91	60 - 140	4	30
m-Xylene & p-Xylene	50.0	49.3		ug/L		99	78 - 128	2	30

Eurofins Savannah

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-635040/6

Matrix: Water

Analysis Batch: 635040

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
50.0	49.4		ug/L		99	80 - 127	5	30
50.0	49.8		ug/L		100	76 - 130	3	30
50.0	52.6		ug/L		105	70 - 130	0	30
50.0	48.5		ug/L		97	70 - 130	5	30
50.0	46.1		ug/L		92	70 - 130	2	30
50.0	48.9		ug/L		98	50 - 150	9	30
50.0	46.4		ug/L		93	65 - 135	0	30
50.0	52.4		ug/L		105	50 - 150	4	30
50.0	61.3		ug/L		123	10 - 195	5	30
100	98.7		ug/L		99	80 - 127	3	30
	Added 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	Added Result 50.0 49.4 50.0 49.8 50.0 52.6 50.0 48.5 50.0 46.1 50.0 46.4 50.0 52.4 50.0 61.3	Added Result Qualifier 50.0 49.4 50.0 49.8 50.0 52.6 50.0 48.5 50.0 46.1 50.0 48.9 50.0 46.4 50.0 52.4 50.0 61.3	Added Result Qualifier Unit 50.0 49.4 ug/L 50.0 49.8 ug/L 50.0 52.6 ug/L 50.0 48.5 ug/L 50.0 46.1 ug/L 50.0 48.9 ug/L 50.0 46.4 ug/L 50.0 52.4 ug/L 50.0 61.3 ug/L	Added Result Qualifier Unit D 50.0 49.4 ug/L ug/L 50.0 49.8 ug/L ug/L 50.0 52.6 ug/L ug/L 50.0 48.5 ug/L ug/L 50.0 46.1 ug/L ug/L 50.0 46.4 ug/L ug/L 50.0 52.4 ug/L 50.0 61.3 ug/L	Added Result Qualifier Unit D %Rec 50.0 49.4 ug/L 99 50.0 49.8 ug/L 100 50.0 52.6 ug/L 97 50.0 48.5 ug/L 97 50.0 46.1 ug/L 92 50.0 48.9 ug/L 98 50.0 46.4 ug/L 93 50.0 52.4 ug/L 105 50.0 61.3 ug/L 123	Added Result Qualifier Unit D %Rec Limits 50.0 49.4 ug/L 99 80 - 127 50.0 49.8 ug/L 100 76 - 130 50.0 52.6 ug/L 105 70 - 130 50.0 48.5 ug/L 97 70 - 130 50.0 46.1 ug/L 92 70 - 130 50.0 48.9 ug/L 98 50 - 150 50.0 46.4 ug/L 93 65 - 135 50.0 52.4 ug/L 105 50 - 150 50.0 61.3 ug/L 123 10 - 195	Added Result Qualifier Unit D %Rec Limits RPD 50.0 49.4 ug/L 99 80 - 127 5 50.0 49.8 ug/L 100 76 - 130 3 50.0 52.6 ug/L 105 70 - 130 0 50.0 48.5 ug/L 97 70 - 130 5 50.0 46.1 ug/L 92 70 - 130 2 50.0 48.9 ug/L 98 50 - 150 9 50.0 46.4 ug/L 93 65 - 135 0 50.0 52.4 ug/L 105 50 - 150 4 50.0 61.3 ug/L 123 10 - 195 5

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		73 - 122
4-Bromofluorobenzene (Surr)	92		79 - 119
Toluene-d8 (Surr)	99		80 - 120

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC)

Lab Sample ID: MB 680-808087/1-A

Matrix: Water

Analysis Batch: 808572

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 808087

Alialysis Balcii. 000072							Prep Batch.		. 000001
	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Chlordane (technical)	0.40	U	0.50	0.40	0.16	ug/L		11/16/23 13:17	1
delta-BHC	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Dieldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan I	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan II	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan sulfate	0.0040	UM	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endrin	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Endrin aldehyde	0.016	UM	0.050	0.016	0.0040	ug/L		11/16/23 13:17	1
Endrin ketone	0.016	U	0.050	0.016	0.0040	ug/L		11/16/23 13:17	1
gamma-BHC (Lindane)	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Heptachlor	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Heptachlor epoxide	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Methoxychlor	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
PCB-1016	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1221	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1232	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1242	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1248	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1254	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1260	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
Toxaphene	0.80	UM	5.0	0.80	0.31	ug/L		11/16/23 13:17	1
4,4'-DDD	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
4,4'-DDE	0.0040	UM	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
4,4'-DDT	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Aldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
alpha-BHC	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1

Eurofins Savannah

Page 13 of 25

11/30/2023

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: MB 680-808087/1-A

Matrix: Water

Analysis Batch: 808572

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-242837-1

Prep Batch: 808087

Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 11/16/23 13:17 beta-BHC 0.0040 U 0.050 0.0040 0.0020 ug/L

мв мв

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	42	14 - 130	11/14/23 10:36	11/16/23 13:17	1
Tetrachloro-m-xylene	46 M	44 - 124	11/14/23 10:36	11/16/23 13:17	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 680-808087/2-A **Matrix: Water** Analysis Batch: 808572 **Prep Batch: 808087**

Alialysis Datcil. 0003/2							Fieb Dat	CII. 000001
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
delta-BHC	0.0400	0.0304	J	ug/L		76	52 - 142	
Dieldrin	0.0400	0.0298	J	ug/L		74	60 - 136	
Endosulfan I	0.0400	0.0256	J	ug/L		64	62 - 126	
Endosulfan II	0.0400	0.0229	J	ug/L		57	52 - 135	
Endosulfan sulfate	0.0400	0.0304	J	ug/L		76	62 - 133	
Endrin	0.0400	0.0260	J	ug/L		65	60 - 138	
Endrin aldehyde	0.0400	0.0254	J	ug/L		63	51 - 132	
Endrin ketone	0.0400	0.0515		ug/L		129	58 - 134	
gamma-BHC (Lindane)	0.0400	0.0275	J	ug/L		69	59 - 134	
Heptachlor	0.0400	0.0411	J	ug/L		103	54 - 130	
Heptachlor epoxide	0.0400	0.0268	J	ug/L		67	61 - 133	
Methoxychlor	0.0400	0.0425	J M	ug/L		106	54 - 145	
4,4'-DDD	0.0400	0.0288	J M	ug/L		72	56 - 143	
4,4'-DDE	0.0400	0.0244	J M	ug/L		61	57 - 135	
4,4'-DDT	0.0400	0.0221	J M	ug/L		55	51 - 143	
Aldrin	0.0400	0.0182	J	ug/L		45	45 - 134	
alpha-BHC	0.0400	0.0272	J	ug/L		68	54 - 138	
beta-BHC	0.0400	0.0332	J	ug/L		83	56 - 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	52		14 - 130
Tetrachloro-m-xylene	49		44 - 124

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-808275/1-A

Matrix: Water

Analysis Batch: 808561

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 808275

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	150	U	200	150	54	ug/L		11/15/23 14:52	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/15/23 14:52	1
Chromium	4.0	U	10	4.0	1.1	ug/L		11/15/23 14:52	1
Copper	10	U	20	10	3.2	ug/L		11/15/23 14:52	1
Lead	20	U	40	20	6.6	ug/L		11/15/23 14:52	1
Nickel	10	U	40	10	3.3	ug/L		11/15/23 14:52	1
Silver	5.0	U	10	5.0	1.5	ug/L		11/15/23 14:52	1

Eurofins Savannah

Page 14 of 25

11/30/2023

Client: Seres Engineering & Services LLC Job ID: 680-242837-1

MB MB

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 680-808275/1-A

Matrix: Water

Analysis Batch: 808561

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 808275**

Result Qualifier LOQ LOD DL Unit Dil Fac Analyte Analyzed Zinc 20 U 25 20 8.7 11/15/23 14:52 ug/L

Lab Sample ID: LCS 680-808275/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 808561							Prep Batch	i: 808275
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5050	5210		ug/L		103	86 - 115	
Cadmium	50.0	53.6		ug/L		107	88 - 113	
Chromium	100	106		ug/L		106	90 - 113	
Copper	101	109		ug/L		108	86 - 114	
Lead	500	513		ug/L		103	86 - 113	
Nickel	100	103		ug/L		103	88 - 113	
Silver	50.0	51.3		ug/L		103	84 - 115	
Zinc	50.5	53.4		ug/L		106	87 - 115	

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-808276/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 808566

MB MB

Prep Batch: 808276

LOQ LOD Analyte Result Qualifier DL Unit D Analyzed Dil Fac Arsenic 3.0 U 5.0 3.0 0.86 11/15/23 15:27

Lab Sample ID: LCS 680-808276/2-A

Matrix: Water

Analysis Batch: 808566

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Prep Batch: 808276

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Arsenic 115 ug/L 115 84 - 116

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-809186/12-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 809395

Prep Batch: 809186 мв мв Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Mercury 0.20 U 0.25 0.20 0.080 ug/L 11/20/23 13:48

Lab Sample ID: LCS 680-809186/13-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 809395

Prep Batch: 809186 LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits

Mercury 2.50 2.51 100 ug/L 80 - 124

Eurofins Savannah

Prep Type: Total/NA

QC Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 680-808769/12-A Client Sample ID: Method Blank

Matrix: Water

Analyte

Analysis Batch: 808843

Prep Type: Total/NA

Prep Batch: 808769

Dil Fac Result Qualifier LOQ LOD DL Unit Analyzed

Cyanide, Total 0.0050 U 0.010 0.0050 0.0025 mg/L 11/17/23 10:12

мв мв

Lab Sample ID: LCS 680-808769/13-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 808843 **Prep Batch: 808769**

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.0500 0.0522 mg/L 104 83 - 116

Method: 9040C - pH

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 680-808370/1 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 808370

%Rec Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits рН 7.01 7.1 SU 101 63 - 158

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

GC/MS VOA

Anal	vsis	Batch:	635040
Allu	,	Dutoii.	000040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	624	
MB 280-635040/9	Method Blank	Total/NA	Water	624	
LCS 280-635040/4	Lab Control Sample	Total/NA	Water	624	
LCSD 280-635040/6	Lab Control Sample Dup	Total/NA	Water	624	

GC Semi VOA

Prep Batch: 808087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	3510C	
MB 680-808087/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-808087/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 808572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	8081B 8082A	808087
MB 680-808087/1-A	Method Blank	Total/NA	Water	8081B 8082A	808087
LCS 680-808087/2-A	Lab Control Sample	Total/NA	Water	8081B 8082A	808087

Metals

Prep Batch: 808275

Lab Sample ID 680-242837-1	Client Sample ID DCL LEACHATE-FAL23	Prep Type Total Recoverable	Matrix Water	Method 3005A	Prep Batch
MB 680-808275/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808275/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 808276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total Recoverable	Water	3005A	
MB 680-808276/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-808276/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 808561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total Recoverable	Water	6010C	808275
MB 680-808275/1-A	Method Blank	Total Recoverable	Water	6010C	808275
LCS 680-808275/2-A	Lab Control Sample	Total Recoverable	Water	6010C	808275

Analysis Batch: 808566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total Recoverable	Water	6020A	808276
MB 680-808276/1-A	Method Blank	Total Recoverable	Water	6020A	808276
LCS 680-808276/2-A	Lab Control Sample	Total Recoverable	Water	6020A	808276

Prep Batch: 809186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	7470A	
MB 680-809186/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-809186/13-A	Lab Control Sample	Total/NA	Water	7470A	

Eurofins Savannah

Job ID: 680-242837-1

3

6

Ω

10

10

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Metals

Analysis Batch: 809395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	7470A	809186
MB 680-809186/12-A	Method Blank	Total/NA	Water	7470A	809186
LCS 680-809186/13-A	Lab Control Sample	Total/NA	Water	7470A	809186

General Chemistry

Analysis Batch: 808370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	9040C	
LCS 680-808370/1	Lab Control Sample	Total/NA	Water	9040C	

Prep Batch: 808769

Lab Sample ID 680-242837-1	Client Sample ID DCL LEACHATE-FAL23	Prep Type Total/NA	Matrix Water	Method 9012B	Prep Batch
MB 680-808769/12-A	Method Blank	Total/NA	Water	9012B	
LCS 680-808769/13-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 808843

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	9012B	808769
MB 680-808769/12-A	Method Blank	Total/NA	Water	9012B	808769
LCS 680-808769/13-A	Lab Control Sample	Total/NA	Water	9012B	808769

11/30/2023

2

5

0

9

10

11

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Lab Sample ID: 680-242837-1

Job ID: 680-242837-1

Client Sample ID: DCL LEACHATE-FAL23 Date Collected: 11/07/23 10:40 Matrix: Water

Date Received: 11/10/23 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	5 mL	5 mL	635040	11/22/23 20:10	ETB	EET DEN
	Instrume	nt ID: VMS_R1								
Total/NA	Prep	3510C			238.4 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis	8081B 8082A		1	1 mL	1 mL	808572	11/16/23 18:50	UI	EET SAV
	Instrume	nt ID: CSGAA								
Total Recoverable	Prep	3005A			25 mL	25 mL	808275	11/15/23 06:47	RR	EET SAV
Total Recoverable	Analysis	6010C		1			808561	11/15/23 15:11	BJB	EET SAV
	Instrume	nt ID: ICPH								
Total Recoverable	Prep	3005A			25 mL	125 mL	808276	11/15/23 06:47	RR	EET SAV
Total Recoverable	Analysis	6020A		1			808566	11/15/23 16:04	BWR	EET SAV
	Instrume	nt ID: ICPMSC								
Total/NA	Prep	7470A			50 mL	50 mL	809186	11/20/23 08:40	DW	EET SAV
Total/NA	Analysis	7470A		1			809395	11/20/23 14:02	DW	EET SAV
	Instrume	nt ID: QuickTrace2								
Total/NA	Prep	9012B			6 mL	6 mL	808769	11/17/23 06:36	JAS	EET SAV
Total/NA	Analysis	9012B		1			808843	11/17/23 10:05	JAS	EET SAV
	Instrume	nt ID: KONELAB4								
Total/NA	Analysis	9040C		1			808370	11/15/23 11:02	PG	EET SAV
	Instrume	nt ID: MANTECH 2								

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

Laboratory: Eurofins Denver

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-24

A

4

6

7

0

10

11

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Method	Method Description	Protocol	Laboratory
624	Volatile Organic Compounds (GC/MS)	EPA	EET DEN
8081B 8082A	Organochlorine Pesticides & PCBs (GC)	SW846	EET SAV
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
9012B	Cyanide, Total and/or Amenable	EPA	EET SAV
9040C	рН	SW846	EET SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

9012B

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Cyanide, Total and/or Amenable, Distillation

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-242837-1

EET SAV

SW846

3

4

5

7

8

9

10

ARVC

COC # DCL-LEACH-FAL23

US Army Corps of Engineers $_{\circ}$

Heather Levesque 669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com Project Name: Former Fort Devens, Long Term Monitoring Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA

Project Name: Former Fort Devens, Long Terr	n Monitoring		Lab	orato	ry: Eu	rofins	Env	ironm	ent '	Testir	ng Tes	stAmeri	ca, Savannah, GA					es-Arcadis JV, Long
Project Number: DEVNS-LTM PO 2312 - 0000	0001		POC	C: Je	rry La	nier, 9	912-2	50-0	281,	jerry.	.lanier	@euro	nsus.com				Term Moni 2023	toring, DCL Leach, Fal
WBS Code:			Ship	to: E	Eurofi	ns Te	stAm	erica	, 510	02 La	Roch	e Avenu	e, Savannah, GA 31404				2020	
Comments: M8015D (A) = Diesel Range SW7470A (A) = Mercury SW8081B (A) = Pesticides SW9012B (A) = Cyanide SW9085 (A) = Phenolics		Analytical Test Method	A2540D - TSS	E624 - VOCs	E625 - SVOCs	M8015D (A)		SW7470A (A)	W8081B (A)	SW8082A - PCB	SW9012B (A)	SW9065 (A)	Code Matrix WL Leachate Code Container/Preservative 1 2x 1L amber glass bottles, 0 2 x1L amber glass bottles, 0 1 x 250mL, plastic, HNO3, p 11 1x 500mL, amber glass, H2 21 1x 2-1 Liter, amber, glass, Co 29 3x 40mL glass VOA Vlais, C 33 2x 1 liter, amber, glass, Co 45 1x 500mL plastic, Cool < 6c 48 1x 250mL plastic, NeOH to	Cool to <6degC pH < 2; Cool < 6degC pSO4; Cool < 6degC pCool < 6degC pCool < 6degC pCool < 6degC pool < 6degC pool < 6degC pool < 6degC pool < 6degC	: pH <2			
Event: Seres-Arcadis JV, Long Term Monito	ring, DCL Leach, Fall 2023	+	-	_	_	21 9		9			48	2 11	1. 1			1	1	
Sample ID Matrix	Date Time	Samp Init.											Location ID	Sample Type	Top -	Bottom	Cooler	Comments
1 DCL LEACHATE-FAL23 WL	1/4/23 1040	MS	X	X	×	× ×	(X	X	×	X	× ;	× ×	DCL LEACHATE	N1	0.00	0.00	1	
2		1	_		_	_	4	_		Ш							ļ	
3		ļ	_		_		4			Ш								
4		 	_		_	_	_			\sqcup	_							
5							\perp	_		Ш								
6						- 1		1		1 1		1 1					1	

Relinquished by: (Signature)

Date Time

Received by: (Signature)

Eurofins Savannah		_	93 H; A	
5102 LaRoche Avenue	Chain of Custody Bocord			eurofins
Savannah, GA 31404	Clail of Custod			1 2 C 2
Phone: 912-354-7858 Fax: 912-352-0165			3.53	
	Sampler:	Lab PM	Carrier Tracking No(s):	COC No
Client Information (Sub Contract Lab)		Lanier, Jerry A		680-756852.1
Client Contact:	Phone,	E-Mail	State of Origin:	Page:
Shipping/Receiving		lerry Lanier@et eurofinsus com	Massachusetts	Page 1 of 1

Client Information (Sub Contract Lab)	Sampler	Lab PM Lanier, Jerry A	×	Carrier Tracking No(s)·	COC No 680-756852.1
Client Contact Shinnin/Receiving	Phone.	E-Mail	E-Mail Janus I anjar@at aurofineus com	State of Origin:	Page:
O'IIIPDIII GIA COCCIAIN B		Join y. Laillei	ger.earollisas.colli	Massacilusetts	7 age - 01 -
Company. TestAmerica Laboratories, Inc.		Accreditat Dept. of	Accreditations Required (See note). Dept. of Defense ELAP - A2LA; DoD - ANAB	ANAB	Job #* 680-242837-1
Address: 4955 Yarrow Street, ,	Due Date Requested: 11/27/2023		Analysis Requested		Preservation Codes:
City: Arvada	TAT Requested (days):				
State, Zip, CO, 80002					D - Nitric Acid P - Na2O4S
Phone: 303-736-0100(Tel) 303-431-7171(Fax)	PO#:		po		
Email:	WO#	(oN	Wetho		
Project Name: Seres-Arcadis JV, LTM DCL Leach, Fall 2023	Project #: 68023801	10 29) Focal		K - EDTA Y - Trizma L - EDA Z - other (specify)
Site:	:#MOSS	y) ası	dow)	01 001	Other:
Sample Identification - Client ID (Lab ID)	Sample Date Time G=grab)	Matrix (W=water, S=sold, O=waste/oil, O=Tissue, A=Air)	'gd0q" wg"+z9	TedmIV IstoT	Special Instructions/Note:
	Preservi	Preservation Code:			
DCL LEACHATE-FAL23 (680-242837-1)	11/7/23 10:40 Fastern	Water	×	е	
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the comership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample supposes to suppose the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation the State of Origin listed above for analysis/rests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Southeast, LLC attention immediately.	Tresting Southeast, LLC places the comership of maysis/tests/matrix being analyzed, the samples mition immediately. If all requested accreditations are	method, analyte & accredits ust be shipped back to the E current to date, return the s	ation compliance upon our subcontract curofins Environment Testing Southeas igned Chain of Custody attesting to sai	l I I I I I I I I I I I I I I I I I I I	nwarded under chain-of-custody. If the laboratory II be provided. Any changes to accreditation esting Southeast, LLC.
Possible Hazard Identification		Samı	ple Disposal (A fee may be a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
Unconfirmed	0.1		Return To Client	Disposal By Lab Archi	Archive For Months
Deliverable Kequested: I, II, IV, Other (specify)	Primary Deliverable Kank: 2	Spec	Special Instructions/QC Requirements:	ts:	
Empty Kit Relinquished by:	Date:	Time:	0	Method of Shipment:	
Relinquished by: $\mathcal{T}\mathcal{H}$	Date 71 pe: 81-93		Received by:	Clessing:	3 1030 CERTINE
Relinquished by:	/	Company	Received by	Date/Time:	Company
	Date/Time	Company	Received by	Date/Time:	Сотрапу
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		O	Cooler Temperature (S) °C and Other Remarks;	M NON	9
					Ver: 06/08/2021

Client: Seres Engineering & Services LLC

Job Number: 680-242837-1

Login Number: 242837 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

Client: Seres Engineering & Services LLC

Job Number: 680-242837-1

Login Number: 242837 **List Source: Eurofins Denver** List Number: 2

List Creation: 11/22/23 01:39 PM

Creator: Little, Matthew L

Oreator. Little, matthew L	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	N/A
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

4 4

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

Generated 12/26/2023 1:58:26 AM

JOB DESCRIPTION

Seres-Arcadis JV, LTM DCL Leach, Fall 2023

JOB NUMBER

680-242837-2

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/26/2023 1:58:26 AM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-2

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description** Manual integrated compound. U Undetected at the Limit of Detection.

Gloccary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry) RL

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

JUD ID: 000-242037-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242837-1	DCL LEACHATE-FAL23	Water	11/07/23 10:40	11/10/23 10:06

3

/

6

8

9

Case Narrative

Client: Seres Engineering & Services LLC

Project: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-2 Eurofins Savannah

Job Narrative 680-242837-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/10/2023 10:06 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5° C

Receipt Exceptions

<EXPLANATION REQUIRED>

DCL LEACHATE-FAL23 (680-242837-1)

COC does not match what labels on bottles have marked for analysis. Containers received are marked identically to login 680-242830.

Unknown which analysis are really intended.

Pesticides/PCBs

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-242837-2

Page 5 of 12 12/26/2023

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Client Sample ID: DCL LEACHATE-FAL23

Date Collected: 11/07/23 10:40 Date Received: 11/10/23 10:06 Lab Sample ID: 680-242837-1

Matrix: Water

Job ID: 680-242837-2

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
PCB-1016	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1221	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1232	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1242	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1248	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1254	0.25	U	0.52	0.25	0.10	ug/L		11/16/23 18:50	1
PCB-1260	0.25	UM	0.52	0.25	0.10	ug/L		11/16/23 18:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	78		14 - 130	11/14/23 10:36	11/16/23 18:50	1
Tetrachloro-m-xylene	46		44 - 124	11/14/23 10:36	11/16/23 18:50	1

7

8

9

10

Client: Seres Engineering & Services LLC

Lab Sample ID: MB 680-808087/1-A

Matrix: Water

Analysis Batch: 808569

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC)

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-242837-2

Prep Batch: 808087

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
PCB-1016	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1221	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1232	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1242	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1248	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1254	0.24	UM	0.50	0.24	0.10	ug/L		11/16/23 13:17	1
PCB-1260	0.24	U	0.50	0.24	0.10	ug/L		11/16/23 13:17	1

MB MB

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	DCB Decachlorobiphenyl	38		14 - 130	11/14/23 10:36	11/16/23 13:17	1
l	Tetrachloro-m-xylene	46	М	44 - 124	11/14/23 10:36	11/16/23 13:17	1

Lab Sample ID: LCS 680-808087/12-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 808569

Prep Type: Total/NA

Prep Batch: 808087

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	2.00	1.31	M	ug/L		66	46 - 129	_
PCB-1260	2.00	1.71		ug/L		85	45 - 134	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	59	14 - 130
Tetrachloro-m-xylene	57	44 - 124

Lab Sample ID: LCSD 680-808087/13-A

Matrix: Water

Analysis Batch: 808569

				_
Client Sampl	e ID: Lat	Control	Sample	Dup

Prep Type: Total/NA Prep Batch: 808087

Analysis Batch. 000003							пор	Dateii. 0	00001	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	2.00	1.18	М	ug/L		59	46 - 129	11	30	
PCB-1260	2.00	1.84	M	ug/L		92	45 - 134	8	30	

LCSD LCSD

Surrogate	%Recovery Qua	alifier Limits
DCB Decachlorobiphenyl	75	14 - 130
Tetrachloro-m-xylene	55	44 - 124

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-2

GC Semi VOA

Prep Batch: 808087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	3510C	
MB 680-808087/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-808087/12-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-808087/13-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 808569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242837-1	DCL LEACHATE-FAL23	Total/NA	Water	8081B 8082A	808087
MB 680-808087/1-A	Method Blank	Total/NA	Water	8081B 8082A	808087
LCS 680-808087/12-A	Lab Control Sample	Total/NA	Water	8081B 8082A	808087
LCSD 680-808087/13-A	Lab Control Sample Dup	Total/NA	Water	8081B 8082A	808087

Lab Chronicle

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Lab Sample ID: 680-242837-1

Client Sample ID: DCL LEACHATE-FAL23
Date Collected: 11/07/23 10:40

Matrix: Water

Job ID: 680-242837-2

Date Received: 11/10/23 10:06

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 3510C 808087 DS EET SAV Total/NA Prep 238.4 mL 1 mL 11/14/23 10:36 Total/NA Analysis 8081B 8082A 1 mL 1 mL 808569 11/16/23 18:50 DBM EET SAV Instrument ID: CSGAA

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

0

0

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Job ID: 680-242837-2

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

_

5

4

5

9

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL Leach, Fall 2023

Method	Method Description	Protocol	Laboratory
8081B 8082A	Organochlorine Pesticides & PCBs (GC)	SW846	EET SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-242837-2

3

6

0

9

10

Login Sample Receipt Checklist

Client: Seres Engineering & Services LLC

Job Number: 680-242837-2

Login Number: 242837 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492 Generated 12/11/2023 4:21:47 PM Revision 1

JOB DESCRIPTION

Fort Devens, Long Term Monitoring

JOB NUMBER

680-243143-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 12/11/2023 4:21:47 PM Revision 1

Authorized for release by Woodrow Eggers, EDD Analyst (IT) woodrow.eggers@et.eurofinsus.com Designee for Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

3

4

6

9

10

4 4

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-243143-1

Project/Site: Fort Devens, Long Term Monitoring

Qualifier Description

Qualifiers

Qualifier

M

GC/MS Semi VOA

	- <u> </u>
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements

Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

J Estimated: The analyte was positively identified; the quantitation is an estimation

Q One or more quality control criteria failed.
U Undetected at the Limit of Detection.

Manual integrated compound.

GC Semi VOA

Qualifier	Qualifier Description
T	Estimated: The analyte was positively identified: the quantitation is an estimation

J Estimated: The analyte was positively identified; the quantitation is an estimation

M Manual integrated compound.

Q One or more quality control criteria failed.
U Undetected at the Limit of Detection.

General Chemistry

J1 Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.

U Undetected at the Limit of Detection.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-243143-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
680-243143-1	DCL Leachate-Fal23	Water	11/14/23 09:30	11/15/23 10:07	

3

4

6

R

9

10

11

Case Narrative

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-243143-1

Job ID: 680-243143-1

Laboratory: Eurofins Savannah

Narrative

Job Narrative 680-243143-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/15/2023 10:07 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.1°C

GC/MS Semi VOA

Method 625_DOD: Sample DCL Leachate Fal23 (680-243143-1) was received in Denver for analysis outside of holding time.

Method 625_DOD: Surrogate Phenol-d5 recovery in the method blank, lab control sample, lab control sample duplicate, and the associated samples was below control limits. The associated sample is outside of 2x hold time and has already been re-extracted; data has been qualified and reported. DCL Leachate Fal23 (680-243143-1), (LCS 280-635134/2-A), (LCSD 280-635134/3-A) and (MB 280-635134/1-A)

Method 625_DOD: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 280-635134 and analytical batch 280-635417 recovered outside control limits for the following analytes: Benzidine.

Method 625_DOD: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 280-635134 and analytical batch 280-635417 recovered outside control limits for the following analytes: 2-Chloronaphthalene, Benzidine, Hexachlorocyclopentadiene, N-Nitrosodiphenylamine and Pyrene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015C_DRO_DOD5: Surrogate recovery for the following sample was marginally outside acceptance limits: DCL Leachate Fal23 (680-243143-1). The results have been reported due to expired holding time.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540D: The sample duplicate precision for the following sample associated with analytical batch 680-809273 was outside control limits: (680-243143-E-1 DU). The associated Laboratory Control Sample / Laboratory Control Sample Duplicate (LCS/LCSD) precision met acceptance criteria.

Method 9065: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for prep batch 809469 and analytical batch 809577 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

8

11

Client Sample Results

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Client Sample ID: DCL Leachate-Fal23 Lab Sample ID: 680-243143-1

Date Collected: 11/14/23 09:30 Date Received: 11/15/23 10:07

Matrix: Water

Job ID: 680-243143-1

Analyte	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	3.1	U H	3.8	3.1	1.2	ug/L		11/29/23 11:25	
1,2-Dichlorobenzene	3.1	UH	3.8	3.1	0.22	ug/L		11/29/23 11:25	
1,3-Dichlorobenzene	7.6	UH	9.5	7.6	0.29	ug/L		11/29/23 11:25	
1,4-Dichlorobenzene	3.1	UH	3.8	3.1	1.2	ug/L		11/29/23 11:25	
2,2'-oxybis[1-chloropropane]	7.6	UH	9.5	7.6	0.27	ug/L		11/29/23 11:25	
2,4,6-Trichlorophenol	7.6	UH	9.5	7.6	0.54	ug/L		11/29/23 11:25	
2,4-Dichlorophenol	7.6	UH	9.5	7.6	0.61	ug/L		11/29/23 11:25	
2,4-Dimethylphenol	7.6	UH	9.5	7.6	0.55	ug/L		11/29/23 11:25	
2-Chloronaphthalene	3.1	UHQ	3.8	3.1	0.51	ug/L		11/29/23 11:25	
2-Chlorophenol	7.6	UH	9.5	7.6	0.93			11/29/23 11:25	
2-Nitrophenol	7.6	UН	9.5	7.6		ug/L		11/29/23 11:25	
3,3'-Dichlorobenzidine	29	UН	48	29		ug/L		11/29/23 11:25	
4,6-Dinitro-2-methylphenol	29	UH	48	29		ug/L		11/29/23 11:25	
4-Bromophenyl phenyl ether	7.6	UH	9.5	7.6	0.41	-		11/29/23 11:25	
4-Chloro-3-methylphenol		UH	9.5	7.6		ug/L		11/29/23 11:25	
4-Chlorophenyl phenyl ether		UH	9.5	7.6		ug/L		11/29/23 11:25	
4-Nitrophenol		UH	9.5	8.4		ug/L		11/29/23 11:25	
Acenaphthene	3.1		3.8	3.1	0.60	-		11/29/23 11:25	
Acenaphthylene	3.1	UH	3.8	3.1	0.47			11/29/23 11:25	
Anthracene		UH	3.8	3.1	0.40	-		11/29/23 11:25	
Benzidine	95		95	95		ug/L		11/29/23 11:25	
Benzo[a]anthracene	3.1		3.8	3.1	0.86			11/29/23 11:25	
Benzo[a]pyrene	3.1	UH	3.8	3.1	0.70	_		11/29/23 11:25	
Benzo[b]fluoranthene	3.1	UH	3.8	3.1		ug/L		11/29/23 11:25	
Benzo[g,h,i]perylene	3.1	UH	3.8	3.1	0.48	-		11/29/23 11:25	
Benzo[k]fluoranthene	3.1	UH	3.8	3.1	0.44	_		11/29/23 11:25	
Bis(2-chloroethoxy)methane		UH	9.5	7.6	0.93	•		11/29/23 11:25	
Bis(2-chloroethyl)ether		UH	9.5	7.6	0.79			11/29/23 11:25	
Bis(2-ethylhexyl) phthalate	7.6	UH	9.5	7.6		ug/L		11/29/23 11:25	
Butyl benzyl phthalate		UH	3.8	3.1	0.95	-		11/29/23 11:25	
Chrysene		UH	3.8	3.1	0.52			11/29/23 11:25	
Dibenz(a,h)anthracene		UH	9.5	7.6		ug/L ug/L		11/29/23 11:25	
						-		11/29/23 11:25	
Diethyl phthalate	0.95		3.8	0.95		ug/L		11/29/23 11:25	
Dimethyl phthalate		UMH	3.8	3.1 3.1	0.20	_			
Di-n-butyl phthalate		UH	3.8			ug/L		11/29/23 11:25	
Di-n-octyl phthalate		UH	9.5	7.6		ug/L		11/29/23 11:25	
-luoranthene		UH	3.8	3.1	0.86			11/29/23 11:25	
Fluorene		UH	3.8	3.1		ug/L		11/29/23 11:25	
Hexachlorobenzene		UH	9.5	7.6	0.63			11/29/23 11:25	
Hexachlorobutadiene		UH	9.5	7.6		ug/L		11/29/23 11:25	
Hexachlorocyclopentadiene		UHQ	48	29		ug/L		11/29/23 11:25	
Hexachloroethane		UH	9.5	7.6	0.94			11/29/23 11:25	
ndeno[1,2,3-cd]pyrene		UH	9.5	7.6		ug/L		11/29/23 11:25	
sophorone		UH	9.5	7.6		ug/L		11/29/23 11:25	
Naphthalene		UH	3.8	1.9	0.28			11/29/23 11:25	
Nitrobenzene		UH	9.5	7.6	0.77	-		11/29/23 11:25	
N-Nitrosodi-n-propylamine		UH	9.5	7.6	0.33	_		11/29/23 11:25	
N-Nitrosodiphenylamine	7.6	UHQ	9.5	7.6	0.42	ug/L ug/L		11/29/23 11:25	

Client Sample Results

Client: Seres Engineering & Services LLC

Analyte

Phenanthrene

Project/Site: Fort Devens, Long Term Monitoring

Client Sample ID: DCL Leachate-Fal23 Lab Sample ID: 680-243143-1

Date Collected: 11/14/23 09:30
Date Received: 11/15/23 10:07

Result Qualifier

3.1 U H

Method: EPA 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Job ID: 680-243143-1

DL	Unit	D	Analyzed	Dil Fac
0.66	ug/L		11/29/23 11:25	1

Phenol	ī	7.6 UH		9.5	7.6	1.9	ug/L	11/29/23 11:25	1
Pyrene	· · · · · · · · · · · · · · · · · · ·	7.6 UHQ		9.5	7.6	0.35	ug/L	11/29/23 11:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	88		50 - 120	_			11/27/23 11:53	11/29/23 11:25	1
2-Fluorobiphenyl	87		36 - 120				11/27/23 11:53	11/29/23 11:25	1
2-Fluorophenol	32		30 - 120				11/27/23 11:53	11/29/23 11:25	1
Nitrobenzene-d5	78		45 - 120				11/27/23 11:53	11/29/23 11:25	1
Phenol-d5	21	Q	36 - 120				11/27/23 11:53	11/29/23 11:25	1
Terphenyl-d14	109		52 - 120				11/27/23 11:53	11/29/23 11:25	1

3.8

3.1

Method: SW846 8015C DRO - Diesel Range Organics (DRO) (GC)										
Analyte	Result Qua	lifier LOQ	LOD	DL	Unit E) Analyzed	Dil Fac			
C10-C28	0.22 J	0.30	0.15	0.069	mg/L	11/21/23 20:43	1			
Surrogate	%Recovery Qualifie	er Limits			Prepared	Analyzed	Dil Fac			
o-Terphenyl (Surr)	51 M Q	56 - 125			11/20/23 07:59	11/21/23 20:43	1			

General Chemistry Analyte	Result Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Suspended Solids (SM 2540 D-2011)	8.3	8.3	8.3	8.3	mg/L		11/20/23 12:29	1
Phenolics, Total Recoverable (SW846 9065)	0.050 U J1	0.050	0.050	0.025	mg/L		11/21/23 19:48	1

8

10

11

QC Sample Results

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-243143-1

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 280-635134/1-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 635134

	MB	MB						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,2,4-Trichlorobenzene	3.2	U	4.0	3.2	1.3	ug/L	11/29/23 09:12	1
1,2-Dichlorobenzene	3.2	U	4.0	3.2	0.23	ug/L	11/29/23 09:12	1
1,3-Dichlorobenzene	8.0	U	10	8.0	0.30	ug/L	11/29/23 09:12	1
1,4-Dichlorobenzene	3.2	U	4.0	3.2	1.3	ug/L	11/29/23 09:12	1
2,2'-oxybis[1-chloropropane]	8.0	U	10	8.0	0.28	ug/L	11/29/23 09:12	1
2,4,6-Trichlorophenol	8.0	U	10	8.0	0.56	ug/L	11/29/23 09:12	1
2,4-Dichlorophenol	8.0	U	10	8.0	0.64	ug/L	11/29/23 09:12	1
2,4-Dimethylphenol	8.0	U	10	8.0	0.58	ug/L	11/29/23 09:12	1
2-Chloronaphthalene	3.2	U	4.0	3.2	0.53	ug/L	11/29/23 09:12	1
2-Chlorophenol	8.0	U	10	8.0	0.97	ug/L	11/29/23 09:12	1
2-Nitrophenol	8.0	U	10	8.0	1.4	ug/L	11/29/23 09:12	1
3,3'-Dichlorobenzidine	30	U	50	30	3.1	ug/L	11/29/23 09:12	1
4,6-Dinitro-2-methylphenol	30	U	50	30	9.1	ug/L	11/29/23 09:12	1
4-Bromophenyl phenyl ether	8.0	U	10	8.0	0.43	ug/L	11/29/23 09:12	1
4-Chloro-3-methylphenol	8.0	U	10	8.0	2.4	ug/L	11/29/23 09:12	1
4-Chlorophenyl phenyl ether	8.0	U	10	8.0	1.7	ug/L	11/29/23 09:12	1
4-Nitrophenol	8.8	U	10	8.8	3.2	ug/L	11/29/23 09:12	1
Acenaphthene	3.2	U	4.0	3.2	0.63	ug/L	11/29/23 09:12	1
Acenaphthylene	3.2	U	4.0	3.2	0.49	ug/L	11/29/23 09:12	1
Anthracene	3.2	U	4.0	3.2	0.42	ug/L	11/29/23 09:12	1
Benzidine	100	U	100	100	50	ug/L	11/29/23 09:12	1
Benzo[a]anthracene	3.2	U	4.0	3.2	0.90	ug/L	11/29/23 09:12	1
Benzo[a]pyrene	3.2	U	4.0	3.2	0.73	ug/L	11/29/23 09:12	1
Benzo[b]fluoranthene	3.2	U	4.0	3.2	1.3	ug/L	11/29/23 09:12	1
Benzo[g,h,i]perylene	3.2	U	4.0	3.2	0.50	ug/L	11/29/23 09:12	1
Benzo[k]fluoranthene	3.2	U	4.0	3.2	0.46	ug/L	11/29/23 09:12	1
Bis(2-chloroethoxy)methane	8.0	U	10	8.0	0.97	ug/L	11/29/23 09:12	1
Bis(2-chloroethyl)ether	8.0	U	10	8.0	0.83	ug/L	11/29/23 09:12	1
Bis(2-ethylhexyl) phthalate	8.0	U	10	8.0	2.4	ug/L	11/29/23 09:12	1
Butyl benzyl phthalate	3.2	U	4.0	3.2	1.0	ug/L	11/29/23 09:12	1
Chrysene	3.2	U	4.0	3.2	0.54	ug/L	11/29/23 09:12	1
Dibenz(a,h)anthracene	8.0	U	10	8.0	2.2	ug/L	11/29/23 09:12	1
Diethyl phthalate	1.0	U	4.0	1.0	0.38	ug/L	11/29/23 09:12	1
Dimethyl phthalate	3.2	U	4.0	3.2	0.21	ug/L	11/29/23 09:12	1
Di-n-butyl phthalate	3.2	U	4.0	3.2	1.2	ug/L	11/29/23 09:12	1
Di-n-octyl phthalate	8.0	U	10	8.0	4.0	ug/L	11/29/23 09:12	1
Fluoranthene	3.2	U	4.0	3.2	0.90	ug/L	11/29/23 09:12	1
Fluorene	3.2	U	4.0	3.2	0.31	ug/L	11/29/23 09:12	1
Hexachlorobenzene	8.0	U	10	8.0	0.66	ug/L	11/29/23 09:12	1
Hexachlorobutadiene	8.0	U	10	8.0	3.3	ug/L	11/29/23 09:12	1
Hexachlorocyclopentadiene	30	U	50	30	3.1	ug/L	11/29/23 09:12	1
Hexachloroethane	8.0	U	10	8.0	0.98	ug/L	11/29/23 09:12	1
Indeno[1,2,3-cd]pyrene	8.0	U	10	8.0	3.1	ug/L	11/29/23 09:12	1
Isophorone	8.0	U	10	8.0	0.21	ug/L	11/29/23 09:12	1
Naphthalene	2.0	U	4.0	2.0	0.29	ug/L	11/29/23 09:12	1
Nitrobenzene	8.0	U	10	8.0	0.81	ug/L	11/29/23 09:12	1
N-Nitrosodi-n-propylamine	8.0	U	10	8.0	0.35	ug/L	11/29/23 09:12	1
N-Nitrosodiphenylamine	8.0	UM	10	8.0	0.44	ug/L	11/29/23 09:12	1

Client: Seres Engineering & Services LLC

Job ID: 680-243143-1 Project/Site: Fort Devens, Long Term Monitoring

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 280-635134/1-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 635134

	IVID	IVID							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Pentachlorophenol	40	U	50	40	20	ug/L		11/29/23 09:12	1
Phenanthrene	3.2	U	4.0	3.2	0.69	ug/L		11/29/23 09:12	1
Phenol	8.0	U	10	8.0	2.0	ug/L		11/29/23 09:12	1
Pyrene	8.0	U	10	8.0	0.37	ug/L		11/29/23 09:12	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81	50 - 120	11/27/23 11:53	11/29/23 09:12	1
2-Fluorobiphenyl	91	36 - 120	11/27/23 11:53	11/29/23 09:12	1
2-Fluorophenol	43	30 - 120	11/27/23 11:53	11/29/23 09:12	1
Nitrobenzene-d5	91	45 - 120	11/27/23 11:53	11/29/23 09:12	1
Phenol-d5	26 Q	36 - 120	11/27/23 11:53	11/29/23 09:12	1
Terphenyl-d14	101	52 - 120	11/27/23 11:53	11/29/23 09:12	1

Lab Sample ID: LCS 280-635134/2-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 635134

Allalysis Batch. 033417	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	80.0	81.9		ug/L		102	44 - 142
1,2-Dichlorobenzene	80.0	77.2		ug/L		96	32 - 129
1,3-Dichlorobenzene	80.0	75.3		ug/L		94	10 - 172
1,4-Dichlorobenzene	80.0	76.9		ug/L		96	20 - 124
2,2'-oxybis[1-chloropropane]	80.0	81.5		ug/L		102	36 - 166
2,4,6-Trichlorophenol	80.0	101		ug/L		126	37 - 144
2,4-Dichlorophenol	80.0	91.0		ug/L		114	39 - 135
2,4-Dimethylphenol	80.0	81.2		ug/L		102	32 - 119
2-Chloronaphthalene	80.0	97.3	Q	ug/L		122	60 - 118
2-Chlorophenol	80.0	73.3		ug/L		92	23 - 134
2-Nitrophenol	80.0	90.9		ug/L		114	29 - 182
3,3'-Dichlorobenzidine	160	149		ug/L		93	10 - 262
4,6-Dinitro-2-methylphenol	160	180		ug/L		113	10 - 181
4-Bromophenyl phenyl ether	80.0	94.8		ug/L		118	53 - 127
4-Chloro-3-methylphenol	80.0	83.1		ug/L		104	22 - 147
4-Chlorophenyl phenyl ether	80.0	84.0		ug/L		105	25 - 158
4-Nitrophenol	160	54.1		ug/L		34	10 - 132
Acenaphthene	80.0	87.5		ug/L		109	47 - 145
Acenaphthylene	80.0	90.9		ug/L		114	33 - 145
Anthracene	80.0	93.7		ug/L		117	27 - 133
Benzidine	160	59.4	J	ug/L		37	5 - 65
Benzo[a]anthracene	80.0	97.1		ug/L		121	33 - 143
Benzo[a]pyrene	80.0	93.7		ug/L		117	17 - 163
Benzo[b]fluoranthene	80.0	99.6		ug/L		125	24 - 159
Benzo[g,h,i]perylene	80.0	93.5		ug/L		117	10 - 219
Benzo[k]fluoranthene	80.0	93.3		ug/L		117	11 - 162
Bis(2-chloroethoxy)methane	80.0	89.1		ug/L		111	33 - 184
Bis(2-chloroethyl)ether	80.0	82.1		ug/L		103	12 - 158
Bis(2-ethylhexyl) phthalate	80.0	98.3		ug/L		123	10 - 158
Butyl benzyl phthalate	80.0	99.2		ug/L		124	10 - 152

Client: Seres Engineering & Services LLC

Job ID: 680-243143-1 Project/Site: Fort Devens, Long Term Monitoring

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 280-635134/2-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 635134

Analyte Chrysene Dibenz(a,h)anthracene Diethyl phthalate	80.0 80.0 80.0 80.0		LCS Qualifier	Unit ug/L	D	%Rec	Limits
Dibenz(a,h)anthracene	80.0			ug/L			
		101				125	17 - 168
Diethyl phthalate	80.0			ug/L		126	10 - 227
Dietriyi primalate		90.6		ug/L		113	10 - 114
Dimethyl phthalate	80.0	90.0		ug/L		112	10 - 112
Di-n-butyl phthalate	80.0	92.8		ug/L		116	10 - 118
Di-n-octyl phthalate	80.0	101		ug/L		127	10 - 146
Fluoranthene	80.0	92.4		ug/L		116	26 - 137
Fluorene	80.0	89.9		ug/L		112	59 - 121
Hexachlorobenzene	80.0	84.8		ug/L		106	10 - 152
Hexachlorobutadiene	80.0	80.6		ug/L		101	24 - 116
Hexachlorocyclopentadiene	160	180	Q	ug/L		112	10 - 68
Hexachloroethane	80.0	70.2		ug/L		88	40 - 113
Indeno[1,2,3-cd]pyrene	80.0	92.0		ug/L		115	10 - 171
Isophorone	80.0	85.2		ug/L		106	21 - 196
Naphthalene	80.0	83.8		ug/L		105	21 - 133
Nitrobenzene	80.0	84.1		ug/L		105	35 - 180
N-Nitrosodi-n-propylamine	80.0	83.9		ug/L		105	10 - 230
N-Nitrosodiphenylamine	80.0	96.3	Q	ug/L		120	46 - 114
Pentachlorophenol	160	140		ug/L		87	14 - 176
Phenanthrene	80.0	90.7		ug/L		113	54 - 120
Phenol	80.0	25.4		ug/L		32	10 - 112
Pyrene	80.0	96.3	Q	ug/L		120	55 - 115

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	87		50 - 120
2-Fluorobiphenyl	111		36 - 120
2-Fluorophenol	47		30 - 120
Nitrobenzene-d5	105		45 - 120
Phenol-d5	27	Q	36 - 120
Terphenyl-d14	117		52 ₋ 120

Lab Sample ID: LCSD 280-635134/3-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 635134

LCSD LCSD RPD Spike %Rec **Analyte** Added Result Qualifier Unit %Rec Limits **RPD** Limit 1,2,4-Trichlorobenzene 80.0 83.6 ug/L 105 44 - 142 2 35 80.0 78.0 32 - 129 42 1,2-Dichlorobenzene ug/L 98 1.3-Dichlorobenzene 80.0 75.7 ug/L 95 10 - 172 47 1,4-Dichlorobenzene 80.0 76.9 ug/L 96 20 - 124 49 2,2'-oxybis[1-chloropropane] 80.0 74.3 ug/L 93 36 - 166 30 97.3 122 30 2,4,6-Trichlorophenol 80.0 ug/L 37 - 144 2,4-Dichlorophenol 80.0 90.5 113 39 - 135 30 ug/L 2,4-Dimethylphenol 80.0 77.5 ug/L 97 32 - 119 35 2-Chloronaphthalene 80.0 102 Q ug/L 127 60 - 118 30 2-Chlorophenol 80.0 70.2 ug/L 88 23 - 134 30 2-Nitrophenol 80.0 87.1 ug/L 109 29 - 182 30 3,3'-Dichlorobenzidine 160 157 ug/L 98 10 - 262 50

Job ID: 680-243143-1

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 280-635134/3-A

Matrix: Water

Analysis Batch: 635417

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 635134

Analysis Batch. 655417	Spike	I CSD	LCSD				%Rec	ilcii. o	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,6-Dinitro-2-methylphenol	160	189	- Qualifier	ug/L		118	10 - 181		55
4-Bromophenyl phenyl ether	80.0	92.7		ug/L		116	53 - 127	2	34
4-Chloro-3-methylphenol	80.0	81.4		ug/L		102	22 - 147	2	30
4-Chlorophenyl phenyl ether	80.0	83.8		ug/L		105	25 - 158	0	30
4-Nitrophenol	160	56.7		ug/L		35	10 - 132	5	42
Acenaphthene	80.0	83.7		ug/L		105	47 - 145	4	30
Acenaphthylene	80.0	87.5		ug/L		109	33 - 145	4	30
Anthracene	80.0	91.1		ug/L		114	27 - 133	3	30
Benzidine	160	115	Q	ug/L		72	5 - 65	64	50
Benzo[a]anthracene	80.0	96.7		ug/L		121	33 - 143	0	30
Benzo[a]pyrene	80.0	91.5		ug/L		114	17 - 163	2	73
Benzo[b]fluoranthene	80.0	94.2		ug/L		118	24 - 159	6	90
Benzo[g,h,i]perylene	80.0	92.6		ug/L		116	10 - 219	1	64
Benzo[k]fluoranthene	80.0	94.3		ug/L		118	11 - 162	1	50
Bis(2-chloroethoxy)methane	80.0	84.2		ug/L		105	33 - 184	6	30
Bis(2-chloroethyl)ether	80.0	77.5		ug/L		97	12 - 158	6	30
Bis(2-ethylhexyl) phthalate	80.0	95.5		ug/L		119	10 - 158	3	30
Butyl benzyl phthalate	80.0	96.8		ug/L		121	10 - 152	2	30
Chrysene	80.0	99.4		ug/L		124	17 - 168	1	30
Dibenz(a,h)anthracene	80.0	98.8		ug/L		123	10 - 227	2	78
Diethyl phthalate	80.0	87.8		ug/L		110	10 - 114	3	30
Dimethyl phthalate	80.0	87.3		ug/L		109	10 - 112	3	30
Di-n-butyl phthalate	80.0	92.1		ug/L		115	10 - 118	1	30
Di-n-octyl phthalate	80.0	98.1		ug/L		123	10 - 146	3	30
Fluoranthene	80.0	93.1		ug/L		116	26 - 137	1	30
Fluorene	80.0	87.8		ug/L		110	59 - 121	2	30
Hexachlorobenzene	80.0	84.5		ug/L		106	10 - 152	0	30
Hexachlorobutadiene	80.0	82.9		ug/L		104	24 - 116	3	41
Hexachlorocyclopentadiene	160	196	Q	ug/L		122	10 - 68	8	82
Hexachloroethane	80.0	70.3		ug/L		88	40 - 113	0	52
Indeno[1,2,3-cd]pyrene	80.0	90.7		ug/L		113	10 - 171	2	73
Isophorone	80.0	80.5		ug/L		101	21 - 196	6	30
Naphthalene	80.0	82.3		ug/L		103	21 - 133	2	30
Nitrobenzene	80.0	77.4		ug/L		97	35 - 180	8	30
N-Nitrosodi-n-propylamine	80.0	78.9		ug/L		99	10 - 230	6	30
N-Nitrosodiphenylamine	80.0	93.5	Q	ug/L		117	46 - 114		50
Pentachlorophenol	160	157		ug/L		98	14 - 176	12	30
Phenanthrene	80.0	88.7		ug/L		111	54 - 120	2	30
Phenol	80.0	24.7		ug/L		31	10 - 112	3	30
Pyrene	80.0	96.4	Q	ug/L		121	55 - 115	0	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	88		50 - 120
2-Fluorobiphenyl	105		36 - 120
2-Fluorophenol	45		30 - 120
Nitrobenzene-d5	97		45 - 120
Phenol-d5	27	Q	36 - 120
Terphenyl-d14	118		52 - 120

Eurofins Savannah

12/11/2023 (Rev. 1)

11/21/23 19:46

Prep Type: Total/NA

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Job ID: 680-243143-1

Method: 8015C DRO - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 680-809167/1-A Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 809504

Prep Batch: 809167 MB MB Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac

0.068 mg/L

0.15

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 11/20/23 07:59 o-Terphenyl (Surr) 56 M 56 - 125 11/21/23 19:46

0.30

Lab Sample ID: LCS 680-809167/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analyte C10-C28

Analysis Batch: 809504

Prep Batch: 809167 LCS LCS %Rec Spike Added Result Qualifier Unit %Rec Limits

Analyte C10-C28 4.00 2.52 mg/L 63 36 - 132

LCS LCS

0.15 U

Surrogate %Recovery Qualifier Limits o-Terphenyl (Surr) 88 M 56 - 125

Lab Sample ID: LCSD 680-809167/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 809504

Prep Batch: 809167 Spike LCSD LCSD %Rec RPD %Rec Analyte Added Result Qualifier Unit Limits RPD Limit C10-C28 4.00 2.03 mg/L 51 36 - 132

LCSD LCSD

%Recovery Qualifier Surrogate Limits o-Terphenyl (Surr) 74 M 56 - 125

Method: 2540 D-2011 - Total Suspended Solids (Dried at 103-105°C)

Lab Sample ID: MB 680-809273/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 809273

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac **Total Suspended Solids** 2.5 U 2.5 2.5 2.5 mg/L 11/20/23 12:29

Lab Sample ID: LCS 680-809273/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 809273

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec **Total Suspended Solids** 841 844 100 80 - 120 mg/L

Lab Sample ID: LCSD 680-809273/3 Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 809273

LCSD LCSD %Rec **RPD** Spike Added Result Qualifier Unit %Rec Limits RPD Limit Total Suspended Solids 841 828 mg/L 80 - 120

Client: Seres Engineering & Services LLC Job ID: 680-243143-1

Project/Site: Fort Devens, Long Term Monitoring

Method: 2540 D-2011 - Total Suspended Solids (Dried at 103-105°C) (Continued)

Lab Sample ID: 680-243143-1 DU Client Sample ID: DCL Leachate-Fal23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 809273

RPD Sample Sample DU DU Result Qualifier Result Qualifier RPD Limit Analyte Unit D **Total Suspended Solids** 8.3 9.33 mg/L 11

Method: 9065 - Phenolics, Total Recoverable

Lab Sample ID: MB 680-809469/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 809577

MB MB

Result Qualifier LOQ LOD DL Unit Analyzed 0.050 0.050 11/21/23 19:48 0.050 U 0.025 mg/L Phenolics, Total Recoverable

Lab Sample ID: LCS 680-809469/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 809577

Spike Added

Spike

Added

0.100

LCS LCS Result Qualifier

Unit

%Rec

Limits

Prep Batch: 809469

Prep Batch: 809469

Analyte Phenolics, Total Recoverable 0.100 0.102 mg/L 102 75 - 125

Lab Sample ID: 680-243143-1 MS Client Sample ID: DCL Leachate-Fal23 Prep Type: Total/NA

Matrix: Water

Analyte

Analysis Batch: 809577

Phenolics, Total Recoverable

Sample Sample Spike Added Result Qualifier 0.050 U J1 0.100

MS MS Result Qualifier 0.0624 J1

MSD MSD

0.0546 J1

Result Qualifier

Unit %Rec mg/L

Unit

mg/L

Limits 75 - 125

%Rec

%Rec

Lab Sample ID: 680-243143-1 MSD

Matrix: Water

Analysis Batch: 809577

Sample Sample Analyte Result Qualifier Phenolics, Total Recoverable 0.050 U J1

Client Sample ID: DCL Leachate-Fal23

62

%Rec

Prep Type: Total/NA Prep Batch: 809469

Prep Batch: 809469

RPD %Rec Limits RPD Limit 75 - 125 13

Job ID: 680-243143-1

Project/Site: Fort Devens, Long Term Monitoring

GC/MS Semi VOA

Prep Batch: 635134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243143-1	DCL Leachate-Fal23	Total/NA	Water	625	
MB 280-635134/1-A	Method Blank	Total/NA	Water	625	
LCS 280-635134/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 280-635134/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 635417

Lab Sample ID 680-243143-1	Client Sample ID DCL Leachate-Fal23	Prep Type Total/NA	Matrix Water	Method 625	Prep Batch 635134
MB 280-635134/1-A	Method Blank	Total/NA	Water	625	635134
LCS 280-635134/2-A	Lab Control Sample	Total/NA	Water	625	635134
LCSD 280-635134/3-A	Lab Control Sample Dup	Total/NA	Water	625	635134

GC Semi VOA

Prep Batch: 809167

Lab Sample ID 680-243143-1	Client Sample ID DCL Leachate-Fal23	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 680-809167/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-809167/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 680-809167/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 809504

Lab Sample ID 680-243143-1	Client Sample ID DCL Leachate-Fal23	Prep Type Total/NA	Matrix Water	Method 8015C DRO	Prep Batch 809167
MB 680-809167/1-A	Method Blank	Total/NA	Water	8015C DRO	809167
LCS 680-809167/2-A	Lab Control Sample	Total/NA	Water	8015C DRO	809167
LCSD 680-809167/3-A	Lab Control Sample Dup	Total/NA	Water	8015C DRO	809167

General Chemistry

Analysis Batch: 809273

Lab Sample ID 680-243143-1	Client Sample ID DCL Leachate-Fal23	Prep Type Total/NA	Matrix Water	Method 2540 D-2011	Prep Batch
MB 680-809273/1	Method Blank	Total/NA	Water	2540 D-2011	
LCS 680-809273/2	Lab Control Sample	Total/NA	Water	2540 D-2011	
LCSD 680-809273/3	Lab Control Sample Dup	Total/NA	Water	2540 D-2011	
680-243143-1 DU	DCL Leachate-Fal23	Total/NA	Water	2540 D-2011	

Prep Batch: 809469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243143-1	DCL Leachate-Fal23	Total/NA	Water	Distill/Phenol	
MB 680-809469/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 680-809469/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
680-243143-1 MS	DCL Leachate-Fal23	Total/NA	Water	Distill/Phenol	
680-243143-1 MSD	DCL Leachate-Fal23	Total/NA	Water	Distill/Phenol	

Analysis Batch: 809577

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243143-1	DCL Leachate-Fal23	Total/NA	Water	9065	809469
MB 680-809469/1-A	Method Blank	Total/NA	Water	9065	809469
LCS 680-809469/2-A	Lab Control Sample	Total/NA	Water	9065	809469
680-243143-1 MS	DCL Leachate-Fal23	Total/NA	Water	9065	809469

Eurofins Savannah

Page 14 of 22

QC Association Summary

Client: Seres Engineering & Services LLC
Project/Site: Fort Devens, Long Term Monitoring

Job I

Job ID: 680-243143-1

General Chemistry (Continued)

Analysis Batch: 809577 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-243143-1 MSD	DCL Leachate-Fal23	Total/NA	Water	9065	809469

3

А

4

6

1

9

10

Lab Chronicle

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring

Lab Sample ID: 680-243143-1

Lab Sample ID. 000-243145-1

Matrix: Water

Job ID: 680-243143-1

Client Sample ID: DCL Leachate-Fal23 Date Collected: 11/14/23 09:30

Date Received: 11/15/23 10:07

	Batch -	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	<u>De Type Method Run Facto</u>		Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	625			1047.2 mL	1 mL	635134	11/27/23 11:53	EDW	EET DEN
Total/NA	Analysis	625		1	500 uL	500 uL	635417	11/29/23 11:25	MAB	EET DEN
	Instrumer	t ID: SMS_G6								
Total/NA	Prep	3510C			246.2 mL	1 mL	809167	11/20/23 07:59	DS	EET SAV
Total/NA	Analysis	8015C DRO		1	1 mL	1 mL	809504	11/21/23 20:43	DBM	EET SAV
	Instrumer	it ID: CSGQ								
Total/NA	Analysis	2540 D-2011		1	300 mL	1000 mL	809273	11/20/23 12:29	AS	EET SAV
	Instrumer	t ID: NOEQUIP								
Total/NA	Prep	Distill/Phenol			6 mL	6 mL	809469	11/21/23 11:17	SM	EET SAV
Total/NA	Analysis	9065		1	6 mL	6 mL	809577	11/21/23 19:48	SM	EET SAV
	Instrumer	t ID: KONELAB3								

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100 EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

1

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Fort Devens, Long Term Monitoring

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
ANAB	Dept. of Defense ELAP	L2463	09-22-24		

Laboratory: Eurofins Denver

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
A2LA	Dept. of Defense ELAP	2907.01	10-31-24		

Job ID: 680-243143-1

3

4

5

8

J

11

Method Summary

Client: Seres Engineering & Services LLC Project/Site: Fort Devens, Long Term Monitoring Job ID: 680-243143-1

Method	Method Description	Protocol	Laboratory
625	Semivolatile Organic Compounds (GC/MS)	EPA	EET DEN
8015C DRO	Diesel Range Organics (DRO) (GC)	SW846	EET SAV
2540 D-2011	Total Suspended Solids (Dried at 103-105°C)	SM	EET SAV
9065	Phenolics, Total Recoverable	SW846	EET SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SAV
625	Liquid-Liquid Extraction	EPA	EET DEN
Distill/Phenol	Distillation, Phenolics	None	EET SAV

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ARVC

Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com

COC # DCL-LEACH-FAL23

Project Name: Former Fort Devens, Long Term Monitoring		Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA													Event: Seres-Arcadis JV, Long Term Monitoring, DCL Leach, Fall			
Project Number: DEVNS-LTM PO 2312 - 00000001		POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404																
WBS Code:														2023				
Comments: M9015D (A) = Diesel Range SW7470A (A) = Mercury SW8081B (A) = Pesticides SW9012B (A) = Cyanide SW9065 (A) = Phenoiles													Code Matrix WL Leachate Code Container/Preservative 1 2x 1L amber glass bottles, Cool to <6degC 2 2x 1L amber glass bottles, Cool to <6degC 9 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC 11 1x 500mL, amber glass, H2SO4; Cool < 6degC					
Equipment:	Analylical Test Method	A2540D - TSS			M8015D (A)	SW6020A - As	SW7470A	+	SW8082A	SW9012B (A)		SW9065 (A)	21 1x 2-1 Liter, amber, glass, 0 29 3x 40mL glass VOA Vials, 0 33 2x 1 liter, amber, glass, Coo 45 1x 500mL plastic, Cool < 6c 48 1x 250mL plastic, NaOH to	Cool < 6degC; adjust ol < 6degC degC				
Event: Seres-Arcadis JV, Long Term Monitoring, DCL Leach, Fall 202	23	45	29	33	21 9	9	9	21,	1	48	2	71						
Sample ID Matrix Date Time	Samp Init.												Location ID	Sample Type		(ft bgs) Bottom	Cooler	Comments
1 DCL LEACHATE-FAL23 WL 11 74/23 1040	MS		Х	X	x >	×Χ	X	X	X	Х	x	X	DCL LEACHATE	N1	0.00	0.00	1	
2 DCL Leachate Fal 23 WL 11/14/23 930	DC	X		X	K							X	DCL Leachate	NI	0.00	0.00	(
3																		
4																		
5																		
6																		
Turnaround Time: NA				1														

- 1/13/23 1007 Drave Clippe 11-14-23 1700

Date

Time

Received by: (Signature)

Received by Laboratory: (Signature)

Page 19 of 22

2 2/11/2023 (Rev. 1)

🔩 eurofins | Environment Tessing

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165	Chain of Custody Record	stody Re	cord		🔩 eurofins	Environment Tescing
Client Information (Sub Contract Lab)	Sampler:	Lab PM: Lanier,	Lab PM: Lanier, Jerry A	Carrier Tracking No(s):	COC No: 680-756763.1	
1	Phone:	E-Mail: Jerry.L:	E-Mail: Jerry.Lanier@et.eurofinsus.com	State of Origin: Massachusetts	Page: Page 1 of 1	
Сомралу: TestAmerica Laboratories, Inc.		, D	Accreditations Required (See note) Dept. of Defense ELAP - A2LA; DoD - ANAB	D - ANAB	Job #: 680-243143-1	
Address: '' 4955 Yarrow Street, ,	Due Date Requested: 11/30/2023		Analysis	Analysis Requested		ss: M - Hexane
Giy. Arvada	TAT Requested (days):				B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: CO, 80002						P - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone: 303-736-0100(Tel) 303-431-7171(Fax)	PO#.	(4				S - H2SO4 T - TSP Dodecahydrate
Email:	WO#.	ON 10	(0)		I - Ice J - DI Water	U - Acetone V - MCAA W - nH 4-5
Project Name: Fort Devens, Long Term Monitoring	Project #; 68023801	səд) ə	110 25		K - EDTA L - EDA	Y - Trizma Z - other (specify)
Site:	SSOW#:	Idms	SD (Y		of con	
	Sample		M/2M m10116 q_3s3\d0d_2		radmuM lato	:
oampre restratora - Cheft ID (Lab ID)	Sample Date IIme G=grab)	BT=Tissue, A=Air)	a X			Special instructions/Note:
DCL Leachate Fal23 (680-243143-1)	/-	Water	×		2	
	Eastern					
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract aborations. This sample shipment is forwarded under chain-of-custody. If the laborator does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	It Testing Southeast, LLC places the ownership or alysis/fests/matrix being analyzed, the samples on immediately. If all requested accreditations a	of method, analyte & a nust be shipped back e current to date, retu	ccreditation compliance upon our subcor to the Eurofins Environment Testing Sou rn the signed Chain of Custody attesting	tract laboratories. This sample shipmen heast, LLC laboratory or other instructic to said compliance to Eurofins Environn	nt is forwarded under chain- ns will be provided. Any ch nent Testing Southeast, LLC	of-custody. If the laborato anges to accreditation
Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	se assessed if samples are re	tained longer than 1	month)
Unconfirmed			Return To Client	oosal By Lab	Archive For	Months
Deliverable Requested: I, II, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements:	ments:		
Empty Kit Relinquished by:	Date:	Ţ	Time:	Method of Shipment:		
Relinquished by:	Date/Time - 31 - 33	Company	Received by.	Date/Time:	133 (036	NBOUZZ DY
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by.	Date/Time:		Сотрапу
Custody Seals Intact: Custody Seal No.:			Coolen Temperature(s), Cand Other Remarks:	ar Remarks:		

Job Number: 680-243143-1

Client: Seres Engineering & Services LLC

Login Number: 243143 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

orodion connoch, corcy in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Savannah

Job Number: 680-243143-1

List Source: Eurofins Denver
List Number: 2
List Creation: 11/22/23 01:12 PM

Creator: Little, Matthew L

oreator. Little, matthew L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Heather Levesque Seres Engineering & Services LLC 669 Marina Drive Suite B7 Charleston, South Carolina 29492

JOB DESCRIPTION

Generated 1/5/2024 2:00:21 PM

Seres-Arcadis JV, LTM DCL, Fall 2023

JOB NUMBER

680-242830-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 1/5/2024 2:00:21 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Qualifiers

	Se		

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
M	Manual integrated compound

Q One or more quality control criteria failed. U Undetected at the Limit of Detection.

HPLC/IC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
D	The reported value is from a dilution.
M	Manual integrated compound.
U	Undetected at the Limit of Detection.
Matala	

Metals

Qu	alifier	Qualifier Description
J		Estimated: The analyte was positively identified; the quantitation is an estimation
J1		Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U		Undetected at the Limit of Detection.

General Chemistry

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive

Eurofins Savannah

Page 3 of 86 1/5/2024

Definitions/Glossary

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report. QC **Quality Control RER** Relative Error Ratio (Radiochemistry) RLReporting Limit or Requested Limit (Radiochemistry) **RPD** Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

Eurofins Savannah

Page 4 of 86 1/5/2024

Sample Summary

Client: Seres Engineering & Services LLC Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-242830-1	DCL-DUP01-FAL23	Water	11/07/23 10:35	11/10/23 10:06
680-242830-2	LFM-03-07-FAL23	Water	11/07/23 10:00	11/10/23 10:06
680-242830-3	LFM-99-02B-FAL23	Water	11/07/23 12:15	11/10/23 10:06
680-242830-4	LFM-99-05A-FAL23	Water	11/07/23 10:35	11/10/23 10:06
680-242830-5	LFM-99-06A-RP-FAL23	Water	11/07/23 08:52	11/10/23 10:06
680-242830-6	Trip Blank	Water	11/07/23 00:00	11/10/23 10:06

Job ID: 680-242830-1

Case Narrative

Client: Seres Engineering & Services LLC Project: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1 Eurofins Savannah

Job Narrative 680-242830-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/10/2023 10:06 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 0.7°C, 2.2°C, 2.5°C and 4.7°C

Subcontract Work

Method MAVPH: This method was subcontracted to Katahdin Analytical Services. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC Semi VOA

Method MAEPH_DOD: The breakthrough for naphthalene and 2-methylnaphthalene in the LCS and LCSD is <1%. The method requirement for breakthrough is 5% or less.

