

FORT DEVENS FEASIBILITY STUDY FOR GROUP 1A SITES

U.S. Army Environmental

Center

61x, 61 AA, 69AN, 69AT, 69AS, 610, 61AV, 61AX, 61AX, 69F,63S LOWER COLD SPRING BROOK

SITE INVESTIGATION REPORT **DATA ITEM A009**

CONTRACT DAAA15-91-D-0008

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

DECEMBER 1995

PRINTED ON RECYCLED PAPER

1A 95/21 AOBP

LABORATORY QC EVALUATION

ABB Environmental Services, Inc.

W0129510.080 7005-15

LOWER COLD SPRING BROOK ANALYTICAL DATA QUALITY EVALUATION

1.0 INTRODUCTION

This data quality evaluation assesses data from analysis of laboratory and field quality control samples, matrix spike and matrix spike duplicate (MS/MSD) samples, and field duplicate samples collected for the Lower Cold Spring Brook Site Investigation (SI) conducted at Fort Devens in September 1994. Attachment 1 to this appendix contains summaries of quality control sample data associated with a several subsequent samples collected by A.D. Little, Inc. in July 1995.

Soil, sediment, and surface water samples collected during the Lower Cold Spring Brook SI were analyzed by the U.S. Army Environmental Center (USAEC) performance demonstrated laboratory Environmental Science and Engineering, Inc. (ESE) of Gainesville, Florida for analytes on the Fort Devens Project Analyte List (PAL). Analytical results for PAL organics and inorganics are considered approximately equivalent to U.S. Environmental Protection Agency (USEPA) analytical support Level III quality data.

A list of USAEC performance demonstrated methods used by ESE during the SI is provided in Table C-1. The table includes a description of the methods used as well as equivalent USEPA methods, where they exist. The USAEC method numbers (e.g., method JS16) are specific to the project and to the laboratory doing the analyses. More detailed descriptions of the USAEC methods are presented in the Fort Devens Project Operations Plan (POP) (ABB-ES, 1993). As described in Section 2 of the text, the laboratory must document proficiency in performing each of the methods by meeting strict USAEC performance protocols. Once the laboratory has demonstrated proficiency, they are considered qualified to perform that particular method. As part of the performance demonstration process, certified reporting limits (CRLS) are established. CRLs for PAL compounds and elements are presented in Tables C-2 through C-6. Reporting limits for noncertified analyses are presented in Table C-7.

All data used in this evaluation came directly from the USAEC Installation Restoration Data Management Information System (IRDMIS). Samples discussed

ABB Environmental Services, Inc.

below pertain only to those collected for the Lower Cold Spring Brook SI sampling effort.

2.0 LABORATORY QUALITY CONTROL SAMPLES

Laboratory quality control samples included in the Lower Cold Spring Brook SI consisted of method blanks. Method blanks were analyzed to evaluate if sample processing and handling at the laboratory introduced contaminants to the samples. Both water and soil matrices were evaluated. Water method blanks were prepared by the laboratory from chemically pure deionized water, while a "Rocky Mountain blend" soil was used for soil method blanks. One method blank was analyzed in each analytical lot following the same procedure used to analyze field samples and tracked by lot number in IRDMIS.

Cold Spring Brook water method blanks were analyzed for the following parameters: inorganics, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), total organic carbon (TOC), total suspended solids (TSS), total petroleum hydrocarbons (TPHC), total hardness, and alkalinity. Soil method blanks were analyzed for inorganics, VOCs, SVOCs, pesticides, PCBs, TOC, and TPHC. To facilitate the assessment of potential laboratory contamination, method blank data were downloaded from the IRDMIS system and tabulated by lot number in Table C-8. Any compounds that were detected in the water method blanks were attributed to laboratory contamination.

Inorganics

Soil method blanks were analyzed for inorganics using USAEC methods JB01, JD15, JD17, JD19, JD24, JD25, and JS16. Water method blanks were analyzed using USAEC methods SB01, SD09, SD20, SD21, SD22, SD28 and SS10.

Lower Cold Spring Brook water and soil method blanks were tested for the 23 inorganics on the PAL:

• aluminum	• cobalt	 potassium
antimony	copper	• selenium
• arsenic	• iron	silver
• barium	• lead	sodium
 beryllium 	 magnesium 	thallium
• cadmium	 manganese 	 vanadium
• calcium	• mercury	• zinc
• chromium	• nickel	

Two water method blanks were analyzed in conjunction with aqueous inorganic samples. None of the above elements were detected above respective CRLs in either of the two water method blanks.

Three soil method blanks were analyzed. Forty-eight of the seventy-two reported inorganic soil method blank results (67%) were below the CRL. Elements which were detected in the soil method blanks are presented in the following table.

SUMMARY OF DETECTED ELEMENTS IN SOIL METHOD BLANKS

ELEMENT	FREQUENCY OF DETECTION	CONCENTRATION RANGE (ug/g)
Aluminum	3/3	379 to 520
Barium	3/3	7.3 to 9.09
Calcium	3/3	220 to 258
Iron	3/3	548 to 839
Lead	3/3	0.426 to 0.724
Magnesium	3/3	113 to 141
Manganese	3/3	19.6 to 26.2
Potassium	3/3	135 to 179

The above detections are not believed to represent introductions from the laboratory. Instead, they are thought to be representative of concentrations of the respective elements in the soil used for the blanks. Soil method blanks analyzed in the past using this same soil type had the same elements detected and at similar concentrations.

VOCs

USAEC method LM19 was used to analyze one soil method blank for VOC contamination. There were no VOCs detected above CRLs in this blank. VOC contamination from the laboratory did not occur.

SVOCs

USAEC methods LM18 and UM18 were used to analyze soil and water method blanks, respectively, for SVOC contamination. Three soil and four water method blanks were analyzed for this evaluation. There were no SVOC compounds detected at concentrations above CRLs in any of the soil method blanks. The only SVOC detected in any of the water method blanks was mesityl oxide (4-methyl-3-penten-2-one). It was detected in one of four water method blanks at 3 ug/L. Mesityl oxide is often produced as an aldol condensation product of acetone in the laboratory. The presence of this compound in a method blank was likely due to this form of laboratory contamination.

Pesticides and PCBs

USAEC methods LH10 and UH13 were used to analyze soil and water method blanks, respectively, for pesticide contamination. USAEC methods LH13 and UH02 were used to determine PCB concentrations in soil and water method blanks. There were no pesticide or PCB compounds detected in concentrations above CRLs in either the soil or water method blanks.

Other Methods

Method blank data were also available for the following parameters: total hardness, TSS, TOC, TPHC, and alkalinity. Analytical results for all of the above parameters were below CRLs except for TSS and TPHC. Three of four method blanks had reported TSS concentrations below the CRL of 4,000 ug/L. TSS was

reported at a concentration of 5,000 ug/L in the method blank associated with lot TEYX. This indicated that a small amount of TSS contamination was introduced into the method blank at the laboratory. Contamination of this magnitude is not believed to have affected the data quality of the TSS results.

There were two soil method blanks for which TPHC measurements were reported. One of these blanks had a result which was above the CRL of 28 ug/g. The concentration reported was 30 ug/g in lot ZERE. Based on method blank data, TPHC sample results at similar concentrations in soil samples may be false positives related to laboratory contamination.

3.0 FIELD QUALITY CONTROL

Three rinsate blanks and one trip blank were collected as field quality control samples. Rinsate blanks are collected by rinsing decontaminated sampling equipment (e.g., split spoons and trowels) with previously analyzed water and collecting the water in sample containers. The purpose of collecting rinsate blanks is to assess the effectiveness of decontamination procedures in removing target analytes from sampling apparatus, and to evaluate the potential for cross contamination of samples resulting from sampling equipment residual contamination during sample collection. Rinsate blanks are collected at a rate of one per 20 samples per decontamination event.

Trip blanks are prepared from analyte free water by the laboratory and shipped to the site with other VOC sample containers. One trip blanks is included with each shipment of samples scheduled for VOC analysis and accompanies field samples to be analyzed for VOCs during collection and shipping. The purpose of trip blanks is to assess the potential for contamination of samples with VOCs during handling and storage.

3.1 RINSATE BLANK RESULTS

The three rinsate blanks collected during the Lower Cold Spring Brook SI were assigned sample numbers SBK94577, SBK94578, and SBK94579. Rinsate blanks were analyzed for the following parameters: inorganics, VOCs, SVOCs, TSS,

TOC, TPHC, alkalinity, and total hardness. Rinsate blank results are presented in Table C-9.

Inorganics

Rinsate blanks were analyzed for the 23 PAL inorganics. Eighty-eight of ninety-two concentrations (96%) for all of the elements reported in the rinsates were below respective CRLs. Concentrations of any elements detected in the rinsates are summarized in the following Table.

SUMMARY OF DETECTED ELEMENTS IN RINSATE BLANKS

ELEMENT DETECTED	FREQUENCY OF DETECTION	CONCENTRATION RANGE (ug/L)
Iron	1/3	65
Manganese	2/3	6.3 to 13
Sodium	1/3	562

The above detections represent results for all three of the rinsates. The frequency and concentrations of detected elements in the rinsate blanks indicate that decontamination procedures effectively removed residual inorganic contamination from the sampling equipment.

SVOCs

USAEC method UM18 was used to measure SVOCs in the three rinsate blanks. One SVOC contaminant, di-n-butyl phthalate, was reported in all three of the rinsates at concentrations ranging from 17 to 20 ug/L. Di-n-butyl phthalate is a member of the family of phthalate esters which have been classified by the USEPA as common laboratory contaminants. Similar concentrations observed in field samples may represent introduced contamination.

Pesticides and PCBs

USAEC methods UH13 and UH02 were used to assess whether there was pesticide /PCB contamination in the rinsate blank SBK94579. There were no pesticide or PCB compounds reported above CRL in this rinsate.

Other Methods

The rinsate blank SBK94577 was analyzed for TSS, alkalinity, and total hardness. The concentrations for all of these parameters were below respective CRLs. The rinsate blanks SBK94578 and SBK94579 were analyzed for TOC and TPHC. The concentrations for these parameters were also less than the CRLs in both rinsates.

3.2 TRIP BLANK RESULTS

One trip blank, TRP49800, was collected during the Cold Spring Brook SI sampling effort. The trip blank was analyzed for VOCs using USAEC method UM20. All trip blank results are presented in Table C-10. No VOCs were reported above CRLs. This indicates that sample integrity was maintained and that cross contamination did not occur.

4.0 MATRIX SPIKE SAMPLES

Matrix spike and matrix spike duplicate samples were collected at a rate of one per 20 environmental samples. The purpose of collecting these samples was to evaluate the accuracy and precision of the analytical method in the sample matrix and the effect of the sample matrix on the recovery of known concentrations of target analytes. MS/MSD sample results have been tabulated and are presented in Table C-11. Data have been segregated by method and spiked analyte to show recovery trends and to assess the accuracy of particular analyses. Matrix spike data have been paired with corresponding data for matrix spike duplicates to make recovery comparisons and evaluate the precision of measurement.

Recoveries of analytes were calculated by subtracting the concentration measured in the unspiked sample from the concentration measured in the spiked sample and then dividing by the spike concentration. The relative percent difference

(RPD) between recoveries for the MS and MSD samples was used to measure the analytical precision of the results. The RPDs were calculated as the difference between the measured MS and MSD recoveries divided by their average recovery and multiplied by 100. RPDs are included in Table C-11. The average, maximum and minimum recoveries for each method are also included as a way of measuring accuracy and trends.

MS/MSD analysis was performed on two soil samples and one water sample. The soil samples were DXCS2000 and DXCS0400. The water sample was WXCS0400. MS/MSD samples were analyzed for inorganics, VOCs, SVOCs, pesticides, PCBs, total hardness, alkalinity, TOC and TPHC. The criteria used for interpreting MS/MSD data are from the analytical USEPA Contract Laboratory Program (CLP) protocols and the Fort Devens POP, Volume III.

Inorganics

Matrix spike analysis for inorganics collected during the Lower Cold Spring Brook SI included an assessment of recoveries for the 23 inorganics on the PAL. Sample WXCS0400 was an unfiltered surface water sample. Water matrix spike results were evaluated based on USEPA CLP guidelines. A recovery of 75 to 125 percent is specified by these guidelines for inorganics (USEPA, 1989).

Matrix spike recoveries for forty of forty-four (91%) analyses met the EPA criteria. Elements for which recoveries did not meet this criteria were iron and antimony. The MS/MSD recoveries for iron were 74% and 63%. The RPD of these results is 17%. The recoveries for antimony were 39% and 36% with an RPD of 8%. These results suggest that antimony concentrations for water samples may be biased low based on the low matrix spike recoveries. Results for all other elements for the water sample did not appear to be affected by the matrix.

The soil inorganic matrix spike recoveries were also assessed using the USEPA CLP guideline for inorganics of 75 to 125 percent recovery. Seventy-nine percent of the calculated recoveries were within CLP limits for MS/MSD sample pairs. One hundred and sixty-two of one hundred eighty-eight total soil inorganic recoveries (86%) met this criteria. Elements for which MS/MSD recoveries were not within CLP limits for at least one sample are summarized in the following table.

ELEMENTS FOR WHICH USEPA RECOVERY CRITERIA WERE NOT MET

ELEMENT	SAMPLE ID	PERCENT RECOVERIES	RPD
Aluminum	DXCS0400 DXCS2000	59/0.6 0.6/0.6	196% 0.0%
Antimony	DXCS2000	75/71	5.3%
Iron	DXCS0400 DXCS2000	43/22 76/18	67% 123%
Manganese	DXCS0400	84/2.0	191%
Selenium	DXCS2000	70/63	9.8%

Recoveries for the following elements were below the USEPA CLP lower limit for

the MS/MSD of at least one sample: aluminum, antimony, iron, and selenium. The RPDs between the MS and MSD were below 10% for antimony and selenium. This showed consistency for the results of these elements even though the recoveries did not meet EPA criteria. Corresponding sample results for these elements may be biased low due to matrix effects.

The RPDs for the other elements ranged from 66.5% to 196.1%. This indicated that there was more variability for recoveries of spikes of these elements. This variability may have been due to a lack of homogeneity of the soil matrix. Concentrations of aluminum, iron, and manganese in original samples were high compared to laboratory spike concentrations. No qualifications of results would be necessary based on USEPA guidance (USEPA, 1989).

VOCs

Matrix spike analysis for VOCs was based on MS/MSD results for one soil sample. This sample was identified as DXCS2000. VOCs contained in the spike included the following: 1,1-dichloroethene, benzene, chlorobenzene, toluene, and trichloroethene. Surrogate recoveries were included to provide additional data to

make an assessment of the accuracy of the results. These surrogates included deuterated 1,2-dichloroethane, deuterated toluene and 4-bromofluorobenzene.

The <u>USEPA CLP Statement of Work For Organics Analysis</u> (USEPA, 1988) was used as a reference to assess VOC MS/MSD recoveries. Recovery limits specified in this document are summarized in the following table.

VOC MATRIX SPIKE RECOVERY LIMITS

COMPOUND	PERCENT RECOVERY LIMITS
1,1-Dichloroethene	59-172
Trichloroethene	62-137
Benzene	66-142
Toluene	59-139
Chlorobenzene	60-133

MS/MSD recoveries for all five of the VOCs in the above table were within the specified recovery limits. This indicated that there were no matrix effects observed for the VOC analyses.

VOC Surrogate Recoveries

Surrogates are compounds chemically similar to target compounds which were spiked into all samples to determine the accuracy of the method. Potential matrix effects can also be identified by the analysis of surrogate recoveries. VOC surrogate recoveries were tabulated and are presented in Table C-12. Assessments of VOC surrogate recoveries were based on limits specified in the Fort Devens POP, Volume III. These limits and surrogate recoveries for VOC field samples are presented in the following table.

VOC SURROGATE RECOVERIES VERSUS RECOVERY LIMITS

SURROGATE	WATER RECOVERY LIMITS	% WITHIN WATER LIMITS	SOIL RECOVERY LIMITS	% WITHIN SOIL LIMITS
1,2-Dichloroethane-D4	76-114	100	70-121	100
4-Bromofluorobenzene	86-115	0	74-121	67
Toluene-D8	88-110	100	81-117	22

Surrogate recoveries included in the above table represent four water results and eighteen soil results. The 4-bromofluorobenzene recoveries for water were 2 to 4% below the lower limit. The recoveries do not indicate problems with the accuracy of the method or matrix effects. A low percentage (22%) of toluene-d8 soil recoveries were within criteria. The majority of recoveries slightly exceeded the upper limit for this surrogate. The VOC surrogate data demonstrated that there were no matrix effects and that there was good accuracy for the method.

SVOCs

MS/MSD analysis for SVOCs was based on spike recoveries for two soil samples and one water sample. The two soil samples were DXCS0400 and DXCS2000. The water sample was WXCS0400. SVOC recoveries for both water and soil were assessed using criteria specified in the <u>USEPA CLP Statement of Work For Organic Analyses</u> (USEPA, 1988). A summary of recovery limits found in this document is included in the following table.

USEPA SVOC MATRIX SPIKE RECOVERY LIMITS

COMPOUND	SOIL PERCENT RECOVERY LIMITS	WATER PERCENT RECOVERY LIMITS
Phenol	26-90	12-89
2-Chlorophenol	25-102	27-123
1,4-Dichlorobenzene	28-104	36-97
1,2,4-Trichlorobenzene	38-107	39-98
4-Chloro-3-methylphenol	26-103	23-97
Acenaphthene	31-137	46-118
4-Nitrophenol	11-114	10-80
2,4-Dinitrotoluene	28-89	24-96
Pentachlorophenol	17-109	9-103
Pyrene	35-142	26-127

The recoveries for the soil sample DXCS0400 were within CLP limits for all SVOCs. The recoveries for several SVOCs exceeded CLP limits for the sample DXCS2000. These compounds are identified in the following table.

SVOC MATRIX SPIKE RECOVERIES

COMPOUND	MS/MSD RECOVERY
2-Chlorophenol	154/154
4-Nitrophenol	231/231
Acenaphthene	149/149
Pentachlorophenol	231/231
Pyrene	134/134

Based on high MS/MSD recoveries, the sample concentrations of the compounds found in the above table for DXCS2000 may be biased high.

The SVOC recoveries for the water sample WXCS0400 were within respective CLP limits for all compounds except phenol. The MS/MSD recoveries for this compound were 140% and 130%. Overall, MS/MSD results for WXCS0400 showed that there were no matrix effects for SVOCs in an aqueous media.

SVOC Surrogate Recoveries

Surrogate recoveries for SVOCs were assessed using guidelines specified in the Fort Devens POP, Volume III. These guidelines are summarized in the following table. Also included in the table are the percentage of surrogate recoveries from field samples that were within the specified limits. Individual SVOC surrogate recoveries are presented in Table C-13.

SVOC SURROGATE RECOVERIES VERSUS RECOVERY LIMITS

SVOC SURROGATE	WATER RECOVERY LIMITS	% WITHIN WATER LIMITS	SOIL RECOVERY LIMITS	% WITHIN SOIL LIMITS
2-Fluorophenol	21-100	81	25-121	79
Phenol-D6	10-94	83	24-113	91
2,4,6-Tribromophenol	10-123	100	19-122	98
Nitrobenzene-D5	35-114	100	23-120	98
2-Fluorobiphenyl	43-116	100	30-115	100
Terphenyl-D14	33-141	100	18-137	100

Surrogate spike recovery analysis for SVOCs was based on seventy-two water results and eighty soil results. SVOC surrogate recoveries demonstrate that there were no matrix effects seen and that there was good accuracy shown for the SVOC method.

Pesticides and PCBs

The soil sample DXCS2000 was used to observe matrix effects for pesticide and PCB compounds. The EPA CLP advisory limits of 60 to 150% recovery were used to assess matrix effects. Pesticide and PCB recoveries were within these limits for all compounds.

Other Methods

Other methods for which MS/MSD data were available included TOC and TPHC.

Two sediment samples, DXCS0400 and DXCS2000, were used to collect MS/MSD data for TOC. TOC spike recoveries ranged from 85 to 171%. The RPDs for DXCS2000 were 78% and 67%. The results for these samples did not show good precision between the MS and MSD. Because of the lack of agreement for the MS/MSDs, sediment TOC results should be considered estimated concentrations.

The sediment samples DXCS0400 and DXCS2000 were used as MS/MSD samples for TPHC. Recoveries for DXCS0400 were 92% and 90% while those for DXCS2000 were 133% and 89%. The RPD for the MS/MSD results for DXCS0400 was 2.8% versus an RPD of 40% for the MS/MSD results of DXCS2000.

5.0 FIELD DUPLICATE SAMPLES

Field duplicate samples were collected at the rate of one per twenty field samples to assess the effects of sampling and analytical procedures on the precision of results. USEPA Region I Guidelines were used to make assessments regarding the reproducibility of the results based on the RPD between the results reported for the primary and duplicate samples. Duplicate data are presented in Table C-14. The sample ID differentiates duplicates from other samples by using a "D" as the second character in the identification code.

A total of three field duplicate samples were collected during Lower Cold Spring Brook SI. There were two sediment samples and one surface water sample. The sediment samples are DXCS0500 and DXCS2000. The surface water sample is WXCS0500. Field duplicate samples were analyzed for inorganics, VOCs, SVOCs, and TOC.

Inorganics

Duplicate sets of soil and water samples were analyzed for the 23 PAL inorganics. The USEPA Region I criteria for the RPD of inorganic duplicate pair soil samples is 50 percent. Twenty-nine of forty-five (65%) inorganic soil duplicate pair results had RPDs that were within USEPA guidelines. The RPDs for the following elements met USEPA Region I criteria for all soil duplicates: antimony, arsenic, chromium, lead, mercury, potassium, silver, and thallium. The precision of results for these elements was good. The RPDs of duplicate pair concentrations exceeded USEPA criteria for the elements listed in the following table.

DUPLICATE INORGANIC SOIL DATA OUTSIDE USEPA GUIDELINES

ELEMENT	SAMPLE ID	CONCENTRATION (ug/g)	RPD
Aluminum	DXCS0500	14000/2700	136%
Barium	DXCS0500	< 5.2/ 210	190%
Beryllium	DXCS0500	3.4/< 0.5	148%
Cadmium	DXCS0500	6.4/< 0.7	161%
Calcium	DXCS0500 DXCS2000	6500/1000 4900/2800	146% 53%
Cobalt	DXCS0500	21/120	140%
Copper	DXCS0500	< 0.97/28	187%
Iron	DXCS0500	28000/4800	142%
Magnesium	DXCS0500	1400/< 100	173%
Manganese	DXCS0500	5600/840	147%

ELEMENT	SAMPLE ID	CONCENTRATION (ug/g)	RPD
Nickel	DXCS0500	23/150	145%
Selenium	DXCS0500	2.2/< 0.25	159%
Sodium	DXCS0500	2000/< 100	181%
Vanadium	DXCS0500	< 3.4/26	153%
Zinc	DXCS0500	600/110	141%

Most of the sample results for which the RPD did not meet USEPA criteria were associated with DXCS0500. The results for this sample did not show good precision for inorganic results. This may have been due to a lack of homogeneity of inorganics throughout the sample matrix. Sample results for inorganics in DXCS0500 should be considered estimated because of the uncertainties associated with the duplicate data.

USEPA Region I criteria for duplicate pairs of water samples is an RPD of no greater than 30%. Fourteen of twenty-three (61%) RPDs for sample WXCS0500 met USEPA Region I criteria. Elements for which this criteria was not met are summarized in the following table.

DUPLICATE INORGANIC WATER DATA OUTSIDE USEPA GUIDELINES

ELEMENT	CONCENTRATION (ug/L)	RPD
Aluminum	4700/2000	83%
Arsenic	5.5/14	87%
Barium	136/65	71%
Cobalt	44/< 25	56%
Iron	14000/5800	83%

ELEMENT	CONCENTRATION (ug/L)	RPD
Lead	27/10	92%
Manganese	6100/1900	103%
Potassium	2500/1800	32%
Zinc	190/110	50%

There is low precision for the aqueous results for elements listed in the above table. Reported concentrations of these elements for WXCS0500 should be considered estimated.

VOCs

The sediment sample DXCS2000 and its associated duplicate were used to measure the precision of VOC analysis using method LM19. The USEPA Region I criteria which was used to measure this precision is 50% RPD. The RPDs for all VOCs were within the USEPA criteria except for toluene. The RPD of the toluene results for DXCS2000 was 69%. In general, the VOC results indicated that there was little variability for reported concentrations.

SVOCs

Two soil samples and their associated duplicates were used to measure the precision of the SVOC analysis using method LM18. The RPDs for the majority of SVOCs were within the USEPA Region I guideline of 50%. Compounds which exceeded this limit are presented in the following table.

DUPLICATE SVOC SOIL DATA OUTSIDE USEPA GUIDELINES

COMPOUND	SAMPLE ID	RPD
Benzo[k]fluoranthene	DXCS0500	152%
Chrysene	DXCS0500	155%
Fluoranthene	DXCS2000	100%
Phenanthrene	DXCS2000	86%

It should be noted that a 1:10 dilution was performed for one sample of the duplicate pair DXCS2000. These compounds were not detected in the sample, but large differences were reported for the CRLs. This resulted in high RPD calculations for SVOC results of this duplicate. The high RPD results do not indicate a lack of precision for these results. Based on the results for polynuclear aromatic hydrocarbons, concentrations for these compounds in soil should be considered estimated.