DCL-DUP01-FAL23 (680-242830-1), LFM-03-07-FAL23 (680-242830-2), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3[MSD]), LFM-99-05A-FAL23 (680-242830-4) and LFM-99-06A-RP-FAL23 (680-242830-5)

Method MAEPH_DOD: The method blank for preparation batch 410-444549 and 410-445772 and analytical batch 410-446021 contained C11-C22 Aromatics (unadjusted) and C11-C22 Aromatics (Adjusted) above the method detection limit. This target analyte concentration was less than the limit of detection (LOD) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed. DCL-DUP01-FAL23 (680-242830-1), LFM-03-07-FAL23 (680-242830-2), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3), LFM-99-06A-FAL23 (680-242830-5)

Method MAEPH_DOD: The method blank for preparation batch 410-444549 and 410-445772 and analytical batch 410-446024 contained C19-C36 Aliphatics above the method detection limit. This target analyte concentration was less than the limit of detection (LOD) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed. DCL-DUP01-FAL23 (680-242830-1), LFM-03-07-FAL23 (680-242830-2), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-3), LFM-99-02B-FAL23 (680-242830-5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Pesticides/PCBs

Method 8081B_8082A_D5: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 680-808087 and analytical batch 680-808572 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Eurofins Savannah

Page 6 of 86 1/5/2024

-

Job ID: 680-242830-1

4

5

7

_

10

11

12

13

Case Narrative

Client: Seres Engineering & Services LLC Project: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1 (Continued)

Eurofins Savannah

Job ID: 680-242830-1

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 353.2_Pres: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 680-808934 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 410.4: The laboratory did not receive a preserved container for the following samples: DCL-DUP01-FAL23 (680-242830-1), LFM-03-07-FAL23 (680-242830-2), LFM-99-02B-FAL23 (680-242830-3), LFM-99-05A-FAL23 (680-242830-4) and LFM-99-06A-RP-FAL23 (680-242830-5). Therefore, an unpreserved sample was used and preservative was added to the aliquot at the bench top prior to analysis. The desired pH was achieved.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: DCL-DUP01-FAL23

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

Toxaphene

Lab Sample ID: 680-242830-1

Matrix: Water

11/16/23 17:52

Job ID: 680-242830-1

Method: SW846 8081B 8082A - Organochlorine Pesticides & PCBs (GC) Result Qualifier LOD Dil Fac **Analyte** LOQ DL Unit Analyzed 4,4'-DDD 0.0042 U 0.0042 11/16/23 17:52 0.053 0.0021 ug/L 4,4'-DDE 0.0042 UM 0.0042 0.053 0.0011 ug/L 11/16/23 17:52 4,4'-DDT 0.0042 U 0.053 0.0042 0.0011 ug/L 11/16/23 17:52 0.0042 0.0021 ug/L Aldrin 0.0042 U 0.053 11/16/23 17:52 alpha-BHC 0.0042 U 0.053 0.0042 0.0011 ug/L 11/16/23 17:52 beta-BHC 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 delta-BHC 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Dieldrin 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Endosulfan I 0.0042 UM 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Endosulfan II 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Endosulfan sulfate 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Endrin 0.0042 U 0.053 0.0042 0.0011 ug/L 11/16/23 17:52 Endrin aldehyde 0.017 UM 0.053 0.017 0.0042 ug/L 11/16/23 17:52 0.053 0.017 0.0042 ug/L 11/16/23 17:52 **Endrin ketone** 0.011 J gamma-BHC (Lindane) 0.0042 U 0.053 0.0042 0.0011 ug/L 11/16/23 17:52 0.0042 U 0.0042 Heptachlor 0.053 0.0011 ug/L 11/16/23 17:52 Heptachlor epoxide 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Methoxychlor 0.0042 U 0.053 0.0042 0.0021 ug/L 11/16/23 17:52 Chlordane (technical) 0.42 0.42 UM 0.53 0.17 ug/L 11/16/23 17:52

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79		14 - 130	11/14/23 10:36	11/16/23 17:52	1
Tetrachloro-m-xylene	51		44 - 124	11/14/23 10:36	11/16/23 17:52	1

5.3

0.85

0.33 ug/L

Method: MA DEP MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC

0.85 U M

Method: MA DEP MA-EPH - Massachusetts - I		- Extractable	e Petroleum	า Hydrocar	bons (G	iC)			
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Pyrene	10	UQ	12	10	5.1	ug/L		11/21/23 19:19	1
Benzo[g,h,i]perylene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Indeno[1,2,3-cd]pyrene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Benzo[b]fluoranthene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Fluoranthene	1.0	UQ	2.1	1.0	0.51	ug/L		11/21/23 19:19	1
Benzo[k]fluoranthene	3.1	UQ	4.1	3.1	1.5	ug/L		11/21/23 19:19	1
Acenaphthylene	1.4	UQ	2.1	1.4	0.72	ug/L		11/21/23 19:19	1
Chrysene	1.0	UQ	2.1	1.0	0.51	ug/L		11/21/23 19:19	1
Benzo[a]pyrene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Dibenz(a,h)anthracene	1.0	UQ	2.1	1.0	0.51	ug/L		11/21/23 19:19	1
Benzo[a]anthracene	1.4	UQ	2.1	1.4	0.72	ug/L		11/21/23 19:19	1
Acenaphthene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Phenanthrene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Fluorene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
Naphthalene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
2-Methylnaphthalene	1.2	UQ	2.1	1.2	0.62	ug/L		11/21/23 19:19	1
C11-C22 Aromatics (unadjusted)	10	JQ	41	31	10	ug/L		11/21/23 19:19	1
C11-C22 Aromatics (Adjusted)	31	U	41	31	10	ug/L		11/21/23 19:19	1
C19-C36 Aliphatics	21	U	51	21	10	ug/L		11/21/23 19:19	1
C9-C18 Aliphatics	62	U	92	62	31	ug/L		11/21/23 19:19	1
•						-			

Eurofins Savannah

1/5/2024

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: DCL-DUP01-FAL23

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06 Lab Sample ID: 680-242830-1

Matrix: Water

Job ID: 680-242830-1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	69		40 - 140	11/16/23 18:30	11/21/23 19:19	1
2-Fluorobiphenyl (Surr)	81		40 - 140	11/16/23 18:30	11/21/23 19:19	1
o- terphenyl (Surr)	75		40 - 140	11/16/23 18:30	11/21/23 19:19	1
- -						

Method: SW846 9056A - Anions, Ion Chromatography										
	Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac		
	Chloride	170	0.55	0.50	0.20 mg/L		11/26/23 14:27	1		
	Sulfate	14	1.5	1.0	0.40 mg/L		11/26/23 14:27	1		

Method: SW846 6010C - Metals (ICP) - Total Recoverable											
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac		
Barium	15	J	20	10	4.4	ug/L		11/13/23 11:34	1		
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/13/23 11:34	1		
Chromium	4.0	U	10	4.0	1.1	ug/L		11/13/23 11:34	1		
Copper	10	U	20	10	3.2	ug/L		11/13/23 11:34	1		
Iron	50	U	100	50	20	ug/L		11/13/23 11:34	1		
Lead	20	U	40	20	6.6	ug/L		11/13/23 11:34	1		
Manganese	5.0	U	10	5.0	1.3	ug/L		11/13/23 11:34	1		
Selenium	20	U	25	20	10	ug/L		11/13/23 11:34	1		
Silver	5.0	U	10	5.0	1.5	ug/L		11/13/23 11:34	1		

Method: SW846 6020A - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Arsenic	3.0	U	5.0	3.0	0.86	ug/L		11/14/23 01:14	1

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Mercury	0.20	U	0.25	0.20	0.080	ug/L		11/16/23 10:01	1

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	54		5.5	5.0	2.2	mg/L		11/16/23 11:25	1
Total Dissolved Solids (SM 2540C-2011)	400		24	20	24	mg/L		11/13/23 11:51	1
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.025	U	0.10	0.025	0.010	mg/L		11/17/23 11:58	1
Chemical Oxygen Demand (EPA 410.4)	20	U	20	20	8.7	mg/L		11/16/23 10:37	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		11/15/23 09:23	1

2

4

5

6

9

10

12

13

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-03-07-FAL23

Date Collected: 11/07/23 10:00 Date Received: 11/10/23 10:06

Lab Sample ID: 680-242830-2

Matrix: Water

Job ID: 680-242830-1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
4,4'-DDE	0.0041	UM	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
4,4'-DDT	0.0041	U	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
Aldrin	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
alpha-BHC	0.0041	U	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
beta-BHC	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
delta-BHC	0.0041	UM	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Dieldrin	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Endosulfan I	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Endosulfan II	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Endosulfan sulfate	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Endrin	0.0041	U	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
Endrin aldehyde	0.016	UM	0.051	0.016	0.0041	ug/L		11/16/23 18:07	1
Endrin ketone	0.016	J	0.051	0.016	0.0041	ug/L		11/16/23 18:07	1
gamma-BHC (Lindane)	0.0041	U	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
Heptachlor	0.0064	J	0.051	0.0041	0.0010	ug/L		11/16/23 18:07	1
Heptachlor epoxide	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Methoxychlor	0.0041	U	0.051	0.0041	0.0021	ug/L		11/16/23 18:07	1
Chlordane (technical)	0.41	UM	0.51	0.41	0.16	ug/L		11/16/23 18:07	1
Toxaphene	0.82	UM	5.1	0.82	0.32	ug/L		11/16/23 18:07	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
DCB Decachlorobiphenyl	83		14 - 130	11/14/23 10:36	11/16/23 18:07	1
Tetrachloro-m-xylene	46		44 - 124	11/14/23 10:36	11/16/23 18:07	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Pyrene	9.8	UQ	12	9.8	4.9	ug/L		11/21/23 19:41	1
Benzo[g,h,i]perylene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Indeno[1,2,3-cd]pyrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Benzo[b]fluoranthene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Fluoranthene	0.98	UQ	2.0	0.98	0.49	ug/L		11/21/23 19:41	1
Benzo[k]fluoranthene	2.9	UQ	3.9	2.9	1.5	ug/L		11/21/23 19:41	1
Acenaphthylene	1.4	UQ	2.0	1.4	0.68	ug/L		11/21/23 19:41	1
Chrysene	0.98	UQ	2.0	0.98	0.49	ug/L		11/21/23 19:41	1
Benzo[a]pyrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Dibenz(a,h)anthracene	0.98	UQ	2.0	0.98	0.49	ug/L		11/21/23 19:41	1
Benzo[a]anthracene	1.4	UQ	2.0	1.4	0.68	ug/L		11/21/23 19:41	1
Acenaphthene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Phenanthrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Fluorene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
Naphthalene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
2-Methylnaphthalene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 19:41	1
C11-C22 Aromatics (unadjusted)	29	U Q	39	29	9.8	ug/L		11/21/23 19:41	1
C11-C22 Aromatics (Adjusted)	29	U	39	29	9.8	ug/L		11/21/23 19:41	1
C19-C36 Aliphatics	10	J	49	20	9.8	ug/L		11/21/23 19:41	1
C9-C18 Aliphatics	29	J	88	59	29	ug/L		11/21/23 19:41	1

Eurofins Savannah

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-03-07-FAL23 Lab Sample ID: 680-242830-2

Date Collected: 11/07/23 10:00

Date Received: 11/10/23 10:06

Cyanide, Total (EPA 9012B)

Surrogate	<u>-</u>	ualifier	Limits			Prepa	red	Analyzed	Dil Fa
1-Chlorooctadecane (Surr)	69		40 - 140			11/16/23	18:30	11/21/23 19:41	
2-Fluorobiphenyl (Surr)	79		40 - 140			11/16/23	18:30	11/21/23 19:41	
o- terphenyl (Surr)	71		40 - 140			11/16/23	18:30	11/21/23 19:41	
Method: SW846 9056A - Anions	s, Ion Chrom	atograph	y						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Sulfate	31		1.5	1.0	0.40	mg/L		11/26/23 14:39	
Method: SW846 9056A - Anions	s, Ion Chrom	atography	y - DL						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Chloride	200	D	1.1	1.0	0.40	mg/L		11/26/23 16:33	
Method: SW846 6010C - Metals	(ICP) - Total	Recover	able						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Barium	13	J	20	10	4.4	ug/L		11/13/23 11:36	
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/13/23 11:36	
Chromium	4.0	U	10	4.0	1.1	ug/L		11/13/23 11:36	
Copper	10	U	20	10	3.2	ug/L		11/13/23 11:36	
Iron	83	J	100	50	20	ug/L		11/13/23 11:36	
Lead	20	U	40	20	6.6	ug/L		11/13/23 11:36	
Manganese	1.9	J	10	5.0	1.3	ug/L		11/13/23 11:36	
Selenium	20	U	25	20	10	ug/L		11/13/23 11:36	
Silver	5.0	U	10	5.0	1.5	ug/L		11/13/23 11:36	
Method: SW846 6020A - Metals	(ICP/MS) - T	otal Reco	verable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Arsenic	1.1	J	5.0	3.0	0.86	ug/L		11/14/23 01:18	
Method: SW846 7470A - Mercu	ry (CVAA)								
Analyte		Qualifier	_ LOQ	LOD		Unit	_ D	Analyzed	Dil Fa
Mercury	0.20	U	0.25	0.20	0.080	ug/L		11/16/23 10:03	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD		Unit	_ D	Analyzed	Dil Fa
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	110		5.5	5.0	2.2	mg/L		11/16/23 11:25	
Total Dissolved Solids (SM 2540C-2011)	460		24	20	24	mg/L		11/13/23 11:51	
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.025	U	0.10	0.025	0.010	mg/L		11/17/23 12:00	
Chemical Oxygen Demand (EPA 410.4)	20	U	20	20	8.7	mg/L		11/16/23 10:37	
O	0.0050		0.040	0.0050	0.0005	,,		44/45/00 00 00	

11/15/23 09:23

0.010

0.0025 mg/L

0.0050

0.0050 U

Job ID: 680-242830-1

Matrix: Water

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-99-02B-FAL23

Date Collected: 11/07/23 12:15 Date Received: 11/10/23 10:06

Lab Sample ID: 680-242830-3

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0040	U J1	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
4,4'-DDE	0.0040	U	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
4,4'-DDT	0.0040	U J1	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
Aldrin	0.0040	UM	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
alpha-BHC	0.0040	U	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
beta-BHC	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
delta-BHC	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Dieldrin	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Endosulfan I	0.0040	U J1 M	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Endosulfan II	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Endosulfan sulfate	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Endrin	0.0040	U J1	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
Endrin aldehyde	0.016	UM	0.051	0.016	0.0040	ug/L		11/16/23 16:55	1
Endrin ketone	0.018	J M J1	0.051	0.016	0.0040	ug/L		11/16/23 16:55	1
gamma-BHC (Lindane)	0.0040	U	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
Heptachlor	0.0040	U	0.051	0.0040	0.0010	ug/L		11/16/23 16:55	1
Heptachlor epoxide	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Methoxychlor	0.0040	U	0.051	0.0040	0.0020	ug/L		11/16/23 16:55	1
Chlordane (technical)	0.40	UM	0.51	0.40	0.16	ug/L		11/16/23 16:55	1
Toxaphene	0.81	UM	5.1	0.81	0.31	ug/L		11/16/23 16:55	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		14 - 130	11/14/23 10:	36 11/16/23 16:55	1
Tetrachloro-m-xylene	53		44 - 124	11/14/23 10:	36 11/16/23 16:55	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Pyrene	9.9	UQ	12	9.9	4.9	ug/L		11/21/23 20:04	1
Benzo[g,h,i]perylene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Indeno[1,2,3-cd]pyrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Benzo[b]fluoranthene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Fluoranthene	0.99	UQ	2.0	0.99	0.49	ug/L		11/21/23 20:04	1
Benzo[k]fluoranthene	3.0	UQ	3.9	3.0	1.5	ug/L		11/21/23 20:04	1
Acenaphthylene	1.4	UQ	2.0	1.4	0.69	ug/L		11/21/23 20:04	1
Chrysene	0.99	UQ	2.0	0.99	0.49	ug/L		11/21/23 20:04	1
Benzo[a]pyrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Dibenz(a,h)anthracene	0.99	UQ	2.0	0.99	0.49	ug/L		11/21/23 20:04	1
Benzo[a]anthracene	1.4	UQ	2.0	1.4	0.69	ug/L		11/21/23 20:04	1
Acenaphthene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Phenanthrene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Fluorene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
Naphthalene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
2-Methylnaphthalene	1.2	UQ	2.0	1.2	0.59	ug/L		11/21/23 20:04	1
C11-C22 Aromatics (unadjusted)	30	UQ	39	30	9.9	ug/L		11/21/23 20:04	1
C11-C22 Aromatics (Adjusted)	30	U	39	30	9.9	ug/L		11/21/23 20:04	1
C19-C36 Aliphatics	20	U	49	20	9.9	ug/L		11/21/23 20:04	1
C9-C18 Aliphatics	59	U	89	59	30	ug/L		11/21/23 20:04	1

Eurofins Savannah

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Lah Sample ID: 680-242830-3 Client Sample ID: LFM-99-02B-FAL23

Date Collected: 11/07/23 12:15 Date Received: 11/10/23 10:06

000-242030-3	ID.	Sample	Lab
Matrix: Water			

Job ID: 680-242830-1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctadecane (Surr) 63 40 - 140 11/16/23 18:30 11/21/23 20:04 2-Fluorobiphenyl (Surr) 83 40 - 140 11/16/23 18:30 11/21/23 20:04 68 o- terphenyl (Surr) 40 - 140 11/16/23 18:30 11/21/23 20:04

Method: SW846 9056A - Anions,	Ion Chromatography					
Analyte	Result Qualifier	LOQ	LOD	DL Unit	D Analyzed	Dil Fac
Chloride	180	0.55	0.50	0.20 mg/L	11/26/23 14:50	1
Sulfate	13	1.5	1.0	0.40 mg/L	11/26/23 14:50	1

Method: SW846 6010C - I	Metals (ICP) - Total	Recoverabl	е						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	8.2	J J1	20	10	4.4	ug/L		11/13/23 10:41	1
Cadmium	1.0	U J1	5.0	1.0	0.44	ug/L		11/13/23 10:41	1
Chromium	4.0	U J1	10	4.0	1.1	ug/L		11/13/23 10:41	1
Copper	10	U J1	20	10	3.2	ug/L		11/13/23 10:41	1
Iron	50	U	100	50	20	ug/L		11/13/23 10:41	1
Lead	20	U J1	40	20	6.6	ug/L		11/13/23 10:41	1
Manganese	5.0	U J1	10	5.0	1.3	ug/L		11/13/23 10:41	1
Selenium	20	U J1	25	20	10	ug/L		11/13/23 10:41	1
Silver	5.0	U J1	10	5.0	1.5	ug/L		11/13/23 10:41	1

Method: SW846 6020A - Metals (I	CP/MS) - To	otal Recov	verable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		11/14/23 00:17	1

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L		11/16/23 10:09	1

General Chemistry Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	88		5.5	5.0	2.2	mg/L		11/16/23 11:25	1
Total Dissolved Solids (SM 2540C-2011)	380		24	20	24	mg/L		11/13/23 11:51	1
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.025	U J1	0.10	0.025	0.010	mg/L		11/17/23 11:44	1
Chemical Oxygen Demand (EPA 410.4)	13	J J1	20	20	8.7	mg/L		11/16/23 10:37	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		11/15/23 09:23	1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Lab Sample ID: 680-242830-4

Matrix: Water

Job ID: 680-242830-1

Client Sample ID: LFM-99-05A-FAL23

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
4,4'-DDE	0.0042	UM	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
4,4'-DDT	0.0042	U	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
Aldrin	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
alpha-BHC	0.0042	U	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
beta-BHC	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
delta-BHC	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Dieldrin	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Endosulfan I	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Endosulfan II	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Endosulfan sulfate	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Endrin	0.0042	U	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
Endrin aldehyde	0.017	UM	0.053	0.017	0.0042	ug/L		11/16/23 18:21	1
Endrin ketone	0.022	J	0.053	0.017	0.0042	ug/L		11/16/23 18:21	1
gamma-BHC (Lindane)	0.0042	U	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
Heptachlor	0.0042	U	0.053	0.0042	0.0011	ug/L		11/16/23 18:21	1
Heptachlor epoxide	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Methoxychlor	0.0042	U	0.053	0.0042	0.0021	ug/L		11/16/23 18:21	1
Chlordane (technical)	0.42	UM	0.53	0.42	0.17	ug/L		11/16/23 18:21	1
Toxaphene	0.84	UM	5.3	0.84	0.33	ug/L		11/16/23 18:21	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		14 - 130	11/14/23 10:36	11/16/23 18:21	1
Tetrachloro-m-xylene	51		44 - 124	11/14/23 10:36	11/16/23 18:21	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Pyrene	11	UQ	13	11	5.3	ug/L		11/21/23 21:11	1
Benzo[g,h,i]perylene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Indeno[1,2,3-cd]pyrene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Benzo[b]fluoranthene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Fluoranthene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:11	1
Benzo[k]fluoranthene	3.2	UQ	4.2	3.2	1.6	ug/L		11/21/23 21:11	1
Acenaphthylene	1.5	UQ	2.1	1.5	0.74	ug/L		11/21/23 21:11	1
Chrysene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:11	1
Benzo[a]pyrene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Dibenz(a,h)anthracene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:11	1
Benzo[a]anthracene	1.5	UQ	2.1	1.5	0.74	ug/L		11/21/23 21:11	1
Acenaphthene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Phenanthrene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Fluorene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
Naphthalene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
2-Methylnaphthalene	1.3	UQ	2.1	1.3	0.63	ug/L		11/21/23 21:11	1
C11-C22 Aromatics (unadjusted)	32	UQ	42	32	11	ug/L		11/21/23 21:11	1
C11-C22 Aromatics (Adjusted)	32	U	42	32	11	ug/L		11/21/23 21:11	1
C19-C36 Aliphatics	21	U	53	21	11	ug/L		11/21/23 21:11	1
C9-C18 Aliphatics	63	UM	95	63	32	ug/L		11/21/23 21:11	1

Eurofins Savannah

1/5/2024

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-99-05A-FAL23 Lab Sample ID: 680-242830-4

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

Matrix: Water

Job ID: 680-242830-1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	68		40 - 140	11/16/23 18:30	11/21/23 21:11	1
2-Fluorobiphenyl (Surr)	76		40 - 140	11/16/23 18:30	11/21/23 21:11	1
o- terphenyl (Surr)	68		40 - 140	11/16/23 18:30	11/21/23 21:11	1
-						

Method: SW846 9056A - Anions	, Ion Chromatography						
Analyte	Result Qualifier	LOQ	LOD	DL Un	it D	Analyzed	Dil Fac
Chloride	170	0.55	0.50	0.20 mg]/L	11/26/23 15:24	1
Sulfate	14	1.5	1.0	0.40 mg	ı/L	11/26/23 15:24	1

Method: SW846 6010C -	Metals (ICP) - Total	Recoverable	e						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	14	J	20	10	4.4	ug/L		11/13/23 10:53	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/13/23 10:53	1
Chromium	4.0	U	10	4.0	1.1	ug/L		11/13/23 10:53	1
Copper	10	U	20	10	3.2	ug/L		11/13/23 10:53	1
Iron	50	U	100	50	20	ug/L		11/13/23 10:53	1
Lead	20	U	40	20	6.6	ug/L		11/13/23 10:53	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/13/23 10:53	1
Selenium	20	U	25	20	10	ug/L		11/13/23 10:53	1
Silver	5.0	U	10	5.0	1.5	ug/L		11/13/23 10:53	1

Method: SW846 6020A - Metals (I	CP/MS) - To	otal Recov	verable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L		11/14/23 00:38	1

Method: SW846 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Mercury	0.20	U	0.25	0.20	0.080	ug/L		11/16/23 10:15	1
Г									

General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	110		5.5	5.0	2.2	mg/L		11/16/23 11:25	1
Total Dissolved Solids (SM 2540C-2011)	440		24	20	24	mg/L		11/13/23 11:51	1
Nitrate Nitrite as N (MCAWW 353.2-1993 R2.0)	0.025	U	0.10	0.025	0.010	mg/L		11/17/23 12:02	1
Chemical Oxygen Demand (EPA 410.4)	10	J	20	20	8.7	mg/L		11/16/23 10:37	1
Cyanide, Total (EPA 9012B)	0.0050	U	0.010	0.0050	0.0025	mg/L		11/15/23 09:30	1

Lab Sample ID: 680-242830-5

Client Sample ID: LFM-99-06A-RP-FAL23 Date Collected: 11/07/23 08:52

Matrix: Water

Job ID: 680-242830-1

Date Received: 11/10/23 10:06

Method: SW846 8081B 8082 Analyte	Result	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0043		0.054	0.0043	0.0022		=	11/16/23 18:35	1
4,4'-DDE	0.0043		0.054	0.0043	0.0011	•		11/16/23 18:35	1
4,4'-DDT	0.0043		0.054	0.0043	0.0011	J		11/16/23 18:35	1
Aldrin	0.0043	UM	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
alpha-BHC	0.0043	U	0.054	0.0043	0.0011	ug/L		11/16/23 18:35	1
beta-BHC	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
delta-BHC	0.0043	UM	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Dieldrin	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Endosulfan I	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Endosulfan II	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Endosulfan sulfate	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Endrin	0.0043	U	0.054	0.0043	0.0011	ug/L		11/16/23 18:35	1
Endrin aldehyde	0.017	UM	0.054	0.017	0.0043	ug/L		11/16/23 18:35	1
Endrin ketone	0.022	J M	0.054	0.017	0.0043	ug/L		11/16/23 18:35	1
gamma-BHC (Lindane)	0.0043	U	0.054	0.0043	0.0011	ug/L		11/16/23 18:35	1
Heptachlor	0.0031	J	0.054	0.0043	0.0011	ug/L		11/16/23 18:35	1
Heptachlor epoxide	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Methoxychlor	0.0043	U	0.054	0.0043	0.0022	ug/L		11/16/23 18:35	1
Chlordane (technical)	0.43	UM	0.54	0.43	0.17	ug/L		11/16/23 18:35	1
Toxaphene	0.86	UM	5.4	0.86	0.33	ug/L		11/16/23 18:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		14 - 130	11/14/23 10:36	11/16/23 18:35	1
Tetrachloro-m-xylene	50		44 - 124	11/14/23 10:36	11/16/23 18:35	1

Method. MA DEF	WA-EPH - Wassachusells	- Extractable	Petroleum	пушосаг	DOIS (GC)
Analyte	Result	Qualifier	LOQ	LOD	DL Unit

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Pyrene	11	UQ	13	11	5.3	ug/L		11/21/23 21:34	1
Benzo[g,h,i]perylene	1.3	U Q	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Indeno[1,2,3-cd]pyrene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Benzo[b]fluoranthene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Fluoranthene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:34	1
Benzo[k]fluoranthene	3.2	UQ	4.2	3.2	1.6	ug/L		11/21/23 21:34	1
Acenaphthylene	1.5	UQ	2.1	1.5	0.74	ug/L		11/21/23 21:34	1
Chrysene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:34	1
Benzo[a]pyrene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Dibenz(a,h)anthracene	1.1	UQ	2.1	1.1	0.53	ug/L		11/21/23 21:34	1
Benzo[a]anthracene	1.5	UQ	2.1	1.5	0.74	ug/L		11/21/23 21:34	1
Acenaphthene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Phenanthrene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Fluorene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
Naphthalene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
2-Methylnaphthalene	1.3	UQ	2.1	1.3	0.64	ug/L		11/21/23 21:34	1
C11-C22 Aromatics (unadjusted)	32	UQ	42	32	11	ug/L		11/21/23 21:34	1
C11-C22 Aromatics (Adjusted)	32	U	42	32	11	ug/L		11/21/23 21:34	1
C19-C36 Aliphatics	21	U	53	21	11	ug/L		11/21/23 21:34	1
C9-C18 Aliphatics	64	U	95	64	32	ug/L		11/21/23 21:34	1

Eurofins Savannah

1/5/2024

Client Sample Results

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-99-06A-RP-FAL23 Lab Sample ID: 680-242830-5 **Matrix: Water**

Date Collected: 11/07/23 08:52 Date Received: 11/10/23 10:06

Job ID: 680-242830-1

Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane (Surr)	61		40 - 140			11/16/23 18:30	11/21/23 21:34	
2-Fluorobiphenyl (Surr)	78		40 - 140			11/16/23 18:30	11/21/23 21:34	1
o- terphenyl (Surr)	69		40 - 140			11/16/23 18:30	11/21/23 21:34	1
Method: SW846 9056A - Anions	s Ion Chrom	atography	ı					
Analyte	•	Qualifier	LOQ	LOD	DL	Unit [Analyzed	Dil Fac
Sulfate	30		1.5	1.0		mg/L	11/26/23 15:36	1
Method: SW846 9056A - Anions	s Ion Chrom	atograph	, DI					
Metriod. Swo46 9056A - Allions Analyte	•	atograph Qualifier	LOQ	LOD	DI	Unit [) Analyzed	Dil Fac
Chloride	230		2.8	2.5		mg/L	11/27/23 12:11	5
Method: SW846 6010C - Metals	• •							
Analyte		Qualifier	LOQ	LOD		Unit [Dil Fac
Barium	4.7	J	20	10	4.4	ug/L	11/13/23 11:26	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L	11/13/23 11:26	1
Chromium	4.0	U	10	4.0	1.1	ug/L	11/13/23 11:26	1
Copper	10	U	20	10	3.2	ug/L	11/13/23 11:26	1
Iron	50	U	100	50	20	ug/L	11/13/23 11:26	1
Lead	20	U	40	20	6.6	ug/L	11/13/23 11:26	1
Manganese	5.0	U	10	5.0	1.3	ug/L	11/13/23 11:26	1
Selenium	20	U	25	20	10	ug/L	11/13/23 11:26	1
Silver	5.0	U	10	5.0	1.5	ug/L	11/13/23 11:26	1
Method: SW846 6020A - Metals	(ICP/MS) - T	otal Reco	verable					
Analyte	•	Qualifier	LOQ	LOD	DL	Unit [Analyzed	Dil Fac
Arsenic	3.0	U	5.0	3.0	0.86	ug/L	11/14/23 01:10	
								1
Method: SW846 7470A - Mercu	ry (CVAA)							1
Method: SW846 7470A - Mercu Analyte	• • •	Qualifier	LOQ	LOD	DL	Unit [) Analyzed	Dil Fac
Method: SW846 7470A - Mercu Analyte Mercury	• • •		LOQ 0.25	LOD 0.20	DL 0.080		Analyzed 11/16/23 10:18	
Analyte Mercury	Result							Dil Fac
Analyte	Result 0.20				0.080		11/16/23 10:18	Dil Fac
Analyte Mercury General Chemistry Analyte Total Alkalinity as CaCO3 to pH 4.5	Result 0.20	U	0.25	0.20	0.080 DL	ug/L	11/16/23 10:18	Dil Fac
Analyte Mercury General Chemistry Analyte Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011) Total Dissolved Solids (SM	Result 0.20	U	0.25 LOQ	0.20 LOD	0.080 DL 2.2	ug/L Unit	11/16/23 10:18 Analyzed	Dil Fac
Analyte Mercury General Chemistry Analyte Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011) Total Dissolved Solids (SM 2540C-2011) Nitrate Nitrite as N (MCAWW 353.2-1993	Result 0.20 Result 110 510	U Qualifier	0.25 LOQ 5.5	0.20 LOD 5.0	0.080 DL 2.2	ug/L Unit Emg/L mg/L	11/16/23 10:18 Analyzed 11/16/23 11:25	Dil Fac
Analyte Mercury General Chemistry Analyte Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011) Total Dissolved Solids (SM 2540C-2011)	Result 0.20 Result 110 510	Qualifier U	0.25 LOQ 5.5	0.20 LOD 5.0 20	0.080 DL 2.2 24 0.010	ug/L Unit Emg/L mg/L	11/16/23 10:18 Analyzed 11/16/23 11:25 11/13/23 11:51	Dil Fac

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC)

MD MD

Lab Sample ID: MB 680-808087/1-A

Matrix: Water

Analysis Batch: 808572

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 808087

	MB	MR							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
4,4'-DDE	0.0040	UM	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
4,4'-DDT	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Aldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
alpha-BHC	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
beta-BHC	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
delta-BHC	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Dieldrin	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan I	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan II	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endosulfan sulfate	0.0040	UM	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Endrin	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Endrin aldehyde	0.016	UM	0.050	0.016	0.0040	ug/L		11/16/23 13:17	1
Endrin ketone	0.016	U	0.050	0.016	0.0040	ug/L		11/16/23 13:17	1
gamma-BHC (Lindane)	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Heptachlor	0.0040	U	0.050	0.0040	0.0010	ug/L		11/16/23 13:17	1
Heptachlor epoxide	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Methoxychlor	0.0040	U	0.050	0.0040	0.0020	ug/L		11/16/23 13:17	1
Chlordane (technical)	0.40	U	0.50	0.40	0.16	ug/L		11/16/23 13:17	1
Toxaphene	0.80	UM	5.0	0.80	0.31	ug/L		11/16/23 13:17	1
The state of the s									

MB MB

%Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 38 14 - 130 11/14/23 10:36 11/16/23 13:17 Tetrachloro-m-xylene 46 M 44 - 124 11/14/23 10:36 11/16/23 13:17

Lab Sample ID: LCS 680-808087/2-A

Matrix: Water

Analysis Batch: 808572

Client Sample ID: Lab Control	Sample
Prep Type: T	otal/NA
Prep Batch:	808087

/ many one Date m coot =							op Datom occor.
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0400	0.0288	J M	ug/L		72	56 - 143
4,4'-DDE	0.0400	0.0254	J M	ug/L		63	57 - 135
4,4'-DDT	0.0400	0.0221	J M	ug/L		55	51 - 143
Aldrin	0.0400	0.0182	J	ug/L		45	45 - 134
alpha-BHC	0.0400	0.0272	J	ug/L		68	54 - 138
beta-BHC	0.0400	0.0332	J	ug/L		83	56 - 136
delta-BHC	0.0400	0.0304	J	ug/L		76	52 - 142
Dieldrin	0.0400	0.0265	J	ug/L		66	60 - 136
Endosulfan I	0.0400	0.0256	J	ug/L		64	62 - 126
Endosulfan II	0.0400	0.0229	J	ug/L		57	52 - 135
Endosulfan sulfate	0.0400	0.0248	J	ug/L		62	62 - 133
Endrin	0.0400	0.0260	J	ug/L		65	60 - 138
Endrin aldehyde	0.0400	0.0254	J	ug/L		63	51 - 132
Endrin ketone	0.0400	0.0452	J	ug/L		113	58 - 134
gamma-BHC (Lindane)	0.0400	0.0275	J	ug/L		69	59 - 134
Heptachlor	0.0400	0.0411	J	ug/L		103	54 - 130
Heptachlor epoxide	0.0400	0.0268	J	ug/L		67	61 - 133
Methoxychlor	0.0400	0.0425	J M	ug/L		106	54 - 145

Eurofins Savannah

Page 18 of 86

1/5/2024

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: LCS 680-808087/2-A

Matrix: Water

Matrix: Water

Heptachlor

Methoxychlor

Heptachlor epoxide

Matrix: Water

Endrin

Analysis Batch: 808572

Analysis Batch: 808572

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-242830-1

Prep Batch: 808087

LCS LCS

%Recovery Qualifier Limits Surrogate DCB Decachlorobiphenyl 46 14 - 130 Tetrachloro-m-xylene 49 44 - 124

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA

Prep Batch: 808087

Analysis Batch: 808572

Lab Sample ID: 680-242830-3 MS

,, c.c = a.c ccc. =									
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.0040	U J1	0.0391	0.0221	J M	ug/L		56	56 - 143
4,4'-DDE	0.0040	U	0.0391	0.0254	J M	ug/L		65	57 - 135
4,4'-DDT	0.0040	U J1	0.0391	0.0187	J M J1	ug/L		48	51 - 143
Aldrin	0.0040	UM	0.0391	0.0181	J	ug/L		46	45 - 134
alpha-BHC	0.0040	U	0.0391	0.0237	J	ug/L		61	54 - 138
beta-BHC	0.0040	U	0.0391	0.0282	J	ug/L		72	56 - 136
delta-BHC	0.0040	U	0.0391	0.0312	J	ug/L		80	52 - 142
Dieldrin	0.0040	U	0.0391	0.0254	J	ug/L		65	60 - 136
Endosulfan I	0.0040	U J1 M	0.0391	0.0166	J J1	ug/L		42	62 - 126
Endosulfan II	0.0040	U	0.0391	0.0222	JM	ug/L		57	52 - 135
Endosulfan sulfate	0.0040	U	0.0391	0.0326	J	ug/L		83	62 - 133
Endrin	0.0040	U J1	0.0391	0.0208	J J1	ug/L		53	60 - 138
Endrin aldehyde	0.016	UM	0.0391	0.0265	J	ug/L		68	51 - 132
Endrin ketone	0.018	M J1	0.0391	0.0413	J M	ug/L		61	58 - 134
gamma-BHC (Lindane)	0.0040	U	0.0391	0.0241	J	ug/L		62	59 - 134
·									

0.0391

0.0391

0.0391

0.0226 J

0.0283 J

0.0287 J M

ug/L

ug/L

ug/L

ug/L

MS MS

0.0040 UJ1

0.0040 U

0.0040 U

0.0040 U

%Recovery Surrogate Qualifier Limits DCB Decachlorobiphenyl 80 14 - 130 Tetrachloro-m-xylene 54 44 - 124

Lab Sample ID: 680-242830-3 MSD

Client Sample ID: LFM-99-02B-FAL23

52

60 - 138

58

72

54 - 130

61 - 133

54 - 145

Prep Type: Total/NA

Prep Batch: 808087

MSD MSD Sample Sample Spike %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 0.0220 JMJ1 56 - 143 4,4'-DDD 0.0040 U J1 0.0406 ug/L 54 0 30 4,4'-DDE 0.0040 U 0.0406 0.0277 JM ug/L 68 57 - 135 30 4,4'-DDT 0.0040 UJ1 0.0406 0.0205 J ug/L 51 51 - 143 9 30 Aldrin 0.0040 UM 0.0406 0.0214 JM ug/L 53 45 - 134 17 30 0.0040 U alpha-BHC 0.0406 0.0244 J M 60 54 - 138 3 30 ug/L beta-BHC 0.0406 0.0325 J 80 0.0040 U ug/L 56 - 136 14 30 delta-BHC 0.0040 U 0.0406 0.0346 J ug/L 85 52 - 142 10 30 Dieldrin 0.0406 67 60 - 136 7 0.0040 U 0.0272 JM ug/L 30 Endosulfan I 0.0040 U J1 M 0.0406 0.0187 JMJ1 46 62 - 126 12 30 ug/L Endosulfan II 0.0040 U 0.0406 0.0224 J ug/L 55 52 - 135 1 30 Endosulfan sulfate 0.0040 U 0.0406 0.0378 J 93 62 - 133 30 ug/L 15

Eurofins Savannah

2

Page 19 of 86

0.0211 J M J1

0.0406

1/5/2024

30

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 8081B 8082A - Organochlorine Pesticides & PCBs (GC) (Continued)

Lab Sample ID: 680-242830-3 MSD

Matrix: Water

Analysis Batch: 808572

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA

Job ID: 680-242830-1

Prep Batch: 808087

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endrin aldehyde	0.016	UM	0.0406	0.0277	J	ug/L		68	51 - 132	4	30
Endrin ketone	0.018	M J1	0.0406	0.0604	J1	ug/L		106	58 - 134	37	30
gamma-BHC (Lindane)	0.0040	U	0.0406	0.0251	J M	ug/L		62	59 - 134	4	30
Heptachlor	0.0040	U	0.0406	0.0243	JM	ug/L		60	54 - 130	7	30
Heptachlor epoxide	0.0040	U	0.0406	0.0264	J M	ug/L		65	61 - 133	7	30
Methoxychlor	0.0040	U	0.0406	0.0292	J	ug/L		72	54 - 145	2	30

MSD MSD

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 77 14 - 130 51 M 44 - 124 Tetrachloro-m-xylene

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC)

MR MR

Lab Sample ID: MB 410-444549/1-B

Matrix: Water

Analysis Batch: 446024

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 444549

	IVID	IAID							
Analyte	Result	Qualifier	LOQ	LOD	DL U	Init	D	Analyzed	Dil Fac
C19-C36 Aliphatics	12.8	J	50	20	10 u	g/L		11/21/23 17:27	1
C9-C18 Aliphatics	60	UM	90	60	30 u	ıg/L		11/21/23 17:27	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctadecane (Surr) 64 40 - 140 11/16/23 18:30 11/21/23 17:27

Lab Sample ID: MB 410-444549/1-C

Matrix: Water

Analysis Batch: 446021

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 444549

Analysis Batom 440021								i icp Batcii.	TTT0T0
	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Anthracene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Pyrene	10	U	12	10	5.0	ug/L		11/21/23 17:04	1
Benzo[g,h,i]perylene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Indeno[1,2,3-cd]pyrene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Benzo[b]fluoranthene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Fluoranthene	1.0	U	2.0	1.0	0.50	ug/L		11/21/23 17:04	1
Benzo[k]fluoranthene	3.0	U	4.0	3.0	1.5	ug/L		11/21/23 17:04	1
Acenaphthylene	1.4	U	2.0	1.4	0.70	ug/L		11/21/23 17:04	1
Chrysene	1.0	U	2.0	1.0	0.50	ug/L		11/21/23 17:04	1
Benzo[a]pyrene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Dibenz(a,h)anthracene	1.0	U	2.0	1.0	0.50	ug/L		11/21/23 17:04	1
Benzo[a]anthracene	1.4	U	2.0	1.4	0.70	ug/L		11/21/23 17:04	1
Acenaphthene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Phenanthrene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Fluorene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
Naphthalene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
2-Methylnaphthalene	1.2	U	2.0	1.2	0.60	ug/L		11/21/23 17:04	1
C11-C22 Aromatics (unadjusted)	15.3	J	40	30	10	ug/L		11/21/23 17:04	1
C11-C22 Aromatics (Adjusted)	14.4	J	40	30	10	ug/L		11/21/23 17:04	1

Eurofins Savannah

1/5/2024

Page 20 of 86

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: MB 410-444549/1-C

Matrix: Water

Analysis Batch: 446021

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Job ID: 680-242830-1

Prep Batch: 444549

MB MB

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	83	40 - 140
o- terphenyl (Surr)	67	40 - 140

11/16/23 18:30 11/21/23 17:04 **Client Sample ID: Lab Control Sample**

11/16/23 18:30 11/21/23 17:04

Prepared

Prep Type: Total/NA

Prep Batch: 444549

Lab Sample ID: LCS 410-444549/2-B **Matrix: Water**

Analysis Batch: 446024

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C19-C36 Aliphatics	321	248		ug/L		77	40 - 140	
C9-C18 Aliphatics	241	159		ua/L		66	40 - 140	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctadecane (Surr)	74	40 - 140

Lab Sample ID: LCS 410-444549/2-C **Client Sample ID: Lab Control Sample**

Matrix: W

Analysis Batch: 446021

Nater	Prep Type: Total/NA
Ratch: 446021	Pren Batch: 444549

Prep Batcn: 444549

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Anthracene	40.1	31.4		ug/L		78	40 - 140
Pyrene	40.1	33.3		ug/L		83	40 - 140
Benzo[g,h,i]perylene	40.0	32.7		ug/L		82	40 - 140
Indeno[1,2,3-cd]pyrene	40.1	32.5	М	ug/L		81	40 - 140
Benzo[b]fluoranthene	40.2	33.4	M	ug/L		83	40 - 140
Fluoranthene	40.1	33.8		ug/L		84	40 - 140
Benzo[k]fluoranthene	40.1	34.0	М	ug/L		85	40 - 140
Acenaphthylene	40.1	32.2	M	ug/L		80	40 - 140
Chrysene	40.2	32.3	M	ug/L		80	40 - 140
Benzo[a]pyrene	40.2	30.8		ug/L		77	40 - 140
Dibenz(a,h)anthracene	40.0	32.2	M	ug/L		80	40 - 140
Benzo[a]anthracene	40.1	33.5	M	ug/L		84	40 - 140
Acenaphthene	40.2	30.7		ug/L		76	40 - 140
Phenanthrene	40.1	33.0		ug/L		82	40 - 140
Fluorene	40.1	31.7		ug/L		79	40 - 140
Naphthalene	40.1	29.8		ug/L		74	40 - 140
2-Methylnaphthalene	40.1	29.4		ug/L		73	40 - 140
C11-C22 Aromatics (unadjusted)	681	542	M	ug/L		80	40 - 140

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
2-Fluorobiphenyl (Surr)	100	40 - 140
o- terphenyl (Surr)	87	40 - 140

Lab Sample ID: LCSD 410-444549/3-B

Matrix: water Analysis Batch: 446024								•	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C19-C36 Aliphatics	321	207		ug/L		64	40 - 140	18	25
	Analyte	Analysis Batch: 446024 Spike Analyte Added	Analysis Batch: 446024 Spike LCSD Analyte Added Result	Analysis Batch: 446024 Spike LCSD LCSD Analyte Added Result Qualifier	Analysis Batch: 446024 Spike LCSD LCSD Analyte Added Result Qualifier Unit	Analysis Batch: 446024 Spike LCSD LCSD Analyte Added Result Qualifier Unit D	Analysis Batch: 446024 Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec	Analysis Batch: 446024 Spike LCSD LCSD	Analysis Batch: 446024 Spike LCSD LCSD

Eurofins Savannah

Client Sample ID: Lab Control Sample Dup

Page 21 of 86

Dil Fac

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: LCSD 410-444549/3-B

Matrix: Water

Analysis Batch: 446024

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 444549**

%Rec **RPD**

LCSD LCSD Spike RPD Analyte Added Result Qualifier Unit %Rec Limits Limit C9-C18 Aliphatics 241 164 ug/L 68 40 - 140 3 25

LCSD LCSD

Surrogate %Recovery Qualifier Limits 1-Chlorooctadecane (Surr) 58 40 - 140

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Lab Sample ID: LCSD 410-444549/3-C

Analysis Batch: 446021

Prep Type: Total/NA **Prep Batch: 444549**

Spike LCSD LCSD %Rec **RPD** %Rec Analyte Added Result Qualifier Unit Limits **RPD** Limit 22.8 Q Anthracene 40.1 ug/L 57 40 - 140 32 25 23.2 Q Pyrene 40.1 ug/L 58 40 - 140 36 25 40.0 22.6 Q ug/L 57 40 - 140 36 25 Benzo[g,h,i]perylene 40.1 21.8 Q 54 25 Indeno[1,2,3-cd]pyrene ug/L 40 - 140 39 40.2 25 Benzo[b]fluoranthene 23 4 Q ug/L 58 40 - 140 35 Fluoranthene 40.1 23.5 Q ug/L 59 40 - 140 36 25 40.1 59 37 25 Benzo[k]fluoranthene 23.5 Q ug/L 40 - 140 57 25 Acenaphthylene 40 1 22 7 Q ug/L 40 - 140 35 Chrysene 40.2 22.8 Q ug/L 57 40 - 140 34 25 40.2 21.6 Q ug/L 54 40 - 140 35 25 Benzo[a]pyrene Dibenz(a,h)anthracene 40.0 23.1 Q ug/L 58 40 - 140 33 25 40.1 23.1 Q 58 40 - 140 37 25 Benzo[a]anthracene ug/L Acenaphthene 40.2 21.9 Q ug/L 55 40 - 140 33 25 Phenanthrene 40.1 23.4 Q 58 40 - 140 34 25 ug/L 40.1 22.8 Q 57 33 25 Fluorene ug/L 40 - 140 Naphthalene 40 1 20.7 Ω ug/L 52 40 - 140 36 25 2-Methylnaphthalene 40.1 53 40 - 140 25 21.2 Q ug/L 33 C11-C22 Aromatics (unadjusted) 681 379 Q 56 35 25 ug/L 40 - 140

LCSD LCSD

%Recovery Qualifier Limits Surrogate 2-Fluorobiphenyl (Surr) 40 - 140 82 59 40 - 140 o- terphenyl (Surr)

Lab Sample ID: 680-242830-3 MS

Matrix: Water

Analysis Batch: 446021

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA Prep Batch: 444549

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Anthracene 1.2 U Q 38.2 29.0 ug/L 76 40 - 140 Pyrene 9.9 U Q 38.2 30.5 ug/L 80 40 - 140 ug/L 1.2 UQ 38.1 29.4 77 40 - 140 Benzo[g,h,i]perylene 38.2 76 Indeno[1,2,3-cd]pyrene 1.2 UQ 29.1 M ug/L 40 - 140 Benzo[b]fluoranthene 1.2 UQ 38.3 30.9 M ug/L 81 40 - 140 Fluoranthene 38.2 81 40 - 140 0.99 UQ 30.8 ug/L 38.2 80 40 - 140 Benzo[k]fluoranthene 3.0 UQ 30.8 M ug/L Acenaphthylene 1.4 U Q 38.2 30.3 ug/L 79 40 - 140 0.99 UQ 38.3 28.9 76 40 - 140 Chrysene ug/L 38.3 74 40 - 140 Benzo[a]pyrene 1.2 UQ 28.4 ug/L

Eurofins Savannah

Page 22 of 86

6

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1

Method: MA-EPH - Massachusetts - Extractable Petroleum Hydrocarbons (GC) (Continued)

Lab Sample ID: 680-242830-3 MS

Lab Sample ID: 680-242830-3 MSD

Matrix: Water

Matrix: Water

Analysis Batch: 446021

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA

Prep Batch: 444549

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibenz(a,h)anthracene	0.99	UQ	38.1	29.4	M	ug/L		77	40 - 140	
Benzo[a]anthracene	1.4	UQ	38.2	30.8		ug/L		81	40 - 140	
Acenaphthene	1.2	UQ	38.3	29.1		ug/L		76	40 - 140	
Phenanthrene	1.2	UQ	38.2	30.5		ug/L		80	40 - 140	
Fluorene	1.2	UQ	38.2	29.8		ug/L		78	40 - 140	
Naphthalene	1.2	UQ	38.2	28.4		ug/L		74	40 - 140	
2-Methylnaphthalene	1.2	UQ	38.2	28.4		ug/L		74	40 - 140	
C11-C22 Aromatics (unadjusted)	30	UQ	649	497	M	ug/L		77	40 - 140	
C19-C36 Aliphatics	20	U	306	215		ug/L		70	40 - 140	
C9-C18 Aliphatics	59	U	230	148		ug/L		65	40 - 140	

MS MS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctadecane (Surr)	70	40 - 140
2-Fluorobiphenyl (Surr)	99	40 - 140
o- terphenyl (Surr)	<i>85</i>	40 - 140

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA

Prep Batch: 444549

Analysis Batch: 446021 MSD MSD %Rec Sample Sample Spike **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ug/L Anthracene 1.2 U Q 38.2 25.6 67 40 - 140 12 50 Pyrene 9.9 U Q 38.2 27.3 ug/L 71 40 - 140 11 50 1.2 UQ 38.1 26.8 ug/L 70 40 - 140 9 50 Benzo[g,h,i]perylene 38.2 26.3 M 40 - 140 Indeno[1,2,3-cd]pyrene 1.2 UQ ug/L 69 10 50 Benzo[b]fluoranthene 1.2 UQ 38.3 28.2 M ug/L 74 40 - 140 9 50 Fluoranthene 38.2 ug/L 72 40 - 140 50 0.99 UQ 27.6 11 Benzo[k]fluoranthene 3.0 UQ 38.2 27.3 M 71 40 - 140 12 50 ug/L 1.4 U Q 38.2 26.2 40 - 140 Acenaphthylene ug/L 69 14 50 Chrysene 0.99 UQ 38.3 26.9 ug/L 70 40 - 140 7 50 Benzo[a]pyrene 1.2 UQ 38.3 25.5 ug/L 67 40 - 140 11 50 Dibenz(a,h)anthracene 0.99 UQ 38.1 26.8 M ug/L 70 40 - 140 50 38.2 40 - 140 Benzo[a]anthracene 1.4 UQ 27.4 ug/L 72 12 50 Acenaphthene 1.2 UQ 38.3 25.2 ug/L 66 40 - 140 14 50 ug/L Phenanthrene 38.2 27.0 71 40 - 140 12 50 12 U.O Fluorene 1.2 UQ 38.2 25.9 ug/L 68 40 - 140 14 50 Naphthalene 1.2 UQ 38.2 24.6 ug/L 64 40 - 140 14 50 2-Methylnaphthalene 38.2 64 40 - 140 50 1.2 UQ 24.4 ug/L 15 C11-C22 Aromatics (unadjusted) 30 U Q 649 443 M ug/L 68 40 - 140 12 50 C19-C36 Aliphatics 306 79 20 U 241 ug/L 40 - 140 11 50 C9-C18 Aliphatics 59 U 230 160 ug/L 70 40 - 140 50

MSD MSD

Surrogate	%Recovery Qualifie	r Limits
1-Chlorooctadecane (Surr)	79	40 - 140
2-Fluorobiphenyl (Surr)	81	40 - 140
o- terphenvl (Surr)	76	40 - 140

Eurofins Savannah

1/5/2024

Job ID: 680-242830-1

Client: Seres Engineering & Services LLC Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 680-809950/2

Matrix: Water

Analyte

Chloride

Sulfate

Analysis Batch: 809950

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 0.50 U 0.55 0.50 0.20 mg/L 11/26/23 13:08 1.0 U 1.5 1.0 0.40 mg/L 11/26/23 13:08

Lab Sample ID: LCS 680-809950/4

Matrix: Water

Analysis Batch: 809950

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 10.1 101 87 - 111 mg/L Sulfate 10.0 9.45 87 - 112 mg/L 94

Lab Sample ID: LCSD 680-809950/5

Matrix: Water

Analysis Batch: 809950

Client Sample ID: Lab Control Sample Dup

Client Sample ID: LFM-99-02B-FAL23

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	10.1		mg/L		101	87 - 111	0	15
Sulfate	10.0	9.40		mg/L		94	87 - 112	0	15

Lab Sample ID: 680-242830-3 MS

Matrix: Water

Analysis Ratch: 809950

Analysis Daten. 009930	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	180		10.0	193	4	mg/L		91	87 - 111	
Sulfate	13		10.0	22.7		mg/L		101	87 - 112	

Lab Sample ID: 680-242830-3 MSD

Matrix: Water

Analysis Batch: 809950

Alialysis Dalcii. 003330												
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	180		10.0	193	4	mg/L		90	87 - 111	0	15	
Sulfate	13		10.0	22.8	M	mg/L		101	87 - 112	0	15	

Lab Sample ID: MB 680-810074/2

Matrix: Water

Analysis Batch: 810074

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

MB MB Result Qualifier LOQ LOD DL Unit Analyte Analyzed Dil Fac Chloride 0.50 U 0.55 0.50 0.20 mg/L 11/27/23 11:25 Sulfate 1.0 U 1.5 1.0 0.40 mg/L 11/27/23 11:25

Lab Sample ID: LCS 680-810074/4

Matrix: Water

Analysis Batch: 810074

, ,	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.2		mg/L		102	87 - 111	
Sulfate	10.0	9.58	M	mg/L		96	87 - 112	

Eurofins Savannah

Prep Type: Total/NA

Page 24 of 86

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: LCSD 680-810074/5

Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA **Analysis Batch: 810074**

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	10.0	10.2		mg/L	_	102	87 - 111	0	15	
Sulfate	10.0	9.63	M	mg/L		96	87 - 112	0	15	

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-807783/1-A

Matrix: Water

Analysis Batch: 807907

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 807783

Job ID: 680-242830-1

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Barium	10	U	20	10	4.4	ug/L		11/13/23 10:36	1
Cadmium	1.0	U	5.0	1.0	0.44	ug/L		11/13/23 10:36	1
Chromium	4.0	U	10	4.0	1.1	ug/L		11/13/23 10:36	1
Copper	10	U	20	10	3.2	ug/L		11/13/23 10:36	1
Iron	50	U	100	50	20	ug/L		11/13/23 10:36	1
Lead	20	U	40	20	6.6	ug/L		11/13/23 10:36	1
Manganese	5.0	U	10	5.0	1.3	ug/L		11/13/23 10:36	1
Selenium	20	U	25	20	10	ug/L		11/13/23 10:36	1
Silver	5.0	U	10	5.0	1.5	ug/L		11/13/23 10:36	1

Lab Sample ID: LCS 680-807783/2-A

Matrix: Water

Analysis Batch: 807907

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 807783

Alialysis Datoll. 001301							r rep Datcii. 007703
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	100	105		ug/L		105	88 - 113
Cadmium	50.0	52.2		ug/L		104	88 - 113
Chromium	100	104		ug/L		104	90 - 113
Copper	101	106		ug/L		105	86 - 114
Iron	4990	5100		ug/L		102	87 - 115
Lead	500	506		ug/L		101	86 - 113
Manganese	400	410		ug/L		103	90 - 114
Selenium	100	97.5		ug/L		98	83 - 114
Silver	50.0	50.6		ug/L		101	84 - 115

Lab Sample ID: 680-242830-3 MS

Matrix: Water

Analysis Batch: 807907

Client Sample ID: LFM-99-02B-FAL23 **Prep Type: Total Recoverable**

Prep Batch: 807783

•	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Barium	8.2	J1 -	100	112		ug/L		104	88 - 113
Cadmium	1.0	U J1	50.0	51.9		ug/L		104	88 - 113
Chromium	4.0	U J1	100	105		ug/L		104	90 - 113
Copper	10	U J1	101	106		ug/L		105	86 - 114
Iron	50	U	4990	5020		ug/L		101	87 - 115
Lead	20	U J1	500	501		ug/L		100	86 - 113
Manganese	5.0	U J1	400	405		ug/L		101	90 - 114
Selenium	20	U J1	100	104		ug/L		104	83 - 114
Silver	5.0	U J1	50.0	52.0		ug/L		104	84 - 115

Page 25 of 86

Eurofins Savannah

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-242830-3 MSD

Matrix: Water

Analysis Batch: 807907

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total Recoverable

Prep Batch: 807783

Analysis Baton, our sor		_							1 TCP DC	10011. 00	,,,,,,,
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Barium	8.2	J1	100	111		ug/L		103	88 - 113	1	20
Cadmium	1.0	U J1	50.0	51.8		ug/L		104	88 - 113	0	20
Chromium	4.0	U J1	100	104		ug/L		103	90 - 113	1	20
Copper	10	U J1	101	105		ug/L		103	86 - 114	1	20
Iron	50	U	4990	5000		ug/L		100	87 - 115	1	20
Lead	20	U J1	500	498		ug/L		100	86 - 113	1	20
Manganese	5.0	U J1	400	402		ug/L		101	90 - 114	1	20
Selenium	20	U J1	100	107		ug/L		107	83 - 114	3	20
Silver	5.0	U J1	50.0	51.7		ug/L		103	84 - 115	1	20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-807784/1-A

Matrix: Water

Analysis Batch: 808049

Client Sample ID: Method Blank Prep Type: Total Recoverable

Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Arsenic	3.0 U	5.0	3.0	0.86 ug/L		11/14/23 00:09	1

LCS LCS

MS MS

MSD MSD

103

Result Qualifier

LOD

0.20

105

Result Qualifier

109

Result Qualifier

Unit

ug/L

Unit

ug/L

Unit

ug/L

DL Unit

0.080 ug/L

Spike

Added

100

Spike

Added

Spike

Added

100

100

MB MB

Sample Sample

3.0 U

Sample Sample

Result Qualifier

Result Qualifier

Lab Sample ID: LCS 680-807784/2-A

Matrix: Water

Analysis Batch: 808049

Analyte

Arsenic Lab Sample ID: 680-242830-3 MS

Matrix: Water

Analysis Batch: 808049

Analyte

Arsenic

Lab Sample ID: 680-242830-3 MSD

Matrix: Water

Analysis Batch: 808049

Analyte

Arsenic 3.0 U Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-808377/1-A

Matrix: Water

Analysis Batch: 808629

MB MB **Analyte** Mercury 0.20 U

Result Qualifier

Prep Batch: 807784

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable Prep Batch: 807784

%Rec %Rec Limits

Client Sample ID: LFM-99-02B-FAL23

109

105

Prep Type: Total Recoverable

84 - 116

Prep Batch: 807784

%Rec Limits D %Rec

84 - 116

Client Sample ID: LFM-99-02B-FAL23

Prep Type: Total Recoverable Prep Batch: 807784

%Rec **RPD**

Limits RPD %Rec Limit 103 84 - 116

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 808377

Analyzed Dil Fac

11/16/23 09:30

Eurofins Savannah

1/5/2024

LOQ

0.25

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 680-808377/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 808629** Prep Batch: 808377

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec 80 - 124 Mercury 2.50 2.40 ug/L 96

Lab Sample ID: 680-242830-3 MS Client Sample ID: LFM-99-02B-FAL23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 808629 Prep Batch: 808377 Sample Sample Spike MS MS %Rec

Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit 0.20 U 1.00 80 - 124 Mercury 0.933 ug/L 93

Lab Sample ID: 680-242830-3 MSD Client Sample ID: LFM-99-02B-FAL23

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 808629 Prep Batch: 808377**

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Result Qualifier Limits **RPD** Analyte Added Unit %Rec Limit Mercury 0.20 U 1.00 0.947 95 80 - 124 20 ug/L

Method: 2320B-2011 - Alkalinity, Total

Lab Sample ID: MB 680-808619/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 808619

MB MB LOQ LOD Analyte Result Qualifier DL Unit Analyzed Dil Fac

Total Alkalinity as CaCO3 to pH 4.5 5.0 U 5.5 5.0 2.2 mg/L 11/16/23 11:25

Lab Sample ID: LCS 680-808619/6

Matrix: Water

Analysis Batch: 808619

LCS LCS Spike %Rec Added Result Qualifier Unit Limits Total Alkalinity as CaCO3 to pH 250 244 mg/L 98 90 - 112

Lab Sample ID: LCSD 680-808619/31 Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Matrix: Water

4.5

Analysis Batch: 808619

Spike LCSD LCSD %Rec **RPD** Added Limits Analyte Result Qualifier Unit D %Rec RPD I imit 250 Total Alkalinity as CaCO3 to pH 249 mg/L 100 90 - 112

Method: 2540C-2011 - Total Dissolved Solids (Dried at 180 °C)

Lab Sample ID: MB 680-807892/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 807892

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Total Dissolved Solids 5.0 U 6.0 5.0 6.0 mg/L 11/13/23 11:51

Eurofins Savannah

1/5/2024

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-242830-1

Prep Type: Total/NA

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 2540C-2011 - Total Dissolved Solids (Dried at 180 °C) (Continued)

Lab Sample ID: LCS 680-807892/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 807892

Spike LCS LCS %Rec Added Result Qualifier Unit Limits Analyte D %Rec Total Dissolved Solids 2470 2400 mg/L 97 80 - 120

Lab Sample ID: LCSD 680-807892/3 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 807892

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids	2470	2420		mg/L		98	80 - 120	1	25

Method: 353.2-1993 R2.0 - Nitrogen, Nitrate-Nitrite

Lab Sample ID: MB 680-808934/14 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 808934

MB MB Analyte Result Qualifier LOQ LOD DL Unit Dil Fac Analyzed Nitrate Nitrite as N 0.025 U 0.10 0.025 0.010 mg/L 11/17/23 11:15

Lab Sample ID: LCS 680-808934/15 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 808934

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
Nitrate Nitrite as N	1.00	1.02		mg/L	102	90 - 110	

Lab Sample ID: 680-242830-3 MS Client Sample ID: LFM-99-02B-FAL23 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 808934

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate Nitrite as N	0.025	U J1	1.00	0.0120	J J1	mg/L		1	90 - 110	

Lab Sample ID: 680-242830-3 MSD Client Sample ID: LFM-99-02B-FAL23

Matrix: Water

Analysis Batch: 808934

7 manyolo Zatom occoo.	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate Nitrite as N	0.025	U J1	1.00	0.0250	J J1	mg/L		3	90 - 110	70	10

Method: 410.4 - COD

Lab Sample ID: MB 280-634208/5 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 634208

Analysis Baton, 004200									
	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Chemical Oxygen Demand		U	20	20	8.7	mg/L		11/16/23 10:37	1

Eurofins Savannah

1/5/2024

Prep Type: Total/NA

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 410.4 - COD (Continued)

Lab Sample ID: LCS 280-634208/3 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 634208

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit D **Chemical Oxygen Demand** 100 94.3 mg/L 94 90 - 110

Lab Sample ID: LCSD 280-634208/4 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 634208

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier D %Rec Limits RPD Limit Unit 100 98.8 90 - 110 Chemical Oxygen Demand mg/L 99

Lab Sample ID: 680-242830-3 MS Client Sample ID: LFM-99-02B-FAL23

Matrix: Water

Analysis Batch: 634208

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Chemical Oxygen Demand 13 J1 50.0 62.2 99 90 - 110 mg/L

Lab Sample ID: 680-242830-3 MSD Client Sample ID: LFM-99-02B-FAL23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 634208

Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 13 J1 59.2 Chemical Oxygen Demand 50.0 mg/L 90 - 110

Method: 9012B - Cyanide, Total and/or Amenable

Lab Sample ID: MB 680-808284/12-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 808340

MB MB

Analyte Result Qualifier LOQ LOD **DL** Unit Analyzed Dil Fac Cyanide, Total 0.0050 U 0.010 0.0050 0.0025 mg/L 11/15/23 09:23

Lab Sample ID: LCS 680-808284/13-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 808340

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Cyanide, Total 0.0500 0.0542 108 83 - 116 mg/L

Lab Sample ID: 680-242830-3 MS Client Sample ID: LFM-99-02B-FAL23

Matrix: Water

Analysis Batch: 808340

Prep Batch: 808284 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.0050 U 0.0500 0.0443 mg/L 89 83 - 116

Eurofins Savannah

1/5/2024

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 808284

Prep Batch: 808284

Prep Type: Total/NA

Client: Seres Engineering & Services LLC Job ID: 680-242830-1

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method: 9012B - Cyanide, Total and/or Amenable (Continued)

Lab Sample ID: 680-242830-3 MSD Client Sample ID: LFM-99-02B-FAL23

Matrix: Water

Prep Type: Total/NA Analysis Batch: 808340 Prep Batch: 808284

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier Added Limits RPD Limit Analyte Result Qualifier Unit D %Rec 0.0050 U 0.0500 0.0516 20 Cyanide, Total mg/L 103 83 - 116 15

Eurofins Savannah

Page 30 of 86 1/5/2024

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

GC Semi VOA

Prep Batch: 444549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	3510C	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	3510C	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	3510C	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	3510C	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	3510C	
MB 410-444549/1-B	Method Blank	Total/NA	Water	3510C	
MB 410-444549/1-C	Method Blank	Total/NA	Water	3510C	
LCS 410-444549/2-B	Lab Control Sample	Total/NA	Water	3510C	
LCS 410-444549/2-C	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-444549/3-B	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 410-444549/3-C	Lab Control Sample Dup	Total/NA	Water	3510C	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	3510C	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	3510C	

Cleanup Batch: 445772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	3630C	444549
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	3630C	444549
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	3630C	444549
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	3630C	444549
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	3630C	444549
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	3630C	444549
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	3630C	444549
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	3630C	444549
MB 410-444549/1-B	Method Blank	Total/NA	Water	3630C	444549
MB 410-444549/1-C	Method Blank	Total/NA	Water	3630C	444549
LCS 410-444549/2-B	Lab Control Sample	Total/NA	Water	3630C	444549
LCS 410-444549/2-C	Lab Control Sample	Total/NA	Water	3630C	444549
LCSD 410-444549/3-B	Lab Control Sample Dup	Total/NA	Water	3630C	444549
LCSD 410-444549/3-C	Lab Control Sample Dup	Total/NA	Water	3630C	444549
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	3630C	444549

Analysis Batch: 446021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	MA-EPH	445772
MB 410-444549/1-C	Method Blank	Total/NA	Water	MA-EPH	445772
LCS 410-444549/2-C	Lab Control Sample	Total/NA	Water	MA-EPH	445772
LCSD 410-444549/3-C	Lab Control Sample Dup	Total/NA	Water	MA-EPH	445772
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772

Page 31 of 86

Job ID: 680-242830-1

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

GC Semi VOA

Analysis Batch: 446024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	MA-EPH	445772
MB 410-444549/1-B	Method Blank	Total/NA	Water	MA-EPH	445772
LCS 410-444549/2-B	Lab Control Sample	Total/NA	Water	MA-EPH	445772
LCSD 410-444549/3-B	Lab Control Sample Dup	Total/NA	Water	MA-EPH	445772
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	MA-EPH	445772

Prep Batch: 808087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	3510C	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	3510C	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	3510C	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	3510C	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	3510C	
MB 680-808087/1-A	Method Blank	Total/NA	Water	3510C	
LCS 680-808087/2-A	Lab Control Sample	Total/NA	Water	3510C	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	3510C	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	3510C	

Analysis Batch: 808572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	8081B 8082A	808087
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	8081B 8082A	808087
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	8081B 8082A	808087
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	8081B 8082A	808087
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	8081B 8082A	808087
MB 680-808087/1-A	Method Blank	Total/NA	Water	8081B 8082A	808087
LCS 680-808087/2-A	Lab Control Sample	Total/NA	Water	8081B 8082A	808087
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	8081B 8082A	808087
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	8081B 8082A	808087

HPLC/IC

Analysis Batch: 809950

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	9056A	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	9056A	
680-242830-2 - DL	LFM-03-07-FAL23	Total/NA	Water	9056A	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	9056A	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	9056A	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	9056A	
MB 680-809950/2	Method Blank	Total/NA	Water	9056A	
LCS 680-809950/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-809950/5	Lab Control Sample Dup	Total/NA	Water	9056A	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	9056A	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	9056A	

Eurofins Savannah

Job ID: 680-242830-1

Page 32 of 86 1/5/2024

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

HPLC/IC

Analysis Batch: 810074

Lab Sample ID 680-242830-5 - DL	Client Sample ID LFM-99-06A-RP-FAL23	Prep Type Total/NA	Matrix Water	Method 9056A	Prep Batch
MB 680-810074/2	Method Blank	Total/NA	Water	9056A	
LCS 680-810074/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 680-810074/5	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 807783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total Recoverable	Water	3005A	
680-242830-2	LFM-03-07-FAL23	Total Recoverable	Water	3005A	
680-242830-3	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	
680-242830-4	LFM-99-05A-FAL23	Total Recoverable	Water	3005A	
680-242830-5	LFM-99-06A-RP-FAL23	Total Recoverable	Water	3005A	
MB 680-807783/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-807783/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-242830-3 MS	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	
680-242830-3 MSD	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	

Prep Batch: 807784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total Recoverable	Water	3005A	
680-242830-2	LFM-03-07-FAL23	Total Recoverable	Water	3005A	
680-242830-3	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	
680-242830-4	LFM-99-05A-FAL23	Total Recoverable	Water	3005A	
680-242830-5	LFM-99-06A-RP-FAL23	Total Recoverable	Water	3005A	
MB 680-807784/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-807784/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
680-242830-3 MS	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	
680-242830-3 MSD	LFM-99-02B-FAL23	Total Recoverable	Water	3005A	

Analysis Batch: 807907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total Recoverable	Water	6010C	807783
680-242830-2	LFM-03-07-FAL23	Total Recoverable	Water	6010C	807783
680-242830-3	LFM-99-02B-FAL23	Total Recoverable	Water	6010C	807783
680-242830-4	LFM-99-05A-FAL23	Total Recoverable	Water	6010C	807783
680-242830-5	LFM-99-06A-RP-FAL23	Total Recoverable	Water	6010C	807783
MB 680-807783/1-A	Method Blank	Total Recoverable	Water	6010C	807783
LCS 680-807783/2-A	Lab Control Sample	Total Recoverable	Water	6010C	807783
680-242830-3 MS	LFM-99-02B-FAL23	Total Recoverable	Water	6010C	807783
680-242830-3 MSD	LFM-99-02B-FAL23	Total Recoverable	Water	6010C	807783

Analysis Batch: 808049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total Recoverable	Water	6020A	807784
680-242830-2	LFM-03-07-FAL23	Total Recoverable	Water	6020A	807784
680-242830-3	LFM-99-02B-FAL23	Total Recoverable	Water	6020A	807784
680-242830-4	LFM-99-05A-FAL23	Total Recoverable	Water	6020A	807784
680-242830-5	LFM-99-06A-RP-FAL23	Total Recoverable	Water	6020A	807784
MB 680-807784/1-A	Method Blank	Total Recoverable	Water	6020A	807784

Eurofins Savannah

Job ID: 680-242830-1

Page 33 of 86 1/5/2024

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Metals (Continued)

Analysis Batch: 808049 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-807784/2-A	Lab Control Sample	Total Recoverable	Water	6020A	807784
680-242830-3 MS	LFM-99-02B-FAL23	Total Recoverable	Water	6020A	807784
680-242830-3 MSD	LFM-99-02B-FAL23	Total Recoverable	Water	6020A	807784

Prep Batch: 808377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	7470A	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	7470A	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	7470A	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	7470A	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	7470A	
MB 680-808377/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-808377/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	7470A	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	7470A	

Analysis Batch: 808629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	7470A	808377
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	7470A	808377
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	7470A	808377
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	7470A	808377
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	7470A	808377
MB 680-808377/1-A	Method Blank	Total/NA	Water	7470A	808377
LCS 680-808377/2-A	Lab Control Sample	Total/NA	Water	7470A	808377
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	7470A	808377
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	7470A	808377

General Chemistry

Analysis Batch: 634208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	410.4	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	410.4	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	410.4	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	410.4	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	410.4	
MB 280-634208/5	Method Blank	Total/NA	Water	410.4	
LCS 280-634208/3	Lab Control Sample	Total/NA	Water	410.4	
LCSD 280-634208/4	Lab Control Sample Dup	Total/NA	Water	410.4	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	410.4	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	410.4	

Analysis Batch: 807892

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	2540C-2011	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	2540C-2011	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	2540C-2011	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	2540C-2011	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	2540C-2011	
MB 680-807892/1	Method Blank	Total/NA	Water	2540C-2011	

Eurofins Savannah

Page 34 of 86 1/5/2024

Job ID: 680-242830-1

3

4

0

9

10

12

QC Association Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

General Chemistry (Continued)

Analysis Batch: 807892 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-807892/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-807892/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	

Prep Batch: 808284

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	9012B	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	9012B	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	9012B	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	9012B	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	9012B	
MB 680-808284/12-A	Method Blank	Total/NA	Water	9012B	
LCS 680-808284/13-A	Lab Control Sample	Total/NA	Water	9012B	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	9012B	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	9012B	

Analysis Batch: 808340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	9012B	808284
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	9012B	808284
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	9012B	808284
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	9012B	808284
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	9012B	808284
MB 680-808284/12-A	Method Blank	Total/NA	Water	9012B	808284
LCS 680-808284/13-A	Lab Control Sample	Total/NA	Water	9012B	808284
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	9012B	808284
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	9012B	808284

Analysis Batch: 808619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	2320B-2011	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	2320B-2011	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	2320B-2011	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	2320B-2011	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	2320B-2011	
MB 680-808619/4	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-808619/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-808619/31	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

Analysis Batch: 808934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-242830-1	DCL-DUP01-FAL23	Total/NA	Water	353.2-1993 R2.0	
680-242830-2	LFM-03-07-FAL23	Total/NA	Water	353.2-1993 R2.0	
680-242830-3	LFM-99-02B-FAL23	Total/NA	Water	353.2-1993 R2.0	
680-242830-4	LFM-99-05A-FAL23	Total/NA	Water	353.2-1993 R2.0	
680-242830-5	LFM-99-06A-RP-FAL23	Total/NA	Water	353.2-1993 R2.0	
MB 680-808934/14	Method Blank	Total/NA	Water	353.2-1993 R2.0	
LCS 680-808934/15	Lab Control Sample	Total/NA	Water	353.2-1993 R2.0	
680-242830-3 MS	LFM-99-02B-FAL23	Total/NA	Water	353.2-1993 R2.0	
680-242830-3 MSD	LFM-99-02B-FAL23	Total/NA	Water	353.2-1993 R2.0	

Eurofins Savannah

1/5/2024

Page 35 of 86

2

Job ID: 680-242830-1

3

4

6

9

10

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: DCL-DUP01-FAL23 Lab Sample ID: 680-242830-1

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

Matrix: Water

Job ID: 680-242830-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			235.8 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis Instrumen	8081B 8082A t ID: CSGAA		1	1 mL	1 mL	808572	11/16/23 17:52	UI	EET SAV
Total/NA	Prep	3510C			975 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrumen	MA-EPH t ID: 18433-W		1	1 mL	1 mL	446021	11/21/23 19:19	UHEW	ELLE
Total/NA	Prep	3510C			975 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrumen	MA-EPH t ID: 18433-X		1	1 mL	1 mL	446024	11/21/23 19:19	UHEW	ELLE
Total/NA	Analysis Instrumen	9056A t ID: CICK		1	5 mL	5 mL	809950	11/26/23 14:27	T1C	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	807783	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrumen	6010C t ID: ICPH		1			807907	11/13/23 11:34	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	807784	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrumen	6020A t ID: ICPMSC		1			808049	11/14/23 01:14	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	808377	11/15/23 12:00	DW	EET SAV
Total/NA	Analysis Instrumen	7470A t ID: QuickTrace2		1			808629	11/16/23 10:01	DW	EET SAV
Total/NA	Analysis Instrumen	2320B-2011 t ID: MANTECH 2		1			808619	11/16/23 11:25	PG	EET SAV
Total/NA	Analysis Instrumen	2540C-2011 t ID: NOEQUIP		1	50 mL	200 mL	807892	11/13/23 11:51	PG	EET SAV
Total/NA	Analysis Instrumen	353.2-1993 R2.0 t ID: SEAL 1		1	2 mL	2 mL	808934	11/17/23 11:58	AF	EET SAV
Total/NA	Analysis Instrumen	410.4 t ID: WC_Genesys20	0	1	2 mL	2 mL	634208	11/16/23 10:37	CLP	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	808284	11/15/23 07:51	JAS	EET SAV
Total/NA	Analysis	9012B		1			808340	11/15/23 09:23	JAS	EET SAV
	Instrumen	t ID: KONELAB4								

Client Sample ID: LFM-03-07-FAL23

Date Collected: 11/07/23 10:00

Date Received: 11/10/23 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			243.1 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis	8081B 8082A		1	1 mL	1 mL	808572	11/16/23 18:07	UI	EET SAV
	Instrumer	nt ID: CSGAA								

Eurofins Savannah

Lab Sample ID: 680-242830-2

Page 36 of 86

Matrix: Water

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Lab Sample ID: 680-242830-2

Matrix: Water

Job ID: 680-242830-1

Client Sample ID: LFM-03-07-FAL23

Date Collected: 11/07/23 10:00 Date Received: 11/10/23 10:06

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3510C	- Tun		1024.6 mL	1 mL	444549	11/16/23 18:30		ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21		ELLE
Total/NA	Analysis	MA-EPH ID: 18433-W		1	1 mL	1 mL	446021	11/21/23 19:41		ELLE
Total/NA	Prep	3510C			1024.6 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrument	MA-EPH ID: 18433-X		1	1 mL	1 mL	446024	11/21/23 19:41	UHEW	ELLE
Total/NA	Analysis Instrument	9056A ID: CICK		1	5 mL	5 mL	809950	11/26/23 14:39	T1C	EET SAV
Total/NA	Analysis Instrument	9056A ID: CICK	DL	2	5 mL	5 mL	809950	11/26/23 16:33	T1C	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	807783	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrument	6010C ID: ICPH		1			807907	11/13/23 11:36	BJB	EET SAV
Total Recoverable Total Recoverable	Prep Analysis Instrument	3005A 6020A ID: ICPMSC		1	25 mL	125 mL	807784 808049	11/13/23 05:47 11/14/23 01:18		EET SAV EET SAV
Total/NA Total/NA	Prep Analysis Instrument	7470A 7470A ID: QuickTrace2		1	50 mL	50 mL	808377 808629	11/15/23 12:00 11/16/23 10:03		EET SAV EET SAV
Total/NA	Analysis Instrument	2320B-2011 ID: MANTECH 2		1			808619	11/16/23 11:25	PG	EET SAV
Total/NA	Analysis Instrument	2540C-2011 ID: NOEQUIP		1	50 mL	200 mL	807892	11/13/23 11:51	PG	EET SAV
Total/NA	Analysis Instrument	353.2-1993 R2.0 ID: SEAL 1		1	2 mL	2 mL	808934	11/17/23 12:00	AF	EET SAV
Total/NA	Analysis Instrument	410.4 ID: WC_Genesys2	0	1	2 mL	2 mL	634208	11/16/23 10:37	CLP	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	808284	11/15/23 07:51	JAS	EET SAV
Total/NA	Analysis	9012B ID: KONELAB4		1			808340	11/15/23 09:23		EET SAV

Client Sample ID: LFM-99-02B-FAL23

Date Collected: 11/07/23 12:15

Date Received: 11/10/23 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			247 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis Instrumen	8081B 8082A at ID: CSGAA		1	1 mL	1 mL	808572	11/16/23 16:55	UI	EET SAV
Total/NA	Prep	3510C			1013.4 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	446021	11/21/23 20:04	UHEW	ELLE
	Instrumen	it ID: 18433-W								

Eurofins Savannah

Matrix: Water

Lab Sample ID: 680-242830-3

Page 37 of 86

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Lab Sample ID: 680-242830-3

Lab Sample ID: 680-242830-4

Matrix: Water

Matrix: Water

Job ID: 680-242830-1

Client Sample ID: LFM-99-02B-FAL23

Date Collected: 11/07/23 12:15 Date Received: 11/10/23 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			1013.4 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrument	MA-EPH ID: 18433-X		1	1 mL	1 mL	446024	11/21/23 20:04	UHEW	ELLE
Total/NA	Analysis Instrument	9056A ID: CICK		1	5 mL	5 mL	809950	11/26/23 14:50	T1C	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	807783	11/13/23 05:47		EET SAV
Total Recoverable	Analysis Instrument	6010C ID: ICPH		1			807907	11/13/23 10:41	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	807784	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrument	6020A ID: ICPMSC		1			808049	11/14/23 00:17	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	808377	11/15/23 12:00	DW	EET SAV
Total/NA	Analysis Instrument	7470A ID: QuickTrace2		1			808629	11/16/23 10:09	DW	EET SAV
Total/NA	Analysis Instrument	2320B-2011 ID: MANTECH 2		1			808619	11/16/23 11:25	PG	EET SAV
Total/NA	Analysis Instrument	2540C-2011 ID: NOEQUIP		1	50 mL	200 mL	807892	11/13/23 11:51	PG	EET SAV
Total/NA	Analysis Instrument	353.2-1993 R2.0 ID: SEAL 1		1	2 mL	2 mL	808934	11/17/23 11:44	AF	EET SAV
Total/NA	Analysis Instrument	410.4 ID: WC_Genesys2	0	1	2 mL	2 mL	634208	11/16/23 10:37	CLP	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	808284	11/15/23 07:51	JAS	EET SAV
Total/NA	Analysis Instrument	9012B ID: KONELAB4		1			808340	11/15/23 09:23	JAS	EET SAV

Client Sample ID: LFM-99-05A-FAL23

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			237.8 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis	8081B 8082A		1	1 mL	1 mL	808572	11/16/23 18:21	UI	EET SAV
	Instrumen	t ID: CSGAA								
Total/NA	Prep	3510C			945.3 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	446021	11/21/23 21:11	UHEW	ELLE
	Instrumen	t ID: 18433-W								
Total/NA	Prep	3510C			945.3 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis	MA-EPH		1	1 mL	1 mL	446024	11/21/23 21:11	UHEW	ELLE
	Instrumen	t ID: 18433-X								
Total/NA	Analysis	9056A		1	5 mL	5 mL	809950	11/26/23 15:24	T1C	EET SAV
	Instrumen	t ID: CICK								

Eurofins Savannah

Page 38 of 86

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Client Sample ID: LFM-99-05A-FAL23 Lab Sample ID: 680-242830-4

Date Collected: 11/07/23 10:35 Date Received: 11/10/23 10:06

Matrix: Water

Job ID: 680-242830-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			25 mL	25 mL	807783	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrumen	6010C t ID: ICPH		1			807907	11/13/23 10:53	BJB	EET SAV
Total Recoverable	Prep	3005A			25 mL	125 mL	807784	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrumen	6020A t ID: ICPMSC		1			808049	11/14/23 00:38	BWR	EET SAV
Total/NA	Prep	7470A			50 mL	50 mL	808377	11/15/23 12:00	DW	EET SAV
Total/NA	Analysis Instrumen	7470A t ID: QuickTrace2		1			808629	11/16/23 10:15	DW	EET SAV
Total/NA	Analysis Instrumen	2320B-2011 t ID: MANTECH 2		1			808619	11/16/23 11:25	PG	EET SAV
Total/NA	Analysis Instrumen	2540C-2011 t ID: NOEQUIP		1	50 mL	200 mL	807892	11/13/23 11:51	PG	EET SAV
Total/NA	Analysis Instrumen	353.2-1993 R2.0 t ID: SEAL 1		1	2 mL	2 mL	808934	11/17/23 12:02	AF	EET SAV
Total/NA	Analysis Instrumen	410.4 t ID: WC_Genesys2	0	1	2 mL	2 mL	634208	11/16/23 10:37	CLP	EET DEN
Total/NA	Prep	9012B			6 mL	6 mL	808284	11/15/23 07:51	JAS	EET SAV
Total/NA	Analysis Instrumen	9012B t ID: KONELAB4		1			808340	11/15/23 09:30	JAS	EET SAV

Client Sample ID: LFM-99-06A-RP-FAL23

Date Collected: 11/07/23 08:52 Date Received: 11/10/23 10:06

Lab Sample ID: 680-242830-5 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			232.3 mL	1 mL	808087	11/14/23 10:36	DS	EET SAV
Total/NA	Analysis Instrumen	8081B 8082A at ID: CSGAA		1	1 mL	1 mL	808572	11/16/23 18:35	UI	EET SAV
Total/NA	Prep	3510C			944.5 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrumen	MA-EPH at ID: 18433-W		1	1 mL	1 mL	446021	11/21/23 21:34	UHEW	ELLE
Total/NA	Prep	3510C			944.5 mL	1 mL	444549	11/16/23 18:30	K2IL	ELLE
Total/NA	Cleanup	3630C			1.0 mL	1.0 mL	445772	11/21/23 07:21	YDF5	ELLE
Total/NA	Analysis Instrumen	MA-EPH at ID: 18433-X		1	1 mL	1 mL	446024	11/21/23 21:34	UHEW	ELLE
Total/NA	Analysis Instrumen	9056A at ID: CICK		1	5 mL	5 mL	809950	11/26/23 15:36	T1C	EET SAV
Total/NA	Analysis Instrumen	9056A at ID: CICK	DL	5	5 mL	5 mL	810074	11/27/23 12:11	UI	EET SAV
Total Recoverable	Prep	3005A			25 mL	25 mL	807783	11/13/23 05:47	RR	EET SAV
Total Recoverable	Analysis Instrumen	6010C at ID: ICPH		1			807907	11/13/23 11:26	BJB	EET SAV

Eurofins Savannah

Page 39 of 86

Client: Seres Engineering & Services LLC

Batch

Type

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Batch

Method

3005A

6020A

7470A

7470A

2320B-2011

2540C-2011

353.2-1993 R2.0

Instrument ID: QuickTrace2

Instrument ID: MANTECH 2

Instrument ID: NOEQUIP

Instrument ID: SEAL 1

410.4

Instrument ID: WC_Genesys20

9012B

9012B

Instrument ID: ICPMSC

Client Sample ID: LFM-99-06A-RP-FAL23 Lab Sample ID: 680-242830-5

Initial

Amount

25 mL

50 mL

50 mL

2 mL

2 mL

6 mL

Final

Amount

125 mL

50 mL

200 mL

2 mL

2 mL

6 mL

Batch

Number

807784

808049

808377

808629

808619

807892

808934

634208

808284

808340

Dil

1

1

1

Factor

Run

Date Collected: 11/07/23 08:52 Date Received: 11/10/23 10:06

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total Recoverable

Total Recoverable

Matrix: Water

Prepared

or Analyzed

11/13/23 05:47

11/14/23 01:10

11/15/23 12:00

11/16/23 10:18

11/16/23 11:25

11/13/23 11:51

11/17/23 12:03

11/16/23 10:37 CLP

11/15/23 07:51 JAS

JAS

11/15/23 09:30

Job ID: 680-242830-1

IVIA	matrix: water							
Analyst	Lab							
RR	EET SAV							
BWR	EET SAV							
DW	EET SAV							
DW	EET SAV							
PG	EET SAV							
PG	EET SAV							
AF	EET SAV							

EET DEN

EET SAV

EET SAV

Instrument ID: KONELAB4
¹ This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Savannah

2

Λ

5

8

10

11

Accreditation/Certification Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Job ID: 680-242830-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2463	09-22-24

Laboratory: Eurofins Denver

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	2907.01	10-31-24

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	0001.01	11-30-24

Eurofins Savannah

Page 41 of 86

2

3

4

D

7

8

9

10

46

Method Summary

Client: Seres Engineering & Services LLC

Project/Site: Seres-Arcadis JV, LTM DCL, Fall 2023

Method	Method Description	Protocol	Laboratory
8081B 8082A	Organochlorine Pesticides & PCBs (GC)	SW846	EET SAV
MA-EPH	Massachusetts - Extractable Petroleum Hydrocarbons (GC)	MA DEP	ELLE
9056A	Anions, Ion Chromatography	SW846	EET SAV
6010C	Metals (ICP)	SW846	EET SAV
6020A	Metals (ICP/MS)	SW846	EET SAV
7470A	Mercury (CVAA)	SW846	EET SAV
2320B-2011	Alkalinity, Total	SM	EET SAV
2540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	EET SAV
353.2-1993 R2.0	Nitrogen, Nitrate-Nitrite	MCAWW	EET SAV
410.4	COD	EPA	EET DEN
9012B	Cyanide, Total and/or Amenable	EPA	EET SAV
MA-VPH	MADEP VPH Volatile Petroleum Hydrocarbon	MA DEP	
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SAV
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ELLE
3630C	Silica Gel Cleanup	SW846	ELLE
7470A	Preparation, Mercury	SW846	EET SAV
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	EET SAV

Protocol References:

EPA = US Environmental Protection Agency

MA DEP = Massachusetts Department Of Environmental Protection

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Katahdin Analytical Services Inc, 600 Technology Way, Scarborough, ME 04074

EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Savannah

Job ID: 680-242830-1

		IVIA	SSDEF Allalytic	ai Protocoi Certini	cation i oim						
Labo	oratory Na	nme: Katahdin Ana	lytical Services, LL	.C.	Project #:						
Proje	ect Locati	on: Fort Devens			RTN:						
This	Form pro	ovides certificatio		ng data set: list Lat '9-1 through -6	oratory Sample ID Nu	mber(s):					
Matri	ces: X Gr	oundwater/Surface	Water Soil/Sedir	ment Drinking Wa	ater Air Other:						
CAM	Protoco	ol (check all that a	oply below):								
8260 CAM		7470/7471 Hg CAM III B	MassDEP VPH CAM IV A X	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A					
8270 CAM	SVOC II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B					
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B						
-	Affirmativ	e Responses to (Questions A throu	ıgh F are required t	or "Presumptive Certa	ainty" status					
Α	Custody,		ed (including tem		cribed on the Chain-of- ld or laboratory, and	Yes X No					
В	Were the analytical method(c) and all associated OC requirements specified in the selected										
С				cal response actions s formance standard no	specified in the selected n-conformances?	Yes X No					
D		Assurance and Qu			specified in CAM VII A, ition and Reporting of	X Yes No					
E	a. VPH, modificat	tion(s)? (Refer to the	lethods only: Was individual method(s	e each method condu) for a list of significant ete analyte list reported	•	X Yes No Yes No					
F					-conformances identified Questions A through E)?	X Yes No					
Res	sponses	to Questions G, F	l and I below are	required for "Presu	mptive Certainty" stat	us					
G	Were the protocol(r below all CAM repo	orting limits specified in	the selected CAM	X Yes No ¹					
				inty" status may not ne R 40. 1056 (2)(k) and W	cessarily meet the data us SC-07-350.	ability and					
Н	1	-		the CAM protocol(s) ac		X Yes No1					
I	Were res	sults reported for the	complete analyte lis	t specified in the selec	ted CAM protocol(s)?	X Yes No ¹					
¹All ı	negative r	esponses must be a	addressed in an atta	ached laboratory narra	ative.						

MassDEP Analytical Protocol Certification Form

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: Printed Name: Jennifer Prescott

Position: Q.A. Officer

Date: 01/05/2024

TEST AMERICA SAVANNAH

SERES-ARCADIS JB, LTM DCL, FALL 2023

SQ6279

Jennifer Prescott 207-874-2400

KATAHDIN ANALYTICAL SERVICES 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074

ı

5

6

0

9

10

SAMPLE DATA PACKAGE

ı

NARRATIVE KATAHDIN ANALYTICAL SERVICES TEST AMERICA SAVANNAH SERES-ARCADIS JB, LTM DCL, FALL 2023 SQ6279

Sample Receipt

The following samples were received on November 14, 2023 and were logged in under Katahdin Analytical Services work order number SQ6279 for a hardcopy due date of December 05, 2023.

KATAHDIN	TEST AMERICA SAVANNAH
Sample No.	Sample Identification
SQ6279-1	DCL-DUP01-FAL23
SQ6279-2	LFM-03-07-FAL23
SQ6279-3	LFM-99-02B-FAL23
SQ6279-4	LFM-99-05A-FAL23
SQ6279-5	LFM-99-06A-RP-FAL23
SQ6279-6	TRIP BLANK

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2017 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Heather Manz**. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of Work Order SQ6279 were analyzed in accordance with Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MADEP, May 2004, Revision 1.1. and/or for the specific methods listed below or on the Report of Analysis.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

600 Technology Way, Scarborough, ME 04074

Page 46 of 86

1/5/2024

Sample SQ6279-3 was used for the matrix spike (MS) and matrix spike duplicate (MSD) per the client's request.

MA VPH Analysis

Samples SQ6279-1 and 6 were manually integrated for the surrogate 2,5-dibromotoluene on the PID and/or FID. The specific reason for the manual integration is indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

Due to analyst oversight, sample SQ6279-6 was analyzed 24 days outside of analytical hold time.

The opening and closing calibration verification (CV) standards (Files 2QK10036 and 2QK10048) had low responses for the target analyte n-pentane that resulted in %D's that exceeded the method acceptance limits of $\pm 25\%$. Since the overall range was acceptable, no further action was taken.

The independent check standard (file 2QI10012), associated with the initial calibration analyzed on the GC02 instrument on 9/8/23 had a high concentration for the target analyte naphthalene on the PID, which exceeded the laboratory acceptance limit of $\pm 20\%$ of the expected value from the ICAL.

There were no other protocol deviations or observations noted by the organics laboratory staff.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized the Quality Assurance Officer, or their designee, as verified by the following signature.

Jennifer Prescott Quality Assurance Officer

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

600 Technology Way, Scarborough, ME 04074

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
М3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Katandin Analytical S	ervices, LLC	J			Sa	ample Rec	eipt Condit	ion Keport
Client: Pace			KA	S PM:		HHM .	Sampled By:	Client
Project:			KIM	S Entr	y By:	OCB	Delivered By:	Fedex
KAS Work Order#: 50	6774 1274	1/280	KIM	S Revi	ew By:	MM	Received By:	EP
	02:0/84	1).9~0	Lab	eled By	<i>/</i> :	10		
SDG #:	Cooler:		of _			Date/Time	e Rec.: //-/4-2	3 0930
		TVI	A	Teve	Tala			
Receipt Criteri	a	Y	N	EX*	NA	Com	ments and/or R	esolution
1. Custody seals present / intact	?							
2. Chain of Custody present in c	ooler?	1				1		
3. Chain of Custody signed by cl	ient?							
4. Chain of Custody matches sai	mples?	1						
5. Temperature Blanks present? temperature of any sample w/ IR	If not, take gun.	/				Temp (°C):	3.2.0	Thermometer ID: IR-1
Samples received at <6 °C w	/o freezing?	/				Note: Not require	ed for metals (except	Hg soil) analysis.
Ice packs or ice present?					¥.		e or ice packs (i.e process) or insuf	
If yes, was there sufficient ice temperature requirements?	e to meet	1					ain regulatory req e certain data.	uirements and
If temp. out, has the cooling (i.e. ice or packs present) and collection times <6hrs., but sayet cool?	d sample		.se	-	1	Note: No coo (except Hg so	ling process requ il) analysis.	ired for metals
6. Volatiles: Aqueous: No bubble larger than	a pea?	/						
Soil/Sediment: Received in airtight container	? <							
Received in methanol?	*			3.	4			
Methanol covering soil?				\rightarrow	54			
D.I. Water - Received within 48 ho	our HT?		-	\dashv	-	Personal production in the second		
7. Trip Blank present in cooler?			_		•			
8. Proper sample containers and	/olume?	/						
9. Samples within hold time upon	receipt?	1						
 Aqueous samples properly pre Metals, COD, NH3, TKN, O/G TPO4, N+N, TOC, DRO, TPH Sulfide - >9 	, phenol,				/			
Cyanide – pH >12			+		\mathcal{I}	و		
Bottleware Prepped on:								,
Log-In Notes to Exceptions: d	ocument any pr	oblems	with	samp	les or	discrepancie	s or pH adjustm	ents.
and in the to a mood the total						•	8 - -	
i g				7	~	•		
* . *								
100	,							

SQ 6279

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue

Source Avenue	5	nain o	hain of Custody Record	ody R	ecor	o				凝			sui o inis		Tooking Tooking
Cavamian, CA 31404 Phone: 912-354-7858 Fax: 912-352-0165									í	М					Survey at 16 at 16
Client Information (Sub Contract Lab)	Sampler:			Lab PM: Lanier,	Lab PM: Lanier, Jerry A	4			Carrie	Carrier Tracking No(s)	No(s):		COC No: 680-756091.1		
	Phone:			E-Mail: Jerny.	Lanier	et.eurof	E-Mail: Jerry.Lanier@et.eurofinsus.com		State	State of Origin: Massachusetts	ts		Page: Page 1 of 1		
Company: Katahdin Analytical Services					Accreditat Dept. of	ons Requir Defense	Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD - ANAB	LA; Dol	- ANA				Job #: 680-242830-1		
Address: 600 Technology Way, ,	Due Date Requested 11/22/2023						Ana	Analysis Requested	senbe	ted			Preservation Codes	odes: M - Hexane	
City: Scarborough	TAT Requested (days):	::											B - NaOH C - Zn Acetate	N - None O - AsNaO2	21.4
State, 2lp: ME, 04074												Manager Land	D - Nitric Acid E - NaHSO4	Q - Na204 Q - Na2SO R - Na2S2	
Phone:	PO #:				(0							200	F - MeOH G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Do	S - H2SO4 T - TSP Dodecahydrate
Email:	WO #:												Name and the	V - MCAA	
Project Name: Seres-Arcadis JV, LTM DCL, Fall 2023	Project #: 68023801											agaiet	K - EDTA L - EDA	Y - Trizma Z - other (specify)	ecify)
Site:	SSOW#:					HЧVAM						10340	Other:		
			Sample Type	Matrix (W=water,	Filtered rm MS/N	I (HGVAM						Todmil	У итрег		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	(C=comp, G=grab)	S=solid, O=waste/oil, BT=Tissue, A=Air)		ı) ans						letoI		Special Instructions/Note:	/Note:
		X	Preservation Code:	on Code:	X			To original districts of the control							
DCL-DUP01-FAL23 (680-242830-1)	11/7/23	10:35 Eastern		Water		×							3		
LFM-03-07-FAL23 (680-242830-2)	11/7/23	10:00 Eastern		Water		×							6		
LFM-99-02B-FAL23 (680-242830-3MS)	11/7/23	12:15 Eastern	MS	Water		×							6		
LFM-99-02B-FAL23 (680-242830-3MSD)	11/7/23	12:15 Eastern	MSD	Water		×						d Michaelph	9		
LFM-99-05A-FAL23 (680-242830-4)	11/7/23	10:35 Eastern		Water		×							ေ		
LFM-99-06A-RP-FAL23 (680-242830-5)	11/7/23	08:52 Eastern		Water		×							3		
Trip Blank (680-242830-6)	11/7/23	Eastern		Water		×					3		2:		
Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any changes to accreditation state of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC	t Testing Southeast, LL alysis/tests/matrix being in immediately. If all re	C places the c analyzed, the quested accre	wnership of m samples must ditations are cu	ethod, analyte be shipped b: irrent to date,	& accredit ick to the l eturn the	ation comp curofins En igned Cha	iance upon o vironment Te in of Custody	ur subcont sting South attesting to	ract labora neast, LLC said com	tories. Thi laboratory pliance to	s sample s or other ir Eurofins E	shipment is istructions nvironmen	C places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory 3 analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC laboratory or other instructions will be provided. Any changes to accreditation quested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Southeast, LLC.	in-of-custody. changes to ac. LC.	If the laboratory reditation
Possible Hazard Identification					Sam	ple Disp	osal (A fe	e may b	e asses	sed if s	seldun	re retai	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)	
Unconfirmed		-				Return	Return To Client	<u>ا</u> [.	Dispo	Disposal By Lab	qı]	Archive For	Months	"
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank; 2	ile Rank: 2			Spec	ial Instru	Special Instructions/QC Requirements:	Requirer	nents:	,					
Empty Kit Relinquished by:		Date:			Time:					Method of Shipmen	Shipment				

Ver: 06/08/2021

Cooler Temperature(s) °C and Other Remarks.

Received by:

Received by: Received by:

Company

elinquished by: elinquished by:

Relinquished by:

Custody Seals Intact: Custody Seal No.:

Chain of Custody Record

Eurofins Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165	Chain of Custody Record	Record	***	seurofins Environment Testing
Client Information (Sub Contract Lab)	Sampler: Lab Pl	Lab PM: Lanier, Jerry A	Carrier Tracking No(s):	COC No: 680-756092.1
Clent Contact Shipping/Receiving	Phone: E-Mail: Jerry.	r.eurofinsus.com	State of Origin: Massachusetts	Page:
Company: Katahdin Analytical Services		Accreditations Required (See note): Dept. of Defense ELAP - A2LA; DoD - ANAB	qВ	Job #. 680-242830-1
Address: 600 Technology Way,		Analysis Requested	sted	
City. Scarborough Slate 2.pc. MR 04074	TAT Requested (days):			B. NaOH O Nane C. Zn Acetate O AsNaO2 D. Nitric Acid P. Na2O4S E. NaHSO4 B. Na2O5O3
Phone:	PO#			
Email:	WO#:			I - ice J - DI Water
Project Name: Seres-Arcadis JV, LTM DCL, Fall 2023	Project #: 68023801	to se		K - EUIA Y - Trizma L - EDA Z - other (specify)
Site:	SSOW#:	sp (x		Other:
O de la Oliveria de la Companya de l	Sample Matrix Type (wreater, 1790 Second. Seco	M/SM mrohae M/SM grown Blo		Name is Instructions/Note:
Sample identification - Offers in (Ean in)	Preserva	X		
	12:15			
LFM-99-02B-FAL23 (680-242830-3)	11/7/23 12.13 Water Eastern	×		3
Note: Since laboratory accreditations are subject to change, Eurofins Envi does not currently maintain accreditation in the State of Origin listed abow status should be brought to Eurofins Environment Testing Southeast, LLC	Note: Since jaboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Oustbody attesting Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Oustbody attesting to Sautheast, LLC.	e & accreditation compliance upon our subcontract lab back to the Euroffins Environment Testing Southeast, L. 9, return the signed Chain of Custody attesting to said or	oratories. This sample shipment LC laboratory or other instructions ompliance to Eurofins Environme	forwarded under chain-of-custody. If the laborate is will be provided. Any changes to accreditation nt Testing Southeast, LLC.
Possible Hazard Identification		ee may be	essed if samples are reta	ined longer than 1 month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:	Disposal By Lab Arents:	Archive For Months
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Relinquished by	Date/Time; \(\infty \) \(\infty \) Company	Received by:	Date/Time:	3 CM32 Company Labelly
Relinquished by:	Date/Time/ - 5 Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time: Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) °C and Other Remarks:	rks:	
				Ver: 06/08/2021

Katahdin Analytical Services

Login Chain of Custody (In01)

Nov. 16, 2023 03:48 PM Page: 1 of 2

Login Number: SQ6279

Account: TESTAMERICASAVLAB001 Test America Savannah

Project: TASAV-DEVENS

Primary Report Address:

Jerry Lanier

Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

Jerry.Lanier@testamericainc.com

Primary Invoice Address:

Accounts Payable Test America Savannah 5102 LaRoche Avenue

Savannah, GA 31404

email project manager and beth.daughtry@et.eurofinsus.com

Report CC Addresses: Invoice CC Addresses: Quote/Incoming: TASAV-DEVENS

Login Information

ANALYSIS INSTRUCTIONS : FDS, DOD QSM 5.3 reporting with DOD limits.

ND to LOD. "J" flag between MDL and PQL. Need LCS/LCSD. Follow MA MCP CAM.

Include level 4 narrative.

CHECK NO.

CLIENT PO# : US1672979726
CLIENT PROJECT MANAGE : Jerry Lanier

CONTRACT : 68023801, 680-242830

COOLER TEMPERATURE : 3.2

DELIVERY SERVICES : FedEx

EDD FORMAT : ECC-091317-TXT

ISM INSTRUCTIONS

LOGIN INITIALS : JCB
PM : HHM

PROJECT NAME : Seres-Arcadis JB, LTM DCL, Fall 2023

QC LEVEL : IV

REPORT INSTRUCTIONS : SDS needs all forms. Include Level 4 narrative

and MCP forms (from Leslie). Send level 4 PDF & level 2 PDF. Level 2= SDP & SDS. Upload EDD to Ft. Devens Database. Email PDF, EDD, and invoice to Beth.Daughtry@Eurofinset.com &

Jerry.Lanier@et.eurofinsus.com. No HC.

SDG ID

SDG STATUS : TEMPLATE : VERBAL TAT :

Run Reports: Logindetail

2

4

5

6

9

11

12

- -

Katahdin Analytical Services Login Chain of Custody (In01)

Nov. 16, 2023 03:48 PM

Login Number: SQ6279

Account: TESTAMERICASAVLAB001 Test America Savannah

Project: TASAV-DEVENS

Quote/Incoming: TASAV-DEVENS

Laboratory		Collect	Receive		Due	Verbal	
Sample ID	Sample Number	Date/Time	Date	PR	Date	Due Date	Mailed
SQ6279-1	DCL-DUP01-FAL23	07-NOV-23	10:35 14-NOV-23		05-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
Service	S REPORTING						
SQ6279-2	LFM-03-07-FAL23	07-NOV-23	10:00 14-NOV-23		05-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
SQ6279-3	LFM-99-02B-FAL23	07-NOV-23	12:15 14-NOV-23		05-DEC-23		
Sample Com	ments: MS/MSD						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
SQ6279-4	LFM-99-05A-FAL23	07-NOV-23	10:35 14-NOV-23		05-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
SQ6279-5	LFM-99-06A-RP-FAL23	07-NOV-23	08:52 14-NOV-23		05-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
SQ6279-6	TRIP BLANK	07-NOV-23	00:00 14-NOV-23		05-DEC-23		
Sample Com	ments:						
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCI		
SQ6279-7	MS CHARGE LFM-99-02B-FAL23	07-NOV-23	12:15 14-NOV-23		05-DEC-23		
Sample Com	ments: Not a sample, MS charge	for SQ6279-3.					
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCl		
SQ6279-8	MSD CHARGE LFM-99-02B-FAL23	3 07-NOV-23	12:15 14-NOV-23		05-DEC-23		
Sample Com	ments: Not a sample, MSD charg	e for SQ6279-3.					
Matrix	Product	Hold Date (shortest)	Notes		Bottle Type		
Aqueous	S MA-VPH-LOD	21-NOV-23			40mL Vial+HCl		

Total Samples: 8 Total Analyses: 9

Run Reports: Logindetail

Page: 2 of 2

4

5

9

11

46

1:

SAMPLE DATA SUMMARY PACKAGE

Q

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL, "U" LOQ or "U" LOD, where the rate of false negatives is <1%.
- * Compound recovery or percent RPD (relative percent difference) was outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), but above the Method Detection Limit (MDL).

And/or

- J Used for Dual Column analytes when there is a greater than 40% difference for detected concentrations between the two GC/HPLC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- I Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration (ICAL).
- D Indicates that the flagged compound did not meet DoD criteria in the corresponding Initial Calibration Verification (ICV).
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding opening Calibration Verification (CV).
- V Indicates that the flagged compound did not meet DoD criteria in the corresponding closing Calibration Verification (CV).
- L/LL Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M/MM Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike (MS) and/or Matrix Spike Duplicate MSD) prepared and/or analyzed concurrently with the native sample.
- H Indicates the flagged compound was detected on the primary column but was not detected on the confirmation column therefore the compound is not reported as a positive detection. (SW846 8330A/B only)

DM-002 - Revision 8 - 11/02/2022

Page 55 of 86

8

46

11

12

R

Report of Analytical Results

SDG: SQ6279 **Lab ID:**SQ6279-1

Client ID: DCL-DUP01-FAL23

Matrix:AQ

Lab File ID: 2QK10041.D

Sample Date: 07-NOV-23 Extract Date: 15-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345505

Report Date: 01-DEC-23 **Analysis Date:** 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		75.4	%					
2,5-Dibromotoluene (PID)		73.0	%					

Report of Analytical Results

SDG: SQ6279 **Lab ID:**SQ6279-2

Client ID: LFM-03-07-FAL23

Matrix:AQ

Lab File ID: 2QK10042.D

Sample Date: 07-NOV-23 Extract Date: 15-NOV-23

Extracted By:DL

Extraction Method: MA-VPH Lab Prep Batch: WG345505

Report Date: 01-DEC-23 **Analysis Date:** 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		88.2	%					
2,5-Dibromotoluene (PID)		87.6	%					

Report of Analytical Results

SDG: SQ6279 **Lab ID:**SQ6279-3

Client ID: LFM-99-02B-FAL23

Matrix:AQ

Lab File ID: 2QK10043.D

Sample Date: 07-NOV-23 Extract Date: 15-NOV-23

Extracted By:DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345505

Report Date: 01-DEC-23 **Analysis Date:** 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		88.1	%					
2,5-Dibromotoluene (PID)		90.6	%					

Report of Analytical Results

SDG: SQ6279 **Lab ID:**SQ6279-4

Client ID: LFM-99-05A-FAL23

Matrix:AQ

Lab File ID: 2QK10046.D

Sample Date: 07-NOV-23 Extract Date: 15-NOV-23

Extracted By:DL

Extraction Method: MA-VPH **Lab Prep Batch:** WG345505

Report Date: 01-DEC-23 **Analysis Date:** 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		102.	%					
2,5-Dibromotoluene (PID)		103.	%					

Page 1 of 1

1

12

1:

Report of Analytical Results

SDG: SQ6279 **Lab ID:**SQ6279-5

Client ID: LFM-99-06A-RP-FAL23

Matrix:AQ

Lab File ID: 2QK10047.D

Sample Date: 07-NOV-23 Extract Date: 16-NOV-23

Extracted By:DL

Extraction Method: MA-VPH **Lab Prep Batch:** WG345505

Report Date: 01-DEC-23 **Analysis Date:** 16-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		97.8	%					
2,5-Dibromotoluene (PID)		97.3	%					

Page 1 of 1

1

11

12

Report of Analytical Results

SDG: SQ6279 Lab ID:SQ6279-6 Client ID: TRIP BLANK

Matrix:AQ

Lab File ID: 2QL10055.D

Sample Date: 07-NOV-23 Extract Date: 15-DEC-23 Extracted By:DL/SH

Extraction Method: MA-VPH

Lab Prep Batch: WG347010

Report Date: 21-DEC-23 **Analysis Date:** 15-DEC-23

Analyst: DL/SH

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		87.1	%					
2,5-Dibromotoluene (PID)		82.3	%					

Page 1 of 1

10

Report of Analytical Results

SDG: SQ6279 Lab ID:WG345505-1 Client ID:Method Blank

Matrix:AQ

Lab File ID: 2QK10037.D

Sample Date: N/A Extract Date: 15-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345505

Report Date: 01-DEC-23 **Analysis Date:** 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		79.4	%					
2,5-Dibromotoluene (PID)		84.0	%					

Page 1 of 1

1

12

Report of Analytical Results

SDG: SQ6279 Lab ID:WG347010-1 Client ID:Method Blank

Matrix:AQ

Lab File ID: 2QL10051.D

Sample Date: N/A Extract Date: 15-DEC-23 Extracted By:DL/SH

Extraction Method: MA-VPH

Lab Prep Batch: WG347010

Report Date: 27-DEC-23 **Analysis Date:** 15-DEC-23

Analyst: DL/SH

Analysis Method: MA DEP VPH 04-1.1

% Solids: N/A

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
C5-C8 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C12 Aliphatics	U	75	ug/L	1	100	100	50.	75.
C9-C10 Aromatics	U	75	ug/L	1	100	100	50.	75.
Benzene	U	2.0	ug/L	1	3	3.0	0.31	2.0
Ethylbenzene	U	3.8	ug/L	1	5	5.0	0.42	3.8
Methyl tert-butylether	U	3.8	ug/L	1	5	5.0	0.31	3.8
Naphthalene	U	3.8	ug/L	1	5	5.0	1.6	3.8
Toluene	U	3.8	ug/L	1	5	5.0	0.34	3.8
m+p-Xylenes	U	7.5	ug/L	1	10	10.	0.92	7.5
o-Xylene	U	3.8	ug/L	1	5	5.0	0.47	3.8
2,5-Dibromotoluene (FID)		85.1	%					
2,5-Dibromotoluene (PID)		79.3	%					

Page 1 of 1

12

2

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services SDG: SQ6279 Matrix: AQ

Client Sample ID	Lab Sample ID	Col. ID	DBT-FIL #	DBT-PIL #
DCL-DUP01-FAL23	SQ6279-1	В	75.4	73.0
LFM-03-07-FAL23	SQ6279-2	В	88.2	87.6
LFM-99-02B-FAL23	SQ6279-3	В	88.1	90.6
LFM-99-05A-FAL23	SQ6279-4	В	102.	103.
LFM-99-06A-RP-FAL23	SQ6279-5	В	97.8	97.3
TRIP BLANK	SQ6279-6	В	87.1	82.3
Method Blank	WG345505-1	В	79.4	84.0
Laboratory Control S	WG345505-2	В	108.	113.
Laboratory Control S	WG345505-3	В	112.	117.
Matrix Spike	WG345505-4	В	107.	108.
Matrix Spike Duplica	WG345505-5	В	108.	107.
Method Blank	WG347010-1	В	85.1	79.3
Laboratory Control S	WG347010-2	В	87.1	88.9
Laboratory Control S	WG347010-3	В	90.0	90.0

Abbr.	Surrogate Compound	QC Limits
DBT-FID	2,5-Dibromotoluene (FID)	70-130
DBT-PID	2,5-Dibromotoluene (PID)	70-130

= Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

http://katahdinlab.com sales@katahdinlab.com

LCS/LCSD Recovery Report

LCS ID: WG345505-2 LCSD ID: WG345505-3

SDG: SQ6279

LCS File ID: 2QK10038.D

Extract Date: 15-NOV-23 Extracted By: DL

Extraction Method: MA-VPH

Lab Prep Batch: WG345505

LCSD File ID: 2QK10039.D

Analysis Date: 15-NOV-23

Analyst: DL

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 01-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300.	291.	97.0	297.	99.0	ug/L	2	25	70-130
Unadjusted C9-C12 Aliphatics	200.	237.	118.	236.	118.	ug/L	0	25	70-130
C9-C10 Aromatics	100.	113.	113.	115.	115.	ug/L	2	25	70-130
Benzene	100.	101.	101.	101.	101.	ug/L	0	25	70-130
Ethylbenzene	100.	105.	105.	106.	106.	ug/L	1	25	70-130
Methyl tert-butylether	100.	97.6	97.6	98.4	98.4	ug/L	1	25	70-130
Naphthalene	100.	109.	109.	111.	111.	ug/L	2	25	70-130
Toluene	100.	103.	103.	104.	104.	ug/L	1	25	70-130
m+p-Xylenes	200.	205.	102.	207.	104.	ug/L	1	25	70-130
o-Xylene	100.	107.	107.	108.	108.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			108.		112.				70-130
2,5-Dibromotoluene (PID)			113.		117.				70-130

LCS/LCSD Recovery Report

LCS ID: WG347010-2 LCSD ID: WG347010-3

SDG: SQ6279

LCS File ID: 2QL10053.D

Extract Date: 15-DEC-23 Extracted By: DL/SH **Extraction Method:** MA-VPH

Lab Prep Batch: WG347010

LCSD File ID: 2QL10054.D

Analysis Date: 15-DEC-23

Analyst: DL/SH

Analysis Method: MA DEP VPH 04-1.1

Matrix: AQ

Report Date: 27-DEC-23

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Compound	741110	Conc	100 (70)	Conc	RCC (/0)	Cints	KLD (70)	Limit	Lillits
Unadjusted C5-C8 Aliphatics	300.	296.	98.7	266.	88.7	ug/L	11	25	70-130
Unadjusted C9-C12 Aliphatics	200.	232.	116.	223.	112.	ug/L	4	25	70-130
C9-C10 Aromatics	100.	109.	109.	109.	109.	ug/L	0	25	70-130
Benzene	100.	97.5	97.5	98.0	98.0	ug/L	0	25	70-130
Ethylbenzene	100.	101.	101.	102.	102.	ug/L	1	25	70-130
Methyl tert-butylether	100.	91.8	91.8	93.4	93.4	ug/L	2	25	70-130
Naphthalene	100.	104.	104.	100.	100.	ug/L	4	25	70-130
Toluene	100.	99.6	99.6	100.	100.	ug/L	0	25	70-130
m+p-Xylenes	200.	198.	99.0	197.	98.5	ug/L	0	25	70-130
o-Xylene	100.	103.	103.	102.	102.	ug/L	1	25	70-130
2,5-Dibromotoluene (FID)			104.		108.				70-130
2,5-Dibromotoluene (PID)			105.		99.6				70-130

MS ID: WG345505-4 **MSD ID:** WG345505-5 **Sample ID:** SQ6279-3

Client ID: LFM-99-02B-FAL23

SDG: SQ6279

MS File ID: 2QK10044.D

MS/MSD Recovery Report

Extract Date: 15-NOV-23 Analysis Date: 15-NOV-23

Extracted By: DL Analyst: DL

Extraction Method: MA-VPH **Analysis Method:** MA DEP VPH 04-1.1

Lab Prep Batch: WG345505 **Matrix:** AQ **Report Date:** 01-DEC-23 **% Solids:** N/A

MSD File ID: 2QK10045.D Sample File ID: 2QK10043.D

Compound	MS Spike	MSD Spike	Conc Units	Samp Conc	MS Conc	MSD Conc	MS Rec (%)	MSD Rec (%)	RPD (%)	RPD Limit	Limits
Unadjusted C5-C8 Aliphatics	300	300	ug/L	U75	339	349	113.	116.	3	50	70-130
Unadjusted C9-C12 Aliphatics	200	200	ug/L	U75	237	242	118.	121.	2	50	70-130
C9-C10 Aromatics	100	100	ug/L	U75	112	111	112.	111.	1	50	70-130
Benzene	100	100	ug/L	U2.0	102	102	102.	102.	0	50	70-130
Ethylbenzene	100	100	ug/L	U3.8	106	106	106.	106.	0	50	70-130
Methyl tert-butylether	100	100	ug/L	U3.8	92.9	92.3	92.9	92.3	1	50	70-130
Naphthalene	100	100	ug/L	U3.8	104	102	104.	102.	2	50	70-130
Toluene	100	100	ug/L	U3.8	104	104	104.	104.	0	50	70-130
m+p-Xylenes	200	200	ug/L	U7.5	206	207	103.	104.	0	50	70-130
o-Xylene	100	100	ug/L	U3.8	106	106	106.	106.	0	50	70-130
2,5-Dibromotoluene (FID)							107.	108.			70-130
2,5-Dibromotoluene (PID)							108.	107.			70-130

Form 4 **Method Blank Summary**

Lab File ID: 2QK10037.D

SDG: SQ6279

Instrument ID: GC02 Heated Purge: No

Lab Sample ID: WG345505-1 **Date Analyzed:** 15-NOV-23

Prep Temperature (C): N/A

Time Analyzed: 16:24

This Method Blank applies to the following samples and QC samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	
Laboratory Control S	WG345505-2	2QK10038.	11/15/23	17:05	
Laboratory Control S	WG345505-3	2QK10039.	11/15/23	17:46	
DCL-DUP01-FAL23	SQ6279-1	2QK10041.	11/15/23	19:56	
LFM-03-07-FAL23	SQ6279-2	2QK10042.	11/15/23	20:38	
LFM-99-02B-FAL23	SQ6279-3	2QK10043.	11/15/23	21:20	
Matrix Spike	WG345505-4	2QK10044.	11/15/23	22:03	
Matrix Spike Duplica	WG345505-5	2QK10045.	11/15/23	22:45	
LFM-99-05A-FAL23	SQ6279-4	2QK10046.	11/15/23	23:28	
LFM-99-06A-RP-FAL23	SQ6279-5	2QK10047.	11/16/23	00:10	

Form 4 Method Blank Summary

Lab File ID: 2QL10051.D

SDG: SQ6279

Instrument ID : GC02 Heated Purge : No

Lab Sample ID: WG347010-1 Date Analyzed: 15-DEC-23

Prep Temperature (C): N/A

Time Analyzed: 18:47

This Method Blank applies to the following samples and QC samples:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed	
Laboratory Control S	WG347010-2	2QL10053.	12/15/23 20:11	
Laboratory Control S	WG347010-3	2QL10054.	12/15/23 20:54	
TRIP BLANK	SQ6279-6	2QL10055.	12/15/23 21:36	

9

5

6

7

8

46

11

12

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SQ6279

Instrument ID: GC02 **Column ID:** A

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D **Calibration Date(s)**: 08-SEP-23 11:40 2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Curve				%RSD	or R^2	
	1.0000	5.0000	10.0000	50.0000	100.0000	300.0000	Type	b	m1	m2	Result		
C9-C10 Aromatic	967	830	925	1037	1086	770	AVG		936		12.87041	25	О
Methyl tert-butylether	643	650	664	672	675	484	AVG		631		11.59012	25	О
Benzene	1284	1153	1230	1239	1246	873	AVG		1171		12.99251	25	О
Toluene	1077	998	1087	1130	1135	790	AVG		1036		12.58364	25	О
Ethylbenzene	1031	825	912	984	1004	700	AVG		909		13.93204	25	O
m+p-Xylene	1280	1073	1172	1224	1227	847	AVG		1137		13.93579	25	О
o-Xylene	980	914	1008	1056	1063	743	AVG		961		12.47813	25	О
1,2,4-trimethylbenzene	967	830	925	1037	1086	770	AVG		936		12.87041	25	О
Naphthalene	1131	931	965	1148	1264	1053	AVG		1082		11.47660	25	О
2,5-Dibromotoluene (PID)	868	610	669	803	920	714	AVG		764		15.69288	25	

 $Legend: O = Acceptable; \ \ W = Failed \ \% RSD \ Value; \ \ X = Failed \ R^2 \ Value; \ \ Y = Failed \ Minimum \ RF$

1/5/2024

3

5

8

10

11

12

Form 6 **Initial Calibration Summary**

SDG: SQ6279 Lab Name: Katahdin Analytical Services

Instrument ID: GC02 Column ID: B

Lab File IDs: 2QI10007.D 2QI10008.D 2QI10009.D Calibration Date(s): 08-SEP-23 11:40 2QI10006.D 2QI10010.D 2QI10011.D 08-SEP-23 15:06

	Level 1 1.0000	Level 2 5.0000	Level 3 10.0000	Level 4 50.0000	Level 5 100.0000	Level 6 300.0000	Curve Type	b	m1	m2	%RSD Result		
C5-C8 Aliphatic	1368	1462	1510	1515	1550	1110	AVG		1419		11.55808	25	О
C9-C12 Aliphatic	1382	987	1139	1412	1613	1351	AVG		1314		16.76788	25	О
n-Pentane	1678	1360	1331	1423	1436	1022	AVG		1375		15.42459	25	О
2-Methylpentane	1325	1489	1568	1504	1565	1104	AVG		1426		12.68114	25	О
Methyl tert-butylether	1263	1466	1350	1342	1364	980	AVG		1294		12.92115	25	О
2,2,4-Trimethylpentane	1102	1535	1630	1619	1650	1205	AVG		1457		16.50443	25	О
Benzene	2236	1912	2014	2062	2078	1440	AVG		1957		14.02254	25	О
Toluene	2246	1805	1973	2008	2022	1402	AVG		1909		14.97234	25	О
n-Nonane	1233	1074	1149	1315	1445	1251	AVG		1244		10.38257	25	О
n-Decane	1302	833	875	1165	1553	1352	AVG		1180		23.90207	25	О
Ethylbenzene	1982	1598	1747	1898	1949	1366	AVG		1757		13.60981	25	О
m+p-Xylene	2144	1814	1973	2094	2091	1446	AVG		1927		13.69605	25	О
o-Xylene	2030	1823	2010	2129	2137	1484	AVG		1935		12.83633	25	О
1,2,4-trimethylbenzene	1886	1537	1710	1887	1985	1413	AVG		1736		12.94449	25	О
n-Butylcyclohexane	1461	1141	1402	1660	1673	1350	AVG		1448		13.85802	25	О
Naphthalene	1511	1246	1284	1588	1686	1382	AVG		1450		12.03582	25	О
2,5-Dibromotoluene (FID)	653	397	443	529	572	438	AVG		505		19.17753	25	

Legend: O = Acceptable; W = Failed %RSD Value; X = Failed R^2 Value; Y = Failed Minimum RF

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG345505-6 **Lab File ID:** 2QK10036.D

Analytical Date: 11/15/23 11:50

Lab File ID: 2QK10036.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	1020	1020	0.100	9.01948	25.000	Averaged
Methyl tert-butylether	631	638	638	0.100	1.13102	25.000	Averaged
Benzene	1171	1194	1194	0.100	2.00498	25.000	Averaged
Toluene	1036	1107	1107	0.100	6.86161	25.000	Averaged
Ethylbenzene	909	965	965	0.100	6.12663	25.000	Averaged
m+p-Xylene	1137	1195	1195	0.100	5.11898	25.000	Averaged
o-Xylene	961	1038	1038	0.100	8.03612	25.000	Averaged
1,2,4-trimethylbenzene	936	1020	1020	0.100	9.01779	25.000	Averaged
Naphthalene	1082	1081	1081	0.100	-0.07677	25.000	Averaged
2,5-Dibromotoluene (PID)	764	739	739	0.100	-3.28710	25.000	Averaged

^{* =} Compound out of QC criteria

-

3

4

5

1

9

10

-

1 4

1

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG345505-6 **Lab File ID:** 2QK10036.D

Analytical Date: 11/15/23 11:50

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type	Qual
C5-C8 Aliphatic	1419	1237	1237	0.100	-12.84930	25.000	Averaged	
C9-C12 Aliphatic	1314	1372	1372	0.100	4.42826	25.000	Averaged	
n-Pentane	1375	841	841	0.100	-38.82820	25.000	Averaged	*
2-Methylpentane	1426	1265	1265	0.100	-11.28928	25.000	Averaged	
Methyl tert-butylether	1294	1375	1375	0.100	6.28504	25.000	Averaged	
2,2,4-Trimethylpentane	1457	1605	1605	0.100	10.14292	25.000	Averaged	
Benzene	1957	2126	2126	0.100	8.66053	25.000	Averaged	
Toluene	1909	2107	2107	0.100	10.36828	25.000	Averaged	
n-Nonane	1244	1339	1339	0.100	7.61078	30.000	Averaged	
n-Decane	1180	1120	1120	0.100	-5.06905	25.000	Averaged	
Ethylbenzene	1757	1999	1999	0.100	13.76726	25.000	Averaged	
m+p-Xylene	1927	2195	2195	0.100	13.90813	25.000	Averaged	
o-Xylene	1935	2243	2243	0.100	15.87075	25.000	Averaged	
1,2,4-trimethylbenzene	1736	1982	1982	0.100	14.14904	25.000	Averaged	
n-Butylcyclohexane	1448	1624	1624	0.100	12.16906	25.000	Averaged	
Naphthalene	1450	1540	1540	0.100	6.24772	25.000	Averaged	
2,5-Dibromotoluene (FID)	505	523	523	0.100	3.59459	25.000	Averaged	

^{*} = Compound out of QC criteria

1/5/2024

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG345505-7

Analytical Date: 11/16/23 00:52

Lab File ID: 2QK10048.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift Curve	Type Qual
C9-C10 Aromatic	936	1026	1026	0.100	9.66316	25.000 Avera	aged
Methyl tert-butylether	631	645	645	0.100	2.14173	25.000 Avera	aged
Benzene	1171	1183	1183	0.100	1.04838	25.000 Avera	aged
Toluene	1036	1099	1099	0.100	6.07600	25.000 Avera	aged
Ethylbenzene	909	961	961	0.100	5.72412	25.000 Avera	aged
m+p-Xylene	1137	1194	1194	0.100	5.00554	25.000 Avera	aged
o-Xylene	961	1038	1038	0.100	8.02363	25.000 Avera	aged
1,2,4-trimethylbenzene	936	1026	1026	0.100	9.66110	25.000 Avera	aged
Naphthalene	1082	1125	1125	0.100	4.02368	25.000 Avera	aged
2,5-Dibromotoluene (PID)	764	815	815	0.100	6.68392	25.000 Avera	aged

^{* =} Compound out of QC criteria

-

6

8

9

11

12

13

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG345505-7

Analytical Date: 11/16/23 00:52

Lab File ID: 2QK10048.D

Instrument ID: GC02

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type	Qual
C5-C8 Aliphatic	1419	1160	1160	0.100	-18.26800	25.000	Averaged	
C9-C12 Aliphatic	1314	1263	1263	0.100	-3.84179	25.000	Averaged	
n-Pentane	1375	768	768	0.100	-44.15191	25.000	Averaged	*
2-Methylpentane	1426	1194	1194	0.100	-16.25973	25.000	Averaged	
Methyl tert-butylether	1294	1420	1420	0.100	9.76235	25.000	Averaged	
2,2,4-Trimethylpentane	1457	1518	1518	0.100	4.19578	25.000	Averaged	
Benzene	1957	2151	2151	0.100	9.91672	25.000	Averaged	
Toluene	1909	2109	2109	0.100	10.46047	25.000	Averaged	
n-Nonane	1244	1228	1228	0.100	-1.30562	30.000	Averaged	
n-Decane	1180	1013	1013	0.100	-14.16384	25.000	Averaged	
Ethylbenzene	1757	2010	2010	0.100	14.41279	25.000	Averaged	
m+p-Xylene	1927	2172	2172	0.100	12.71599	25.000	Averaged	
o-Xylene	1935	2239	2239	0.100	15.69301	25.000	Averaged	
1,2,4-trimethylbenzene	1736	2018	2018	0.100	16.22245	25.000	Averaged	
n-Butylcyclohexane	1448	1514	1514	0.100	4.57122	25.000	Averaged	
Naphthalene	1450	1650	1650	0.100	13.82206	25.000	Averaged	
2,5-Dibromotoluene (FID)	505	560	560	0.100	10.82994	25.000	Averaged	

^{* =} Compound out of QC criteria

1/5/2024

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG347010-4 **Lab File ID:** 2QL10047.D

Analytical Date: 12/15/23 13:56

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C9-C10 Aromatic	936	1039	1039	0.100	11.01787	25.000	Averaged
Methyl tert-butylether	631	631	631	0.100	-0.08880	25.000	Averaged
Benzene	1171	1223	1223	0.100	4.47849	25.000	Averaged
Toluene	1036	1125	1125	0.100	8.53898	25.000	Averaged
Ethylbenzene	909	982	982	0.100	7.97862	25.000	Averaged
m+p-Xylene	1137	1217	1217	0.100	7.02998	25.000	Averaged
o-Xylene	961	1051	1051	0.100	9.37681	25.000	Averaged
1,2,4-trimethylbenzene	936	1039	1039	0.100	11.01610	25.000	Averaged
Naphthalene	1082	1066	1066	0.100	-1.47071	25.000	Averaged
2,5-Dibromotoluene (PID)	764	711	711	0.100	-6.90222	25.000	Averaged

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG347010-4 **Lab File ID:** 2QL10047.D

Analytical Date: 12/15/23 13:56

Lab File ID: 2QL10047.D **Initial Calibration Date(s):** 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D %Drift	Curve Type Qual
C5-C8 Aliphatic	1419	1505	1505	0.100	6.00902	25.000	Averaged
C9-C12 Aliphatic	1314	1474	1474	0.100	12.15467	25.000	Averaged
n-Pentane	1375	1407	1407	0.100	2.32149	25.000	Averaged
2-Methylpentane	1426	1460	1460	0.100	2.35421	25.000	Averaged
Methyl tert-butylether	1294	1457	1457	0.100	12.60601	25.000	Averaged
2,2,4-Trimethylpentane	1457	1647	1647	0.100	13.06570	25.000	Averaged
Benzene	1957	2279	2279	0.100	16.49099	25.000	Averaged
Toluene	1909	2234	2234	0.100	17.00362	25.000	Averaged
n-Nonane	1244	1404	1404	0.100	12.84041	30.000	Averaged
n-Decane	1180	1211	1211	0.100	2.65797	25.000	Averaged
Ethylbenzene	1757	2129	2129	0.100	21.21421	25.000	Averaged
m+p-Xylene	1927	2301	2301	0.100	19.40019	25.000	Averaged
o-Xylene	1935	2334	2334	0.100	20.61814	25.000	Averaged
1,2,4-trimethylbenzene	1736	2116	2116	0.100	21.86672	25.000	Averaged
n-Butylcyclohexane	1448	1736	1736	0.100	19.89400	25.000	Averaged
Naphthalene	1450	1620	1620	0.100	11.78568	25.000	Averaged
2,5-Dibromotoluene (FID)	505	494	494	0.100	-2.26336	25.000	Averaged

^{* =} Compound out of QC criteria

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG347010-5 **Lab File ID:** 2QL10059.D

Analytical Date: 12/16/23 00:25

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type Qual
C9-C10 Aromatic	936	1040	1040	0.100	11.12937	25.000	Averaged
Methyl tert-butylether	631	636	636	0.100	0.76032	25.000	Averaged
Benzene	1171	1195	1195	0.100	2.09210	25.000	Averaged
Toluene	1036	1090	1090	0.100	5.20740	25.000	Averaged
Ethylbenzene	909	961	961	0.100	5.66253	25.000	Averaged
m+p-Xylene	1137	1192	1192	0.100	4.83493	25.000	Averaged
o-Xylene	961	1038	1038	0.100	8.06735	25.000	Averaged
1,2,4-trimethylbenzene	936	1040	1040	0.100	11.12937	25.000	Averaged
Naphthalene	1082	1060	1060	0.100	-1.97541	25.000	Averaged
2,5-Dibromotoluene (PID)	764	713	713	0.100	-6.68756	25.000	Averaged

^{* =} Compound out of QC criteria

3

4

5

0

8

10

11

12

13

Lab Name: Katahdin Analytical Services

SDG: SQ6279

Lab ID: WG347010-5 **Lab File ID:** 2QL10059.D

Analytical Date: 12/16/23 00:25

Initial Calibration Date(s): 09/08/23 11:40 09/08/23 15:06

Instrument ID: GC02 Column ID: B

Compound	RRF/Amount	RF50	CCAL RRF50	Min RF	%D/ %Drift	Max %D/ %Drift	Curve Type	Qual
C5-C8 Aliphatic	1419	1366	1366	0.100	-3.76582	25.000	Averaged	
C9-C12 Aliphatic	1314	1131	1131	0.100	-13.94913	25.000	Averaged	
n-Pentane	1375	1402	1402	0.100	1.99567	25.000	Averaged	
2-Methylpentane	1426	1286	1286	0.100	-9.81946	25.000	Averaged	
Methyl tert-butylether	1294	1444	1444	0.100	11.55200	25.000	Averaged	
2,2,4-Trimethylpentane	1457	1409	1409	0.100	-3.27796	25.000	Averaged	
Benzene	1957	2205	2205	0.100	12.69075	25.000	Averaged	
Toluene	1909	2153	2153	0.100	12.75361	25.000	Averaged	
n-Nonane	1244	1077	1077	0.100	-13.46041	30.000	Averaged	
n-Decane	1180	881	881	0.100	-25.36370	25.000	Averaged	*
Ethylbenzene	1757	2065	2065	0.100	17.54368	25.000	Averaged	
m+p-Xylene	1927	2241	2241	0.100	16.32459	25.000	Averaged	
o-Xylene	1935	2294	2294	0.100	18.51313	25.000	Averaged	
1,2,4-trimethylbenzene	1736	2102	2102	0.100	21.03736	25.000	Averaged	
n-Butylcyclohexane	1448	1381	1381	0.100	-4.64566	25.000	Averaged	
Naphthalene	1450	1721	1721	0.100	18.70882	25.000	Averaged	
2,5-Dibromotoluene (FID)	505	580	580	0.100	14.68906	25.000	Averaged	

^{*} = Compound out of QC criteria

1/5/2024

Form 8 GC Analytical Sequence

Lab Name: Katahdin Analytical Services SDG: SQ6279

Instrument ID: GC02

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	DBT (FID)	DBT (PID)
Initial Calibration	WG342400-4	09/08/23	11:40		31.608
Initial Calibration	WG342400-4	09/08/23	11:40	31.597	
Initial Calibration	WG342400-1	09/08/23	12:21		31.591
Initial Calibration	WG342400-1	09/08/23	12:21	31.577	
Initial Calibration	WG342400-2	09/08/23	13:02		31.599
Initial Calibration	WG342400-2	09/08/23	13:02	31.589	
Initial Calibration	WG342400-3	09/08/23	13:43		31.593
Initial Calibration	WG342400-3	09/08/23	13:43	31.583	
Initial Calibration	WG342400-5	09/08/23	14:25		31.599
Initial Calibration	WG342400-5	09/08/23	14:25	31.588	
Initial Calibration	WG342400-6	09/08/23	15:06		31.597
Initial Calibration	WG342400-6	09/08/23	15:06	31.587	
Independent Source	WG342400-7	09/08/23	17:40	31.599	31.612
Continuing Calibrati	WG345505-6	11/15/23	11:50	31.5	31.51
Method Blank	WG345505-1	11/15/23	16:24	31.516	31.526
Laboratory Control S	WG345505-2	11/15/23	17:05	31.499	31.509
Laboratory Control S	WG345505-3	11/15/23	17:46	31.495	31.505
DCL-DUP01-FAL23	SQ6279-1	11/15/23	19:56	31.474	31.485
LFM-03-07-FAL23	SQ6279-2	11/15/23	20:38	31.46	31.47
LFM-99-02B-FAL23	SQ6279-3	11/15/23	21:20	31.451	31.461
Matrix Spike	WG345505-4	11/15/23	22:03	31.456	31.466
Matrix Spike Duplica	WG345505-5	11/15/23	22:45	31.442	31.452
LFM-99-05A-FAL23	SQ6279-4	11/15/23	23:28	31.449	31.459
LFM-99-06A-RP-FAL23	SQ6279-5	11/16/23	00:10	31.445	31.455
Continuing Calibrati	WG345505-7	11/16/23	00:52	31.448	31.458
Continuing Calibrati	WG347010-4	12/15/23	13:56	31.49	31.5
Method Blank	WG347010-1	12/15/23	18:47	31.519	31.53
Laboratory Control S	WG347010-2	12/15/23	20:11	31.448	31.461
Laboratory Control S	WG347010-3	12/15/23	20:54	31.451	31.464
TRIP BLANK	SQ6279-6	12/15/23	21:36	31.451	31.464
Continuing Calibrati	WG347010-5	12/16/23	00:25	31.454	31.46

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029 4

6

9

11

12

1

ARVC

Heather Levesque

669 Marina Drive, Suite B7, Charleston, SC 29492 (843) 619-370-0374, jennifer.singer@arcadis.com of Engineers ®

US Army Corps

Laboratory: Eurofins Environment Testing TestAmerica, Savannah, GA Event: Seres-Arcadis JV, Long Term Project Name: Former Fort Devens, Long Term Monitoring Monitoring, DCL, Fall 2023 Project Number: DEVNS-LTM PO 2312 - 00000001 POC: Jerry Lanier, 912-250-0281, jerry.lanier@eurofinsus.com WBS Code: Ship to: Eurofins TestAmerica, 5102 LaRoche Avenue, Savannah, GA 31404 Code Matrix Comments: A2320B (A) = Alkalinity Ground Water WG E353.2 (A) = Nitrite Nitrate as N MADEPEP (A) = EPH with PAHs MADEPVP (A) = VPH with targets Code Container/Preservative SW6010C (D) = Ba Cd Cr Cu Fe Pb Mn Se Ag EPH SW7470A (A) = Mercury 2x 1 Liter, amber, glass, 1:1 HCl to pH =2; Cool < 6degC SW8081B (A) = Pesticides WH 3x 40mL glass VOA Viais, HCl, pH < 2; Cool < 6degC 4 SW9012B (A) = Cyanide contander sul fate SW9056A (A) = CI SO4 5 1x 125mL plastic, Cool < 6degC cyande 1x 125mL, plastic, Cool < 6degC 6 1x 250mL, plastic, HNO3, pH < 2; Cool < 6degC 21 1x 2-1 Liter, amber, glass, Cool < 6degC Restrade Equipment: 46 1x 250mL, plastic, Cool < 6degC SW9056A (A) A2540C - TDS 3 MADEPVP (A) SW6020A - As 3 47 1x 500mL, amber glass, H2SO4; Cool < 6degC E410.4 - COD SW8081B (A) SW6010C (D) SW9012B (A) 48 1x 250mL plastic, NaOH to pH >12; Cool < 6degC 1x 500mL plastic, Cool < 6degC TOS 46 49 47 2 9 21 Event: Seres-Arcadis JV, Long Term Monitoring, DCL, Fall 2023 6 4 9 9 Sample Depth (ft bas) Samp Type Top - Bottom Cooler Comments Location ID Sample ID Matrix Init. 7 LFM-99-05A 19.00 29.98 DCL-DUP01-FAL23 FD1 |x|x|xX Х Х X Х Х LFM-03-07 10.90 20.90 1 WG LFM-03-07-FAL23 Х 2 1000 Х Х Х Х Х N1 LFM-99-02B 14.50 25.83 1 WG LFM-99-02B-FAL23 Х x Х MS1 3 Х Х Х LFM-99-02B 14.50 25.83 1 LFM-99-02B-FAL23 WG Х Х Х х х N1 14.50 25.83 LFM-99-02B-FAL23 WG Х Х Х Х Х Х Х Х LFM-99-02B SD1 1 19.00 29.98 LFM-99-05A-FAL23 WG LFM-99-05A 1 6 Х Х Х Х Х Х Х N1 LFM-99-06A-RP 17.50 32.50 LFM-99-06A-RP-FAL23 WG N₁ 1 7 Х X Х Х х 8 9 10 11 12 13 14 15 16 680-242830 Chain of Custody 17 Turnaround Time: NA

Relinquished by: (Signature)

Date

Time

Received by: (Signature)

Received by Laboratory: (Signature)

Page Fine of 86

8/ m 11-10-23 1006 2.2/25 4.4/4.7 0.4/07 11.5/2/0242

Ver: 35/08/232;

Cooler Temperature(s) % and Other Remarks:

Company

Date/Time:

Eurofins Savannah

Phone: 912-354-7858 Fax: 912-352-0165 5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

Environment Testing

💸 eurofins

Vote: Since laboratory accreditations are subject to change, Eurofins Environment Testing Southeast, LLC places the ownership of method, analyte & accreditation our subcontract laboratory or other instructions will be provided. Any changes to accreditation analysis/ests/matrix being analysed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC alteration in the State of Origin listed above for analysis/ests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Southeast, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Oustody attesting to said compliance to Eurofins Environment Testing Southeast, LLC S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Special Instructions/Note: Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 Months Y - Trizma Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes. COC No: 680-756059.1 H - Ascorbic Acid 680-242830-1 C - Zn Acetate D - Nitric Acid E - NaHSO4 Page 1 of 1 F - MeOH G - Amchlor I - Ice J - DI Water K - EDTA L - EDA A - HCL B - NaOH Total Number of containers ~ Υ---~ --- ~ Carrier Tracking No(s): Massachusetts State of Origin: **Analysis Requested** Dept. of Defense ELAP - A2LA; DoD - ANAB Accreditations Required (See note) Jerry.Lanier@et.eurofinsus.com Lab PM: Lanier, Jerry A × × × × × × 110.4/ COD × Perform MS/MSD (Yes or No) BT=Tissue, A=Air) S=solid, O=waste/oil, Preservation Code: Matrix Water Water Water Water Water Water Water (C=comp, G=grab) Sample Type MSD SE Eastern 12:15 Eastern 10:35 Eastern 12:15 Eastern 08:52 Eastern 10:00 Eastern 12:15 10:35 Eastern TAT Requested (days): Due Date Requested: Sample Date 11/7/23 11/7/23 11/7/23 11/7/23 11/7/23 11/7/23 11/7/23 11/27/2023 Project #: 68023801 Phone: :#OM Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) FM-99-02B-FAL23 (680-242830-3MSD) FM-99-06A-RP-FAL23 (680-242830-5) 303-431-7171(Fax) Seres-Arcadis JV, LTM DCL, Fall 2023 FM-99-02B-FAL23 (680-242830-3MS) .FM-99-05A-FAL23 (680-242830-4) JCL-DUP01-FAL23 (680-242830-1) .FM-99-02B-FAL23 (680-242830-3) .FM-03-07-FAL23 (680-242830-2) Possible Hazard Identification TestAmerica Laboratories, Inc. 4955 Yarrow Street, Shipping/Receiving 303-736-0100(Tel) Inconfirmed State, Zip: CO, 80002 Arvada mail:

SET DA 5276 ~ とサニス Date/Time: Method of Shipment Special Instructions/QC Requirements: Received by: Time: Company 70 Primary Deliverable Rank: 2 Date: \mathcal{N} Deliverable Requested: I, II, III, IV, Other (specify) Empty Kit Relinquished by: inquished by: elinquished by:

elinquished by:

Custody Seal No.

Eurofins Savannah

5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

🔆 eurofins

Environment Testing

Phone: 912-354-7858 Fax: 912-352-0165										<u> </u>									
Client Information (Sub Contract Lab)	Sampler				PM nier, J	Jerry	Α					Carrie	r Trackir	g No(s)			COC No 680-756064_1		
Client Information (Sub Contract Lab) Client Contact Shipping/Receiving	Phone:			E-M Jer		nier	@et e	urofinsi	JS.COI	m			of Origin sachus	etts			Page: Page 1 of 1		
Company Eurofins Lancaster Laboratories Environm								equired (; DoD	- ANAE	3	-		- 1	Job # 680-242830-1		
Address 2425 New Holland Pike,	Due Date Request 11/27/2023	ed:							Ar	nalys	is R	eques	ted			- 1	Preservation Cod	les: M - Hexane	
City Lancaster	TAT Requested (d	ays):			72												B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O45	
State, Zip PA, 17601																	D - Nitric Acid E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3	
Phone 717-656-2300(Tel)	PO#				6		000										G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydr U - Acetone	ate
Email:	WO #				s or N	No)	EPH				1						J - Ice J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Project Name Seres-Arcadis JV, LTM DCL, Fall 2023	Project #: 68023801				Sample (Yes or No	(Yes or	14d M/									ntain	L - EDA	Y - Trizma Z - other (specify)	
Site:	SSOW#					MS/MSD (1510C									0	Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, D=waste/oll, BT=Tissue, A=Ai	Field Filtered	Perform MS/	MAEPH_DOD/3510C_14d MA EPH DOD									Total Number	Special In	structions/Note:	
		$\geq \leq$	Preserva	tion Code:	X	X					3/13					X			
DCL-DUP01-FAL23 (680-242830-1)	11/7/23	10:35 Eastern		Water			х									2			
LFM-03-07-FAL23 (680-242830-2)	11/7/23	10:00 Eastern		Water			X									2			
LFM-99-02B-FAL23 (680-242830-3)	11/7/23	12:15 Eastern		Water	Ц		Х									2			
LFM-99-02B-FAL23 (680-242830-3MS)	11/7/23	12:15 Eastern	MS	Water	Ш		X	\perp								2			
LFM-99-02B-FAL23 (680-242830-3MSD)	11/7/23	12:15 Eastern	MSD	Water	Ш		X						_			2			
LFM-99-05A-FAL23 (680-242830-4)	11/7/23	10:35 Eastern		Water	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		X		Ш							2			
LFM-99-06A-RP-FAL23 (680-242830-5)	11/7/23	08:52 Eastern		Water	\coprod		X	_					_	11	\perp	2			
					\mathbb{H}	\dashv	-	-			_	+	-	++	+				
					Ш														
Note: Since laboratory accreditations are subject to change. Eurofins Environ does not currently maintain accreditation in the State of Origin listed above to status should be brought to Eurofins Environment Testing Southeast. LLC at	r analysis/tests/matrix be	ing analyzed, t	the samples mu	st be shipped	back t	o the	Eurofin	s Environ	nment '	Testing	Southe	ast, LLC	laborato	y or other	instructions	s will	be provided. Any cl	hanges to accreditation	
Possible Hazard Identification						San	_				ay be	1					d longer than 1	•	
Unconfirmed		-N-D-1			_			um To				Dispos	al By I	.ab	A _I	rchiv	ve For	Months	
Deliverable Requested I, II, III, IV, Other (specify)	Primary Deliver		2				cial In	structio	ns/Q	C Rec	quirem								
Empty Kit Relinquished by		Date:			Tin	ne:						1	Method	of Shipmer	nt:				
Relinquished by	Date/Time /2	1:00		Company			Receive	d by						Date/Ti	ime			Company	
Relinquished by	Date/Time 1/-	13-1	35	Company			Receive	ed by						Date/Ti	ime			Company	
Relinquished by:	Date/Time		_	Company			Receive	ed by	7	W	_			Date/T	カカス	5. (9150	EUST	
Custody Seals Intact: Custody Seal No.:							Cooler	Tempe	ture(s)	°C and	Other I	Remarks	7/	15	4, 5	7 -	9150		

Client: Seres Engineering & Services LLC

Job Number: 680-242830-1

Login Number: 242830 List Source: Eurofins Savannah

List Number: 1

Creator: Sims, Robert D

Grouter: Gille, Report B		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Seres Engineering & Services LLC

Job Number: 680-242830-1

List Source: Eurofins Denver
List Number: 3
List Creation: 11/14/23 01:06 PM

Creator: Little, Matthew L

Creator: Little, Matthew L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Seres Engineering & Services LLC

Job Number: 680-242830-1

Login Number: 242830 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 2 List Creation: 11/14/23 02:26 PM

Creator:	McCaskey,	Jonathan
----------	-----------	----------

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required(=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Eurofins Savannah

Appendix C

Summary of Quality Control Exceedances and Data Validation Reports

The following laboratory QC exceedances were noted during data validation:

- AOC 32/43A/spring 2023:
 - Samples 32M-01-17XBR-SPR23 and 32M-RB-01-SPR23 were analyzed outside of the technical holding time for VOC analysis. The results for all reported VOCs in these samples were not detected and were qualified as estimated (UJ). The results may be biased low.
 - Headspace was noted in the sample containers associated with the MassDEP VPH analysis of samples 32M-01-17XBR-SPR23, 32M-RB-01-SPR23, and 32M-01-14XOB-SPR23. The results for all reported compounds in these samples were not detected and were qualified as estimated (UJ). The results may be biased low.
 - The initial calibration verification (ICV) associated with VOC analysis exhibited results for trichlorofluoromethane less than the acceptance criteria. The non-detect results for trichlorofluoromethane in samples 32M-01-17XBR-SPR23 and 32M-RB-01-SPR23 were qualified as estimated (UJ).
 - The continuing calibration verification (CCV) associated with VOC analysis exhibited result for carbon tetrachloride less than the acceptance criteria. In addition, vinyl acetate exhibited a result less than the acceptance criteria in the closing CCV. The non-detect results for carbon tetrachloride and vinyl acetate in samples 32M-01-17XBR-SPR23 and 32M-RB-01-SPR23 were qualified as estimated (UJ).
 - The CCV associated with VOC analysis exhibited result for bromoform less than the acceptance criteria. In addition, vinyl acetate exhibited a result less than the acceptance criteria in the ICV and closing CCV. The non-detect results for bromoform and vinyl acetate in samples 32M-01-14XOB-SPR23, 32M-01-18XBR-SPR23, 32M-DUP01-SPR23, and 32M-TB-01-SPR23 were qualified as estimated (UJ).
 - Recovery of the VOC surrogate compounds dibromofluoromethane and toluene-d8 were greater than the control limit in field duplicate sample 32M-DUP01-SPR23. The results for the detected analytes reported in sample 32M-DUP01-SPR23 were qualified as estimated (J) with a potential for high bias in the reported results.
 - The recoveries of benzene, ethylbenzene, m,p-xylene, methyl tert-butyl ether, naphthalene, o-xylene, toluene, C9-C10 volatile petroleum hydrocarbons aromatic were less than the control limits in the matrix spike (MS) and/or matrix spike duplicate (MSD) associated with the MassDEP VPH analysis performed using sample 32M-01-17XBR-SPR23. The non-detect results for benzene, ethylbenzene, m,p-xylene, methyl tert-butyl ether, naphthalene, o-xylene, toluene, C9-C10 volatile petroleum hydrocarbons aromatic in this sample were qualified as estimated (UJ) with a potential for low bias in the reported results.