LIST OF AEC METHODS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

USATHAMA METHOD NUMBER	COMPARABLE EPA METHOD NUMBER	METHOD DESCRIPTION
JB01	7471	MERCURY IN SOIL BY CVAA.
JD15	7740	SELENIUM IN SOIL BY GFAA.
JD16	7911	VANADIUM IN SOIL BY GFAA.
JD17	7421	LEAD IN SOIL BY GFAA.
JD18	7761	SILVER IN SOIL BY GFAA.
JD19	7060	ARSENIC IN SOIL BY GFAA.
JD24	7841	THALLIUM IN SOIL BY GFAA
JS16	6010	METALS IN SOIL BY ICP.
LM18	8270	EXTRACTABLE ORGANICS IN SOIL BY GC/MS.
SB01	245.1	MERCURY IN WATER BY CVAA.
SD09	279.2	THALLIUM IN WATER BY GFAA
SD20	239.2	LEAD IN WATER BY GFAA.
SD21	270.2	SELENIUM IN WATER BY GFAA.
SD22	206.2	ARSENIC IN WATER BY GFAA.
SD23	272.2	SILVER IN WATER BY GFAA.
SD28	204.2	ANTIMONY IN WATER BY GFAA
SS10	200.7	METALS IN WATER BY ICAP.
UM18	625	EXTRACTABLE ORGANICS IN WATER BY GC/MS.
N/A	415.1	TOTAL ORGANIC CARBON
N/A	160.1	TOTAL DISSOLVED SOLIDS
N/A	160.2	TOTAL SUSPENDED SOLIDS
N/A	130.2	HARDNESS
N/A	310.1	ALKALINITY

SUMMARY OF CERTIFIED REPORTING LIMITS SEMIVOLATILE ORGANIC COMPOUNDS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

	CERTIFIED REPORTING LIMIT					
COMPOUND	USATHAMA METHOD UM20 WATER ANALYSIS	USATHAMA METHOD LM19 SOIL ANALYSIS (UB/E)				
COMITOCIAL	(ug/L)					
1,2,4-Trichlorobenzene	1.8	0.04				
1,2-Dichlorobenzene	1.7	0.11				
1,3-Dichlorobenzene	1.7	0.13				
1,4-Dichlorobenzene	1.7	0.098				
2,4,5-Trichlorophenol	5.2	0.1				
2,4-Dichlorophenol	2.9	0.18				
2,4-Dimethylphenol	5.8	0.69				
2,4-Dinitrophenol	21	1.2				
2,4-Dinitrotoluene	4.5	0.14				
2-Chlorophenol	0.99	0.06				
2-Chloronaphthalene	0.5	0.036				
2-Methylnaphthalene	1.7	0.049				
2-Nitroaniline	4.3	0.062				
2-Methylphenol	3.9	0.029				
2-Nitrophenol	3.7	0.14				
3,3-Dichlorobenzidine	12	6.3				
3-Nitroaniline	4.9	0.45				
2-Methyl-4,6-Dinitrophenol	17	0.55				
4-Bromophenylphenyl ether	4.2	0.033				
3-Methyl-4-Chlorophenol	4.0	0.095				
4-Chlorophenylphenyl ether	5.1	0.033				
4-Methylphenol	0.52	0.24				
4-Nitroaniline	5.2	0.41				
4-Nitrophenol	12	1.4				
Acenaphthene	1.7	0.036				
Acenaphthylene	0.5	0.033				
Anthracene	0.5	0.033				
bis (2-Chlorethoxy) methane	1.5	0.059				
bis (2-Chloroisopropyl) ether	5.3	0.2				
bis (2-Chloroethyl) ether	1.9	0.033				
bis (2-Ethylhexyl) phthalate	4.8	0.62				
Benzo(a)anthracene	1.6	0.17				
Benzo(a)pyrene	4.7	0.25				
Benzo(b)fluoranthene	5.4	0.21				
Butylbenzylphthalate	3.4	0.17				

SUMMARY OF CERTIFIED REPORTING LIMITS SEMIVOLATILE ORGANIC COMPOUNDS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

	CERTIFIED REPORTING LIMIT				
COMMONIA	USATHAMA METHOD UM18				
COMPOUND	WATER ANALYSIS	SOIL ANALYSIS			
P (12)	(ug/L)	(ug/g)			
Benzo(g,h,i)perylene	6.1	0.25			
Benzo(k)fluoranthene	0.87	0.066			
Benzyl Alcohol	0.72	0.19			
Butylbenzylphthalate	3.4	0.17			
Chrysene	2.4	0.12			
Hexachlorobenzene	1.6	0.033			
Hexachlorocyclopentadiene	8.6	6.2			
Hexachloroethane	1.5	0.15			
Dibenz(a,h)anthracene	6.5	0.21			
Dibenzofuran	1.7	0.035			
Diethylphthalate	2.0	0.24			
Dimethylphthalate	1.5	0.17			
Di-n-butylphthalate	3.7	0.061			
Fluoranthene	3.3	0.068			
Fluorene	3.7	0.033			
Hexachlorobutadiene	3.4	0.23			
Indeno(1,2,3-cd)pyrene	8.6	0.29			
Isophorone	4.8	0.033			
Naphthalene'	0.5	0.037			
Nitrobenzene	0.5	0.045			
N-Nitroso di-n-propylamine	4.4	0.2			
N-Nitrosodiphenylamine	3.0	0.19			
Pentachlorophenol	18	1.3			
Phenanthrene	0.5	0.033			
Phenol	9.2	0.11			
Pyrene	2.8	0.033			
2,4,6-Trichlorophenol	4.2	0.17			
2,6-Dinitrotoluene	0.79	0.085			
4-Chloroaniline	7.3	0.81			
Di-n-octylphthalate	15	0.19			
Carbazole	N/A	N/A			

SUMMARY OF CERTIFIED REPORTING LIMITS OF INORGANICS

COLD SPRING BROOK SAMPLES FORT DEVENS, MA

PARAMETER	MATRIX	USATHAMA METHOD NUMBER	METHOD DESCRIPTION	CERTIFIED REPORTING LIMIT
ALUMINUM (AI)	WATER	SS10	ICP	141 ug/L
Cherry Mary Lagran	SOIL	JS16	ICP	2.35 ug/g
	WATER	SS10	ICP	38 ug/L
ANTIMONY (Sb)	SOIL	JS16	ICP	7.14 ug/g
	WATER	SD28	GFAA	3.03 ug/L
	SOIL	JD25	GFAA	1.09 ug/g
ARSENIC (As)	WATER	SD22	GFAA	2.54 ug/L
	SOIL	JD19	GFAA	0.25 ug/g
BARIUM (Ba)	WATER	SS10	ICP	5.0 ug/L
	SOIL	JS16	ICP	5.18 ug/g
BERYLLIUM (Be)	WATER	SS10	ICP	5.0 ug/L
	SOIL	JS16	ICP	0.50 ug/g
CADMIUM (Cd)	WATER	SS10	ICP	4.01 ug/L
	SOIL	JS16	ICP	0.70 ug/g
CALCIUM (Ca)	WATER	SS10	ICP	500 ug/L
	SOIL	JS16	ICP	100 ug/g
CHROMIUM (Cr)	WATER	SS10	ICP	6.02 ug/L
	SOIL	JS16	ICP	4.05 ug/g
COBALT (Co)	WATER	SS10	ICP	25 ug/L
	SOIL	JS16	ICP	1.42 ug/g
COPPER (Cu)	WATER	SS10	ICP	8.09 ug/L
	SOIL	JS16	ICP	0.965 ug/g
IRON (Fe)	WATER	SS10	ICP	42.7 ug/L
	SOIL	JS16	ICP	3.68 ug/g
	WATER	SS10	ICP	18.6 ug/L
LEAD (Pb)	SOIL	JS16	ICP	10.5 ug/g
7,000	WATER	SD20	GFAA	1.26 ug/L
	SOIL	JD17	GFAA	0.177 ug/g
MAGNESIUM (Mg)	WATER	SS10	ICP	500 ug/L
	SOIL	JS16	ICP	100 ug/g
MANGANESE (Mn)	WATER	SS10	ICP	2.75 ug/L
	SOIL	JS16	ICP	2.05 ug/g
MERCURY (Hg)	WATER	SB01	CVAA	0.243 ug/L
	SOIL	JB01	CVAA	0.05 ug/g
NICKEL (Ni)	WATER	SS10	ICP	34.3 ug/L
	SOIL	JS16	ICP	1.71 ug/g

SUMMARY OF CERTIFIED REPORTING LIMITS

OF INORGANICS

COLD SPRING BROOK SAMPLES

		USATHAMA	METHOD	CERTIFIED
PARAMETER	MATRIX	METHOD	DESCRIPTION	REPORTING
		NUMBER		LIMIT
POTASSIUM (K)	WATER	SS10	ICP	375 ug/L
	SOIL	JS16	ICP	100 ug/g
SELENIUM (Se)	WATER	SD21	GFAA	3.02 ug/L
	SOIL	JS16	GFAA	2.42 ug/g
SILVER (Ag)	WATER	SD23	GFAA	0.25 ug/L
	SOIL	JD18	GFAA	.025 ug/g
	WATER	SS10	ICP	4.60 ug/L
	SOIL	JS16	ICP	0.589 ug/g
SODIUM (Na)	WATER	SS10	ICP	500 ug/L
	SOIL	JS16	ICP	100 ug/g
THALLIUM (TI)	WATER	SD09	GFAA	6.99 ug/L
	SOIL	JD24	GFAA	6.62 ug/g
TIN (Sn)	WATER	SS10	ICP	47.1 ug/L
	SOIL	JS16	ICP	5 ug/g
VANADIUM (V)	WATER	SS10	ICP	11.0 ug/L
	SOIL	JS16	ICP	3.39 ug/g
ZINC (Zn)	WATER	SS10	ICP	21.1 ug/L
	SOIL	JS16	ICP	8.03 ug/g

SUMMARY OF CERTIFIED REPORTING LIMITS VOLATILE ORGANIC COMPOUNDS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

X 32 /	CERTIFIED REPORTING LIMIT					
COMPOUND	USATHAMA METHOD UM20 WATER ANALYSIS	USATHAMA METHOD LMI SOIL ANALYSIS				
and the second	(ug/L)	(ug/g)				
1,1,1-Trichloroethane	0.5	0.0044				
1,1,2-Trichloroethane	1.2	0.0054				
1,1-Dichloroethene	0.5	0.0039				
1,1-Dichloroethane	0.68	0.0023				
1,2-Dichloroethene (total)	0.5	0.0030				
1,2-Dichloroethane	0.5	0.0017				
1,2-Dichloropropane	0.5	0.0029				
Acetone	13	0.017				
Bromodichloromethane	0.59	0.0029				
Cis-1,3-dichloropropene	0.58	0.0032				
Vinyl acetate	8.3	0.0032				
Vinyl Chloride	2.6	0.0062				
Chloroethane	1.9	0.012				
Benzene	0.5	0.0015				
Carbon Tetrachloride	0.58	0.007				
Methylene Chloride	2.3	0.012				
Bromomethane	5.8	0.0057				
Chlormethane	3.2	0.0088				
Bromoform	2.6	0.0069				
Dichloromethane	2.3	0.012				
Chloroform	0.5	0.00087				
Chlorobenzene	0.5	0.00086				
Carbon Disulfide	0.5	0.0044				
Dibromochloromethane	0.67	0.0031				
Ethylbenzene	0.5	0.0017				
Toluene	0.5	0.00078				
Methyl Ethyl Ketone	6.4	0.070				
Methyl Isobutyl Ketone	3.0	0.027				
Methyl-n-Butyl Ketone	3.6	0.032				
Styrene	0.5	0.0026				
Trans-1,3-Dichloropropene	0.7	0.0028				
1,1,2,2 - Tetrachloroethane	0.51	0.0024				
Tetrachloroethane	1.6	0.00081				
Trichloroethene	0.5	0.0028				
Xylene (total)	0.84	0.0015				

1

SUMMARY OF CERTIFIED REPORTING LIMITS PESTICIDE COMPOUNDS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

	CERTIFIED REPORTING LIMIT					
COMPOUND	USATHAMA METHOD UH13 WATER ANALYSIS	USATHAMA METHOD LHI SOIL ANALYSIS				
	(ag/L)	(ug/g)				
BHC, A	0.039	0.00907				
Endosulfan, A	0.023	0.00602				
Aldrin	0.092	0.00729				
внс, в	0.024	0.00257				
Endosulfan, B	0.023	0.00663				
BHC, D	0.029	0.00555				
Dieldrin	0.024	0.00629				
Endrin	0.024	0.00657				
Endrin Aldehyde	0.029	0.0240				
Endosulfan Sulfate	0.079	0.00763				
Heptachlor	0.042	0.00618				
Heptachlor Epoxide	0.025	0.00622				
Lindane	0.051	0.00657				
Methoxychlor	0.057	0.0711				
DDD-PP	0.023	0.00826				
DDE-PP	0.027	0.00765				
DDT-PP	0.034	0.00739				
Toxaphene	1.350	0.444				
Chlordane-alpha	0.075	0.005				
Chlordane-gamma	0.075	0.005				

SUMMARY OF CERTIFIED REPORTING LIMITS OF PCB COMPOUNDS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

	CERTIFIED REPORTING LIMIT							
The ar	COMPOUND	USATHAMA METHOD UH02 WATER ANALYSIS (ug/L)	USATHAMA METHOD LH13 SOIL ANALYSIS (UB/8)					
	PCB 1016	0.16	0.067					
	PCB 1221	0.16	0.067					
	PCB 1232	0.16	0.067					
	PCB 1242	0.19	0.082					
	PCB 1248	0.19	0.082					
	PCB 1254	0.19	0.082					
	PCB 1260	0.19	0.082					

SUMMARY OF CERTIFIED REPORTING LIMITS OF MISCELLANEOUS METHODS COLD SPRING BROOK SAMPLES FORT DEVENS, MA

PARAMETER	MATRIX	USATHAMA METHOD NUMBER	METHOD DESCRIPTION	CERTIFIED REPORTING LIMIT
TOTAL ORGANIC	WATER	NO CERTIFIED	EPA METHOD 415.1	1000 ug/L
CARBON	SOIL	METHOD	GRAVIMETRIC	100 ug/g
ALKALINITY	WATER	NO CERTIFIED	EPA METHOD 310.1	5000 ug/L
HARDNESS	WATER	METHOD	EPA METHOD 130.2	1000 ug/L
TOTAL SUSPENDED SOLIDS	WATER	NO CERTIFIED METHOD	EPA METHOD 160.2	4000 ug/L
TOTAL PETROLEUM HYDROCARBONS	WATER	NO CERTIFIED METHOD	EPA METHOD 418.1	180 ug/L

TABLE C-8

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
1302	TECY	HARD			************	30-SEP-94	30-SEP-94		1000		********
17.77	TEDY	HARD				30-SEP-94	30-SEP-94	< <	1000	UGL	
							30 021 74		1000	OGL	
1602	TEAY	TSS				28-SEP-94	28-SEP-94	<	4000	UGL	
	TEPY	TSS				10-OCT-94	10-OCT-94		4000	UGL	
	TEYX	TSS				26-SEP-94	26-SEP-94		5000	UGL	
	TEZX	TSS				27-SEP-94	27-SEP-94		4000	UGL	
3101	TEBY	ALK				20				0.050	
3101	TEGY					29-SEP-94	29-SEP-94		5000	UGL	
		ALK				04-OCT-94	04-OCT-94		5000	UGL	
	TEOY	ALK				12-OCT-94	12-OCT-94	<	5000	UGL	
9030	ZEPE	SULFID				11-OCT-94	12-OCT-94	<	.5	UGG	
	ZEPE	SULFID				11-OCT-94	12-OCT-94	<	.5	UGG	
9045	TEIY	DU				05 01	-				
9043	TEIY	PH				05-OCT-94	05-OCT-94		8.38		
	IEIT	PH				05-0CT-94	05-0CT-94		8.31		
9060	ZEQE	TOC				06-OCT-94	06-0CT-94	<	360	UGG	
	ZETE	TOC				07-OCT-94	07-OCT-94	<	360	UGG	
	ZEUE	TOC				10-0CT-94	10-OCT-94	<	360	UGG	
	ZEXE	TOC				18-OCT-94	18-OCT-94	<	360	UGG	
	ZEXE	TOC				18-OCT-94	18-OCT-94	<	360	UGG	
									500	odd	
9071	ZERE	TPHC				12-OCT-94	13-OCT-94		30	UGG	
	ZESE	TPHC				13-OCT-94	14-OCT-94	<		UGG	
JB01	QHDC	HG				06-0CT-94	06-0CT-94	4	05	1100	
	QHEC	HG				13-OCT-94	13-0CT-94	<	.05	UGG	
	QHIC	HG				20-OCT-94		<	.05	UGG	
	QHNC	HG				21-OCT-94	20-0CT-94 21-0CT-94	<	.05	UGG	
						E1-001-74	21-001-94	<	.05	UGG	
JD15	MBBC	SE				11-OCT-94	13-OCT-94	<	.25	UGG	

JD15	USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
MBGC SE 19-OCT-94 29-OCT-94 .25 UGG	JD15	MBCC	SE	***************************************	*******		13-OCT-94	19-0CT-94		25	Hee	
OBBC PB		MBGC	SE							.25		
OBBC PB 13-OCT-94 19-OCT-94 .623 UGG	JD17	OBAC	PB				11-001-0/	13-00T-0/		121	1100	
OBFC PB 19-OCT-94 25-OCT-94 .724 UGG		OBBC	PB									
JD19 QBBC AS QBCC AS 11-0CT-94 13-0CT-94 < .25 UGG QBCC AS 13-0CT-94 18-0CT-94 < .25 UGG QBCC AS 13-0CT-94 18-0CT-94 < .25 UGG QBCC AS 13-0CT-94 25-0CT-94 < .25 UGG QBCC AS 13-0CT-94 25-0CT-94 < .5 UGG QBCC AS 13-0CT-94 19-0CT-94 < .5 UGG QBCC AS 13-0CT-94 & .5 UGG QBCC AS 13-0												
QBCC AS 13-0CT-94 18-0CT-94 25 UGG JD24 RBHA TL 11-0CT-94 13-0CT-94 26-0CT-94							19-061-94	25-001-94		.124	UGG	
UBCD	JD19						11-OCT-94	13-OCT-94	<	.25	UGG	
D24 RBHA TL 11-0CT-94 13-0CT-94 .5 UGG							13-OCT-94	18-OCT-94				
RBIA TL RBJA TL 13-0CT-94 19-0CT-94 25-0CT-94		QBGC	AS				19-OCT-94					
RBIA TL RBJA TL 13-OCT-94 19-OCT-94 < .5 UGG 19-OCT-94 < .5 UGG JD25 SBTA SB SBUA SB SBUA SB SBVA SB 11-OCT-94 20-OCT-94 < 1.09 UGG SBVA SB 13-OCT-94 20-OCT-94 < 1.09 UGG UBCD AL UBCD BA UBCD BA UBCD BE UBCD CA U	JD24	RBHA	TL				11-001-0/	17-007-0/		-	1100	
RBJA TL		RBIA	TL									
JD25 SBTA SB SBUA SB SBUA SB SBVA SB SB SB SBVA SB		RBJA										
SBUA SB SBVA SB 13-OCT-94 20-OCT-94 27-OCT-94 21.09 UGG 19-OCT-94 27-OCT-94 27-OCT-94 20-OCT-94	-57.5						17 001 74	23-001-94		.5	UGG	
SBUA SB SBVA SB 13-0CT-94 20-0CT-94 < 1.09 UGG 19-0CT-94 27-0CT-94 < 1.09 UGG UBCD AG UBCD AL UBCD BA UBCD BE 19-0CT-94 20-0CT-94	JD25						11-OCT-94	18-OCT-94	<	1.09	LIGG	
SBVA SB 19-0CT-94 27-0CT-94 1.09 UGG							13-OCT-94					
UBCD AL 19-0CT-94 20-0CT-94 520 UGG UBCD BA 19-0CT-94 20-0CT-94 9.09 UGG UBCD BE 19-0CT-94 20-0CT-94 20-0CT-94 520 UGG UBCD CA 19-0CT-94 20-0CT-94 20-0CT-94 258 UGG UBCD CD 19-0CT-94 20-0CT-94 7.7 UGG UBCD CO 19-0CT-94 20-0CT-94 7.7 UGG UBCD CC 19-0CT-94 20-0CT-94 7.965 UGG UBCD CC 19-0CT-94 20-0CT-94 7.965 UGG UBCD FE 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 141 UGG UBCD MM 19-0CT-94 20-0CT-94 20-0CT-94 141 UGG UBCD MM 19-0CT-94 20-0CT-94 26.2 UGG		SBVA	SB				19-OCT-94					
UBCD AL 19-0CT-94 20-0CT-94 520 UGG UBCD BA 19-0CT-94 20-0CT-94 9.09 UGG UBCD BE 19-0CT-94 20-0CT-94 20-0CT-94 520 UGG UBCD CA 19-0CT-94 20-0CT-94 20-0CT-94 258 UGG UBCD CD 19-0CT-94 20-0CT-94 7.7 UGG UBCD CO 19-0CT-94 20-0CT-94 7.7 UGG UBCD CC 19-0CT-94 20-0CT-94 7.965 UGG UBCD CC 19-0CT-94 20-0CT-94 7.965 UGG UBCD FE 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 141 UGG UBCD MM 19-0CT-94 20-0CT-94 20-0CT-94 141 UGG UBCD MM 19-0CT-94 20-0CT-94 26.2 UGG	JS16	UBCD	AG				10-001-0/	30 007 04	14.			
UBCD BA 19-0CT-94 20-0CT-94 9.09 UGG UBCD BE 19-0CT-94 20-0CT-94 < .5 UGG UBCD CA 19-0CT-94 20-0CT-94 < .5 UGG UBCD CO 19-0CT-94 20-0CT-94 < .7 UGG UBCD CO 19-0CT-94 20-0CT-94 < 1.42 UGG UBCD CC 19-0CT-94 20-0CT-94 < 4.05 UGG UBCD CC UBCD CC 19-0CT-94 20-0CT-94 < 4.05 UGG UBCD CC UBCD CC 19-0CT-94 20-0CT-94 < .965 UGG UBCD FE 19-0CT-94 20-0CT-94 < .965 UGG UBCD K 19-0CT-94 20-0CT-94												
UBCD BE 19-0CT-94 20-0CT-94												
UBCD CA 19-0CT-94 20-0CT-94 258 UGG UBCD CD 19-0CT-94 20-0CT-94 < .7 UGG UBCD CO 19-0CT-94 20-0CT-94 < 1.42 UGG UBCD CR 19-0CT-94 20-0CT-94 < 4.05 UGG UBCD CR 19-0CT-94 20-0CT-94 < 4.05 UGG UBCD CE 19-0CT-94 20-0CT-94 < .965 UGG UBCD FE 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 179 UGG UBCD MM 19-0CT-94 20-0CT-94 26.2 UGG												
UBCD CD 19-0CT-94 20-0CT-94 < .7 UGG UBCD CC 19-0CT-94 20-0CT-94 < .7 UGG UBCD CR 19-0CT-94 20-0CT-94 < 1.42 UGG UBCD CU 19-0CT-94 20-0CT-94 < 4.05 UGG UBCD FE 19-0CT-94 20-0CT-94 < .965 UGG UBCD K 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 141 UGG UBCD MN 19-0CT-94 20-0CT-94 26.2 UGG		UBCD										
UBCD CO		UBCD	CD									
UBCD CR UBCD CR UBCD CU 19-0CT-94 20-0CT-94 < 4.05 UGG 19-0CT-94 20-0CT-94 < .965 UGG UBCD FE 19-0CT-94 20-0CT-94 839 UGG UBCD K 19-0CT-94 20-0CT-94 179 UGG UBCD MG 19-0CT-94 20-0CT-94 141 UGG UBCD MN 19-0CT-94 20-0CT-94 26.2 UGG		UBCD	CO									
UBCD CU 19-OCT-94 20-OCT-94 < .965 UGG UBCD FE 19-OCT-94 20-OCT-94 839 UGG UBCD K 19-OCT-94 20-OCT-94 179 UGG UBCD MG 19-OCT-94 20-OCT-94 141 UGG UBCD MN 19-OCT-94 20-OCT-94 26.2 UGG		UBCD	CR									
UBCD FE UBCD K 19-OCT-94 20-OCT-94 839 UGG 19-OCT-94 20-OCT-94 179 UGG UBCD MG 19-OCT-94 20-OCT-94 141 UGG UBCD MN 19-OCT-94 20-OCT-94 26-2 UGG		UBCD	CU									
UBCD K UBCD MG UBCD MN UBCD MN 19-0CT-94 20-0CT-94 141 UGG UBCD MN 19-0CT-94 20-0CT-94 26.2 UGG		UBCD	FE									
UBCD MG 19-OCT-94 20-OCT-94 141 UGG UBCD MN 19-OCT-94 20-OCT-94 26.2 UGG		UBCD	K									
UBCD MN 19-0CT-94 20-0CT-94 26.2 UGG		UBCD	MG									
IRM MA			MN									
		UBCD	NA									

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
JS16	UBCD	NI				19-0CT-94	20-0CT-94	<	1.71	UGG	
	UBCD	V				19-OCT-94	20-OCT-94	<	3.39	UGG	
	UBCD	ZN				19-OCT-94	20-OCT-94	<	8.03	UGG	
	UBVC	AG				04-OCT-94	06-OCT-94	<	.589	UGG	
	UBVC	AL				04-OCT-94	06-OCT-94		379	UGG	
	UBVC	BA				04-OCT-94	06-0CT-94		7.99	UGG	
	UBVC	BE				04-OCT-94	06-0CT-94	<	.5	UGG	
	UBVC	CA				04-OCT-94	06-0CT-94		220	UGG	
	UBVC	CD				04-OCT-94	06-OCT-94	<	.7	UGG	
	UBVC	CO				04-OCT-94	06-OCT-94	<	1.42	UGG	
	UBVC	CR				04-OCT-94	06-OCT-94	<	4.05	UGG	
	UBVC	CU				04-OCT-94	06-OCT-94	<	.965	UGG	
	UBVC	FE	7			04-OCT-94	06-OCT-94		548	UGG	
	UBVC	K				04-OCT-94	06-OCT-94		137	UGG	
	UBVC	MG				04-OCT-94	06-0CT-94		113	UGG	
	UBVC	MN				04-OCT-94	06-OCT-94		19.6	UGG	
	UBVC	NA	9			04-OCT-94	06-0CT-94	<	100	UGG	
	UBVC	NI				04-OCT-94	06-OCT-94	<	1.71	UGG	
	UBVC	PB				04-OCT-94	06-OCT-94	<	10.5	UGG	
	UBVC	V				04-OCT-94	06-OCT-94	<	3.39	UGG	-
	UBVC	ZN				04-OCT-94	06-OCT-94	<	8.03	UGG	
	UBXC	AG				07-OCT-94	10-OCT-94	<	.589	UGG	
	UBXC	AL				07-OCT-94	10-OCT-94		452	UGG	
	UBXC	BA				07-OCT-94	10-OCT-94		7.3	UGG	
	UBXC	BE				07-OCT-94	10-OCT-94	<	.5	UGG	
	UBXC	CA				07-OCT-94	10-OCT-94		238	UGG	
	UBXC	CD				07-OCT-94	10-OCT-94	<	.7	UGG	
	UBXC	CO				07-OCT-94	10-OCT-94	<	1.42	UGG	
	UBXC	CR				07-OCT-94	10-OCT-94	<	4.05	UGG	
	UBXC	CU				07-OCT-94	10-OCT-94	<		UGG	
	UBXC	FE				07-OCT-94	10-OCT-94		753	UGG	
	UBXC	K				07-OCT-94	10-OCT-94		135	UGG	
	UBXC	MG				07-OCT-94	10-OCT-94			UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
JS16	UBXC	MN				07-OCT-94	10-0CT-94	-	21	UGG	
	UBXC	NA				07-OCT-94	10-OCT-94	<	100	UGG	
	UBXC	NI				07-OCT-94	10-OCT-94	<	1.71	UGG	
	UBXC	PB				07-OCT-94	10-OCT-94	<	10.5	UGG	
	UBXC	V				07-OCT-94	10-OCT-94	<	3.39	UGG	
	UBXC	ZN				07-OCT-94	10-OCT-94	~	8.03	UGG	
						07 001 74	10 001-74	-	0.03	UGG	
LH10	UFCB	ABHC				27-SEP-94	04-OCT-94	<	.00907	UGG	
	UFCB	ACLDAN .				27-SEP-94	04-OCT-94	<	.005	UGG	
	UFCB	AENSLF				27-SEP-94	04-OCT-94	<	.00602	UGG	
	UFCB	ALDRN				27-SEP-94	04-OCT-94	<	.00729	UGG	
	UFCB	BBHC				27-SEP-94	04-OCT-94	<	.00257	UGG	
	UFCB	BENSLF				27-SEP-94	04-OCT-94	<	.00663	UGG	
	UFCB	DBHC				27-SEP-94	04-OCT-94	<	.00555	UGG	
	UFCB	DLDRN				27-SEP-94	04-OCT-94	<	.00629	UGG	
	UFCB	ENDRN				27-SEP-94	04-OCT-94	<	.00657	UGG	
	UFCB	ENDRNA				27-SEP-94	04-OCT-94	<	.024	UGG	
	UFCB	ENDRNK				27-SEP-94	04-OCT-94	2	.024	UGG	
	UFCB	ESFSO4				27-SEP-94	04-OCT-94	<	.00763		
	UFCB	GCLDAN				27-SEP-94	04-0CT-94			UGG	
	UFCB	HPCL				27-SEP-94	04-0CT-94	<	.005	UGG	
	UFCB	HPCLE				27-SEP-94	04-0CT-94	<	.00618	UGG	
	UFCB	ISODR				27-SEP-94	04-0CT-94	<	.0062	UGG	
	UFCB	LIN				27-SEP-94		<	.00461	UGG	
	UFCB	MEXCLR				27-SEP-94	04-0CT-94	<	.00638	UGG	
	UFCB	PPDDD					04-0CT-94	<	.0711	UGG	
	UFCB	PPDDE				27-SEP-94	04-OCT-94	<	.00826	UGG	
	UFCB	PPDDT				27-SEP-94	04-OCT-94	<	.00765	UGG	
	UFCB	TXPHEN				27-SEP-94	04-OCT-94	<	.00707	UGG	
	UFZA	ABHC				27-SEP-94	04-OCT-94	<	.444	UGG	
	UFZA	ACLDAN				22-SEP-94	28-SEP-94	<	.00907	UGG	
	UFZA	AENSLF				22-SEP-94	28-SEP-94	<	.005	UGG	
	UFZA					22-SEP-94	28-SEP-94	<	.00602	UGG	
	UFZA	ALDRN				22-SEP-94	28-SEP-94	<	.00729	UGG	