• AOC 57/spring 2023:

- The MS/MSD performed using sample 57M-95-03X-SPR23 exhibited an MSD recovery for arsenic greater than the acceptance criteria. The arsenic result in sample 57M-95-03X-SPR23 was qualified as estimated (J) with a potential for high bias in the reported result.
- DCL/spring 2023:

- Samples LFM-03-07-SPR23, LFM-99-02B-SPR23, LFM-99-05A-SPR23, and LFM-99-06A-RP-SPR23, and field duplicate sample LFM-DUP01-SPR23 were extracted past the technical holding time for MassDEP EPH. The results for all reported compounds in these samples were qualified as estimated (UJ/J). The results may be biased low.
- The CCV associated with pesticide analysis exhibited results for endosulfan sulfate, endrin, p,p'-DDD, p,p'-DDE, and p,p'-DDT less than the acceptance criteria. The non-detect results for the listed compounds in sample LFM-99-02B-SPR23 were qualified as estimated (UJ).
- The MS/MSD performed using sample LFM-99-02B-SPR23 in association with the MassDEP EPH analysis exhibited a relative percent difference (RPD) between the MS and MSD recoveries greater than the acceptance criteria for phenanthrene. The phenanthrene result in sample LFM-99-02B-SPR23 was qualified as estimated (J).
- Recoveries of C9-C18 petroleum hydrocarbons aliphatic, 2-methylnaphthalene, and naphthalene were less than the control limit in the laboratory control sample (LCS) analyzed in association with the MassDEP EPH analysis of samples LFM-03-07-SPR23, LFM-99-02B-SPR23, LFM-99-05A-SPR23, and LFM-99-06A-RP-SPR23, and field duplicate sample LFM-DUP01-SPR23. The associated non-detect results were qualified as estimated (UJ) with a potential for low bias in the reported results.
- Recoveries of the pesticides aldrin, alpha-BHC, alpha-endosulfan, beta-endosulfan, dieldrin, endosulfan sulfate, endrin, endrin aldehyde, endrin ketone, gamma-BHC, heptachlor, heptachlor epoxide, p,p'-DDE, and p,p'-DDE were less than the control limit in the LCS analyzed in association with the analysis of samples LFM-03-07-SPR23, LFM-99-02B-SPR23, LFM-99-05A-SPR23, and LFM-99-06A-RP-SPR23, and field duplicate sample LFM-DUP01-SPR23. The associated non-detect results were qualified as estimated (UJ) with a potential for low bias in the reported results.
- C11-C22 petroleum hydrocarbons aromatic fraction was detected in the MassDEP EPH laboratory method blank. The C11-C22 petroleum hydrocarbons aromatic fraction result in sample LFM-99-02B-SPR23 was qualified as not detected (U).

DCL/fall 2023:

- Sample DCL LEACHATE-FAL23 was analyzed outside of the technical holding time for VOC analysis. The results for all reported VOCs in this sample were not detected and were qualified as estimated (UJ). The results may be biased low.
- Sample DCL LEACHATE-FAL23 was extracted outside of the technical holding time for SVOC analysis. The results for all reported SVOCs in this sample were not detected and were qualified as estimated (UJ). The results may be biased low.
- Sample TRIP BLANK was analyzed outside of the technical holding time for MassDEP VPH analysis. The results for all reported compounds in this sample were not detected and were qualified as rejected (R) since the analysis was performed greater than 2-times outside of the analytical holding time.
- The difference in the alkalinity results between the parent sample LFM-99-05A-FAL23 and field duplicate sample DCL-DUP01-FAL23 was greater than the acceptance limit. The alkalinity results in these samples were qualified as estimated (J).
- The ICV associated with pesticide analysis exhibited recoveries of alpha-endosulfan and p,p'-DDE less than the acceptance criteria and CCV exhibited results for dieldrin, endosulfan sulfate, endrin ketone, and p,p'-DDE less than the acceptance criteria. The results for the listed compounds in sample DCL LEACHATE-FAL23 were qualified as estimated (UJ/J) with a potential for low bias in the reported results.
- The CCV associated with PCB analysis exhibited recoveries of PCB-1221 and PCB-1254 less than the acceptance criteria. The results for the listed compounds in sample DCL LEACHATE-FAL23 were qualified as estimated (UJ) with a potential for low bias in the reported results.
- The CCV associated with pesticide analysis exhibited results for dieldrin, endosulfan sulfate, endrin ketone, and p,p'-DDE less than the acceptance criteria. The results for the listed compounds in samples DCL-DUP01-FAL23, LFM-03-07-FAL23, LFM-99-02B-FAL23, LFM-99-05A-FAL23, and LFM-99-06A-RP-FAL23 were qualified as estimated (UJ/J) with a potential for low bias in the reported results.
- The CCV associated with SVOC analysis exhibited result for 3,3-dichlorobenzidine less than the
 acceptance criteria. The 3,3-dichlorobenzidine result for in sample DCL-LEACHATE-FAL23 was
 qualified as estimated (UJ) with a potential for low bias in the reported results.
- Recovery of the SVOC surrogate compound phenol-d5 was less than the control limit in sample DCL LEACHATE-FAL23. The results for the acid fraction analytes reported in sample DCL LEACHATE-FAL23 were qualified as estimated (UJ) with a potential for low bias in the reported results.
- Recovery of the TPH surrogate compound o-terphenyl was less than the control limit in sample DCL LEACHATE-FAL23. The result for C10-C28 petroleum hydrocarbons in sample DCL LEACHATE-FAL23 was qualified as estimated (J) with a potential for low bias in the reported results.
- The recoveries of the pesticides alpha-endosulfan, endrin, p,p'DDD, and p,p'-DDT were less than
 the lower control limits in the MS and MSD performed using sample LFM-99-02B-FAL23. In
 addition, the RPD between the MS and MSD results was greater than the acceptance limits for

endrin ketone. The results for the listed compounds in this sample was qualified as estimated (UJ/J).

- The recoveries of nitrate-nitrite as N were less than 30% in the MS and MSD performed using sample LFM-99-02B-FAL23. In addition, the RPD between the MS and MSD results was greater than the acceptance The non-detect result for nitrate-nitrite as N in this sample was qualified as rejected (R) since the recoveries were less than 30%.
- C19-C36 petroleum hydrocarbons aliphatic fraction was detected in the MassDEP EPH
 laboratory method blank. The C19-C36 petroleum hydrocarbons aliphatic fraction result in sample
 LFM-03-07-FAL23 was qualified as not detected (U) at the limit of quantitation.

AOC 43G/fall 2023:

- No laboratory QC exceedances were noted.

AOC 69W/fall 2023:

- The MS/MSD performed using sample ZWM-95-18X-FAL23 exhibited an MS recovery for dissolved manganese less than the acceptance criteria. The dissolved manganese result in sample ZWM-95-18X-FAL23 was qualified as estimated (J) with a potential for low bias in the reported result.
- C11-C22 petroleum hydrocarbons aromatic, C19-C36 petroleum hydrocarbons aliphatic, 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, and phenanthrene exhibited RPD between the LCS and LCSD results greater than the acceptance criteria in association with the MassDEP EPH analysis of samples 69W-94-13-FAL23, 69W-94-14-FAL23, ZWM-01-25X-FAL23, ZWM-95-15X-FAL23, ZMW-99-22X-FAL23, ZWM-99-23X-FAL23, and ZWM-99-24X-FAL23. The detected results for the listed compounds in samples 69W-94-13-FAL23 (C11-C22 petroleum hydrocarbons aromatic), 69W-94-14-FAL23 (C19-C36 petroleum hydrocarbons aliphatic), ZWM-01-25X-FAL23 (C19-C36 petroleum hydrocarbons aliphatic), ZWM-95-15X-FAL23 (C11-C22 petroleum hydrocarbons aromatic and C19-C36 petroleum hydrocarbons aliphatic), ZMW-99-22X-FAL23 (2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, C11-C22 petroleum hydrocarbons aromatic, fluorene, and phenanthrene), ZWM-99-23X-FAL23 (C11-C22 petroleum hydrocarbons aromatic and C19-C36 petroleum hydrocarbons aliphatic), and ZWM-99-24X-FAL23 (C19-C36 petroleum hydrocarbons aliphatic) were qualified as estimated (J).
- Dissolved iron was detected in the laboratory continuing calibration blank. The dissolved iron result in sample 69W-94-14-FAL23 was qualified as not detected (U) at the limit of quantitation.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. August 28, 2023 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 26, 2023. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #57156_C:

SDG# **Fraction**

680-236086-2 Volatiles, Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	547 pages-ADV																Atta	achi	men	t 1																		
	Stage 2B EQUIS	EDD					LD	C#	571	56	(A	rca	dis	: - N	Mill	ers	vil	le,	MC) /	For	t D	eve	ns)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		DA 60D)	Pe (808		(601	etals 0C/20 170A))A (6010	c (D.M 6010 6020	C (N	VPH MADI -VPI	EP (N	EPI MAD EPI	ΕP	leth Etha Ethe	ne																		
Matrix	c: Water/Soil		T	W	S	W	S	W	S	٧	V S	s١	N	s v	N :	s V	Ν	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	8	0	-	-	-	_		<u>. .</u>	-	7	0	-	-	-	-	6	0																<u> </u>		Ш
В	680-236086-1	07/26/23	08/09/23	5	0	-	-	-	-			-	4	0	-	-	-	-	3	0																	<u> </u>	Ш
С	680-236086-2	07/26/23	08/09/23	2	0	-	-	-	_	2	2 (0	-	- :	2	0	-	-	-	-																<u> </u>		Ш
D	680-236120-1	07/26/23	08/09/23	-	-	5	0	5	0		- -	-	-	- :	5	0 1	10	0	-	-																<u> </u>		Ш
Е	680-236128-1	07/26/23	08/09/23	-	-	-	-	-				-	5	0	-	-	-	-	-	-																	<u> </u>	Щ
F	680-236128-2	07/26/23	08/09/23	-	-	-	-	-	-			-	4	0	-	-	-	-	-	-																	<u> </u>	
G	680-236128-3	07/26/23	08/09/23	6	0	-	-	-	-	4	1 (0	-		4	0	-	-	-	-																		
Н	680-236378-1	07/26/23	08/09/23	-	-	-	-	-	-		- -	- l	14	0	-	-	-	-	-	-																		
I	680-236434-1	07/26/23	08/09/23	-	-	-	-	-	-			- ·	18	0	-	-	-	-	-	-																		
J	680-236498-1	07/26/23	08/09/23	3	0	-	-	-	-			-	2	0	-	-	-	-	-	-																		
Κ	680-236498-2	07/26/23	08/09/23	-	-	-	-	-	-			- 2	26	0	-	-	-	-	-	-																		
L	680-236818-1	07/26/23	08/09/23	-	-	-	-	-	-			-	5	0	-	-	-	-	-	-																		
М	680-237047-1	07/26/23	08/09/23	•	-	-	-	-	-			-	1	0	-	-	-	-	-	-																		
Total	TR/PG			24	0	5	0	5	0	(3 (3 0	36	0 1	1	0 1	10	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	Stage 2B EQUIS	EDD					LD	C#	571	56	(Aı	rca	dis	- N	/ill	ers	vill	le,	MD) / I	For	t D	eve	ns)													
			(2)						T		Ì			N	O.			T		Т		Т		Т	•	Т		Т		Т		T		T		\neg		\neg
LDC	SDG#	DATE REC'D	DATE		lk 20B)	(41	-	CN (901		C (905		D(/NC) ₂ -N		O₄ 56A)		S= 034)		TDS 5400		TOC 060 <i>A</i>															
Matrix	c: Water/Soil			W	S	W	S	W	S	W	s	W	S	W	S	W	s	W	s	٧	/ S	s v	/ S	S V	v s	3 V	٧	s '	W	S	W	S	W	s	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	6	0	-	-	-	-	-	-	-	-	6	0	6	0	6	0		<u> </u>	. 6	3 0)														Ш
В	680-236086-1	07/26/23	08/09/23	3	0	-	-	-	-	-	-	-	-	3	0	3	0	3	0	-	. -	. 3	3 0)														Ш
D	680-236120-1	07/26/23	08/09/23	5	0	5	0	5	0	5	0	-	-	5	0	5	0	-	-	5	5 0) -	. -															Ш
Е	680-236128-1	07/26/23	08/09/23	5	0	-	-	1	-	5	0	5	0	1	-	5	0	-	-	-		. -																
Н	680-236378-1	07/26/23	08/09/23	14	0	-	-	-	-	14	0	14	0	-	-	14	0	-	_																			
ı	680-236434-1	07/26/23	08/09/23	18	0	-	-	-	-	18	0	18	0		-	18	0	-	-	-	. -	. -	. -															\square
K			08/09/23				-	1	-	25	0	25	0	_	-	25	0	_	_	_			.] -															
L	680-236818-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0	-	-	-	. -	. -	. -													\Box		\Box
М			08/09/23	1	0	-	-	-	-	1	0	1	0	-	-	1	0	-	-	-	. -	. -	. -													\Box		\square
																																				\Box		\square
Total	TR/PG			82	0	5	0	5	0	73	0	68	0	14	0	82	0	9	0	5	5 0) 9	0) () () (0	0	0	0	0	0	0	0	0	0	0	352

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

SDG: 680-236086-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins

Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Allie Jefferson, Chemist/ERPIMS Specialist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: August 24, 2023

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPVP	SW6010C	SW6020A	SW8260D
32M-01-17XBR-SPR23	680-236086-5	Water	Field Sample/N	Χ	Χ	Χ	Χ
32M-RB-01-SPR23	680-236086-6	Water	Equipment Blank/EB	Х	Х	Χ	X

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 680-236086-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative

Calibration Blank

Calibration Blank - Negative

Continuing Calibration Verification

Equipment Blank

Interference Check Sample A

Interference Check Sample A - Negative

Interference Check Sample AB

Lab Blank

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 156 results (97.50%) out of the 160 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
MADEPVP	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.
SW8260D	No additional comments; see Checklist for detail.

Ollie Jefferson

August 24, 2023

Reviewed by Allie Jefferson, Chemist/ERPIMS Specialist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

August 28, 2023

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method MADEPVP, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
32M-01-17XBR-SPR23 (MS)	Benzene	46.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	Benzene	52.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	62.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	Ethylbenzene	46.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	Ethylbenzene	53.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	m,p-Xylene	47.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	m,p-Xylene	53.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	Methyl tert-butyl ether (MTBE)	41.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	Methyl tert-butyl ether (MTBE)	48.0	70 - 130	10 - 130	percent	J/UJ	M	
32M-01-17XBR-SPR23 (MS)	Naphthalene	45.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	Naphthalene	51.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	o-Xylene	46.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	o-Xylene	52.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (MS)	Toluene	46.0	70 - 130	10 - 130	percent	J/UJ	М	
32M-01-17XBR-SPR23 (SD)	Toluene	52.0	70 - 130	10 - 130	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for MADEPVP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Benzene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U J1	20.0 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Ethylbenzene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	m,p-Xylene	10.0	5.00 U J1	5.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Naphthalene	6.00	4.00 U J1	4.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	o-Xylene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000

ENV.ADR August 28, 2023

Qualified Results associated with the MS Recovery for MADEPVP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Toluene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVIS6807851623 (CV)	Carbon Tetrachloride	76.0	80 - 120	80 - 120	percent	J/X	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ	ug/l	H1/V2
32M-RB-01-SPR23 680-236086-6	ЕВ	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ	ug/l	H1/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, Ending Continuing Calibration Verification

Compliance requirements for satisfactory closing continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVC68078516231 (EV)	Chloroethane	173	50 - 150	50 - 150	percent	J/None	V5	
CCVC68078516231 (EV)	Trichlorofluoromet hane	218	50 - 150	50 - 150	percent	J/None	V5	
CCVC68078516231 (EV)	Vinyl acetate	45.0	50 - 150	50 - 150	percent	J/X	V5	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Ending Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ		ug/l	H1/V5
32M-RB-01-SPR23 680-236086-6	EB	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ		ug/l	H1/V5

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS6807847703 (BS)	Trichlorofluoromet hane	154	65 - 141	10 - 141	percent	J/None	С	
LCSD6807847704 (BD)	1,2,3- Trichlorobenzene	154	69 - 129	10 - 129	percent	J/None	С	
LCSD6807847704 (BD)	1,2,4- Trichlorobenzene	154	69 - 130	10 - 130	percent	J/None	С	
LCSD6807847704 (BD)	Naphthalene	147	61 - 128	10 - 128	percent	J/None	С	
LCSD6807847704 (BD)	Trichlorofluoromet hane	156	65 - 141	10 - 141	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260D, LCS RPD

The objective of laboratory control sample/laboratory control sample duplicate (LCS/LCSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. LCS/LCSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory control sample/laboratory control sample duplicate RPD results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCSD6807847704 (BD)	1,2,3- Trichlorobenzene	21.7	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	1,2,4- Trichlorobenzene	25.4	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	2-Chlorotoluene	24.1	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	4-Chlorotoluene	22.1	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	Cumene	30.8	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	Naphthalene	25.5	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	n-Propylbenzene	26.1	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	sec-Butylbenzene	22.1	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	Styrene	22.3	< 20	< 20	rpd	J/None	Z	
LCSD6807847704 (BD)	tert-Butylbenzene	25.1	< 20	< 20	rpd	J/None	Z	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260D, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
32M-01-17XBR-SPR23 (MS)	Chloroethane	206	60 - 138	10 - 138	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	Chloroethane	202	60 - 138	10 - 138	percent	J/None	М	
32M-01-17XBR-SPR23 (MS)	Ethylbenzene	127	79 - 121	10 - 121	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	Ethylbenzene	125	79 - 121	10 - 121	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	m,p-Xylene	124	80 - 121	10 - 121	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	o-Xylene	123	78 - 122	10 - 122	percent	J/None	М	
32M-01-17XBR-SPR23 (MS)	Trichlorofluoromet hane	168	65 - 141	10 - 141	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	Trichlorofluoromet hane	167	65 - 141	10 - 141	percent	J/None	М	
32M-01-17XBR-SPR23 (SD)	Xylenes, Total	124	79 - 121	10 - 121	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
32M-01-17XBR-SPR23 (SD)	1,2- Dichloroethane-d4	120	81 - 118	10 - 118	percent	J/None	I	No Qualifiers Applied
32M-01-17XBR-SPR23 (MS)	1-Bromo-4- fluorobenzene (4- Bromofluorobenze ne)	124	85 - 114	10 - 114	percent	J/None	I	No Qualifiers Applied
32M-01-17XBR-SPR23 (SD)	1-Bromo-4- fluorobenzene (4- Bromofluorobenze ne)	128	85 - 114	10 - 114	percent	J/None	I	No Qualifiers Applied

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Quality Control Outliers for test method SW8260D, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
32M-01-17XBR-SPR23 (N)		16.1	< 14	< 28	days	J/UJ	H1	Test Exceeds UWL
32M-RB-01-SPR23 (EB)		16.0	< 14	< 28	days	J/UJ	H1	Test Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Test Hold Time for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Bia	s Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	1,1,1,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,2,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,2-Trichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,3-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,3-Trichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,4-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,4-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dibromo-3- chloropropane	10.0	5.00 U H	5.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dibromoethane (EDB)	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloropropane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,3,5-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,3-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1

FieldSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	1,3-Dichloropropane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,4-Dichlorobenzene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2,2-Dichloropropane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Butanone (MEK)	25.0	20.0 U H	20.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Chlorotoluene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Hexanone	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	4-Chlorotoluene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	4-Methyl-2-pentanone (MIBK)	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Acetone	25.0	10.0 U H	10.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Benzene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromochloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromodichloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromoform	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromomethane	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Carbon disulfide	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ		ug/l	H1/V2
32M-01-17XBR-SPR23 680-236086-5	N	Chlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloroethane	20.0	10.0 U H Q	10.0 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloroform	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloromethane	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	cis-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	cis-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Cumene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dibromochloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dibromomethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dichlorodifluoromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1

					O a lifi a al			
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Ur	nits	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Ethylbenzene	1.00	0.500 U H	0.500 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Hexachlorobutadiene	5.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	m,p-Xylene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U H	2.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Methylene chloride	20.0	10.0 U H	10.0 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Naphthalene	10.0	5.00 U H	5.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	n-Butylbenzene	2.50	2.00 U H	2.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	n-Propylbenzene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	o-Xylene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	p-Cymene (p- Isopropyltoluene)	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	sec-Butylbenzene	2.50	2.00 U M H	2.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Styrene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	tert-Butylbenzene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Tetrachloroethene (PCE)	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Toluene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	trans-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	trans-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Trichloroethene (TCE)	1.00	0.500 U H	0.500 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ	ug	g/I	H1/V1
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ	ug	g/l	H1/V5
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl chloride	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Xylenes, Total	2.00	1.00 U H	1.00 UJ	ug	g/I	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,1,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug	g/I	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ	ug	g/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,2,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,2-Trichloroethane	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug	g/l	H1
-								

					Qualified		
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Result	Bias Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,3-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,3-Trichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,4-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,4-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dibromo-3- chloropropane	10.0	5.00 U H	5.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dibromoethane (EDB)	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloropropane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3,5-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,4-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2,2-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2-Butanone (MEK)	25.0	20.0 U H	20.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2-Chlorotoluene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2-Hexanone	20.0	10.0 U M H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	4-Chlorotoluene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	4-Methyl-2-pentanone (MIBK)	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Acetone	25.0	10.0 U H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Benzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromobenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromochloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromodichloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
					·		-

					O 1:4:1			
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	Bromoform	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromomethane	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Carbon disulfide	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ		ug/l	H1/V2
32M-RB-01-SPR23 680-236086-6	EB	Chlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Chloroethane	20.0	10.0 U H Q	10.0 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Chloroform	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Chloromethane	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	cis-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	cis-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Cumene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dibromochloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dibromomethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dichlorodifluoromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Ethylbenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Hexachlorobutadiene	5.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	m,p-Xylene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Methyl tert-butyl ether (MTBE)	5.00	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Methylene chloride	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Naphthalene	10.0	5.00 U H	5.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	n-Butylbenzene	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	n-Propylbenzene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	o-Xylene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	p-Cymene (p- Isopropyltoluene)	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	sec-Butylbenzene	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Styrene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	tert-Butylbenzene	2.00	1.00 U H	1.00 UJ		ug/l	H1

Qualified Results associated with the Test Hold Time for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	Tetrachloroethene (PCE)	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Toluene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	trans-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	trans-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Trichloroethene (TCE)	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ		ug/l	H1/V1
32M-RB-01-SPR23 680-236086-6	EB	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ		ug/l	H1/V5
32M-RB-01-SPR23 680-236086-6	EB	Vinyl chloride	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Xylenes, Total	2.00	1.00 U H	1.00 UJ		ug/l	H1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: MADEPVP		Extraction Method: SW50	30C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Benzene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-01-17XBR-SPR23 680-236086-5	N	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U J1	20.0 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-01-17XBR-SPR23 680-236086-5	N	Ethylbenzene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	m,p-Xylene	10.0	5.00 U J1	5.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Naphthalene	6.00	4.00 U J1	4.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	o-Xylene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Toluene	5.00	2.00 U J1	2.00 UJ		ug/l	M/P
32M-RB-01-SPR23 680-236086-6	EB	Benzene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U	20.0 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	Ethylbenzene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	m,p-Xylene	10.0	5.00 U	5.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	Methyl tert-butyl ether (MTBE)	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	Naphthalene	6.00	4.00 U	4.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	o-Xylene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-RB-01-SPR23 680-236086-6	EB	Toluene	5.00	2.00 U	2.00 UJ		ug/l	Р

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW50	30C				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bia	s Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	1,1,1,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,2,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1,2-Trichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,1-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,3-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,3-Trichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,4-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2,4-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dibromo-3- chloropropane	10.0	5.00 U H	5.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dibromoethane (EDB)	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,2-Dichloropropane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,3,5-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,3-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,3-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	1,4-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2,2-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Butanone (MEK)	25.0	20.0 U H	20.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Chlorotoluene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	2-Hexanone	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	4-Chlorotoluene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	4-Methyl-2-pentanone (MIBK)	20.0	10.0 U H	10.0 UJ	ug/l	H1

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW50	030C				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bia	as Units	Reason
32M-01-17XBR-SPR23 580-236086-5	N	Acetone	25.0	10.0 U H	10.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Benzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromobenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromochloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	Bromodichloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Bromoform	2.50	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	Bromomethane	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Carbon disulfide	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ	ug/l	H1/V2
32M-01-17XBR-SPR23 680-236086-5	N	Chlorobenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloroethane	20.0	10.0 U H Q	10.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloroform	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Chloromethane	2.50	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	cis-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	cis-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	Cumene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dibromochloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dibromomethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Dichlorodifluoromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Ethylbenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Hexachlorobutadiene	5.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	m,p-Xylene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 580-236086-5	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Methylene chloride	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Naphthalene	10.0	5.00 U H	5.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	n-Butylbenzene	2.50	2.00 U H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	n-Propylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW50	30C				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
32M-01-17XBR-SPR23 680-236086-5	N	o-Xylene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	p-Cymene (p- Isopropyltoluene)	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	sec-Butylbenzene	2.50	2.00 U M H	2.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Styrene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	tert-Butylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Tetrachloroethene (PCE)	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Toluene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	trans-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	trans-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Trichloroethene (TCE)	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ	ug/l	H1/V1
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ	ug/l	H1/V5
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl chloride	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-01-17XBR-SPR23 680-236086-5	N	Xylenes, Total	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,1,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,2,2-Tetrachloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1,2-Trichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,1-Dichloropropene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,3-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,3-Trichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,4-Trichlorobenzene	5.00	2.00 U H	2.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2,4-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dibromo-3- chloropropane	10.0	5.00 U H	5.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dibromoethane (EDB)	2.00	1.00 U H	1.00 UJ	ug/l	H1

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW5	030C				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bi	ias Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloroethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,2-Dichloropropane	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3,5-Trimethylbenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,3-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	1,4-Dichlorobenzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2,2-Dichloropropane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 580-236086-6	EB	2-Butanone (MEK)	25.0	20.0 U H	20.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2-Chlorotoluene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	2-Hexanone	20.0	10.0 U M H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	4-Chlorotoluene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	4-Methyl-2-pentanone (MIBK)	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Acetone	25.0	10.0 U H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Benzene	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromobenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromochloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromodichloromethane	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromoform	2.50	2.00 U H	2.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Bromomethane	20.0	10.0 U H	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Carbon disulfide	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 UJ	ug/l	H1/V2
32M-RB-01-SPR23 680-236086-6	EB	Chlorobenzene	1.00	0.500 U H	0.500 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Chloroethane	20.0	10.0 U H Q	10.0 UJ	ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Chloroform	2.00	1.00 U H	1.00 UJ	ug/l	H1
32M-RB-01-SPR23 580-236086-6	EB	Chloromethane	2.50	2.00 U H	2.00 UJ	ug/l	H1

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW50	30C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result E	Bias	Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	cis-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	cis-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Cumene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dibromochloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dibromomethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Dichlorodifluoromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Ethylbenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Hexachlorobutadiene	5.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	m,p-Xylene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Methyl tert-butyl ether (MTBE)	5.00	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Methylene chloride	20.0	10.0 U H	10.0 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Naphthalene	10.0	5.00 U H	5.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	n-Butylbenzene	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	n-Propylbenzene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	o-Xylene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	p-Cymene (p- Isopropyltoluene)	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	sec-Butylbenzene	2.50	2.00 U H	2.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Styrene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	tert-Butylbenzene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Tetrachloroethene (PCE)	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Toluene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	trans-1,2-Dichloroethene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	trans-1,3-Dichloropropene	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Trichloroethene (TCE)	1.00	0.500 U H	0.500 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ		ug/l	H1/V1

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: S\	W5030C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-RB-01-SPR23 680-236086-6	EB	Vinyl acetate	2.50	2.00 U H Q	2.00 UJ		ug/l	H1/V5
32M-RB-01-SPR23 680-236086-6	EB	Vinyl chloride	2.00	1.00 U H	1.00 UJ		ug/l	H1
32M-RB-01-SPR23 680-236086-6	EB	Xylenes, Total	2.00	1.00 U H	1.00 UJ		ug/l	H1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

FieldSample ID /	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
LabSample ID	.,,,,,	,					
32M-01-17XBR-SPR23 680-236086-5	N	Benzene	5.00	2.00 U J1	2.00 UJ	2.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-01-17XBR-SPR23 680-236086-5	N	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U J1	20.0 UJ	20.0 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-01-17XBR-SPR23 680-236086-5	N	Ethylbenzene	5.00	2.00 U J1	2.00 UJ	2.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	m,p-Xylene	10.0	5.00 U J1	5.00 UJ	5.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U J1	2.00 UJ	2.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Naphthalene	6.00	4.00 U J1	4.00 UJ	4.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	o-Xylene	5.00	2.00 U J1	2.00 UJ	2.00 UJ	M/P
32M-01-17XBR-SPR23 680-236086-5	N	Toluene	5.00	2.00 U J1	2.00 UJ	2.00 UJ	M/P
32M-RB-01-SPR23 680-236086-6	EB	Benzene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U	20.0 U	20.0 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	Ethylbenzene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	m,p-Xylene	10.0	5.00 U	5.00 U	5.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	Methyl tert-butyl ether (MTBE)	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	Naphthalene	6.00	4.00 U	4.00 U	4.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	o-Xylene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-RB-01-SPR23 680-236086-6	EB	Toluene	5.00	2.00 U	2.00 U	2.00 UJ	Р

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	st method	d SW8260D					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
32M-01-17XBR-SPR23 680-236086-5	N	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 X	1.00 UJ	H1/V2
32M-01-17XBR-SPR23 680-236086-5	N	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ	1.00 UJ	H1/V1
32M-01-17XBR-SPR23 680-236086-5	N	Vinyl acetate	2.50	2.00 U H Q	2.00 X	2.00 UJ	H1/V5
32M-RB-01-SPR23 680-236086-6	EB	Carbon Tetrachloride	2.00	1.00 U H Q	1.00 X	1.00 UJ	H1/V2
32M-RB-01-SPR23 680-236086-6	EB	Trichlorofluoromethane	2.00	1.00 U H Q	1.00 UJ	1.00 UJ	H1/V1
32M-RB-01-SPR23 680-236086-6	EB	Vinyl acetate	2.50	2.00 U H Q	2.00 X	2.00 UJ	H1/V5

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
H1	Test Hold Time
I	Surrogate recovery outside project limits.
M	MS Recovery
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect
V1	ICV
V2	CCV
V5	Ending Continuing Calibration Verification
Z	LCS RPD

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Χ	Result may require rejection; PDT attention required

Bias

The result may be biased low

The result may be biased high

Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR August 28, 2023

Page 27 of 31

Review Questions

Method: MADEPVP (Method for the Determination of Volati	ile Petrole	um Hydro	carbons (\	VPH))
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?		•		Headspace was present in vials. All results were qualified J/UJ.
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Results qualified UJ due to MS/MSD %R below limits.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

August 28, 2023

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Method: SW6020A (Trace Metals by Inductively Coupled P		•	• • •	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Method: SW8260D (Volatile Organic Compounds by GC/MS Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	• •	INO	INA	Comment
Were samples preserved properly and received in good condition?	•			
Were holding times met?		•		Test holding time exceeds UWL. Results qualified J/UJ.
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		CCV and closing CCV %D exceeds the limit for for several compounds. All affected results were non-detect and qualified UJ.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?		•		ICV %D exceeds the limit for one compound. Data was qualified.
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		Out high. No detects, no data qualified.
Was the LCS/LCSD RPD within project acceptance limits?		•		RPD out. Results ND, no data qualified.
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Out high. No detect, no data qualified.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. August 28, 2023 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 26, 2023. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #57156 G:

SDG# **Fraction**

680-236128-3

Volatiles, Metals, Volatile Petroleum Hydrocarbons

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	547 pages-ADV																Atta	achi	men	t 1																		
	Stage 2B EQUIS	EDD					LD	C#	571	56	(A	rca	dis	; - [Mill	ers	vil	le,	MC) / [For	t D	eve	ns)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		OA 60D)			(601	etals 0C/20 70A))A (60 ¹ 10	c (D.M 6010 6020	C (I	VPH MADI -VPI	EP (I	EPI MAD -EP	ΕP	leth Etha Ethe	ne																		
Matrix	: Water/Soil	T	T	W	S	W	S	W	S	٧	V S	3 \	N :	S۱	N	s١	W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	8	0	-	-	-	-		<u>. .</u>	-	7	0	-	-	-	-	6	0															Ш	\bigsqcup	<u> </u>	Ш
В	680-236086-1	07/26/23	08/09/23	5	0	-	-	-	-		<u>. .</u>		4	0	-	-	-	-	3	0															Ш	\bigsqcup	<u> </u>	Ш
С	680-236086-2	07/26/23	08/09/23	2	0	-	-	-	-	2	2 ()	-	-	2	0	-	-	-	-															Ш	$\bigsqcup ^{!}$	<u> </u>	Ш
D	680-236120-1	07/26/23	08/09/23	-	-	5	0	5	0			-	-	-	5	0 1	10	0	-	-															Ш	$\bigsqcup ^{!}$	<u> </u>	Ш
Е	680-236128-1	07/26/23	08/09/23	-	-	-	-	-	-			-	5	0	-	-	-	-	-	-																		
F	680-236128-2	07/26/23	08/09/23	-	-	-	-	-	-		. .	- .	4	0	-	-	-	-	-	-																		
G	680-236128-3	07/26/23	08/09/23	6	0	-	-	-	-		1 ()	-		4	0	-	-	-	-																		
Н	680-236378-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 1	4	0	-	-	-	-	-	-																		
1	680-236434-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 1	8	0	-	-	-	-	-	-																		
J	680-236498-1	07/26/23	08/09/23	3	0	-	-	-	-		. .	-	2	0	-	-	-	-	-	-																		
Κ	680-236498-2	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 2	26	0	-	-	-	-	-	-																		
L	680-236818-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	-	5	0	-	-	-	-	-	-																		
М	680-237047-1	07/26/23	08/09/23	-	-	-	-	-	-			-	1	0	-	-	-	-	-	-																		
Total	TR/PG			24	0	5	0	5	0	6	3 () [86	0 1	11	0 1	10	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	Stage 2B EQUIS	EDD					LD	C#	571	56	(Aı	rca	dis	- N	/lill	ers	vil	le,	MD) / F	or	t D	eve	ns)													
			(2)											N	O ₃			T		T		Т		T		Т										П		
LDC	SDG#	DATE REC'D	DATE DUE		lk 20B)	(41		CN (901		C (905		DC (906		/NC (35			O₄ 56A)		S= 034)		TDS 540C		TOC 060/	A)	T		Ī				•							
Matrix	: Water/Soil	7	7	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	V	/ S	· W	/ 8	V	/ 5	S V	۷ :	s '	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	6	0	-	-	-	-	-	-	-	-	6	0	6	0	6	0	<u> </u>		6) C)	\perp													
В	680-236086-1	07/26/23	08/09/23	3	0	-	-	-	-	-	-	-	-	3	0	3	0	3	0	<u> </u>		3	3 0)	\perp													
D	680-236120-1	07/26/23	08/09/23	5	0	5	0	5	0	5	0	-	-	5	0	5	0			5	0	-																
Е	680-236128-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0			_ -																		
Н	680-236378-1	07/26/23	08/09/23	14	0	-	-	-	-	14	0	14	0	-	-	14	0	-																				
1	680-236434-1	07/26/23	08/09/23	18	0	-	-	-	-	18	0	18	0	-	-	18	0		_																			
К	680-236498-2	07/26/23	08/09/23	25	0	-	-	-	-	25	0	25	0	-	-	25	0	_	_					┖														
L	680-236818-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0	<u> </u>																				
М	680-237047-1	07/26/23	08/09/23	1	0	-	-	-	-	1	0	1	0	-	-	1	0	_																				
																								\perp											\bot			
Total	TR/PG			82	0	5	0	5	0	73	0	68	0	14	0	82	0	9	0	5	0	9) () () (0 (0	0	0	0	0	0	0	0	0	0	0	352

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

SDG: 680-236128-3

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins

Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Allie Jefferson, Chemist/ERPIMS Specialist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: August 24, 2023

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPVP	SW6010C	SW6020A	SW8260D
32M-01-13XBR-SPR23	680-236128-10	Water	Field Sample/N	X	Х	Χ	X
32M-01-14XOB-SPR23	680-236128-11	Water	Field Sample/N	Х	Х	Х	X
32M-01-18XBR-SPR23	680-236128-12	Water	Field Sample/N	Х	Χ	Χ	Χ
32M-DUP01-SPR23	680-236128-13	Water	Field Duplicate/FD	Х	Х	Χ	X
32M-TB-01-SPR23	680-236128-14	Water	Trip Blank/TB				X

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 680-236128-3. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative

Calibration Blank

Calibration Blank - Negative

Continuing Calibration Verification

Field Duplicate RPD

Interference Check Sample A

Interference Check Sample A - Negative

Interference Check Sample AB

Lab Blank

LCS Recovery

LCS RPD

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 20 results (5.15%) out of the 388 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Page 2 of 16

Narrative Comments

Analytical Method	Data Reviewer Comment
MADEPVP	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.
SW8260D	Reanalysis results were determined not reportable. Initial results were more usable.

Ollie Jefferson

August 24, 2023

Reviewed by Allie Jefferson, Chemist/ERPIMS Specialist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

August 28, 2023

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW8260D, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVIS6807849263 (CV)	1,3- Dichloropropane	122	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	2-Hexanone	122	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Bromomethane	127	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Chloroethane	139	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Chloromethane	148	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Dichlorodifluorome thane	162	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Trichlorofluoromet hane	139	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807849263 (CV)	Vinyl chloride	166	80 - 120	80 - 120	percent	J/None	V2	
CCVIS6807852354 (CV)	Bromoform	79.0	80 - 120	80 - 120	percent	J/X	V2	
CCVIS6807852354 (CV)	Vinyl acetate	340	80 - 120	80 - 120	percent	J/None	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-14XOB-SPR23 680-236128-11	N	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-01-18XBR-SPR23 680-236128-12	N	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-DUP01-SPR23 680-236128-13	FD	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-TB-01-SPR23 680-236128-14	ТВ	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, Ending Continuing Calibration Verification

Compliance requirements for satisfactory closing continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVC68078492631 (EV)	Dichlorodifluorome thane	162	50 - 150	50 - 150	percent	J/None	V5	
CCVC68078523534 (EV)	Bromomethane	151	50 - 150	50 - 150	percent	J/None	V5	
CCVC68078523534 (EV)	Vinyl acetate	36.0	50 - 150	50 - 150	percent	J/X	V5	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Ending Continuing Calibration Verification for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Uni	ts Reason
32M-01-14XOB-SPR23 680-236128-11	N	Vinyl acetate	2.50	2.00 U Q	2.00 UJ	ug/	V5/V1
32M-01-18XBR-SPR23 680-236128-12	N	Vinyl acetate	2.50	2.00 U Q	2.00 UJ	ug/	V5/V1
32M-DUP01-SPR23 680-236128-13	FD	Vinyl acetate	2.50	2.00 U Q	2.00 UJ	ug/	V5/V1
32M-TB-01-SPR23 680-236128-14	ТВ	Vinyl acetate	2.50	2.00 U Q	2.00 UJ	ug/	V5/V1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8260D, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB6807849268 (LB)	1,2,4- Trichlorobenzene	0.934	< 0.53	< 5	ug/l	U/None*	L	
MB6807849268 (LB)	Hexachlorobutadie ne	0.659	< 0.22	< 5	ug/l	U/None*	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

Quality Control Outliers for test method SW8260D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS6807849264 (BS)	1,3- Dichloropropane	120	80 - 119	10 - 119	percent	J/None	С	
LCS6807849264 (BS)	Chloromethane	143	50 - 139	10 - 139	percent	J/None	С	
LCS6807849264 (BS)	Dichlorodifluorome thane	162	32 - 152	10 - 152	percent	J/None	С	
LCS6807849264 (BS)	Vinyl chloride	161	58 - 137	10 - 137	percent	J/None	С	
LCS6807852355 (BS)	Vinyl acetate	337	54 - 146	10 - 146	percent	J/None	С	
LCSD6807849265 (BD)	1,3- Dichloropropane	121	80 - 119	10 - 119	percent	J/None	С	
LCSD6807849265 (BD)	Chloroethane	142	60 - 138	10 - 138	percent	J/None	С	
LCSD6807849265 (BD)	Chloromethane	148	50 - 139	10 - 139	percent	J/None	С	
LCSD6807849265 (BD)	Dichlorodifluorome thane	166	32 - 152	10 - 152	percent	J/None	С	
LCSD6807849265 (BD)	Vinyl chloride	170	58 - 137	10 - 137	percent	J/None	С	
LCSD6807852356 (BD)	Vinyl acetate	337	54 - 146	10 - 146	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method SW8260D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
32M-01-14XOB-SPR23 (N)	Dibromofluoromet hane	123	89 - 119	10 - 119	percent	J/None	1	
32M-01-14XOB-SPR23 (N)	Toluene-d8	115	89 - 112	10 - 112	percent	J/None	ı	
32M-01-18XBR-SPR23 (N)	Dibromofluoromet hane	128	89 - 119	10 - 119	percent	J/None	I	
32M-01-18XBR-SPR23 (N)	Toluene-d8	119	89 - 112	10 - 112	percent	J/None	ı	
32M-DUP01-SPR23 (FD)	Dibromofluoromet hane	124	89 - 119	10 - 119	percent	J/None	1	
32M-DUP01-SPR23 (FD)	Toluene-d8	115	89 - 112	10 - 112	percent	J/None	1	
32M-TB-01-SPR23 (TB)	Toluene-d8	114	89 - 112	10 - 112	percent	J/None	ı	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for SW8260D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-DUP01-SPR23 680-236128-13	FD	1,2-Dichlorobenzene	2.00	0.310 J	0.310 J	+	ug/l	I/TR
32M-DUP01-SPR23 680-236128-13	FD	Trichloroethene (TCE)	1.00	0.350 J	0.350 J	+	ug/l	I/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: MADEPVP		Extraction Method: SW50	30C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-14XOB-SPR23 680-236128-11	N	Benzene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U	20.0 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	Ethylbenzene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	m,p-Xylene	10.0	5.00 U	5.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	Naphthalene	6.00	4.00 U	4.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	o-Xylene	5.00	2.00 U	2.00 UJ		ug/l	Р
32M-01-14XOB-SPR23 680-236128-11	N	Toluene	5.00	2.00 U	2.00 UJ		ug/l	Р
Test Method: SW8260D		Extraction Method: SW50	30C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-01-14XOB-SPR23 680-236128-11	N	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-01-14XOB-SPR23 680-236128-11	N	Vinyl acetate	2.50	2.00 U Q	2.00 UJ		ug/l	V5/V1
32M-01-18XBR-SPR23 680-236128-12	N	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-01-18XBR-SPR23 680-236128-12	N	Vinyl acetate	2.50	2.00 U Q	2.00 UJ		ug/l	V5/V1
32M-DUP01-SPR23 680-236128-13	FD	1,2-Dichlorobenzene	2.00	0.310 J	0.310 J	+	ug/l	I/TR
32M-DUP01-SPR23 680-236128-13	FD	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2
32M-DUP01-SPR23 680-236128-13	FD	Trichloroethene (TCE)	1.00	0.350 J	0.350 J	+	ug/l	I/TR
32M-DUP01-SPR23 680-236128-13	FD	Vinyl acetate	2.50	2.00 U Q	2.00 UJ		ug/l	V5/V1
32M-TB-01-SPR23 680-236128-14	ТВ	Bromoform	2.50	2.00 U Q	2.00 UJ		ug/l	V2

Table of All Qualified Results

Test Method: SW8260D		Extraction Method: SW	/5030C					
FieldSample ID / LabSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
32M-TB-01-SPR23 680-236128-14	ТВ	Vinyl acetate	2.50	2.00 U Q	2.00 UJ		ug/l	V5/V1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	st method	MADEPVP					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
32M-01-14XOB-SPR23 680-236128-11	N	Benzene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	20.0 U	20.0 U	20.0 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	50.0 U	50.0 U	50.0 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	Ethylbenzene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	m,p-Xylene	10.0	5.00 U	5.00 U	5.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	Methyl tert-butyl ether (MTBE)	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	Naphthalene	6.00	4.00 U	4.00 U	4.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	o-Xylene	5.00	2.00 U	2.00 U	2.00 UJ	Р
32M-01-14XOB-SPR23 680-236128-11	N	Toluene	5.00	2.00 U	2.00 U	2.00 UJ	Р
Modified Qualifiers for tes	st method	1 SW8260D					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
32M-01-14XOB-SPR23 680-236128-11	N	Bromoform	2.50	2.00 U Q	2.00 X	2.00 UJ	V2
32M-01-14XOB-SPR23 680-236128-11	N	Vinyl acetate	2.50	2.00 U Q	2.00 X	2.00 UJ	V5/V1
32M-01-18XBR-SPR23 680-236128-12	N	Bromoform	2.50	2.00 U Q	2.00 X	2.00 UJ	V2
32M-01-18XBR-SPR23 680-236128-12	N	Vinyl acetate	2.50	2.00 U Q	2.00 X	2.00 UJ	V5/V1
32M-DUP01-SPR23 580-236128-13	FD	Bromoform	2.50	2.00 U Q	2.00 X	2.00 UJ	V2
32M-DUP01-SPR23 580-236128-13	FD	Vinyl acetate	2.50	2.00 U Q	2.00 X	2.00 UJ	V5/V1
32M-TB-01-SPR23 580-236128-14	ТВ	Bromoform	2.50	2.00 U Q	2.00 X	2.00 UJ	V2
32M-TB-01-SPR23 580-236128-14	ТВ	Vinyl acetate	2.50	2.00 U Q	2.00 X	2.00 UJ	V5/V1
							-

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
I	Surrogate recovery outside project limits.
L	Lab Blank
Р	Sample preservation/collection requirement not met.
TR	Trace Level Detect
V1	ICV
V2	CCV
V5	Ending Continuing Calibration Verification

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias						
-	The result may be biased low					
+	The result may be biased high					
Note - T	Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result					

Review Questions

Method: MADEPVP (Method for the Determination of Volation	le Petrole	um Hydro	carbons (\	/PH))
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?		•		Headspace requirement not met for one sample. Results were qualified J/UJ.
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•	-		
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified

28, 2023 Page 13 of 16

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		CCV and closing CCV out of limits for several compounds. All results were non-detect and qualified UJ.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?		•		ICV %D outside of limits for several compounds. All results were non-detect and qualified UJ.
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?		•		Several surrogates are outside of limits. Detect results qualified J.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		Two compounds were detect in the method blank. No data were qualified.
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS Recoveries outside of limits. Results non- detect, no data qualified.
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•	-		
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

Field Duplicates for SDG: 680-236128-3

LocationAnalysis32M-01-18XBRMADEPVP

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Benzene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	ND	ND	100	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	ND	ND	100	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	ND	ND	100	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Ethylbenzene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	m,p-Xylene	ND	ND	10.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Methyl tert-butyl ether (MTBE)	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Naphthalene	ND	ND	6.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	o-Xylene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Toluene	ND	ND	5.00	NA	30	NA	OK

Location	Analysis
32M-01-18XBR	SW6010C

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check	
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Manganese (TOTREC)	1300	1300	10.0	0.00	30	OK	NA	

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

Field Duplicates for SDG: 680-236128-3

Location **Analysis** 32M-01-18XBR SW6020A

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Arsenic (TOTREC)	2.50	1.90	5.00	27.3	30	NA	OK

Location **Analysis** 32M-01-18XBR SW8260D

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1,1,2-Tetrachloroethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1,1-Trichloroethane	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1,2,2-Tetrachloroethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1,2-Trichloroethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1-Dichloroethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1-Dichloroethene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,1-Dichloropropene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2,3-Trichlorobenzene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2,3-Trichloropropane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2,4-Trichlorobenzene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2,4-Trimethylbenzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dibromo-3-chloropropane	ND	ND	10.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dibromoethane (EDB)	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dichlorobenzene	ND	0.310	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dichloroethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dichloroethene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,2-Dichloropropane	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,3,5-Trimethylbenzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,3-Dichlorobenzene	ND	ND	2.00	NA	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

Field Duplicates for SDG: 680-236128-3

Location Analysis 32M-01-18XBR SW8260D

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,3-Dichloropropane	ND	ND	2.00	NA	30	NA	ОК
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	1,4-Dichlorobenzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	2,2-Dichloropropane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	2-Butanone (MEK)	ND	ND	25.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	2-Chlorotoluene	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	2-Hexanone	ND	ND	20.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	4-Chlorotoluene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	4-Methyl-2-pentanone (MIBK)	ND	ND	20.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Acetone	ND	ND	25.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Benzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Bromobenzene	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Bromochloromethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Bromodichloromethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Bromoform	ND	ND	2.50	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Bromomethane	ND	ND	20.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Carbon disulfide	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Carbon Tetrachloride	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Chlorobenzene	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Chloroethane	ND	ND	20.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Chloroform	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Chloromethane	ND	ND	2.50	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	cis-1,2-Dichloroethene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	cis-1,3-Dichloropropene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Cumene	ND	ND	2.00	NA	30	NA	ОК

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

Field Duplicates for SDG: 680-236128-3

Location Analysis 32M-01-18XBR SW8260D

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Dibromochloromethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Dibromomethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Dichlorodifluoromethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Ethylbenzene	ND	ND	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Hexachlorobutadiene	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	m,p-Xylene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Methyl tert-butyl ether (MTBE)	ND	ND	5.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Methylene chloride	ND	ND	20.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	n-Butylbenzene	ND	ND	2.50	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	n-Propylbenzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Naphthalene	ND	ND	10.0	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	o-Xylene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	p-Cymene (p-Isopropyltoluene)	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	sec-Butylbenzene	ND	ND	2.50	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Styrene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	tert-Butylbenzene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Tetrachloroethene (PCE)	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Toluene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	trans-1,2-Dichloroethene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	trans-1,3-Dichloropropene	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Trichloroethene (TCE)	ND	0.350	1.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Trichlorofluoromethane	ND	ND	2.00	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Vinyl acetate	ND	ND	2.50	NA	30	NA	OK
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Vinyl chloride	ND	ND	2.00	NA	30	NA	OK

FD = Field Duplicate RL = Reporting Limit

RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 32/43A, Spring 2023

Field Duplicates for SDG: 680-236128-3

Location **Analysis** 32M-01-18XBR SW8260D

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
32M-01-18XBR-SPR23 / 32M-DUP01-SPR23	680-236128-12 / 680-236128-13	Xylenes, Total	ND	ND	2.00	NA	30	NA	OK

FD = Field Duplicate RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. August 28, 2023 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 26, 2023. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #57156_F:

SDG# Fraction

680-236128-2 Dissolved Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	547 pages-ADV																Atta	achi	men	t 1																		
	Stage 2B EQUIS	ge 2B EQUIS EDD LDC# 57156 (Arcadis - Millersville, MD / Fort Devens)																																				
LDC	SDG#	DATE REC'D	(2) DATE DUE		OA 60D)			(601	etals 0C/20 70A))A (60 ¹ 10	c (D.M 6010 6020	C (I	VPH MADI -VPI	EP (I	EPI MAD -EP	ΕP	leth Etha Ethe	ne																		
Matrix	: Water/Soil	T	T	W	S	W	S	W	S	٧	V S	3 ا	N :	S۱	N	s١	W	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	8	0	-	-	-	-		<u>. .</u>	-	7	0	-	-	-	-	6	0															Ш	\bigsqcup	<u> </u>	Ш
В	680-236086-1	07/26/23	08/09/23	5	0	-	-	-	-		<u>. .</u>		4	0	-	-	-	-	3	0															Ш	\bigsqcup	<u> </u>	Ш
С	680-236086-2	07/26/23	08/09/23	2	0	-	-	-	-	2	2 ()	-	-	2	0	-	-	-	-															Ш	\bigsqcup	<u> </u>	Ш
D	680-236120-1	07/26/23	08/09/23	-	-	5	0	5	0			-	-	-	5	0 1	10	0	-	-															Ш	\bigsqcup	<u> </u>	Ш
Е	680-236128-1	07/26/23	08/09/23	-	-	-	-	-	-			-	5	0	-	-	-	-	-	-																		
F	680-236128-2	07/26/23	08/09/23																																			
G	680-236128-3	07/26/23	08/09/23	6	0	-	-	-	-		1 ()	-		4	0	-	-	-	-																		
Н	680-236378-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 1	4	0	-	-	-	-	-	-																		
1	680-236434-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 1	8	0	-	-	-	-	-	-																		
J	680-236498-1	07/26/23	08/09/23	3	0	-	-	-	-		. .	-	2	0	-	-	-	-	-	-																		
Κ	680-236498-2	07/26/23	08/09/23	-	-	-	-	-	-		. .	- 2	26	0	-	-	-	-	-	-																		
L	680-236818-1	07/26/23	08/09/23	-	-	-	-	-	-		. .	-	5	0	-	-	-	-	-	-																		
М	680-237047-1	07/26/23	08/09/23	-	-	-	-	-	-			-	1	0	-	-	-	-	-	-																		
Total	TR/PG			24	0	5	0	5	0	6	3 () [86	0 1	11	0 1	10	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	Stage 2B EQUIS	EDD					LD	C#	571	56	(Aı	rca	dis	- N	/lill	ers	vil	le,	MD) / F	or	t D	eve	ns)													
			(2)											N	O ₃			T		T		Т		T		T										П		
LDC	SDG#	DATE REC'D	DATE DUE		lk 20B)	(41		CN (901		C (905		DC (906		/NC (35			O₄ 56A)		S= 034)		TDS 540C		TOC 060/	A)	T		Ī				•							
Matrix	: Water/Soil	7	7	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	V	/ S	· W	/ 8	V	/ 5	S V	۷ :	s '	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	6	0	-	-	-	-	-	-	-	-	6	0	6	0	6	0	<u> </u>		6) C)	\perp													
В	680-236086-1	07/26/23	08/09/23	3	0	-	-	-	-	-	-	-	-	3	0	3	0	3	0	<u> </u>		3	3 0)	\perp													
D	680-236120-1	07/26/23	08/09/23	5	0	5	0	5	0	5	0	-	-	5	0	5	0			5	0	-																
Е	680-236128-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0			_ -																		
Н	680-236378-1	07/26/23	08/09/23	14	0	-	-	-	-	14	0	14	0	-	-	14	0	-																				
1	680-236434-1	07/26/23	08/09/23	18	0	-	-	-	-	18	0	18	0	-	-	18	0		_																			
К	680-236498-2	07/26/23	08/09/23	25	0	-	-	-	-	25	0	25	0	-	-	25	0	_	_					┖														
L	680-236818-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0	<u> </u>																				
М	680-237047-1	07/26/23	08/09/23	1	0	-	-	-	-	1	0	1	0	-	-	1	0	_																				
																								\perp											\bot			
Total	TR/PG			82	0	5	0	5	0	73	0	68	0	14	0	82	0	9	0	5	0	9) () () (0 (0	0	0	0	0	0	0	0	0	0	0	352

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 57, Spring 2023

SDG: 680-236128-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Allie Jefferson, Chemist/ERPIMS Specialist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: August 24, 2023

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW6010C - Dissolved	SW6020A	SW6020A - Dissolved
57M-95-03X-SPR23	680-236128-7	Water	Field Sample/N	Χ		Χ	
57M-96-11X-SPR23	680-236128-8	Water	Field Sample/N	Χ		Х	
57M-DUP01-SPR23	680-236128-9	Water	Field Duplicate/FD	Χ		Χ	
57-SW1-SPR23	680-236128-6	Water	Field Sample/N		Χ		Х

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-PHASE.000000 ENV.ADR August 28, 2023

023 Page 1 of 8

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-236128-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Field Duplicate RPD
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
MS Recovery
MS RPD
Prep Hold Time

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 1 results (8.33%) out of the 12 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.

alei Jeponson

August 24, 2023

Reviewed by Allie Jefferson, Chemist/ERPIMS Specialist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Rei Feng

Reviewed by Pei Geng, Senior Scientist, Laboratory Data Consultants, Inc.

August 28, 2023

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6020A, Total, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
57M-95-03X-SPR23 (SD)	Arsenic	118	84 - 116	10 - 125	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6020A, Total

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
57M-95-03X-SPR23 680-236128-7	N	Arsenic	5.00	13.0 J1	13.0 J	+	ug/l	М

Table of All Qualified Results

Test Method: SW6020A		Extraction Method:	TOTREC					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
57M-95-03X-SPR23 680-236128-7	N	Arsenic	5.00	13.0 J1	13.0 J	+	ug/l	M

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason (Code Definitions
Code	Definition
М	MS Recovery
TR	Trace Level Detect
Flag Cod	e and Definitions
Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Χ	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low
+	The result may be biased high
Note - Th	e bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		MS recovery outside of limits for Arsenic. Parent result qualified J.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 57, Spring 2023

Field Duplicates for SDG: 680-236128-2

Location **Analysis** 57M-96-11X SW6010C

			Primary	FD			RPD	RPD	RL
Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Result	Result	RL	RPD	Criteria	Check	Check
57M-96-11X-SPR23 / 57M-DUP01-SPR23	680-236128-8 / 680-236128-9	Iron (TOTREC)	19000	20000	100	5.13	30	OK	NA
57M-96-11X-SPR23 / 57M-DUP01-SPR23	680-236128-8 / 680-236128-9	Manganese (TOTREC)	3500	3600	10.0	2.82	30	OK	NA

Location **Analysis** 57M-96-11X SW6020A

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
57M-96-11X-SPR23 / 57M-DUP01-SPR23	680-236128-8 / 680-236128-9	Arsenic (TOTREC)	20.0	17.0	5.00	16.2	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. August 28, 2023 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on July 26, 2023. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #57156 D:

SDG# **Fraction**

680-236120-1

Dissolved Solids, Extractable Petroleum Alkalinity, Total Hydrocarbons, Volatile Petroleum Hydrocarbons, Organochlorine Pesticides

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	547 pages-ADV		Attachment 1																																			
	Stage 2B EQUIS	EDD					LD	C#	571	56	(A	rca	dis	: - N	Mill	ers	vil	le,	MC) /	For	t D	eve	ns)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		DA 60D)	Pe (808		(601	etals 0C/20 170A))A	6010	c (D.M 6010 6020	C (N	VPH MADI -VPI	EP (N	EPI MAD EPI	ΕP	leth Etha Ethe	ne																		
Matrix	c: Water/Soil		T	W	S	W	S	W	S	٧	V S	s١	N	s v	N :	s V	Ν	s	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	8	0	-	-	-	_		<u>. .</u>	-	7	0	-	-	-	-	6	0																<u> </u>		Ш
В	680-236086-1	07/26/23	08/09/23	5	0	-	-	-	-			-	4	0	-	-	-	-	3	0																	<u> </u>	Ш
С	680-236086-2	07/26/23	08/09/23	2	0	-	-	-	_	2	2 (0	-	- :	2	0	-	-	-	-																<u> </u>		Ш
D	680-236120-1	07/26/23	08/09/23	-	-	5	0	5	0		- -	-	-	- :	5	0 1	10	0	-	-																<u> </u>		Ш
Е	680-236128-1	07/26/23	08/09/23	-	-	-	-	-				-	5	0	-	-	-	-	-	-																	<u> </u>	Щ
F	680-236128-2	07/26/23	08/09/23	-	-	-	-	-	-			-	4	0	-	-	-	-	-	-																	<u> </u>	Ш
G	680-236128-3	07/26/23	08/09/23	6	0	-	-	-	-	4	1 (0	-		4	0	-	-	-	-																		
Н	680-236378-1	07/26/23	08/09/23	-	-	-	-	-	-		- -	- l	14	0	-	-	-	-	-	-																		
I	680-236434-1	07/26/23	08/09/23	-	-	-	-	-	-			- ·	18	0	-	-	-	-	-	-																		
J	680-236498-1	07/26/23	08/09/23	3	0	-	-	-	-			-	2	0	-	-	-	-	-	-																		
Κ	680-236498-2	07/26/23	08/09/23	-	-	-	-	-	-			- 2	26	0	-	-	-	-	-	-																		
L	680-236818-1	07/26/23	08/09/23	-	-	-	-	-	-			-	5	0	-	-	-	-	-	-																		
М	680-237047-1	07/26/23	08/09/23	•	-	-	-	-	-			-	1	0	-	-	-	-	-	-																		
Total	TR/PG			24	0	5	0	5	0	(3 (3 0	36	0 1	1	0 1	10	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	156
	Stage 2B EQUIS	EDD					LD	C#	571	56	(Aı	rca	dis	- N	/lill	ers	vill	le,	MD) / I	For	t D	eve	ns)													
			(2)						T		Ì			N	O.			T		Т		Т		Т	•	Т		Т		Т		T		T		\neg		\neg
LDC	SDG#	DATE REC'D	DATE		lk 20B)	(41	-	CN (901		C (905		D(/NC) ₂ -N		O₄ 56A)		S= 034)		TDS 5400		TOC 060 <i>A</i>															
Matrix	c: Water/Soil			W	S	W	S	W	S	W	s	W	S	W	S	W	s	W	s	٧	/ S	s v	/ S	S V	v s	3 V	٧	s '	W	S	W	S	W	s	W	S	W	S
Α	680-236018-1	07/26/23	08/09/23	6	0	-	-	-	-	-	-	-	-	6	0	6	0	6	0		<u> </u>	. 6	3 0)														Ш
В	680-236086-1	07/26/23	08/09/23	3	0	-	-	-	-	-	-	-	-	3	0	3	0	3	0	-	. -	. 3	3 0)														Ш
D	680-236120-1	07/26/23	08/09/23	5	0	5	0	5	0	5	0	-	-	5	0	5	0	-	-	5	5 0) -	. -															Ш
Е	680-236128-1	07/26/23	08/09/23	5	0	-	-	1	-	5	0	5	0	1	-	5	0	-	-	-		. -																
Н	680-236378-1	07/26/23	08/09/23	14	0	-	-	-	-	14	0	14	0	-	-	14	0	-	_																			
ı	680-236434-1	07/26/23	08/09/23	18	0	-	-	-	-	18	0	18	0		-	18	0	-	-	-	. -	. -	. -															\square
K			08/09/23				-	1	-	25	0	25	0	_	-	25	0	_	_	_			.] -															
L	680-236818-1	07/26/23	08/09/23	5	0	-	-	-	-	5	0	5	0	-	-	5	0	-	-	-	. -	. -	. -													\Box		\Box
М			08/09/23	1	0	-	-	-	-	1	0	1	0	-	-	1	0	-	-	-	. -	. -	. -													\Box		\square
																																				\Box		\square
Total	TR/PG			82	0	5	0	5	0	73	0	68	0	14	0	82	0	9	0	5	5 0) 9	0) () () (0	0	0	0	0	0	0	0	0	0	0	352

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

SDG: 680-236120-1

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins

Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster

Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Allie Jefferson, Chemist/ERPIMS Specialist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: August 24, 2023

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	A2320B	A2540C	E353.2	E410.4	MADEPEP	MADEPVP	SW6010C	SW6020A	SW7470A	SW8081B	SW9012B	SW9056A
LFM-03-07-SPR23	680-236120-1	Water	Field Sample/N	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	X
LFM-99-02B-SPR23	680-236120-2	Water	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	X
LFM-99-05A-SPR23	680-236120-3	Water	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	X
LFM-99-06A-RP-SPR23	680-236120-5	Water	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	X
LFM-DUP01-SPR23	680-236120-4	Water	Field Duplicate/FD	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X

ENV.ADR August 28, 2023

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 680-236120-1. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative Calibration Blank

Calibration Blank - Negative

Continuing Calibration Verification

Field Duplicate RPD

Interference Check Sample A

Interference Check Sample A - Negative

Interference Check Sample AB

Lab Blank

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 171 results (50.29%) out of the 340 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
A2320B	No additional comments; see Checklist for detail.
A2540C	No additional comments; see Checklist for detail.
E353.2	No additional comments; see Checklist for detail.
E410.4	No additional comments; see Checklist for detail.
MADEPEP	All Reanalysis results were determined not reportable. Initial results are reported.
MADEPVP	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8081B	No additional comments; see Checklist for detail.
SW9012B	No additional comments; see Checklist for detail.
SW9056A	No additional comments; see Checklist for detail.

9	lleù	Jepenson		_	August 24, 2023	
		A 1	: ./EDDU.10.0	 =		

Reviewed by Allie Jefferson, Chemist/ERPIMS Specialist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

August 28, 2023

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method E410.4, Calibration Blank

The purpose of calibration blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in calibration blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCB28061625529 (CB)	Chemical Oxygen Demand	11.0	< 8.7	< 20	mg/l	U/None*	B2	
CCB28061678329 (CB)	Chemical Oxygen Demand	13.6	< 8.7	< 20	mg/l	U/None*	B2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

Quality Control Outliers for test method MADEPEP, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB4103889801C (LB)	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	19.9	< 10	< 40	ug/l	U/None*	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Lab Blank for MADEPEP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-SPR23 680-236120-2	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	17.0 J H	39.0 UJ		ug/l	L/H1

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

Quality Control Outliers for test method MADEPEP, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS4103889802B (BS)	C9-C18 Petroleum Hydrocarbons, Aliphatic	38.0	40 - 140	10 - 140	percent	J/UJ	С	
LCS4103889802C (BS)	2- Methylnaphthalene	36.0	40 - 140	10 - 140	percent	J/UJ	С	
LCS4103889802C (BS)	Naphthalene	33.0	40 - 140	10 - 140	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for MADEPEP

Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	C9-C18 Petroleum Hydrocarbons, Aliphatic	88.0	58.0 U H Q	58.0 UJ		ug/l	C/H1
N	Naphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ		ug/l	C/H1
N	Naphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	2-Methylnaphthalene	2.10	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	C9-C18 Petroleum Hydrocarbons, Aliphatic	93.0	62.0 U H Q	62.0 UJ		ug/l	C/H1
N	Naphthalene	2.10	1.20 U H Q	1.20 UJ		ug/l	C/H1
N	2-Methylnaphthalene	1.90	1.10 U H Q	1.10 UJ		ug/l	C/H1
N	C9-C18 Petroleum Hydrocarbons, Aliphatic	86.0	57.0 U H Q	57.0 UJ		ug/l	C/H1
N	Naphthalene	1.90	1.10 U H Q	1.10 UJ		ug/l	C/H1
FD	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
FD	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ		ug/l	C/H1
FD	Naphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
	N N N N N N N N T N N T T T T T T T T T	N 2-Methylnaphthalene N C9-C18 Petroleum Hydrocarbons, Aliphatic N Naphthalene N 2-Methylnaphthalene N C9-C18 Petroleum Hydrocarbons, Aliphatic N Naphthalene N 2-Methylnaphthalene N 2-Methylnaphthalene N C9-C18 Petroleum Hydrocarbons, Aliphatic N Naphthalene N 2-Methylnaphthalene N 2-Methylnaphthalene N 2-Methylnaphthalene N 2-Methylnaphthalene N C9-C18 Petroleum Hydrocarbons, Aliphatic N Naphthalene FD 2-Methylnaphthalene FD 2-Methylnaphthalene FD C9-C18 Petroleum Hydrocarbons, Aliphatic	N2-Methylnaphthalene1.90NC9-C18 Petroleum Hydrocarbons, Aliphatic88.0NNaphthalene1.90N2-Methylnaphthalene1.90NC9-C18 Petroleum Hydrocarbons, Aliphatic87.0NNaphthalene1.90N2-Methylnaphthalene2.10NC9-C18 Petroleum Hydrocarbons, Aliphatic93.0NNaphthalene2.10N2-Methylnaphthalene1.90N2-Methylnaphthalene1.90NC9-C18 Petroleum Hydrocarbons, Aliphatic86.0NNaphthalene1.90FD2-Methylnaphthalene1.90FDC9-C18 Petroleum Hydrocarbons, Aliphatic87.0	N 2-Methylnaphthalene 1.90 1.20 U H Q N C9-C18 Petroleum Hydrocarbons, Aliphatic 88.0 58.0 U H Q N Naphthalene 1.90 1.20 U H Q N 2-Methylnaphthalene 1.90 1.20 U H Q N C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q N Naphthalene 1.90 1.20 U H Q N 2-Methylnaphthalene 2.10 1.20 U H Q N Naphthalene 2.10 1.20 U H Q N Naphthalene 1.90 1.10 U H Q N C9-C18 Petroleum Hydrocarbons, Aliphatic 86.0 57.0 U H Q N Naphthalene 1.90 1.10 U H Q N Naphthalene 1.90 1.10 U H Q FD 2-Methylnaphthalene 1.90 1.20 U H Q FD C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q	Type Analyte LOQ Lab Result Result N 2-Methylnaphthalene 1.90 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 88.0 58.0 U H Q 58.0 UJ N Naphthalene 1.90 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q 58.0 UJ N Naphthalene 1.90 1.20 U H Q 1.20 UJ N 2-Methylnaphthalene 2.10 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 93.0 62.0 U H Q 62.0 UJ N Naphthalene 1.90 1.10 U H Q 1.10 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 86.0 57.0 U H Q 57.0 UJ N Naphthalene 1.90 1.10 U H Q 1.10 UJ FD 2-Methylnaphthalene 1.90 1.20 U H Q 58.0 UJ FD C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q 58.0 UJ	Type Analyte LOQ Lab Result Result Bias N 2-Methylnaphthalene 1.90 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 88.0 58.0 U H Q 58.0 UJ N Naphthalene 1.90 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q 58.0 UJ N Naphthalene 1.90 1.20 U H Q 1.20 UJ N 2-Methylnaphthalene 2.10 1.20 U H Q 1.20 UJ N C9-C18 Petroleum Hydrocarbons, Aliphatic 93.0 62.0 U H Q 62.0 UJ N Naphthalene 2.10 1.20 U H Q 1.20 UJ N 2-Methylnaphthalene 1.90 1.10 U H Q 1.10 UJ N Naphthalene 1.90 1.10 U H Q 1.10 UJ N Naphthalene 1.90 1.10 U H Q 1.20 UJ N Po-C18 Petroleum Hydrocarbons, Aliphatic 86.0 57.0 U H Q 57.0 U J N <t< td=""><td>Type Analyte LOQ Lab Result Result Result Result Bias Units N 2-Methylnaphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 88.0 58.0 U H Q 58.0 UJ ug/l N Naphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q 58.0 UJ ug/l N Naphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N 2-Methylnaphthalene 2.10 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 93.0 62.0 U H Q 62.0 UJ ug/l N Naphthalene 2.10 1.20 U H Q 1.20 UJ ug/l N 2-Methylnaphthalene 1.90 1.10 U H Q 1.10 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 86.0 57.0 U H Q 57.0 UJ ug/l FD 2-Methylnaphthalene 1.90<</td></t<>	Type Analyte LOQ Lab Result Result Result Result Bias Units N 2-Methylnaphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 88.0 58.0 U H Q 58.0 UJ ug/l N Naphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 87.0 58.0 U H Q 58.0 UJ ug/l N Naphthalene 1.90 1.20 U H Q 1.20 UJ ug/l N 2-Methylnaphthalene 2.10 1.20 U H Q 1.20 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 93.0 62.0 U H Q 62.0 UJ ug/l N Naphthalene 2.10 1.20 U H Q 1.20 UJ ug/l N 2-Methylnaphthalene 1.90 1.10 U H Q 1.10 UJ ug/l N C9-C18 Petroleum Hydrocarbons, Aliphatic 86.0 57.0 U H Q 57.0 UJ ug/l FD 2-Methylnaphthalene 1.90<

Quality Control Outliers for test method MADEPEP, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-SPR23 (SD)	2- Methylnaphthalene	37.2	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Acenaphthene	36.6	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Acenaphthylene	35.4	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Anthracene	34.9	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Benzo (a)anthracene	34.3	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Benzo(a)pyrene	34.4	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Benzo (b)fluoranthene	35.3	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Benzo (g,h,i)perylene	33.8	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Benzo (k)fluoranthene	33.4	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Chrysene	33.6	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Dibenz (a,h)anthracene	32.0	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Fluoranthene	34.3	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Fluorene	36.1	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Indeno(1,2,3- c,d)pyrene	35.2	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Naphthalene	33.6	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Phenanthrene	34.8	< 25	< 25	rpd	J/None	D	
LFM-99-02B-SPR23 (SD)	Pyrene	34.1	< 25	< 25	rpd	J/None	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for MADEPEP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-SPR23 680-236120-2	N	Phenanthrene	1.90	0.930 J H Q	0.930 J		ug/l	D/TR/H1

Quality Control Outliers for test method MADEPVP, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-SPR23 (MS)	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	150	70 - 130	10 - 130	percent	J/None	M	
LFM-99-02B-SPR23 (SD)	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	132	70 - 130	10 - 130	percent	J/None	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Page 8 of 39

Quality Control Outliers for test method SW8081B, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning C Limits L	Control Limits	Units	Qualifier	Reason Code	Comment
CCV68078359334 (CV)	p,p'-DDD	78.0	80 - 120 8	80 - 120	percent	J/X	V2	
CCV68078359334 (CV)	p,p'-DDE	78.0	80 - 120 8	80 - 120	percent	J/X	V2	
CCV68078359334 (CV)	p,p'-DDT	76.0	80 - 120 8	80 - 120	percent	J/X	V2	_

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDD	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDE	0.0490	0.00390 U M Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDT	0.0490	0.00390 U M	0.00390 UJ		ug/l	V2

Quality Control Outliers for test method SW8081B, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS6807834382A (BS)	Aldrin	38.0	45 - 134	10 - 134	percent	J/UJ	С	
LCS6807834382A (BS)	alpha-BHC (alpha- Hexachlorocyclohe xane)	41.0	54 - 138	10 - 138	percent	J/UJ	С	
LCS6807834382A (BS)	alpha-Endosulfan	40.0	62 - 126	10 - 126	percent	J/UJ	С	
LCS6807834382A (BS)	beta-Endosulfan	44.0	52 - 135	10 - 135	percent	J/UJ	С	
LCS6807834382A (BS)	Dieldrin	45.0	60 - 136	10 - 136	percent	J/UJ	С	
LCS6807834382A (BS)	Endosulfan sulfate	53.0	62 - 133	10 - 133	percent	J/UJ	С	
LCS6807834382A (BS)	Endrin	50.0	60 - 138	10 - 138	percent	J/UJ	С	
LCS6807834382A (BS)	Endrin aldehyde	42.0	51 - 132	10 - 132	percent	J/UJ	С	
LCS6807834382A (BS)	Endrin ketone	47.0	58 - 134	10 - 134	percent	J/UJ	С	
LCS6807834382A (BS)	gamma-BHC (Lindane)	43.0	59 - 134	10 - 134	percent	J/UJ	С	
LCS6807834382A (BS)	Heptachlor	48.0	54 - 130	10 - 130	percent	J/UJ	С	
LCS6807834382A (BS)	Heptachlor epoxide	44.0	61 - 133	10 - 133	percent	J/UJ	С	
LCS6807834382A (BS)	p,p'-DDD	51.0	56 - 143	10 - 143	percent	J/UJ	С	
LCS6807834382A (BS)	p,p'-DDE	46.0	57 - 135	10 - 135	percent	J/UJ	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the LCS Recovery for SW8081B

Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
N	Aldrin	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	alpha-Endosulfan	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	beta-Endosulfan	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	Dieldrin	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	Endosulfan sulfate	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
N	Endrin	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
N	Endrin aldehyde	0.0480	0.0160 U Q	0.0160 UJ		ug/l	С
N	Endrin ketone	0.0480	0.0160 U Q	0.0160 UJ		ug/l	С
	N N N N N N N N N N N N N N N N N N N	N Aldrin N alpha-BHC (alpha-Hexachlorocyclohexane) N alpha-Endosulfan N beta-Endosulfan N Dieldrin N Endosulfan sulfate N Endrin N Endrin	NAldrin0.0480Nalpha-BHC (alpha-Hexachlorocyclohexane)0.0480Nalpha-Endosulfan0.0480Nbeta-Endosulfan0.0480NDieldrin0.0480NEndosulfan sulfate0.0480NEndrin0.0480NEndrin aldehyde0.0480	N Aldrin 0.0480 0.00390 U Q N alpha-BHC (alpha-Hexachlorocyclohexane) 0.0480 0.00390 U Q N alpha-Endosulfan 0.0480 0.00390 U Q N beta-Endosulfan 0.0480 0.00390 U Q N Dieldrin 0.0480 0.00390 U Q N Endosulfan sulfate 0.0480 0.00390 U Q N Endrin 0.0480 0.00390 U M Q 0.00390 U Q 0.00390 U M N Endrin 0.0480 0.0160 U Q	Type Analyte LOQ Lab Result Result N Aldrin 0.0480 0.00390 U Q 0.00390 UJ N alpha-BHC (alpha-Hexachlorocyclohexane) 0.0480 0.00390 U Q 0.00390 UJ N alpha-Endosulfan 0.0480 0.00390 U Q 0.00390 UJ N beta-Endosulfan 0.0480 0.00390 U Q 0.00390 UJ N Dieldrin 0.0480 0.00390 U Q 0.00390 UJ N Endosulfan sulfate 0.0480 0.00390 U Q 0.00390 UJ N Endrin 0.0480 0.00390 U M 0.00390 UJ N Endrin 0.0480 0.00390 U M 0.00390 UJ N Endrin aldehyde 0.0480 0.0160 U Q 0.0160 UJ	Type Analyte LOQ Lab Result Result Bias N Aldrin 0.0480 0.00390 U Q 0.00390 UJ 0.00390 UJ	Type Analyte LOQ Lab Result Result Bias Units N Aldrin 0.0480 0.00390 U Q 0.00390 UJ ug/l ug/l N alpha-BHC (alpha-Hexachlorocyclohexane) 0.0480 0.00390 U Q 0.00390 UJ ug/l ug/l N alpha-Endosulfan 0.0480 0.00390 U Q 0.00390 UJ ug/l ug/l N beta-Endosulfan 0.0480 0.00390 U Q 0.00390 UJ ug/l ug/l N Endosulfan sulfate 0.0480 0.00390 U Q 0.00390 UJ ug/l ug/l N Endrin 0.0480 0.00390 U M 0.00390 UJ ug/l ug/l N Endrin aldehyde 0.0480 0.0160 U Q 0.0160 UJ ug/l ug/l

Qualified Results associated with the LCS Recovery for SW8081B

		<u> </u>						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-03-07-SPR23 680-236120-1	N	gamma-BHC (Lindane)	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	Heptachlor	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	Heptachlor epoxide	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	p,p'-DDD	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	p,p'-DDE	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Aldrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	alpha-Endosulfan	0.0490	0.00390 U J1 Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	beta-Endosulfan	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Dieldrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Endosulfan sulfate	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	Endrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	Endrin aldehyde	0.0490	0.0160 U Q	0.0160 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Endrin ketone	0.0490	0.0160 U Q	0.0160 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	gamma-BHC (Lindane)	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Heptachlor	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Heptachlor epoxide	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDD	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDE	0.0490	0.00390 U M Q	0.00390 UJ		ug/l	C/V2
LFM-99-05A-SPR23 680-236120-3	N	Aldrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	alpha-Endosulfan	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	beta-Endosulfan	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Dieldrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endosulfan sulfate	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endrin aldehyde	0.0520	0.0170 U Q	0.0170 UJ		ug/l	С
		<u></u>				-		-

Qualified Results associated with the LCS Recovery for SW8081B

		<u> </u>						
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-05A-SPR23 680-236120-3	N	Endrin ketone	0.0520	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	gamma-BHC (Lindane)	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Heptachlor	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Heptachlor epoxide	0.0520	0.00420 U Q			ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	p,p'-DDD	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	p,p'-DDE	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Aldrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	alpha-Endosulfan	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	beta-Endosulfan	0.0480	0.00380 U M Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Dieldrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endosulfan sulfate	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin aldehyde	0.0480	0.0150 U M Q	0.0150 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin ketone	0.0480	0.0150 U Q	0.0150 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	gamma-BHC (Lindane)	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Heptachlor	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Heptachlor epoxide	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	p,p'-DDD	0.0480	0.00380 U M Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	p,p'-DDE	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Aldrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	alpha-Endosulfan	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	beta-Endosulfan	0.0530	0.00430 U M Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Dieldrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endosulfan sulfate	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С

Qualified Results associated with the LCS Recovery for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-DUP01-SPR23 680-236120-4	FD	Endrin aldehyde	0.0530	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endrin ketone	0.0530	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	gamma-BHC (Lindane)	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Heptachlor	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Heptachlor epoxide	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	p,p'-DDD	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	p,p'-DDE	0.0530	0.00430 U M Q	0.00430 UJ		ug/l	С

Quality Control Outliers for test method SW8081B, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-SPR23 (SD)	delta-BHC (delta- Hexachlorocyclohe xane)	31.7	< 30	< 30	rpd	J/None	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

ENV.ADR August 28, 2023

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3	510C				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	s Units	Reason
LFM-03-07-SPR23 680-236120-1	N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ	ug/l	C/H1
LFM-03-07-SPR23 680-236120-1	N	Acenaphthene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Acenaphthylene	1.90	1.40 U H Q	1.40 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Anthracene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(a)anthracene	1.90	1.40 U H	1.40 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(a)pyrene	1.90	1.20 U H	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	29.0 U H	29.0 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	19.0 UHMQ	19.0 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	88.0	58.0 U H Q	58.0 UJ	ug/l	C/H1
LFM-03-07-SPR23 680-236120-1	N	Chrysene	1.90	0.970 U H	0.970 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Dibenz(a,h)anthracene	1.90	0.970 U H	0.970 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Fluoranthene	1.90	0.970 U H	0.970 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Fluorene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Naphthalene	1.90	1.20 U H Q	1.20 UJ	ug/l	C/H1
LFM-03-07-SPR23 680-236120-1	N	Phenanthrene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-03-07-SPR23 680-236120-1	N	Pyrene	12.0	9.70 U H	9.70 UJ	ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ	ug/l	C/H1
LFM-99-02B-SPR23 680-236120-2	N	Acenaphthene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Acenaphthylene	1.90	1.40 U H Q	1.40 UJ	ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Anthracene	1.90	1.20 U H Q	1.20 UJ	ug/l	H1

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-SPR23 680-236120-2	N	Benzo(a)anthracene	1.90	1.40 U H	1.40 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(a)pyrene	1.90	1.20 U H	1.20 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	17.0 J H	39.0 UJ		ug/l	L/H1
LFM-99-02B-SPR23 680-236120-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ		ug/l	C/H1
LFM-99-02B-SPR23 680-236120-2	N	Chrysene	1.90	0.970 U H	0.970 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Dibenz(a,h)anthracene	1.90	0.970 U H	0.970 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Fluoranthene	1.90	0.970 U H	0.970 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Fluorene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-02B-SPR23 680-236120-2	N	Naphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
LFM-99-02B-SPR23 680-236120-2	N	Phenanthrene	1.90	0.930 J H Q	0.930 J		ug/l	D/TR/H1
LFM-99-02B-SPR23 680-236120-2	N	Pyrene	12.0	9.70 U H	9.70 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	2-Methylnaphthalene	2.10	1.20 U H Q	1.20 UJ		ug/l	C/H1
LFM-99-05A-SPR23 680-236120-3	N	Acenaphthene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Acenaphthylene	2.10	1.40 U H Q	1.40 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Anthracene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Benzo(a)anthracene	2.10	1.40 U H	1.40 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Benzo(a)pyrene	2.10	1.20 U H	1.20 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Benzo(b)fluoranthene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Benzo(g,h,i)perylene	2.10	1.20 U H	1.20 UJ		ug/l	H1
LFM-99-05A-SPR23 680-236120-3	N	Benzo(k)fluoranthene	4.10	3.10 U H	3.10 UJ		ug/l	H1

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3510C							
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason	
LFM-99-05A-SPR23 680-236120-3	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	41.0	31.0 U H	31.0 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	51.0	21.0 U H Q	21.0 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	93.0	62.0 U H Q	62.0 UJ		ug/l	C/H1	
_FM-99-05A-SPR23 680-236120-3	N	Chrysene	2.10	1.00 U H	1.00 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	Dibenz(a,h)anthracene	2.10	1.00 U H	1.00 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	Fluoranthene	2.10	1.00 U H	1.00 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	Fluorene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1	
_FM-99-05A-SPR23 680-236120-3	N	Indeno(1,2,3-c,d)pyrene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	Naphthalene	2.10	1.20 U H Q	1.20 UJ		ug/l	C/H1	
_FM-99-05A-SPR23 680-236120-3	N	Phenanthrene	2.10	1.20 U H Q	1.20 UJ		ug/l	H1	
LFM-99-05A-SPR23 680-236120-3	N	Pyrene	12.0	10.0 U H	10.0 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	2-Methylnaphthalene	1.90	1.10 U H Q	1.10 UJ		ug/l	C/H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	Acenaphthene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1	
_FM-99-06A-RP-SPR23 680-236120-5	N	Acenaphthylene	1.90	1.30 U H Q	1.30 UJ		ug/l	H1	
_FM-99-06A-RP-SPR23 680-236120-5	N	Anthracene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1	
_FM-99-06A-RP-SPR23 680-236120-5	N	Benzo(a)anthracene	1.90	1.30 U H	1.30 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(a)pyrene	1.90	1.10 U H	1.10 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(b)fluoranthene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(g,h,i)perylene	1.90	1.10 U H	1.10 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(k)fluoranthene	3.80	2.90 U H	2.90 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	29.0 U H	29.0 UJ		ug/l	H1	
LFM-99-06A-RP-SPR23 680-236120-5	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 UJ		ug/l	H1	
FM-99-06A-RP-SPR23 880-236120-5	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	86.0	57.0 U H Q	57.0 UJ		ug/l	C/H1	

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-06A-RP-SPR23 680-236120-5	N	Chrysene	1.90	0.960 U H	0.960 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Dibenz(a,h)anthracene	1.90	0.960 U H	0.960 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Fluoranthene	1.90	0.960 U H	0.960 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Fluorene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Indeno(1,2,3-c,d)pyrene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Naphthalene	1.90	1.10 U H Q	1.10 UJ		ug/l	C/H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Phenanthrene	1.90	1.10 U H Q	1.10 UJ		ug/l	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Pyrene	11.0	9.60 U H	9.60 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
LFM-DUP01-SPR23 680-236120-4	FD	Acenaphthene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Acenaphthylene	1.90	1.30 U H Q	1.30 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Anthracene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(a)anthracene	1.90	1.30 U H	1.30 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(a)pyrene	1.90	1.20 U H	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	29.0 U H	29.0 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ		ug/l	C/H1
LFM-DUP01-SPR23 680-236120-4	FD	Chrysene	1.90	0.960 U H	0.960 UJ		ug/l	H1
FM-DUP01-SPR23 680-236120-4	FD	Dibenz(a,h)anthracene	1.90	0.960 U H	0.960 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Fluoranthene	1.90	0.960 U H	0.960 UJ		ug/l	H1
FM-DUP01-SPR23 580-236120-4	FD	Fluorene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
FM-DUP01-SPR23 880-236120-4	FD	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW35	510C					
FieldSample ID / _abSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
FM-DUP01-SPR23 680-236120-4	FD	Naphthalene	1.90	1.20 U H Q	1.20 UJ		ug/l	C/H1
_FM-DUP01-SPR23 680-236120-4	FD	Phenanthrene	1.90	1.20 U H Q	1.20 UJ		ug/l	H1
LFM-DUP01-SPR23 680-236120-4	FD	Pyrene	12.0	9.60 U H	9.60 UJ		ug/l	H1
Test Method: SW8081B		Extraction Method: SW35	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
_FM-03-07-SPR23 680-236120-1	N	Aldrin	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
_FM-03-07-SPR23 680-236120-1	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
_FM-03-07-SPR23 680-236120-1	N	alpha-Endosulfan	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	beta-Endosulfan	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
FM-03-07-SPR23 880-236120-1	N	Dieldrin	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
FM-03-07-SPR23 680-236120-1	N	Endosulfan sulfate	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
FM-03-07-SPR23 580-236120-1	N	Endrin	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
FM-03-07-SPR23 680-236120-1	N	Endrin aldehyde	0.0480	0.0160 U Q	0.0160 UJ		ug/l	С
FM-03-07-SPR23 680-236120-1	N	Endrin ketone	0.0480	0.0160 U Q	0.0160 UJ		ug/l	С
FM-03-07-SPR23 680-236120-1	N	gamma-BHC (Lindane)	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
FM-03-07-SPR23 580-236120-1	N	Heptachlor	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
_FM-03-07-SPR23 680-236120-1	N	Heptachlor epoxide	0.0480	0.00390 U Q	0.00390 UJ		ug/l	С
_FM-03-07-SPR23 680-236120-1	N	p,p'-DDD	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
LFM-03-07-SPR23 680-236120-1	N	p,p'-DDE	0.0480	0.00390 U M Q	0.00390 UJ		ug/l	С
FM-99-02B-SPR23 680-236120-2	N	Aldrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
FM-99-02B-SPR23 880-236120-2	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
_FM-99-02B-SPR23 680-236120-2	N	alpha-Endosulfan	0.0490	0.00390 U J1 Q	0.00390 UJ		ug/l	С
FM-99-02B-SPR23 880-236120-2	N	beta-Endosulfan	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
FM-99-02B-SPR23 880-236120-2	N	Dieldrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
FM-99-02B-SPR23 880-236120-2	N	Endosulfan sulfate	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
FM-99-02B-SPR23 680-236120-2	N	Endrin	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
FM-99-02B-SPR23 880-236120-2	N	Endrin aldehyde	0.0490	0.0160 U Q	0.0160 UJ		ug/l	С

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR August 28, 2023

Table of All Qualified Results

Test Method: SW8081B		Extraction Method: SW35	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-SPR23 680-236120-2	N	Endrin ketone	0.0490	0.0160 U Q	0.0160 UJ	,	ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	gamma-BHC (Lindane)	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Heptachlor	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	Heptachlor epoxide	0.0490	0.00390 U Q	0.00390 UJ		ug/l	С
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDD	0.0490	0.00390 U Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDE	0.0490	0.00390 U M Q	0.00390 UJ		ug/l	C/V2
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDT	0.0490	0.00390 U M	0.00390 UJ		ug/l	V2
LFM-99-05A-SPR23 680-236120-3	N	Aldrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	alpha-Endosulfan	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	beta-Endosulfan	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Dieldrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endosulfan sulfate	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endrin	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endrin aldehyde	0.0520	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Endrin ketone	0.0520	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	gamma-BHC (Lindane)	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Heptachlor	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	Heptachlor epoxide	0.0520	0.00420 U Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	p,p'-DDD	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-05A-SPR23 680-236120-3	N	p,p'-DDE	0.0520	0.00420 U M Q	0.00420 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Aldrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	alpha-Endosulfan	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	beta-Endosulfan	0.0480	0.00380 U M Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Dieldrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endosulfan sulfate	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR August 28, 2023

Table of All Qualified Results

Test Method: SW8081B		Extraction Method: SW35	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin aldehyde	0.0480	0.0150 U M Q	0.0150 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Endrin ketone	0.0480	0.0150 U Q	0.0150 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	gamma-BHC (Lindane)	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Heptachlor	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	Heptachlor epoxide	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	p,p'-DDD	0.0480	0.00380 U M Q	0.00380 UJ		ug/l	С
LFM-99-06A-RP-SPR23 680-236120-5	N	p,p'-DDE	0.0480	0.00380 U Q	0.00380 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Aldrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	alpha-Endosulfan	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	beta-Endosulfan	0.0530	0.00430 U M Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Dieldrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endosulfan sulfate	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endrin	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endrin aldehyde	0.0530	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Endrin ketone	0.0530	0.0170 U Q	0.0170 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	gamma-BHC (Lindane)	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Heptachlor	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	Heptachlor epoxide	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	p,p'-DDD	0.0530	0.00430 U Q	0.00430 UJ		ug/l	С
LFM-DUP01-SPR23 680-236120-4	FD	p,p'-DDE	0.0530	0.00430 U M Q	0.00430 UJ		ug/l	С

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for to	est method	I MADEPEP					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
LFM-03-07-SPR23 680-236120-1	N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
LFM-03-07-SPR23 680-236120-1	N	Acenaphthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Acenaphthylene	1.90	1.40 U H Q	1.40 U	1.40 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Anthracene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(a)anthracene	1.90	1.40 U H	1.40 U	1.40 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(a)pyrene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 U	2.90 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	29.0 U H	29.0 U	29.0 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	19.0 UHMQ	19.0 U	19.0 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	88.0	58.0 U H Q	58.0 UJ	58.0 UJ	C/H1
LFM-03-07-SPR23 680-236120-1	N	Chrysene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Dibenz(a,h)anthracene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Fluoranthene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Fluorene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Naphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
LFM-03-07-SPR23 680-236120-1	N	Phenanthrene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-03-07-SPR23 680-236120-1	N	Pyrene	12.0	9.70 U H	9.70 U	9.70 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
LFM-99-02B-SPR23 680-236120-2	N	Acenaphthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	Acenaphthylene	1.90	1.40 U H Q	1.40 U	1.40 UJ	H1
_FM-99-02B-SPR23 680-236120-2	N	Anthracene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1

Table of Results with Modified Qualifiers

Modified Qualifiers for t	est method	I MADEPEP					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
LFM-99-02B-SPR23 680-236120-2	N	Benzo(a)anthracene	1.90	1.40 U H	1.40 U	1.40 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(a)pyrene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 U	2.90 UJ	H1
LFM-99-02B-SPR23 680-236120-2	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	17.0 J H	39.0 U	39.0 UJ	L/H1
LFM-99-02B-SPR23 680-236120-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 U	19.0 UJ	H1
_FM-99-02B-SPR23 680-236120-2	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ	58.0 UJ	C/H1
_FM-99-02B-SPR23 680-236120-2	N	Chrysene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
FM-99-02B-SPR23 680-236120-2	N	Dibenz(a,h)anthracene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
FM-99-02B-SPR23 680-236120-2	N	Fluoranthene	1.90	0.970 U H	0.970 U	0.970 UJ	H1
FM-99-02B-SPR23 580-236120-2	N	Fluorene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-99-02B-SPR23 680-236120-2	N	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
_FM-99-02B-SPR23 680-236120-2	N	Naphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
FM-99-02B-SPR23 680-236120-2	N	Phenanthrene	1.90	0.930 J H Q	0.930 J	0.930 J	D/TR/H1
FM-99-02B-SPR23 680-236120-2	N	Pyrene	12.0	9.70 U H	9.70 U	9.70 UJ	H1
FM-99-05A-SPR23 680-236120-3	N	2-Methylnaphthalene	2.10	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
_FM-99-05A-SPR23 680-236120-3	N	Acenaphthene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-99-05A-SPR23 680-236120-3	N	Acenaphthylene	2.10	1.40 U H Q	1.40 U	1.40 UJ	H1
_FM-99-05A-SPR23 680-236120-3	N	Anthracene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-99-05A-SPR23 880-236120-3	N	Benzo(a)anthracene	2.10	1.40 U H	1.40 U	1.40 UJ	H1
.FM-99-05A-SPR23 80-236120-3	N	Benzo(a)pyrene	2.10	1.20 U H	1.20 U	1.20 UJ	H1
FM-99-05A-SPR23 680-236120-3	N	Benzo(b)fluoranthene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-99-05A-SPR23 680-236120-3	N	Benzo(g,h,i)perylene	2.10	1.20 U H	1.20 U	1.20 UJ	H1
FM-99-05A-SPR23 80-236120-3	N	Benzo(k)fluoranthene	4.10	3.10 U H	3.10 U	3.10 UJ	H1

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR August 28, 2023

Table of Results with Modified Qualifiers

	,	I MADEPEP					
FieldSample ID / LabSample ID	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
LFM-99-05A-SPR23 680-236120-3	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	41.0	31.0 U H	31.0 U	31.0 UJ	H1
FM-99-05A-SPR23 680-236120-3	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	51.0	21.0 U H Q	21.0 U	21.0 UJ	H1
_FM-99-05A-SPR23 680-236120-3	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	93.0	62.0 U H Q	62.0 UJ	62.0 UJ	C/H1
_FM-99-05A-SPR23 680-236120-3	N	Chrysene	2.10	1.00 U H	1.00 U	1.00 UJ	H1
_FM-99-05A-SPR23 680-236120-3	N	Dibenz(a,h)anthracene	2.10	1.00 U H	1.00 U	1.00 UJ	H1
LFM-99-05A-SPR23 680-236120-3	N	Fluoranthene	2.10	1.00 U H	1.00 U	1.00 UJ	H1
LFM-99-05A-SPR23 680-236120-3	N	Fluorene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
_FM-99-05A-SPR23 680-236120-3	N	Indeno(1,2,3-c,d)pyrene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
_FM-99-05A-SPR23 680-236120-3	N	Naphthalene	2.10	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
_FM-99-05A-SPR23 680-236120-3	N	Phenanthrene	2.10	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-99-05A-SPR23 680-236120-3	N	Pyrene	12.0	10.0 U H	10.0 U	10.0 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	2-Methylnaphthalene	1.90	1.10 U H Q	1.10 UJ	1.10 UJ	C/H1
FM-99-06A-RP-SPR23 680-236120-5	N	Acenaphthene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	Acenaphthylene	1.90	1.30 U H Q	1.30 U	1.30 UJ	H1
_FM-99-06A-RP-SPR23 680-236120-5	N	Anthracene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
_FM-99-06A-RP-SPR23 680-236120-5	N	Benzo(a)anthracene	1.90	1.30 U H	1.30 U	1.30 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(a)pyrene	1.90	1.10 U H	1.10 U	1.10 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Benzo(b)fluoranthene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	Benzo(g,h,i)perylene	1.90	1.10 U H	1.10 U	1.10 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	Benzo(k)fluoranthene	3.80	2.90 U H	2.90 U	2.90 UJ	H1
_FM-99-06A-RP-SPR23 680-236120-5	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	29.0 U H	29.0 U	29.0 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 U	19.0 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	C9-C18 Petroleum Hydrocarbons, Aliphatic	86.0	57.0 U H Q	57.0 UJ	57.0 UJ	C/H1

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	st method	MADEPEP					
FieldSample ID / LabSample ID	Type	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason
LFM-99-06A-RP-SPR23 680-236120-5	N	Chrysene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Dibenz(a,h)anthracene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Fluoranthene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Fluorene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Indeno(1,2,3-c,d)pyrene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
LFM-99-06A-RP-SPR23 680-236120-5	N	Naphthalene	1.90	1.10 U H Q	1.10 UJ	1.10 UJ	C/H1
FM-99-06A-RP-SPR23 680-236120-5	N	Phenanthrene	1.90	1.10 U H Q	1.10 U	1.10 UJ	H1
FM-99-06A-RP-SPR23 680-236120-5	N	Pyrene	11.0	9.60 U H	9.60 U	9.60 UJ	H1
_FM-DUP01-SPR23 680-236120-4	FD	2-Methylnaphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1
FM-DUP01-SPR23 680-236120-4	FD	Acenaphthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
LFM-DUP01-SPR23 680-236120-4	FD	Acenaphthylene	1.90	1.30 U H Q	1.30 U	1.30 UJ	H1
FM-DUP01-SPR23 880-236120-4	FD	Anthracene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-DUP01-SPR23 680-236120-4	FD	Benzo(a)anthracene	1.90	1.30 U H	1.30 U	1.30 UJ	H1
FM-DUP01-SPR23 580-236120-4	FD	Benzo(a)pyrene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
FM-DUP01-SPR23 580-236120-4	FD	Benzo(b)fluoranthene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-DUP01-SPR23 580-236120-4	FD	Benzo(g,h,i)perylene	1.90	1.20 U H	1.20 U	1.20 UJ	H1
LFM-DUP01-SPR23 680-236120-4	FD	Benzo(k)fluoranthene	3.90	2.90 U H	2.90 U	2.90 UJ	H1
LFM-DUP01-SPR23 680-236120-4	FD	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	39.0	29.0 U H	29.0 U	29.0 UJ	H1
LFM-DUP01-SPR23 680-236120-4	FD	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	19.0 UHMQ	19.0 U	19.0 UJ	H1
FM-DUP01-SPR23 680-236120-4	FD	C9-C18 Petroleum Hydrocarbons, Aliphatic	87.0	58.0 U H Q	58.0 UJ	58.0 UJ	C/H1
FM-DUP01-SPR23 880-236120-4	FD	Chrysene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
FM-DUP01-SPR23 880-236120-4	FD	Dibenz(a,h)anthracene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
FM-DUP01-SPR23 880-236120-4	FD	Fluoranthene	1.90	0.960 U H	0.960 U	0.960 UJ	H1
FM-DUP01-SPR23 880-236120-4	FD	Fluorene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1
FM-DUP01-SPR23 80-236120-4	FD	Indeno(1,2,3-c,d)pyrene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1

Table of Results with Modified Qualifiers

Modified Qualifiers for test	method	MADEPEP						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason	
LFM-DUP01-SPR23 680-236120-4	FD	Naphthalene	1.90	1.20 U H Q	1.20 UJ	1.20 UJ	C/H1	
LFM-DUP01-SPR23 680-236120-4	FD	Phenanthrene	1.90	1.20 U H Q	1.20 U	1.20 UJ	H1	
LFM-DUP01-SPR23 680-236120-4	FD	Pyrene	12.0	9.60 U H	9.60 U	9.60 UJ	H1	
Modified Qualifiers for test method SW8081B								
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	Modified Result	Reason	
LFM-99-02B-SPR23 680-236120-2	N	Endosulfan sulfate	0.0490	0.00390 U Q	0.00390 UJ	0.00390 UJ	C/V2	
LFM-99-02B-SPR23 680-236120-2	N	Endrin	0.0490	0.00390 U Q	0.00390 UJ	0.00390 UJ	C/V2	
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDD	0.0490	0.00390 U Q	0.00390 X	0.00390 UJ	C/V2	
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDE	0.0490	0.00390 U M Q	0.00390 X	0.00390 UJ	C/V2	
LFM-99-02B-SPR23 680-236120-2	N	p,p'-DDT	0.0490	0.00390 U M	0.00390 X	0.00390 UJ	V2	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason	Code	Definitions

Code	Definition
B2	ССВ
С	LCS Recovery
D	MS RPD
H1	Test Hold Time
L	Lab Blank
М	MS Recovery
TR	Trace Level Detect
V2	CCV

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.

Result may require rejection; PDT attention required Χ

Bias	
-	The result may be biased low
+	The result may be biased high

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR August 28, 2023

Page 27 of 39

Method: A2320B (Alkalinity by Titrimetric Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Method: A2540C (Total Dissolved Solids, Dried at 180 C)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		All data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory eport and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Vere holding times met?	•			
Were all requested target analytes reported?	•			
Vas the Calibration within acceptance criteria?	•			
Vas either analysis of an ICV performed after each ICAL rasecond source standard prior to sample analysis?	•			
/ere all reported analytes for the ICV within the required riteria?	•			
Vere ICB/CCBs run at the required frequency?	•			
/ere target analytes in the ICBs/CCBs non-detect?	•	-		
as a method blank prepared and analyzed with each atch?	•			
ere target analytes in the method blank less than MDL?	•			
ere field blanks (EBs or FBs) submitted with these mples?	•			
ere target analytes reported in the field blank(s) less an MDL?	•			
as an LCS/LCSD pair prepared and analyzed with each atch?	•			
ere LCS/LCSD recoveries within project acceptance nits?	•			
as the LCS/LCSD RPD within project acceptance nits?	•			
as a MS/MSD pair prepared with each batch?	•			
ere MS/MSD recoveries within project acceptance hits?	•			
/as the MS/MSD RPD within project acceptance limits?	•			
a field duplicate was analyzed, were the RPDs within APP acceptance limits?	•			
/ere QAPP specified laboratory LOQs/RLs achieved?	•			
ave all Laboratory Case Narrative comments/findings een addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in he data validation process?		•		

Method: E410.4 (Chemical Oxygen Demand (Colorimetric,	Automate	d Manual))	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?		•		CB detect.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?		•		All samples were run outside of holding time.
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance imits?	•			
Was a method blank prepared and analyzed with each patch?	•			
Were target analytes in the method blank less than MDL?		•		One compound was detect.
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance imits?		•		Outside limits. Data qualified.
Was the LCS/LCSD RPD within project acceptance imits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance imits?	•			
Was the MS/MSD RPD within project acceptance limits?		•		Outside limits. Data qualified.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings peen addressed in the data review process?	•			
Nere DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance imits?		•		Outside limits
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory eport and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Vere holding times met?	•			
ere all requested target analytes reported?	•			
as the Calibration within acceptance criteria?	•			
Vas either analysis of an ICV performed after each ICAL r a second source standard prior to sample analysis?	•	-		
Were all reported analytes for the ICV within the required criteria?	•	-		
Vere ICB/CCBs run at the required frequency?	•			
/ere target analytes in the ICBs/CCBs non-detect?	•			
Vas a method blank prepared and analyzed with each atch?	•			
Vere target analytes in the method blank less than MDL?	•	-		
/ere field blanks (EBs or FBs) submitted with these amples?	•			
ere target analytes reported in the field blank(s) less an MDL?	•			
/as an LCS/LCSD pair prepared and analyzed with each atch?	•			
Vere LCS/LCSD recoveries within project acceptance mits?	•			
Vas the LCS/LCSD RPD within project acceptance mits?	•			
Vas a MS/MSD pair prepared with each batch?	•			
/ere MS/MSD recoveries within project acceptance mits?	•			
as the MS/MSD RPD within project acceptance limits?	•			
a field duplicate was analyzed, were the RPDs within APP acceptance limits?	•			
/ere QAPP specified laboratory LOQs/RLs achieved?	•			
ave all Laboratory Case Narrative comments/findings een addressed in the data review process?	•			
Vere any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment	
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•				
Were samples preserved properly and received in good condition?	•				
Were holding times met?	•				
Were all requested target analytes reported?	•				
Was the Calibration within acceptance criteria?	•				
Nas either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•				
Were all reported analytes for the ICV within the required criteria?	•				
Vere ICB/CCBs run at the required frequency?	•				
Vere target analytes in the ICBs/CCBs non-detect?	•				
Vas a method blank prepared and analyzed with each each?	•				
Vere target analytes in the method blank less than MDL?	•				
/ere field blanks (EBs or FBs) submitted with these amples?	•				
/ere target analytes reported in the field blank(s) less an MDL?	•				
/as an LCS/LCSD pair prepared and analyzed with each atch?	•				
Vere LCS/LCSD recoveries within project acceptance mits?	•				
Vas the LCS/LCSD RPD within project acceptance mits?	•				
Vas a MS/MSD pair prepared with each batch?	•				
/ere MS/MSD recoveries within project acceptance mits?	•				
Vas the MS/MSD RPD within project acceptance limits?	•				
a field duplicate was analyzed, were the RPDs within APP acceptance limits?	•				
Vere QAPP specified laboratory LOQs/RLs achieved?	•				
Have all Laboratory Case Narrative comments/findings een addressed in the data review process?	•				
Were any data recommended for rejection (exclusion) in the data validation process?		•			

Method: SW7470A (Mercury in Water (Manual Cold-Vapor	Technique	e))		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•	110	101	Comment
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		CCV %D outside of limits. Data was qualified.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS recovery outside of limits. Data was qualified.
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory eport and EDD for requested field samples and tests?	•			
Vere samples preserved properly and received in good ondition?	•			
Vere holding times met?	•			
ere all requested target analytes reported?	•			
as the Calibration within acceptance criteria?	•			
as either analysis of an ICV performed after each ICAL a second source standard prior to sample analysis?	•	-		
ere all reported analytes for the ICV within the required iteria?	•	-		
ere ICB/CCBs run at the required frequency?	•			
ere target analytes in the ICBs/CCBs non-detect?	•			
as a method blank prepared and analyzed with each atch?	•			
/ere target analytes in the method blank less than MDL?	•	-		
ere field blanks (EBs or FBs) submitted with these mples?	•			
ere target analytes reported in the field blank(s) less an MDL?	•			
/as an LCS/LCSD pair prepared and analyzed with each atch?	•			
Vere LCS/LCSD recoveries within project acceptance mits?	•			
Vas the LCS/LCSD RPD within project acceptance mits?	•			
/as a MS/MSD pair prepared with each batch?	•			
/ere MS/MSD recoveries within project acceptance mits?	•			
/as the MS/MSD RPD within project acceptance limits?	•			
a field duplicate was analyzed, were the RPDs within APP acceptance limits?	•			
/ere QAPP specified laboratory LOQs/RLs achieved?	•			
ave all Laboratory Case Narrative comments/findings een addressed in the data review process?	•			
Vere any data recommended for rejection (exclusion) in ne data validation process?		•		

Method: SW9056A (Anion Chromatography)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?				
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

Field Duplicates for SDG: 680-236120-1

Location	Analysis									
LFM-99-05A	A2320B									
Field ID - Primary	y/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR	23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Alkalinity, Total (as CaCO3)	98.0	98.0	5.00	0.00	30	OK	NA
Location	Analysis									
LFM-99-05A	A2540C									
Field ID - Primary	y/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR	23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Total Dissolved Solids	430	440	24.0	2.30	30	OK	NA
Location	Analysis				-	-				
LFM-99-05A	E353.2									
Field ID - Primary	y/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR	23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Nitrate-Nitrite (as N)	0.410	0.410	0.100	0.00	30	NA	OK
Location	Analysis				1	1	1			
LFM-99-05A	E410.4									
Field ID - Primary	y/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR	23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Chemical Oxygen Demand	ND	ND	20.0	NA	30	NA	OK
Location	Analysis									
LFM-99-05A	MADEPEP									
Field ID - Primary	y/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23		680-236120-3 / 680-236120-4	2-Methylnaphthalene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23		680-236120-3 / 680-236120-4	Acenaphthene	ND	ND	2.10	NA	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

Field Duplicates for SDG: 680-236120-1

Location **Analysis** LFM-99-05A **MADEPEP**

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Acenaphthylene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Anthracene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzo(a)anthracene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzo(a)pyrene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzo(b)fluoranthene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzo(g,h,i)perylene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzo(k)fluoranthene	ND	ND	4.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	ND	ND	41.0	NA	30	NA	ОК
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C19-C36 Petroleum Hydrocarbons, Aliphatic	ND	ND	51.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C9-C18 Petroleum Hydrocarbons, Aliphatic	ND	ND	93.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Chrysene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Dibenz(a,h)anthracene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Fluoranthene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Fluorene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Indeno(1,2,3-c,d)pyrene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Naphthalene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Phenanthrene	ND	ND	2.10	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Pyrene	ND	ND	12.0	NA	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

Field Duplicates for SDG: 680-236120-1

Location AnalysisLFM-99-05A

MADEPVP

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Benzene	ND	ND	5.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	ND	ND	100	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	ND	ND	100	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	ND	ND	100	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Ethylbenzene	ND	ND	5.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	m,p-Xylene	ND	ND	10.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Methyl tert-butyl ether (MTBE)	ND	ND	5.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Naphthalene	ND	ND	6.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	o-Xylene	ND	ND	5.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Toluene	ND	ND	5.00	NA	30	NA	OK

Location	Analysis
LFM-99-05A	SW6010C

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Barium (TOTREC)	15.0	14.0	20.0	6.90	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Cadmium (TOTREC)	ND	ND	5.00	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Chromium (TOTREC)	ND	ND	10.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Copper (TOTREC)	ND	ND	20.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Iron (TOTREC)	ND	ND	100	NA	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023 Field Duplicates for SDG: 680-236120-1

Location	Analysis
LFM-99-05A	SW6010C

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Lead (TOTREC)	ND	ND	40.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Manganese (TOTREC)	ND	ND	10.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Selenium (TOTREC)	ND	ND	25.0	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Silver (TOTREC)	ND	ND	10.0	NA	30	NA	OK

Location LFM-99-05A	Analysis SW6020A							
Eistain Deissess/Eis	LI D	Lab ID Deb	 Amaliata	Primary	FD	D.	DDD	RPD

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Result	Result	RL	RPD	Criteria	Check	Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Arsenic (TOTREC)	ND	ND	5.00	NA	30	NA	OK

Location	Analysis
LFM-99-05A	SW7470A

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Mercury (TOTAL)	ND	ND	0.250	NA	30	NA	OK

Loc	cation	Analysis									
LFN	Л-99-05A	SW8081B									
Fiel	ld ID - Primary/Fie	ld Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFN	Л-99-05A-SPR23 /	LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Aldrin	ND	ND	0.0520	NA	30	NA	OK
LFN	Л-99-05A-SPR23 /	I FM-DUP01-SPR23	680-236120-3 / 680-236120-4	alpha-BHC (alpha-	ND	ND	0.0520	NA	30	NA	OK

ND

ND

0.0520

NA

30

NA

Hexachlorocyclohexane)

alpha-Endosulfan

FD = Field Duplicate RL = Reporting Limit

RPD = Relative Percent Difference

LFM-99-05A-SPR23 / LFM-DUP01-SPR23

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

680-236120-3 / 680-236120-4

OK

PPN

ÐΙ

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

Field Duplicates for SDG: 680-236120-1

Location Analysis LFM-99-05A SW8081B

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	beta-BHC (beta- Hexachlorocyclohexane)	0.00970	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	beta-Endosulfan	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Chlordane	ND	ND	0.520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	delta-BHC (delta- Hexachlorocyclohexane)	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Dieldrin	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Endosulfan sulfate	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Endrin	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Endrin aldehyde	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Endrin ketone	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	gamma-BHC (Lindane)	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Heptachlor	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Heptachlor epoxide	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Methoxychlor	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	p,p'-DDD	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	p,p'-DDE	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	p,p'-DDT	ND	ND	0.0520	NA	30	NA	OK
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Toxaphene	ND	ND	5.20	NA	30	NA	OK

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, DCL, Spring 2023

Field Duplicates for SDG: 680-236120-1

Location Analysis LFM-99-05A SW9012B

			Primary	FD			RPD	RPD	RL
Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Result	Result	RL	RPD	Criteria	Check	Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Cyanide	ND	ND	0.0100	NA	30	NA	OK

Location Analysis LFM-99-05A SW9056A

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Chloride	170	180	1.00	5.71	30	OK	NA
LFM-99-05A-SPR23 / LFM-DUP01-SPR23	680-236120-3 / 680-236120-4	Sulfate	16.0	17.0	2.00	6.06	30	OK	NA

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. April 1, 2024 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens.

Enclosed are the final validation reports for the fractions listed below. This SDG was received on February 20, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58614:

SDG# **Fraction**

680-242830-1/SQ6279

Chlorinated Pesticides, Volatile Petroleum Hydrocarbons, Diesel Range Organics

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 96 pages-ADV 3 WEEK TAT LDC# 58614 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD (2) Metals VPH **EPH** NO₃ COD (6010C/20A (MADEP (MADEP CN-/NO₂-N TDS DATE DATE Pest. Alk CI SO₄ LDC SDG# REC'D DUE (8081B) /7470A) -VPH -EPH (2320B) (410.4) (9012B) (9056A) (353.2) (9056A) (2540C) w s w s w s w s w s w s w s w s w s W S Matrix: Water/Soil 5 0 5 0 5 0 5 5 5 0 680-242830-1/SQ6279 02/20/24 03/12/24 5 0 5 0 6 0 5 5 0 0 0 0 5 0 5 0 0 5 0 5 0 5 0 5 0 0 0 6 0 5 5 0 0 5 0 Total TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, DCL, Fall 2023

SDG: 680-242830-1

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins

Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster

Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 01, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	A2320B	A2540C	E353.2	E410.4	MADEPEP	SW6010C	SW6020A	SW7470A	SW8081B	SW9012B	SW9056A
DCL-DUP01-FAL23	680-242830-1	Water	Field Duplicate/FD	X	Х	Х	Χ	Х	Х	X	Х	Х	X	X
LFM-03-07-FAL23	680-242830-2	Water	Field Sample/N	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	X
LFM-99-02B-FAL23	680-242830-3	Water	Field Sample/N	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Χ	X
LFM-99-05A-FAL23	680-242830-4	Water	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	X
LFM-99-06A-RP-FAL23	680-242830-5	Water	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000

ENV.ADR April 01, 2024

Page 1 of 27

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Environment Testing TestAmerica, Savannah, GA | Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 680-242830-1. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative

Calibration Blank

Calibration Blank - Negative

Continuing Calibration Verification

Field Duplicate RPD

Interference Check Sample A

Interference Check Sample A - Negative

Interference Check Sample AB

Lab Blank

LCS Recovery

LCS RPD

MS Recovery

MS RPD

Prep Hold Time

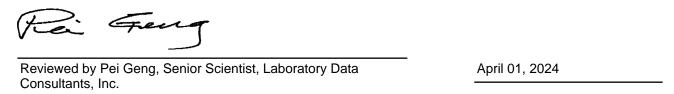
Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 30 results (10.34%) out of the 290 results (sample and field QC samples) reported are qualified based on review and 1 results (0.34%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Page 2 of 27


Narrative Comments

Analytical Method	Data Reviewer Comment
A2320B	No additional comments; see Checklist for detail.
A2540C	No additional comments; see Checklist for detail.
E353.2	No additional comments; see Checklist for detail.
E410.4	No additional comments; see Checklist for detail.
MADEPEP	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8081B	No additional comments; see Checklist for detail.
SW9012B	No additional comments; see Checklist for detail.
SW9056A	No additional comments; see Checklist for detail.

Long Mgo	April 01, 2024
•	

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method A2320B, Field Duplicate RPD

Field duplicate analyses are performed in order to assess sample collection/laboratory precision for each sample matrix. Summary forms were evaluated and compared to electronic data deliverables. Field duplicate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
DCL-DUP01-FAL23 (N) 680-242830-1	Alkalinity, Total (as CaCO3)	68.3	< 30	< 30	rpd	J/UJ	D3	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Field Duplicate RPD for A2320B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL-DUP01-FAL23 680-242830-1	FD	Alkalinity, Total (as CaCO3)	5.50	54.0	54.0 J		mg/l	D3
LFM-99-05A-FAL23 680-242830-4	N	Alkalinity, Total (as CaCO3)	5.50	110	110 J		mg/l	D3

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Page 4 of 27

Quality Control Outliers for test method E353.2, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-FAL23 (MS) 680-242830-3	Nitrate-Nitrite (as N)	1.00	90 - 110	30 - 110	percent	J/X	М	
LFM-99-02B-FAL23 (SD) 680-242830-3	Nitrate-Nitrite (as N)	3.00	90 - 110	30 - 110	percent	J/X	M	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for E353.2

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-FAL23 680-242830-3	N	Nitrate-Nitrite (as N)	0.100	0.0250 U J1	0.0250 X		mg/l	D/M

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

ENV.ADR April 01, 2024

Quality Control Outliers for test method E353.2, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-FAL23 (SD) 680-242830-3	Nitrate-Nitrite (as N)	70.3	< 10	< 10	rpd	J/UJ	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for E353.2

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason	
LFM-99-02B-FAL23 680-242830-3	N	Nitrate-Nitrite (as N)	0.100	0.0250 U J1	0.0250 X	mg/l	D/M	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

ENV.ADR April 01, 2024

Quality Control Outliers for test method MADEPEP, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB4104445491B (LB) MB4104445491B	C19-C36 Petroleum Hydrocarbons, Aliphatic	12.8	< 10	< 50	ug/l	U/None*	L	
MB4104445491C (LB) MB4104445491C	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	14.4	< 10	< 40	ug/l	U/None*	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Lab Blank for MADEPEP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-03-07-FAL23 680-242830-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	10.0 J	49.0 U		ug/l	L

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

Quality Control Outliers for test method SW8081B, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVIS6808085723 (CV) CCVIS6808085723	Dieldrin	78.0	80 - 120	80 - 120	percent	J/X	V2	
CCVIS6808085723 (CV) CCVIS6808085723	Endosulfan sulfate	75.0	80 - 120	80 - 120	percent	J/X	V2	
CCVIS6808085723 (CV) CCVIS6808085723	Endrin ketone	77.0	80 - 120	80 - 120	percent	J/X	V2	
CCVIS6808085723 (CV) CCVIS6808085723	p,p'-DDE	67.0	80 - 120	80 - 120	percent	J/X	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL-DUP01-FAL23 680-242830-1	FD	Dieldrin	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
DCL-DUP01-FAL23 680-242830-1	FD	Endosulfan sulfate	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
DCL-DUP01-FAL23 680-242830-1	FD	Endrin ketone	0.0530	0.0110 J	0.0110 J	-	ug/l	TR/V2
DCL-DUP01-FAL23 680-242830-1	FD	p,p'-DDE	0.0530	0.00420 U M	0.00420 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Dieldrin	0.0510	0.00410 U	0.00410 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Endosulfan sulfate	0.0510	0.00410 U	0.00410 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Endrin ketone	0.0510	0.0160 J	0.0160 J	-	ug/l	TR/V2
LFM-03-07-FAL23 680-242830-2	N	p,p'-DDE	0.0510	0.00410 U M	0.00410 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	Dieldrin	0.0510	0.00400 U	0.00400 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	Endosulfan sulfate	0.0510	0.00400 U	0.00400 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	Endrin ketone	0.0510	0.0180 J M J1	0.0180 J	-	ug/l	D/TR/V2
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDE	0.0510	0.00400 U	0.00400 UJ		ug/l	V2
LFM-99-05A-FAL23 680-242830-4	N	Dieldrin	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
LFM-99-05A-FAL23 680-242830-4	N	Endosulfan sulfate	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
LFM-99-05A-FAL23 680-242830-4	N	Endrin ketone	0.0530	0.0220 J	0.0220 J	-	ug/l	TR/V2
LFM-99-05A-FAL23 680-242830-4	N	p,p'-DDE	0.0530	0.00420 U M	0.00420 UJ		ug/l	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Dieldrin	0.0540	0.00430 U	0.00430 UJ		ug/l	V2

Qualified Results associated with the Continuing Calibration Verification for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-06A-RP-FAL23 680-242830-5	N	Endosulfan sulfate	0.0540	0.00430 U	0.00430 UJ		ug/l	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Endrin ketone	0.0540	0.0220 J M	0.0220 J	-	ug/l	TR/V2
LFM-99-06A-RP-FAL23 680-242830-5	N	p,p'-DDE	0.0540	0.00430 U M	0.00430 UJ		ug/l	V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8081B, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-FAL23 (MS) 680-242830-3	alpha-Endosulfan	42.0	62 - 126	10 - 126	percent	J/UJ	М	
LFM-99-02B-FAL23 (SD) 680-242830-3	alpha-Endosulfan	46.0	62 - 126	10 - 126	percent	J/UJ	М	
LFM-99-02B-FAL23 (MS) 680-242830-3	Endrin	53.0	60 - 138	10 - 138	percent	J/UJ	М	
LFM-99-02B-FAL23 (SD) 680-242830-3	Endrin	52.0	60 - 138	10 - 138	percent	J/UJ	М	
LFM-99-02B-FAL23 (SD) 680-242830-3	p,p'-DDD	54.0	56 - 143	10 - 143	percent	J/UJ	М	
LFM-99-02B-FAL23 (MS) 680-242830-3	p,p'-DDT	48.0	51 - 143	10 - 143	percent	J/UJ	М	
LFM-99-02B-FAL23 (SD) 680-242830-3	p,p'-DDT	50.0	51 - 143	10 - 143	percent	J/UJ	М	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-FAL23 680-242830-3	N	alpha-Endosulfan	0.0510	0.00400 U J1 M	0.00400 UJ		ug/l	M
LFM-99-02B-FAL23 680-242830-3	N	Endrin	0.0510	0.00400 U J1	0.00400 UJ		ug/l	M
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDD	0.0510	0.00400 U J1	0.00400 UJ		ug/l	М
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDT	0.0510	0.00400 U J1	0.00400 UJ		ug/l	М

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8081B, MS RPD

The objective of matrix spikes/matrix spike duplicates (MS/MSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. MS/MSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Matrix spikes/matrix spike duplicates results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-FAL23 (SD) 680-242830-3	Endrin ketone	37.6	< 30	< 30	rpd	J/None	D	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS RPD for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-FAL23 680-242830-3	N	Endrin ketone	0.0510	0.0180 J M J1	0.0180 J	-	ug/l	D/TR/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

ENV.ADR April 01, 2024

Quality Control Outliers for test method SW9056A, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LFM-99-02B-FAL23 (MS) 680-242830-3	Chloride	130	87 - 111	10 - 111	percent	J/None	М	Spike amount Insignificant
LFM-99-02B-FAL23 (SD) 680-242830-3	Chloride	130	87 - 111	10 - 111	percent	J/None	М	Spike amount Insignificant

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

ENV.ADR April 01, 2024

Table of All Qualified Results

Test Method: A2320B		Extraction Method: NONE	.					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL-DUP01-FAL23 680-242830-1	FD	Alkalinity, Total (as CaCO3)	5.50	54.0	54.0 J		mg/l	D3
LFM-99-05A-FAL23 680-242830-4	N	Alkalinity, Total (as CaCO3)	5.50	110	110 J		mg/l	D3
Test Method: E353.2		Extraction Method: NONE	=					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-FAL23 680-242830-3	N	Nitrate-Nitrite (as N)	0.100	0.0250 U J1	0.0250 X		mg/l	D/M
Test Method: MADEPEP		Extraction Method: SW35	10C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-03-07-FAL23 680-242830-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	10.0 J	49.0 U		ug/l	L
Test Method: SW8081B		Extraction Method: SW35	10C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL-DUP01-FAL23 680-242830-1	FD	Dieldrin	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
DCL-DUP01-FAL23 680-242830-1	FD	Endosulfan sulfate	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
DCL-DUP01-FAL23 680-242830-1	FD	Endrin ketone	0.0530	0.0110 J	0.0110 J	-	ug/l	TR/V2
DCL-DUP01-FAL23 680-242830-1	FD	p,p'-DDE	0.0530	0.00420 U M	0.00420 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Dieldrin	0.0510	0.00410 U	0.00410 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Endosulfan sulfate	0.0510	0.00410 U	0.00410 UJ		ug/l	V2
LFM-03-07-FAL23 680-242830-2	N	Endrin ketone	0.0510	0.0160 J	0.0160 J	-	ug/l	TR/V2
LFM-03-07-FAL23 680-242830-2	N	Heptachlor	0.0510	0.00640 J	0.00640 J		ug/l	TR/P1
LFM-03-07-FAL23 680-242830-2	N	p,p'-DDE	0.0510	0.00410 U M	0.00410 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	alpha-Endosulfan	0.0510	0.00400 U J1 M	0.00400 UJ		ug/l	М
LFM-99-02B-FAL23 680-242830-3	N	Dieldrin	0.0510	0.00400 U	0.00400 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	Endosulfan sulfate	0.0510	0.00400 U	0.00400 UJ		ug/l	V2
LFM-99-02B-FAL23 680-242830-3	N	Endrin	0.0510	0.00400 U J1	0.00400 UJ		ug/l	М
LFM-99-02B-FAL23 680-242830-3	N	Endrin ketone	0.0510	0.0180 J M J1	0.0180 J	-	ug/l	D/TR/V2
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDD	0.0510	0.00400 U J1	0.00400 UJ		ug/l	М
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDE	0.0510	0.00400 U	0.00400 UJ		ug/l	V2

Table of All Qualified Results

Test Method: SW8081B		Extraction Method: SW	3510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDT	0.0510	0.00400 U J1	0.00400 UJ		ug/l	М
LFM-99-05A-FAL23 680-242830-4	N	Dieldrin	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
LFM-99-05A-FAL23 680-242830-4	N	Endosulfan sulfate	0.0530	0.00420 U	0.00420 UJ		ug/l	V2
LFM-99-05A-FAL23 680-242830-4	N	Endrin ketone	0.0530	0.0220 J	0.0220 J	-	ug/l	TR/V2
LFM-99-05A-FAL23 680-242830-4	N	p,p'-DDE	0.0530	0.00420 U M	0.00420 UJ		ug/l	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Dieldrin	0.0540	0.00430 U	0.00430 UJ		ug/l	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Endosulfan sulfate	0.0540	0.00430 U	0.00430 UJ		ug/l	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Endrin ketone	0.0540	0.0220 J M	0.0220 J	-	ug/l	TR/V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Heptachlor	0.0540	0.00310 J	0.00310 J		ug/l	TR/P1
LFM-99-06A-RP-FAL23 680-242830-5	N	p,p'-DDE	0.0540	0.00430 U M	0.00430 UJ		ug/l	V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	st method	SW8081B						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reasor
DCL-DUP01-FAL23 680-242830-1	FD	Dieldrin	0.0530	0.00420 U	0.00420 X	V2	0.00420 UJ	V2
DCL-DUP01-FAL23 680-242830-1	FD	Endosulfan sulfate	0.0530	0.00420 U	0.00420 X	V2	0.00420 UJ	V2
DCL-DUP01-FAL23 680-242830-1	FD	p,p'-DDE	0.0530	0.00420 U M	0.00420 X	V2	0.00420 UJ	V2
LFM-03-07-FAL23 680-242830-2	N	Dieldrin	0.0510	0.00410 U	0.00410 X	V2	0.00410 UJ	V2
LFM-03-07-FAL23 680-242830-2	N	Endosulfan sulfate	0.0510	0.00410 U	0.00410 X	V2	0.00410 UJ	V2
LFM-03-07-FAL23 680-242830-2	N	Heptachlor	0.0510	0.00640 J	0.00640 J	TR	0.00640 J	TR/P1
LFM-03-07-FAL23 680-242830-2	N	p,p'-DDE	0.0510	0.00410 U M	0.00410 X	V2	0.00410 UJ	V2
LFM-99-02B-FAL23 680-242830-3	N	Dieldrin	0.0510	0.00400 U	0.00400 X	V2	0.00400 UJ	V2
LFM-99-02B-FAL23 680-242830-3	N	Endosulfan sulfate	0.0510	0.00400 U	0.00400 X	V2	0.00400 UJ	V2
LFM-99-02B-FAL23 680-242830-3	N	p,p'-DDE	0.0510	0.00400 U	0.00400 X	V2	0.00400 UJ	V2
LFM-99-05A-FAL23 680-242830-4	N	Dieldrin	0.0530	0.00420 U	0.00420 X	V2	0.00420 UJ	V2
LFM-99-05A-FAL23 680-242830-4	N	Endosulfan sulfate	0.0530	0.00420 U	0.00420 X	V2	0.00420 UJ	V2
LFM-99-05A-FAL23 680-242830-4	N	p,p'-DDE	0.0530	0.00420 U M	0.00420 X	V2	0.00420 UJ	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Dieldrin	0.0540	0.00430 U	0.00430 X	V2	0.00430 UJ	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Endosulfan sulfate	0.0540	0.00430 U	0.00430 X	V2	0.00430 UJ	V2
LFM-99-06A-RP-FAL23 680-242830-5	N	Heptachlor	0.0540	0.00310 J	0.00310 J	TR	0.00310 J	TR/P1
LFM-99-06A-RP-FAL23 680-242830-5	N	p,p'-DDE	0.0540	0.00430 U M	0.00430 X	V2	0.00430 UJ	V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	
	Definition
D	MS RPD
D3	Field Duplicate RPD
L	Lab Blank
М	MS Recovery
P1	Column RPD
TR	Trace Level Detect
V2	CCV

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low

-	The result may be biased low
+	The result may be biased high
Note - Th	he bias field is a separate field; however, it is an integral part of the final flag (gualifier) on the sample result

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 01, 2024

Page 16 of 27

Method: A2320B (Alkalinity by Titrimetric Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?		•		Several results qualified J due to field duplicate RPD greater than RPD limits.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: A2540C (Total Dissolved Solids, Dried at 180 C)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: E353.2 (Nitrogen, Nitrate-Nitrite (Colorimetric Auto				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Result qualified X due to MS/MSD %R below %R rejection limits.
Was the MS/MSD RPD within project acceptance limits?		•		Result qualified J due to MS/MSD RPD greater than RPD limits.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?	•			Result recommended for rejection due to MS/MSD %R failing.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			Samples were received unpreserved; preservative added to desired pH upon receipt.
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•	-		
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		Result qualified U at the LOQ due to method blank contamination.
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions

Method: SW6020A (Trace Metals by Inductively Coupled P		•		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

2024 Page 23 of 27

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		Several results qualified UJ due to column RPD greater than RPD limits. Several results qualified J-(detects) or UJ(non-detects) due to CCV%D greater than limits.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Several results qualified UJ due to MS/MSD $\%R$ below $\%R$ limits.
Was the MS/MSD RPD within project acceptance limits?		•		Result qualified J due to MS/MSD RPD greater than RPD limits.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: SW9056A (Anion Chromatography)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			ADR report displays MS/MSD %R as 130%, lab report displays MS/MSD %R as 90/91%. Report was manually reviewed and MS/MSD %R was found to be in limits.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Former Fort Devens, Long Term Monitoring Facility:

Event: Seres-Arcadis JV, Long Term Monitoring, DCL, Fall 2023

SDG: SQ6279

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Katahdin Analytical Services, Scarborough, ME

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 01, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPVP
DCL-DUP01-FAL23	SQ6279-1	Water	Field Duplicate/FD	Х
LFM-03-07-FAL23	SQ6279-2	Water	Field Sample/N	Х
LFM-99-02B-FAL23	SQ6279-3	Water	Field Sample/N	Х
LFM-99-05A-FAL23	SQ6279-4	Water	Field Sample/N	Χ
LFM-99-06A-RP-FAL23	SQ6279-5	Water	Field Sample/N	Х
TRIP BLANK	SQ6279-6	Water	Trip Blank/TB	Χ

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 01, 2024

Page 1 of 7

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Katahdin Analytical Services, Scarborough, ME and were reported under sample delivery group (SDG) SQ6279. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Field Duplicate RPD Lab Blank

LCS Recovery

LCS RPD MS Recovery

MS RPD

Prep Hold Time

Surrogate

Test Hold Time

Trip Blank

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 10 results (16.67%) out of the 60 results (sample and field QC samples) reported are qualified based on review and 10 results (16.67%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Consultants, Inc.

Analytical Method	Data Reviewer Comment	
MADEPVP	No additional comments; see Checklist for det	ail.
Long/1	J	April 01, 2024
Reviewed by Lor Data Consultant	ng Ngo, Environmental Scientist, Laboratory s, Inc.	
requirements of hard copy report	iewer, I certify that I have performed a data revi the project guidance document, and have comp and have verified the consistency of the report the two deliverables.	pared the electronic data to the laboratory's
Pai	Feng	
Reviewed by Pe	i Geng, Senior Scientist, Laboratory Data	April 01, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method MADEPVP, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
TRIP BLANK (TB) SQ6279-6		38.9	< 14	< 28	days	J/X	H1	Test Exceeds UCL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Test Hold Time for MADEPVP

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
TRIP BLANK SQ6279-6	ТВ	Benzene	3.00	2.00 U	2.00 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	75.0 U	75.0 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	75.0 U	75.0 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	75.0 U	75.0 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	Ethylbenzene	5.00	3.80 U	3.80 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	m,p-Xylene	10.0	7.50 U	7.50 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	Methyl tert-butyl ether (MTBE)	5.00	3.80 U	3.80 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	Naphthalene	5.00	3.80 U	3.80 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	o-Xylene	5.00	3.80 U	3.80 X		ug/l	H1
TRIP BLANK SQ6279-6	ТВ	Toluene	5.00	3.80 U	3.80 X		ug/l	H1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: MADEPVP		Extraction Method: SW5030C											
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason					
TRIP BLANK SQ6279-6	ТВ	Benzene	3.00	2.00 U	2.00 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	C5-C8 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	75.0 U	75.0 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	C9-C10 Volatile Petroleum Hydrocarbons, Aromatic	100	75.0 U	75.0 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	C9-C12 Volatile Petroleum Hydrocarbons Aliphatic, Adjusted for Target Analytes, Surrogates and Internal Standards	100	75.0 U	75.0 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	Ethylbenzene	5.00	3.80 U	3.80 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	m,p-Xylene	10.0	7.50 U	7.50 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	Methyl tert-butyl ether (MTBE)	5.00	3.80 U	3.80 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	Naphthalene	5.00	3.80 U	3.80 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	o-Xylene	5.00	3.80 U	3.80 X		ug/l	H1					
TRIP BLANK SQ6279-6	ТВ	Toluene	5.00	3.80 U	3.80 X		ug/l	H1					

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason (Code Definitions
Code	Definition
H1	Test Hold Time
Flag Cod	e and Definitions
Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low
+	The result may be biased high
Note - Th	e bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 01, 2024

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?		•		Results for the TB were qualified X (non-detects) due to analysis outside of twice the holding time requirement.
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?	•			
Were target analytes reported in the field blank(s) less than MDL?	•			
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?	•			Results for one sample recommended for exclusion due to analysis outside twice the holding time requirement.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. February 28, 2024 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on January 4, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58331 E:

SDG# **Fraction**

680-242837-1

Volatiles, Chlorinated Pesticides, Metals, Wet Chemistry

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	341 pages-ADV																Atta	chm	ent	1																	
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- 1	/lille	ers	ville	e, N	/ID	/ Fo	ort	De	ven	s)													
LDC	SDG#	DATE REC'D	(2) DATE DUE	V(OA 60D)	V(SV:		Pe: (808		PC (808		Met (60° /602	10C	H (747	g	3 D. (60 ⁻ /602	10C	DF (801		Metl Eth Eth	ane														
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s
Α	680-241926-1	01/04/24	01/18/24	8	0	-	-	-	-	-	-	-	-	-	-	-	-	8	0	-	-	3	0														Ш
В	680-242109-1	01/04/24	01/18/24	25	0	-	-	-	-	-	-	-	-	-	-	-	-	23	0	-	-	13	0													<u> </u>	Ш
С	680-242433-1	01/04/24	01/18/24	3	0	-	-	-	-	-	-	-	-	-	-	-	-	3	0	-	-	-	-													\bigsqcup	Ш
D	680-242668-1	01/04/24	01/18/24	4	0	-	-	-	-	-	-	-	-	-	-	-	-	4	0	-	-	1	0													\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	1	0	1	0	-	-	-	-	-	-													\bigsqcup	Щ
F	680-242837-2	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-													\bigsqcup	Ш
G		01/04/24		1	0	-	-	-	-	-	-	-	-	-	-	-	-	1	0	-	-	-	-													\bigsqcup	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-	1	0	-	-													\bigsqcup	Ш
																																				igwdapprox	Ш
																																				Ш	Ш
																																				$\vdash \vdash$	Н
																																				H	Н
Tatal	TD/DC			41	0	1	0	1	0	1	0	1	0	1	_	1	0	39	0	1		17		0	0	0	0	0	0	0	0	0	0	0	0	0	104
Total	TR/PG			41	Į U	Ė								-	0						•	•		•	U	U	U	U	U	U	U	U	U	U	U		104
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- N	/lille	ers	ville	e, N	/ID	/ F	ort	De	ven	ıs)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		lk 20B)		N- 12B)	NO /NO (353) ₂ -N	pl (904		To Phe (90		S((905		S (90		TS (254	SS 10D)	TC (906																	
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-241926-1	01/04/24	01/18/24	3	0	-	-	3	0	-	-	-	-	3	0	-	-	-	-	3	0																
В	680-242109-1	01/04/24	01/18/24	13	0	-	-	13	0	-	-	-	-	13	0	13	0	-	-	13	0																Ш
D	680-242668-1	01/04/24	01/18/24	1	0	-	-	1	0	-	-	-	-	1	0	1	0	-	-	1	0															\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	-	-	-	-	-	-	-	-															<u> </u>	Ш
G	680-242974-2	01/04/24	01/18/24																																	<u> </u>	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	1	0	-	-															\bigsqcup	Ш
																																				\bigsqcup	Ш
																																				\bigsqcup	Ш
					ļ																																Ш
					<u> </u>																																Ш
																																					Щ
Total	TR/PG			17	0	1	0	17	0	1	0	1	0	17	0	14	0	1	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, DCL Leach, Fall 2023

SDG: 680-242837-1

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Contract Laboratory(ies):

Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: February 21, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	E624	SW6010C	SW6020A	SW7470A	SW8081B	SW9012B	SW9040C
DCL LEACHATE-FAL23	680-242837-1	Liquid	Field Sample/N	Х	Χ	Χ	Χ	Χ	Χ	Χ

Page 1 of 17

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-242837-1. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

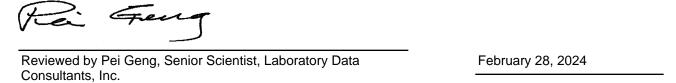
All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 50 results (65.79%) out of the 76 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.


Narrative Comments

Analytical Method	Data Reviewer Comment
E624	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.
SW7470A	No additional comments; see Checklist for detail.
SW8081B	No additional comments; see Checklist for detail.
SW9012B	No additional comments; see Checklist for detail.
SW9040C	No additional comments; see Checklist for detail.