USATHAM Method Code	A Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LH10	UFZA	ВВНС				22-SEP-94	28-SEP-94	٠	.00257	UGG	
20.02	UFZA	BENSLF				22-SEP-94	28-SEP-94	<	.00663	UGG	
	UFZA	DBHC				22-SEP-94	28-SEP-94	<	.00555	UGG	
	UFZA	DLDRN				22-SEP-94	28-SEP-94	<	.00629	UGG	
	UFZA	ENDRN				22-SEP-94	28-SEP-94	~	.00657	UGG	
	UFZA	ENDRNA				22-SEP-94	28-SEP-94	<	.024	UGG	
	UFZA	ENDRNK				22-SEP-94	28-SEP-94	2	.024	UGG	
	UFZA	ESFS04				22-SEP-94	28-SEP-94	<	.00763	UGG	
	UFZA	GCLDAN				22-SEP-94	28-SEP-94	<	.00765	UGG	
	UFZA	HPCL				22-SEP-94	28-SEP-94	<	.00618	UGG	
	UFZA	HPCLE				22-SEP-94	28-SEP-94	<	.0062	UGG	
	UFZA	ISODR				22-SEP-94	28-SEP-94	<	.00461	UGG	
	UFZA	LIN				22-SEP-94	28-SEP-94	<	.00638	UGG	
	UFZA	MEXCLR				22-SEP-94	28-SEP-94	<	.0711	UGG	
	UFZA	PPDDD				22-SEP-94	28-SEP-94	<	.00826	UGG	
	UFZA	PPDDE				22-SEP-94	28-SEP-94	<	.00765	UGG	
	UFZA	PPDDT				22-SEP-94	28-SEP-94	<	.00707	UGG	
	UFZA	TXPHEN			7	22-SEP-94	28-SEP-94	<	-444	UGG	
LH16	NGEB	PCB016				22-SEP-94	29-SEP-94	<	.0666	UGG	
	NGEB	PCB221				22-SEP-94	29-SEP-94	<	.082	UGG	
	NGEB	PCB232				22-SEP-94	29-SEP-94	<	.082	UGG	
	NGEB	PCB242				22-SEP-94	29-SEP-94	<	.082	UGG	
	NGEB	PCB248				22-SEP-94	29-SEP-94	<	.082	UGG	- 0
	NGEB	PCB254				22-SEP-94	29-SEP-94	<	.082	UGG	
	NGEB	PCB260				22-SEP-94	29-SEP-94	<	.0804	UGG	
	NGHB	PCB016				27-SEP-94	04-OCT-94	<	.0666	UGG	
	NGHB	PCB221				27-SEP-94	04-OCT-94	<	.082	UGG	
	NGHB	PCB232				27-SEP-94	04-OCT-94	<	.082	UGG	
	NGHB	PCB242				27-SEP-94	04-OCT-94	<	.082	UGG	
	NGHB	PCB248				27-SEP-94	04-OCT-94	<	.082	UGG	
	NGHB	PCB254				27-SEP-94	04-OCT-94	<	.082	UGG	
	NGHB	PCB260				27-SEP-94	04-OCT-94	<	.0804	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID

LM18	OEKC	124TCB			70	22-SEP-94	29-SEP-94	<	.04	UGG	
	OEKC	12DCLB				22-SEP-94	29-SEP-94	<	.11	UGG	
	OEKC	12DPH				22-SEP-94	29-SEP-94	<	.14	UGG	
	OEKC	13DCLB				22-SEP-94	29-SEP-94	<	.13	UGG	
	OEKC	14DCLB				22-SEP-94	29-SEP-94	<	.098	UGG	
	OEKC	245TCP				22-SEP-94	29-SEP-94	<	.0,0	UGG	
	OEKC	246TCP				22-SEP-94	29-SEP-94	<	.17	UGG	
	OEKC	24DCLP				22-SEP-94	29-SEP-94	<	.18	UGG	
	OEKC	24DMPN				22-SEP-94	29-SEP-94	<	.69		
	OEKC	24DNP				22-SEP-94	29-SEP-94			UGG	
	OEKC	24DNT				22-SEP-94	29-SEP-94	<	1.2	UGG	
	OEKC	26DNT				22-SEP-94	29-SEP-94	<	.14	UGG	
	OEKC	2CLP				22-SEP-94		<	.085	UGG	
	OEKC	2CNAP				22-SEP-94	29-SEP-94	<	.06	UGG	
	OEKC	2MNAP					29-SEP-94	<	.036	UGG	
	DEKC	2MP				22-SEP-94	29-SEP-94	<	.049	UGG	
	OEKC	ZNANIL				22-SEP-94	29-SEP-94	<	.029	UGG	
	OEKC	2NP				22-SEP-94	29-SEP-94	<		UGG	
	OEKC	33DCBD				22-SEP-94	29-SEP-94	<	-14	UGG	
						22-SEP-94	29-SEP-94	<	6.3	UGG	
	OEKC	3NANIL				22-SEP-94	29-SEP-94	<	.45	UGG	
	OEKC	46DN2C				22-SEP-94	29-SEP-94	<	.55	UGG	
	OEKC	4BRPPE				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	4CANIL				22-SEP-94	29-SEP-94	<	.81	UGG	
	OEKC	4CL3C				22-SEP-94	29-SEP-94	<	.095	UGG	
	OEKC	4CLPPE				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	4MP				22-SEP-94	29-SEP-94	<	.24	UGG	
	OEKC	4NANIL				22-SEP-94	29-SEP-94	<	.41	UGG	
	OEKC	4NP				22-SEP-94	29-SEP-94	<			
	OEKC	ABHC				22-SEP-94	29-SEP-94		1.4	UGG	
	OEKC	ACLDAN				22-SEP-94	29-SEP-94	<	.27	UGG	
	OEKC	AENSLF				22-SEP-94		<	.33	UGG	
	OEKC	ALDRN					29-SEP-94	<	.62	UGG	
		es.m				22-SEP-94	29-SEP-94	<	.33	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OEKC	ANAPNE				22-SEP-94	29-SEP-94	<	.036	UGG	*******
	OEKC	ANAPYL				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	ANTRC				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	B2CEXM				22-SEP-94	29-SEP-94	<	.059	UGG	
	OEKC	B2CIPE				22-SEP-94	29-SEP-94	<	.039	UGG	
	OEKC	B2CLEE				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	B2EHP				22-SEP-94	29-SEP-94	<	.62	UGG	
	OEKC	BAANTR				22-SEP-94	29-SEP-94	<	.17	UGG	
	OEKC	BAPYR				22-SEP-94	29-SEP-94	<	.25	UGG	
	DEKC	BBFANT				22-SEP-94	29-SEP-94	<	.21	UGG	
	OEKC	BBHC				22-SEP-94	29-SEP-94	<	.27	UGG	
	OEKC	BBZP				22-SEP-94	29-SEP-94	<	.17	UGG	
	OEKC	BENSLF				22-SEP-94	29-SEP-94	2	.62	UGG	
	OEKC	BENZID				22-SEP-94	29-SEP-94	2	.85	UGG	
	OEKC	BENZOA				22-SEP-94	29-SEP-94	~	6.1	UGG	
	OEKC	BGHIPY				22-SEP-94	29-SEP-94	~	.25	UGG	
	OEKC	BKFANT				22-SEP-94	29-SEP-94	<	.066	UGG	
	OEKC	BZALC				22-SEP-94	29-SEP-94	2	.19	UGG	
	OEKC	CARBAZ				22-SEP-94	29-SEP-94	<	.1	UGG	
	OEKC	CHRY				22-SEP-94	29-SEP-94	<	.12	UGG	
	OEKC	CL6BZ				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	CL6CP				22-SEP-94	29-SEP-94	<		UGG	
	OEKC	CL6ET				22-SEP-94	29-SEP-94	<	.15	UGG	
	OEKC	DBAHA				22-SEP-94	29-SEP-94	<	.21	UGG	
	OEKC	DBHC				22-SEP-94	29-SEP-94	<	.27	UGG	
	OEKC	DBZFUR				22-SEP-94	29-SEP-94	~	.035	UGG	
	OEKC	DEP				22-SEP-94	29-SEP-94	~			
	OEKC	DLDRN				22-SEP-94	29-SEP-94		.24	UGG	
	DEKC	DMP				22-SEP-94	29-SEP-94	< <	.31	UGG	
	OEKC	DNBP				22-SEP-94	29-SEP-94		.17	UGG	
	OEKC	DNOP				22-SEP-94	29-SEP-94	<	.061	UGG	
	OEKC	ENDRN				22-SEP-94	29-SEP-94	<	.19	UGG	
	OEKC	ENDRNA				22-SEP-94	29-SEP-94	< <	.45 .53	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OEKC	ENDRNK				22-SEP-94	29-SEP-94	٠.,	F7		
	OEKC	ESFS04				22-SEP-94	29-SEP-94	< <	.53	UGG	
	OEKC	FANT				22-SEP-94	29-SEP-94	<	.068	UGG	
	OEKC	FLRENE				22-SEP-94	29-SEP-94	<		UGG	
	OEKC	GCLDAN				22-SEP-94	29-SEP-94		.033	UGG	
	OEKC	HCBD				22-SEP-94	29-SEP-94	< <	.23	UGG	
	OEKC	HPCL				22-SEP-94	29-SEP-94	2	.13	UGG	
	OEKC	HPCLE				22-SEP-94	29-SEP-94	<		UGG	
	OEKC	ICDPYR				22-SEP-94	29-SEP-94	2	.33	UGG	
	OEKC	ISOPHR				22-SEP-94	29-SEP-94	<	.29	UGG	
	OEKC	LIN				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	MEXCLR				22-SEP-94	29-SEP-94	2	.27	UGG	
	OEKC	NAP				22-SEP-94	29-SEP-94		.33	UGG	
	OEKC	NB				22-SEP-94	29-SEP-94	<	.037	UGG	
	OEKC	NNDMEA				22-SEP-94	29-SEP-94	<	.045	UGG	
	OEKC	NNDNPA				22-SEP-94	29-SEP-94	<	-14	UGG	
	OEKC	NNDPA				22-SEP-94	29-SEP-94	<	.2	UGG	
	OEKC	PCB016				22-SEP-94	29-SEP-94	<	. 19	UGG	
	OEKC	PCB221				22-SEP-94		<	1.4	UGG	
	OEKC	PCB232				22-SEP-94	29-SEP-94	<	1.4	UGG	
	OEKC	PCB242				22-SEP-94	29-SEP-94	<	1.4	UGG	
	OEKC	PCB248				22-SEP-94	29-SEP-94	<	1.4	UGG	
	OEKC	PCB254					29-SEP-94	<	2	UGG	
	OEKC	PCB260				22-SEP-94	29-SEP-94	<	2.3	UGG	
	OEKC	PCP				22-SEP-94	29-SEP-94	<	2.6	UGG	
	OEKC	PHANTR				22-SEP-94	29-SEP-94	<	1.3	UGG	
	OEKC	PHENOL				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	PPDDD				22-SEP-94	29-SEP-94	<	.11	UGG	
,	OEKC	PPDDE				22-SEP-94	29-SEP-94	<	.27	UGG	
	OEKC					22-SEP-94	29-SEP-94	<	.31	UGG	
		PPDDT				22-SEP-94	29-SEP-94	<	.31	UGG	
	OEKC	PYR				22-SEP-94	29-SEP-94	<	.033	UGG	
	OEKC	TXPHEN				22-SEP-94	29-SEP-94	<	2.6	UGG	
	OEKC	UNK521				22-SEP-94	29-SEP-94		.4	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OENC	124TCB				27-SEP-94	06-0CT-94	<	.04	UGG	********
	OENC	12DCLB				27-SEP-94	06-OCT-94	<	.11	UGG	
	OENC	12DPH				27-SEP-94	06-OCT-94	<	.14	UGG	
	OENC	13DCLB				27-SEP-94	06-OCT-94	<	.13	UGG	
	OENC	14DCLB				27-SEP-94	06-OCT-94	<	.098	UGG	
	OENC	245TCP				27-SEP-94	06-OCT-94	2	.090	UGG	
	OENC	246TCP				27-SEP-94	06-OCT-94	2	.17	UGG	
	OENC	24DCLP				27-SEP-94	06-OCT-94	<	.18	UGG	
	OENC	24DMPN				27-SEP-94	06-0CT-94		.69	UGG	
	OENC	24DNP				27-SEP-94	06-0CT-94	< <	1.2	UGG	
	OENC	24DNT				27-SEP-94	06-0CT-94	<			
	DENC	26DNT				27-SEP-94	06-0CT-94	~	.14	UGG	
	OENC	2CLP				27-SEP-94	06-0CT-94		.085	UGG	
	OENC	2CNAP				27-SEP-94	06-0CT-94	< <	.036	UGG	
	OENC	2MNAP				27-SEP-94	06-0CT-94	2	.049	UGG	
	OENC	2MP				27-SEP-94	06-0CT-94			UGG	
	OENC	2NAN1L				27-SEP-94	06-0CT-94	<	.029	UGG	
	OENC	2NP				27-SEP-94	06-0CT-94	<	.062	UGG	
	OENC	33DCBD				27-SEP-94	06-0CT-94	<	.14	UGG	
	OENC	3NANIL				27-SEP-94		<	6.3	UGG	
	OENC	46DN2C					06-OCT-94	<	.45	UGG	
	OENC	4BRPPE				27-SEP-94	06-OCT-94	<	.55	UGG	
	OENC	4CANIL				27-SEP-94	06-OCT-94	<	.033	UGG	
	OENC	4CL3C				27-SEP-94	06-OCT-94	<	.81	UGG	
	OENC	4CLPPE				27-SEP-94	06-OCT-94	<	.095	UGG	
	OENC	4MP				27-SEP-94	06-OCT-94	<	.033	UGG	
	OENC	4NANIL				27-SEP-94	06-OCT-94	<	.24	UGG	
	DENC	4NP				27-SEP-94	06-OCT-94	<	.41	UGG	
	OENC	ABHC				27-SEP-94	06-DCT-94	<	1.4	UGG	
	OENC	ACLDAN				27-SEP-94	06-OCT-94	<	.27	UGG	
	OENC	AENSLF				27-SEP-94	06-OCT-94	<	.33	UGG	
	OENC	ALDRN				27-SEP-94	06-OCT-94	<	.62	UGG	
	OENC	ANAPNE				27-SEP-94	06-OCT-94	<	.33	UGG	
	DENL	ANAPNE				27-SEP-94	06-OCT-94	<	.036	UGG	

USATHAMA Method Code	Lot	Test Name	IROMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OENC	ANAPYL				27-SEP-94	06-0CT-94				**********
288.42	OENC	ANTRC				27-SEP-94	06-0CT-94	<		UGG	
	OENC	B2CEXM				27-SEP-94	06-0CT-94	<		UGG	
	OENC	B2CIPE				27-SEP-94		<	.059	UGG	
	OENC	B2CLEE				27-SEP-94	06-0CT-94 06-0CT-94	<	.2	UGG	
	DENC	B2EHP				27-SEP-94		<		UGG	
	OENC	BAANTR				27-SEP-94	06-0CT-94	<	.62	UGG	
	OENC	BAPYR				27-SEP-94	06-0CT-94	<	.17	UGG	
	OENC	BBFANT				27-SEP-94	06-OCT-94	<	.25	UGG	
	DENC	BBHC				27-SEP-94	06-DCT-94	<	-21	UGG	
	OENC	BBZP				27-SEP-94	06-0CT-94	<	.27	UGG	
	OENC	BENSLF				27-SEP-94	06-OCT-94	<	.17	UGG	
	OENC	BENZID				27-SEP-94	06-OCT-94	<		UGG	
	OENC	BENZOA				27-SEP-94	06-OCT-94	<		UGG	
	DENC	BGHIPY				27-SEP-94	06-OCT-94	<		UGG	
	OENC	BKFANT				27-SEP-94	06-0CT-94	<		UGG	
	OENC	BZALC				27-SEP-94	06-OCT-94	<		UGG	
	OENC	CARBAZ				27-SEP-94	06-0CT-94	<		UGG	
	OENC	CHRY				27-SEP-94 27-SEP-94	06-OCT-94	<	-1	UGG	
	OENC	CL6BZ				27-SEP-94 27-SEP-94	06-OCT-94	<		UGG	
	OENC	CL6CP					06-OCT-94	<		UGG	
	OENC	CL6ET				27-SEP-94	06-OCT-94	<		UGG	
	OENC	DBAHA				27-SEP-94	06-OCT-94	<		UGG	
	OENC	DBHC				27-SEP-94	06-OCT-94	<		UGG	
	OENC	DBZFUR				27-SEP-94	06-OCT-94	<		UGG	
	OENC	DEP				27-SEP-94	06-0CT-94	<		UGG	
	OENC	DLDRN				27-SEP-94	06-OCT-94	<		UGG	
	OENC	DMP				27-SEP-94	06-OCT-94	<		UGG	
	OENC					27-SEP-94	06-OCT-94	<		UGG	
	OENC	DNBP				27-SEP-94	06-OCT-94	<	.061	UGG	
	OENC	DNOP				27-SEP-94	06-OCT-94	<	.19	UGG	
		ENDRN				27-SEP-94	06-OCT-94	<	.45	UGG	
	OENC	ENDRNA				27-SEP-94	06-OCT-94	<	.53	UGG	
	OENC	ENDRNK				27-SEP-94	06-0CT-94	<	.53	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OENC	ESFS04		******		27-SEP-94	04 007 04				******
Lillo	OENC	FANT				27-SEP-94	06-0CT-94	<	.62		
	OENC	FLRENE				27-SEP-94	06-0CT-94	<	.068	UGG	
	OENC	GCLDAN				27-SEP-94	06-0CT-94	<	.033	UGG	
	OENC	HCBD					06-OCT-94	<	.33	UGG	
	OENC	HPCL				27-SEP-94	06-0CT-94	<	.23	UGG	
	OENC	HPCLE				27-SEP-94	06-0CT-94	<	. 13	UGG	
	OENC	ICDPYR				27-SEP-94	06-OCT-94	<	.33	UGG	
	OENC	ISOPHR				27-SEP-94	06-OCT-94	<	.29	UGG	
	DENC					27-SEP-94	06-0CT-94	<	.033	UGG	
		LIN				27-SEP-94	06-OCT-94	<	.27	UGG	
	OENC	MEXCLR				27-SEP-94	06-0CT-94	<	.33	UGG	
	OENC	NAP				27-SEP-94	06-0CT-94	<	.037	UGG	
	OENC	NB				27-SEP-94	06-OCT-94	<		UGG	
	OENC	NNDMEA				27-SEP-94	06-0CT-94	<	.14	UGG	
	OENC	NNDNPA				27-SEP-94	06-OCT-94	<	.2	UGG	
	OENC	NNDPA				27-SEP-94	06-0CT-94	<	.19	UGG	
	OENC	PCB016				27-SEP-94	06-0CT-94	<	1.4	UGG	
	OENC	PCB221				27-SEP-94	06-OCT-94	<	1.4	UGG	
	OENC	PCB232				27-SEP-94	06-0CT-94	<	1.4	UGG	
	OENC	PCB242				27-SEP-94	06-OCT-94	<	1.4	UGG	
	OENC	PCB248				27-SEP-94	06-OCT-94	<	2	UGG	
	OENC	PCB254				27-SEP-94	06-OCT-94	<		UGG	
	OENC	PCB260				27-SEP-94	06-OCT-94	<	2.6	UGG	
	DENC	PCP				27-SEP-94	06-OCT-94	<	1.3	UGG	
	OENC	PHANTR				27-SEP-94	06-OCT-94	<			
	OENC	PHENOL				27-SEP-94	06-0CT-94			UGG	
	OENC	PPDDD				27-SEP-94	06-0CT-94	<	-11	UGG	
	OENC	PPDDE				27-SEP-94		<	.27	UGG	
O	OENC	PPDDT					06-0CT-94	<	.31	UGG	
	OENC	PYR				27-SEP-94	06-0CT-94	<	.31	UGG	
	OENC	TXPHEN				27-SEP-94	06-0CT-94	<		UGG	
	OENC	UNK521				27-SEP-94	06-0CT-94	<		UGG	
	OENC	UNK644				27-SEP-94	06-OCT-94		.3	UGG	
	DENG	DIN D44				27-SEP-94	06-OCT-94		2	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date		Value	Units	IRDMIS Site ID
LM18	OEOC	124TCB			•••••	27-SEP-94	07-0CT-94				
1007137	OEOC	12DCLB				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	12DPH				27-SEP-94	07-0CT-94	<	-11	UGG	
	OEOC	13DCLB				27-SEP-94	07-0CT-94	<	.14	UGG	
	OEOC	14DCLB				27-SEP-94	07-0CT-94	<	.13	UGG	
	OEOC	245TCP				27-SEP-94		<	.098	UGG	
	OEOC	246TCP				27-SEP-94	07-0CT-94 07-0CT-94	<	.1	UGG	
	OEOC	24DCLP				27-SEP-94		<	.17	UGG	
	OEOC	24DMPN				27-SEP-94	07-0CT-94	<	.18	UGG	
	OEOC	24DNP				27-SEP-94	07-0CT-94	<	.69	UGG	
	OEOC	24DNT				27-SEP-94	07-OCT-94	<	1.2	UGG	
	OEOC	26DNT				27-SEP-94	07-OCT-94	<	.14	UGG	
	OEOC	2CLP					07-0CT-94	<	.085	UGG	
	OEOC	2CNAP				27-SEP-94	07-0CT-94	<	.06	UGG	
	OEOC	2MNAP				27-SEP-94 27-SEP-94	07-0CT-94	<	.036	UGG	
	OEOC	2MP					07-OCT-94	<		UGG	
	OEOC	ZNANIL				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	2NP				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	33DCBD				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	3NANIL				27-SEP-94	07-OCT-94	<		UGG	
	OEOC	46DN2C				27-SEP-94	07-OCT-94	<	.45	UGG	
	OEOC	4BRPPE			9	27-SEP-94	07-OCT-94	<		UGG	
	OEOC	4CANIL				27-SEP-94	07-OCT-94	<	.033	UGG	
	OEOC	4CL3C				27-SEP-94	07-0CT-94	<	.81	UGG	
	OEOC	4CLPPE				27-SEP-94	07-OCT-94	<	.095	UGG	
	OEOC	4CLPPE 4MP				27-SEP-94	07-OCT-94	<	.033	UGG	
	OEOC	4NANIL				27-SEP-94	07-OCT-94	<	.24	UGG	
	OEOC	4NP				27-SEP-94	07-OCT-94	<	.41	UGG	
	OEOC	ABHC				27-SEP-94	07-0CT-94	<	1.4	UGG	
	OEOC	ACLDAN				27-SEP-94	07-OCT-94	<	.27	UGG	
	OEOC	AENSLF				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	ALDRN				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	ANAPNE				27-SEP-94	07-OCT-94	<		UGG	
	OEOC	MANAGE				27-SEP-94	07-OCT-94	<	.036	UGG	