Long Mgo	February 21, 2024
	-

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method E624, Test Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of analysis found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
DCL LEACHATE-FAL23 (N)		15.4	< 14	< 28	days	J/UJ	H1	Test Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Test Hold Time for E624

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1,2,2-Tetrachloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1,2-Trichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1-Dichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1-Dichloroethene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dibromoethane (EDB)	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloroethene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloropropane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,3-Dichlorobenzene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,4-Dichlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	2-Butanone (MEK)	15.0	12.0 U H	12.0 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	2-Hexanone	5.00	4.00 U H	4.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	4-Methyl-2-pentanone (MIBK)	5.00	3.20 U H	3.20 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Acetone	15.0	8.00 U H	8.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Benzene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromodichloromethane	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromoform	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromomethane	5.00	4.00 U H	4.00 UJ		ug/l	H1

Qualified Results associated with the Test Hold Time for E624

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	Carbon disulfide	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Carbon Tetrachloride	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chlorobenzene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloroethane	4.00	1.60 U H	1.60 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloroform	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	cis-1,2-Dichloroethene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	cis-1,3-Dichloropropene	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Dibromochloromethane	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Dichlorodifluoromethane	3.00	2.50 U H	2.50 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Ethylbenzene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	m,p-Xylene	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Methyl tert-butyl ether (MTBE)	5.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Methylene chloride	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	o-Xylene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Styrene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Tetrachloroethene (PCE)	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Toluene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	trans-1,2-Dichloroethene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	trans-1,3-Dichloropropene	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Trichloroethene (TCE)	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Trichlorofluoromethane	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Vinyl chloride	2.00	1.00 U H	1.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Xylenes, Total	1.00	0.800 U H	0.800 UJ		ug/l	H1

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method SW8081B, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCVIS6808085723 (CV)	Dieldrin	78.0	80 - 120	80 - 120	percent	J/X	V2	_
CCVIS6808085723 (CV)	Endosulfan sulfate	75.0	80 - 120	80 - 120	percent	J/X	V2	
CCVIS6808085723 (CV)	Endrin ketone	77.0	80 - 120	80 - 120	percent	J/X	V2	_
CCVIS6808085723 (CV)	p,p'-DDE	67.0	80 - 120	80 - 120	percent	J/X	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Continuing Calibration Verification for SW8081B

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	Dieldrin	0.0520	0.00690 J	0.00690 J	-	ug/l	TR/V2
DCL LEACHATE-FAL23 680-242837-1	N	Endosulfan sulfate	0.0520	0.00420 U	0.00420 UJ		ug/l	V2
DCL LEACHATE-FAL23 680-242837-1	N	Endrin ketone	0.0520	0.0170 U	0.0170 UJ		ug/l	V2
DCL LEACHATE-FAL23 680-242837-1	N	p,p'-DDE	0.0520	0.00420 U	0.00420 UJ		ug/l	V1/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: E624		Extraction Method: METH	IOD					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	1,1,1-Trichloroethane	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1,2,2-Tetrachloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1,2-Trichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1-Dichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,1-Dichloroethene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dibromoethane (EDB)	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloroethane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloroethene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,2-Dichloropropane	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,3-Dichlorobenzene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	1,4-Dichlorobenzene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	2-Butanone (MEK)	15.0	12.0 U H	12.0 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	2-Hexanone	5.00	4.00 U H	4.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	4-Methyl-2-pentanone (MIBK)	5.00	3.20 U H	3.20 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Acetone	15.0	8.00 U H	8.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Benzene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromodichloromethane	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromoform	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Bromomethane	5.00	4.00 U H	4.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Carbon disulfide	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Carbon Tetrachloride	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chlorobenzene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloroethane	4.00	1.60 U H	1.60 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloroform	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Chloromethane	2.00	1.00 U H	1.00 UJ		ug/l	H1

Table of All Qualified Results

Test Method: E624		Extraction Method: METH	IOD					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	cis-1,2-Dichloroethene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	cis-1,3-Dichloropropene	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Dibromochloromethane	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Dichlorodifluoromethane	3.00	2.50 U H	2.50 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Ethylbenzene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	m,p-Xylene	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Methyl tert-butyl ether (MTBE)	5.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Methylene chloride	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	o-Xylene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Styrene	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Tetrachloroethene (PCE)	1.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Toluene	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	trans-1,2-Dichloroethene	1.00	0.500 U H	0.500 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	trans-1,3-Dichloropropene	2.00	1.80 U H	1.80 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Trichloroethene (TCE)	1.00	0.400 U H	0.400 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Trichlorofluoromethane	2.00	0.800 U H	0.800 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Vinyl chloride	2.00	1.00 U H	1.00 UJ		ug/l	H1
DCL LEACHATE-FAL23 680-242837-1	N	Xylenes, Total	1.00	0.800 U H	0.800 UJ		ug/l	H1
Test Method: SW8081B		Extraction Method: SW35	10C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL LEACHATE-FAL23 680-242837-1	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0520	0.00830 J	0.00830 J		ug/l	P1/TR
DCL LEACHATE-FAL23 680-242837-1	N	alpha-Endosulfan	0.0520	0.00420 U	0.00420 UJ		ug/l	V1
DCL LEACHATE-FAL23 680-242837-1	N	Dieldrin	0.0520	0.00690 J	0.00690 J	-	ug/l	TR/V2
DCL LEACHATE-FAL23 680-242837-1	N	Endosulfan sulfate	0.0520	0.00420 U	0.00420 UJ		ug/l	V2
DCL LEACHATE-FAL23 680-242837-1	N	Endrin ketone	0.0520	0.0170 U	0.0170 UJ		ug/l	V2

Table of All Qualified Results

Test Method: SW8081B		Extraction Method: SW3510C								
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason		
DCL LEACHATE-FAL23 680-242837-1	N	p,p'-DDE	0.0520	0.00420 U	0.00420 UJ		ug/l	V1/V2		

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	st method	SW8081B						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reason
DCL LEACHATE-FAL23 680-242837-1	N	alpha-BHC (alpha- Hexachlorocyclohexane)	0.0520	0.00830 J	0.00830 J	TR	0.00830 J	P1/TR
DCL LEACHATE-FAL23 680-242837-1	N	alpha-Endosulfan	0.0520	0.00420 U	0.00420 U		0.00420 UJ	V1
DCL LEACHATE-FAL23 680-242837-1	N	Endosulfan sulfate	0.0520	0.00420 U	0.00420 X	V2	0.00420 UJ	V2
DCL LEACHATE-FAL23 680-242837-1	N	Endrin ketone	0.0520	0.0170 U	0.0170 X	V2	0.0170 UJ	V2
DCL LEACHATE-FAL23 680-242837-1	N	p,p'-DDE	0.0520	0.00420 U	0.00420 X	V2	0.00420 UJ	V1/V2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
H1	Test Hold Time
P1	Column RPD
TR	Trace Level Detect
V1	ICV
V2	CCV

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias

-	The result may be biased low						
+	The result may be biased high						
Note - The	Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result						

Method: E624 (Volatile Organics GC/MS) Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory	•	INO	INA	Comment
report and EDD for requested field samples and tests? Were samples preserved properly and received in good	•			
condition?				Occasional manufacture and life at 111 days to be in a
Were holding times met?		•		Several results qualified UJ due to being analyzed outside of the 14 day holding time.
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: SW6010C (Trace Metals by Inductively Coupled P	lasma/Ato	mic Emiss	ion Spect	rometry)
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each patch?	•			
Were LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance imits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: SW7470A (Mercury in Water (Manual Cold-Vapor	Technique	e))		
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		Several results qualified J-(detects) or UJ(non detects) due to CCV%D > 20%. One result qualified J due to difference in column RPD > 40%.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?		•		Several results qualified UJ due to ICV %D > 20%.
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each patch?	•			
Were LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance imits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Nere MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: SW9040C (pH Electrometric Measurement)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?			•	Not applicable to this method.
Were target analytes in the ICBs/CCBs non-detect?			•	Not applicable to this method.
Was a method blank prepared and analyzed with each batch?			•	Not applicable to this method.
Were target analytes in the method blank less than MDL?			•	Not applicable to this method.
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. February 28, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350 Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on January 4, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58331 F:

SDG# **Fraction**

680-242837-2 Polychlorinated Biphenyls

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	341 pages-ADV																Atta	chm	ent	1																	
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- 1	/lille	ers	ville	e, N	/ID	/ Fo	ort	De	ven	s)													
LDC	SDG#	DATE REC'D	(2) DATE DUE	V(OA 60D)	V(SV:		Pe: (808		PC (808		Met (60° /602	10C	H (747	g	3 D. (60 ⁻ /602	10C	DF (801		Metl Eth Eth	ane														
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s
Α	680-241926-1	01/04/24	01/18/24	8	0	-	-	-	-	-	-	-	-	-	-	-	-	8	0	-	-	3	0														Ш
В	680-242109-1	01/04/24	01/18/24	25	0	-	-	-	-	-	-	-	-	-	-	-	-	23	0	-	-	13	0													<u> </u>	Ш
С	680-242433-1	01/04/24	01/18/24	3	0	-	-	-	-	-	-	-	-	-	-	-	-	3	0	-	-	-	-													\bigsqcup	Ш
D	680-242668-1	01/04/24	01/18/24	4	0	-	-	-	-	-	-	-	-	-	-	-	-	4	0	-	-	1	0													\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	1	0	1	0	-	-	-	-	-	-													\bigsqcup	Щ
F	680-242837-2	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-													\bigsqcup	Ш
G		01/04/24		1	0	-	-	-	-	-	-	-	-	-	-	-	-	1	0	-	-	-	-													\bigsqcup	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-	1	0	-	-													\bigsqcup	Ш
																																				igwdapprox	Ш
																																				Ш	Ш
																																				$\vdash \vdash$	Н
																																				H	Н
Tatal	TD/DC			41	0	1	0	1	0	1	0	1	0	1	_	1	0	39	0	1		17		0	0	0	0	0	0	0	0	0	0	0	0	0	104
Total	TR/PG			41	Į U	<u> </u>								-	0						•	•		•	U	U	U	U	U	U	U	U	U	U	U		104
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- N	/lille	ers	ville	e, N	/ID	/ F	ort	De	ven	ıs)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		lk 20B)		N- 12B)	NO /NO (353) ₂ -N	pl (904		To Phe (90		S((905		S (90		TS (254	SS 10D)	TC (906																	
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-241926-1	01/04/24	01/18/24	3	0	-	-	3	0	-	-	-	-	3	0	-	-	-	-	3	0																
В	680-242109-1	01/04/24	01/18/24	13	0	-	-	13	0	-	-	-	-	13	0	13	0	-	-	13	0																Ш
D	680-242668-1	01/04/24	01/18/24	1	0	-	-	1	0	-	-	-	-	1	0	1	0	-	-	1	0															\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	-	-	-	-	-	-	-	-															<u> </u>	Ш
G	680-242974-2	01/04/24	01/18/24																																	<u> </u>	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	1	0	-	-															\bigsqcup	Ш
																																				\bigsqcup	Ш
																																				\bigsqcup	Ш
					ļ																																Ш
					<u> </u>																																Ш
																																					Щ
Total	TR/PG			17	0	1	0	17	0	1	0	1	0	17	0	14	0	1	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86

Former Fort Devens, Long Term Monitoring Facility:

Event: Seres-Arcadis JV, Long Term Monitoring, DCL Leach, Fall 2023

SDG: 680-242837-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Eurofins Environment Testing TestAmerica, Savannah, GA Contract Laboratory(ies):

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: February 21, 2024

				V C 8 O 8/
Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	Ž
DCL LEACHATE-FAL23	680-242837-1	Liquid	Field Sample/N	Χ

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-242837-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Continuing Calibration Verification

Lab Blank

LCS Recovery

LCS RPD

Prep Hold Time

Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 2 results (28.57%) out of the 7 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Consultants, Inc.

Analytical Method	Data Reviewer Comment	
SW8082A	No additional comments; see Checklist for detail	
Long/N	J	February 21, 2024
Reviewed by Lor Data Consultants	ng Ngo, Environmental Scientist, Laboratory s, Inc.	
requirements of hard copy report	iewer, I certify that I have performed a data review the project guidance document, and have compar and have verified the consistency of the reported two deliverables.	ed the electronic data to the laboratory's
Pei e	Feng	
Reviewed by Pe	i Geng, Senior Scientist, Laboratory Data	February 28, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW8082A, Continuing Calibration Verification

Compliance requirements for satisfactory continuing calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data. Continuing calibration is performed to verify and evaluate instrument performance during sample analysis. Summary forms were evaluated against project acceptance criteria, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCV68080856935 (CV)	PCB-1260 (Aroclor 1260)	130	80 - 120	80 - 120	percent	J/None	V2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Table of All Qualified Results

Test Method: SW8082A		Extraction Method: SW3510C										
FieldSample ID / LabSample ID	Type	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason				
DCL LEACHATE-FAL23 680-242837-1	N	PCB-1221 (Aroclor 1221)	0.520	0.250 U	0.250 UJ		ug/l	V2				
DCL LEACHATE-FAL23 680-242837-1	N	PCB-1254 (Aroclor 1254)	0.520	0.250 U	0.250 UJ		ug/l	V2				

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for tes	Modified Qualifiers for test method SW8082A											
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reason				
DCL LEACHATE-FAL23 680-242837-1	N	PCB-1221 (Aroclor 1221)	0.520	0.250 U	0.250 U		0.250 UJ	V2				
DCL LEACHATE-FAL23 680-242837-1	N	PCB-1254 (Aroclor 1254)	0.520	0.250 U	0.250 U		0.250 UJ	V2				

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason C	Reason Code Definitions										
Code	Definition										
V2	CCV										
Flag Code	e and Definitions										
Flag	Definition										
J	Estimated Value										
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.										

J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias		
-	The result may be biased low	
+	The result may be biased high	

Method: SW8082A (Polychlorinated Biphenyls (PCB))				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		Several results qualified UJ due to CCV%D > 20%.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. February 28, 2024 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on January 4, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58331 H:

SDG# **Fraction**

680-243143-1 Semivolatiles, Wet Chemistry, Diesel Range Organics

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

	341 pages-ADV																Atta	chm	ent	1																	
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- 1	/lille	ers	ville	e, N	/ID	/ Fo	ort	De	ven	s)													
LDC	SDG#	DATE REC'D	(2) DATE DUE	V(OA 60D)	V(SV:		Pe: (808		PC (808		Met (60° /602	10C	H (747	g	3 D. (60 ⁻ /602	10C	DF (801		Metl Eth Eth	ane														
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s
Α	680-241926-1	01/04/24	01/18/24	8	0	-	-	-	-	-	-	-	-	-	-	-	-	8	0	-	-	3	0														Ш
В	680-242109-1	01/04/24	01/18/24	25	0	-	-	-	-	-	-	-	-	-	-	-	-	23	0	-	-	13	0													<u> </u>	Ш
С	680-242433-1	01/04/24	01/18/24	3	0	-	-	-	-	-	-	-	-	-	-	-	-	3	0	-	-	-	-													\bigsqcup	Ш
D	680-242668-1	01/04/24	01/18/24	4	0	-	-	-	-	-	-	-	-	-	-	-	-	4	0	-	-	1	0													\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	1	0	1	0	-	-	-	-	-	-													\bigsqcup	Щ
F	680-242837-2	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-													\bigsqcup	Ш
G		01/04/24		1	0	-	-	-	-	-	-	-	-	-	-	-	-	1	0	-	-	-	-													\bigsqcup	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-	1	0	-	-													\square	Ш
																																				igwdapprox	Ш
																																				Ш	Ш
																																				$\vdash \vdash$	Н
																																				H	Н
Tatal	TD/DC			41	0	1	0	1	0	1	0	1	0	1	_	1	0	39	0	1		17		0	0	0	0	0	0	0	0	0	0	0	0	0	104
Total	TR/PG			41	Į U	<u> </u>								-	0						•	•		•	U	U	U	U	U	U	U	U	U	U	U		104
	Stage 2B EQUIS	EDD					LD	C#	583	331	(A	rca	dis	- N	/lille	ers	ville	e, N	/ID	/ F	ort	De	ven	ıs)													
LDC	SDG#	DATE REC'D	(2) DATE DUE		lk 20B)		N- 12B)	NO /NO (353) ₂ -N	pl (904		To Phe (90		S((905		S (90		TS (254	SS 10D)	TC (906																	
Matri	c: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
Α	680-241926-1	01/04/24	01/18/24	3	0	-	-	3	0	-	-	-	-	3	0	-	-	-	-	3	0																
В	680-242109-1	01/04/24	01/18/24	13	0	-	-	13	0	-	-	-	-	13	0	13	0	-	-	13	0																Ш
D	680-242668-1	01/04/24	01/18/24	1	0	-	-	1	0	-	-	-	-	1	0	1	0	-	-	1	0															\bigsqcup	Ш
Е	680-242837-1	01/04/24	01/18/24	-	-	1	0	-	-	1	0	-	-	-	-	-	-	-	-	-	-															<u> </u>	Ш
G	680-242974-2	01/04/24	01/18/24																																	<u> </u>	Ш
Н	680-243143-1	01/04/24	01/18/24	-	-	-	-	-	-	-	-	1	0	-	-	-	-	1	0	-	-															\bigsqcup	Ш
																																				\bigsqcup	Ш
																																				\bigsqcup	Ш
					ļ																																Ш
					<u> </u>																																Ш
																																					Щ
Total	TR/PG			17	0	1	0	17	0	1	0	1	0	17	0	14	0	1	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, DCL Leach, Fall 2023

SDG: 680-243143-1

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Contract Laboratory(ies):

Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: February 21, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	A2540D	E625	M8015D	SW9065
DCL Leachate-Fal23	680-243143-1	Liquid	Field Sample/N	Х	Χ	Χ	Χ

Page 1 of 20

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Arvada, CO | Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-243143-1. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 53 results (96.36%) out of the 55 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
A2540D	Laboratory duplicate RPD greater than RPD limit of 5 but the difference was less than 2x the LOQ so no results were qualified.
E625	No additional comments; see Checklist for detail.
M8015D	No additional comments; see Checklist for detail.
SW9065	No additional comments; see Checklist for detail.

| Long |

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

February 28, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method E625, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS2806351342A (BS)	2- Chloronaphthalene	122	60 - 118	10 - 118	percent	J/None	С	
LCS2806351342A (BS)	Dimethyl phthalate	113	10 - 112	10 - 112	percent	J/None	С	
LCS2806351342A (BS)	Hexachlorocyclope ntadiene	113	10 - 68	10 - 68	percent	J/None	С	
LCS2806351342A (BS)	N- Nitrosodiphenylam ine	120	46 - 114	10 - 114	percent	J/None	С	
LCS2806351342A (BS)	Pyrene	120	55 - 115	10 - 115	percent	J/None	С	
LCSD2806351343A (BD)	2- Chloronaphthalene	127	60 - 118	10 - 118	percent	J/None	С	
LCSD2806351343A (BD)	Benzidine	72.0	5 - 65	10 - 65	percent	J/None	С	
LCSD2806351343A (BD)	Hexachlorocyclope ntadiene	123	10 - 68	10 - 68	percent	J/None	С	
LCSD2806351343A (BD)	N- Nitrosodiphenylam ine	117	46 - 114	10 - 114	percent	J/None	С	
LCSD2806351343A (BD)	Pyrene	121	55 - 115	10 - 115	percent	J/None	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method E625, LCS RPD

The objective of laboratory control sample/laboratory control sample duplicate (LCS/LCSD) RPD analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. LCS/LCSD analyses are also performed to generate data that determines the long-term precision of the analytical method on various matrices. Non-homogenous samples can impact the apparent method precision. Summary forms were evaluated and compared to electronic data deliverables. Laboratory control sample/laboratory control sample duplicate RPD results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCSD2806351343A (BD)	Benzidine	63.8	< 50	< 50	rpd	J/None	Z	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method E625, Prep Hold Time

Hold times are ascertained based on project requirements. Holding times were determined by comparing the chain of custody records with the dates of extraction found in the electronic data deliverable and laboratory summary forms. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
DCL LEACHATE-FAL23 (N)		13.1	< 7	< 14	days	J/UJ	H2	Prep Exceeds UWL

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Prep Hold Time for E625

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified B Result B	as Units	Reason
DCL Leachate-Fal23 680-243143-1	N	1,2,4-Trichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,2-Dichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,3-Dichlorobenzene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,4-Dichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2,2'-Oxybis(1- chloropropane)	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2,4,6-Trichlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dichlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dimethylphenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Chloronaphthalene	3.80	3.10 U H Q	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2-Chlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Nitrophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	3,3'-Dichlorobenzidine	48.0	29.0 U H	29.0 UJ	ug/l	H2/V2
DCL Leachate-Fal23 680-243143-1	N	4,6-Dinitro-2-methylphenol	48.0	29.0 U H	29.0 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Bromophenyl phenyl ether	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	4-Chloro-3-methylphenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Chlorophenyl phenyl ether	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	4-Nitrophenol	9.50	8.40 U H	8.40 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Acenaphthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Acenaphthylene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Anthracene	3.80	3.10 U H	3.10 UJ	ug/l	H2

ENV.ADR February 28, 2024

Qualified Results associated with the Prep Hold Time for E625

		<u> </u>					
FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias Units	Reason
DCL Leachate-Fal23 680-243143-1	N	Benzidine	95.0	95.0 U H Q	95.0 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(a)anthracene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(a)pyrene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(b)fluoranthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(g,h,i)perylene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(k)fluoranthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzyl butyl phthalate	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Bis(2- chloroethoxy)methane	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Bis(2-chloroethyl) ether (2- Chloroethyl ether)	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Bis(2-ethylhexyl)phthalate	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Chrysene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Dibenz(a,h)anthracene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Diethyl phthalate	3.80	0.950 U H	0.950 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Dimethyl phthalate	3.80	3.10 U M H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	di-n-Butyl phthalate	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	di-n-Octyl phthalate	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Fluoranthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Fluorene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Hexachlorobenzene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Hexachlorobutadiene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Hexachlorocyclopentadiene	48.0	29.0 U H Q	29.0 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Hexachloroethane	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Indeno(1,2,3-c,d)pyrene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Isophorone	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Naphthalene	3.80	1.90 U H	1.90 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Nitrobenzene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	N-Nitrosodi-n-propylamine	9.50	7.60 U H	7.60 UJ	ug/l	H2
		-					

Qualified Results associated with the Prep Hold Time for E625

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL Leachate-Fal23 680-243143-1	N	N-Nitrosodiphenylamine	9.50	7.60 U H Q	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Pentachlorophenol	48.0	38.0 U H	38.0 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Phenanthrene	3.80	3.10 U H	3.10 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Phenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Pyrene	9.50	7.60 U H Q	7.60 UJ		ug/l	H2
680-243143-1	IN	Fylelie	9.50	7.00 0 11 Q	7.00 03		ug/i	1 12

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method E625, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
DCL LEACHATE-FAL23 (N)	Phenol-d5	21.0	36 - 120	27 - 120	percent	J/X	1	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for E625

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL Leachate-Fal23 680-243143-1	N	2,4,6-Trichlorophenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dichlorophenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dimethylphenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Chlorophenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Nitrophenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4,6-Dinitro-2-methylphenol	48.0	29.0 U H	29.0 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Chloro-3-methylphenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Nitrophenol	9.50	8.40 U H	8.40 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Pentachlorophenol	48.0	38.0 U H	38.0 UJ		ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Phenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Quality Control Outliers for test method M8015D, LCS Recovery

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
LCS6808091672A (BS)	C10-C28 Petroleum Hydrocarbons	63.0	78 - 122	78 - 113	percent	J/X	С	
LCSD6808091673A (BD)	C10-C28 Petroleum Hydrocarbons	51.0	78 - 122	78 - 113	percent	J/X	С	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

Quality Control Outliers for test method M8015D, Surrogate

Method performance for individual samples is demonstrated through spiking activities. All samples are spiked with surrogate compounds prior to sample preparation. The sample itself may produce effects due to such factors as interferences and high concentrations of analytes. Summary forms were evaluated and compared to electronic data deliverables. Surrogate results that were outside of the acceptance criteria are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
DCL LEACHATE-FAL23 (N)	o-Terphenyl	51.0	69 - 133	10 - 133	percent	J/UJ	ı	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Surrogate for M8015D

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL Leachate-Fal23 680-243143-1	N	C10-C28 Petroleum Hydrocarbons	0.300	0.220 J	0.220 J	-	mg/l	I/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: E625		Extraction Method: METH	IOD				
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result Bias	Units	Reason
DCL Leachate-Fal23 680-243143-1	N	1,2,4-Trichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,2-Dichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,3-Dichlorobenzene	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	1,4-Dichlorobenzene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2,2'-Oxybis(1- chloropropane)	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2,4,6-Trichlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dichlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dimethylphenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Chloronaphthalene	3.80	3.10 U H Q	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	2-Chlorophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Nitrophenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	3,3'-Dichlorobenzidine	48.0	29.0 U H	29.0 UJ	ug/l	H2/V2
DCL Leachate-Fal23 680-243143-1	N	4,6-Dinitro-2-methylphenol	48.0	29.0 U H	29.0 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Bromophenyl phenyl ether	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	4-Chloro-3-methylphenol	9.50	7.60 U H	7.60 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Chlorophenyl phenyl ether	9.50	7.60 U H	7.60 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	4-Nitrophenol	9.50	8.40 U H	8.40 UJ	ug/l	H2/I
DCL Leachate-Fal23 680-243143-1	N	Acenaphthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Acenaphthylene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Anthracene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzidine	95.0	95.0 U H Q	95.0 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(a)anthracene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(a)pyrene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(b)fluoranthene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(g,h,i)perylene	3.80	3.10 U H	3.10 UJ	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Benzo(k)fluoranthene	3.80	3.10 U H	3.10 UJ	ug/l	H2

Table of All Qualified Results

Test Method: E625		Extraction Method: METH	OD					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL Leachate-Fal23 580-243143-1	N	Benzyl butyl phthalate	3.80	3.10 U H	3.10 UJ	_	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Bis(2- chloroethoxy)methane	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 580-243143-1	N	Bis(2-chloroethyl) ether (2- Chloroethyl ether)	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 580-243143-1	N	Bis(2-ethylhexyl)phthalate	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Chrysene	3.80	3.10 U H	3.10 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Dibenz(a,h)anthracene	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 580-243143-1	N	Diethyl phthalate	3.80	0.950 U H	0.950 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Dimethyl phthalate	3.80	3.10 U M H	3.10 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	di-n-Butyl phthalate	3.80	3.10 U H	3.10 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	di-n-Octyl phthalate	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Fluoranthene	3.80	3.10 U H	3.10 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Fluorene	3.80	3.10 U H	3.10 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Hexachlorobenzene	9.50	7.60 U H	7.60 UJ	,	ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Hexachlorobutadiene	9.50	7.60 U H	7.60 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Hexachlorocyclopentadien e	48.0	29.0 U H Q	29.0 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Hexachloroethane	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Indeno(1,2,3-c,d)pyrene	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Isophorone	9.50	7.60 U H	7.60 UJ	,	ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Naphthalene	3.80	1.90 U H	1.90 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	Nitrobenzene	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	N-Nitrosodi-n-propylamine	9.50	7.60 U H	7.60 UJ		ug/l	H2
DCL Leachate-Fal23 680-243143-1	N	N-Nitrosodiphenylamine	9.50	7.60 U H Q	7.60 UJ		ug/l	H2
OCL Leachate-Fal23 680-243143-1	N	Pentachlorophenol	48.0	38.0 U H	38.0 UJ		ug/l	H2/I
OCL Leachate-Fal23 680-243143-1	N	Phenanthrene	3.80	3.10 U H	3.10 UJ		ug/l	H2
DCL Leachate-Fal23 580-243143-1	N	Phenol	9.50	7.60 U H	7.60 UJ		ug/l	H2/I
OCL Leachate-Fal23 680-243143-1	N	Pyrene	9.50	7.60 U H Q	7.60 UJ		ug/l	H2

Table of All Qualified Results

Test Method: M8015D		Extraction Method: SW3510C						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
DCL Leachate-Fal23 680-243143-1	N	C10-C28 Petroleum Hydrocarbons	0.300	0.220 J	0.220 J	-	mg/l	I/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

Modified Qualifiers for test	method	I E625						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reason
DCL Leachate-Fal23 680-243143-1	N	2,4,6-Trichlorophenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dichlorophenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	2,4-Dimethylphenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Chlorophenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	2-Nitrophenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	3,3'-Dichlorobenzidine	48.0	29.0 U H	29.0 UJ	H2	29.0 UJ	H2/V2
DCL Leachate-Fal23 680-243143-1	N	4,6-Dinitro-2- methylphenol	48.0	29.0 U H	29.0 X	H2/I	29.0 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Chloro-3-methylphenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	4-Nitrophenol	9.50	8.40 U H	8.40 X	H2/I	8.40 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	Pentachlorophenol	48.0	38.0 U H	38.0 X	H2/I	38.0 UJ	H2/I
DCL Leachate-Fal23 680-243143-1	N	Phenol	9.50	7.60 U H	7.60 X	H2/I	7.60 UJ	H2/I
Modified Qualifiers for test method M8015D								
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reason
DCL Leachate-Fal23 680-243143-1	N	C10-C28 Petroleum Hydrocarbons	0.300	0.220 J	0.220 J	C/I/TR	0.220 J	I/TR

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
С	LCS Recovery
H2	Prep Hold Time
1	Surrogate recovery outside project limits.
TR	Trace Level Detect
V2	CCV
Z	LCS RPD

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.

NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low
+	The result may be biased high
Note - Th	ne bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory	165	INU	INA	Comment
report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Nas an LCS/LCSD pair prepared and analyzed with each patch?	•			
Were LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance imits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Nere MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?		•		Results qualified UJ due to analysis outside of 14 day holding time.
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?		•		Results qualified UJ due to CCV%D > 20%.
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?		•		Results qualified UJ due to surrogate %R below %R limits.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?		•		LCS/LCSD %R greater than %R limits but no results were qualified.
Was the LCS/LCSD RPD within project acceptance limits?		•		LCS/LCSD RPD greater than RPD limits but no results were qualified.
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Nas either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Nere all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Nere surrogate recoveries within project acceptance imits?		•		Results qualified J- due to surrogate %R below %R limits.
Nas a method blank prepared and analyzed with each patch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Vere target analytes reported in the field blank(s) less han MDL?			•	Not applicable to this method.
Nas an LCS/LCSD pair prepared and analyzed with each patch?	•			
Nere LCS/LCSD recoveries within project acceptance imits?	•			Lab limits follow QAPP of DOD QSM5.3 of %R 36-132, so no results were qualified.
Nas the LCS/LCSD RPD within project acceptance imits?	•			
Vas a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Vere MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Nere QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in he data validation process?		•		Data acceptable as reported and qualified.

Method: SW9065 (Phenolics (Spectrophotometric, Manual	4-AAP wit	h Distillation	on))	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Results qualified UJ due to MS/MSD %R below %R limits.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. March 27, 2024 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 18, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58599 B:

SDG# **Fraction**

680-242928-2/SQ6350

Metals, Wet Chemistry, Volatile Petroleum Hydrocarbons

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 163 pages-ADV 3 WEEK TAT LDC# 58599 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD (4) Met. 4 D.Met. (2) VPH (MADEP (6010C | (6010C | Fe,Mn COD CN-DATE DATE VOA Pest. Mn Alk LDC SDG# REC'D DUE (8260D) (8081B) /6020A) /6020A) (6010C) (6010C) -VPH (2320B) (410.4) (9012B) w s w s W w s w s w s w s | w | s | w | s | w | s | w | s | w | s | w | s w s w s S Matrix: Water/Soil 03/18/24 04/08/24 0 2 0 2 0 0 680-242926-1 2 3 2 В 680-242928-2/SQ6350 03/18/24 04/08/24 0 0 0 0 3 680-242934-2/SQ6351 03/18/24 04/08/24 0 0 03/18/24 04/08/24 0 680-242974-3 2 6 4 0 2 0 0 0 0 0 0 0 0 TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 43G, Fall 2023

SDG: 680-242928-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: March 26, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	A2320B	SW6010C
AAFES-2-FAL23	680-242928-6	Water	Field Sample/N	X	X
AAFES-7-FAL23	680-242928-9	Water	Field Sample/N		Х
XGM-94-04X-FAL23	680-242928-17	Water	Field Sample/N	Χ	Χ

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR March 26, 2024

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-242928-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
LCS RPD
MS Recovery
MS RPD
Prep Hold Time

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 7 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
A2320B	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.

March 26, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

March 26, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

No Outliers	were associated with this sample delivery group.
Qualified Re	sults
	associated with this sample delivery group required qualification.
No results a	isosolated with this sumple delivery group required qualification.
Results with	Modified Qualifiers
No qualifiers	s associated with this sample delivery group were modified manually.
Reason Co	de Definitions
Code	Definition
Flag Code	and Definitions
Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.

UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low
+	The result may be biased high
Note - Th	ne bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Method: A2320B (Alkalinity by Titrimetric Method)				
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Method: SW6010C (Trace Metals by Inductively Coupled P	lasma/Ato	mic Emiss	ion Spect	rometry)
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 43G, Fall 2023

SDG: SQ6350

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Katahdin Analytical Services, Scarborough, ME

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: March 26, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPVP
AAFES-2-FAL23	SQ6350-2	Water	Field Sample/N	Χ
AAFES-2-FAL23	SQ6350-2DL	Water	Field Sample/N	Χ
XGM-94-04X-FAL23	SQ6350-9	Water	Field Sample/N	Χ

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Katahdin Analytical Services, Scarborough, ME and were reported under sample delivery group (SDG) SQ6350. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 20 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Consultants, Inc.

Analytical Method	Data Reviewer Comment	
MADEPVP	No additional comments; see Checklist for detail.	
Long/1	Jan San San San San San San San San San S	March 26, 2024
Reviewed by Lo Data Consultant	ng Ngo, Environmental Scientist, Laboratory s, Inc.	
requirements of hard copy report	iewer, I certify that I have performed a data review process in the project guidance document, and have compared the elect and have verified the consistency of the reported sample re- te two deliverables.	ectronic data to the laboratory's
Rei	Feng	

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

March 26, 2024

Reviewed by Pei Geng, Senior Scientist, Laboratory Data

No Outliers	were associated with this sample delivery group.
O110 - 1 D.	
Qualified Re	
No results a	associated with this sample delivery group required qualification.
Results with	n Modified Qualifiers
No qualifier	rs associated with this sample delivery group were modified manually.
Reason Co	ode Definitions
Code	Definition
TR	Trace Level Detect
Flore Cords	and Definitions
	and Definitions
Flag J	Definition Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR March 26, 2024

U	Undetected: The analyte was analyzed for, but not detected.			
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.			
X Result may require rejection; PDT attention required				
Bias				
-	The result may be biased low			
+	The result may be biased high			
Note - Ti	he bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result			

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Nas the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Nas either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Nere all reported analytes for the ICV within the required criteria?	•			
Nere ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Nere surrogate recoveries within project acceptance imits?	•			
Nas a method blank prepared and analyzed with each patch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Nere target analytes reported in the field blank(s) less han MDL?			•	Not applicable to this method.
Nas an LCS/LCSD pair prepared and analyzed with each patch?	•			
Nere LCS/LCSD recoveries within project acceptance imits?	•			
Was the LCS/LCSD RPD within project acceptance imits?	•	-		
Nas a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
f a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. March 27, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350 Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 18, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58599 C:

SDG# **Fraction**

680-242934-2/SQ6351

Metals, Wet Chemistry, Volatile Petroleum Hydrocarbons

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 163 pages-ADV 3 WEEK TAT LDC# 58599 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD (4) Met. 4 D.Met. (2) VPH (MADEP (6010C | (6010C | Fe,Mn COD CN-DATE DATE VOA Pest. Mn Alk LDC SDG# REC'D DUE (8260D) (8081B) /6020A) /6020A) (6010C) (6010C) -VPH (2320B) (410.4) (9012B) w s w s W w s w s w s w s | w | s | w | s | w | s | w | s | w | s | w | s w s w s S Matrix: Water/Soil 03/18/24 04/08/24 0 2 0 2 0 0 680-242926-1 2 3 2 В 680-242928-2/SQ6350 03/18/24 04/08/24 0 0 0 0 3 680-242934-2/SQ6351 03/18/24 04/08/24 0 0 03/18/24 04/08/24 0 680-242974-3 2 6 4 0 2 0 0 0 0 0 0 0 0 TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 43G, Fall 2023

SDG: 680-242934-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: March 26, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	A2320B	SW6010C
XGM-93-02X-FAL23	680-242934-1	Water	Field Sample/N	X	X
XGM-97-12X-FAL23	680-242934-2	Water	Field Sample/N	Х	X

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-242934-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 6 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
A2320B	No additional comments; see Checklist for detail.
SW6010C	No additional comments; see Checklist for detail.

March 26, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

March 26, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Total, Calibration Blank

The purpose of calibration blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in calibration blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCB68080877158 (CB) CCB68080877158	Iron	19.4	< 17	< 100	ug/l	U/None*	B2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

*Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

No results associated with this QC element required qualification.

	_			_		
(٦ı	ıal	ified	I R	PSI	ılte

No results associated with this sample delivery group required qualification.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason Co	Reason Code Definitions				
Code	Definition				
B2	CCB				
TR	Trace Level Detect				

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required

Bias		
-	The result may be biased low	
+	The result may be biased high	
Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result		

Method: A2320B (Alkalinity by Titrimetric Method)					
Review Questions	Yes	No	NA	Comment	
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?					
Were samples preserved properly and received in good condition?					
Were holding times met?					
Were all requested target analytes reported?					
Was the Calibration within acceptance criteria?					
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?					
Were all reported analytes for the ICV within the required criteria?	•				
Were ICB/CCBs run at the required frequency?	•				
Were target analytes in the ICBs/CCBs non-detect?	•				
Was a method blank prepared and analyzed with each batch?	•				
Were target analytes in the method blank less than MDL?	•				
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.	
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.	
Was an LCS/LCSD pair prepared and analyzed with each batch?	•				
Were LCS/LCSD recoveries within project acceptance limits?	•				
Was the LCS/LCSD RPD within project acceptance limits?	•				
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.	
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.	
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.	
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.	
Were QAPP specified laboratory LOQs/RLs achieved?	•				
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•				
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.	

Review Questions

Method: SW6010C (Trace Metals by Inductively Coupled P	lasma/Ato	mic Emiss	ion Spect	rometry)
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?		•		Analyte detected in the CCB but no results were qualified.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

2024 Page 7 of 7

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 43G, Fall 2023

SDG: SQ6351

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Katahdin Analytical Services, Westbrook, ME

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: March 26, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPVP
XGM-93-02X-FAL23	SQ6351-1	Water	Field Sample/N	Χ
XGM-97-12X-FAL23	SQ6351-2	Water	Field Sample/N	Χ
XGM-97-12X-FAL23	SQ6351-2DL	Water	Field Sample/N	Χ

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Katahdin Analytical Services, Westbrook, ME and were reported under sample delivery group (SDG) SQ6351. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Lab Blank
LCS Recovery
LCS RPD
Prep Hold Time
Surrogate
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 20 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Consultants, Inc.

Analytical Method	Data Reviewer Comment	
MADEPVP	No additional comments; see Checklist for deta	il.
Lony/N	J	March 26, 2024
Reviewed by Lor Data Consultant	ng Ngo, Environmental Scientist, Laboratory s, Inc.	
requirements of hard copy report	iewer, I certify that I have performed a data review the project guidance document, and have compated and have verified the consistency of the reported two deliverables.	ared the electronic data to the laboratory's
Pai	Feng	
Reviewed by Pe	i Geng, Senior Scientist, Laboratory Data	March 26, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

No Outlier	s were associated with this sample delivery group.
Qualified R	desults
No results	associated with this sample delivery group required qualification.
Results wit	h Modified Qualifiers
No qualifie	ers associated with this sample delivery group were modified manually.
Reason C	ode Definitions
Code	Definition
TR	Trace Level Detect
	e and Definitions
Flag	Definition 5 to 100 to
J N	Estimated Value The analysis indicates the presence of an analyse for which there was presumptive evidence to make a tentative identification.
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present
NJ	and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR March 26, 2024

U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required
Bias	
-	The result may be biased low
+	The result may be biased high
Note - T	he bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Method: MADEPVP (Method for the Determination of Volation	ile Petrole	um Hydro	carbons (\	VPH))
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•	_		
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. March 27, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350 Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fractions listed below. This SDG was received on March 18, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58599 D:

SDG# **Fraction** 680-242974-3 Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 163 pages-ADV 3 WEEK TAT LDC# 58599 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD (4) Met. 4 D.Met. (2) VPH (MADEP (6010C | (6010C | Fe,Mn COD CN-DATE DATE VOA Pest. Mn Alk LDC SDG# REC'D DUE (8260D) (8081B) /6020A) /6020A) (6010C) (6010C) -VPH (2320B) (410.4) (9012B) w s w s W w s w s w s w s | w | s | w | s | w | s | w | s | w | s | w | s w s w s S Matrix: Water/Soil 03/18/24 04/08/24 0 2 0 2 0 0 680-242926-1 2 3 2 В 680-242928-2/SQ6350 03/18/24 04/08/24 0 0 0 0 3 680-242934-2/SQ6351 03/18/24 04/08/24 0 0 03/18/24 04/08/24 0 680-242974-3 2 6 4 0 2 0 0 0 0 0 0 0 0 TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Supplemental Remedial Investigation, AOC 43G, Fall 2023

SDG: 680-242974-3

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: March 26, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C	SW6010C - Dissolved	SW6020A	SW6020A - Dissolved
AOC43G-DUP01-FAL23	680-242974-11	Water	Field Duplicate/FD	Х	Х	Χ	Х

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR March 26, 2024

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-242974-3. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Field Duplicate RPD
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
Prep Hold Time
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 8 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.

March 26, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

March 26, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Dissolved, Lab Blank

The purpose of laboratory blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in laboratory blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
MB6808085231A (LB) MB6808085231A	Manganese	1.62	< 1.3	< 10	ug/l	U/None*	L	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

*Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

No results associated with this QC element required qualification.

Page 4 of 8

Quality Control Outliers for test method SW6010C, Total, Calibration Blank

The purpose of calibration blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in calibration blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCB680808771138 (CB) CCB680808771138	Manganese	1.15	< 1	< 10	ug/l	U/None*	B2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

*Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

No results associated with this QC element required qualification.

ENV.ADR March 26, 2024

	fied		

No results associated with this sample delivery group required qualification.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason Code	Reason Code Definitions		
Code	Definition		
B2	CCB		
L	Lab Blank		
TR	Trace Level Detect		

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias

-	The result may be biased low
+	The result may be biased high
Note -	The bias field is a separate field: however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?		•		Analyte detected in the CB but no results were qualified.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?		•		Analyte detected in the method blank but no results were qualified.
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions

Method: SW6020A (Trace Metals by Inductively Coupled P			• •	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. April 4, 2024 3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on April 4, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58660 A:

SDG# Fraction

680-243065-2 Dissolved Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 33 pages-ADV 3 WEEK TAT LDC# 58660 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD 3 D.Met. 4 D.Met. DATE (6010C (6010C DATE LDC SDG# REC'D DUE /6020A) /6020A) w s Matrix: Water/Soil 680-243065-2 04/04/24 04/25/24 0 2 В 680-243142-2 04/04/24 04/25/24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 69W, Fall 2023

SDG: 680-243065-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 04, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C - Dissolved	SW6020A - Dissolved
69W-94-14-FAL23	680-243065-2	Water	Field Sample/N	Χ	Χ
ZWM-95-15X-FAL23	680-243065-3	Water	Field Sample/N	Х	Χ

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 04, 2024

Page 1 of 8

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-243065-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
Prep Hold Time
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 1 results (16.67%) out of the 6 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.

April 04, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

April 04, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Dissolved, Calibration Blank

The purpose of calibration blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in calibration blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCB680809393370 (CB) CCB680809393370	Manganese	2.06	< 1	< 10	ug/l	U/None*	B2	
CCB680809393382 (CB) CCB680809393382	Manganese	1.64	< 1	< 10	ug/l	U/None*	B2	
CCB680809393394 (CB) CCB680809393394	Iron	23.3	< 17	< 100	ug/l	U/None*	B2	
CCB680809393394 (CB) CCB680809393394	Manganese	2.50	< 1	< 10	ug/l	U/None*	B2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the Calibration Blank for SW6010C, Dissolved

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
69W-94-14-FAL23 680-243065-2	N	Iron	100	43.0 J	100 U		ug/l	B2

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

Table of All Qualified Results

Test Method: SW6010C		Extraction Method: FLDFLT							
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason	
69W-94-14-FAL23 680-243065-2	N	Iron	100	43.0 J	100 U		ug/l	B2	

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason (Code Definitions
Code	Definition
B2	ССВ
TR	Trace Level Detect
Flag Cod	e and Definitions
Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
Х	Result may require rejection; PDT attention required
Bias	
_	The result may be biased low
+	The result may be biased high
Note - Th	e bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?		•		Result qualified U at the LOQ due to CCB detect.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions

Method: SW6020A (Trace Metals by Inductively Coupled P			• •	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. April 4, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on April 4, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58660 B:

SDG# Fraction

680-243142-2 Dissolved Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 33 pages-ADV 3 WEEK TAT LDC# 58660 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD 3 D.Met. 4 D.Met. DATE (6010C (6010C DATE LDC SDG# REC'D DUE /6020A) /6020A) w s Matrix: Water/Soil 680-243065-2 04/04/24 04/25/24 0 2 В 680-243142-2 04/04/24 04/25/24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 69W, Fall 2023

SDG: 680-243142-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Environment Testing TestAmerica, Savannah, GA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 04, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C - Dissolved	SW6020A - Dissolved
69W-94-13-FAL23	680-243142-1	Water	Field Sample/N	Χ	Χ
ZWM-99-24X-FAL23	680-243142-3	Water	Field Sample/N	Х	Χ

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 04, 2024

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-243142-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
Prep Hold Time
Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 0 results (0.00%) out of the 6 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.

April 04, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

April 04, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Dissolved, Calibration Blank

The purpose of calibration blanks is to determine the existence and magnitude of cross-contamination problems resulting from laboratory activities. Reported results were evaluated to determine compliance with the required acceptance criteria. Summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and contaminants found in calibration blanks are listed below along with any associated qualified results.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
CCB680809393370 (CB) CCB680809393370	Manganese	2.06	< 1	< 10	ug/l	U/None*	B2	
CCB680809393382 (CB) CCB680809393382	Manganese	1.64	< 1	< 10	ug/l	U/None*	B2	
CCB680809393394 (CB) CCB680809393394	Iron	23.3	< 17	< 100	ug/l	U/None*	B2	
CCB680809393394 (CB) CCB680809393394	Manganese	2.50	< 1	< 10	ug/l	U/None*	B2	
CCB680809393406 (CB) CCB680809393406	Iron	21.8	< 17	< 100	ug/l	U/None*	B2	
CCB680809393406 (CB) CCB680809393406	Manganese	2.23	< 1	< 10	ug/l	U/None*	B2	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

No results associated with this QC element required qualification.

^{*}Blank flags displayed in the above table identify qualification of the sample result when it is less than or equal to the LOQ/RL. Sample results above the LOD or LOQ will be qualified based on the validation guidance assigned in the project setup.

	_			_		
(٦ı	ıal	ified	I R	PSI	ılte

No results associated with this sample delivery group required qualification.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

Reason Cod	Reason Code Definitions				
Code	Definition				
B2	CCB				
TR	Trace Level Detect				

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias	
-	The result may be biased low
+	The result may be biased high
Note - T	The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions

Method: SW6010C (Trace Metals by Inductively Coupled P	Plasma/Ato	mic Emiss	ion Spect	rometry)
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?		•		Analytes detected in the CCB but no results were qualified.
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance imits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. April 11, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350 Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on March 26, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58684_A:

SDG# **Fraction**

680-243065-2 Dissolved Metals

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 55 pages-ADV 3 WEEK TAT LDC# 58684 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD 3 D.Met. **EPH** DATE (6010C (MADEP DATE LDC SDG# REC'D DUE /6020A) -EPH) w s Matrix: Water/Soil 680-243154-2 03/26/24 04/16/24 0 7 В 680-243266-2 03/26/24 04/16/24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 69W, Fall 2023

SDG: 680-243154-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Page 1 of 8

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Eurofins Environment Testing TestAmerica, Savannah, GA Contract Laboratory(ies):

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 10, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	SW6010C - Dissolved	SW6020A - Dissolved
69WP-08-01-FAL23	680-243154-4	Water	Field Sample/N	Х	Х
69WP-13-01-FAL23	680-243154-5	Water	Field Sample/N	Х	
AOC69W-DUP03-FAL23	680-243154-6	Water	Field Duplicate/FD	Х	Χ
ZWM-01-25X-FAL23	680-243154-7	Water	Field Sample/N	Х	Χ
ZWM-95-18X-FAL23	680-243154-11	Water	Field Sample/N	Х	Χ
ZWM-99-22X-FAL23	680-243154-12	Water	Field Sample/N	Х	Χ
ZWM-99-23X-FAL23	680-243154-13	Water	Field Sample/N	Х	Χ

eQAPP Version: eQAPP_DEVNS-DEVNS-LTM-.000000 ENV.ADR April 11, 2024

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Environment Testing TestAmerica, Savannah, GA and were reported under sample delivery group (SDG) 680-243154-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Blank - Negative
Calibration Blank
Calibration Blank - Negative
Continuing Calibration Verification
Field Duplicate RPD
Interference Check Sample A
Interference Check Sample A - Negative
Interference Check Sample AB
Lab Blank
LCS Recovery
MS Recovery
MS RPD
Prep Hold Time

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 1 results (5.26%) out of the 19 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Analytical Method	Data Reviewer Comment
SW6010C	No additional comments; see Checklist for detail.
SW6020A	No additional comments; see Checklist for detail.

April 10, 2024

Reviewed by Long Ngo, Environmental Scientist, Laboratory Data Consultants, Inc.

As the First Reviewer, I certify that I have performed a data review process in accordance with the requirements of the project guidance document, and have compared the electronic data to the laboratory's hard copy report and have verified the consistency of the reported sample results and method quality control data between the two deliverables.

Reviewed by Pei Geng, Senior Scientist, Laboratory Data
Consultants, Inc.

April 11, 2024

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

Quality Control Outliers for test method SW6010C, Dissolved, MS Recovery

Data for matrix spikes/matrix spike duplicates (MS/MSD) are generated to determine long-term precision and accuracy of the analytical method on various matrices and to demonstrate acceptable compound recovery by the laboratory at the time of sample analysis. These data alone cannot be used to evaluate the precision and accuracy of individual samples. However, when exercising professional judgment, MS/MSD data can be used in conjunction with other available QC information. Reported results were evaluated to determine compliance with the required acceptance criteria, and summary forms were evaluated and compared to electronic data deliverables. Findings of this review, and any associated qualified results, are listed below.

Sample ID/ Lab Sample ID	Analyte	Result	Warning Limits	Control Limits	Units	Qualifier	Reason Code	Comment
ZWM-95-18X-FAL23 (MS) 680-243154-11	Manganese	82.0	90 - 114	10 - 125	percent	J/UJ	M	

Where two qualifiers are listed, such as 'J/UJ', the first applies to positive results, and the second to non-detect results. Upper and Lower Warning and Control Limits are abbreviated UWL, LWL, UCL, and LCL in the Comment field.

Qualified Results associated with the MS Recovery for SW6010C, Dissolved

FieldSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
ZWM-95-18X-FAL23 680-243154-11	N	Manganese	10.0	61.0 J1	61.0 J	-	ug/l	M

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOD) or (LOQ) based on the sample concentration and the validation guidance. In instances where no LOD is provided, results are reported down to the LOQ.

Table of All Qualified Results

Test Method: SW6010C		Extraction Method: FLDFLT						
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
ZWM-95-18X-FAL23 680-243154-11	N	Manganese	10.0	61.0 J1	61.0 J	-	ug/l	M

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration. In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Results with Modified Qualifiers

No qualifiers associated with this sample delivery group were modified manually.

M MS Recovery TR Trace Level Detect Flag Code and Definitions Flag Definition J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required		
M MS Recovery TR Trace Level Detect Flag Code and Definitions Flag Definition J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. NJ The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased loy	Reason (Code Definitions
Flag Code and Definitions Flag Definition J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	Code	Definition
Flag Code and Definitions Flag Definition J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low + The result may be biased high	М	MS Recovery
Flag Definition J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. NJ The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	TR	Trace Level Detect
J Estimated Value N The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	Flag Cod	e and Definitions
The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification. The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	Flag	Definition
The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	J	Estimated Value
NJ and the associated numerical value was the estimated concentration in the sample. R The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making. U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
U Undetected: The analyte was analyzed for, but not detected. UJ The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	NJ	and the associated numerical value was the estimated concentration in
The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
Control criteria. X Result may require rejection; PDT attention required Bias The result may be biased low The result may be biased high	U	Undetected: The analyte was analyzed for, but not detected.
Bias The result may be biased low The result may be biased high	UJ	
- The result may be biased low + The result may be biased high	Х	Result may require rejection; PDT attention required
+ The result may be biased high	Bias	
	-	The result may be biased low
Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result	+	The result may be biased high
	Note - The	e bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Review Questions

Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?		•		Result qualified J- due to MS/MSD R% below %R limits.
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Review Questions

Method: SW6020A (Trace Metals by Inductively Coupled P	lasma/Ma	ss Spectro	metry)	
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?	•			
Was a MS/MSD pair prepared with each batch?	•			
Were MS/MSD recoveries within project acceptance limits?	•			
Was the MS/MSD RPD within project acceptance limits?	•			
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?	•			
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Field Duplicate Report By SDG

Former Fort Devens, Long Term Monitoring Seres-Arcadis JV, Long Term Monitoring, AOC 69W, Fall 2023

Field Duplicates for SDG: 680-243154-2

Location **Analysis** ZWM-99-22X SW6010C

			Primary	FD			RPD	RPD	RL
Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Result	Result	RL	RPD	Criteria	Check	Check
ZWM-99-22X-FAL23 / AOC69W-DUP03-FAL2	3 680-243154-12 / 680-243154-6	Iron (FLDFLT)	11000	11000	100	0.00	30	OK	NA
ZWM-99-22X-FAL23 / AOC69W-DUP03-FAL2	3 680-243154-12 / 680-243154-6	Manganese (FLDFLT)	1000	1100	10.0	9.52	30	OK	NA

Location **Analysis** ZWM-99-22X SW6020A

Field ID - Primary/Field Dup	Lab ID - Primary/Field Dup	Analyte	Primary Result	FD Result	RL	RPD	RPD Criteria	RPD Check	RL Check
ZWM-99-22X-FAL23 / AOC69W-DUP03-FA	L23 680-243154-12 / 680-243154-6	Arsenic (FLDFLT)	110	120	5.00	8.70	30	OK	NA

FD = Field Duplicate

RL = Reporting Limit
RPD = Relative Percent Difference

RL Check = If either the primary sample or field duplicate result is less than 5 times the RL then the criteria used to determine if the field duplicate is outside QC limits is +/- RL for Water and +/- 2 times RL for Soil"

LABORATORY DATA CONSULTANTS, INC. 2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

ARCADIS U.S., Inc. April 11, 2024

3109 West Martin Luther King Jr. Blvd, Suite 350

Tampa, FL 33607

ATTN: Mr. Nathan Mullens nrmullens@seres-es.com

SUBJECT: Fort Devens - Data Validation

Dear Mr. Mullens,

Enclosed are the final validation reports for the fraction listed below. This SDG was received on March 26, 2024. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project #58684 B:

SDG# **Fraction**

680-243266-2 Extractable Petroleum Hydrocarbons

The data validation was performed under Stage 2B guidelines. The analysis was validated using the following documents, as applicable to each method:

- Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Pei Geng

pgeng@lab-data.com

Project Manager/Senior Chemist

Attachment 1 55 pages-ADV 3 WEEK TAT LDC# 58684 (Arcadis - Millersville, MD / Fort Devens) Stage 2B EQUIS EDD 3 D.Met. **EPH** DATE (6010C (MADEP DATE LDC SDG# REC'D DUE /6020A) -EPH) w s Matrix: Water/Soil 680-243154-2 03/26/24 04/16/24 0 7 В 680-243266-2 03/26/24 04/16/24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total TR/PG

Facility: Former Fort Devens, Long Term Monitoring

Event: Seres-Arcadis JV, Long Term Monitoring, AOC 69W, Fall 2023

SDG: 680-243266-2

Guidance Document: Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort

Devens, 2020

Prime Contractor: Seres - Arcadis SB Joint Venture, LLC, Charleston, SC

Project Manager: Jennifer Singer

Contract Laboratory(ies): Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA

Data Review Contractor: Laboratory Data Consultants, Inc.

Data Review Level: 2B

Primary Data Reviewer: Long Ngo, Environmental Scientist

Second Reviewer: Pei Geng, Senior Scientist

Date Submitted: April 10, 2024

Field Sample ID	Lab Sample ID	Matrix	Type/Type Code	MADEPEP
69W-94-13-FAL23	680-243266-1	Water	Field Sample/N	Х
69W-94-14-FAL23	680-243266-2	Water	Field Sample/N	Х
ZWM-01-25X-FAL23	680-243266-3	Water	Field Sample/N	Х
ZWM-95-15X-FAL23	680-243266-4	Water	Field Sample/N	Х
ZWM-99-22X-FAL23	680-243266-6	Water	Field Sample/N	Х
ZWM-99-23X-FAL23	680-243266-7	Water	Field Sample/N	Х
ZWM-99-24X-FAL23	680-243266-8	Water	Field Sample/N	Х

Page 1 of 8

This report assesses the analytical data quality associated with the analyses listed on the preceding cover page at 2B data validation level. This assessment has been made through a combination of automated data review (ADR) and supplemental manual review, the details of which are described below. The approach taken in the review of this data set is consistent with the requirements contained in the Quality Assurance Project Plan, Long Term Monitoring Program, Former Fort Devens, 2020 and the additional guidance documents incorporated by reference to the extent possible. Where definitive guidance is not provided, results have been evaluated in a conservative manner using professional judgment.

Sample collection was managed and directed by Seres - Arcadis SB Joint Venture, LLC, Charleston, SC; analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC, Lancaster, PA and were reported under sample delivery group (SDG) 680-243266-2. Data have been evaluated electronically based on electronic data deliverables (EDDs) provided by the laboratory, and hard copy data summary forms have also been reviewed during this effort and compared to the automated review output by the reviewers whose signatures appear on the following page. Findings based on the automated data submission and manual data verification processes are detailed in the ADR narrative and throughout this report.

All quality control (QC) elements associated with this SDG have been reviewed by a project chemist in accordance with the requirements defined for the project. This review is documented in the attached Data Review Checklists. The QC elements listed below were supported by the electronic deliverable and were evaluated using ADR processes.

Continuing Calibration Verification

Lab Blank

LCS Recovery

LCS RPD

Prep Hold Time

Surrogate

Test Hold Time

Results of the ADR process were subsequently reviewed and updated as applicable by the data review chemists identified on the signature page. Quality control elements that were not included in the electronic deliverable were reviewed manually and findings are documented within this report. Summaries of findings and associated qualified results are documented throughout this report.

A total of 15 results (10.71%) out of the 140 results (sample and field QC samples) reported are qualified based on review and 0 results (0.00%) have been rejected or deemed a serious deficiency (X qualifier). Trace values, defined as results that are qualified as estimated because they fall between the detection limit and the reporting limit/limit of quantitation, are not counted as qualified results in the above count. The qualified results are detailed throughout this report and discussed in the narrative below, where appropriate.

Narrative Comments

Consultants, Inc.

Analytical Method	Data Reviewer Comment	
MADEPEP	No additional comments; see Checklist for detail.	
,	Λ	
[mu/l	/ no	
very 10		April 10, 2024
Reviewed by Lor	ng Ngo, Environmental Scientist, Laboratory	
Data Consultants		
As the First Revi	ewer, I certify that I have performed a data review	process in accordance with the
requirements of	the project guidance document, and have compare	ed the electronic data to the laboratory's
	and have verified the consistency of the reported	sample results and method quality control
data between the	e two deliverables.	
Vien	Tech	

As the Second Reviewer, I certify that I have performed a quality assurance review of the report generated by the First Reviewer.

April 11, 2024

Reviewed by Pei Geng, Senior Scientist, Laboratory Data

No Outliers were associated with this sample delivery group.

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
69W-94-13-FAL23 680-243266-1	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	9.40 J	9.40 J		ug/l	TR/Z
69W-94-14-FAL23 680-243266-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	47.0	9.80 J Q	9.80 J		ug/l	TR/Z
ZWM-01-25X-FAL23 680-243266-3	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	11.0 J Q	11.0 J		ug/l	TR/Z
ZWM-95-15X-FAL23 680-243266-4	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	13.0 J	13.0 J		ug/l	TR/Z
ZWM-95-15X-FAL23 680-243266-4	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	11.0 J Q	11.0 J		ug/l	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	2-Methylnaphthalene	1.90	2.20 M Q	2.20 J		ug/l	Z
ZWM-99-22X-FAL23 680-243266-6	N	Acenaphthene	1.90	1.20 J M Q	1.20 J		ug/l	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	Acenaphthylene	1.90	2.10 M Q	2.10 J		ug/l	Z
ZWM-99-22X-FAL23 680-243266-6	N	Anthracene	1.90	0.970 J M Q	0.970 J		ug/l	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	100	100 J		ug/l	Z

Table of All Qualified Results

Test Method: MADEPEP		Extraction Method: SW3	510C					
FieldSample ID / LabSample ID	Туре	Analyte	LOQ	Lab Result	Qualified Result	Bias	Units	Reason
ZWM-99-22X-FAL23 680-243266-6	N	Fluorene	1.90	1.40 J M Q	1.40 J		ug/l	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	Phenanthrene	1.90	0.720 J M Q	0.720 J		ug/l	TR/Z
ZWM-99-23X-FAL23 680-243266-7	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	42.0	23.0 J	23.0 J		ug/l	TR/Z
ZWM-99-23X-FAL23 680-243266-7	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	52.0	10.0 J Q	10.0 J		ug/l	TR/Z
ZWM-99-24X-FAL23 680-243266-8	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	13.0 J Q	13.0 J		ug/l	TR/Z

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Table of Results with Modified Qualifiers

FieldSample ID /	Type	Analyte	LOQ	Lab Result	ADR Result	ADR Reason	Modified Result	Reason
69W-94-13-FAL23 680-243266-1	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	9.40 J	9.40 J	TR	9.40 J	TR/Z
69W-94-14-FAL23 680-243266-2	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	47.0	9.80 J Q	9.80 J	TR	9.80 J	TR/Z
ZWM-01-25X-FAL23 680-243266-3	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	49.0	11.0 J Q	11.0 J	TR	11.0 J	TR/Z
ZWM-95-15X-FAL23 680-243266-4	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	13.0 J	13.0 J	TR	13.0 J	TR/Z
ZWM-95-15X-FAL23 680-243266-4	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	11.0 J Q	11.0 J	TR	11.0 J	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	2-Methylnaphthalene	1.90	2.20 M Q	2.20		2.20 J	Z
ZWM-99-22X-FAL23 680-243266-6	N	Acenaphthene	1.90	1.20 J M Q	1.20 J	TR	1.20 J	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	Acenaphthylene	1.90	2.10 M Q	2.10		2.10 J	Z
ZWM-99-22X-FAL23 680-243266-6	N	Anthracene	1.90	0.970 J M Q	0.970 J	TR	0.970 J	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	38.0	100	100		100 J	Z
ZWM-99-22X-FAL23 680-243266-6	N	Fluorene	1.90	1.40 J M Q	1.40 J	TR	1.40 J	TR/Z
ZWM-99-22X-FAL23 680-243266-6	N	Phenanthrene	1.90	0.720 J M Q	0.720 J	TR	0.720 J	TR/Z
ZWM-99-23X-FAL23 680-243266-7	N	C11-C22 Petroleum Hydrocarbons, Aromatic Fraction, Adjusted for Target Analytes, Surrogates and Internal Standards	42.0	23.0 J	23.0 J	TR	23.0 J	TR/Z
ZWM-99-23X-FAL23 680-243266-7	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	52.0	10.0 J Q	10.0 J	TR	10.0 J	TR/Z
ZWM-99-24X-FAL23 680-243266-8	N	C19-C36 Petroleum Hydrocarbons, Aliphatic	48.0	13.0 J Q	13.0 J	TR	13.0 J	TR/Z

Analytes not found in project samples are reported as not detected at the limit of detection (LOD) unless blank contamination occurs and then the sample may be reported as not detected at the (LOQ) based on the sample concentration.

In instances where no LOD is provided, results are reported down to the LOQ.

Trace values are not included in the qualified results table unless additional reason codes are associated.

Reason Code Definitions

Code	Definition
TR	Trace Level Detect
Z	LCS RPD

Flag Code and Definitions

Flag	Definition
J	Estimated Value
N	The analysis indicates the presence of an analyte for which there was presumptive evidence to make a tentative identification.
NJ	The analyte has been tentatively identified or presumptively as present and the associated numerical value was the estimated concentration in the sample.
R	The data are rejected due to deficiencies in meeting QC criteria and may not be used for decision making.
U	Undetected: The analyte was analyzed for, but not detected.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in meeting certain analyte-specific quality control criteria.
X	Result may require rejection; PDT attention required

Bias

-		The result may be biased low
+		The result may be biased high
Nicto	The 100	Cold to a second of field become in the control of the Cold flow (see P.C.) and the second of the cold flow (see P.C.)

Note - The bias field is a separate field; however, it is an integral part of the final flag (qualifier) on the sample result

Page 7 of 8

Review Questions

Method: MADEPEP (Method for the Determination of Extra	ctable Pet	roleum Hy	drocarbor	ns (EPH))
Review Questions	Yes	No	NA	Comment
Did Chain-of-Custody information agree with laboratory report and EDD for requested field samples and tests?	•			
Were samples preserved properly and received in good condition?	•			
Were holding times met?	•			
Were all requested target analytes reported?	•			
Was the Calibration within acceptance criteria?	•			
Were the required minimum levels of calibration standards used in the initial calibration?	•			
Was either analysis of an ICV performed after each ICAL or a second source standard prior to sample analysis?	•			
Were all reported analytes for the ICV within the required criteria?	•			
Were ICB/CCBs run at the required frequency?	•			
Were target analytes in the ICBs/CCBs non-detect?	•			
Were surrogate recoveries within project acceptance limits?	•			
Was a method blank prepared and analyzed with each batch?	•			
Were target analytes in the method blank less than MDL?	•			
Were field blanks (EBs or FBs) submitted with these samples?			•	Not applicable to this method.
Were target analytes reported in the field blank(s) less than MDL?			•	Not applicable to this method.
Was an LCS/LCSD pair prepared and analyzed with each batch?	•			
Were LCS/LCSD recoveries within project acceptance limits?	•			
Was the LCS/LCSD RPD within project acceptance limits?		•		Several results qualified J due to LCS/LCSD RPD greater than RPD limits.
Was a MS/MSD pair prepared with each batch?			•	Not applicable to this method.
Were MS/MSD recoveries within project acceptance limits?			•	Not applicable to this method.
Was the MS/MSD RPD within project acceptance limits?			•	Not applicable to this method.
If a field duplicate was analyzed, were the RPDs within QAPP acceptance limits?			•	Not applicable to this method.
Were QAPP specified laboratory LOQs/RLs achieved?	•			
Have all Laboratory Case Narrative comments/findings been addressed in the data review process?	•			
Were DoD QSM corrective actions followed if deviations were noted?	•			
Were any data recommended for rejection (exclusion) in the data validation process?		•		Data acceptable as reported and qualified.

Appendix D

Summary of Historical Groundwater Sampling Results

	Fall 1999	Fall 2000	Fall 2001	Fall 2002	Fall 2003	Fall 2004	Fall 2005	Fall 2006	Fall 2007	Fall 2008	Fall 2009	Fall 2010	Fall 2011	Fall 2012	Fall 2013	Fall 2014	Fall 2015	Fall 2016	Fall 2017	Fall 2018	Fall 2019	Fall 2020	Fall 2021	Fall 2022	Fall 2023
Sample Location Benzene- 5 µg/L Cleanup Goal	1 411 1000	1 411 2000	1 4.11 2001	1 dii 2002	1 dii 2000	1 u.i. 2004	1 dii 2000	1 u.i. 2000	1 u.i. 2007	1 uli 2000	1 an 2000	1 all 2010	1 411 2011	1 411 2012	1 4.11 2010	1 411 2014	1 411 2010	1 4.11 2010	1 dii 2011	1 411 2010	1 411 2010	1 dii 2020	1 an 2021	1 411 2022	- GIII 2020
AAFES-2	62	36	43	26	9.0	6.6	6.1	1.3	ND	ND	3.93 J	ND	ND	6.60 J	5.04	3.7	4.2	ND	ND	ND	1.5 J	ND	ND	ND	1.5 J
XGM-93-02X	81	32	12	140	24	39	29	18.5	8.8	2.6	0.997 J	ND	ND	ND	ND	0.77 J	ND	ND	0.38 J	0.60 J	ND		ND	ND	ND
XGM-97-12X	270									13.7 J		ND	13.8	3.03 J	3.87			ND	0.36 J ND		ND	ND ND		ND ND	6.3
Iron, total - 9,100 µg/L Cleanup Goal	2/0	550	700	780	290	260	35.6	129	22.8	13.7 J	27.4 J	ND	13.6	3.03 J	3.87	1.5	3.8	ND	IND	4.0	ND	ND	ND	ND	0.3
AAFES-2	24.000	20,000	27,000	26,000	14.000	20.000	21,900	12,000	20,000	18,000	16.000	14,000	22.000	18.000	19,000	19,400	14,400	11,000	10.000	19.000	20,000	17,000	17.000	14,000	16,000
AAFES-6/6R	,				NS	NS	NS			6,500	4,300	3,300	1,100	6.900		8,240		NS	NS	NS	NS	NS	NS	NS	NS
	11,000	9,200	13,000	9,400			_	11,000	11,000 5.800		<u> </u>	-,		-,	9,200	-, -	NS			- 110		_	-		7,100
XGM-93-02X	30,000	18,000	11,000	24,000	15,000	28,000	11,500	13,000	-,	11,000	8,500	11,000	12,000	6,000	10,000	9,580	13,200	6,000	6,500	20,000	9,300	6,400	6,200	4,400	
XGM-94-07X	3,500	2,900	5,800	2,300	1,000	300	1,610	1,400	4,500	9,300	8,800	12,000	13,000	23,000	10,000	6,820	NS	NS	NS	NS	8,300	12,000	NS	NS	NS
XGM-94-08X	4,800	13,000	4,500	4,600	3,200	2,500	4,520	6,100	4,600	2,200	1,300	1,000	750	2,300	910	147	NS	NS	NS	NS	1,000	11,000	NS	NS	NS
XGM-97-12X	32,000	26,000	33,000	46,000	33,000	32,000	20,100	18,000	22,000	25,000	25,000	16,000	27,000	20,000	24,000	25,800	34,300	25,000	18,000	27,000	6,200	18,000	28,000	16,000	37,000
Manganese, total - 375 μg/L Cleanup G		2 222	4.000	0.700	0.100	1000	0.500	0.700	0.700	0.000	0.000	0.100	0.700	0.100	0.070	0.100	0.710		2 222	0.400	0.500	2 222	0.500		
AAFES-2	4,600	3,900	4,800	3,700	3,100	4,000	3,590	2,700	3,790	3,600	3,320	2,490	3,700	3,100	3,270	3,460	2,740	2,800	2,800	3,100	3,500	3,200	2,500	2,600	112
AAFES-6/6R	2,900	9,200	3,400	3,000	NS	NS	NS	2,900	3,090	3,630	907	1,670	1,830	3,220	2,820	3,000	NS	NS	NS	NS	NS	NS	NS	NS	NS
AAFES-7	NS	NS	NS	NS	NS	NS	NS	NS	NS	106	81	79	5 J	706	2,390	1,640	139	510	330	NS	86	3,400	47	77	160
XGM-93-02X	3,900	2,500	1,900	2,500	1,900	2,600	1,450	2,000	1,800	1,420	1,630	737	3,020	612	1,180	1,570	2,020	1,400	1,400	1,900	1,300	1,200	1,300	1,000	940
XGM-94-04X	2,900	2,200	3,400	2,000	1,400	1,400	1,580	1,100	559	68	2,730	6,490	2,140	2,580	2,730	1,510	1,090	1,500	1,700 J	230	5,500	13	290	5,600	440
XGM-94-06X	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1,400	1,800	NS	NS	NS
XGM-94-07X	5,700	3,700	6,100	4,500	3,600	1,000	6,120	5,100	4,120	5,100	4,990	3,870	6,060	5,560	5,380	6,940	NS	NS	NS	NS	4,200	4,500	NS	NS	NS
XGM-94-08X	4,500	4,600	4,900	3,600	3,600	3,800	7,260	4,200	3,380	3,100	2,150	2,070	2,780	4,620	2,300	3,210	NS	NS	NS	NS	3,500	7,100	NS	NS	NS
XGM-97-12X	6,300	4,100	4,200	3,900	4,100	3,000	437	1,800	2,070	3,060	2,390	2,110	3,540	1,640	1,680	2,080	3,460	1,700	1,200	3,800	250	1,300	1,700	1,100	2,000
C ₅ -C ₈ Aliphatics - 300 μg/L Monitoring	g Criteria																								
AAFES-2	ND	1,400	ND	1,200	1,200	ND	2,070	1,430	1,400	ND	ND	859	1,270	1,560 J	1,390	1,250	728	850	890	480 J	1,200	480	750	610	510
AAFES-6/6R	370	420	290	ND	NS	NS	NS	305	ND	ND	ND	114	ND	215	287	188	NS	NS	NS	NS	NS	NS	NS	NS	NS
XGM-93-02X	ND	570	270	790	410	ND	788	519	ND	ND	ND	124	ND	ND	65	268	101	94	79 J	84 J	210	150	130	110	ND
XGM-94-04X	ND	420	140	ND	ND	ND	ND	ND	ND	ND	ND	533	765	497 J	1,140	186	65	480	360	ND	590	ND	ND	260	52 J
XGM-97-12X	970	1,300	1,100	1,100	1,100	ND	2,370	1,740	1,230	ND	4,050	644	367	507 J	494	272	515	420	350	360	350	110	480	190	470
C9-C12 Aliphatics - 700 µg/L Monitoring	ng Criteria																								
AAFES-2	ND	81	ND	200	ND	57	5,220	987	1,000	1,020	950	768	1,080	542 J	1,650	688	85.7	430	530 J	330 J	790	820	750	1,100	320
XGM-93-02X	ND	39	ND	58	33	34	1,570	268	94	182	55.5	ND	85.1	ND	100	76.6	ND	56	78 J	ND	79 J	66 J	94 J	ND	ND
XGM-97-12X	96	ND	ND	130	ND	90	7,310	1,340	1,080	2,210	1,450	922	535	275 J	724	162	718	230	170 J	420 J	150 J	300	1,400	ND	360
C ₉ -C ₁₀ Aromatics - 200 μg/L Monitorin	ng Criteria																								
AAFES-2	9,400	7,200	5,300	13,000	6,600	6,700	3,130	3,710	2,420	2,120	2,660	1,870	1,050	1,090	1,940	1,090	827	730	1,100 J	990	1,400	820	580	530	430
XGM-93-02X	510	2,300	1,100	3,600	1,600	3,700	918	766	228	325	110	73.4	ND	ND	ND	113	62.3	ND	ND	75 J	100	66.0 J	ND	ND	ND
XGM-94-04X	200	570	170	28	ND	ND	ND	ND	ND	ND	ND	243	469	300 J	769	76.8	ND	320	410 J	ND	830	ND	ND	190	62 J
XGM-97-12X	4,500	5,500	5,400	7,500	8,700	7,400	3,810	4,010	4,220	5,260	4,110	2,470 J	463	367 J	840	253	1,560	340	430 J	1,000	340	300	1,000	160	520

= Above cleanup goal

100 = Above monitoring criteria

1. The cleanup goal for iron is the background level. The cleanup goal for manganese is a site-specific goal determined in 2008 (Long-Term Monitoring Plan Former Fort Devens Army Installation, HGL, 2008).

2. The VPH carbon ranges are not contaminants of concern and are evaluated against MCP GW-1 standards for comparison purposes. Benzene, ethylbenzene, xylenes, and toluene are not contaminants of concern but the cleanup goals are the Maximum Contaminant Levels.