USATHAM Method Code	A Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM18	OEOC	ANAPYL				27-SEP-94	07-0CT-94		077		********
7.1.5	OEOC	ANTRO				27-SEP-94	07-OCT-94	< <	.033	UGG	
	OEOC	B2CEXM		2		27-SEP-94	07-OCT-94	<	.059	UGG	
	OEOC	B2CIPE				27-SEP-94	07-0CT-94			UGG	
	OEOC	B2CLEE				27-SEP-94	07-0CT-94	<	.2	UGG	
	OEOC	B2EHP				27-SEP-94	07-0CT-94	<	.033	UGG	
	OEOC	BAANTR				27-SEP-94	07-0CT-94	<	.62	UGG	
	OEOC	BAPYR				27-SEP-94	07-0CT-94	< <		UGG	
	OEOC	BBFANT				27-SEP-94	07-0CT-94		.21	UGG	
	OEOC	BBHC				27-SEP-94	07-OCT-94	< <	.27	UGG	
	OEOC	BBZP				27-SEP-94	07-0CT-94	<	.17	UGG	
	OEOC	BENSLF				27-SEP-94	07-0CT-94	<	.62	UGG	
	OEOC	BENZID				27-SEP-94	07-OCT-94	<	.85	UGG	
	OEOC	BENZOA				27-SEP-94	07-OCT-94	<	6.1	UGG	
	OEOC	BGHIPY				27-SEP-94	07-OCT-94	<	.25	UGG	
	DEOC	BKFANT				27-SEP-94	07-OCT-94	<	.066	UGG	
	OEOC	BZALC				27-SEP-94	07-OCT-94	<	.19	UGG	
	OEOC	CARBAZ				27-SEP-94	07-OCT-94	<	.1	UGG	
	OEOC	CHRY				27-SEP-94	07-OCT-94	<	.12	UGG	
	OEOC	CL6BZ				27-SEP-94	07-OCT-94	<	.033	UGG	
	OEOC	CL6CP				27-SEP-94	07-OCT-94	<	6.2	UGG	
	OEOC	CL6ET				27-SEP-94	07-OCT-94	<	.15	UGG	
	OEOC	DBAHA				27-SEP-94	07-OCT-94	<	.21	UGG	
	OEOC	DBHC				27-SEP-94	07-OCT-94	<	.27	UGG	
	OEOC	DBZFUR				27-SEP-94	07-OCT-94	<	.035	UGG	
	OEOC	DEP				27-SEP-94	07-OCT-94	<	.24	UGG	
	OEOC	DLDRN				27-SEP-94	07-OCT-94	<	.31	UGG	-
	OEOC	DMP				27-SEP-94	07-OCT-94	<	.17	UGG	
	OEOC	DNBP				27-SEP-94	07-OCT-94	<	.061	UGG	
	OEOC	DNOP				27-SEP-94	07-OCT-94	<	.19	UGG	
	OEOC	ENDRN				27-SEP-94	07-OCT-94	<	.45	UGG	
	OEOC	ENDRNA				27-SEP-94	07-OCT-94	<	.53	UGG	
	OEOC	ENDRNK				27-SEP-94	07-OCT-94	<		UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample	Prep	Analysis		107		IRDMIS
		NORIC	NUMBER	Number	Date	Date	Date	<	Value	Units	Site ID
LM18	OEOC	ESFS04				27-SEP-94	07-0CT-94	<	.62	UGG	
	OEOC	FANT				27-SEP-94	07-OCT-94	<	.068	UGG	
	OEOC	FLRENE				27-SEP-94	07-OCT-94	<	.033	UGG	
	OEOC	GCLDAN				27-SEP-94	07-OCT-94	<	.33	UGG	
	OEOC	HCBD				27-SEP-94	07-OCT-94	<	.23	UGG	
	OEOC	HPCL				27-SEP-94	07-0CT-94	2	.13		
	OEOC	HPCLE				27-SEP-94	07-0CT-94	<	.13	UGG	
	OEOC	ICDPYR				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	ISOPHR				27-SEP-94	07-0CT-94	~	.29	UGG	
	OEOC	LIN				27-SEP-94	07-0CT-94	<	.033	UGG	
	OEOC	MEXCLR				27-SEP-94	07-0CT-94	2	.27	UGG	
	OEOC	NAP				27-SEP-94	07-0CT-94	<	.33	UGG	
	OEOC	NB				27-SEP-94	07-0CT-94		.037	UGG	
	OEOC	NNDMEA				27-SEP-94	07-0CT-94	< <	.045	UGG	
	OEOC	NNDNPA		*		27-SEP-94	07-0CT-94	<	.2	UGG	
	OEOC	NNDPA				27-SEP-94	07-0CT-94				
	OEOC	PCB016				27-SEP-94	07-0CT-94	<		UGG	
	OEOC	PCB221				27-SEP-94	07-0CT-94	<	1.4	UGG	
	OEOC	PCB232				27-SEP-94	07-0CT-94	<	1.4	UGG	
	OEOC	PCB242				27-SEP-94	07-0CT-94	<	1.4	UGG	
	OEOC	PCB248				27-SEP-94	07-0CT-94	<	1.4	UGG	
	OEOC	PCB254				27-SEP-94	07-0CT-94	<	2	UGG	
	OEOC	PCB260				27-SEP-94	07-0C1-94	<	2.3	UGG	
	OEOC	PCP				27-SEP-94		<	2.6	UGG	
	OEOC	PHANTR				27-SEP-94	07-0CT-94	<	1.3	UGG	
	OEOC	PHENOL				27-SEP-94	07-0CT-94	<	.033	UGG	
	OEOC	PPDDD					07-0CT-94	<	.11	UGG	
	OEOC	PPDDE				27-SEP-94	07-OCT-94	<	.27	UGG	
	OEOC	PPDDT				27-SEP-94	07-OCT-94	<	.31	UGG	
	OEOC	PYR				27-SEP-94	07-OCT-94	<	.31	UGG	
	OEOC	TXPHEN				27-SEP-94	07-OCT-94	<	.033	UGG	
	OEOC	UNK521				27-SEP-94	07-OCT-94	<	2.6	UGG	
	OLOC	CHANCE				27-SEP-94	07-OCT-94		.4	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM19	YGNC	111TCE				28-SEP-94	28-SEP-94		.0044	UGG	
	YGNC	112TCE				28-SEP-94	28-SEP-94	2	.0054	UGG	
	YGNC	11DCE				28-SEP-94	28-SEP-94	<	.0039	UGG	
	YGNC	11DCLE				28-SEP-94	28-SEP-94	<	.0023	UGG	
	YGNC	12DCE				28-SEP-94	28-SEP-94	<	.003	UGG	
	YGNC	12DCLE				28-SEP-94	28-SEP-94	<	.0017	UGG	
	YGNC	12DCLP				28-SEP-94	28-SEP-94	<	.0029	UGG	
	YGNC	2CLEVE				28-SEP-94	28-SEP-94	<	.01	UGG	
	YGNC	ACET				28-SEP-94	28-SEP-94	<	.017	UGG	
	YGNC	ACROLN				28-SEP-94	28-SEP-94	<	.1	UGG	
	YGNC	ACRYLO				28-SEP-94	28-SEP-94	<	.1	UGG	
	YGNC	BRDCLM				28-SEP-94	28-SEP-94	<	.0029	UGG	
	YGNC	C13DCP				28-SEP-94	28-SEP-94	<	.0032	UGG	
	YGNC	C2AVE				28-SEP-94	28-SEP-94	<	.032	UGG	
	YGNC	C2H3CL				28-SEP-94	28-SEP-94	<	-0062	UGG	
	YGNC	C2H5CL				28-SEP-94	28-SEP-94	<	.012	UGG	
	YGNC	C6H6				28-SEP-94	28-SEP-94	<	.0015	UGG	
	YGNC	CCL3F				28-SEP-94	28-SEP-94	<	.0059	UGG	
	YGNC	CCL4				28-SEP-94	28-SEP-94	<	.007	UGG	
	YGNC	CH2CL2				28-SEP-94	28-SEP-94	<	.012	UGG	
	YGNC	CH3BR				28-SEP-94	28-SEP-94	<	.0057	UGG	
	YGNC	CH3CL				28-SEP-94	28-SEP-94	<	.0088	UGG	
	YGNC	CHBR3				28-SEP-94	28-SEP-94	<	.0069	UGG	
	YGNC	CHCL3				28-SEP-94	28-SEP-94	<	.00087	UGG	
	YGNC	CL2BZ				28-SEP-94	28-SEP-94	<	.1	UGG	
	YGNC	CLC6H5				28-SEP-94	28-SEP-94	<	.00086	UGG	
	YGNC	CS2				28-SEP-94	28-SEP-94	<	.0044	UGG	
	YGNC	DBRCLM				28-SEP-94	28-SEP-94	<	.0031	UGG	
	YGNC	ETC6H5				28-SEP-94 -	28-SEP-94	<	.0017	UGG	
	YGNC	MEC6H5				28-SEP-94	28-SEP-94	<	.00078	UGG	
	YGNC	MEK				28-SEP-94	28-SEP-94	<	.07	UGG	
	YGNC	MIBK				28-SEP-94	28-SEP-94	<	.027	UGG	
	YGNC	MNBK				28-SEP-94	28-SEP-94	<	.032	UGG	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
LM19	YGNC	STYR			*********	28-SEP-94	28-SEP-94	-	0024		
	YGNC	T13DCP				28-SEP-94	28-SEP-94	< <	.0026	UGG	
	YGNC	TCLEA				28-SEP-94	28-SEP-94	<	.0024	UGG	
	YGNC	TCLEE				28-SEP-94	28-SEP-94			UGG	
	YGNC	TRCLE				28-SEP-94	28-SEP-94	<	.00081	UGG	
	YGNC	XYLEN				28-SEP-94		<	.0028	UGG	
		MILLI				20-3EP-94	28-SEP-94	<	.0015	UGG	
SB01	TCQC	HG				11-OCT-94	11-OCT-94	<	.243	Hel	4
	TCSC	HG				15-OCT-94	16-OCT-94	<	.243	UGL	
						15 001 74	10 001 74	•	.243	UGL	
SD09	UCCC	TL				13-OCT-94	14-OCT-94	<	6.99	UGL	
	UCDC	TL				17-OCT-94	21-OCT-94	<		UGL	
SD20	1 10110	00									
2020	WCMC	PB				13-OCT-94	14-OCT-94	<	1.26	UGL	
	MCOC	PB				17-OCT-94	21-OCT-94	<	1.26	UGL	
SD21	XCHC	SE				13-OCT-94	10 007 0/	4	7 00		
	XCJC	SE					19-OCT-94	<	3.02		
	7,000	OL.				17-OCT-94	27-OCT-94	<	3.02	UGL	
SD22	YCIC	AS				13-OCT-94	14-OCT-94	<	2.54	Hel	
	YCKC	AS				17-OCT-94	21-OCT-94	<	2.54		
						11 001 74	21-001-94	,	2.54	UGL	
SD28	NFPB	SB				13-OCT-94	21-OCT-94	<	3.03	Hel	
	NFQB	SB				17-OCT-94	24-OCT-94	<		UGL	
21.22	1.00						21 001 21		3.03	OGL	
SS10	ZFDC	AG				06-OCT-94	11-OCT-94	<	4.6	UGI	
	ZFDC	AL				06-OCT-94	11-OCT-94	<	141	UGL	
	ZFDC	BA				06-OCT-94	11-OCT-94	<	5	UGL	
	ZFDC	BE				06-OCT-94	11-OCT-94	<	5	UGL	
	ZFDC	CA				06-0CT-94	11-0CT-94	<	500	UGL	
	ZFDC	CD				06-OCT-94	11-0CT-94	<	4.01	UGL	
	ZFDC	CO				06-OCT-94	11-0CT-94	<	25		
	ZFDC	CR				06-OCT-94	11-0CT-94	~		UGL	
		0.00				OO OC1 74	11-001-94	-	6.02	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
SS10	ZFDC	cu				06-0CT-94	11-OCT-94	<	8.09	UGL	
	ZFDC	FE				06-OCT-94	11-0CT-94	2	38.8	UGL	
	ZFDC	K				06-0CT-94	11-OCT-94	<	375	UGL	
	ZFDC	MG				06-OCT-94	11-OCT-94	<	500	UGL	
	ZFDC	MN				06-OCT-94	11-0CT-94	<	2.75	UGL	
	ZFDC	NA				06-OCT-94	11-0CT-94	<	500	UGL	y.
	ZFDC	NI				06-0CT-94	11-0CT-94	<	34.3	UGL	
	ZFDC	V				06-OCT-94	11-OCT-94	<	11	UGL	
	ZFDC	ZN				06-OCT-94	11-OCT-94	<	21.1	UGL	
	ZFFC	AG				11-OCT-94	12-OCT-94	<	4.6	UGL	
	ZFFC	AL				11-OCT-94	12-OCT-94	<	141	UGL	
	ZFFC	BA				11-OCT-94	12-OCT-94	<	141	UGL	
	ZFFC	BE				11-OCT-94	12-0CT-94	2	5	UGL	
	ZFFC	CA				11-OCT-94	12-0CT-94	<	500	UGL	
	ZFFC	CD				11-OCT-94	12-OCT-94	2	4.01	UGL	
	ZFFC	CO				11-OCT-94	12-0CT-94	2	25		
	ZFFC	CR				11-OCT-94	12-0CT-94		6.02	UGL	
	ZFFC	CU				11-OCT-94	12-0CT-94	<		UGL	
	ZFFC	FE				11-0CT-94		<	8:09	UGL	
	ZFFC	K				11-0CT-94	12-0CT-94	<	38.8	UGL	
	ZFFC	MG					12-OCT-94	<	375	UGL	
	ZFFC	MN				11-OCT-94	12-OCT-94	<	500	UGL	
	ZFFC	NA				11-OCT-94	12-OCT-94	<	2.75	UGL	
	ZFFC	NI				11-0CT-94	12-OCT-94	<	500	UGL	
	ZFFC	V				11-OCT-94	12-OCT-94	<	34.3	UGL	
	ZFFC	ZN				11-0CT-94	12-OCT-94	<	11	UGL	
	ZFFC	ZN				11-OCT-94	12-OCT-94	<	21.1	UGL	
TT10	PDSA	CL				03-OCT-94	03-0CT-94	<	2120	UGL	
	PDTA	CL				04-OCT-94	04-OCT-94	2	2120	UGL	
	PDUA	CL				11-OCT-94	11-OCT-94	<	2120	UGL	
							11 551 74		2120	OGL	
UH02	SDKB	PCB016				26-SEP-94	01-0CT-94	<	.16	UGL	
	SDKB	PCB221				26-SEP-94	01-OCT-94	<		UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UH02	SDKB	PCB232			**********	26-SEP-94	01-0CT-94			*****	********
	SDKB	PCB242				26-SEP-94	01-OCT-94	< <	.16	UGL	
	SDKB	PCB248				26-SEP-94	01-0CT-94	<	.19	UGL	
	SDKB	PCB254				26-SEP-94	01-OCT-94	~	.19	UGL	
	SDKB	PCB260				26-SEP-94	01-0CT-94	<	.19	UGL	
	SDMB	PCB016				27-SEP-94	04-OCT-94	<	.16	UGL	
	SDMB	PCB221				27-SEP-94	04-OCT-94	2	.16	UGL	
	SDMB	PCB232				27-SEP-94	04-OCT-94	<	.16	UGL	
	SDMB	PCB242				27-SEP-94	04-OCT-94	2		UGL	
	SDMB	PCB248				27-SEP-94	04-OCT-94	<		UGL	
	SDMB	PCB254				27-SEP-94	04-OCT-94	<		UGL	
	SDMB	PCB260				27-SEP-94	04-OCT-94	<		UGL	
UH13	TOWB	ABHC				26-SEP-94	02-0CT-94	<	.0385	UGL	
	TDWB	ACLDAN				26-SEP-94	02-OCT-94	<	.075	UGL	
	TDWB	AENSLF				26-SEP-94	02-OCT-94	<	.023	UGL	
	TOWB	ALDRN				26-SEP-94	02-OCT-94	<	.0918	UGL	
	TOWB	BBHC				26-SEP-94	02-OCT-94	<	.024	UGL	
	TOWB	BENSLF				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	DBHC				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	DLDRN				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	ENDRN				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	ENDRNA				26-SEP-94	02-OCT-94	<	.0285	UGL	
	TDWB	ENDRNK				26-SEP-94	02-OCT-94	<	.0285	UGL	
	TDWB	ESFS04				26-SEP-94	02-OCT-94	<	.0786	UGL	
	TDWB	GCLDAN				26-SEP-94	02-OCT-94	<	.075	UGL	
	TDWB	HPCL				26-SEP-94	02-OCT-94	<	.0423	UGL	
	TDWB	HPCLE				26-SEP-94	02-OCT-94	<	.0245	UGL	
	TOWB	ISODR				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	LIN				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	MEXCLR				26-SEP-94	02-OCT-94	<		UGL	
	TDWB	PPDDD				26-SEP-94	02-OCT-94	<	.0233	UGL	
	TDWB	PPDDE				26-SEP-94	02-OCT-94	<		UGL	

USATHAM/ Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UH13	TDWB	PPDDT				26-SEP-94	02-0CT-94	٠	.034		********
	TDWB	TXPHEN				26-SEP-94	02-0CT-94	<	1.35	UGL	
	TDYB	ABHC				27-SEP-94	01-0CT-94	<	.0385	UGL	
	TDYB	ACLDAN				27-SEP-94	01-0CT-94	<	.075	UGL	
	TDYB	AENSLF				27-SEP-94	01-0CT-94	<			
	TDYB	ALDRN				27-SEP-94	01-0CT-94		.023	UGL	
	TDYB	BBHC				27-SEP-94	01-0CT-94	<	.0918	UGL	
	TDYB	BENSLF				27-SEP-94	01-0CT-94	<	.024	UGL	
	TDYB	DBHC				27-SEP-94	01-0CT-94	<	.023	UGL	
	TDYB	DLDRN				27-SEP-94	01-0CT-94	<	.0293	UGL	
	TDYB	ENDRN				27-SEP-94	01-0CT-94	<	.024	UGL	
	TDYB	ENDRNA				27-SEP-94	01-0CT-94	<	.0238	UGL	
	TDYB	ENDRNK				27-SEP-94	01-0CT-94	< <	.0285 .0285	UGL	
	TDYB	ESFS04				27-SEP-94	01-0CT-94		.0786	UGL	
	TDYB	GCLDAN				27-SEP-94	01-0CT-94	< <	.075	UGL	
	TDYB	HPCL				27-SEP-94	01-0CT-94	<		UGL	
	TDYB	HPCLE				27-SEP-94	01-0CT-94		.0423	UGL	
	TDYB	ISODR				27-SEP-94	01-0CT-94	<	.0245	UGL	
	TDYB	LIN				27-SEP-94	01-0CT-94	<		UGL	
	TDYB	MEXCLR				27-SEP-94	01-0CT-94	<	.0507	UGL	
	TDYB	PPDDD				27-SEP-94	01-0CT-94	<	.057	UGL	
	TDYB	PPDDE				27-SEP-94	01-0CT-94	<		UGL	
	TDYB	PPDDT				27-SEP-94	01-0CT-94	<	.027	UGL	
	TDYB	TXPHEN				27-SEP-94		<	.034	UGL	
	,,,,	17 IILI				21-3EP-94	01-0CT-94	<	1.35	UGL	
UM18	WDPC	124TCB				22-SEP-94	28-SEP-94	<	4.0	1101	
	WDPC	12DCLB				22-SEP-94	28-SEP-94	<		UGL	
	WDPC	12DPH				22-SEP-94	28-SEP-94			UGL	
	WDPC	13DCLB				22-SEP-94	28-SEP-94	<	. 2	UGL	
	WDPC	14DCLB				22-SEP-94		<		UGL	
	WDPC	245TCP				22-SEP-94 22-SEP-94	28-SEP-94	<	1.7	UGL	
	WDPC	246TCP				22-SEP-94 22-SEP-94	28-SEP-94	<		UGL	
	WDPC	24DCLP					28-SEP-94	<	4.2	UGL	
		LTDULI				22-SEP-94	28-SEP-94	<	2.9	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDPC	24DMPN			***********	22-SEP-94	28-SEP-94	-	F 0		********
	WDPC	24DNP				22-SEP-94	28-SEP-94	<	5.8		
	WDPC	24DNT				22-SEP-94	28-SEP-94	<	21	UGL	
	WDPC	26DNT				22-SEP-94	28-SEP-94	<	4.5	UGL	
	WDPC	2CLP				22-SEP-94		<	.79	UGL	
	WDPC	2CNAP				22-SEP-94	28-SEP-94	<	.99	UGL	
	WOPC	2MNAP				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	2MP					28-SEP-94	<	1.7	UGL	
	MDPC	2NANIL				22-SEP-94	28-SEP-94	<	3.9	UGL	
	WDPC	2NP				22-SEP-94	28-SEP-94	<		UGL	
	WDPC	33DCBD				22-SEP-94	28-SEP-94	<	3.7	UGL	
	WDPC	3NANIL				22-SEP-94	28-SEP-94	<	12	UGL	
	WDPC	46DN2C				22-SEP-94	28-SEP-94	<	4.9	UGL	
	WDPC	4BRPPE				22-SEP-94	28-SEP-94	<	17	UGL	
	MDPC	4CANIL				22-SEP-94	28-SEP-94	<	4.2	UGL	
	MDPC	4CL3C				22-SEP-94	28-SEP-94	<	7.3	UGL	
	WDPC	4CLPPE				22-SEP-94	28-SEP-94	<	4	UGL	
						22-SEP-94	28-SEP-94	<	5.1	UGL	
	WDPC	4MP				22-SEP-94	28-SEP-94	<	.52	UGL	
	WDPC	4NANIL				22-SEP-94	28-SEP-94	<	5.2	UGL	
	MDPC	4NP				22-SEP-94	28-SEP-94	<	12	UGL	
	MOPC	ABHC				22-SEP-94	28-SEP-94	<	4	UGL	
	WDPC	ACLDAN				22-SEP-94	28-SEP-94	<	5.1	UGL	
	WDPC	AENSLF				22-SEP-94	28-SEP-94	<		UGL	
	WDPC	ALDRN				22-SEP-94	28-SEP-94	<	4.7	UGL	
	WOPC	ANAPNE				22-SEP-94	28-SEP-94	<	1.7	UGL	
	MDPC	ANAPYL				22-SEP-94	28-SEP-94	<	.5	UGL	
	MDPC	ANTRC				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	B2CEXM				22-SEP-94	28-SEP-94	<	1.5	UGL	
	WDPC	B2CIPE				22-SEP-94	28-SEP-94	<	5.3	UGL	
	WDPC	B2CLEE				22-SEP-94	28-SEP-94	<	1.9	UGL	
	WDPC	B2EHP				22-SEP-94	28-SEP-94	<	4.8		
	WDPC	BAANTR				22-SEP-94	28-SEP-94	<		UGL	
	WDPC	BAPYR				22-SEP-94	28-SEP-94	<	1.6	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDPC	BBFANT				22-SEP-94	28-SEP-94	<	5.4	UGL	********
	WDPC	BBHC				22-SEP-94	28-SEP-94	<	3.4	UGL	
	WDPC	BBZP				22-SEP-94	28-SEP-94	<	3.4	UGL	
	WOPC	BENSLF				22-SEP-94	28-SEP-94	<	9.2	UGL	
	MOPC	BENZID				22-SEP-94	28-SEP-94	<	10	UGL	
	MOPC	BENZOA				22-SEP-94	28-SEP-94	<	13	UGL	
	WDPC	BGHIPY				22-SEP-94	28-SEP-94	<	6.1	UGL	
	WDPC	BKFANT				22-SEP-94	28-SEP-94	<	.87	UGL	
	MDPC	BZALC				22-SEP-94	28-SEP-94	<	.72	UGL	
	WDPC	CARBAZ				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	CHRY				22-SEP-94	28-SEP-94	<	2.4	UGL	
	WDPC	CL68Z				22-SEP-94	28-SEP-94	<	1.6	UGL	
	WDPC	CL6CP				22-SEP-94	28-SEP-94	<	8.6	UGL	
	MDPC	CL6ET				22-SEP-94	28-SEP-94	<	1.5	UGL	
	MDPC	DBAHA				22-SEP-94	28-SEP-94	<	6.5	UGL	
	WDPC	DBHC				22-SEP-94	28-SEP-94	<	4	UGL	
	WDPC	DBZFUR				22-SEP-94	28-SEP-94	<	1.7	UGL	
	WDPC	DEP				22-SEP-94	28-SEP-94	<	2	UGL	
	WDPC	DLDRN				22-SEP-94	28-SEP-94	<	4.7	UGL	
	WDPC	DMP				22-SEP-94	28-SEP-94	<	1.5	UGL	
	WDPC	DNBP				22-SEP-94	28-SEP-94	<	1.5 3.7	UGL	
	WDPC	DNOP				22-SEP-94	28-SEP-94	<	15	UGL	
	WDPC	ENDRN				22-SEP-94	28-SEP-94	<	7.6	UGL	
	MOPC	ENDRNA				22-SEP-94	28-SEP-94	<	8	UGL	
	MOPC	ENDRNK				22-SEP-94	28-SEP-94	<	8	UGL	
	WDPC	ESFS04				22-SEP-94	28-SEP-94	<	9.2	UGL	
	WDPC	FANT				22-SEP-94	28-SEP-94	<	3.3	UGL	
	MDPC	FLRENE				22-SEP-94	28-SEP-94	<	3.7	UGL	
	WDPC	GCLDAN				22-SEP-94	28-SEP-94	<	5.1	UGL	
	WDPC	HCBD				22-SEP-94	28-SEP-94	<	3.4	UGL	
	MDPC	HPCL				22-SEP-94	28-SEP-94	<	2	UGL	
	WDPC	HPCLE				22-SEP-94	28-SEP-94	<	5	UGL	
	WOPC	ICDPYR				22-SEP-94	28-SEP-94	<	8.6	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDPC	ISOPHR	*********	*******		22-SEP-94	28-SEP-94				
	WDPC	LIN				22-SEP-94	28-SEP-94	<		UGL	
	MDPC	MESTOX				22-SEP-94	28-SEP-94	<	4	UGL	
	WDPC	MEXCLR				22-SEP-94	28-SEP-94	1.0	_ 3	UGL	
	WDPC	NAP				22-SEP-94		<	5.1	UGL	
	WDPC	NB				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	NNDMEA				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	NNDNPA				22-SEP-94	28-SEP-94 28-SEP-94	<	, 2	UGL	
	WDPC	NNDPA				22-SEP-94	28-SEP-94	<	4.4	UGL	
	WDPC	PCB016				22-SEP-94	28-SEP-94	< <	3	UGL	
	MOPC	PCB221				22-SEP-94			21	UGL	
	WDPC	PCB232				22-SEP-94	28-SEP-94 28-SEP-94	<	21	UGL	
	MDPC	PCB242				22-SEP-94	28-SEP-94	<	21	UGL	
	WDPC	PCB248				22-SEP-94		<	30	UGL	
	WDPC	PCB254				22-SEP-94	28-SEP-94	<	30	UGL	
	MOPC	PCB260				22-SEP-94	28-SEP-94	<	36	UGL	
	MDPC	PCP				22-SEP-94 22-SEP-94	28-SEP-94	<	36	UGL	
	MDPC	PHANTR					28-SEP-94	<	18	UGL	
	WDPC	PHENOL				22-SEP-94	28-SEP-94	<	.5	UGL	
	WDPC	PPDDD				22-SEP-94	28-SEP-94	<	9.2	UGL	
	WDPC	PPDDE				22-SEP-94	28-SEP-94	<	. 4	UGL	
	WDPC	PPDDT				22-SEP-94	28-SEP-94	<	4.7	UGL	
	WDPC	PYR				22-SEP-94	28-SEP-94	<	9.2	UGL	
	WDPC	TXPHEN				22-SEP-94	28-SEP-94	<	2.8	UGL	
	WDPC	UNK517				22-SEP-94	28-SEP-94	<	36	UGL	
	WDPC	UNK524				22-SEP-94	28-SEP-94		4	UGL	
	WOTC	124TCB				22-SEP-94	28-SEP-94		3	UGL	
	HOTC					27-SEP-94	06-OCT-94	<	1.8	UGL	
	WDTC	12DCLB				27-SEP-94	06-OCT-94	<	1.7	UGL	
	WOTC	12DPH				27-SEP-94	06-OCT-94	<	2	UGL	
		13DCLB				27-SEP-94	06-OCT-94	<	1.7	UGL	
	WOTC	14DCLB				27-SEP-94	06-OCT-94	<	1.7	UGL	
	WOTC	245TCP				27-SEP-94	06-OCT-94	<	5.2	UGL	
	WDTC	246TCP				27-SEP-94	06-OCT-94	<	4.2	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDTC	24DCLP				27-SEP-94	06-0CT-94	٠	2.9		
	WOTC	24DMPN				27-SEP-94	06-OCT-94	<	5.8	UGL	
	WDTC	24DNP				27-SEP-94	06-OCT-94	<	21	UGL	
	WDTC	24DNT				27-SEP-94	06-0CT-94	<	4.5	UGL	
	WDTC	26DNT				27-SEP-94	06-0CT-94	<	.79	UGL	
	WDTC	2CLP				27-SEP-94	06-OCT-94	<	99	UGL	
	WDTC	2CNAP				27-SEP-94	06-OCT-94	<	.5	UGL	
	WOTC	2MNAP				27-SEP-94	06-OCT-94	<	1.7	UGL	
	WDTC	2MP				27-SEP-94	06-0CT-94	<	3.9	UGL	
	WDTC	2NANIL				27-SEP-94	06-OCT-94	<	4.3	UGL	
	WDTC	2NP				27-SEP-94	06-0CT-94	<	3.7	UGL	
	WDTC	33DCBD				27-SEP-94	06-OCT-94	<	12	UGL	
	WDTC	3NANIL				27-SEP-94	06-0CT-94	<	4.9	UGL	
	WDTC	46DN2C				27-SEP-94	06-0CT-94	<	17	UGL	
	MOTC	4BRPPE				27-SEP-94	06-0CT-94	<	4.2	UGL	
	WDTC	4CANIL				27-SEP-94	06-OCT-94	<	7.3	UGL	
	WDTC	4CL3C				27-SEP-94	06-OCT-94	<	4	UGL	
	WDTC	4CLPPE				27-SEP-94	06-OCT-94	<	5.1	UGL	
	WOTC	4MP				27-SEP-94	06-OCT-94	<	.52	UGL	
	WDTC	4NANIL				27-SEP-94	06-OCT-94	<	5.2	UGL	
	WOTC	4NP				27-SEP-94	06-OCT-94	<	12	UGL	
	MOTO	ABHC				27-SEP-94	06-OCT-94	<	4	UGL	
	MOTO	ACLDAN				27-SEP-94	06-OCT-94	<	5.1	UGL	
	WDTC	AENSLF				27-SEP-94	06-OCT-94	<	9.2	UGL	
	WDTC	ALDRN				27-SEP-94	06-OCT-94	<	4.7	UGL	
	WDTC	ANAPNE				27-SEP-94	06-OCT-94	<	1.7	UGL	
	WDTC	ANAPYL				27-SEP-94	06-OCT-94	<	.5	UGL	
	MOTO	ANTRC				27-SEP-94	06-OCT-94	<	.5	UGL	
	WDTC	B2CEXM				27-SEP-94	06-OCT-94	<	1.5	UGL	
	WDTC	B2CIPE				27-SEP-94	06-0CT-94	<	5.3	UGL	
	WDTC	BZCLEE				27-SEP-94	06-OCT-94	<	1.9	UGL	
	WDTC	B2EHP				27-SEP-94	06-OCT-94	<	4.8	UGL	
	WOTC	BAANTR				27-SEP-94	06-OCT-94	<	1.6	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WOTC	BAPYR		22226600		27-SEP-94	06-0CT-94	<			
	WDTC	BBFANT				27-SEP-94	06-0CT-94	2	4.7 5.4	UGL	
	WOTC	BBHC				27-SEP-94	06-0CT-94	2	3.4	UGL	
	WDTC	BBZP				27-SEP-94	06-0CT-94	<	3.4		
	WDTC	BENSLF				27-SEP-94	06-0CT-94	<	9.2	UGL	
	WOTC	BENZID				27-SEP-94	06-0CT-94	<	10	UGL	
	WDTC	BENZOA				27-SEP-94	06-0CT-94	<	13	UGL	
	WDTC	BGHIPY				27-SEP-94	06-0CT-94	<		UGL	
	MDTC	BKFANT				27-SEP-94	06-0CT-94		6.1	UGL	
	WDTC	BZALC				27-SEP-94	06-0CT-94	<	.87	UGL	
	WDTC	CARBAZ				27-SEP-94	06-0CT-94	<	.72	UGL	
	WDTC	CHRY				27-SEP-94	06-0CT-94	<	.5	UGL	
	WDTC	CL6BZ				27-SEP-94	06-0CT-94	<	2.4	UGL	
	WDTC	CL6CP				27-SEP-94	06-0CT-94	<	1.6	UGL	
	WOTC	CL6ET				27-SEP-94	06-0CT-94	<	8.6	UGL	
	WDTC	DBAHA				27-SEP-94		<	1.5	UGL	
	WDTC	DBHC				27-SEP-94	06-0CT-94 06-0CT-94	<	6.5	UGL	
	WDTC	DBZFUR				27-SEP-94	06-0CT-94	<	4	UGL	
	WDTC	DEP				27-SEP-94		<	1.7	UGL	
	WDTC	DLDRN				27-SEP-94	06-0CT-94	<	, 2	UGL	
	WDTC	DMP					06-0CT-94	<	4.7	UGL	
	WOTC	DNBP				27-SEP-94	06-OCT-94	<	1.5	UGL	
	WOTC	DNOP				27-SEP-94 27-SEP-94	06-OCT-94	<	3.7	UGL	
	WOTC	ENDRN					06-OCT-94	<	_15	UGL	
	WOTC	ENDRNA				27-SEP-94	06-0CT-94	<	7.6	UGL	
	WDTC	ENDRNK				27-SEP-94	06-0CT-94	<	8	UGL	
	MOTO	ESFS04				27-SEP-94	06-0CT-94	. <	8	UGL	
	WOTC	FANT				27-SEP-94	06-OCT-94	<	9.2	UGL	
	WOTC	FLRENE				27-SEP-94	06-0CT-94	<	3.3	UGL	
	HOTC	GCLDAN				27-SEP-94	06-OCT-94	<	3.7	UGL	
	WOTC	HCBD				27-SEP-94	06-OCT-94	<	5.1	UGL	
	WOTC	HPCL				27-SEP-94	06-0CT-94	<	3.4	UGL	
	WOTC					27-SEP-94	06-0CT-94	<	2 5	UGL	
	MUIL	HPCLE				27-SEP-94	06-OCT-94	<	5	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	*	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WOTC	ICDPYR					27-SEP-94	06-0CT-94	<	8.6	Hel	
	WDTC	1SOPHR					27-SEP-94	06-OCT-94	<	4.8	UGL	
	WDTC	LIN					27-SEP-94	06-0CT-94	<	4	UGL	
	WDTC	MEXCLR					27-SEP-94	06-OCT-94	<	5.1	UGL	
	WDTC	NAP					27-SEP-94	06-OCT-94	<	.5	UGL	
	WDTC	NB					27-SEP-94	06-0CT-94	<	.5	UGL	
	WDTC	NNDMEA					27-SEP-94	06-OCT-94	<	2	UGL	
	WDTC	NNDNPA					27-SEP-94	06-0CT-94	<	4.4	UGL	
	WDTC	NNDPA					27-SEP-94	06-OCT-94	<	3	UGL	
	WDTC	PCB016					27-SEP-94	06-0CT-94	<	21	UGL	
	WDTC	PCB221					27-SEP-94	06-OCT-94	<	21	UGL	
	WDTC	PCB232					27-SEP-94	06-OCT-94	<	21	UGL	
	WDTC	PCB242					27-SEP-94	06-OCT-94	<	30	UGL	
	WDTC	PCB248					27-SEP-94	06-0CT-94	<	30	UGL	
	WDTC	PCB254					27-SEP-94	06-OCT-94	<	36	UGL	
	WDTC	PCB260					27-SEP-94	06-OCT-94	<	36	UGL	
	WOTC	PCP					27-SEP-94	06-0CT-94	<	18	UGL	
	WDTC	PHANTR					27-SEP-94	06-OCT-94	<	.5	UGL	
	WOTC	PHENOL					27-SEP-94	06-OCT-94	<	9.2	UGL	
	WDTC	PPDDD					27-SEP-94	06-OCT-94	<	4	UGL	
	WDTC	PPDDE					27-SEP-94	06-OCT-94	<		UGL	
	WDTC	PPDDT					27-SEP-94	06-OCT-94	<	9.2	UGL	
	MOTO	PYR					27-SEP-94	06-OCT-94	<	2.8	UGL	
	WDTC	TXPHEN					27-SEP-94	06-OCT-94	<	36	UGL	
	MDUC	124TCB					27-SEP-94	05-OCT-94	<	1.8	UGL	
	WDUC	12DCLB					27-SEP-94	05-OCT-94	<	1.7	UGL	
	MDUC	12DPH					27-SEP-94	05-OCT-94	<	2	UGL	
	MDUC	13DCLB					27-SEP-94	05-OCT-94	<	1.7	UGL	
	MDUC	14DCLB					27-SEP-94	05-OCT-94	<	1.7	UGL	
	WDUC	245TCP		8			27-SEP-94	05-OCT-94	<	5.2	UGL	
	MDUC	246TCP					27-SEP-94	05-OCT-94	<	4.2	UGL	
	MDUC	24DCLP					27-SEP-94	05-OCT-94	<	2.9	UGL	
	MDUC	24DMPN					27-SEP-94	05-OCT-94	<		UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDUC	24DNP				27-SEP-94	05-0CT-94	<	24		*********
	WDUC	24DNT				27-SEP-94	05-0CT-94		21	UGL	
	WDUC	26DNT				27-SEP-94	05-0CT-94	<	4.5	UGL	
	WDUC	2CLP				27-SEP-94	05-0CT-94	<	.79	UGL	
	WDUC	2CNAP				27-SEP-94		<	.99	UGL	
	WDUC	2MNAP				27-SEP-94	05-0CT-94	<	.5	UGL	
	WDUC	2MP				27-SEP-94	05-OCT-94 05-OCT-94	<	1.7	UGL	
	MDUC	2NANIL				27-SEP-94		<	3.9	UGL	
	WDUC	2NP				27-SEP-94	05-0CT-94	<	4.3	UGL	
	WDUC	33DCBD					05-OCT-94	<	3.7	UGL	
	WDUC	3NANIL				27-SEP-94	05-OCT-94	<	12	UGL	
	WDUC	46DN2C				27-SEP-94	05-OCT-94	<	4.9	UGL	
	WDUC	4BRPPE				27-SEP-94	05-OCT-94	<	17	UGL	
	WDUC	4CANIL				27-SEP-94	05-OCT-94	<		UGL	
	WDUC	4CL3C				27-SEP-94	05-OCT-94	<	7.3	UGL	
	WDUC	4CLPPE				27-SEP-94	05-OCT-94	<	4	UGL	
	WDUC	4MP				27-SEP-94	05-OCT-94	<	5.1	UGL	
	WOUL	4MANIL				27-SEP-94	05-OCT-94	<	.52	UGL	
						27-SEP-94	05-OCT-94	<	5.2	UGL	
	MOUC	4NP				27-SEP-94	05-OCT-94	<	12	UGL	
	MDUC	ABHC				27-SEP-94	05-OCT-94	<	4	UGL	
	MDUC	ACLDAN				27-SEP-94	05-OCT-94	<	5.1	UGL	
	MDUC	AENSLF				27-SEP-94	05-OCT-94	<	9.2	UGL	
	MDUC	ALDRN				27-SEP-94	05-OCT-94	<		UGL	
	MDUC	ANAPNE				27-SEP-94	05-OCT-94	<	1.7	UGL	
	MOUC	ANAPYL				27-SEP-94	05-OCT-94	<	.5	UGL	
	WDUC	ANTRC				27-SEP-94	05-OCT-94	<	.5	UGL	
	MDUC	B2CEXM				27-SEP-94	05-OCT-94	<	1.5	UGL	
	WDUC	BZCIPE				27-SEP-94	05-OCT-94	<	5.3	UGL	
	MDUC	BZCLEE				27-SEP-94	05-OCT-94	<	1.9	UGL	
	MDUC	B2EHP				27-SEP-94	05-OCT-94	<	4.8	UGL	
	WDUC	BAANTR				27-SEP-94	05-OCT-94	<	1.6	UGL	
	WDUC	BAPYR				27-SEP-94	05-0CT-94	2	4.7	UGL	
	WDUC	BBFANT				27-SEP-94	05-0CT-94	<	5.4	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	MDUC	BBHC			*********	27-SEP-94	05-OCT-94		4	UGL	•••••
	MDUC	BBZP				27-SEP-94	05-OCT-94	4	3.4	UGL	
	WDUC	BENSLF				27-SEP-94	05-OCT-94	<	9.2	UGL	
	MDUC	BENZID				27-SEP-94	05-OCT-94	<	10	UGL	
	MDUC	BENZOA				27-SEP-94	05-OCT-94	2	13	UGL	
	WDUC	BGHIPY				27-SEP-94	05-OCT-94	<	6.1	UGL	
	MDUC	BKFANT				27-SEP-94	05-OCT-94	<	.87	UGL	
	MDUC	BZALC		-		27-SEP-94	05-OCT-94	<	.72	UGL	
	MDUC	CARBAZ				27-SEP-94	05-0CT-94	2	.5	UGL	
	WDUC	CHRY				27-SEP-94	05-OCT-94	2	2.4	UGL	
	WDUC	CL6BZ				27-SEP-94	05-OCT-94	<	1.6	UGL	
	WDUC	CL6CP				27-SEP-94	05-OCT-94	2	8.6	UGL	
	WDUC	CL6ET				27-SEP-94	05-OCT-94	<	1.5	UGL	
	MDUC	DBAHA				27-SEP-94	05-OCT-94	<	6.5	UGL	
	WDUC	DBHC				27-SEP-94	05-OCT-94	<	4	UGL	
	WDUC	DBZFUR				27-SEP-94	05-OCT-94	<	1.7	UGL	
	WDUC	DEP				27-SEP-94	05-OCT-94	<	2	UGL	
	WDUC	DLDRN				27-SEP-94	05-OCT-94	<	4.7		
	WDUC	DMP				27-SEP-94	05-0CT-94	<		UGL	
	WDUC	DNBP				27-SEP-94	05-OCT-94	<		UGL	
	WDUC	DNOP				27-SEP-94	05-0CT-94	<	3.7	UGL	
	MDUC	ENDRN				27-SEP-94	05-0CT-94	<	15	UGL	
	MDUC	ENDRNA				27-SEP-94	05-OCT-94	2	7.6	UGL	
	WDUC	ENDRNK				27-SEP-94	05-OCT-94	<	8	UGL	
	WDUC	ESFS04				27-SEP-94	05-0CT-94	<		UGL	
	WDUC	FANT				27-SEP-94	05-OCT-94	<	9.2	UGL	
	WDUC	FLRENE			111	27-SEP-94	05-0CT-94		3.3	UGL	
	WDUC	GCLDAN				27-SEP-94	05-0CT-94	<		UGL	
	WDUC	HCBD				27-SEP-94	05-0CT-94	<	5.1	UGL	
	WDUC	HPCL				27-SEP-94	05-0CT-94	<	3.4	UGL	
	WDUC	HPCLE				27-SEP-94	05-0CT-94	<	2	UGL	
	WDUC	ICDPYR				27-SEP-94	05-0CT-94	<	5	UGL	
	WDUC	1 SOPHR				27-SEP-94		<	8.6	UGL	
		- 301 1111				21-3EF-94	05-OCT-94	<	4.8	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	HOUC	LIN			**********	27-SEP-94	05-0CT-94				********
	WDUC	MEXCLR				27-SEP-94	05-0CT-94	< <	5.1	UGL	
	WDUC	NAP				27-SEP-94	05-OCT-94	2		UGL	
	WDUC	NB				27-SEP-94	05-OCT-94		.5	UGL	
	WDUC	NNDMEA				27-SEP-94	05-0CT-94	<	.5	UGL	
	WDUC	NNDNPA				27-SEP-94	05-0CT-94	<	, 2	UGL	
	WDUC	NNDPA				27-SEP-94	05-0CT-94	<	4.4	UGL	
	WDUC	PCB016				27-SEP-94	05-0CT-94	< <	3	UGL	
	MDUC	PCB221				27-SEP-94	05-0CT-94	~	21	UGL	
	WDUC	PCB232				27-SEP-94	05-0CT-94	<	21	UGL	
	MDUC	PCB242				27-SEP-94	05-0CT-94	<	21	UGL	
	WDUC	PCB248				27-SEP-94	05-OCT-94	<	30	UGL	
	WDUC	PCB254				27-SEP-94	05-0CT-94		30	UGL	
	MDUC	PCB260				27-SEP-94	05-0CT-94	< <	36	UGL	
	WDUC	PCP				27-SEP-94	05-0CT-94			UGL	
	WDUC	PHANTR				27-SEP-94	05-0CT-94	<	18	UGL	
	WDUC	PHENOL				27-SEP-94	05-0CT-94	<		UGL	
	MOUC	PPDDD				27-SEP-94	05-0CT-94	<	9.2	UGL	
	WDUC	PPDDE				27-SEP-94	05-0CT-94	<	, 4	UGL	
	WOUC	PPDDT				27-SEP-94		<		UGL	
	WDUC	PYR				27-SEP-94	05-0CT-94	<		UGL	
	WDUC	TXPHEN				27-SEP-94	05-0CT-94	<		UGL	
	WDVC	124TCB				28-SEP-94	05-OCT-94	<	36	UGL	
	WDVC	12DCLB				28-SEP-94	11-0CT-94	<	1.8	UGL	
	MDVC	12DPH				28-SEP-94	11-OCT-94	<	1.7	UGL	
	WDVC	13DCLB					11-0CT-94	<	. 2	UGL	
	HDVC	14DCLB				28-SEP-94	11-OCT-94	<	1.7	UGL	
	WDVC	245TCP				28-SEP-94	11-OCT-94	<	1.7	UGL	
	MDVC	246TCP				28-SEP-94	11-0CT-94	<	5.2	UGL	
	WDVC	24DCLP				28-SEP-94	11-OCT-94	<	4.2	UGL	
	WDVC	24DMPN				28-SEP-94	11-OCT-94	<		UGL	
	MDVC	24DNP				28-SEP-94	11-OCT-94	<		UGL	
	WDVC	24DNT				28-SEP-94	11-OCT-94	<	21	UGL	
	NO VC	Z-JUN1				28-SEP-94	11-OCT-94	<	4.5	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDVC	26DNT				28-SEP-94	11-0CT-94	<	.79	UGL	********
	MDVC	2CLP				28-SEP-94	11-0CT-94	<	.99	UGL	
	WDVC	2CNAP				28-SEP-94	11-OCT-94	<	.5	UGL	
	WDVC	2MNAP				28-SEP-94	11-OCT-94	<	1.7	UGL	
	WDVC	2MP				28-SEP-94	11-0CT-94	<	3.9	UGL	
	WDVC	2NANIL				28-SEP-94	11-0CT-94	<	4.3	UGL	
	WDVC	2NP				28-SEP-94	11-0CT-94	2	3.7	UGL	
	WDVC	33DC80				28-SEP-94	11-0CT-94	<	12	UGL	
	WDVC	3NANIL				28-SEP-94	11-0CT-94	<	4.9	UGL	
	WDVC	46DN2C				28-SEP-94	11-DCT-94	<	17	UGL	
	MDVC	4BRPPE				28-SEP-94	11-0CT-94	~	4.2	UGL	
	WDVC	4CANIL				28-SEP-94	11-0CT-94	<	7.3	UGL	
	MDVC	4CL3C				28-SEP-94	11-OCT-94	<	1.3	UGL	
	WDVC	4CLPPE				28-SEP-94	11-0CT-94	<	5.1	UGL	
	MDVC	4MP				28-SEP-94	11-0CT-94	<	.52	UGL	
	WDVC	4NANIL				28-SEP-94	11-0CT-94	~	5.2	UGL	
	WDVC	4NP				28-SEP-94	11-0CT-94	<	12	UGL	
	WDVC	ABHC				28-SEP-94	11-0CT-94		4		
	WDVC	ACLDAN				28-SEP-94	11-0CT-94	< <	5.1	UGL	
	WDVC	AENSLF				28-SEP-94	11-0CT-94		9.2		
	WDVC	ALDRN				28-SEP-94	11-0CT-94	<		UGL	
	WDVC	ANAPNE				28-SEP-94	11-0CT-94	<	4.7	UGL	
	WDVC	ANAPYL				28-SEP-94		<	1.7	UGL	
	WDVC	ANTRO			100	28-SEP-94	11-0CT-94	<	.5	UGL	
	MDVC	B2CEXM				28-SEP-94	11-OCT-94	<	.5	UGL	
	WDVC	B2CIPE				28-SEP-94	11-OCT-94	<	1.5	UGL	
	WDVC	B2CLEE					11-OCT-94	<	5.3	UGL	
	MDVC	B2EHP				28-SEP-94	11-OCT-94	<	1.9	UGL	
	MOVC	BAANTR				28-SEP-94	11-0CT-94	<	4.8	UGL	
	WDVC	BAPYR				28-SEP-94	11-0CT-94	<	1.6	UGL	
	WDVC	BBFANT				28-SEP-94	11-OCT-94	<	4.7	UGL	
	WDVC	BBHC				28-SEP-94	11-OCT-94	<	5.4	UGL	
	WDVC	BBZP				28-SEP-94	11-OCT-94	<	_ 4	UGL	
	MDAC	DOLF				28-SEP-94	11-OCT-94	<	3.4	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDVC	BENSLF	,,,,,,,,,,,	*******		28-SEP-94	11-0CT-94		0.2	1404	
	WDVC	BENZID				28-SEP-94	11-0CT-94	< <	9.2	UGL	
	WDVC	BENZOA				28-SEP-94	11-0CT-94		10	UGL	
	WDVC	BGHIPY				28-SEP-94	11-0CT-94	<	13	UGL	
	WDVC	BKFANT				28-SEP-94	11-0CT-94	<	6.1	UGL	
	MDVC	BZALC				28-SEP-94	11-0CT-94	<	.87	UGL	
	WDVC	CARBAZ				28-SEP-94	11-0CT-94	<	.72	UGL	
	MDVC	CHRY				28-SEP-94	11-0CT-94	<	.5	UGL	
	HDVC	CL6BZ				28-SEP-94	11-0CT-94	<	2.4	UGL	
	WDVC	CL6CP				28-SEP-94		<	1.6	UGL	
	WDVC	CL6ET				28-SEP-94	11-0CT-94	<	8.6	UGL	
	WDVC	DBAHA				28-SEP-94	11-0CT-94	<	1.5	UGL	
	WDVC	DBHC				28-SEP-94	11-0CT-94	<	6.5	UGL	
	WDVC	DBZFUR				28-SEP-94	11-OCT-94	<	4	UGL	
	WDVC	DEP				28-SEP-94	11-0CT-94	<	1.7	UGL	
	WDVC	DLDRN				28-SEP-94	11-0CT-94	<	, 2	UGL	
	MDVC	DMP				28-SEP-94	11-0CT-94	<	4.7	UGL	
	WDVC	DNBP					11-0CT-94	<	1.5	UGL	
	WDVC	DNOP				28-SEP-94	11-OCT-94	<	3.7	UGL	
	WDVC	ENDRN				28-SEP-94	11-0CT-94	<	_15	UGL	
	WDVC	ENDRNA				28-SEP-94	11-OCT-94	<		UGL	
	MDVC	ENDRNK				28-SEP-94	11-OCT-94	<	8	UGL	
	WDVC	ESFS04				28-SEP-94	11-OCT-94	<	8	UGL	
	WDVC	FANT				28-SEP-94	11-OCT-94	<	9.2	UGL	
	WDVC	FLRENE				28-SEP-94	11-OCT-94	<	3.3	UGL	
	MOVC	GCLDAN				28-SEP-94	11-OCT-94	<	3.7	UGL	
	WDVC	HCBD				28-SEP-94	11-0CT-94	<	5.1	UGL	
	WDVC					28-SEP-94	11-OCT-94	<	3.4	UGL	
		HPCL				28-SEP-94	11-OCT-94	<	2 5	UGL	
	MDVC	HPCLE				28-SEP-94	11-OCT-94	<	5	UGL	
	WDVC	ICDPYR				28-SEP-94	11-OCT-94	<	8.6	UGL	
	WDVC	ISOPHR				28-SEP-94	11-OCT-94	<	4.8	UGL	
	WDVC	LIN				28-SEP-94	11-OCT-94	<	4	UGL	
	MDVC	MEXCLR				28-SEP-94	11-OCT-94	<	5.1	UGL	

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM18	WDVC	NAP				28-SEP-94	11-0CT-94	-	.5	UGL	
	WDVC	NB				28-SEP-94	11-OCT-94	<	.5	UGL	
	WDVC	NNDMEA				28-SEP-94	11-0CT-94	<	.,2	UGL	
	WDVC	NNDNPA				28-SEP-94	11-OCT-94	<	4.4	UGL	
	WDVC	NNDPA				28-SEP-94	11-OCT-94	<	3	UGL	
	MDVC	PCB016				28-SEP-94	11-OCT-94	<	21	UGL	
	WDVC	PCB221				28-SEP-94	11-OCT-94	<	21	UGL	
	WDVC	PCB232				28-SEP-94	11-OCT-94	<	21	UGL	
	MDVC	PCB242				28-SEP-94	11-OCT-94	<	30	UGL	
	MDVC	PCB248				28-SEP-94	11-OCT-94	<	30	UGL	
	MDVC	PCB254				28-SEP-94	11-0CT-94	<	36	UGL	
3	WDVC	PCB260				28-SEP-94	11-0CT-94	<	36	UGL	
	MDVC	PCP				28-SEP-94	11-OCT-94	<	18	UGL	
	WDVC	PHANTR				28-SEP-94	11-0CT-94	<	.5	UGL	
	MDVC	PHENOL				28-SEP-94	11-OCT-94	<	9.2	UGL	
	MDVC	PPDDD				28-SEP-94	11-OCT-94	<	4	UGL	
	MOVC	PPDDE	•			28-SEP-94	11-OCT-94	<	4.7	UGL	
	WDVC	PPDDT				28-SEP-94	11-OCT-94	<	9.2	UGL	
	WDVC	PYR				28-SEP-94	11-OCT-94	<	2.8	UGL	
	WDVC	TXPHEN				28-SEP-94	11-OCT-94	<	36	UGL	

TABLE C-9

13	Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
	***************************************	1302	SBK94577 SBK94577	HARD HARD	TEDY	22-SEP-94 22-SEP-94	0	< <		UGL UGL	SBK-94-577 SBK-94-577	
		1602	SBK94577 SBK94577	TSS TSS	TEAY TEAY	22-SEP-94 22-SEP-94	0	< <	4000 4000	UGL UGL	SBK-94-577 SBK-94-577	
		3101	SBK94577 SBK94577	ALK ALK	TEGY TEGY	22-SEP-94 22-SEP-94	0	< <	5000 5000	UGL UGL	SBK-94-577 SBK-94-577	
		4151	SBK94578 SBK94578 SBK94579	TOC TOC TOC	TENY TENY TENY	23-SEP-94 23-SEP-94 23-SEP-94	0	< < <	1000 1000	UGL UGL UGL	SBK-94-578 SBK-94-578 SBK-94-579	V1AW*578 V1AW*579
		4181	SBK94579 SBK94578 SBK94578	TPHC TPHC	TENY TEFY TEFY	23-SEP-94 23-SEP-94 23-SEP-94	0	< < <	1000 182 182	UGL UGL UGL	SBK-94-579 SBK-94-578 SBK-94-578	V1AW*578
			SBK94579 SBK94579	TPHC TPHC	TEFY	23-SEP-94 23-SEP-94	0	< <	180 180	UGL UGL	SBK-94-579 SBK-94-579	V1AW*579
	HG IN WATER BY CVAA HG IN WATER BY CVAA HG IN WATER BY CVAA HG IN WATER BY CVAA	SB01	SBK94577 SBK94577 SBK94577 SBK94579	HG HG HG	TCQC TCQC TCQC TCQC	22-SEP-94 22-SEP-94 22-SEP-94 23-SEP-94	0	× × ×	.243 .243 .243	UGL UGL	SBK-94-577 SBK-94-577 SBK-94-577	V1AF*577 V1AF*577
	HG IN WATER BY CVAA HG IN WATER BY CVAA HG IN WATER BY CVAA HG IN WATER BY CVAA		SBK94578 SBK94577 SBK94577	HG HG HG HG	TCQC TCQC TCQC	23-SEP-94 22-SEP-94 23-SEP-94	0 0 0	< < < <	.243 .243 .243	UGL UGL UGL UGL	SBK-94-579 SBK-94-578 SBK-94-577 SBK-94-579	V1AW*578 V1AW*577
	HG IN WATER BY CVAA TL IN WATER BY GFAA	SD09	SBK94578 SBK94577	HG TL	TCQC	23-SEP-94 22-SEP-94	0	< <	6.99	UGL	SBK-94-578 SBK-94-577	V1AW*578
	TL IN WATER BY GFAA TL IN WATER BY GFAA TL IN WATER BY GFAA		SBK94578 SBK94577 SBK94579	TL TL TL	UCCC UCCC	23-SEP-94 22-SEP-94 23-SEP-94	0	< < <	6.99 6.99 6.99	UGL UGL UGL	SBK-94-578 SBK-94-577 SBK-94-579	V1AW*578 V1AF*577 V1AW*579
	TL IN WATER BY GFAA TL IN WATER BY GFAA TL IN WATER BY GFAA		SBK94577 SBK94579 SBK94578 SBK94577	TL TL TL	OCCC OCCC OCCC	22-SEP-94 23-SEP-94 23-SEP-94 22-SEP-94	0 0 0	< < <		UGL UGL UGL	SBK-94-577 SBK-94-579 SBK-94-578	V1AW*579 V1AW*578
1	TL IN WATER BY GFAA PB IN WATER BY GFAA PB IN WATER BY GFAA	SD20	SBK94577 SBK94578	TL PB PB	WCMC WCMC	22-SEP-94 22-SEP-94 23-SEP-94	0	< <	1.26	UGL UGL UGL	SBK-94-577 SBK-94-577 SBK-94-578	V1AW*577
1	PB IN WATER BY GFAA PB IN WATER BY GFAA		SBK94578 SBK94577	PB PB	WCMC WCMC	23-SEP-94 22-SEP-94	0	< <	1.26	UGL UGL	SBK-94-578 SBK-94-577	V1AW*578