Acronyms and Abbreviations: µg/L = microgram per liter AOC = Area of Contamination B = Blank Qualified

J = Estimated result
MCP = Massachusetts Contingency Plan
ND = Non-detect
NS = not sampled
VPH = volatile petroleum hydrocarbons

Appendix D AOC 69W Exceedances Over Time, 2000 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Spring 2000	Fall 2000	Spring 2001	Fall 2001	Spring 2002	Fall 2002	Spring 2003	Fall 2003	Spring 2004	Fall 2004	Spring 2005	Fall 2005	Spring 2006	Fall 2007	Fall 2008	Fall 2010	Fall 2011
Arsenic, dissolved - 10	μg/L Cleanup	Goal															
69W-94-13	54	110	85	150	52	130	35	69	27	88	56	60	69	142	73	127	120
ZWM-95-15X	ND	7.9	ND	22	36	40	ND	16	7.7	30	ND	ND	ND	16	ND	13	41
ZWM-99-22X	150	130	230	140	86	140	150	160	140	140	120	120	159	244	223	343	367
ZWM-99-23X	23	70	67	55	15	ND	27	ND	44	61	46	47	56	56	52	15	60
ZWM-01-25X	NA	NA	NA	4.1 J	ND	ND	2.3 J	ND	ND	3.4 J	ND	ND	3 J	5	2.3 J	ND	13
Manganese, dissolved	- 375 μg/L Moi	nitoring Criteria	a														
69WP-08-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	174	78	2,190
69W-94-13	2,300	1,700	1,500	1,600	2,100	2,400	2,800	4,100	2,500	1,300	3,000	1,600	2,600	1,120	1,940	1,360	1,840
ZWM-95-15X	28	1,300	25	100	1,500	2,200	1,600	970	4,600	980	850	130	860	1,230	438	1,120	1,010
ZWM-99-22X	2,000	1,800	2,300	2,400	2,000	1,500	2,700	2,300	3,100	1,900	3,400	3,200	3,700	3,120	3,790	1,750	2,160
ZWM-99-23X	4,200	3,600	5,800	1,500	550	1,700	5,300	4,300	2,500	2,300	5,200	2,500	2,700	1,320	2,500	523	1,720
ZWM-01-25X	NA	NA	NA	280	61	1,000	89	230	140	300	140	490	1,400	3,210	1,320	1,490	2,820
EPH C ₁₁ -C ₂₂ Aromatics	s - 200 μg/L Mo	onitoring Criter	ria														
69W-94-13	690	1,400	720	790	1,900	290	ND	160	ND	110	ND	ND	209	311	152	339	242
ZWM-99-22X	2,500	1,400	2,100	370	620	210	380	330	270	400	320	280	627	166	356	209	327
ZWM-99-23X	170	520	200	140	140	ND	ND	ND	ND	ND	ND	ND	174	107	80	ND	ND

Notes:

100	= Above cleanup goal
100	= Above monitoring criteria

Acronyms and Abbreviations:

μg/L = microgram per liter

AOC = Area of Contamination

EPH = extractable petroleum hydrocarbons

J = Estimated result

NA = Not analyzed

ND = non-detect

Appendix D AOC 69W Exceedances Over Time, 2000 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Fall 2012	Fall 2013	Fall 2014	Fall 2015	Fall 2016	Fall 2017	Fall 2018	Fall 2019	Fall 2020	Fall 2021	Fall 2022	Fall 2023
Arsenic, dissolved - 10	μg/L Cleanup	Goal										
69W-94-13	115	73	101	120	76	24	35	70	32	19	15	9.1
ZWM-95-15X	23	17	30.2	19.3	3.7	10	18	17	7.0	22	8.9	7.7
ZWM-99-22X	299	233 J	172	125	150	190	150	150	130	140	170	110
ZWM-99-23X	29	27	19.5	13.9	7.7	17	39	24	5.3	32	6.1	23
ZWM-01-25X	19	5	ND	ND	ND	4.5	NA	ND	2.9 J	ND	ND	1.1 J
Manganese, dissolved	- 375 μg/L Mo	nitoring Criter	ia									
69WP-08-01	904	237	64.5	78.4	79	33	35	1,300	360	670	1,400	370
69W-94-13	1,400	1,730	1,940	2,050	2,600	320	1,600	1,600	970	880	590	320
ZWM-95-15X	1,580	1,280	900	843	17	220	340	690 J	360	2,100	790	380
ZWM-99-22X	1,120	998	1,280	1,440	960	1,200	1,500	1,100	910	1,300	850	1,000
ZWM-99-23X	500	556	533	749	590	1,800	1,600	770	110	1,500	220	1,300
ZWM-01-25X	2,540	1,570	435	859	78	590	NA	6,200	1,700	540	560	
EPH C ₁₁ -C ₂₂ Aromatic	s - 200 µg/L M	onitoring Crite	eria									
69W-94-13	379	227	252	175	410	ND	98	77 J	50 J	ND	ND	570
ZWM-99-22X	308	286	332	354	210	170	230	220	78 J	ND	ND	100
ZWM-99-23X	ND	ND	ND	ND	110	ND	130	ND	ND	ND	ND	23 J

Notes:

100	= Above cleanup goal
100	= Above monitoring criteria

Acronyms and Abbreviations:

μg/L = microgram per liter

AOC = Area of Contamination

EPH = extractable petroleum hydrocarbons

J = Estimated result

NA = Not analyzed

ND = non-detect

LFM-99-02B	Units	Monitoring Criteria	Spring 2003	Fall 2003	Spring 2004	Fall 2004	Spring 2005	Fall 2005	Spring 2006	Spring 2007	Spring 2008	Fall 2008	Spring 2009	Fall 2009
Extractable Petroleum Hydrocarbor	ıs (EPH)													
Naphthalene	μg/L	140	1.0 U	5.1 U	2.4 U	2.1 U	10.0 U	0.400 U	0.2 U	0.46 U	0.412 U	0.430 U	10 U	NA
Pesticides														
Aldrin	μg/L	0.50	0.0064 U	0.0067 U	0.0076 U	0.0076 U	0.05 UJ	0.200 UJ	0.05 U	0.0217 U	0.021 UJ	0.021 UJ	0.200 UJ	NA
Dieldrin	μg/L	0.10	0.013 U	0.0013 U	0.015 U	0.014 U	0.1 U	0.040 UJ	0.05 U	0.0435 U	0.043 UJ	0.042 UJ	0.040 UJ	NA
Chlordane	μg/L	2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
gamma-BHC (Lindane)	μg/L	0.20	0.0064 U	0.0067 U	0.0076 U	0.0076 U	0.05 U	0.020 UJ	0.05 U	0.0217 U	0.021 UJ	0.021 UJ	0.020 UJ	NA
Metals		·									·			
Arsenic, Total	μg/L	10	5.0 U	50.0 U	5.0 U	5.0 U	4.2 U	5.0 J	2.5 U	5.0 U	5.0 U	5.0 U	5 U	5 U
Chromium, Total	μg/L	100	28	1.7 J	0.96 J	1.07 J	12.0 U	NA	10.0 U	10.0 U	10 U	10 U	5 U	40
Iron, Total	μg/L	NS	NA	100 U	17 J	100 U	38.0 U	32 J	50.0 U	50.0 U	50 U	28 J	50 U	380
Lead, Total	μg/L	15	5.0 U	8.5 J	5.0 U	5.0 U	3.1	10 U	2.5 U	10.0 U	10 U	10 U	10 J	10 U
Manganese, Total	μg/L	NS	NA	2.4 J	1.5 J	12.7 J	5.2 J	10 U	10.0 U	1.1 J	10 U	10 U	10 U	9.1 J
General Chemistry														
Total Cyanide	mg/L	0.20	0.01 U	0.004 J	0.01 U	0.005 J	0.01 U	0.005 U	0.05 U	0.01	0.005 U	0.005 U	0.005 U	NA
Nitrate/Nitrite (as N)	mg/L	NS	0.21	1.4	0.66	0.796	0.36 J	0.64 U	0.45	0.5	0.43 J	1.9	0.92	NA
Chemical Oxygen Demand	mg/L	NS	170	50.0 U	15 J	50.0 U	20.0 U	20 U	10.0 U	20.0 U	20 U	12 J	20 U	NA

Acronyms and Abbreviations:

μg/L = microgram per liter

DCL = Devens Consolidation Landfill

J = Estimated result

mg/L = milligram per liter

NA = Not analyzed ND = non-detect

NS = No Standard

Q = Qualifier

R = Data were rejected

U = The target analyte was not detected at or above the laboratory reporting limit.

LFM-99-02B	Units	Monitoring Criteria	Spring 2010	Fall 2010	Spring 2011	Fall 2011	Spring 2012	Fall 2012	Spring 2013	Fall 2013	Spring 2014	Fall 2014	Spring 2015	Fall 2015	Spring 2016
Extractable Petroleum Hydrocarbor	ıs (EPH)														
Naphthalene	μg/L	140	0.419 U	0.400 U	0.400 U	0.400 U	0.400 U	0.148 J	0.400 U	0.400 U	0.400 U	1.0 U	5.100 U	4.300 U	2.0 U
Pesticides															
Aldrin	μg/L	0.50	0.020 U	0.020 U	0.020 U	0.010 U	0.026 U	0.051 U	0.013 U						
Dieldrin	μg/L	0.10	0.040 U	0.040 U	0.040 U	0.010 U	0.026 U	0.051 U	0.007 U						
Chlordane	μg/L	2.0	NA	NA	0.130 U	0.530 U	0.16 U								
gamma-BHC (Lindane)	μg/L	0.20	0.020 U	0.020 U	0.020 U	0.011 U	0.026 U	0.051 U	0.007 U						
Metals															
Arsenic, Total	μg/L	10	5 U	5 U	5 U	2 J	5 U	5 U	5 U	5 U	3 U	3 U	2.0 U	4.0 U	3.0 U
Chromium, Total	μg/L	100	10 U	10 U	5.0 U	10 U	4.0 U								
Iron, Total	μg/L	NS	50 U	50 U	50 U	100 U	50 U								
Lead, Total	μg/L	15	10 U	10 U	10 U	3 J	10 U	10 U	10 U	10 U	10 U	10 U	2.5 U	5.0 U	10 U
Manganese, Total	μg/L	NS	10 U	10 U	7.5 U	15 U	3.0 U								
General Chemistry															
Total Cyanide	mg/L	0.20	0.0011 J	0.005 U	0.005 U	0.005 U	0.002 J	0.0020 J	0.005 U	0.005 U	0.0001 J	0.0041 U	0.0011 U	0.0082 J	0.005 U
Nitrate/Nitrite (as N)	mg/L	NS	0.41	0.54	0.43	0.76	0.22 U	0.49	0.069 J	0.51	0.52	0.36	0.390	0.630	0.60
Chemical Oxygen Demand	mg/L	NS	20	20 U	8 J	20 U	20 U	20 U	15 J	20 U	4.1 J	10 U	15 U	20 U	10 U

Acronyms and Abbreviations:

μg/L = microgram per liter

DCL = Devens Consolidation Landfill

J = Estimated result

mg/L = milligram per liter

NA = Not analyzed ND = non-detect

NS = No Standard

Q = Qualifier

R = Data were rejected

U = The target analyte was not detected at or above the laboratory reporting limit.

LFM-99-02B	Units	Monitoring Criteria	Fall 2016	Spring 2017	Fall 2017	Spring 2018	Fall 2018	Spring 2019	Fall 2019	Spring 2020	Fall 2020	Spring 2021	Fall 2021	Spring 2022	Fall 2022
Extractable Petroleum Hydrocarbor	ns (EPH)														
Naphthalene	μg/L	140	2.3 U	1.9 U	1.9 U	1.9 U	1.4 U	1.6 U	1.5 U	1.4 U	1.4 U	R	2.5 U	1.4 U	1.4 U
Pesticides															
Aldrin	μg/L	0.50	0.019 U	0.017 U	0.017 U	0.019 UJ	0.017 UJ	0.0086 UJ	0.0089 U	0.0086 UJ	0.003 U	0.0086 U	0.0073 U	0.0074 U	0.0037 U
Dieldrin	μg/L	0.10	0.010 U	0.0096 U	0.0096 U	0.0110 UJ	0.0096 UJ	0.0048 U	0.0049 U	0.0048 U	0.0018 U	0.0086 U	0.0048 U	0.0049 U	0.0037 U
Chlordane	μg/L	2.0	0.31 U	0.29 U	0.29 U	0.32 UJ	0.29 UJ	0.14 U	0.15 U	0.14 U	0.05 U	0.14 U	0.14 U	0.14 U	0.37 U
gamma-BHC (Lindane)	μg/L	0.20	0.010 U	0.0096 U	0.0096 U	0.0110 UJ	0.0096 UJ	0.0048 U	0.0049 U	0.0048 U	0.0017 U	0.0048 U	0.0048 U	0.0049 U	0.0037 U
Metals															
Arsenic, Total	μg/L	10	3.0 U	3.0 U	3.0 U										
Chromium, Total	μg/L	100	6.0 J	4.0 U	4.0 U	5.0 U	4.0 U								
Iron, Total	μg/L	NS	28	50 U	75 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Lead, Total	μg/L	15	10 U	10 U	2.5 U	10 U	15 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U
Manganese, Total	μg/L	NS	2.0 J	3.0 U	5.0 U	3.0 U	3.0 U	5.0 U	5.0 J						
General Chemistry															
Total Cyanide	mg/L	0.20	0.0082 J	0.005 U	0.005 U	0.0048 J	0.0044 J	0.005 U	0.0026 J	0.0027 J	0.0025	0.0045 J	0.005 U	0.0074 J	0.0064 J
Nitrate/Nitrite (as N)	mg/L	NS	0.630	0.47	0.78	0.60	0.69	0.28	0.55 J	0.47	0.38	1.0	0.48	0.38	0.53
Chemical Oxygen Demand	mg/L	NS	20 U	5.4 J	10 U	10 J	10 U	20 U	40	20 U	17 U	20 U	12 J	10 J	14 J

Acronyms and Abbreviations:

μg/L = microgram per liter

DCL = Devens Consolidation Landfill

J = Estimated result

mg/L = milligram per liter

NA = Not analyzed ND = non-detect

NS = No Standard

Q = Qualifier R = Data were rejected

U = The target analyte was not detected at or above the laboratory reporting limit.

LFM-99-02B	Units	Monitoring Criteria	Spring 2023	Fall 2023
Extractable Petroleum Hydrocarbon	s (EPH)			
Naphthalene	μg/L	140	1.2 U	1.2 U
Pesticides				
Aldrin	μg/L	0.50	0.0039 U	0.004 U
Dieldrin	μg/L	0.10	0.0039 U	0.004 U
Chlordane	μg/L	2.0	0.39 U	0.40 U
gamma-BHC (Lindane)	μg/L	0.20	0.0039 U	0.004 U
Metals				
Arsenic, Total	μg/L	10	3.0 U	3.0 U
Chromium, Total	μg/L	100	4.0 U	4.0 U
Iron, Total	μg/L	NS	50 U	50 U
Lead, Total	μg/L	15	20 U	20 U
Manganese, Total	μg/L	NS	5.0 U	5.0 U
General Chemistry				
Total Cyanide	mg/L	0.20	0.0050 U	0.0050 U
Nitrate/Nitrite (as N)	mg/L	NS	0.26	0.25
Chemical Oxygen Demand	mg/L	NS	20 U	13 J

Acronyms and Abbreviations:

μg/L = microgram per liter

DCL = Devens Consolidation Landfill

J = Estimated result

mg/L = milligram per liter

NA = Not analyzed

ND = non-detect NS = No Standard

Q = Qualifier

R = Data were rejected

U = The target analyte was not detected at or above the laboratory reporting limit.

Appendix D AOC 32/43A Exceedances Over Time, 2006 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Spring 2006	Fall 2006	Spring 2007	Fall 2007	Spring 2008	Fall 2008	Spring 2009	Fall 2009	Spring 2010	Fall 2010	Spring 2011	Fall 2011	Spring 2012	Fall 2012	Spring 2013	Fall 2013
Arsenic (Total) - 10 µg/L Cleanup G	oal															
32M-01-18XBR	30	15	51	3.1 J	38	34	51	18	18	3.5 J	3.0 J	5.0	5.0	4.0 J	2.0 J	6.0
32M-01-14XOB	59	49	45	69	50	70	66	NS	43	NS	62	NS	80	NS	58	NS
Manganese (Total) - 3,500 μg/L Clea	nup Goal															
32M-01-18XBR	18,000	16,000	18,200	10,200	14,800	18,900	29,400	6,970	2,360	4,510	2,300	1,150	4,100	1,540	270	137
32M-01-14XOB	2,800	3,200	1,500	3,420	2,760	5,050	3,660	NS	2,460	NS	1,740	NS	1,950	NS	1,650	NS
1,2-Dichlorobenzene - 600 µg/L Clea	anup Goal															
32M-01-18XBR	5,900	2,800	6,100	690	2,700	4,100	1,700	730	300	570	340	260	640 J	340	7.46 J	7.30
1,3-Dichlorobenzene - 100 µg/L Clea	anup Goal															
32M-01-18XBR	750	360	850	120	450	580	270	150	59	100	86	64	120 J	70	7.10 J	2.12 J
1,4-Dichlorobenzene - 5 µg/L Clean	up Goal															
32M-01-18XBR	490	210 J	550	67	270	390	180	100	26	62	50	37	69	42	1.2 J	1.1 J
32M-01-15XBR	ND	5.5	0.78 J	5.1 J	7.9	5.7 J	ND	ND	0.55 J	ND	ND	ND	ND	0.33 J	ND	ND
Chlorobenzene - 100 µg/L Monitorin	ng Criteria															
32M-01-18XBR	900	480	1,200	110	850	1,600	540	200	88	210	78	49	280	82	0.88 J	0.97 J
VPH C ₉ - C ₁₀ Aromatics - 200 μg/L M	Ionitoring Crite	ria														
32M-01-18XBR	5,850	4,120	6,050	952	3,230	3,660	1,890	837	300	541	444	272	728	322	ND	ND

Notes:

100	= Above cleanup goal
100	= Above monitoring criteria

^{* =} Spring 2015 and 2016 metals results are for dissolved metals.

Acronyms and Abbreviations:

μg/L = microgram per liter

AOC = Area of Contamination

J = Estimated result

NA = Not analyzed

ND = non-detect NS = not sampled

T/D = Total and dissolved metals results are reported for Spring 2017 results.

VPH = volatile petroleum hydrocarbons

Appendix D AOC 32/43A Exceedances Over Time, 2006 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Spring 2014	Spring 2015*	Spring 2016*	Spring 2017 (T/D)	Spring 2018	Spring 2019	Fall 2019	Spring 2020	Spring 2021	Spring 2022	Spring 2023			
Arsenic (Total) - 10 µg/L Cleanup Go	rsenic (Total) - 10 μg/L Cleanup Goal													
32M-01-18XBR	3.0 J	4.0	2.8 J	4.7/2.4 J	6.5	3.4	NS	8.8	2.2 J	2.3 J	2.5 J			
32M-01-14XOB	62	90	13	33	32	29	NS	31	56	29	12			
Manganese (Total) - 3,500 μg/L Cleanup Goal														
32M-01-18XBR	1,990	1,720	1,100	2,300 / 2,700	8,400	2,200 J	NS	25,000	3,700	1,700	1,300			
32M-01-14XOB	2,550	3,390	1,800	2,900 / 2,900	2,700	2,200	NS	1,900	2,000	770	810			
1,2-Dichlorobenzene - 600 µg/L Cleanup Goal														
32M-01-18XBR	598	407	340	390	840	250 J	NS	1,500 J	130	160	ND			
1,3-Dichlorobenzene - 100 µg/L Clea	nup Goal													
32M-01-18XBR	106	80	58	70	150	41 J	NS	250 J	24	27	ND			
1,4-Dichlorobenzene - 5 µg/L Cleanu	ıp Goal													
32M-01-18XBR	71	51	38	46	97	29 J	NS	170 J	18	18	ND			
32M-01-15XBR	ND	NS	NS	NS	NS	NS	ND	NS	NS	NS	NS			
Chlorobenzene - 100 µg/L Monitoring Criteria														
32M-01-18XBR	131	88	81	170	440	180 J	NS	970 J	190	160	ND			
VPH C ₉ - C ₁₀ Aromatics - 200 μg/L M	VPH C ₉ - C ₁₀ Aromatics - 200 μg/L Monitoring Criteria													
32M-01-18XBR	730	360	450	410	760	160 J	NS	1,000 J	120	210	ND			

Notes:

100	= Above cleanup goal
100	 Above monitoring criteria

^{* =} Spring 2015 and 2016 metals results are for dissolved metals.

Acronyms and Abbreviations:

 μ g/L = microgram per liter

AOC = Area of Contamination

J = Estimated result

NA = Not analyzed

ND = non-detect NS = not sampled

T/D = Total and dissolved metals results are reported for Spring 2017 results.

VPH = volatile petroleum hydrocarbons

Appendix D

AOC 57 Area 3 Exceedances Over Time, 2003 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Fall 2003	Spring 2004	Fall 2004	Spring 2005	Fall 2005	Spring 2006	Fall 2006	Spring 2007	Fall 2007	Spring 2008	Spring 2009	Spring 2010	Spring 2011	Spring 2012
Groundwater														
Arsenic (Total) - 10 µg/L	Cleanup Goa	ıl												
57M-95-03X	36	44	230	25	13.6	7.0	49	4.8	51	23	21	23	58	36
57M-96-11X	270	240	120	161	215	163	171	166	193	160	163	148	190	192
Surface Water														
Iron (Dissolved) - 1,000	μg/L Surface	Water Benchm	nark											
57-SW-1	NA	NA	NA	NA	NA	600	4,500	520	7,100	6,800	2,500	240	20,000	8,300

Notes:

= Above cleanup goal and/or benchmark

Acronyms and Abbreviations:

μg/L = microgram per liter

AOC = Area of Contamination

J = Estimated result

NA = Not analyzed

ND = non-detect

Appendix D

AOC 57 Area 3 Exceedances Over Time, 2003 to 2023 2023 Annual Operation, Maintenance, and Monitoring Report Main Post, Former Fort Devens Army Installation Devens, Massachusetts

Sample Location	Spring 2013	Spring 2014	Spring 2015	Spring 2016	Spring 2017	Spring 2018	Spring 2019	Spring 2020	Spring 2021	Spring 2022	Spring 2023	
Groundwater												
Arsenic (Total) - 10 µg/L	Cleanup Goa	I										
57M-95-03X	60	60	38	31	27	42	15	42	25	26	13	
57M-96-11X	181	160	284	290	180	180	100	300 J	470	280	20	
Surface Water												
Iron (Dissolved) - 1,000 µg/L Surface Water Benchmark												
57-SW-1	10,000	10,000	4,140	19,000	21,000	4,000	760	490	12,000	1,900	4,900	

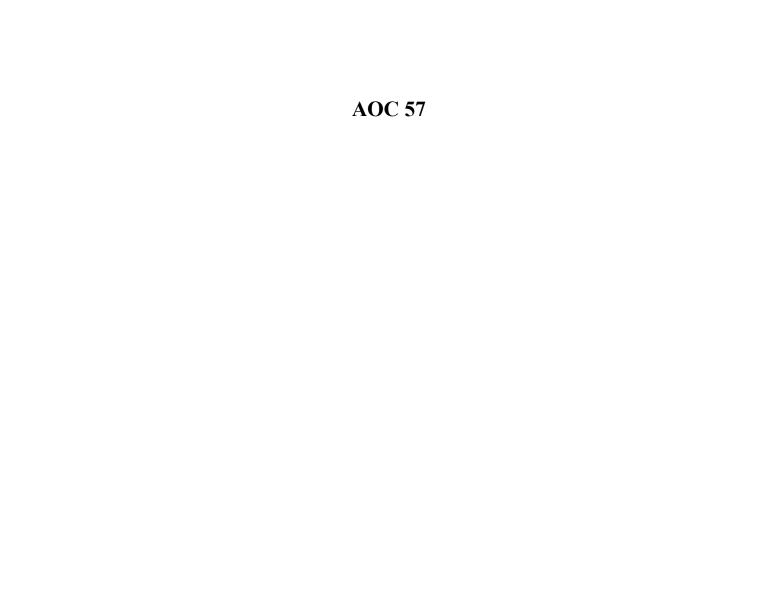
Notes:

= Above cleanup goal and/or benchmark

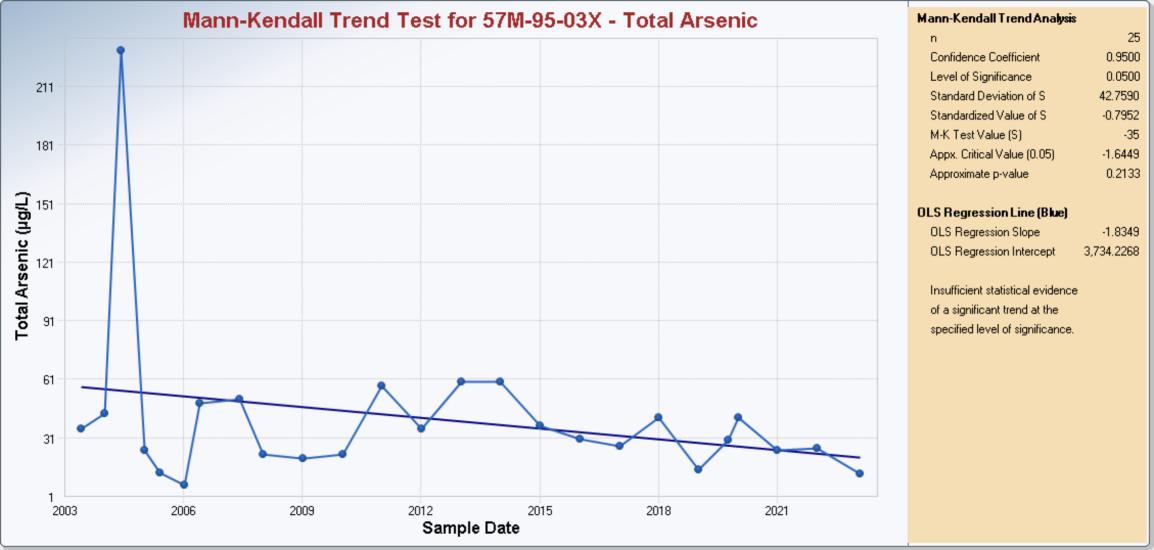
Acronyms and Abbreviations:

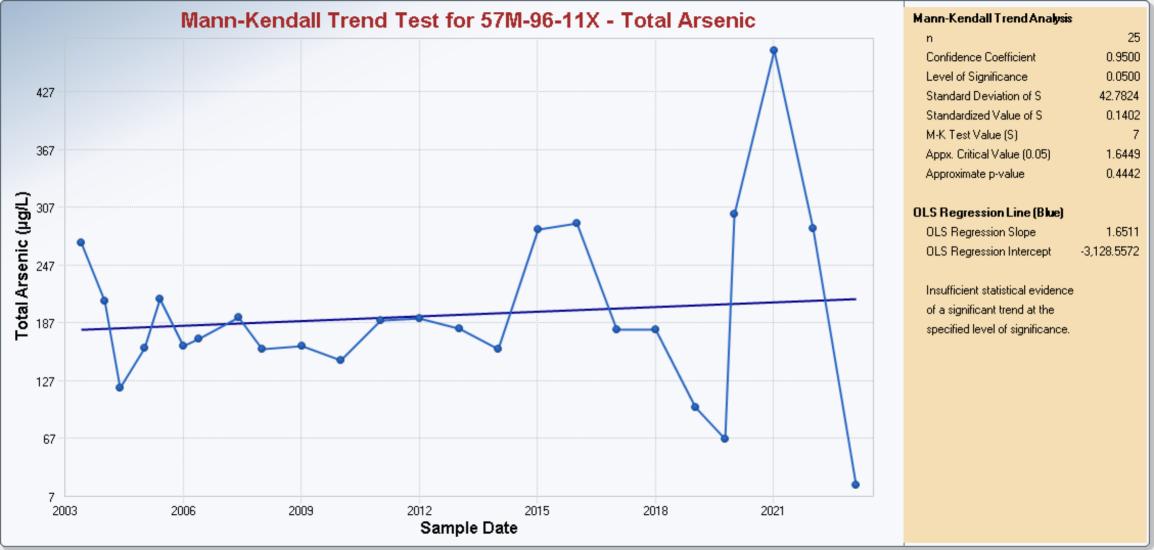
μg/L = microgram per liter

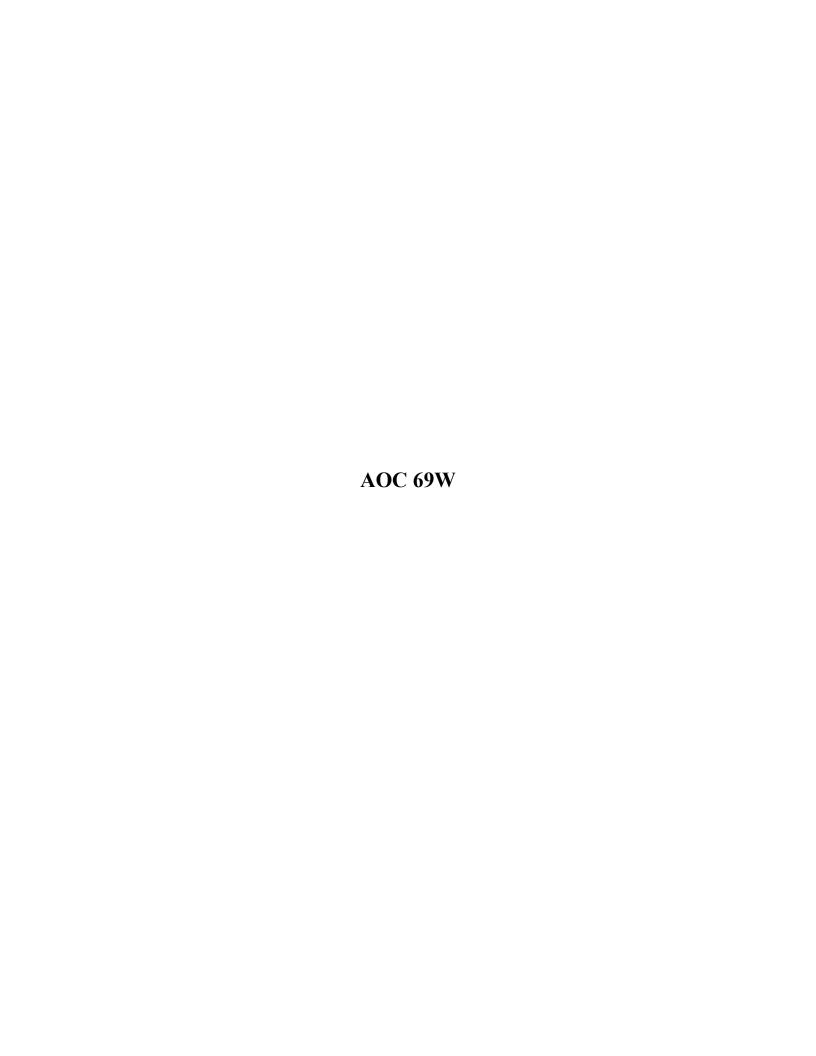
AOC = Area of Contamination

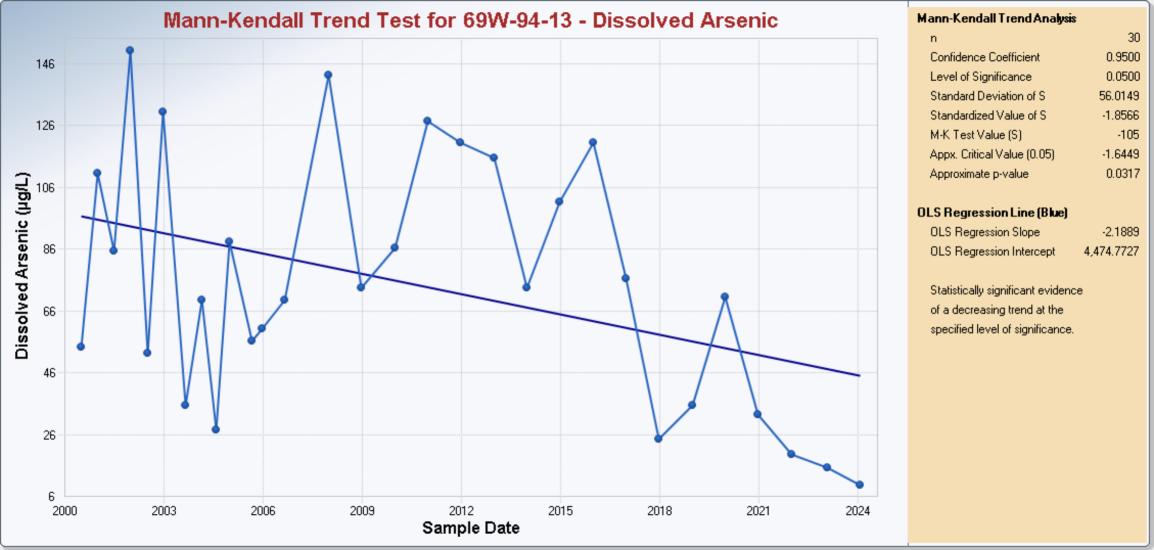

J = Estimated result

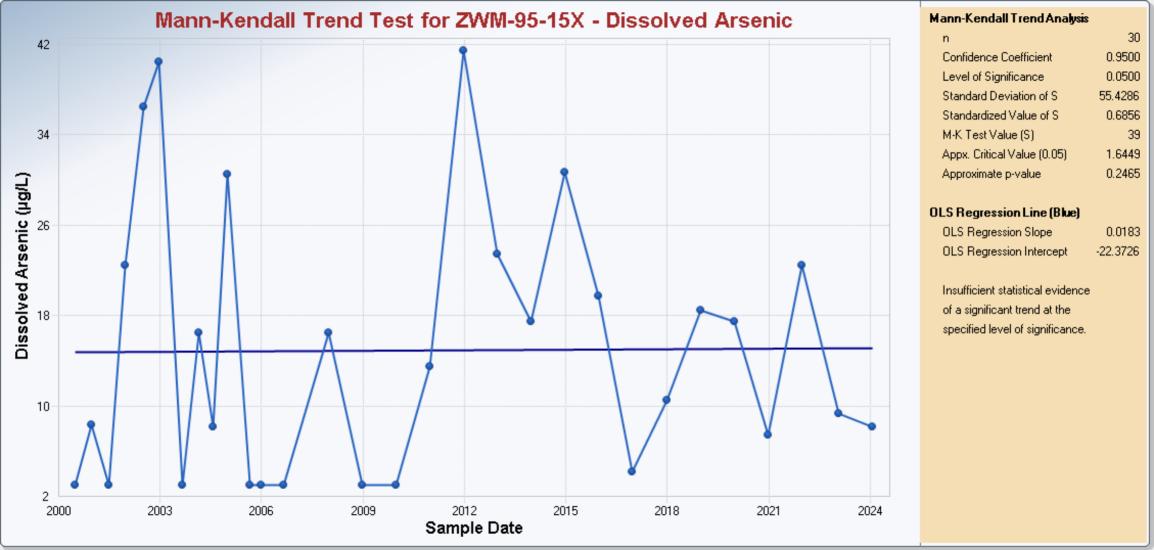
NA = Not analyzed

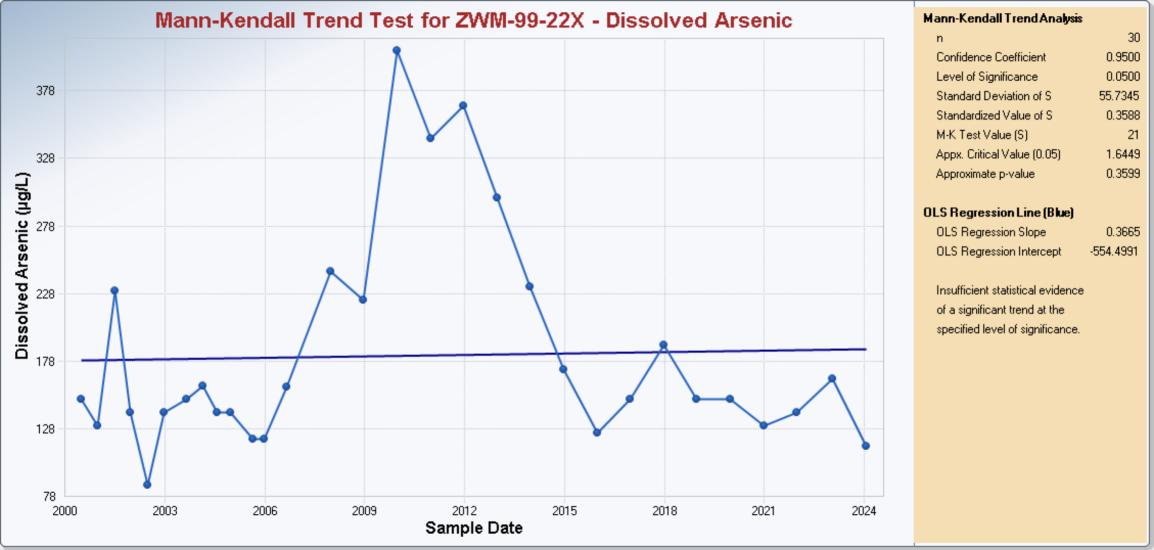

ND = non-detect

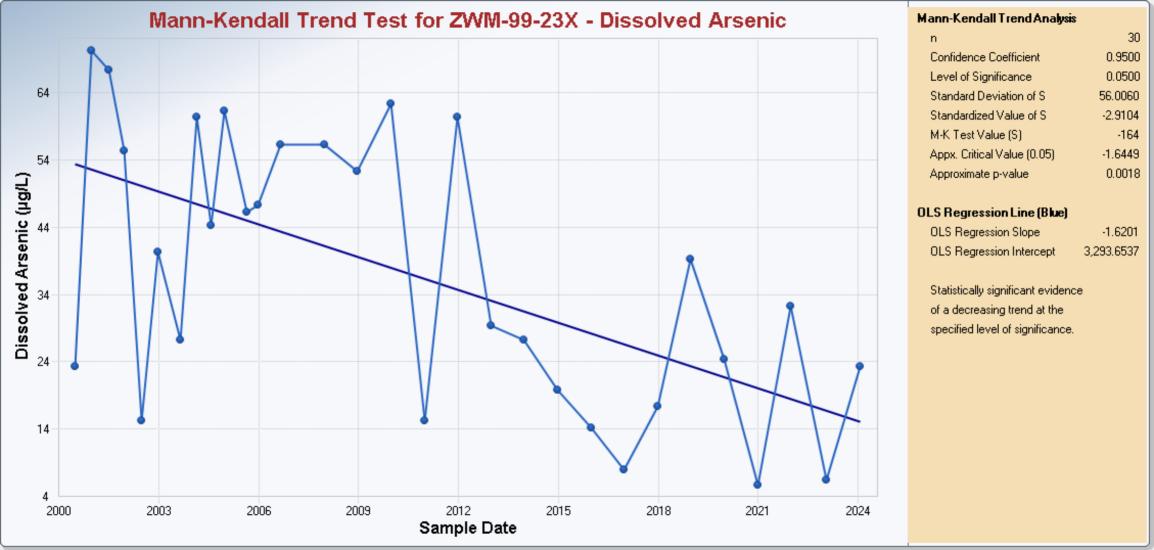

Appendix E


Mann-Kendall Data Trend Analyses

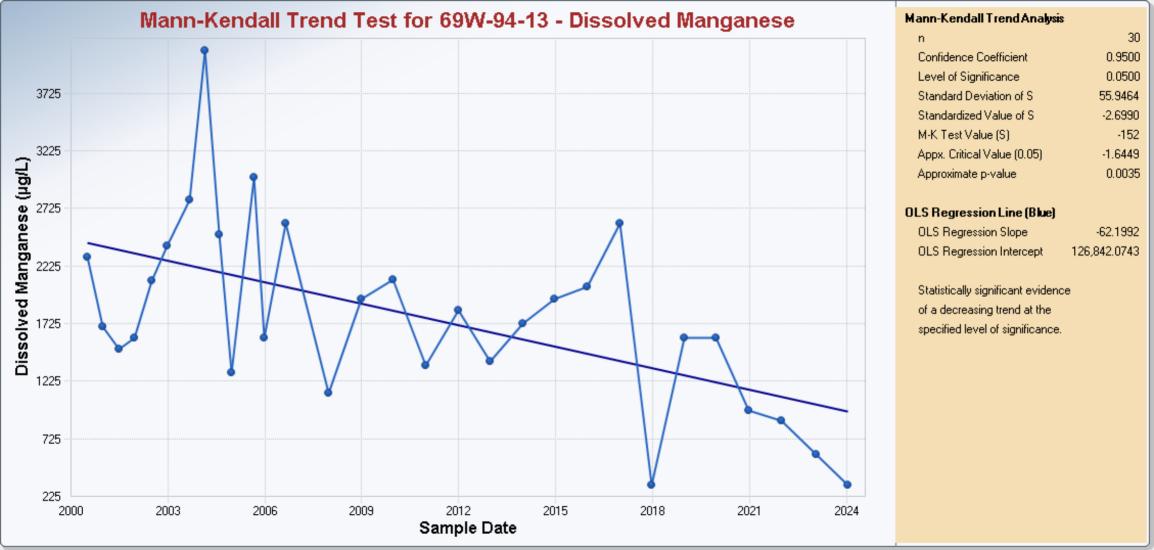

AOC 57 Total Arsenic

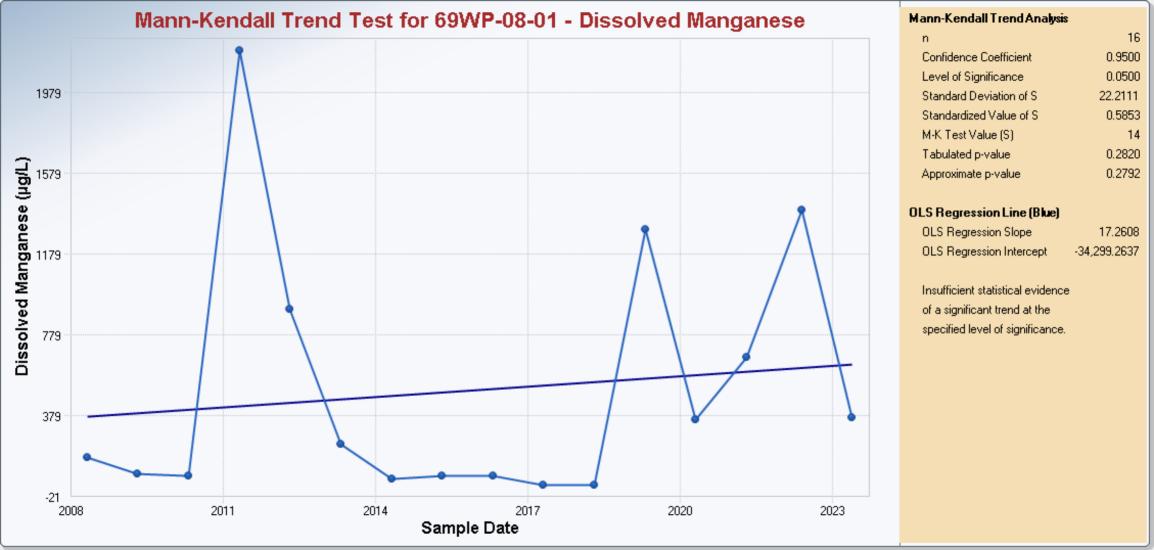


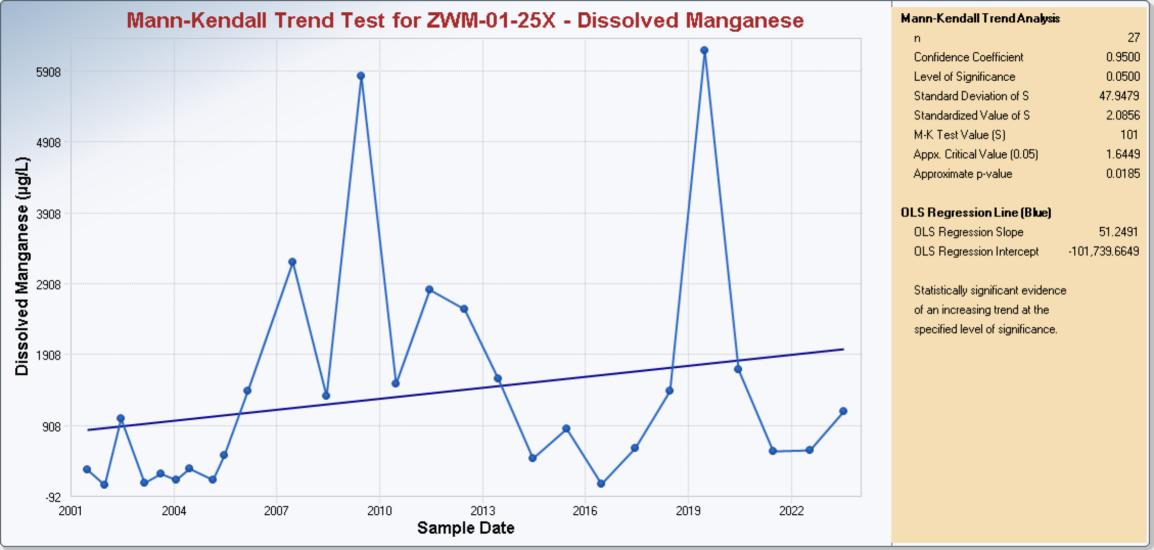


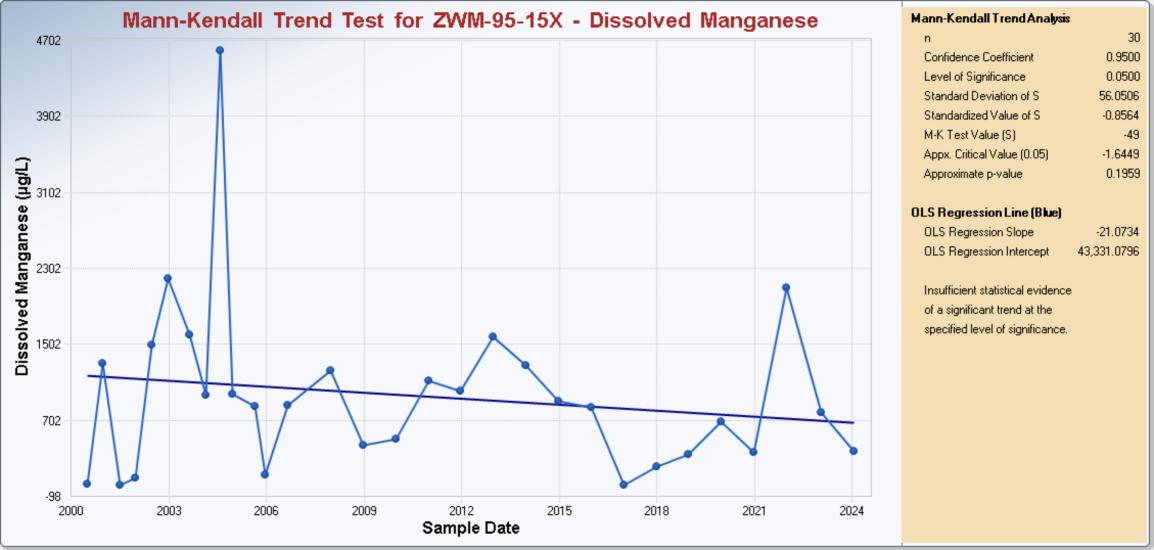


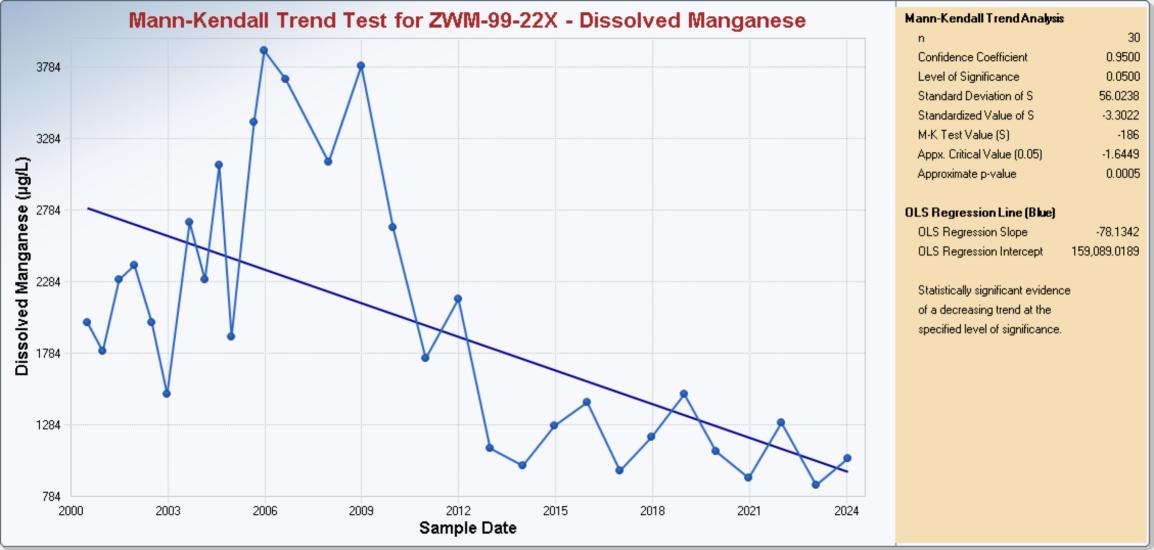
AOC 69W Dissolved Arsenic

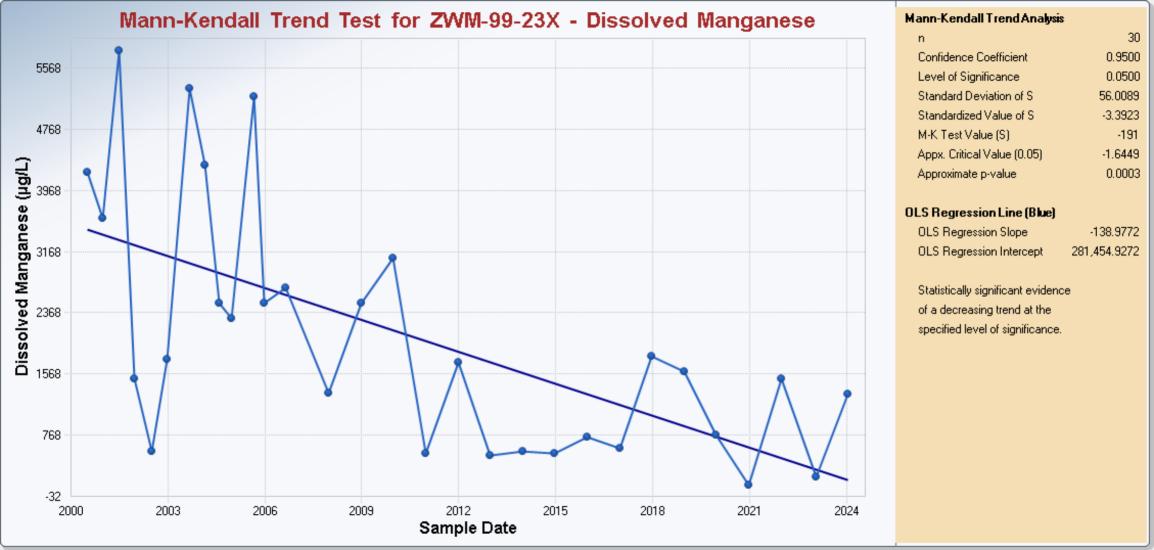


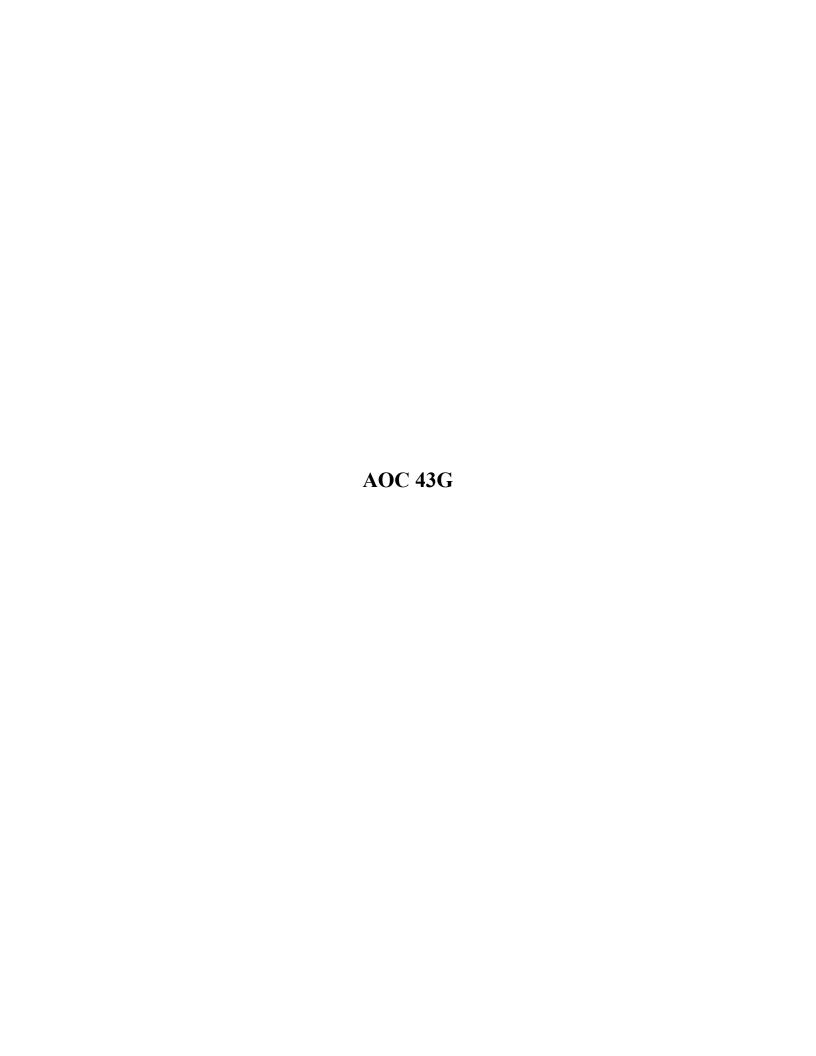


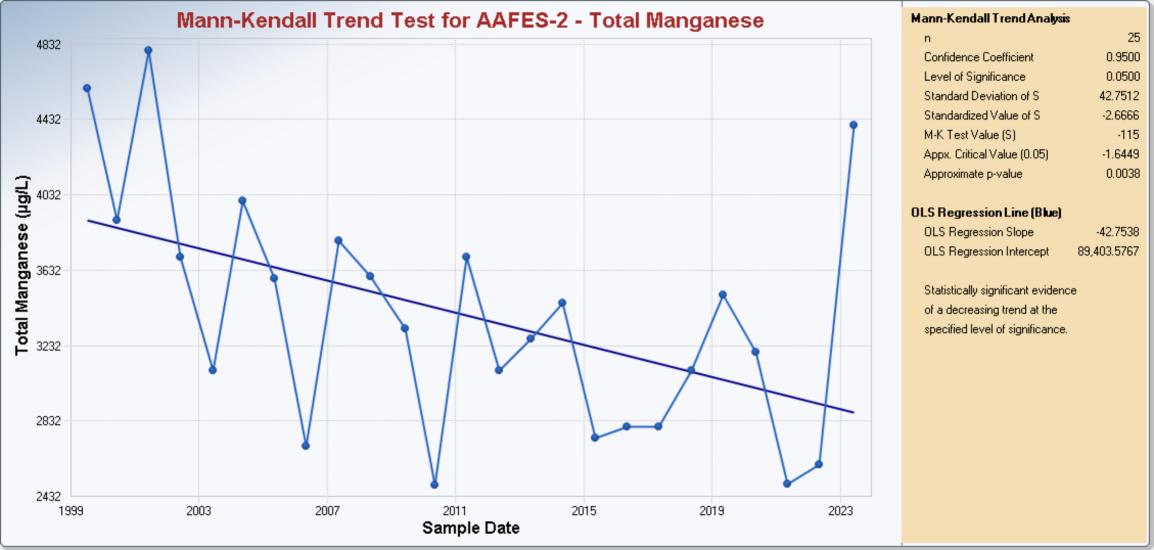


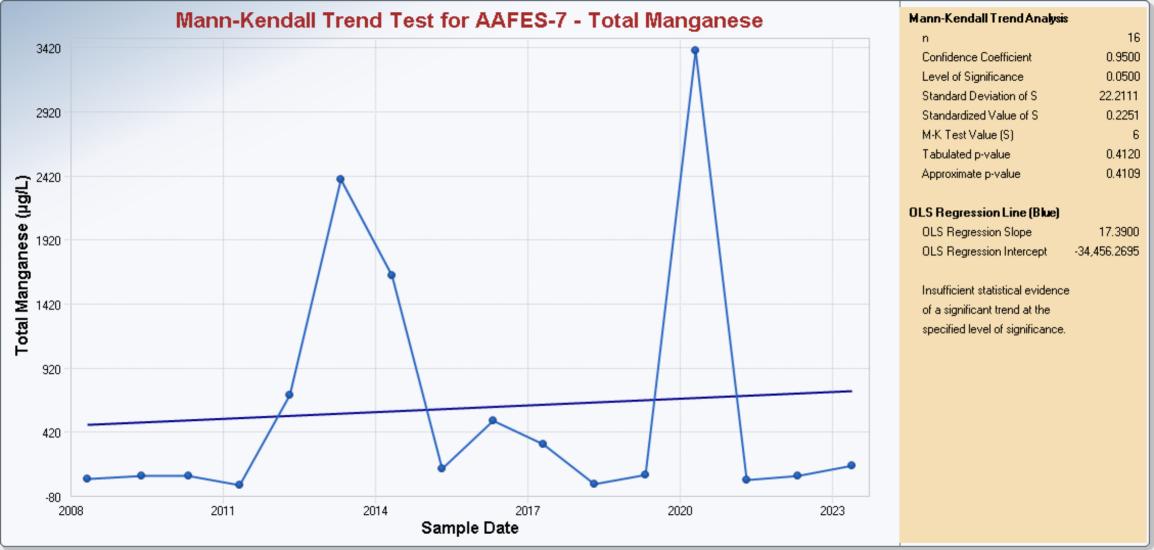


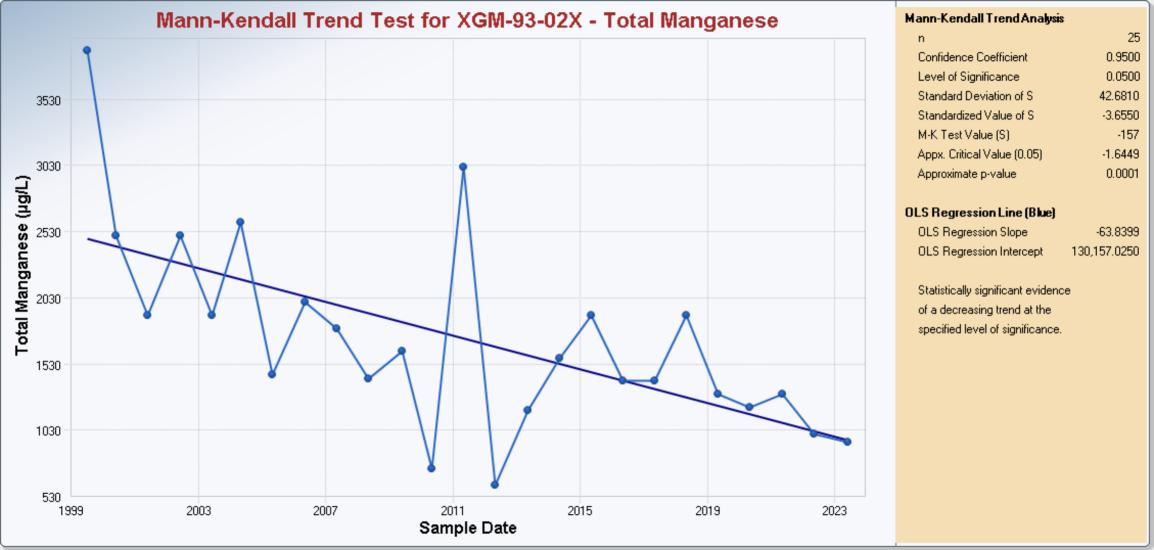

AOC 69W Dissolved Manganese

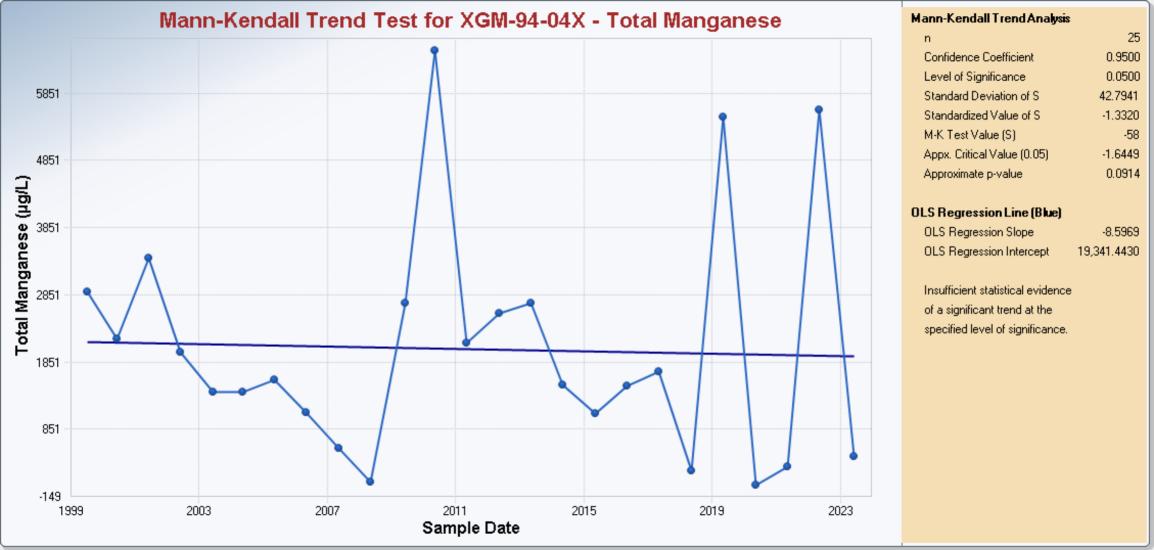


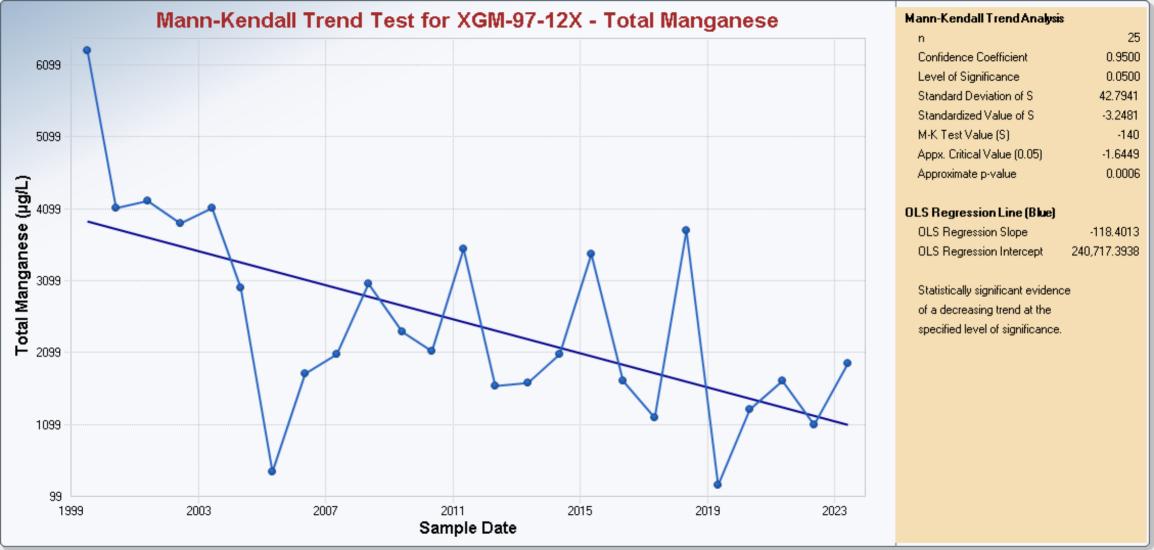


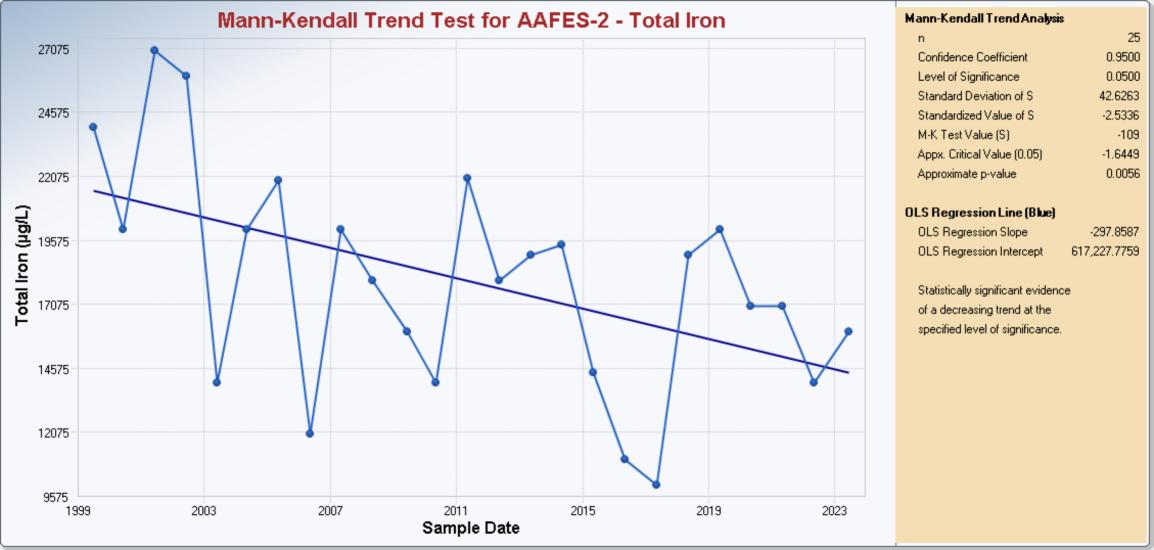


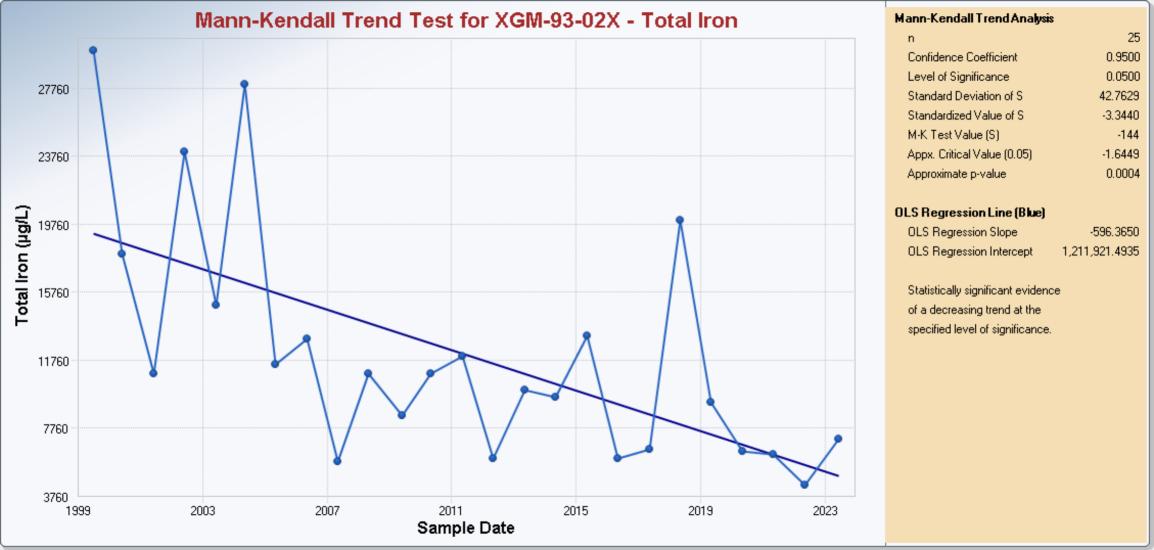


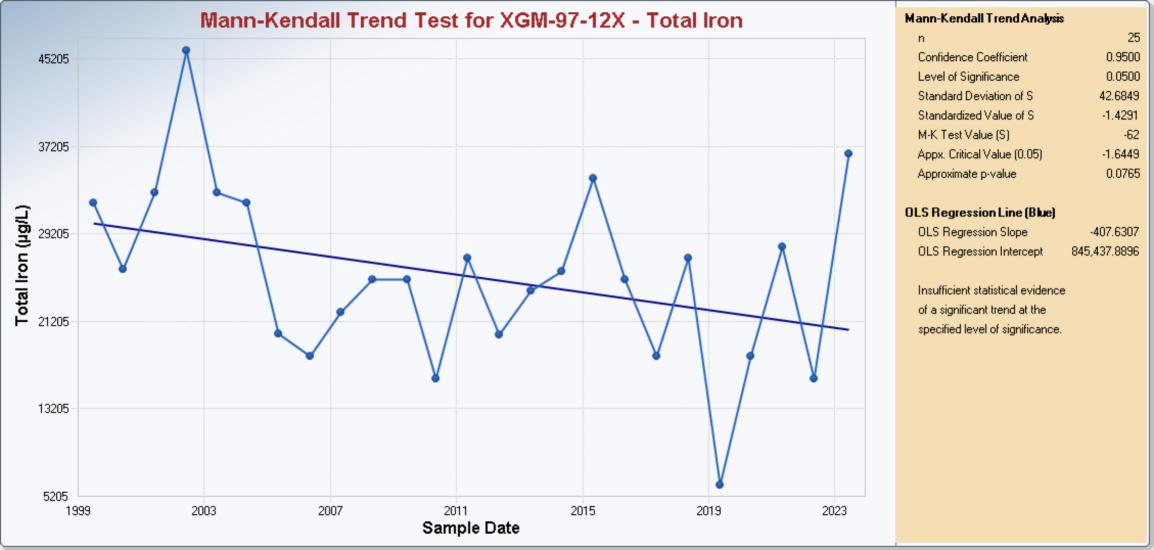


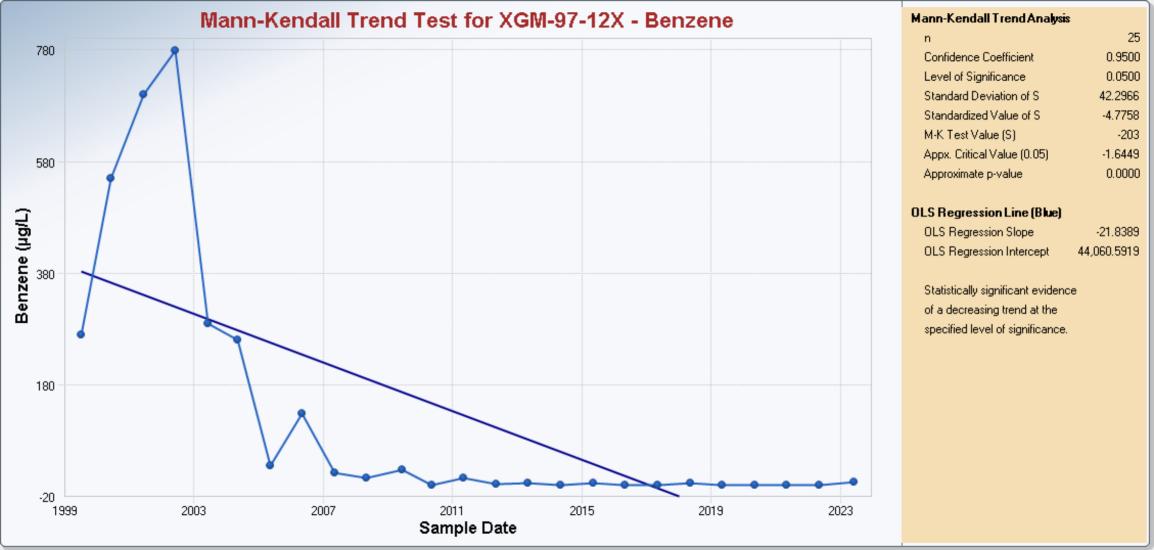


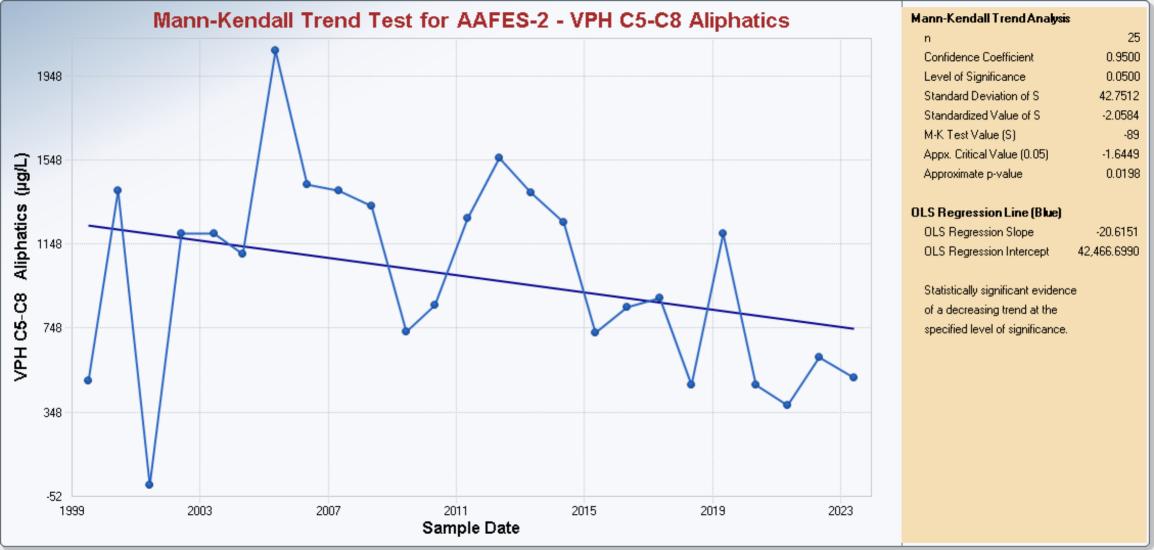

AOC 43G Total Manganese

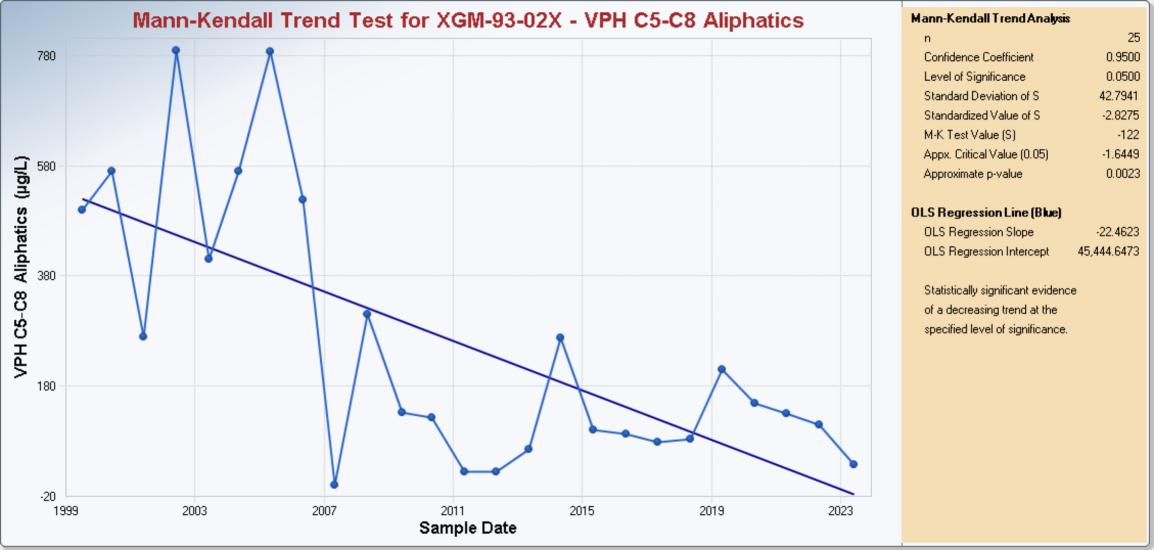


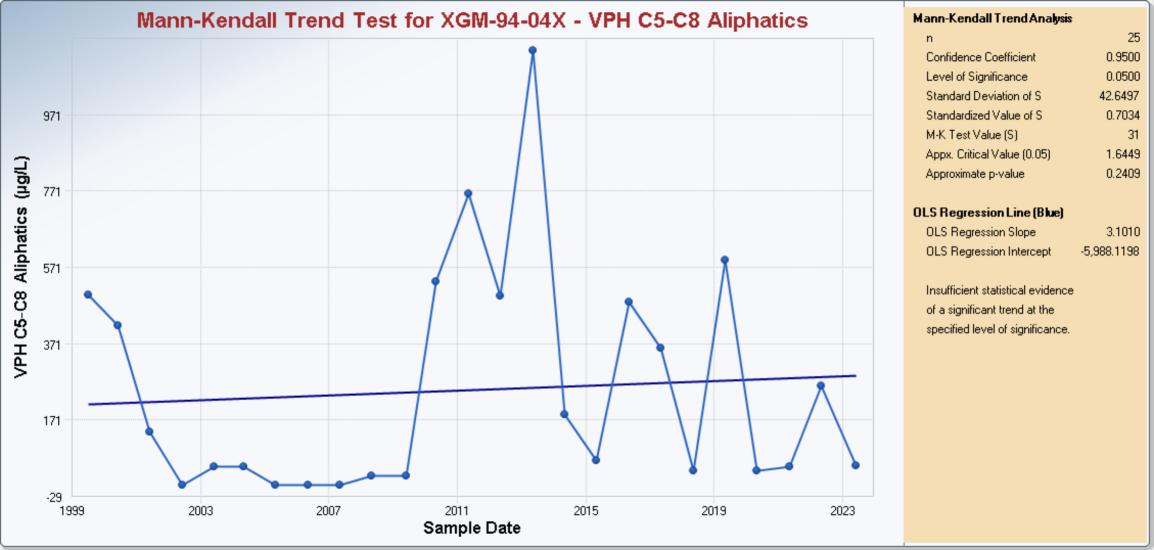


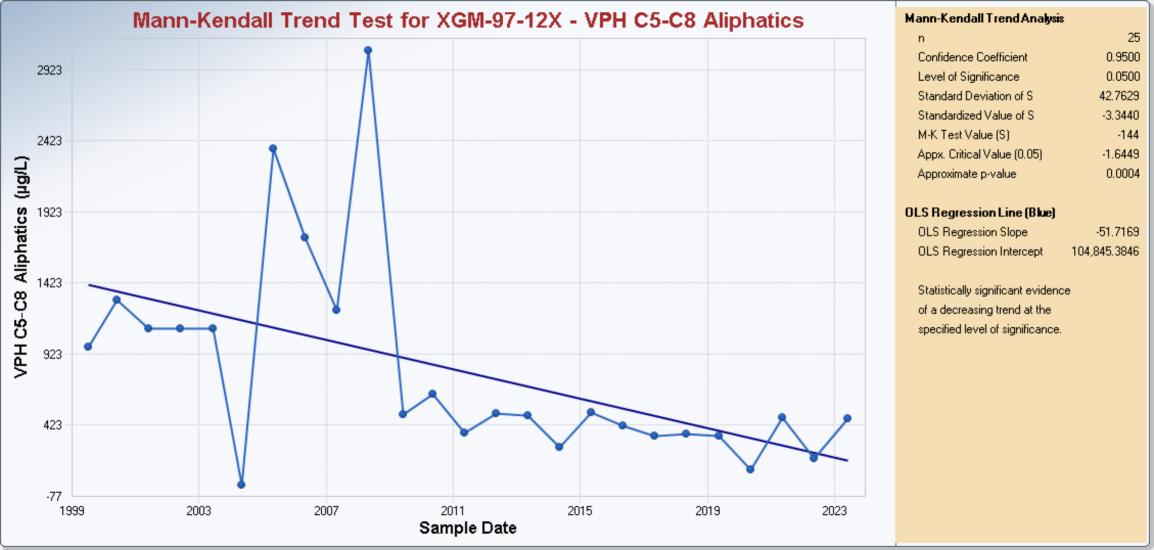



AOC 43G Total Iron



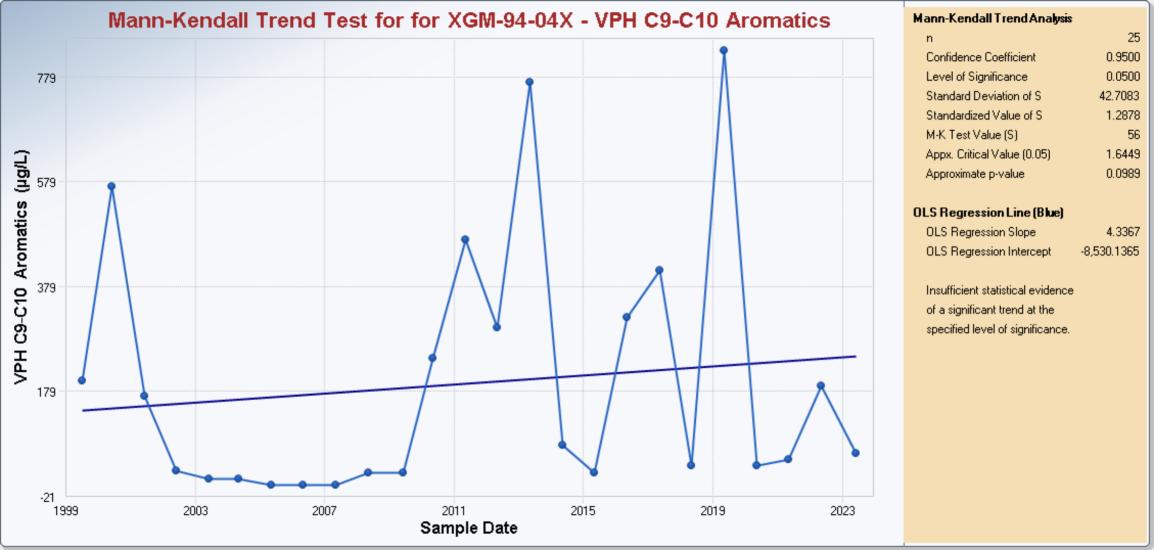


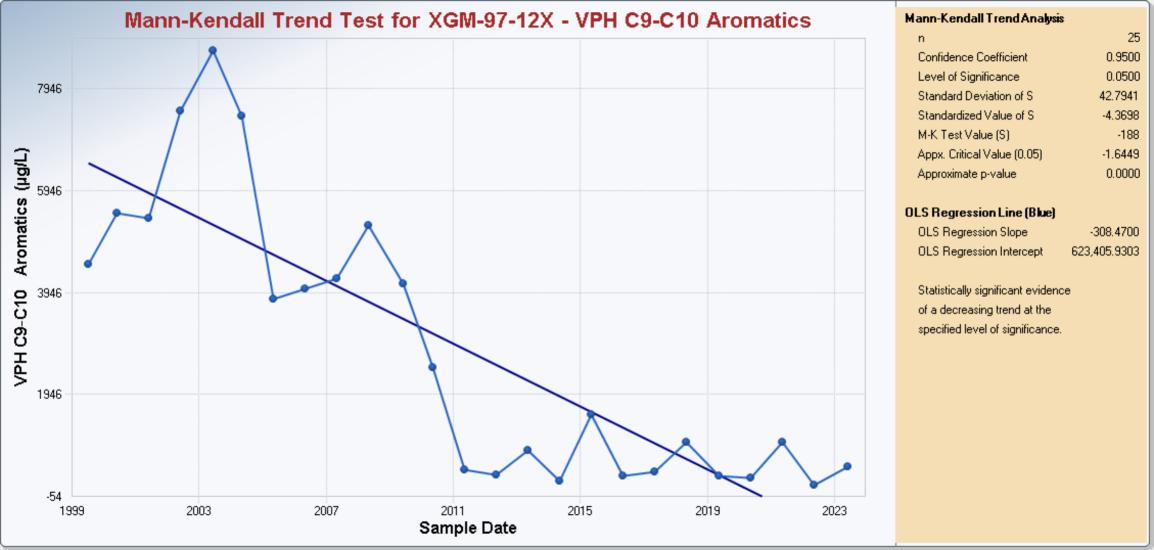

AOC 43G Benzene

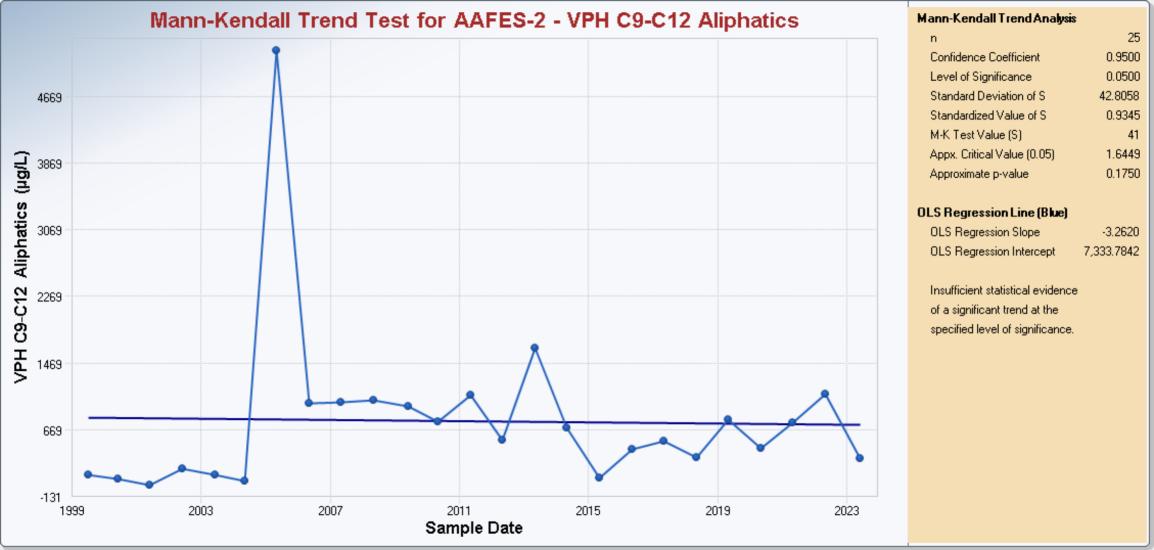


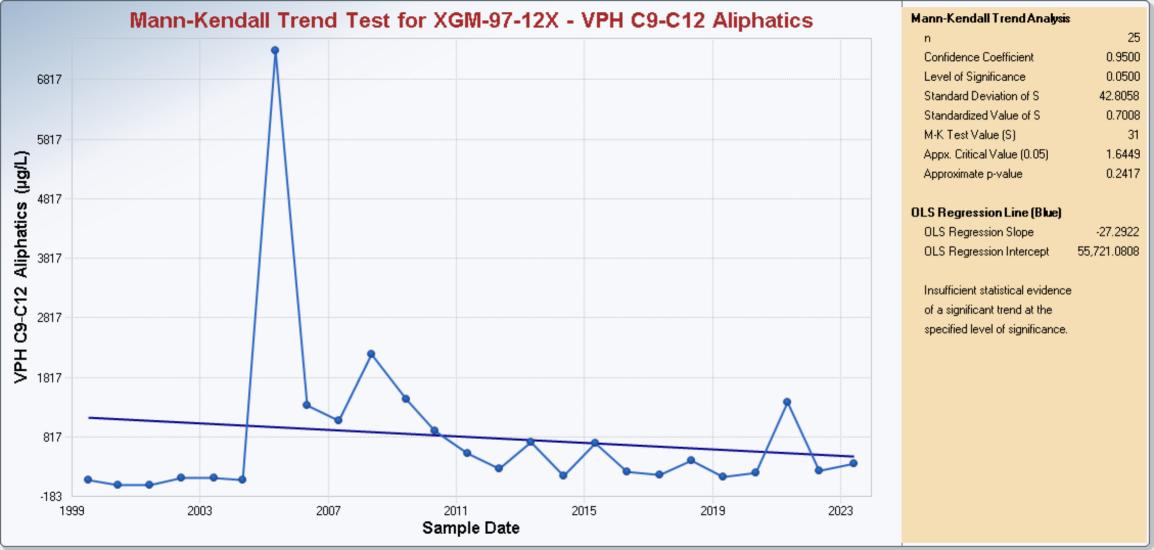
AOC 43G VPH C5-C8

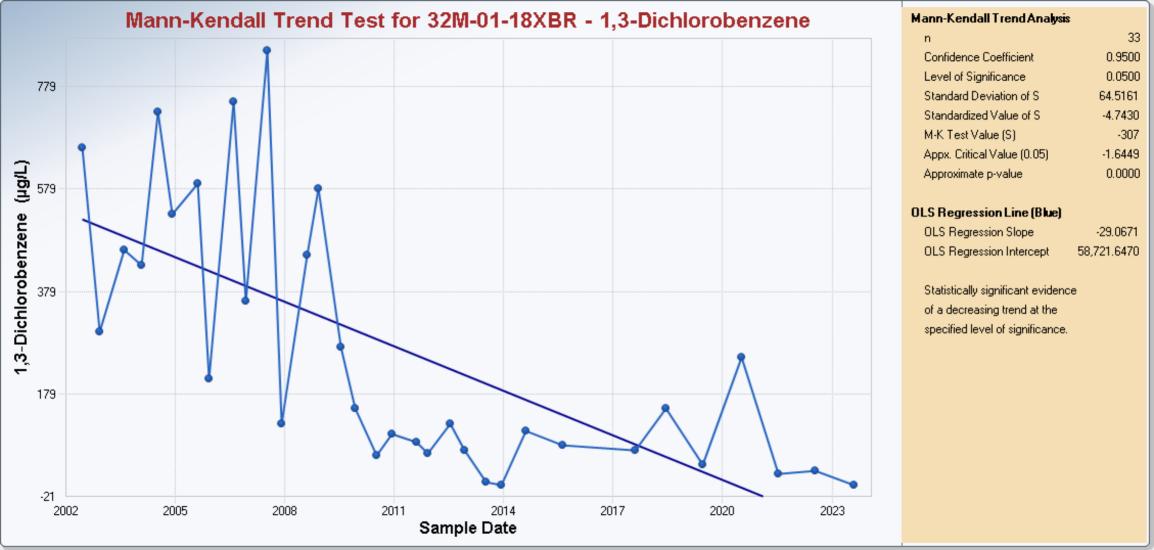


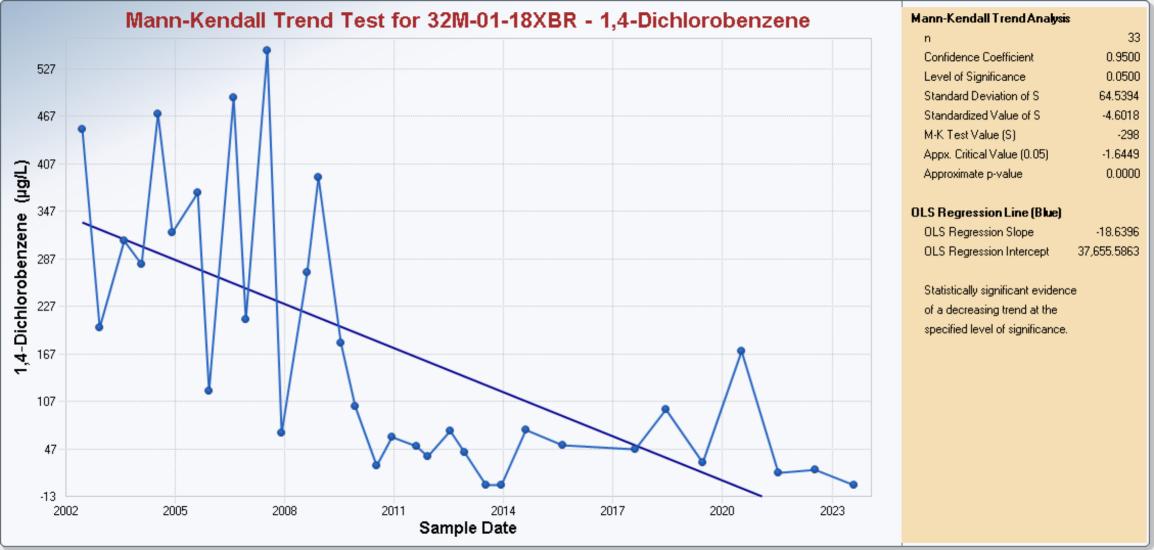


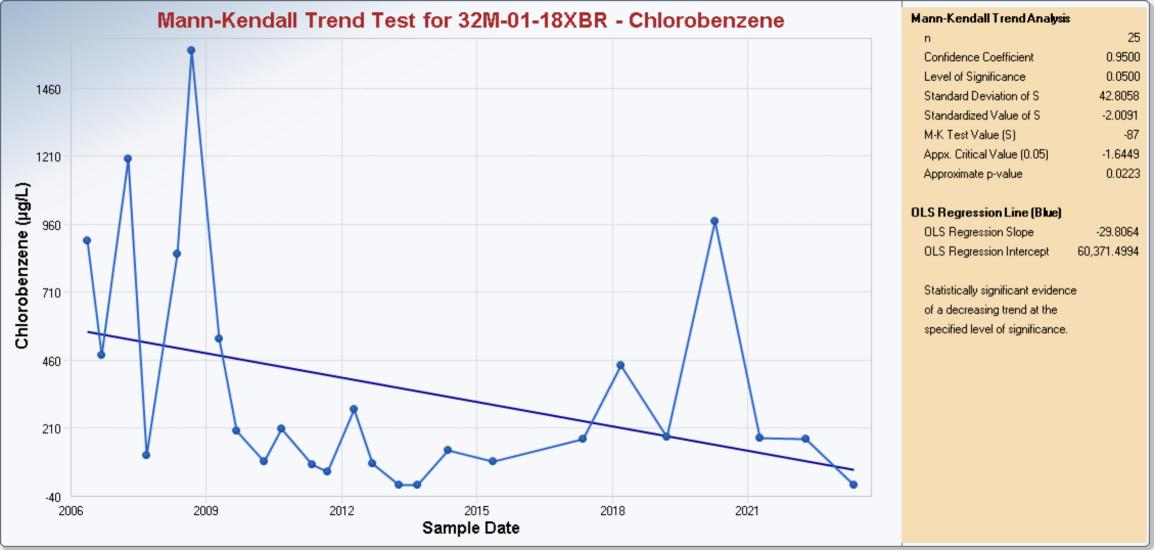


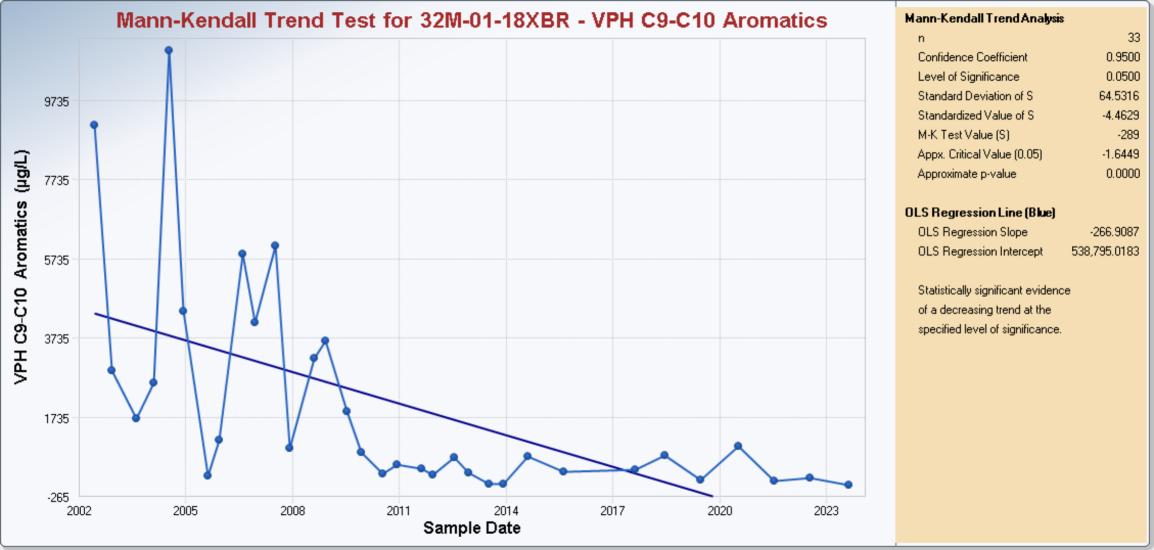

AOC 43G VPH C₉-C₁₀

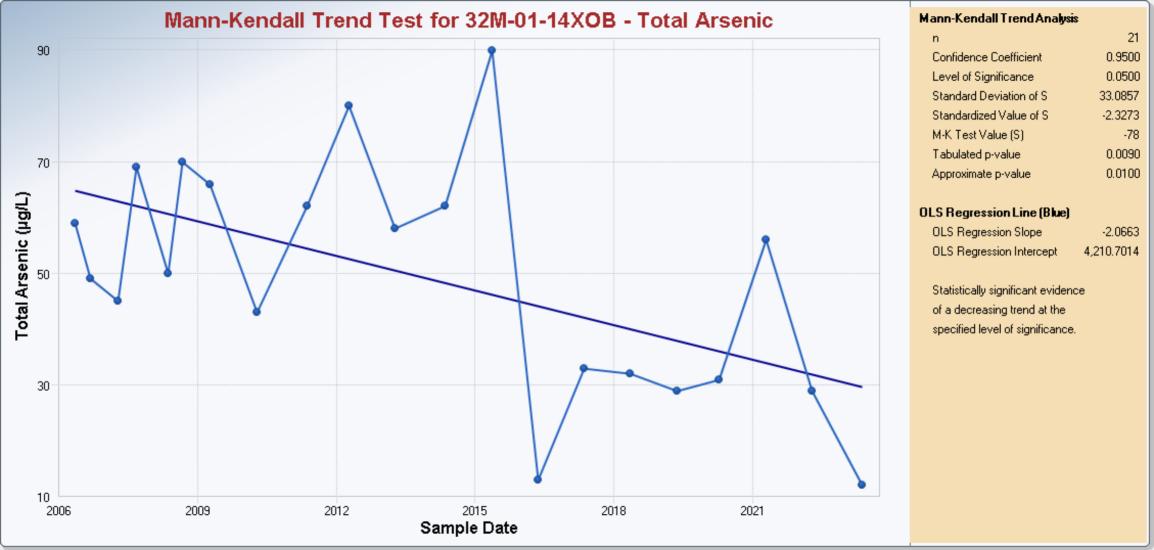


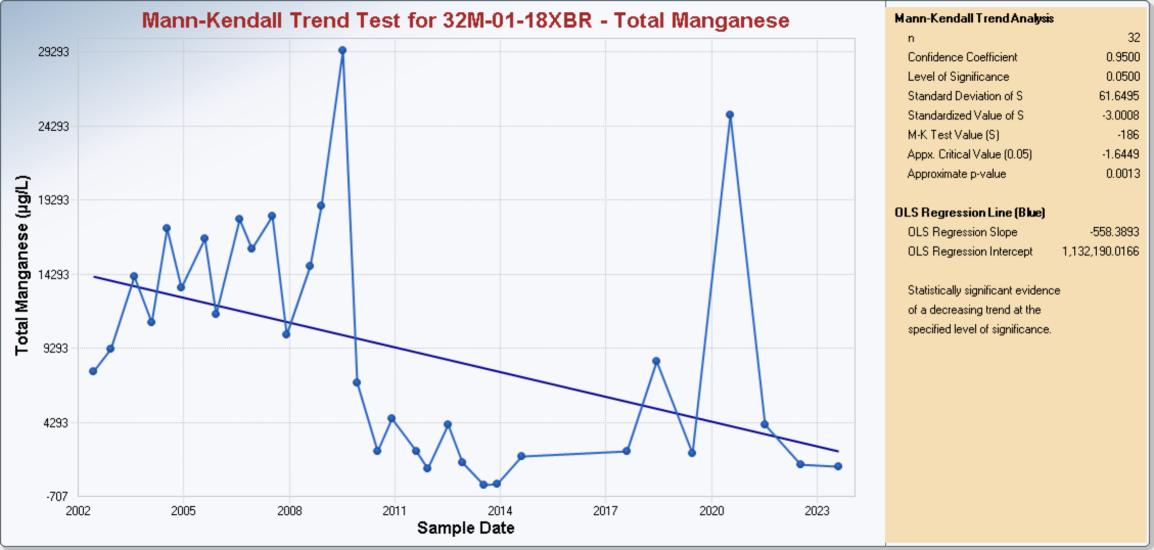

AOC 43G VPH C₉-C₁₂




AOC 32 & 43A 1,3-Dichlorobenzene


AOC 32 & 43A 1,4-Dichlorobenzene


AOC 32 & 43A Chlorobenzene


AOC 32 & 43A VPH C9-C10

AOC 32 & 43A Total Arsenic

AOC 32 & 43A Total Manganese

Appendix F

Annual Land Use Control Documentation

Inspection Checklist for Housing Areas

I. Grant/Oak/Maple HA and Impact Area Annual Review Checklist

Site Name/Location: Grant HA and Impact Area Name/Affiliation: Ian Martz / Arcadis

Remedy Includes: Long Term Monitoring, Institutional Controls

Inspection Date: November 27, 2023

Participants: Ian Martz (Arcadis), Brent Smith (USACE), Hugh Sease (SRS)

II. Physical On-Site Inspection (Impact Area)			
Item	Yes/No	Comments	
Any UXO discovered? If yes, any surface or near surface UXO?	No	The physical inspection was conducted with a Schonstedt HeliFlux Magnetic Locator, Model GA-52Cx which has the capability to detect a 37mm round down to a depth of approximately 12-14 inches below ground surface. No surficial UXOs were detected. Some metallic objects encountered (pin flags, metal stakes, etc.). There were two areas where metal detector hits could not be confirmed; objects were greater than 12-14 inches below ground surface.	
Is there evidence of damage to the fencing and signage?	Yes	Fencing was observed to be in good condition, with the exception of a small area south of the upper gate area that was damaged by a fallen tree; the fence will be scheduled for repair by the JV. The access gates were observed to be in good condition. Locks on the gates and keys around the site are inconsistent and one lock could not be opened; locks will be standardized by the JV prior to the next inspection. Signage was clearly visible and present along the perimeter of the fence line.	
Any evidence of unauthorized access?	No		

III. Interview

Name of Interviewer: Ian Martz (Arcadis)

Name of Interviewee: Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), Meg Delorier (MassDevelopment), Rich Holcomb (Commonwealth Fusion Systems), Kathleen Brill (Foley Hoag LLP)

Contact Information: neilangus@devensec.com, 978-772-8831 x3334; amdowd@massdevelopment.com, 857-345-2859; mdelorier@massdevelopment.com, 978-784-2929; rholcomb@cfs.energy, 508-667-4582; kbrill@foleyhoag.com, 617-832-1229

Interview Notes: Emailed final 2022 LUC forms for review on 1/17/2024. Performed phone interview on 1/29/2024.

Site Updates: LUCs for Grant Housing Area and 37-mm Impact Area are defined in the 2011 LUCIP. The Grant HA is currently zoned for residential reuse and the Impact Area is restricted for future use. The remedy for the Oak and Maple Housing Area was incorporated into the Grant HA and Impact Area site via a 2014 Explanation of Differences (ESD). The remedy included LUC interviews. A LUCIP addendum for the Oak and Maple HA (as well as a portion of the Grant HA) was completed in April 2021; this "Restricted Area" is currently zoned for commercial uses (innovation and technology business).

Item	Yes/No	Comments
Impact Area		
Any UXO discovered?	No	

Inspection Checklist for Housing Areas

Was any work conducted or planned regarding utility repair or emergency work?	No	
Restricted Area (Former Oak and Maple HA, porti	on of Grant	HA)
Any UXO discovered?	No	
Is the Site-Specific Soil Management Plan (SSSMP) and UXO information pamphlet available on the Devens Enterprise Commission website?	Yes	
Was a current version of the SSSMP distributed to MassDevelopment (and other current/future owners of property within the Restricted Area), Devens Fire Department, and local/State Police?	Yes	
Did ground intrusive construction activities occur during the reporting period?	Yes	Construction work was completed on utility buildings in areas previously screened for UXOs (no soil management required)
Were construction contractors provided with a current version of the soils management policy?	N/A	No soils management work completed in 2023.
Were all contractors required to attend the UXO awareness training prior to commencing ground intrusive activities?	N/A	No intrusive activities completed in 2023.
Were any amendments to the Notice of Activity and Use Limitation (NAUL) recorded/executed?	No	
Was a physical inspection conducted in the Restricted Area?	N/A	No physical inspections of the restricted area were required in 2023.
Unrestricted/Residential Use Area (Grant HA)		
Any UXO discovered?	No	
Is the Soil Management Plan and UXO information pamphlet available on the Devens Enterprise Commission website?	Yes	
Has the required educational pamphlet/utility bill insert been included in utility bill mailings to owners, lessees, and/or tenants?	Yes	Mailings sent on an annual basis for existing customers and as-needed for any new customers.
Has the educational pamphlet/utility bill insert been posted in a conspicuous location?	Yes	A total of seven signs are posted throughout the Grant HA, and will be inspected in 2024. A semi-permanent kiosk was constructed in 2022 in Central Park along Grant Road.
Did ground intrusive construction activities occur during the reporting period?	No	
Were construction contractors provided with a current version of the soils management policy?	Yes	
Were all contractors required to attend the UXO awareness training prior to commencing ground intrusive activities?	Yes	
Was the Supplemental Deed Notice included in deeds conveying portions of the unrestricted/residential use area?	Yes	
Was a physical inspection conducted at the unrestricted/residential use area?	Yes	Yes, routine site walks and inspections completed by MassDevelopment and the Devens Enterprise Commission as a part of property redevelopment.

Inspection Checklist for Housing Areas

IV. Response Actions		
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	
Are there Response Actions necessary based on the violations?	No	
Are modifications/ terminations of LUC's necessary?	No	
Have Enforcement Actions been taken during this reporting period?	No	

Annual Land Use Control Plan Checklist for AOC 57			
I. Site Information			
Site Name/Location: AOC 57 - Area 2 and Area 3 Name/Affiliation: lan Martz / Arcadis			
Remedy Includes: Long Term Monitoring, Institution	nal Controls,	Wetlands protection	
Inspection Date: November 29, 2023			
Participants: Ian Martz (Arcadis), Brent Smith (USA	CE)		
II. Docume	ntation and	Records	
Item	Yes/No	Comments	
Any related notices filed with Devens Enterprise Commission?	No		
Any related Department of Public Works permits found?	No	Some brush cutting performed to maintain trail area (no intrusive activities)	
Any related zoning permits or variances found?	No		
Any related Conservation Commission findings, proposals or notices of intent found?	No		
III. Physica	I On-Site Ins	spection	
Item	Yes/No	Comments	
Is there evidence of damage to the remedy?	No		
Any damage to on-site monitoring wells?	No	Wells observed to be in good condition.	
Any groundwater extraction wells present?	No		
Is there sufficient access to the site for monitoring?	Yes	Vegetation clearance needed around some monitoring wells.	
Any signs of increased exposure potential?	No		
IV.	/. Interview		
Name of Interviewer: Ian Martz (Arcadis)			
Name of Interviewee: Neil Angus (Devens Enterpris Delorier (MassDevelopment)	se Commissio	on), Anne-Marie Dowd (MassDevelopment), Meg	
Contact Information: neilangus@devensec.com, 97 345-2859; mdelorier@massdevelopment.com, 978-7		x3334; amdowd@massdevelopment.com, 857-	
Interview Notes: Emailed final 2022 LUC forms for review on 1/17/2024. Performed phone interview on 1/29/2024.			
Site Update: The Army is currently investigating PFAS which have been detected at the Former Fort Devens. A record-of-decision has not been completed for PFAS.			
Item	Yes/No	Comments	
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes		
Are there any extraction wells at the property?	No		
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	No		

Annual Land Use Control Plan Checklist for AOC 57

Is drinking water supplied from off-site?	Yes	
Are there any issues with site access for monitoring?	No	
V. Res	sponse Actio	ons
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	
Are there Response Actions necessary based on the violations?	No	
Are modifications/ terminations of LUCs necessary?	No	
Have Enforcement Actions been taken during this reporting period?	No	

Annual Land Use Control Plan Checklist for AOC 69W

I. Site Information				
Site Name/Location: AOC 69W	Name/Affilia	lame/Affiliation: Ian Martz / Arcadis		
Remedy Includes: Long Term Monitoring, Institutional Controls				
Inspection Date: November 28, 2023				
Participants: Ian Martz (Arcadis), Brent Smith (U	ISACE)			
	•	and Records		
II. Documentation and Records	Yes/No	Comments		
Any related Department of Public Works permits found?	No	Comments		
Any related zoning permits or variances found?	No			
Any related Conservation Commission findings, proposals, or notices of intent found?	No			
	/sical On-Si	te Inspection		
Item	Yes/No	Comments		
Any evidence of new penetrations or repaved cut marks present at the site?	No	Some minor wear/tear on asphalt surface.		
Is there evidence of damage to the remedy?	No			
Any damage or change to area overlying the ESMA?	No			
Any damage to on-site monitoring wells?	No	All wells and stream gauges observed to be in good condition.		
Any groundwater extraction wells present?	No			
Is there sufficient access to the site for monitoring?	Yes	A vegetation removal event was completed from October 10-11, 2023 to improve access to monitoring wells in wooded areas. The work was coordinated with MassDevelopment and the property owner.		
Any signs of increased exposure potential?	No			
	IV. Intervie	ew #1		
Name of Interviewer: Ian Martz (Arcadis)				
Name of Interviewee: Neil Angus (Devens Enter Delorier (MassDevelopment)	prise Commi	ission), Anne-Marie Dowd (MassDevelopment), Meg		
Contact Information: neilangus@devensec.com, 978-772-8831 x3334; amdowd@massdevelopment.com, 857-345-2859; mdelorier@massdevelopment.com, 978-784-2929				
Interview Notes: Emailed final 2022 LUC forms	for review or	n 1/17/2024. Performed phone interview on 1/29/2024.		
Site Update: The Army is currently investigating record-of-decision has not been completed for PF		have been detected at the Former Fort Devens. A		
Item	Yes/No	Comments		
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes			

Annual Land Use Control Plan Checklist for AOC 69W

Aillida Edild 000		
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	Yes	Retaining wall/sidewalk project planned by charter school is scheduled to be completed in 2024 (see Interview #2).
Were any excavations, planned or emergency, conducted in the Excavated Soils Management Area (ESMA)?	No	
Is drinking water supplied from off-site?	Yes	
Are there any issues with site access for monitoring?	No	
	IV. Intervie	ew #2
Name of Interviewer: Ian Martz / Arcadis		
Name of Interviewee: Michelle McKenna - Busin	iess Manage	r, Francis W. Parker Charter Essential School
Contact information: mmckenna@theparkersch	ool.org, 978-	772-3293
Interview Notes: Sent email with interview quest recorded below.	ions on 1/11/	2024, received response on 1/11/2024; responses are
Item	Yes/No	Comments
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes	
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	No	
Were any excavations, planned or emergency, conducted in the Excavated Soils Management Area (ESMA)?	Yes	A planned retaining wall/sidewalk project is anticipated to be completed in 2024. The property owner worked with an environmental services company and licensed site professional to develop a soil management plan and health & safety plan, which were submitted for review on 12/21/2023.
Is drinking water supplied from off-site?	Yes	
Are there any issues with site access for monitoring?	No	
V	. Response	Actions
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	
Are there Response Actions necessary based on the violations?	No	
Are modifications/ terminations of LUC's necessary?	No	

No

Have Enforcement Actions been taken during this reporting period?

Annual Land Use Control Plan Checklist for AOC 32 and 43A

Annual Land Use Control Plan Checklist for AOC 32 and 43A				
I. Site Information				
Site Name/Location: AOC 32/43A	ion: AOC 32/43A Name/Affiliation: Ian Martz / Arcadis			
Remedy Includes: Long Term Monitoring, Institutional Controls				
Inspection Date: November 28, 2023				
Participants: Ian Martz (Arcadis), Brent Smith (L	JSACE)			
II. Docun	nentation an	d Records		
Item	Yes/No	Comments		
Any related notices filed with Devens Enterprise Commission?	No			
Any related Department of Public Works permits found?	No			
Any related zoning permits or variances found?	No			
Any related Conservation Commission findings, proposals, or notices of intent found?	No			
III. Physi	cal On-Site I	nspection		
Item	Yes/No	Comments		
Any evidence of new construction or excavation present in the area of the remedy?	No			
Any damage to on-site monitoring wells?	No	Some minor damage noted (cracked concrete pads, missing bolts, etc.)		
Is there evidence of damage to the remedy?	No			
Any groundwater extraction wells present?	No			
Is there sufficient access to the site for monitoring?	Yes			
Any signs of increased exposure potential?	No			
IV. Interview #1				
Name of Interviewer: Ian Martz (Arcadis)				
Name of Interviewee: Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), Meg Delorier (MassDevelopment)				
=	Contact Information: neilangus@devensec.com, 978-772-8831 x3334; amdowd@massdevelopment.com, 857-			
345-2859; mdelorier@massdevelopment.com, 978-784-2929				
Interview Notes: Emailed final 2022 LUC forms for review on 1/17/2024. Performed phone interview on 1/29/2024.				
Site Update: The Army is currently investigating PFAS which have been detected at the Former Fort Devens. A record-of-decision has not been completed for PFAS. O'Reilly Auto Parts Warehouse is located within the footprint of AOC 32/43A. They are required to submit an annual Stormwater Management O&M Report to Devens Enterprise Commission. The facility also has two monitoring wells which are sampled annually: APEX-MW-OB-1 and APEX-MW-BR-2. The identity of the O'Reilly wells have been included at the request of the USACE. The annual reports are submitted to MassDEP and Devens Enterprise Commission.				
Item	Yes/No	Comments		
s interviewee familiar with the land use controls mposed upon the property & documentation of hese controls?				

Annual Land Use Control Plan Checklist for AOC 32 and 43A

Are there any extraction wells at the property?	No	
Are there any proposed plans for property sale, future development, construction or demolition activities at the property?	No	
Are there any issues with site access for monitoring?	No	
r	V. Interview	#2
Name of Interviewer: Ian Martz / Arcadis		
Name of Interviewee: John Bounds (O'Reilly Au	to Parts), Joe	Mrgan (O'Reilly Auto Parts)
Contact information: jbounds2@oreillyauto.com	ı, 417-520-45	89; jmrgan@oreillyauto.com, 417-837-5062
Interview Notes: Sent email with interview quest responses are recorded below.	ions on 1/11/	2024, received response via phone on 3/1/2024;
Item	Yes/No	Comments
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes	
Are there any extraction wells at the property?	No	
Are there any proposed plans for property sale, future development, construction or demolition activities at the property?	No	
Are there any issues with site access for monitoring?	No	
V. R	lesponse Ac	tions
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	
Are there Response Actions necessary based on the violations?	No	
Are modifications/ terminations of LUC's necessary?	No	
Have Enforcement Actions been taken during this reporting period?	No	

this reporting period?

Annual Land Use Control Plan Checklist for DCL

li de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	I. Site Inform	ation	
Site Name/Location: DCL	Name/Affiliation	on: Ian Martz / Arcadis	
Remedy Includes: Long Term Monitoring, Institut	tional Controls		
Inspection Date: October 31, 2023			
Participants: Ian Martz (Arcadis), Brent Smith (U	SACE)		
II. Dog	umentation a	nd Records	
Item	Yes/No	Comments	
Any related notices filed with Devens Enterprise Commission?	No		
Any related Department of Public Works permits found?	No		
Any related zoning permits or variances found?	No		
Any related Conservation Commission findings, proposals, or notices of intent found?	No		
III. Ph	ysical On-Site	Inspection	
Item	Yes/No	Comments	
Any evidence of development present in the area of the remedy?	No		
Any damage to on-site monitoring wells?	No		
Is there evidence of damage to the remedy?	No		
Any groundwater extraction wells present?	No		
Is there sufficient access to the site for monitoring?	Yes		
Any signs of increased exposure potential?	No		
IV. Interview			
Name of Interviewer: Ian Martz (Arcadis)			
,	1 : O-mmior	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Delorier (MassDevelopment)		sion), Anne-Marie Dowd (MassDevelopment), Meg	
Contact Information: neilangus@devensec.com 2859; mdelorier@massdevelopment.com, 978-78		1 x3334; amdowd@massdevelopment.com, 857-345-	
Interview Notes: Emailed final 2022 LUC forms	for review on 1	/17/2024. Performed phone interview on 1/29/2024.	
Site Update: The Army is currently investigating F	PFAS which ha	ave been detected at the Former Fort Devens. A record	

of-decision has not been completed for PFAS.

Annual Land Use Control Plan Checklist for DCL

Item	Yes/No	Comments
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes	
Are there any extraction wells at the property?	No	
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	No	
Are there any issues with site access for monitoring?	Х	
,	/. Response	Actions
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	
Are there Response Actions necessary based on the violations?	No	
Are modifications/terminations of LUC's necessary?	No	
Have Enforcement Actions been taken during this reporting period?	No	

Inspection Checklist for DCL Contributor Sites I. Site Information Site Name/Location: DCL Contributor Site AOC 9 Name/Affiliation: Ian Martz / Arcadis Filter Bed Road, Ayer, MA Remedy Includes: No further Action. The site was transferred from the Army to MassDevelopment in 2006 as defined in the Finding of Suitability to Transfer (FOST) dated February 2005. Inspections are conducted to verify no change in site conditions since remedial action completion in 2002. Use Restrictions: AOC 9 (Lease parcel A2A) is limited to commercial and industrial uses. Inspection Date: November 28, 2023 Participants: Ian Martz (Arcadis), Brent Smith (USACE) **II. Documentation and Records** Yes/No Item Comments Any related notices filed with Devens Enterprise No Commission? Any related Department of Public Works permits No found? Any related zoning permits or variances found? No Any related Conservation Commission findings, No proposals or notices of intent found? III. Physical On-Site Inspection Yes/No Comments Item Any evidence of new construction or excavation No present in the area of the remedy? Some tire tracks observed leading to utility lines (gas, Is there evidence of damage to the remedy? No electric overhead); no damage to remedy. Any groundwater extraction wells present? No Is there sufficient access to the site for monitoring? Yes Easily accessible from Filter Bed Rd. Any signs of increased exposure potential? No **IV. Response Actions** Item Yes/No Comments Were violations of the LUCs present? No Are there Response Actions necessary based on No the violations?

No

No

Are modifications/terminations of LUC's necessary?

Have Enforcement Actions been taken during this

reporting period?

Inspection Checklist for DCL Contributor Sites

	L Cita Inform	action			
	I. Site Inforn	nation			
Site Name/Location: DCL Contributor Site AOC 40 Patton Road, Ayer, MA	Name/Affilia	ation: lan Martz / Arcadis			
defined in the Finding of Suitability to Transfer (FG	Remedy Includes: No further Action. The site was transferred from the Army to MassDevelopment in 2006 as defined in the Finding of Suitability to Transfer (FOST) dated February 2005. Inspections are conducted to verify no change in site conditions since remedial action completion in 2002.				
Use Restrictions: AOC 40 (Lease parcel A4) is I	imited to ope	n space and recreational uses.			
Inspection Date: November 29, 2023					
Participants: Ian Martz (Arcadis), Brent Smith (U	ISACE)				
II. Doc		and Records			
Item	Yes/No	Comments			
Any related notices filed with Devens Enterprise Commission?	No				
Any related Department of Public Works permits found?	No				
Any related zoning permits or variances found?	No				
Any related Conservation Commission findings, proposals, or notices of intent found?	No				
III. Phy		e Inspection			
Item	Yes/No	Comments			
Any evidence of new construction or excavation present in the area of the remedy?	No				
Is there evidence of damage to the remedy?	No				
Any groundwater extraction wells present?	No				
Is there sufficient access to the site for monitoring?	Yes				
Any signs of increased exposure potential?	No				
IV	. Response	Actions			
Item	Yes/No	Comments			
Were violations of the LUCs present ?	No				
Are there Response Actions necessary based on the violations?	No				
Are modifications/terminations of LUC's necessary?	No				
Have Enforcement Actions been taken during this reporting period?	No				

Inspection Checklist for DCL Contributor Sites

I Cita Information					
	I. Site Inforn	nation			
Site Name/Location: DCL Contributor Site SA13 Lake George Street, Harvard, MA	Name/Affilia	ation: Ian Martz / Arcadis			
Remedy Includes: No further Action. The site was transferred from the Army to MassDevelopment in 2006 as defined in the Finding of Suitability to Transfer (FOST) dated February 2005. Inspections are conducted to verify no change in site conditions since remedial action completion in 2001.					
Use Restrictions: SA13 (Lease parcel A8) is lim	Use Restrictions: SA13 (Lease parcel A8) is limited to commercial and industrial uses.				
Inspection Date: November 29, 2023					
Participants: Ian Martz (Arcadis), Brent Smith (U	<u> </u>				
		and Records			
Any related nations filed with Dayons Enterprise	Yes/No	Comments			
Any related notices filed with Devens Enterprise Commission?	No				
Any related Department of Public Works permits found?	No				
Any related zoning permits or variances found?	No				
Any related Conservation Commission findings, proposals or notices of intent found?	No				
III. Phy		e Inspection			
Item	Yes/No	Comments			
Any evidence of new construction or excavation present in the area of the remedy?	No				
Is there evidence of damage to the remedy?	No				
Any groundwater extraction wells present?	No				
Is there sufficient access to the site for monitoring?	Yes				
Any signs of increased exposure potential?	No				
IV	. Response	Actions			
Item	Yes/No	Comments			
Were violations of the LUCs present ?	No				
Are there Response Actions necessary based on the violations?	No				
Are modifications/terminations of LUC's necessary?	No				
Have Enforcement Actions been taken during this reporting period?	No				

Annual Land Use Control Plan Checklist for AOC 43G

	Sito Informed	lion
I. S	Site Informat	
ite Name/Location: AOC 43G Name/Affiliation: Ian Martz / Arcadis		
Remedy Includes: Long Term Monitoring, Institu	itional Contro	ols
Inspection Date: November 29, 2023		
Participants: Ian Martz (Arcadis), Brent Smith (U	JSACE)	
II. Docum	entation an	d Records
Item	Yes/No	Comments
Any related notices filed with Harvard, MA?	No	
Any related Department of Public Works permits found?	No	
Any related zoning permits or variances found?	No	
Any related Conservation Commission findings, proposals, or notices of intent found?	No	
III. Physic	cal On-Site I	nspection
Item	Yes/No	Comments
Any evidence of development present in the area of the remedy?	No	Some renovations being completed to the buildings west of Area 1; no pavement work appears to have been conducted.
Any damage to on-site monitoring wells?	Yes	Some bollards and wooden stakes installed around monitoring wells are in need of replacement/repair; this was observed previously and well repairs will be scheduled during planned future site activities.
Is there evidence of damage to the remedy?	No	
Any groundwater extraction wells present?	No	
Is there sufficient access to the site for monitoring?	Yes	
Any signs of increased exposure potential?	No	
	IV. Interviev	v
Name of Interviewer: Ian Martz (Arcadis)		
Name of Interviewee: Penelope Reddy - USACE		
Contact Information: penelope.w.reddy@usace	.army.mil, 97	78-318-8160
Interview Notes: Emailed final 2023 LUC forms response via email on 2/26/2024.	to Penelope	Reddy for review on 1/11/2024 and received
Site Update: The Army is currently investigating A record-of-decision has not been completed for		have been detected at the Former Fort Devens.
Item	Yes/No	Comments
Is interviewee familiar with the land use controls imposed upon the property & documentation of these controls?	Yes	

Annual Land Use Control Plan Checklist for AOC 43G

Are there any extraction wells at the property?	No			
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	No	None - property remains part of Fort Devens		
Are there any issues with site access for monitoring?	No			
V. Response Actions				
Item	Yes/No	Comments		
Were violations of the LUCs present ?	No			
Are there Response Actions necessary based on the violations?	No			
Are modifications/ terminations of LUC's necessary?	No			
Have Enforcement Actions been taken during this reporting period?	No			

Annual Land Use Control Plan Checklist for AOC 44-52

I. Site Information

Site Name/Location: AOCs 44 and 52, Barnum Road Maintenance Yards

Remedy Includes: 2-foot cap overlain with 4 inches of bituminous pavement

Inspection Date: November 28, 2023

Participants: Ian Martz (Arcadis), Brent Smith (USACE)

II. Documentation and Records			
Item	Yes/No	Comments	
Have facility records been reviewed to determine if any construction or maintenance activities occurred on the site?	No		
a. If so, did these activities impact the remedy?	No		
Have records been reviewed to determine if any spills or other environmental issues have been identified that impact the remedy?	No		
Has the USEPA and MassDEP been notified of any construction or maintenance activities that would impact the remedy?	No		

III. Physical On-Site Inspection				
Item	Yes/No	Comments		
Any evidence of new penetrations or repaved cut marks present at the site?	Yes	New gas line observed to be installed in eastern part of property.		
Is there evidence of damage to the remedy?	No	Minor cracks observed in pavement but no significant damage.		
a. Asphalt cover intact?	Yes			
b. Any evidence of erosion?	No			
Is there sufficient access to the site for monitoring?	Yes	Yes - access through open gates.		
Any signs of increased exposure potential?	No			

IV. Interview

Name of Interviewer: lan Martz (Arcadis)

Name of Interviewee: Daniel O'Leary (US Army), Christopher Hastings (US Army), Michael King (US Army)

Contact Information: daniel.j.oleary4.ctr@army.mil, 617-276-6673; christopher.s.hastings2.mil@army.mil, 972-343-4319; michael.j.king61.civ@army.mil; 978-615-6875

Interview Notes: Emailed final 2022 LUC forms for review on 1/17/2024. Performed phone interview on 1/19/2024.

Site Update: The Army is currently investigating PFAS which have been detected at the Former Fort Devens. A record-of-decision has not been completed for PFAS.

Annual Land Use Control Plan Checklist for AOC 44-52

Item	Yes/No	Comments
Is interviewee familiar with the LUCs imposed upon the property and documentation of these controls?	Yes	
Are there any proposed plans for property sale, future development, construction, or demolition activities at the property?	No	
Any excavations, planned or emergency, that may have penetrated through the pavement and/or extended to soils below two feet in depth within the site?	No	
Are there any issues with site access for monitoring?	No	
IV. R	esponse Ac	tions
Item	Yes/No	Comments
Were violations of the LUCs present ?	No	New gas line installed within AOC boundaries in 2023. Jim Verner (MassDevelopment) confirmed with the installer (National Grid) that the depth of the gas line did not extend to soils below two feet in depth.
Are there Response Actions necessary based on the violations?	No	
Are modifications/ terminations of LUCs necessary?	No	
Have Enforcement Actions been taken during		

Annual Land Use Control Plan Checklist for SA 71

I. Site Information

Site Name/Location: SA 71, Former Railroad Roundhouse

Remedy Includes: Annual land use control inspections and institutional controls

Inspection Date: November 28, 2023

Participants: Ian Martz (Arcadis), Brent Smith (USACE)

II. Documentation and Records				
Item	Yes/No	Comments		
Any related notices filed with Devens Enterprise Commission?	No			
Any related Department of Public Works permits found?	No			
Any related zoning permits or variances found?	No			
Any related Conservation Commission findings, proposals or notices of intent found?	No			
III. Physic	III. Physical On-Site Inspection			
Item	Vas/No	Comments		

III. Physical On-Site Inspection				
Item	Yes/No	Comments		
Any evidence of excavation in the Site-Specific Soil Management Area (SSSMA)?	No			
Is there evidence of damage to the property?	No			
Any groundwater extraction wells present?	No			
Any signs of development on the property?	No			
Any change in the use of the property from open space/recreational?	No			
Is there sufficient access to the site for monitoring?	Yes	The gate leading to Plow Shop Pond needs a new chain and lock.		
Any signs of increased exposure potential?	No	Minor ground subsidence observed beyond Plow Shop Pond gate (drainage channel).		

IV. Interview

Name of Interviewer: Ian Martz (Arcadis)

Name of Interviewee: Neil Angus (Devens Enterprise Commission), Anne-Marie Dowd (MassDevelopment), Meg Delorier (MassDevelopment)

Contact Information: neilangus@devensec.com, 978-772-8831 x3334; amdowd@massdevelopment.com, 857-345-2859; mdelorier@massdevelopment.com, 978-784-2929

Interview Notes: Emailed final 2022 LUC forms for review on 1/17/2024. Performed phone interview on 1/29/2024.

Site Update: The Army is currently investigating PFAS which have been detected at the Former Fort Devens. A record-of-decision has not been completed for PFAS.

Item	Yes/No	Comments
Is interviewee familiar with the LUCs imposed upon the property and documentation of these controls?	Yes	

Annual Land Use Control Plan Checklist for SA 71

No	
No	
No	
N/A	
N/A	
No	
	tions
Yes/No	Comments
No	
No	
No	
No	
	No No No N/A N/A No esponse Ac Yes/No No No

Appendix G

DCL Inspection Report

DRAFT

United States Army Corps of Engineers New England District

Appendix G – 2023 Geotechnical Engineering Annual Inspection Report

Devens Consolidation Landfill 2023 Annual Operations, Maintenance, and Monitoring Report, Main Post Former Fort Devens Army Installation Devens, Massachusetts

Contract No. W912WJ-19-D-0014

March 2024

Contents

Αc	ronyms a	nd Abbreviations	iii
1	Introduc	tion	1
2	Landfill (Cap Inspection	1
	2.1	Entries and Exit Inspection	
	2.2	Fence Inspection	2
3	Drainage	System Inspection	2
4	Gas Ven	t System Inspection	3
5	Recomm	endations and Corrective Actions	3

Attachments

Attachment 1 Photograph Log

Attachment 2 Inspection and Maintenance Checklist

Attachment 3 Landfill Gas Monitoring Log

Acronyms and Abbreviations

DCL Devens Consolidation Landfill

LEL lower explosive limit

ppm part per million

RCRA Resource Conservation and Recovery Act

S-A JV SERES-Arcadis 8(a) Joint Venture 2

Tantara Corporation

iii

1 Introduction

The Resource Conservation and Recovery Act (RCRA) Subtitle C cap at the Devens Consolidation Landfill (DCL) was constructed with the following objectives:

- Eliminate the potential risk to human health and the environment associated with exposure to wastes
- Minimize off-site migration of contaminants
- Limit infiltration to the underlying waste within the landfill area, thereby minimizing leachate generation.

The landfill cap system was completed during fall 2002 and restoration of site staging areas was completed during spring 2003. The RCRA cap consists of the following layers:

- 12-inch-thick subgrade/leveling layer immediately above the waste materials
- Geocomposite gas collection/vent layer
- 40-mil very flexible polyethylene geomembrane
- Geocomposite drainage layer
- 12-inch-thick protective layer overlaid by an 18-inch-thick vegetative support layer capped with 6 inches of topsoil.

The DCL landfill general plan is shown on Figure 17 of the 2023 Annual Operations, Maintenance, and Monitoring Report, and landfill features are displayed in the attached Photograph Log (Attachment 1). Post-closure monitoring objectives and procedures are specified in the Operation and Maintenance Manual included in the Post-Closure Report. The United States Army Corps of Engineers, New England District, is responsible for operating, monitoring, and inspecting the DCL. Annual operation and maintenance activities include landfill gas monitoring, groundwater sampling, and monthly inspections of the leachate system. Leachate wastewater is permitted to discharge to the Devens wastewater sewer system through the authorized industrial wastewater discharge permit.

2 Landfill Cap Inspection

Personnel from the SERES-Arcadis 8(a) Joint Venture 2, LLC (S-A JV) and the United States Army Corps of Engineers inspected the DCL on October 31, 2023. The cap and adjacent area vegetation were mowed on October 3 to October 11, 2023, by Tantara Corporation of Worcester, Massachusetts (Tantara). Observations were made regarding the site entry, vegetative cover, erosion, settlement, and general condition of the various features. Attachment 2 contains the Inspection and Maintenance Checklist, and Attachment 3 contains the Landfill Gas Monitoring Summary Table, which summarizes the inspection findings.

During the October 2023 inspection, the overall landfill cap and its surrounding perimeter drainage system were found to be in good condition, with no apparent overall settlement and limited evidence of erosion (Attachment 1, Photos 1 through 4). In general, the vegetative cap appeared healthy and is providing good coverage of the cap. As noted during previous inspections, some small, woody shrub species have invaded both the perimeter drainage system and the landfill cap. Woody vegetation was cut as flush to the to the ground as feasible during annual mowing, to promote growth of the grass cover and to prevent deep-rooted vegetation from forming.

2.1 Entries and Exit Inspection

Access roads are located on private property owned by the Massachusetts Development and Finance Agency. The security gate at the Patton Road (southern) entrance was in good condition, though it has observed to be unlocked since personnel from the S-A JV began routine inspections of the DCL in May 2020. The access road from the security gate extending to the leachate pump station was in good condition; no significant ruts, potholes, or eroded areas were observed.

2.2 Fence Inspection

The perimeter fence is in fair condition where it emanates from the security gate. The fence does not encircle the entirety landfill cap, but the fence (along with the security gate and perimeter drainage system) helps to minimize entry onto the landfill cap by motor vehicles. These access limitations appear to be adequate, as there were no signs of vandalism or other unauthorized entry around the west, north, or east perimeter of the landfill.

3 Drainage System Inspection

The perimeter drainage system is designed to drain surface water and infiltrated water off the cap system. It consists of the following components:

- Geocomposite drainage layer
- Grass bench drains on the cap with gabion slope drains
- A perimeter stone drain along the toe-of-slope
- Perimeter drainage channels
- A sediment detention basin with a riprap lined outlet area (located at the northeast corner of the landfill).

During the October 2023 inspection, observations were made regarding the vegetative cover, vegetation types, erosion, and general condition of the drainage system. No maintenance activities were performed during the inspection; however, vegetation removal was conducted as needed within the riprap during the mowing event on October 3 to 11, 2023. Attachment 2 contains the Inspection and Maintenance Checklist, which summarizes the findings of this inspection.

The cap drainage system was observed to be in good condition. Drainage channels were overall free of sediment and debris, with no significant settlement or stone displacement. The gabion slope drains were in good condition, with minimal vegetation present (Attachment 1, Photo 5 and 6). Minor damage was observed to a small section of wire in two of the northern gabion slope drains; this was likely caused by the mowing equipment and will be repaired during a future site visit. No significant vegetation remnants were present within the riprap. The perimeter toe drains were in good condition and appeared to be functioning properly, with no visible signs of erosion or developing slope stability problems.

The detention basin (northeast of the DCL) was in good condition overall (Attachment 1, Photo 7 and 8). Its pond drains, culvert, and outfall areas were in good condition and generally free of both debris and vegetative growth. The area should continue to be monitored for potential future erosion. If significant erosion occurs, then the area should be regraded and reseeded as part of annual landfill maintenance.

4 Gas Vent System Inspection

The DCL includes a passive gas venting system that was installed to facilitate the ventilation of any gases generated from the degrading waste material beneath the landfill cap system. The passive system consists of 11, 6-inch-diameter gas vents (V-1 to V-11) integrated into the geocomposite gas collection layer immediately beneath the 40-mil very flexible polyethylene geomembrane, and three landfill gas monitoring wells (LFGM-18-01 to LFGM-18-03) located between the landfill cap and the TaraVista Behavioral Health building, which is located at 85 Patton Road. The gas vent system was observed to be in good condition; all the gas vents were stable and upright, and all the bird/insect screens on the vents were in good condition (Photo 9). Landfill gas monitoring well LFGM-18-01 was observed to be missing its protective roadbox lid during the previous inspection conducted in 2022 (Photo 10); this was likely a result of mowing activities. A new roadbox lid was later installed in November 2023, and the landfill gas monitoring wells were otherwise observed to be in good condition.

During the October 2023 inspection, all gas vents and landfill gas monitoring points were monitored via two instruments for parameters of interest. A MultiRAE+ multi-gas monitor was used to check levels of volatile organic compounds, hydrogen sulfide, carbon monoxide, percent lower explosive limit (LEL), and oxygen. A Landtec GEM 2000 landfill gas monitor was used to check levels of oxygen, carbon dioxide, methane, and carbon monoxide. As shown in Attachment 3, gas monitoring showed that the parameters of interest ranged as follows:

- Via the MultiRAE+:
 - Volatile organic compounds 0.0 parts per million (ppm; non-detect) to 0.3 ppm
 - Hydrogen sulfide 0.0 ppm at all locations
 - Carbon monoxide 0.0 ppm at all locations
 - LEL 0.0% at all locations
 - Oxygen 12.9% to 20.9%
- Via the Landtec GEM 2000:
 - Oxygen 13.7% to 21.4%
 - Carbon dioxide 0.0% to 4.9%
 - Methane 0.0% at all locations
 - Carbon monoxide 0.0% to 0.1%

5 Recommendations and Corrective Actions

The following recommendations and corrective actions should be conducted for future maintenance of the landfill cap:

- 1. Continue the annual inspection of landfill cap components. The inspection should continue to be performed in the fall, soon after mowing is completed (i.e., within 1 to 2 weeks), and preferably within 48 hours after a precipitation event to help inspect the effectiveness of surface runoff in the drainage swales. Landfill gas monitoring should be performed on a dry day.
- 2. Continue mowing the landfill cap annually to control vegetative growth, as well as the adjacent stormwater detention pond to prevent woody and wetland plant species from encroaching onto the cap. Mowing should

DRAFT Appendix G – Geotechnical Engineering Annual Inspection Report Devens Consolidation Landfill

- not take place prior to September 1, when ground-nesting songbirds are mature enough to avoid being harmed.
- 3. Continue general landfill maintenance, such as clearing large/woody vegetative growth from the cap, drainage channels, and riprap. Small shrubs growing on the landfill cap should continue to be cut as flush to the ground as feasible during annual maintenance events.
- 4. Since the cap was completed in 2002, post-closure inspection and monitoring has been performed for 22 years. Planning should commence for the performance time and metrics to reduce long-term monitoring and sampling activities, or to perform them at a reduced frequency, after 30 years, in accordance with RCRA Subtitle C landfill cap regulations for post-closure monitoring periods of performance.

Attachment 1

Photograph Log

Appendix G – Geotechnical Engineering Annual Inspection Report, Attachment 1 Former Fort Devens Army Installation – Devens Consolidation Landfill (DCL)

Photograph: 1

Description: Photo taken on top of the landfill cap (looking northwest) displaying general site conditions.

Location: DCL

Photograph taken by:

Ian Martz

Date:

October 31, 2023

Photograph: 2

Description: Photo taken of the southern side of the landfill (looking east), displaying general site conditions.

Location: DCL

Photograph taken by:

Ian Martz

Date:

October 31, 2023

Appendix G - Geotechnical Engineering Annual Inspection Report, Attachment 1 Former Fort Devens Army Installation – Devens Consolidation Landfill (DCL)

Photograph: 3

Description: Photo taken of the northern slope of the landfill cap (looking west), displaying general site conditions.

Location: DCL

Photograph taken by: Ian Martz

Date:

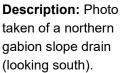
October 31, 2023

Photograph: 4

Description: Photo taken of the eastern slope of the landfill cap (looking north), displaying general site conditions.

Location: DCL

Photograph taken by: lan Martz


Date:

October 31, 2023

Appendix G - Geotechnical Engineering Annual Inspection Report, Attachment 1 Former Fort Devens Army Installation – Devens Consolidation Landfill (DCL)

Location: DCL

Photograph taken by: Ian Martz

Date:

October 31, 2023

Photograph: 6

Description: Photo taken of the southern gabion slope drain, looking south towards the entrance gate and Patton Rd.

Location: DCL

Photograph taken by:

lan Martz

Date:

October 31, 2023

www.arcadis.com 3

Appendix G – Geotechnical Engineering Annual Inspection Report, Attachment 1 Former Fort Devens Army Installation – Devens Consolidation Landfill (DCL)

Photograph: 7

Description: Photo taken of the detention basin, looking west towards the landfill cap.

Location: DCL

Photograph taken by: lan Martz

Date:

October 31, 2023

Photograph: 8

Description: Photo of taken of the eastern landfill slope, looking east towards the leachate collection system and detention basin.

Location: DCL

Photograph taken by:

lan Martz

Date:

October 31, 2023

Appendix G – Geotechnical Engineering Annual Inspection Report, Attachment 1 Former Fort Devens Army Installation – Devens Consolidation Landfill (DCL)

Photograph: 9

Description: Photo taken of Landfill Gas

Vent #4.

Location: DCL

Photograph taken by:

Ian Martz

Date:

October 31, 2023

Photograph: 10

Description: Photo taken of damaged landfill gas monitoring well LFGM-18-01. A new roadbox cover was later installed in November 2023.

Location: DCL

Photograph taken by:

Brent Smith

Date:

October 31, 2023

www.arcadis.com 5

Attachment 2

Inspection and Maintenance Checklist

Inspection & Maintenance Check List Devens Consolidation Landfill

Inspectors: Ian Martz (JV), Brent Smith (USACE)

Date: 10/31/2023

Item	Description of Inspection Items	Checked (X)	Comments
	Inspect for Eroded Areas	Х	Minor spots of bare soil from mowing activities, but no significant eroded areas observed.
Landfill Cap	Inspect for Settlement and Ponded Water	Х	No significant settlement or ponded water observed.
	Inspect for Wetland Species Encroachment	Х	No wetland species encroachment observed.
	Inspect Vegetated Areas	Х	Landfill cap mowed from October 3 to October 11, 2023. The vegetative cap appears healthy and provides good coverage of the cap. No evidence of large vegetation (>2 inches in diameter). Small shrubs (<2 inches in diameter) removed by Tantara during mowing to the extent practical. No significant ruts observed on cap slopes. No large animal burrows observed.
	Inspect Stone Toe Drain	X	Toe drain is in good condition.
Drainage	Inspect Gabion Slope Drains	Х	Slope drains are in good condition; little to no vegetation observed.
System	Inspect for Eroded Areas	Χ	No evidence of significant erosion.
System	Inspect for Debris & Unwanted Vegetation in Drainage Channels	Х	Good condition; small shrubs roots <2 inches in diameter) removed during mowing by Tantara
	Inspect Rip-Rap Areas	X	Vegetation and growth removed to the extent practical by Tantara.
Gas Vent System	Gas Monitoring Vents V-1 through V-11 and LFGM-18-01 to 18-03	Х	The gas vent system was observed to be in good condition. One landfill gas monitoring location (LFGM-18-01) was observed to be missing the protective roadbox lid, which was likely removed inadvertently by the mowing equipment. A replacement roadbox lid will be installed in a future site visit. All gas vents and landfill gas monitoring wells were measured for landfill gas parameters.
	Inspect Vent Pipes and Bird Screens	X	All gas vents were stable, and screens were in good condition.
Monitoring Wells	Inspect for Damage	Х	The monitoring wells were observed to be in good condition; no repairs required.
Security Fence	Inspect for Damage to or Breaches in Fencing	Х	No damage to the fencing observed.
Access Road	Inspect for Erosion, Potholes and Rutting	Х	No damage to the access road observed.

Description of Maintenance Activities Performed (as necessary):

- 1. Conducted landfill mowing from October 3 to October 11, 2023, including removal of vegetation within the rip-rap areas.
- 2. Inspected gas vents and collected landfill gas readings.

The following maintenance and monitoring activities are recommended:

- 1. Continue mowing the landfill cap annually to control vegetative growth, as well as the adjacent stormwater detention pond to prevent woody and wetland plant species from encroaching onto the cap.
- 2. Continue annual inspections and general landfill maintenance, such as clearing large/woody vegetative growth from the cap, drainage channels, and rip-rap areas.
- 3. Replace roadbox on landfill gas monitoring well LFGM-18-01.

Attachment 3

Landfill Gas Monitoring Log

Landfill Gas Monitoring Devens Consolidated Landfill - Devens, Massachusetts

Date: 10/31/2023

Sampler(s): Ian Martz

Weather: fair, mid 40s

Barometer (in-Hg): 29.71 **Time:** 9:15 AM

Location		VOC F	H ₂ S	со	LEL	02	O ₂	CO ₂	CH₄	со	
ID	Time	ppm Multi RAE+	ppm Multi RAE+	ppm Multi RAE+	% Multi RAE+	% Multi RAE+	% GEM 2000	% GEM 2000	% GEM 2000	% GEM 2000	Remarks
V-1	10:29	0.0	0.0	0.0	0.0	20.9	20.9	0.0	0.0	0.0	
V-2	11:10	0.0	0.0	0.0	0.0	20.9	21.3	0.1	0.0	0.0	
V-3	10:33	0.1	0.0	0.0	0.0	20.9	21.0	0.1	0.0	0.0	
V-4	10:58	0.3	0.0	0.0	0.0	20.9	21.2	0.0	0.0	0.0	
V-5	11:04	0.0	0.0	0.0	0.0	20.9	21.2	0.2	0.0	0.0	
V-6	10:38	0.0	0.0	0.0	0.0	20.9	20.8	0.0	0.0	0.1	
V-7	10:21	0.0	0.0	0.0	0.0	20.9	21.1	0.1	0.0	0.0	
V-8	10:08	0.0	0.0	0.0	0.0	20.9	21.1	0.0	0.0	0.0	
V-9	10:44	0.0	0.0	0.0	0.0	20.9	21.0	0.1	0.0	0.0	
V-10	10:54	0.1	0.0	0.0	0.0	20.9	21.4	0.0	0.0	0.0	
V-11	10:50	0.1	0.0	0.0	0.0	20.9	21.3	0.1	0.0	0.0	
LFGM-18-01	11:41	0.0	0.0	0.0	0.0	16.3	16.9	3.9	0.0	0.0	roadbox lid missing
LFGM-18-02	11:32	0.1	0.0	0.0	0.0	12.9	13.7	4.9	0.0	0.0	
LFGM-18-03	11:25	0.1	0.0	0.0	0.0	18.2	18.1	4.0	0.0	0.0	

Calibration Information:

1. Instrument: **RKI GX-6000**; SN # 0057


Calibrated by: Palms Environmental; checked by Ian Martz (JV)

2. Instrument: Landtec GEM 5000; SN# 507885

Calibrated by: Palms Environmental; checked by Ian Martz (JV)

Appendix H

Response to Comments

Project Name: Former Fort Devens Army Installation

Location: Devens, Massachusetts Reviewers: Shawn Lowry (USEPA) and Joanne Dearden (MassDEP)

Document Name: Draft 2023 Annual Operations, Maintenance, and Monitoring Report, Main Post, Former Fort Devens Army Installation,

Devens, Massachusetts, May 2024

Ref. Page / Para. Appendix E	COMMENT Shawn Lowry (1 July 2024) The appendix presents data trend analyses. It appears the analysis was run with total metals at some sites and dissolved at others. For the benefit of the reader, please explain in the text why the analysis was done this way.	All sampling work was completed in accordance with the site-specific RODs and LTMMP, which require either total or dissolved metals analysis only (depending on the site). There are references to the LTMMP in sections related to Appendix E (i.e., section 3.3.1).
Appendix E	The appendix presents data trend analyses. It appears the analysis was run with total metals at some sites and dissolved at others. For the benefit of the reader, please explain in the	the site-specific RODs and LTMMP, which require either total or dissolved metals analysis only (depending on the site). There are references to the LTMMP in sections related to Appendix E (i.e., section
Appendix E	analysis was run with total metals at some sites and dissolved at others. For the benefit of the reader, please explain in the	the site-specific RODs and LTMMP, which require either total or dissolved metals analysis only (depending on the site). There are references to the LTMMP in sections related to Appendix E (i.e., section
Appendix F	Several comments in the LUC inspection checklists, including maintenance recommendations, are not discussed in the body of the report. For example, the notes for AOC 57 state, "Vegetation clearance needed around some monitoring wells"; the checklist for AOCs 32 and 43A note, "Some minor damage noted (cracked concrete pads, missing bolts, etc.)"; the checklist for AOC 43G notes, "Some bollards and wooden stakes installed around monitoring wells are in need of replacement/repair; this was observed previously and well repairs will be scheduled during planned future site activities"; and SA 71 notes, "The gate leading to Plow Shop Pond needs a new chain and lock". EPA suggests adding a "Recommendations" section to the main body of the report to discuss these issues and any proposed follow up actions.	Each of the noted comments has been added to the body of report, where missing. Sections 2.5, 3.4, 4.5, 5.5, 6.7, 7.3, 8.2, and 9.2 have been updated to include recommendations. The Army will plan to update the LTMMP and optimize the overall Main Post field program.
	Joanne Dearden (11 July 2024)	
N/A	MassDEP has reviewed the 2023 Annual Operations and Maintenance Report for the Main Post at the Former Fort Devens Army Installation dated May 2024. MassDEP does not have any comments on this submittal.	N/A
		maintenance recommendations, are not discussed in the body of the report. For example, the notes for AOC 57 state, "Vegetation clearance needed around some monitoring wells"; the checklist for AOCs 32 and 43A note, "Some minor damage noted (cracked concrete pads, missing bolts, etc.)"; the checklist for AOC 43G notes, "Some bollards and wooden stakes installed around monitoring wells are in need of replacement/repair; this was observed previously and well repairs will be scheduled during planned future site activities"; and SA 71 notes, "The gate leading to Plow Shop Pond needs a new chain and lock". EPA suggests adding a "Recommendations" section to the main body of the report to discuss these issues and any proposed follow up actions. Joanne Dearden (11 July 2024) N/A MassDEP has reviewed the 2023 Annual Operations and Maintenance Report for the Main Post at the Former Fort Devens Army Installation dated May 2024. MassDEP does not