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
PB IN WATER BY GFAA	SD20	SBK94579	PB	WCMC	23-SEP-94	0	ζ	1.26	UGL	SBK-94-579	V1AU*579
PB IN WATER BY GFAA	3020	SBK94577	PB	WCMC	22-SEP-94	Ö	<	1.26	UGL	SBK-94-577	
PB IN WATER BY GFAA		SBK94577	PB	WCMC	22-SEP-94	Ö	<	1.26	UGL	SBK-94-577	
PB IN WATER BY GFAA		SBK94579	PB	WCMC	23-SEP-94	ŏ	<	1.26	UGL	SBK-94-579	
SE IN WATER BY GFAA	SD21	SBK94579	SE	XCHC	23-SEP-94	0	<	3.02	UGL	SBK-94-579	V1AW*579
SE IN WATER BY GFAA	SDLI	SBK94577	SE	XCHC	22-SEP-94	Ō	<	3.02	UGL	SBK-94-577	
SE IN WATER BY GFAA		SBK94578	SE	XCHC	23-SEP-94	ŏ	<	3.02	UGL	SBK-94-578	
SE IN WATER BY GFAA		SBK94577	SE	XCHC	22-SEP-94	ő	<	3.02	UGL	SBK-94-577	
SE IN WATER BY GFAA		SBK94579	SE	XCHC	23-SEP-94	ŏ	<	3.02	UGL	SBK-94-579	
		SBK94577	SE	XCHC	22-SEP-94	ŏ	<	3.02	UGL	SBK-94-577	
SE IN WATER BY GFAA		SBK94578	SE	XCHC	23-SEP-94	ő	<	3.02	UGL	SBK-94-578	
SE IN WATER BY GFAA SE IN WATER BY GFAA		SBK94577	SE	XCHC	22-SEP-94	ŏ	<	3.02	UGL	SBK-94-577	
AS IN WATER BY GFAA	SD22	SBK94577	AS	YCIC	22-SEP-94	0	<	2.54	UGL	SBK-94-577	V1AU*577
AS IN WATER BY GFAA	SULL	SBK94578	AS	YCIC	23-SEP-94	ŏ	<	2.54	UGL	SBK-94-578	
AS IN WATER BY GFAA		SBK94577	AS	YCIC	22-SEP-94	ŏ	<	2.54	UGL	SBK-94-577	
AS IN WATER BY GFAA		SBK94579	AS	YCIC	23-SEP-94	ŏ	<	2.54	UGL	SBK-94-579	
		SBK94577	AS	YCIC	22-SEP-94	ŏ	<	2.54	UGL	SBK-94-577	
AS IN WATER BY GFAA		SBK94579	AS	YCIC	23-SEP-94	ŏ	<	2.54	UGL	SBK-94-579	
AS IN WATER BY GFAA AS IN WATER BY GFAA		SBK94578	AS	YCIC	23-SEP-94	ő	2	2.54	UGL	SBK-94-578	
		SBK94577	AS	YCIC	22-SEP-94	ő	2	2.54	UGL	SBK-94-577	
AS IN WATER BY GFAA		38K943//	AS	ILIL	22-SEP-94	U		2.54	UGL	3DK-94-311	VIAF-SII
SB IN WATER BY GFAA	SD28	SBK94577	SB	NFPB	22-SEP-94	0	<	3.03	UGL	SBK-94-577	V1AW*577
SB IN WATER BY GFAA		SBK94578	SB	NFPB	23-SEP-94	0	<	3.03	UGL	SBK-94-578	V1AW*578
SB IN WATER BY GFAA		SBK94579	SB	NFPB	23-SEP-94	0	<	3.03	UGL	SBK-94-579	V1AW*579
SB IN WATER BY GFAA		SBK94577	SB	NFPB	22-SEP-94	0	<	3.03	UGL	SBK-94-577	V1AF*577
SB IN WATER BY GFAA		SBK94577	SB	NFPB	22-SEP-94	0	<	3.03	UGL	SBK-94-577	V1AF*577
SB IN WATER BY GFAA		SBK94579	SB	NFPB	23-SEP-94	0	<	3.03	UGL	SBK-94-579	V1AW*579
SB IN WATER BY GFAA		SBK94578	SB	NFPB	23-SEP-94	0	<	3.03	UGL	SBK-94-578	V1AW*578
SB IN WATER BY GFAA		SBK94577	SB	NFPB	22-SEP-94	Ō	<	3.03	UGL	SBK-94-577	
METALS IN WATER BY ICAP	SS10	SBK94577	AG	ZFDC	22-SEP-94	0	<	4.6	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICAP		SBK94579	AG	ZFDC	23-SEP-94	0	<	4.6	UGL	SBK-94-579	V1AW*579
METALS IN WATER BY ICAP		SBK94577	AG	ZFDC	22-SEP-94	0	<	4.6	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	AG	ZFDC	23-SEP-94	0	<	4.6	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94578	AG	ZFDC	23-SEP-94	0	<	4.6	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	AG	ZFDC	22-SEP-94	Ŏ	<	4.6	UGL	SBK-94-577	
METALS IN WATER BY TCAP		SBK94578	AG	ZFDC	23-SEP-94	Ö	<	4.6	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	AG	ZFDC	22-SEP-94	o.	<	4.6	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	AL	ZFDC			<	141	UGL	SBK-94-577	

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
METALS IN WATER BY ICAP	SS10	SBK94579	AL	ZFDC	23-SEP-94	0	<	141	UGL	SBK-94-579	V1AW*579
METALS IN WATER BY ICAP		SBK94577	AL	ZFDC	22-SEP-94	0	<	141	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICAP		SBK94578	AL	ZFDC	23-SEP-94	0	<	141	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	AL	ZFDC	23-SEP-94	0	<	141	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	AL	ZFDC	22-SEP-94	0	<	141	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	AL	ZFDC	23-SEP-94	0	<	141	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	AL	ZFDC	22-SEP-94	0	<	141	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	BA	ZFDC	22-SEP-94	0	<	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	BA	ZFDC	22-SEP-94	0	<	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	BA	ZFDC	23-SEP-94	Ō	<	5	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	BA	ZFDC	23-SEP-94		<	5	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	BA	ZFDC	22-SEP-94	ŏ	<	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	BA	ZFDC	23-SEP-94	ŏ	<	5	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	BA	ZFDC	23-SEP-94		<	5	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	BA	ZFDC	22-SEP-94	ő	<	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	BE	ZFDC	22-SEP-94	ŏ	<	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	BE	ZFDC	22-SEP-94	ŏ	2	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	BE	ZFDC	23-SEP-94	ő	<	5	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	BE	ZFDC	23-SEP-94	ő	3	5	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	BE	ZFDC	22-SEP-94	Ö	2	5	UGL	SBK-94-577	
		SBK94577	BE	ZFDC	22-SEP-94	0	2	5	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	BE	ZFDC	23-SEP-94	ő	2	5	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	BE	T-10-7-17	23-SEP-94	0	<	5	UGL	SBK-94-579	
METALS IN WATER BY ICAP				ZFDC	22-SEP-94	ŏ	<	500			
METALS IN WATER BY ICAP		SBK94577	CA	ZFDC	23-SEP-94	-		2.35	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	CA	ZFDC		0	<	500	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	CA	ZFDC	23-SEP-94	0	<	500	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	CA	ZFDC	22-SEP-94	0	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	CA	ZFDC	22-SEP-94	0	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	CA	ZFDC	23-SEP-94	0	<	500	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	CA	ZFDC	23-SEP-94	0	<	500	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	CA	ZFDC	22-SEP-94	0	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	CD	ZFDC	22-SEP-94	0	<	4.01	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	CD	ZFDC	22-SEP-94	0	<	4.01	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	CD	ZFDC	23-SEP-94	0	<	4.01	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	CD	ZFDC	23-SEP-94	0	<	4.01	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94578	CD	ZFDC	23-SEP-94	0	<	4.01	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	CD	ZFDC	23-SEP-94	0	<	4.01	UGL	SBK-94-579	V1AW*579
METALS IN WATER BY ICAP		SBK94577	CD	ZFDC	22-SEP-94	0	<	4.01	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	CD	ZFDC	22-SEP-94	0	<	4.01	UGL	SBK-94-577	V1AF*577
METALS IN WATER BY ICAP		SBK94577	CO	ZFDC	22-SEP-94	0	<	25	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICAP		SBK94577	CO	ZFDC	22-SEP-94	0	<	25	UGL	SBK-94-577	V1AF*577

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
METALS IN WATER BY ICA	P SS10	SBK94579	CO	ZFDC	23-SEP-94	0	<	25	UGL	SBK-94-579	V1AW*579
METALS IN WATER BY ICA		SBK94577	CO	ZFDC	22-SEP-94	0	<	25	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94578	CO	ZFDC	23-SEP-94	Ö	<	25	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	CO	ZFDC	22-SEP-94	Ö	<	25	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	CO	ZFDC	23-SEP-94	Ö	<	25	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94578	CO	ZFDC	23-SEP-94	Ö	<	25	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94579	CR	ZFDC	23-SEP-94	ŏ	<	6.02	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94577	CR	ZFDC	22-SEP-94	O	<	6.02	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94577	CR	ZFDC	22-SEP-94	ŏ	<	6.02	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94577	CR	ZFDC	22-SEP-94	0	<	6.02	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94578	CR	ZFDC	23-SEP-94	Ō	<	6.02	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	CR	ZFDC	22-SEP-94	Ď	<	6.02	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	CR	ZFDC	23-SEP-94	0	<	6.02	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94578	CR	ZFDC	23-SEP-94		<	6.02	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	CU	ZFDC	22-SEP-94	Ö	<	8.09	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	CU	ZFDC	23-SEP-94	Ö	<	8.09	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94577	CU	ZFDC	22-SEP-94	0	<	8.09	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94578	CU	ZFDC	23-SEP-94		<	8.09	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	CU	ZFDC	22-SEP-94	Ö	<	8.09	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	CU	ZFDC	23-SEP-94	O.	<	8.09	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94578	CU	ZFDC	23-SEP-94	0	<	8.09	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	CU	ZFDC	22-SEP-94	0	<	8.09	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	FE	ZFDC	23-SEP-94	0		64.5	UGL	SBK-94-579	V1AW*579
METALS IN WATER BY ICA		SBK94579	FE	ZFDC	23-SEP-94	0		64.5	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94577	FE	ZFDC	22-SEP-94	0	<	38.8	UGL	SBK-94-577	V1AF*577
METALS IN WATER BY ICA		SBK94578	FE	ZFDC	23-SEP-94	0	<	38.8	UGL	SBK-94-578	V1AW*578
METALS IN WATER BY ICA		SBK94577	FE	ZFDC	22-SEP-94	0	<	38.8	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICA		SBK94577	FE	ZFDC	22-SEP-94	0	<	38.8	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94578	FE	ZFDC	23-SEP-94	0	<	38.8	UGL	SBK-94-578	V1AW*578
METALS IN WATER BY ICA		SBK94577	FE	ZFDC	22-SEP-94	0	<		UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94577	K	ZFDC	22-SEP-94	0	<	375	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94577	K	ZFDC	22-SEP-94	0	<	375	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	K	ZFDC	23-SEP-94	0	<	375	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94578	K	ZFDC	23-SEP-94	0	<	375	UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	K	ZFDC	22-SEP-94	0	<	375	UGL	SBK-94-577	and the second second second
METALS IN WATER BY ICA		SBK94578	K	ZFDC	23-SEP-94	0	<		UGL	SBK-94-578	
METALS IN WATER BY ICA		SBK94577	K	ZFDC	22-SEP-94	0	<	375	UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94579	K	ZFDC	23-SEP-94	17.	<	375	UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94579	MG	ZFDC	23-SEP-94	0	<		UGL	SBK-94-579	
METALS IN WATER BY ICA		SBK94577	MG	ZFDC	22-SEP-94		<		UGL	SBK-94-577	
METALS IN WATER BY ICA		SBK94578	MG	ZFDC	23-SEP-94	Ö	<		UGL	SBK-94-578	

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
METALS IN WATER BY ICAP	SS10	SBK94577	MG	ZFDC	22-SEP-94	0	<	500	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICAP	2012	SBK94577	MG	ZFDC	22-SEP-94	Ō	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	MG	ZFDC	23-SEP-94	0	<	500	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94578	MG	ZFDC	23-SEP-94	Ŏ	<	500	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	MG	ZFDC	22-SEP-94	ŏ	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	MN	ZFDC	23-SEP-94	Ö		12.9	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94579	MN	ZFDC	23-SEP-94	Ö		12.9	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	MN	ZFDC	22-SEP-94	0		6.26	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	MN	ZFDC	22-SEP-94	Ö		6.26	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	MN	ZFDC	22-SEP-94	0	<	2.75	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	MN	ZFDC	23-SEP-94	0	<	2.75	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94578	MN	ZFDC	23-SEP-94	0	<	2.75	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	MN	ZFDC	22-SEP-94	0	<	2.75	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	NA.	ZFDC	23-SEP-94	0		562	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94578	NA	ZFDC	23-SEP-94	Ŏ		562	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	NA	ZFDC	22-SEP-94	ŏ	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	NA	ZFDC	22-SEP-94	ŏ	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	NA	ZFDC	23-SEP-94	ŏ	<	500	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	NA	ZFDC	22-SEP-94	Ö	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	NA	ZFDC	23-SEP-94	ŏ	<	500	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	NA	ZFDC	22-SEP-94	ŏ	<	500	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	NI	ZFDC	22-SEP-94	ŏ	<	34.3	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	NI	ZFDC	22-SEP-94	ŏ	<	34.3	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	NI	ZFDC	23-SEP-94	ŏ	<	34.3	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94578	NI	ZFDC	23-SEP-94	Ö	<	34.3	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94578	NI	ZFDC	23-SEP-94	ő	<	34.3	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	NI	ZFDC	22-SEP-94	ő	<	34.3	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	NI	ZFDC	23-SEP-94	ŏ	<	34.3	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	NI	ZFDC	22-SEP-94	Ö	<	34.3	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	V	ZFDC	22-SEP-94	ő	<	11	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	v	ZFDC	23-SEP-94	ŏ	<	11	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	v	ZFDC	22-SEP-94	ő	<	11	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	v	ZFDC	23-SEP-94	ő	<	11	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94579	v	ZFDC	23-SEP-94	ŏ	<	11	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	v	ZFDC	22-SEP-94	. 0	<	11	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94577	V	ZFDC	22-SEP-94	0	3	11	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	v	ZFDC	23-SEP-94	0	3	11	UGL	SBK-94-578	
METALS IN WATER BY ICAP		SBK94577	ZN	ZFDC	22-SEP-94	0	<	21.1	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94579	ZN	ZFDC	23-SEP-94	0	2				
		SBK94577			22-SEP-94	ŏ	<	21.1	UGL	SBK-94-579	
METALS IN WATER BY ICAP			ZN	ZFDC		1.54		21.1	UGL	SBK-94-577	
METALS IN WATER BY ICAP		SBK94578	ZN	ZFDC	23-SEP-94	0	<	21.1	UGL	SBK-94-578	ALC.MAIA

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
METALS IN WATER BY ICAP	\$\$10	SBK94579	ZN	ZFDC	23-SEP-94	0	<	21.1	UGL	SBK-94-579	
METALS IN WATER BY ICAP		SBK94577	ZN	ZFDC	22-SEP-94	.0	<	21.1	UGL	SBK-94-577	V1AF*577
METALS IN WATER BY ICAP		SBK94577	ZN	ZFDC	22-SEP-94	0	<	21.1	UGL	SBK-94-577	V1AW*577
METALS IN WATER BY ICAP		SBK94578	ZN	ZFDC	23-SEP-94	0	<	21.1	UGL	SBK-94-578	V1AW*578
SO4 IN WATER	TT10	SBK94577	CL	PDTA	22-SEP-94	0	<	2120	UGL	SBK-94-577	
SO4 IN WATER	1.07	SBK94577	CL	PDTA	22-SEP-94	0	<	2120	UGL	SBK-94-577	V1AW*577
	UHO2	SBK94579	PCB016	SDMB	23-SEP-94	0	<	.16	UGL	SBK-94-579	
	- C-	SBK94579	PCB016	SDMB	23-SEP-94	0	<	.16	UGL	SBK-94-579	
		SBK94579	PCB221	SDMB	23-SEP-94	0	<	.16	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB221	SDMB	23-SEP-94	0	<	-16	UGL	SBK-94-579	
		SBK94579	PCB232	SDMB	23-SEP-94	0	<	.16	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB232	SDMB	23-SEP-94	0	<	.16	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB242	SDMB	23-SEP-94	0	<	.19	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB242	SDMB	23-SEP-94	0	<	.19	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB248	SDMB	23-SEP-94	0	<	.19	UGL	SBK-94-579	
		SBK94579	PCB248	SDMB	23-SEP-94	0	<	. 19	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB254	SDMB	23-SEP-94	0	<	. 19	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB254	SDMB	23-SEP-94	0	<	.19	UGL	SBK-94-579	
		SBK94579	PCB260	SDMB	23-SEP-94	0	<	.19	UGL	SBK-94-579	V1AW*579
		SBK94579	PCB260	SDMB	23-SEP-94	Ö	<	. 19	UGL	SBK-94-579	
	UH13	SBK94579	ABHC	TDYB	23-SEP-94	0	<	.0385	UGL	SBK-94-579	V1AW*579
	6000	SBK94579	ABHC	TDYB	23-SEP-94	0	<	.0385	UGL	SBK-94-579	V1AW*579
		SBK94579	ACLDAN	TDYB	23-SEP-94	0	<	.075	UGL	SBK-94-579	V1AW*579
		SBK94579	ACLDAN	TDYB	23-SEP-94	0	<	.075	UGL	SBK-94-579	V1AW*579
		SBK94579	AENSLF	TDYB	23-SEP-94	0	<	.023	UGL	SBK-94-579	
		SBK94579	AENSLF	TDYB	23-SEP-94	0	<	.023	UGL	SBK-94-579	
		SBK94579	ALDRN	TDYB	23-SEP-94	0	<	.0918	UGL	SBK-94-579	
		SBK94579	ALDRN	TDYB	23-SEP-94	0	<	.0918	UGL	SBK-94-579	
		SBK94579	BBHC	TDYB	23-SEP-94	Ö	<	.024	UGL	SBK-94-579	
		SBK94579	BBHC	TDYB	23-SEP-94	Ö	<	.024	UGL	SBK-94-579	
		SBK94579	BENSLF	TDYB	23-SEP-94	ŏ	<	.023	UGL	SBK-94-579	V1AU*579
		SBK94579	BENSLF	TDYB	23-SEP-94	Ö	<	.023	UGL	SBK-94-579	
		SBK94579	DBHC	TDYB	23-SEP-94	ő	<	.0293	UGL	SBK-94-579	
		SBK94579	DBHC	TDYB	23-SEP-94	ő	<	.0293	UGL	SBK-94-579	
		SBK94579	DLDRN	TDYB	23-SEP-94	ŏ	<	.024	UGL	SBK-94-579	
		SBK94579	DLDRN	TDYB	23-SEP-94	ő	<	.024	UGL	SBK-94-579	
		SBK94579	ENDRN	TDYB	23-SEP-94	o	<	.0238	UGL	SBK-94-579	
		SBK94579	ENDRN	TDYB	23-SEP-94	ő	<	.0238	UGL	SBK-94-579	
		SOVAHOLA	LNDKN	IDID	CJ '3CF 74	o.		.0230	OUL	30K-74-317	ALVA 212

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
	UH13	SBK94579	ENDRNA	TDYB	23-SEP-94	0	<	.0285	UGL	SBK-94-579	V1AW*579
	2013	SBK94579	ENDRNA	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	
		SBK94579	ENDRNK	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	
		SBK94579	ENDRNK	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	
		SBK94579	ESFS04	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	
		SBK94579	ESFS04	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
		SBK94579	GCLDAN	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
		SBK94579	GCLDAN	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	
		SBK94579	HPCL	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
		SBK94579	HPCL	TDYB	23-SEP-94	0	<	.0423	UGL	SBK-94-579	V1AW*579
		SBK94579	HPCLE	TDYB	23-SEP-94	0	<	.0245	UGL	SBK-94-579	V1AW*579
		SBK94579	HPCLE	TDYB	23-SEP-94	0	<	.0245	UGL	SBK-94-579	V1AW*579
		SBK94579	ISODR	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
		SBK94579	ISODR	TDYB	23-SEP-94	0	<	.0562	UGL	SBK-94-579	V1AW*579
		SBK94579	LIN	TDYB	23-SEP-94	0	<	.0507	UGL	SBK-94-579	V1AW*579
		SBK94579	LIN	TDYB	23-SEP-94	0	<	.0507	UGL	SBK-94-579	V1AW*579
		SBK94579	MEXCLR	TDYB	23-SEP-94	0	<	.057	UGL	SBK-94-579	V1AW*579
		SBK94579	MEXCLR	TDYB	23-SEP-94	0	<	.057	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDD	TDYB	23-SEP-94	0	<	.0233	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDD	TDYB	23-SEP-94	0	<	.0233	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDE	TDYB	23-SEP-94	0	<	.027	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDE	TDYB	23-SEP-94	0	<	.027	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDT	TDYB	23-SEP-94	0	<	.034	UGL	SBK-94-579	V1AW*579
		SBK94579	PPDDT	TDYB	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
		SBK94579	TXPHEN	TDYB	23-SEP-94	0	<	1.35	UGL	SBK-94-579	V1AW*579
		SBK94579	TXPHEN	TDYB	23-SEP-94	0	<	1.35	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GO	C/MS UM18	SBK94578	124TCB	WDTC	23-SEP-94	0	<	1.8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GO	C/MS	SBK94579	124TCB	WDTC	23-SEP-94	0	<	1.8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GO	C/MS	SBK94578	124TCB	WOTC	23-SEP-94	0	<	1.8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GO		SBK94579	124TCB	WDTC	23-SEP-94	0	<	1.8	UGL	SBK-94-579	
BNA'S IN WATER BY GO	C/MS	SBK94577	124TCB	WDUC	22-SEP-94	0	<	1.8	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GO	C/MS	SBK94577	124TCB	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GO		SBK94577	12DCLB	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GO	C/MS	SBK94577	12DCLB	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GO		SBK94578	12DCLB	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GO	C/MS	SBK94579	12DCLB	WDTC	23-SEP-94	0 -	<		UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GO		SBK94578	12DCLB	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GO		SBK94579	12DCLB	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GO	:/MS	SBK94579	12DPH	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GO	C/MS	SBK94579	12DPH	WOTC	23-SEP-94	0	<	2	UGL	SBK-94-579	V1AU*579

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94578	12DPH	WOTC	23-SEP-94	0	<	2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS	Orrig	SBK94577	12DPH	WDUC	22-SEP-94	Ö	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	12DPH	WOUC	22-SEP-94	0	<	2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	12DPH	WOTC	23-SEP-94	õ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	13DCLB	WDUC	22-SEP-94	Ō	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	13DCLB	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	13DCLB	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	13DCLB	WDTC	23-SEP-94	Ō	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	13DCLB	WOTC	23-SEP-94	Õ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	13DCLB	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	14DCLB	WOTC	23-SEP-94	0	<	1.7	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94579	14DCLB	WDTC	23-SEP-94	0	<	1.7	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	14DCLB	WOTC	23-SEP-94	0	<	1.7	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	14DCLB	WDUC	22-SEP-94	0	<	1.7	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	14DCLB	WOUC	22-SEP-94	0	<	1.7	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	14DCLB	MOTO	23-SEP-94	0	<	1.7	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	245TCP	WDUC	22-SEP-94	0	<	5.2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	245TCP	WOTC	23-SEP-94	0	<	5.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	245TCP	WDUC	22-SEP-94	0	<	5.2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	245TCP	WOTC	23-SEP-94	0	<	5.2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94579	245TCP	WOTC	23-SEP-94	0	<	5.2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	245TCP	WOTC	23-SEP-94	0	<	5.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	246TCP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94579	246TCP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	246TCP	WOTC	23-SEP-94	0	<	4.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	246TCP	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	246TCP	WDUC	22-SEP-94	0	<	4.2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	246TCP	MOTO	23-SEP-94	0	<	4.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	24DCLP	WDUC	22-SEP-94	.0	<	2.9	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	24DCLP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	24DCLP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	24DCLP	WOTC	23-SEP-94	0	<	2.9	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	24DCLP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	24DCLP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	24DMPN	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	24DMPN	MOTO	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	24DMPN	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	24DMPN	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	24DMPN	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	24DMPN	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	24DNP	MDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577

Method	Descripti	on	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S	IN WATER B	Y GC/MS	UM18	SBK94577	24DNP	WDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577
BNA'S	IN WATER B	Y GC/MS		SBK94578	24DNP	WOTC	23-SEP-94	0	<	21	UGL	SBK-94-578	V1AW*578
	IN WATER B			SBK94579	24DNP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S	IN WATER B	Y GC/MS		SBK94578	24DNP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S	IN WATER B	Y GC/MS		SBK94579	24DNP	WOTC	23-SEP-94	0	<	21	UGL	SBK-94-579	
	IN WATER B			SBK94578	24DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94579	24DNT	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
	IN WATER B			SBK94578	24DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94579	24DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
	IN WATER B			SBK94577	24DNT	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
	IN WATER B			SBK94577	24DNT	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S	IN WATER B	Y GC/MS		SBK94577	26DNT	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
	IN WATER B			SBK94577	26DNT	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
	IN WATER B			SBK94578	26DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94579	26DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
	IN WATER B			SBK94578	26DNT	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S	IN WATER B	Y GC/MS		SBK94579	26DNT	WOTC	23-SEP-94	0	<	.79	UGL	SBK-94-579	
	IN WATER B			SBK94578	2CLP	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94577	2CLP	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	V1AW*577
BNA'S	IN WATER B	Y GC/MS		SBK94579	2CLP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S	IN WATER B	Y GC/MS		SBK94578	2CLP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S	IN WATER B	Y GC/MS		SBK94579	SCLP	WOTC	23-SEP-94	0	<	.99	UGL	SBK-94-579	V1AW*579
	IN WATER B			SBK94577	2CLP	WDUC	22-SEP-94	0	<	.99	UGL	SBK-94-577	V1AW*577
	IN WATER B			SBK94577	2CNAP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
	IN WATER B			SBK94578	2CNAP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94577	2CNAP	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	
	IN WATER B			SBK94579	2CNAP	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
	IN WATER B			SBK94578	2CNAP	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94579	2CNAP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
	IN WATER B			SBK94578	ZMNAP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94577	ZMNAP	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S	IN WATER B	Y GC/MS		SBK94579	2MNAP	WOTC	23-SEP-94	0	<	1.7	UGL	SBK-94-579	V1AW*579
	IN WATER B			SBK94578	2MNAP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
	IN WATER B			SBK94579	2MNAP	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	V1AW*579
BNA'S	IN WATER B	Y GC/MS		SBK94577	2MNAP	WDUC	22-SEP-94	0	<	1.7	UGL	SBK-94-577	V1AW*577
BNA'S	IN WATER B	Y GC/MS		SBK94577	2MP	MOUC	22-SEP-94	0	<		UGL	SBK-94-577	V1AW*577
BNA'S	IN WATER B	Y GC/MS		SBK94578	2MP	WOTC	23-SEP-94	0	<	3.9	UGL	SBK-94-578	V1AW*578
	IN WATER B			SBK94577	ZMP	WOUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S	IN WATER B	Y GC/MS		SBK94579	2MP	WOTC	23-SEP-94	0	<	3.9	UGL	SBK-94-579	V1AW*579
BNA'S	IN WATER B	Y GC/MS		SBK94578	2MP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S	IN WATER B	Y GC/MS		SBK94579	2MP	WOTC	23-SEP-94	0	<	3.9	UGL	SBK-94-579	V1AW*579

BNA'S IN MATER BY GC/MS BNA'S IN MATER BY GC/MS SRKV4577 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4578 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4578 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4578 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMANIIL MUC Z2-SEP-94 0 < 4.3 UGL SRK-94-577 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-577 VIALM-577 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV4577 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 3.7 UGL SRK-94-578 VIALM-579 BNA'S IN MATER BY GC/MS SRKV45778 ZMP MUC Z2-SEP-94 0 < 12 UGL SRK-94-578 VIALM-579 DNA'S IN MATER BY GC/MS SRKV45779 ZMP MUC Z2-SEP-94 0 < 12 UGL SRK-94	Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	RNA'S IN WATER BY GC/MS	UM1R	SRK94578	ZNANTI	WOTC	23-SEP-94	0	<	4.3	UGL	SBK-94-578	V1AW*578
BBA'S IN HATER BY GC/MS SK04579 ZHAMIL WOTC 23-SEP-94 0 < 4.3 UGL SK-94-579 VIAM*579 BBA'S IN HATER BY GC/MS SK04579 ZHAMIL WOTC 23-SEP-94 0 < 4.3 UGL SK-94-578 VIAM*578 BBA'S IN HATER BY GC/MS SK04577 ZHAMIL WOTC 23-SEP-94 0 < 4.3 UGL SK-94-577 VIAM*577 BNA'S IN WATER BY GC/MS SK04577 ZHAMIL WOTC 23-SEP-94 0 < 4.3 UGL SK-94-577 VIAM*577 BNA'S IN WATER BY GC/MS SK04577 ZHAMIL WOTC 23-SEP-94 0 < 4.3 UGL SK-94-577 VIAM*577 BNA'S IN WATER BY GC/MS SK04577 ZHAMIL WOTC 22-SEP-94 0 < 3.7 UGL SK-94-577 VIAM*577 BNA'S IN WATER BY GC/MS SK04577 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-577 VIAM*579 BNA'S IN WATER BY GC/MS SK04577 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-577 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-577 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 ZHP WOTC 23-SEP-94 0 < 3.7 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAM*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 330CBD WOTC 23-SEP-94 0 < 12 UGL SK-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SK04579 SK0458		Un 10										
BBA'S IN MATER BY GC/MS BBK9579 BNA'S IN MATER BY GC/MS BBK9577 BNA'S IN MATER BY GC/MS BBK94577 BNA'S IN MATER BY GC/MS BBK94578 BNA'S IN MATER BY GC/MS BBK94577 BNA'S IN MATER BY												
BBA'S IN WATER BY GC/MS BRY65/77 BNA'S IN WATER BY GC/MS BRY65/79 BNA'S IN WATER B												
BBA'S N WATER BY GC/MS												
BBA'S IN WATER BY CC/MS												
BNA'S IN WATER BY GC/MS SBK94579 ZNP												
BMA'S IN WATER BY GC/MS SBK94577 ZNP WDIC 23-SEP-94 O < 3.7 UGL SBK-94-579 V1AW-579												
BMA'S IN WATER BY GC/MS SBK94577 BNA'S IN WATER BY GC/MS SBK94578 SBK94577 SBAR'S IN WATER BY GC/MS SBK94578 SBK94578 SBARWILL WDTC 23-SEP-94 O < 4.9 UGL SBK-94-578 VIALM-579 SBAR'S IN WATER BY GC/MS SBK94578 SBK94578 SBARWILL WDTC 23-SEP-94 O < 4.9 UGL SBK-94-578 VIALM-579 SBAR'S IN WATER BY GC/MS SBK94578 SBK94578 SBARWILL WDTC 23-SEP-94 O < 4.9 UGL SBK-94-578 VIALM-579 SBAR'S IN WATER BY GC/MS SBK94578 SBK94578 SBK94578 SBARWILL WDTC 23-SEP-94 O < 4.9 UGL SBK-94-578 VIALM-579 SBAR'S IN WATER BY GC/MS SBK94578 SBK94579 SBK94578 SBK94579 SBK94578 SBK94579 SBK94578 SBK94578 SBK94579 SBK94578 SBK94579 SBK94579 SBK9												
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS SBK94578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SBNA'S SIN WATER BY GC/MS SBK94578 SBK94578 SBNA'S SIN WATER BY GC/MS SBK94578 SBK94578 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-578 VIAW*579 SBA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-577 VIAW*577 SBA'S IN WATER BY GC/MS SBK94577 SBCBD MDTC 23-SEP-94 0 < 12 UGL SBK-94-577 VIAW*577 SBA'S IN WATER BY GC/MS SBK94577 SBA'S IN WATER BY GC/MS SBK94577 SBA'S IN WATER BY GC/MS SBK94577 SBA'S IN WATER BY GC/MS SBK94578 SBK94578 SBANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-577 VIAW*578 BNA'S IN WATER BY GC/MS SBK94579 SBK94578 SBANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94579 SBK94578 SBANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-579 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SBANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94579 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SBK94578 SBK94578 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*579 BNA'S IN WATER BY GC/MS SBK94579 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*579 BNA'S IN WATER BY GC/MS SBK94579 SNANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 VIAW*579 BNA												
BNA'S IN WATER BY GC/MS BNA'S												
BMA'S IN WATER BY GC/MS BNA'S SBK94579 BNA'S IN WATER BY GC/MS BNA'S SBK94578 BNA'S IN WATER BY GC/MS BNA'S BNA'S BNA'IL WDIC C23-SEP-94 0 < 4.9 UGL SNC-94-577 VIAW*579 BNA'S IN WATER BY GC/MS BNA'S BNA'IL WDIC C33-SEP-94 0 < 4.9 UGL SNC-94-579 VIAW*579 BNA'S IN WATER BY GC/MS BNA'S BNA'IL WDIC C33-SEP-94 0 < 4.9 UGL SNC-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SNC-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SNC-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SNC-94-579 NANIL WDIC C33-SEP-94 0 < 4.9 UGL SNC-94-579 VIAW*579 BNA'S IN WATER BY GC/MS SN												
BNA'S IN WATER BY GC/MS BNA'S SBK94578 BNA'S IN WATER BY GC/MS BNA'S SBK94579 BNA'S IN WATER BY GC/MS BNA'S SBK94579 BNA'S IN WATER BY GC/MS BNA'S SBK94579 BNA'S IN WATER BY GC/MS BNA'S I												
BNA'S IN WATER BY GC/MS												
BNA'S IN WATER BY GC/MS SNEY9577 33DCBD WDTC 22-SEP-94 0 < 12 UGL SNEY-94-577 V1AM*577 BNA'S IN WATER BY GC/MS SNEY9577 33DCBD MDUC 22-SEP-94 0 < 12 UGL SNEY-94-577 V1AM*577 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDUC 22-SEP-94 0 < 4.9 UGL SNEY-94-577 V1AM*577 BNA'S IN WATER BY GC/MS SNEY9578 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9579 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*579 BNA'S IN WATER BY GC/MS SNEY9579 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-579 V1AM*579 BNA'S IN WATER BY GC/MS SNEY9579 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-579 V1AM*579 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 4.9 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 3NANIL MDTC 23-SEP-94 0 < 17 UGL SNEY-94-578 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*577 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9577 460N2C MDTC 23-SEP-94 0 < 17 UGL SNEY-94-579 V1AM*578 BNA'S IN WATER BY GC/MS SNEY9578 460N2C MDTC 23-SEP-94 0 < 10 UGL SNEY							7.					
BNA'S IN WATER BY GC/MS SBK94579 33DCBD WDTC 23-SEP-94 0 < 12 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94577 33DCBD WDUC 22-SEP-94 0 < 12 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 3NANIL WDTC 23-SEP-94 0 < 4.9 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 17 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 18 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 18 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 46DN2C WDTC 23-SEP-94 0 < 18					1 222 (2.27)							
BNA'S IN WATER BY GC/MS BNA'S SIN WATER BY GC/MS BNA'S IN WATE												
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/												
BNA'S IN WATER BY GC/MS BNAYS												
BNA'S IN WATER BY GC/MS BNA'S BK94577 BNA'S IN WATER BY GC/MS BNA'S BK94578 BNA'S IN WATER BY GC/MS BNA'S BK94579 B												
BNA'S IN WATER BY GC/MS BNA'S BK94579 BNA'S IN WATER BY GC/MS B	BNA'S IN WATER BY GC/MS											
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/												
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS											
BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S IN	BNA'S IN WATER BY GC/MS			3NANIL	WOTC			<				
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS											
BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S BN	BNA'S IN WATER BY GC/MS		SBK94578	46DN2C	WDTC			<				
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94578	46DN2C	WOTC	23-SEP-94	0	<	17	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S	BNA'S IN WATER BY GC/MS		SBK94579	46DN2C	WDTC	23-SEP-94	0	<	17	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS SBK94577 46DN2C WDUC 22-SEP-94 0 < 17 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 22-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 22-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 2	BNA'S IN WATER BY GC/MS		SBK94577	46DN2C	WDUC	22-SEP-94	0	<	17	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S	BNA'S IN WATER BY GC/MS		SBK94579	46DN2C	WDTC	23-SEP-94	0	<	17	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 22-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 22-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDUC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDUC 22-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDUC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578	BNA'S IN WATER BY GC/MS		SBK94577	46DN2C	WDUC	22-SEP-94	0	<	17	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/			SBK94577	4BRPPE	WDUC	22-SEP-94	0	<	4.2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS SBK94577 4BRPPE WDUC 22-SEP-94 0 < 4.2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDUC 22-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578				4BRPPE	WOTC	23-SEP-94	0	<	4.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578							0	<				
BNA'S IN WATER BY GC/MS SBK94578 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578						23-SEP-94	0	<	4.2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS SBK94579 4BRPPE WDTC 23-SEP-94 0 < 4.2 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDUC 22-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578							0	<				
BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDUC 22-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578					- 100 - 100							
BNA'S IN WATER BY GC/MS SBK94577 4CANIL WDUC 22-SEP-94 0 < 7.3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578												
BNA'S IN WATER BY GC/MS SBK94579 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578												
BNA'S IN WATER BY GC/MS SBK94578 4CANIL WDTC 23-SEP-94 0 < 7.3 UGL SBK-94-578 V1AW*578												
					346							

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94577	4CANIL	WDUC	22-SEP-94	0	ζ.	7.3	Ligi	SBK-94-577	V1AU*577
BNA'S IN WATER BY GC/MS	Sirio	SBK94577	4CL3C	WDUC	22-SEP-94	ŏ	<	4	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	4CL3C	WDTC	23-SEP-94	ŏ	<	4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	4CL3C	WDUC	22-SEP-94	Ö	2	4		SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	4CL3C	WDTC	23-SEP-94	Ö	- 15	V.*	UGL		
					23-SEP-94		<	4	1000000	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4CL3C	WDTC		0	<	4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	4CL3C	WDTC	23-SEP-94	0	<	- 4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4CLPPE	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	4CLPPE	MDUC	22-SEP-94	0	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	4CLPPE	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4CLPPE	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	4CLPPE	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	4CLPPE	MDUC	22-SEP-94	0	<	5.1	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	4MP	MDUC	22-SEP-94	0	<	.52	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	4MP	WDTC	23-SEP-94	0	<	.52	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	4MP	WDUC	22-SEP-94	0	<	.52	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	4MP	WDTC	23-SEP-94	0	<	.52	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4MP	WOTC	23-SEP-94	0	<	.52	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	4MP	WDTC	23-SEP-94	0	<	.52	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4NANIL	WOTC	23-SEP-94	Ö	<	5.2	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	4NANIL	WDUC	22-SEP-94	ŏ	<	5.2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	4NANIL	WDTC	23-SEP-94	ŏ	<	5.2	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	4NANIL	WDUC	22-SEP-94	ő	2	5.2	UGL		
BNA'S IN WATER BY GC/MS		SBK94578	4NANIL	WDTC	23-SEP-94	ő		5.2		SBK-94-577	
		SBK94579					<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS			4NANIL	WOTC	23-SEP-94	0	<	5.2	UGL	SBK-94-579	V1AW^5/9
BNA'S IN WATER BY GC/MS		SBK94578	4NP	WDTC	23-SEP-94	0	<	12	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	4NP	WDUC	22-SEP-94	0	<	12	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	4NP	MDUC	22-SEP-94	0	<	12	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	4NP	WDTC	23-SEP-94	0	<	12	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	4NP	WDTC	23-SEP-94	0	<	12	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	4NP	WDTC	23-SEP-94	0	<	12	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ABHC	WDTC	23-SEP-94	0	<	4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	ABHC	WDUC	22-SEP-94	0	<	4	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	ABHC	WDUC	22-SEP-94	0	<	4	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	ABHC	WDTC	23-SEP-94	0	<	4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ABHC	WOTC	23-SEP-94	0	<	4	UGL	SBK-94-578	V14W*578
BNA'S IN WATER BY GC/MS		SBK94579	ABHC	WOTC	23-SEP-94	ŏ	<	4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ACLDAN	WOTC	23-SEP-94	ŏ	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	ACLDAN	WDUC	22-SEP-94	ő	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ACLDAN	WDUC	22-SEP-94	0	2	5.1	10.51		
									UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	ACLDAN	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-579	VIAW-5/9

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94578	ACLDAN	WOTC	23-SEP-94	0	<	5.1	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS	Onio	SBK94579	ACLDAN	WOTC	23-SEP-94	Ō	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	AENSLF	WOTC	23-SEP-94	Ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	AENSLF	WOTC	23-SEP-94		<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	AENSLF	WDTC	23-SEP-94	Õ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	AENSLF	WDUC	22-SEP-94	Ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	AENSLF	WOUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	AENSLF	WOTC	23-SEP-94	Ō	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ALDRN	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	ALDRN	WOTC	23-SEP-94	Ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ALDRN	WDUC	22-SEP-94	Ö	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ALDRN	MOUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	ALDRN	WDTC	23-SEP-94	Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ALDRN	WOTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	ANAPNE	WOTC	23-SEP-94	Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ANAPNE	WDUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
		SBK94577	ANAPNE	WDUC	22-SEP-94	ő	2		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	ANAPNE	WOTC	23-SEP-94	ŏ	2		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ANAPNE	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	ANAPNE	WOTC	23-SEP-94	ő	2		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS				WDTC	23-SEP-94	Ö	2	.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578 SBK94579	ANAPYL	WOTC	23-SEP-94	ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ANAPYL	WDUC	22-SEP-94	ŏ	2	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ANAPYL	MDUC	22-SEP-94	Ö	<	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	ANAPYL	WDTC	23-SEP-94	ő	<	.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ANAPYL	WOTC	23-SEP-94	ő	2	.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579		WOTC	23-SEP-94	0	<	.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ANTRO		23-SEP-94	ŏ	<	.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS			ANTRO	WOTC	22-SEP-94	o o	<	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ANTRO	WDUC	22-SEP-94 22-SEP-94	ŏ	-	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ANTRO	WDUC	23-SEP-94	0	2	.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	ANTRO	WDTC		Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ANTRC	WDTC	23-SEP-94	Ö	<	.5		SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	B2CEXM	WOTC	23-SEP-94	-		1.5	UGL		
BNA'S IN WATER BY GC/MS		SBK94579	B2CEXM	WDTC	23-SEP-94	0	<	1.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	B2CEXM	WOTC	23-SEP-94	0	<	1.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	B2CEXM	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	B2CEXM	WDUC	22-SEP-94	0	<	1.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	B2CEXM	WDTC	23-SEP-94	0	<	1.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	B2CIPE	WOTC	23-SEP-94	0.	<	5.3	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	B2CIPE	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	B2CIPE	MDUC	22-SEP-94	0	<	5.3	UGL	SBK-94-577	VIAW*5//

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94577	B2CIPE	WDUC	22-SEP-94	0	<	5.3	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	B2CIPE	WDTC	23-SEP-94	0	<	5.3	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	B2CIPE	WOTC	23-SEP-94	0	<	5.3	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	82CLEE	WOTC	23-SEP-94	0	<	1.9	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	B2CLEE	WDTC	23-SEP-94	0	<	1.9	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	B2CLEE	WDTC	23-SEP-94	0	<	- 1.9	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	BZCLEE	WDTC	23-SEP-94	0	<	1.9	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	B2CLEE	WDUC	22-SEP-94	0	<	1.9	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	B2CLEE	WDUC	22-SEP-94	0	<	1.9	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	B2EHP	WOTC	23-SEP-94	0	<	4.8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	B2EHP	WDTC	23-SEP-94	0	<	4.8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	B2EHP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	B2EHP	WOTC	23-SEP-94	0	<	4.8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	B2EHP	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	B2EHP	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	BAANTR	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BAANTR	WDTC	23-SEP-94	Ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BAANTR	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BAANTR	WDUC	22-SEP-94	Ö	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BAANTR	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	BAANTR	WDUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	BAPYR	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BAPYR	WDUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BAPYR	WDUC	22-SEP-94	ő	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BAPYR	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BAPYR	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	BAPYR	WOTC	23-SEP-94	o o	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	BBFANT	WOTC	23-SEP-94	ŏ	<	5.4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BBFANT	WOTC	23-SEP-94	Ö	2		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BBFANT	MOUC	22-SEP-94	Ö	<		UGL	SBK-94-577	
		SBK94577	BBFANT	WDUC	22-SEP-94	ŏ	<				
BNA'S IN WATER BY GC/MS		SBK94579			23-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS			BBFANT	WOTC					UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BBFANT	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BBHC	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BBHC	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BBHC	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BBHC	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BBHC	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	BBHC	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	BBZP	MOTO	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BBZP	WDTC	23-SEP-94	0	<	3.4	UGL	SBK-94-578	V1AW*578

Me	SATHAMA ethod ode	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS UM	118	SBK94577	BBZP	WDUC	22-SEP-94	0	<	3.4	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	BBZP	WDUC	22-SEP-94	Ö	<	3.4	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BBZP	WOTC	23-SEP-94		<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BBZP	WOTC	23-SEP-94	ŏ	<	3.4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BENSLF	WOTC	23-SEP-94		2	9.2	UGL	SBK-94-578	
		SBK94577	BENSLF	WDUC	22-SEP-94	ő	<	9.2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577		WOUL	22-SEP-94	ő	<	9.2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BENSLF	WOTC	23-SEP-94	ő	<	9.2	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS			BENSLF			ő	2	9.2	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BENSLF	WOTC	23-SEP-94	Ö				SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	BENSLF	WDTC	23-SEP-94		<	9.2	UGL		
BNA'S IN WATER BY GC/MS		SBK94579	BENZID	WDTC	23-SEP-94	0	<	10	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BENZID	WDTC	23-SEP-94	0	<	10	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BENZID	WDUC	22-SEP-94	0	<	10	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BENZID	MDUC	22-SEP-94	0	<	10	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BENZID	WOTC	23-SEP-94	0	<	10	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BENZID	WOTC	23-SEP-94	0	<	10	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BENZOA	WDTC	23-SEP-94	0	<	13	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	BENZOA	WOTC	23-SEP-94	0	<	13	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	BENZOA	WDUC	22-SEP-94	0	<	13	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BENZOA	WDUC	22-SEP-94	0	<	13	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	BENZOA	WDTC	23-SEP-94	0	<	13	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	BENZOA	WDTC	23-SEP-94	0	<	13	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94579	BGHIPY	WDTC	23-SEP-94	0	<	6.1	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	BGHIPY	WOTC	23-SEP-94	0	<	6.1	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	BGHIPY	WDTC	23-SEP-94	0	<	6.1	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	BGHIPY	WOTC	23-SEP-94	0	<	6.1	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	BGHIPY	WDUC	22-SEP-94	0	<	6.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BGHIPY	WDUC	22-SEP-94	0	<	6.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	BKFANT	WDTC	23-SEP-94	ő	<	.87	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	BKFANT	WDUC	22-SEP-94	0	<	.87	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BKFANT	WDUC	22-SEP-94	ŏ	<	.87	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BKFANT	WDTC	23-SEP-94		<	.87	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	BKFANT	WOTC	23-SEP-94	ŏ	<	.87	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	BKFANT	WOTC	23-SEP-94	ŏ	<	.87	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	BZALC	WOTC	23-SEP-94	ő	2	.72	UGL	SBK-94-578	
		SBK94578			23-SEP-94	ŏ	3	.72	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS			BZALC	WOTC							
BNA'S IN WATER BY GC/MS		SBK94577	BZALC	WOUC	22-SEP-94	0	<	.72	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	BZALC	MDUC	22-SEP-94	0	<	.72	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	BZALC	WOTC	23-SEP-94		<	.72	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	BZALC	MDTC	23-SEP-94	0	<	.72	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	CARBAZ	MOUC	22-SEP-94	0	<	1.5	UGL	SBK-94-577	V1AW*5/7

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94577	CARBAZ	WDUC	22-SEP-94	0	<	1.5	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	CARBAZ	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	CARBAZ	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	CARBAZ	WDTC	23-SEP-94	Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	CARBAZ	WOTC	23-SEP-94		<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	CHRY	WDTC	23-SEP-94	Ö	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	CHRY	WDTC	23-SEP-94	ő	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	CHRY	MOUC	22-SEP-94		<	2000	UGL	SBK-94-577	V1AUN577
BNA'S IN WATER BY GC/MS		SBK94577	CHRY	MDUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
		SBK94579	CHRY	WDTC	23-SEP-94		2		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579			23-SEP-94		<			SBK-94-579	
BNA'S IN WATER BY GC/MS			CHRY	WOTC			2		UGL		
BNA'S IN WATER BY GC/MS		SBK94578	CL6BZ	WOTC	23-SEP-94				UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	CL6BZ	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	CL6BZ	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	CL6BZ	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	CL6BZ	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	CL6BZ	WDTC	23-SEP-94		<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	CL6CP	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	CL6CP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	CL6CP	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	CL6CP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	CL6CP	WDUC	22-SEP-94	0	<	8.6	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	CL6CP	WDTC	23-SEP-94	0	<	8.6	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	CL6ET	WDTC	23-SEP-94	0	<	1.5	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	CL6ET	WDTC	23-SEP-94	0	<	1.5	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	CL6ET	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	CL6ET	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	CL6ET	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	CL6ET	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	DBAHA	WOTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	DBAHA	WDUC	22-SEP-94	Ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DBAHA	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DBAHA	WDUC	22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	DBAHA	WDTC	23-SEP-94	-	<	6.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	DBAHA	WDTC	23-SEP-94	ő	<		UGL	SBK-94-579	
		SBK94578	AC MODIFICATION OF	WOTC	23-SEP-94	Ď	2		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	DBHC		23-SEP-94	ő					
BNA'S IN WATER BY GC/MS			DBHC	WOTC		Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DBHC	WDUC	22-SEP-94		<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DBHC	WDTC	23-SEP-94		<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DBHC		22-SEP-94		<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	DBHC	WDTC	23-SEP-94	0	<	4	UGL	SBK-94-578	V1AW*578

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94578	DBZFUR	WOTC	23-SEP-94	0	<	1.7	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS	Ort I D	SBK94579	DBZFUR	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DBZFUR	WOUC	22-SEP-94	Õ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	DBZFUR	WDUC	22-SEP-94		<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DBZFUR	WOTC	23-SEP-94	Ö	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	DBZFUR	MOTO	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DEP	WOTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	DEP	WOTC	23-SEP-94	ő	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	DEP	WOTC	23-SEP-94	ő	<		UGL	SBK-94-578	
		SBK94577	DEP	WDUC	22-SEP-94	ő	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DEP	WOTC	23-SEP-94	ŏ	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DEP	WOUC	22-SEP-94	ő	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	DLDRN	WOTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS				WOTC	23-SEP-94	ő	3		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DLDRN			ő	2		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	DLDRN	WOTC	23-SEP-94 23-SEP-94	0	2		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	DLDRN	WOTC	23-SEP-94 22-SEP-94	ŏ	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	DLDRN	WDUC		Ö	2	4.7		SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	DLDRN	WDUC	22-SEP-94	ő	<		UGL		
BNA'S IN WATER BY GC/MS		SBK94578	DMP	WDTC	23-SEP-94				UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DMP	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	DMP	WDTC	23-SEP-94	0	<	1.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DMP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	DMP	MDUC	22-SEP-94	0	<	1.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DMP	MOTO	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	DNBP	WOTC	23-SEP-94	0			UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94579	DNBP	WDTC	23-SEP-94	0			UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DNBP	WDUC	22-SEP-94	0		18	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	DNBP	WDUC	22-SEP-94	0		18	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	DNBP	WOTC	23-SEP-94	0		17	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DNBP	WDTC	23-SEP-94	0			UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DNOP	WOTC	23-SEP-94	0	<	15	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	DNOP	WOTC	23-SEP-94	0	<	15	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	DNOP	MDUC	22-SEP-94	0	<	15	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DNOP	WOTC	23-SEP-94	0	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	DNOP	WDUC	22-SEP-94	0	<		UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	DNOP	WOTC	23-SEP-94	0	<	15	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ENDRN	WOTC	23-SEP-94	0	<	7.6	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ENDRN	WOTC	23-SEP-94	0	<	7.6	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	ENDRN	WDUC	22-SEP-94	0	<	7.6	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94577	ENDRN	WDUC	22-SEP-94	0	<	7.6	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	ENDRN	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94578	ENDRN	WOTC	23-SEP-94	0	<	7.6	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ENDRNA	WDTC	23-SEP-94	0	<	8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ENDRNA	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	ENDRNA	WDUC	22-SEP-94	0	<	8	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	ENDRNA	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	ENDRNA	WDUC	22-SEP-94	0	<	8	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	ENDRNA	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ENDRNK	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ENDRNK	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94577	ENDRNK	WOUC	22-SEP-94	0	<	8	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	ENDRNK	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ENDRNK	WOTC	23-SEP-94	0	<	8	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	ENDRNK	WDUC	22-SEP-94	0	<	8	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	ESFS04	WOTC	23-SEP-94	0	<	9.2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ESFS04	WOTC	23-SEP-94	0	<	9.2	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	ESFS04	WOTC	23-SEP-94	0	<	9.2	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	ESFS04	WOTC	23-SEP-94	0	<	9.2	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ESFS04	WOUC	22-SEP-94	0	<	9.2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ESFS04	WDUC	22-SEP-94	0	<	9.2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	FANT	WOTC	23-SEP-94	0	<	3.3	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	FANT	WOTC	23-SEP-94	0	<	3.3	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	FANT	WOTC	23-SEP-94	0	<	3.3	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	FANT	WDTC	23-SEP-94	0	<	3.3	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	FANT	WDUC	22-SEP-94	0	<	3.3	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	FANT	WDUC	22-SEP-94	0	<	3.3	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	FLRENE	WDTC	23-SEP-94	0	<	3.7	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	FLRENE	WDTC	23-SEP-94	0	<	3.7	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	FLRENE	WDTC	23-SEP-94	Ö	<	3.7	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	FLRENE	WOTC	23-SEP-94	Ö	<	3.7	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	FLRENE	WDUC	22-SEP-94	ŏ	<	3.7	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	FLRENE	WDUC	22-SEP-94	ō	<	3.7	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	GCLDAN	WDTC	23-SEP-94	Ö	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	GCLDAN	WDTC	23-SEP-94	Ŏ	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	GCLDAN	WOTC	23-SEP-94	ő	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	GCLDAN	WDUC	22-SEP-94	Õ	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	GCLDAN	WDUC	22-SEP-94	Ŏ	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	GCLDAN	WOTC	23-SEP-94	ŏ	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	HCBD	WDTC	23-SEP-94	ő	<	3.4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	HCBD	WDTC	23-SEP-94	ŏ	<	3.4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	HCBD	WOTC	23-SEP-94	ő	2	3.4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	HCBD	WDUC	22-SEP-94	ő	<	3.4	UGL	SBK-94-577	
EM. S IN MAILA DI GOTAS		001077711	11200	MUUC	LL ULI 77	o .	-	4.7	JUL	3DK 74 311	A IVM SILI

And the second second	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS L	UM18	SBK94577	HCBD	WDUC	22-SEP-94	0	<	3.4	UGI	SBK-94-577	V1AU*577
BNA'S IN WATER BY GC/MS	DITTO	SBK94578	HCBD	WDTC	23-SEP-94	ŏ	<		UGL	SBK-94-578	
		SBK94579	HPCL	WDTC	23-SEP-94	ő	<		UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS				WDUC	22-SEP-94	ŏ	<	2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	HPCL		23-SEP-94	ŏ	<	2	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	HPCL	WOTC		ŏ	2	2	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	HPCL	WDUC	22-SEP-94	ő	<	2	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	HPCL	WDTC	23-SEP-94						
BNA'S IN WATER BY GC/MS		SBK94579	HPCL	WDTC	23-SEP-94	0	<	2	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	HPCLE	WDTC	23-SEP-94	0	<	5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	HPCLE	WDTC	23-SEP-94	0	<	5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94577	HPCLE	WDUC	22-SEP-94	0	<	5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	HPCLE	WOTC	23-SEP-94	0	<	5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	HPCLE	MDUC	22-SEP-94	0	<	5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	HPCLE	WOTC	23-SEP-94	0	<	5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	ICDPYR	WDTC	23-SEP-94	0	<	8.6	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	ICDPYR	WDTC	23-SEP-94	0	<	8.6	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ICDPYR	WDUC	22-SEP-94	0	<	8.6	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ICDPYR	WDUC	22-SEP-94	0	<	8.6	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	ICDPYR	WDTC	23-SEP-94	0	<	8.6	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ICDPYR	MOTO	23-SEP-94	0	<	8.6	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94578	ISOPHR	WDTC	23-SEP-94	0	<	4.8	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	ISOPHR	MDTC	23-SEP-94	0	<	4.8	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	ISOPHR	MDUC	22-SEP-94	0	<	4.8	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	ISOPHR	WDUC	22-SEP-94	Ö	<	4.8	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	ISOPHR	WDTC	23-SEP-94	ŏ	<	4.8	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	ISOPHR	WDTC	23-SEP-94	ŏ	<	4.8	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	LIN	WOTC	23-SEP-94	ő	<	4.6	UGL	SBK-94-578	
		SBK94579	LIN	WDTC	23-SEP-94	ő	<	4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS					22-SEP-94	ő	<	4	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	LIN	WDUC	22-SEP-94 22-SEP-94	Ö	<	10.	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	LIN	WDUC		ŏ		4			
BNA'S IN WATER BY GC/MS		SBK94578	LIN	WDTC	23-SEP-94		<	4	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	LIN	WDTC	23-SEP-94	0	<	4	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	MEXCLR	MOTC	23-SEP-94	0	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	MEXCLR	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	MEXCLR	MDUC	22-SEP-94	0	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94577	MEXCLR	WDUC	22-SEP-94	0	<	5.1	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	MEXCLR	WDTC	23-SEP-94	0	<	5.1	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94578	MEXCLR	WOTC	23-SEP-94	0	<	5.1	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	NAP	WDTC	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	NAP	WDTC	23-SEP-94	0	<	.5	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94579	NAP	WDTC	23-SEP-94	0	<	.5	UGL	SBK-94-579	V1AW*579

BNA'S IN WATER BY GC/MS	Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value		Value	Units	IRDMIS Site ID	Lab Number
BBAY'S IN MATER BY GC/MS SBK94578 MAP MOUC 22-SEP-94 O	BNA'S IN WATER BY GC/MS	UM18	SBK94577	NAP	MDUC	22-SEP-94	0	<	.5	UGL	SBK-94-577	V1AW*577
BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94577 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-577 V1AM-577 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-577 V1AM-577 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .2. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .4. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .4. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .4. UGL SBK-94-577 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .4. UGL SBK-94-578 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23-SEP-94 O < .4. UGL SBK-94-579 V1AM-578 BBA'S IN MATER BY GC/MS SBK94579 NB MDTC 23	BNA'S IN WATER BY GC/MS		SBK94577	NAP	MDUC	22-SEP-94	0	<			SBK-94-577	V1AW*577
BBAY'S IN MATER BY GC/MS BBY GC/	BNA'S IN WATER BY GC/MS		SBK94578	NAP	WDTC	23-SEP-94	0	<		UGL		
BBAY'S IN WATER BY GC/MS SBK94577 NB MOUC 23-SEP-94 O < .5 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94577 NB MOUC 23-SEP-94 O < .5 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94578 NB MOUC 23-SEP-94 O < .5 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94578 NB MOUC 23-SEP-94 O < .5 UGL SBK-94-578 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94578 NB MOUC 23-SEP-94 O < .5 UGL SBK-94-578 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94578 NB NDMEA MOTC 23-SEP-94 O < .2 UGL SBK-94-578 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94578 NB NDMEA MOTC 23-SEP-94 O < .2 UGL SBK-94-578 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94577 NB NDMEA MOTC 23-SEP-94 O < .2 UGL SBK-94-578 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94577 NB NDMEA MOTC 23-SEP-94 O < .2 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94577 NB NDMEA MOUC 22-SEP-94 O < .2 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMEA MOUC 22-SEP-94 O < .2 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMEA MOUC 23-SEP-94 O < .2 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMEA MOUC 23-SEP-94 O < .2 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMEA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-577 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-579 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-579 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA MOUC 23-SEP-94 O < .4 4 UGL SBK-94-579 V1AWF577 BBAY'S IN WATER BY GC/MS SBK94579 NDMPA M	BNA'S IN WATER BY GC/MS		SBK94578	NB	WOTC	23-SEP-94	0	<				
BBAY'S IN MATER BY GC/MS SBK94577 NB MDTC 22-SEP-94 O < .5 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .5 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .2 UGL SBK-94-578 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94578 NB MDTC 23-SEP-94 O < .2 UGL SBK-94-578 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMEA MDTC 23-SEP-94 O < .2 UGL SBK-94-577 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMEA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94577 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/MS SBK94579 NBMPA MDTC 23-SEP-94 O < 4.4 UGL SBK-94-579 Y1AM-577 BBAY'S IN MATER BY GC/M	BNA'S IN WATER BY GC/MS		SBK94579	NB	WDTC	23-SEP-94	0	<		UGL		
BBAY'S IN WATER BY GC/MS SBK94577 BBAY'S IN WATER BY GC/MS SBK94578 BBAY'S IN WATER BY GC/MS SBK94577 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 2 UGL SBK-94-578 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 22-SEP-94 0 < 2 UGL SBK-94-577 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 22-SEP-94 0 < 2 UGL SBK-94-577 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 2 UGL SBK-94-577 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 2 UGL SBK-94-577 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 2 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94578 NIDMEA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMEA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94579 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94579 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAWF572 BBAY'S IN WATER BY GC/MS SBK94577 NIDMPA MDIC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAW			SBK94577	NB	WOUC	22-SEP-94	0	<				
BNA'S IN WATER BY GC/MS BNA'S SIN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-578 VIAW*577 BNA'S IN WATER BY GC/MS SSK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SSK-94-577 VIAW*577 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 22-SEP-94 0 < 2 UGL SSK-94-577 VIAW*577 BNA'S IN WATER BY GC/MS SSK94579 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-577 VIAW*577 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-577 VIAW*577 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94578 NNDMEA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94578 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-SEP-94 0 < 4.4 UGL SSK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS SSK94579 NNDMPA MDTC 23-	BNA'S IN WATER BY GC/MS	4	SBK94579	NB	WOTC	23-SEP-94	0	<		UGL		
BNA'S IN WATER BY GC/MS SBK94578 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NDPA MDTC 23-SEP-94 0 < 2 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 MDTC 23-SEP-94 0 < 2 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 MDTC 23-SEP-94 0 < 2 UGL SBK-94-579 V1A	BNA'S IN WATER BY GC/MS		SBK94577	NB	WDUC	22-SEP-94	0	<	.5	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 VNAW-577 BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 VNAW-577 BNA'S IN WATER BY GC/MS SBK94577 NNDMEA MDUC 22-SEP-94 0 < 2 UGL SBK-94-577 VNAW-577 BNA'S IN WATER BY GC/MS SBK94579 NNDMEA MDUC 23-SEP-94 0 < 2 UGL SBK-94-577 VNAW-577 BNA'S IN WATER BY GC/MS SBK94579 NNDMEA MDTC 23-SEP-94 0 < 2 UGL SBK-94-577 VNAW-577 BNA'S IN WATER BY GC/MS SBK94579 NNDMEA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDNPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VNAW-578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA MDTC 23-SEP-94 0 < 3 UGL SBK-94-578 VNAW-578 BNA'S IN WATER	BNA'S IN WATER BY GC/MS		SBK94578	NB	WOTC	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS BNA'S SIN WATER BY GC/MS BNA'S SNA'S	BNA'S IN WATER BY GC/MS		SBK94578	NNDMEA	WDTC	23-SEP-94	0	<	2	UGL		
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS SBK94577 NNDMEA WDUC 22-SEP-94 0	BNA'S IN WATER BY GC/MS		SBK94578	NNDMEA	WDTC	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS BNA'S BN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S BNA'S IN WATER BY GC/MS BNA'S	BNA'S IN WATER BY GC/MS		SBK94577	NNDMEA	WDUC	22-SEP-94	0	<	2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S BR94577 BNA'S IN WATER BY GC/MS BNA'S BR94577 BNA'S IN WATER BY GC/MS BNA'S BR94577 BNA'S BNA'S BN WATER BY GC/MS BNA'S BNA'S BR94577 BNA'S BNA'S BN WATER BY GC/MS BNA'S BNA'	BNA'S IN WATER BY GC/MS		SBK94577	NNDMEA	WDUC	22-SEP-94	0	<	2	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS SBK94578 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PGB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PGB016 WDT	BNA'S IN WATER BY GC/MS		SBK94579	NNDMEA	WOTC	23-SEP-94	0	<	2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-578 VIAM*578 BNA'S IN WATER BY GC/MS SBK94577 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94577 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94577 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94578 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94578 NINDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 VIAM*578 BNA'S IN WATER BY GC/MS SBK94578 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 VIAM*578	BNA'S IN WATER BY GC/MS		SBK94579	NNDMEA	WDTC	23-SEP-94	0	<	2	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS SBK94577 NNDNPA WDTC 23-SEP-94 0 < 4.4 UGL SBK-94-577 NNDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-578 NNDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 NNDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 NNDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 NNDNPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-577 NNDNPA WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 NNDNPA WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 NNDNPA NNDPA WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 NNDNPA NNDPA WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 NNDNPA NDNPA NDDC 23-SEP-	BNA'S IN WATER BY GC/MS		SBK94578	NNDNPA	WDTC	23-SEP-94	0	<	4.4	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-578 VIAW*578 BNA'S IN WATER BY GC/MS BNA'S BK94577 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-579 VIAW*575 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-579 VIAW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 VIAW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 O < 21 UGL SBK-94-577 V	BNA'S IN WATER BY GC/MS		SBK94578	NNDNPA	WOTC	23-SEP-94	0	<	4.4	UGL		
BNA'S IN WATER BY GC/MS BNA'S BK94578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS BNA'S BK94579 PCB021	BNA'S IN WATER BY GC/MS		SBK94579	NNDNPA	WOTC	23-SEP-94	0	<	4.4	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDTC 22-SEP-94 0 < 4.4 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-577 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-577 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-577 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC	BNA'S IN WATER BY GC/MS		SBK94577	NNDNPA	WDUC	22-SEP-94	0	<	4.4	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94579	NNDNPA	WDTC	23-SEP-94	0	<	4.4	UGL		
BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-577 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB032 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V	BNA'S IN WATER BY GC/MS		SBK94577	NNDNPA	WDUC	22-SEP-94	0	<	4.4	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 NNDPA WDUC 22-SEP-94 0 < 3 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 NNDPA WDTC 23-SEP-94 0 < 3 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB021 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB021 WDTC 03-SEP-94 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0	BNA'S IN WATER BY GC/MS		SBK94578	NNDPA	WDTC	23-SEP-94	0	<	3	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS	BNA'S IN WATER BY GC/MS		SBK94579	NNDPA	WDTC	23-SEP-94	0	<	3	UGL		
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94577	NNDPA	WDUC	22-SEP-94	0	<	3	UGL		
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94579	NNDPA	WDTC	23-SEP-94	0	<	3	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94577	NNDPA	WDUC	22-SEP-94	0	<	3	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94578	NNDPA	WOTC	23-SEP-94	0	<	3	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94578	PCB016	WOTC	23-SEP-94	0	<	21	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB016 WDUC 22-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDUC 22-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*575 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*576 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SB	BNA'S IN WATER BY GC/MS		SBK94579	PCB016	WDTC	23-SEP-94	0	<				
BNA'S IN WATER BY GC/MS SBK94577 PCB016 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB016 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578	BNA'S IN WATER BY GC/MS		SBK94577	PCB016	WDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/	BNA'S IN WATER BY GC/MS		SBK94579	PCB016	WDTC	23-SEP-94	- 0	<	21	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578	BNA'S IN WATER BY GC/MS		SBK94577	PCB016	WDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578	BNA'S IN WATER BY GC/MS		SBK94578	PCB016	WOTC	23-SEP-94	0	<				
BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*575 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDTC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*577 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDTC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578	BNA'S IN WATER BY GC/MS		SBK94578	PCB221	WDTC	23-SEP-94	0	<	21	UGL		
BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578							0	<				
BNA'S IN WATER BY GC/MS SBK94579 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*579 BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578					WDUC		0	<				
BNA'S IN WATER BY GC/MS SBK94577 PCB221 WDUC 22-SEP-94 0 < 21 UGL SBK-94-577 V1AW*577 BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578			SBK94579		WDTC	23-SEP-94	0	<				
BNA'S IN WATER BY GC/MS SBK94578 PCB221 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578 BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578												
BNA'S IN WATER BY GC/MS SBK94578 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-578 V1AW*578												
	(- 74 CONTROL OF								
BNA'S IN WATER BY GC/MS SBK94579 PCB232 WDTC 23-SEP-94 0 < 21 UGL SBK-94-579 V1AW*579	BNA'S IN WATER BY GC/MS		SBK94579	PCB232	WOTC	23-SEP-94	Ů.	<	21	UGL		

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BNA'S IN WATER BY GC/MS	UM18	SBK94577	PCB232	WDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	PCB232	WDTC	23-SEP-94	0	<	21	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	PCB232	MDUC	22-SEP-94	0	<	21	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	PCB232	WOTC	23-SEP-94	0	<	21	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	PCB242	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	PCB242	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	PCB242	WDUC	22-SEP-94	0	<	30	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94579	PCB242	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	PCB242	WDUC	22-SEP-94	0	<	30	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	PCB242	WOTC	23-SEP-94	0	<	30	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	PCB248	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	PCB248	WOTC	23-SEP-94	0	<	30	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	PCB248	WDUC	22-SEP-94	0	<	30	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	PCB248	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-579	V1AW*579
BNA'S IN WATER BY GC/MS		SBK94577	PCB248	MDUC	22-SEP-94	0	<	30	UGL	SBK-94-577	V1AW*577
BNA'S IN WATER BY GC/MS		SBK94578	PCB248	WDTC	23-SEP-94	0	<	30	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94578	PCB254	WDTC	23-SEP-94	0	<	36	UGL	SBK-94-578	V1AW*578
BNA'S IN WATER BY GC/MS		SBK94579	PCB254	WOTC	23-SEP-94	0	<	36	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCB254	WDUC	22-SEP-94	0	<	36	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	PCB254	WDTC	23-SEP-94	Ō	<	36	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCB254	WOUC	22-SEP-94	0	<	36	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	PCB254	WOTC	23-SEP-94	0	<	36	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	PCB260	WOTC	23-SEP-94	Ō	<	36	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	PCB260	WOTC	23-SEP-94	0	<	36	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCB260	MOUC	22-SEP-94	0	<	36	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	PCB260	WOTC	23-SEP-94	0	<	36	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCB260	WDUC	22-SEP-94	0	<	36	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	PCB260	WDTC	23-SEP-94	ō	<	36	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	PCP	WOTC	23-SEP-94	Ö	<	18	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	PCP	WDTC	23-SEP-94	ŏ	<	18	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCP	WDUC	22-SEP-94	0	<	18	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	PCP	WDTC	23-SEP-94	ŏ	<	18	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PCP	WDUC	22-SEP-94	ő	<	18	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	PCP	WDTC	23-SEP-94	ŏ	<	18	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94578	PHANTR	WOTC	23-SEP-94	ő	<	.5	UGL	SBK-94-578	
BNA'S IN WATER BY GC/MS		SBK94579	PHANTR	WDTC	23-SEP-94	ŏ	<	.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PHANTR	WDUC	22-SEP-94	ŏ	2	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94579	PHANTR	WDTC	23-SEP-94	ő	<	.5	UGL	SBK-94-579	
BNA'S IN WATER BY GC/MS		SBK94577	PHANTR	WDUC	22-SEP-94	ő	<	.5	UGL	SBK-94-577	
BNA'S IN WATER BY GC/MS		SBK94578	PHANTR	WDTC	23-SEP-94	ő	<	.5	UGL	SBK-94-578	
						0	<				
BNA'S IN WATER BY GC/MS		SBK94578	PHENOL	WOTC	23-SEP-94	U		9.2	UGL	SBK-94-578	VIAW-5/8

Me	ethod	Descript	ion	Method Code	Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
BI	NA'S I	N WATER	BY GC/MS	UM18	SBK94579	PHENOL	WOTC	23-SEP-94	0	<	9.2	UGL	SBK-94-579	V1AW*579
			BY GC/MS		SBK94577	PHENOL	MDUC	22-SEP-94	0	<		UGL	SBK-94-577	
			BY GC/MS		SBK94579	PHENOL	MOTO	23-SEP-94		<	9.2	UGL	SBK-94-579	
			BY GC/MS		SBK94577	PHENOL	WDUC	22-SEP-94		<	9.2	UGL	SBK-94-577	
			BY GC/MS		SBK94578	PHENOL	WDTC	23-SEP-94	7.2	<		UGL	SBK-94-578	
			BY GC/MS		SBK94578	PPDDD	WDTC	23-SEP-94	-	<	4	UGL	SBK-94-578	
			BY GC/MS		SBK94579	PPDDD	WDTC	23-SEP-94	ő	<	4	UGL	SBK-94-579	
			BY GC/MS		SBK94577	PPDDD	WDUC	22-SEP-94		<	4	UGL	SBK-94-577	
			BY GC/MS		SBK94579	PPDDD	WDTC	23-SEP-94	7	<		UGL	SBK-94-579	
			BY GC/MS		SBK94577	PPDDD	WDUC	22-SEP-94	ŏ	<	4	UGL	SBK-94-577	
			BY GC/MS		SBK94578	PPDDD	WDTC	23-SEP-94		<	4	UGL	SBK-94-578	
			BY GC/MS		SBK94578	PPDDE	WDTC	23-SEP-94	751	<		UGL	SBK-94-578	
			BY GC/MS		SBK94579	PPDDE	WDTC	23-SEP-94		<	4.7	UGL	SBK-94-579	
			BY GC/MS		SBK94577	PPDDE	MDUC	22-SEP-94		<		UGL	SBK-94-577	
			BY GC/MS		SBK94579	PPDDE	MOTO	23-SEP-94	ő	<		UGL	SBK-94-579	
			BY GC/MS		SBK94577	PPDDE	WDUC	22-SEP-94		<	4.7	UGL		
					SBK94578	PPDDE		23-SEP-94		<			SBK-94-577	
			BY GC/MS				WDTC					UGL	SBK-94-578	
			BY GC/MS		SBK94578	PPDDT	WDTC	23-SEP-94	0	<	9.2	UGL	SBK-94-578	
			BY GC/MS		SBK94579	PPDDT	WDTC	23-SEP-94		<	9.2	UGL	SBK-94-579	
			BY GC/MS		SBK94577	PPDDT	MDUC	22-SEP-94		<		UGL	SBK-94-577	V1AW*5//
			BY GC/MS		SBK94579	PPDDT	WOTC	23-SEP-94		<	9.2	UGL	SBK-94-579	V1AW*5/9
			BY GC/MS		SBK94577	PPDDT	MDUC	22-SEP-94		<		UGL	SBK-94-577	
			BY GC/MS		SBK94578	PPDDT	WDTC	23-SEP-94	0	<	9.2	UGL	SBK-94-578	
			BY GC/MS		SBK94578	PYR	WDTC	23-SEP-94		<	2.8	UGL	SBK-94-578	
			BY GC/MS		SBK94579	PYR	WDTC	23-SEP-94	0	<		UGL	SBK-94-579	
			BY GC/MS		SBK94577	PYR	MDITC	22-SEP-94	0	<	2.8	UGL	SBK-94-577	
			BY GC/MS		SBK94579	PYR	WDTC	23-SEP-94		<	2.8	UGL	SBK-94-579	
			BY GC/MS		SBK94577	PYR	MOUC	22-SEP-94		<		UGL	SBK-94-577	V1AW*577
			BY GC/MS		SBK94578	PYR	WOTC	23-SEP-94		<	2.8	UGL	SBK-94-578	V1AW*578
			BY GC/MS		SBK94578	TXPHEN	WOTC	23-SEP-94		<		UGL	SBK-94-578	
B	VA'S I	N WATER	BY GC/MS		SBK94579	TXPHEN	WDTC	23-SEP-94		<	36	UGL	SBK-94-579	V1AW*579
B	VA'S I	N WATER	BY GC/MS		SBK94577	TXPHEN	WDUC	22-SEP-94	0	<	36	UGL	SBK-94-577	V1AW*577
BI	VA'S I	N WATER	BY GC/MS		SBK94579	TXPHEN	WDTC	23-SEP-94	0	<	36	UGL	SBK-94-579	V1AW*579
B	NA'S I	N WATER	BY GC/MS		SBK94577	TXPHEN	WDUC	22-SEP-94	0	<	36	UGL	SBK-94-577	V1AW*577
BN	NA'S I	N WATER	BY GC/MS		SBK94578	TXPHEN	WOTC	23-SEP-94	0	<	36	UGL	SBK-94-578	V1AW*578
V	oc's I	N WATER	BY GC/MS	UM20	SBK94578	111TCE	XDRE	23-SEP-94	0		5.2	UGL	SBK-94-578	V1AW*578
V	oc's I	N WATER	BY GC/MS		SBK94578	111TCE	XDRE	23-SEP-94	0		5.2	UGL	SBK-94-578	
			BY GC/MS		SBK94578	112TCE	XDRE	23-SEP-94	12	<		UGL	SBK-94-578	
			BY GC/MS		SBK94578	112TCE	XDRE	23-SEP-94		<		UGL	SBK-94-578	
			BY GC/MS		SBK94578	11DCE	XDRE	23-SEP-94	ō	<		UGL	SBK-94-578	

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
VOC'S IN WATER BY GC/MS	UM20	SBK94578	11DCE	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS	CITE	SBK94578	11DCLE	XDRE	23-SEP-94	100	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	11DCLE	XDRE	23-SEP-94	0	<	.68	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	12DCE	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	12DCE	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	12DCLE	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	12DCLE	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	12DCLP	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	12DCLP	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	2CLEVE	XDRE	23-SEP-94	0	<	.71	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	2CLEVE	XDRE	23-SEP-94	0	<	.71	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACET	XDRE	23-SEP-94	0	<	13	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACET	XDRE	23-SEP-94	0	<	13	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACROLN	XDRE	23-SEP-94	0	<	100	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACROLN	XDRE	23-SEP-94	0	<	100	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACRYLO	XDRE	23-SEP-94	0	<	100	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	ACRYLO	XDRE	23-SEP-94	0	<	100	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	BRDCLM	XDRE	23-SEP-94	0	<	.59	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	BRDCLM	XDRE	23-SEP-94	0	<	.59	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C13DCP	XDRE	23-SEP-94	0	<	.58	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C13DCP	XDRE	23-SEP-94	0	<	.58	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C2AVE	XDRE	23-SEP-94	0	<	8.3	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C2AVE	XDRE	23-SEP-94	0	<	8.3	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	C2H3CL	XDRE	23-SEP-94	0	<	2.6	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C2H3CL	XDRE	23-SEP-94		<	2.6	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C2H5CL	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	C2H5CL	XDRE	23-SEP-94	0	<	1.9	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	C6H6	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	C6H6	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CCL3F	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CCL3F	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CCL4	XDRE	23-SEP-94	0	<	.58	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	CCL4	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	CH2CL2	XDRE	23-SEP-94	0			UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CH2CL2	XDRE	23-SEP-94	0			UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CH3BR	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CH3BR	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CH3CL	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CH3CL	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CHBR3	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CHBR3	XDRE	23-SEP-94	0	<	2.6	UGL	SBK-94-578	V1AW*578

RINSATE BLANKS

Method Description	USATHAMA Method Code	IRDMIS Field Sample Number	Test Name	Lot	Sample Date	Spike Value	<	Value	Units	IRDMIS Site ID	Lab Number
VOC'S IN WATER BY GC/MS	UM20	SBK94578	CHCL3	XDRE	23-SEP-94	0		1.1	UGL	SBK-94-578	V1AU*578
VOC'S IN WATER BY GC/MS	5.125	SBK94578	CHCL3	XDRE	23-SEP-94	Ö			UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CL2BZ	XDRE	23-SEP-94	0	<	10	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CL2BZ	XDRE	23-SEP-94	0	<	10	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CLC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CLC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	12 150 111 1 (E. 10 15)
VOC'S IN WATER BY GC/MS		SBK94578	CS2	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	CS2	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	DBRCLM	XDRE	23-SEP-94	0	<	.67	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	DBRCLM	XDRE	23-SEP-94	0	<	.67	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	ETC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	ETC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	MEC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	MEC6H5	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	MEK	XDRE	23-SEP-94	0	<	6.4	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	MEK	XDRE	23-SEP-94	0	<	6.4	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	MIBK	XDRE	23-SEP-94	0	<	3	UGL	SBK-94-578	V1AW*578
VOC'S IN WATER BY GC/MS		SBK94578	MIBK	XDRE	23-SEP-94	0	<	3	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	MNBK	XDRE	23-SEP-94	0	<	3.6	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	MNBK	XDRE	23-SEP-94	0	<	3.6	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	STYR	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	STYR	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	T13DCP	XDRE	23-SEP-94	0	<	.7	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	T13DCP	XDRE	23-SEP-94	0	<	.7	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TCLEA	XDRE	23-SEP-94	0	<	.51	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TCLEA	XDRE	23-SEP-94	0	<	.51	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TCLEE	XDRE	23-SEP-94	0	<	1.6	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TCLEE	XDRE	23-SEP-94	Ö	<	1.6	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TRCLE	XDRE	23-SEP-94	0	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	TRCLE	XDRE	23-SEP-94	Ö	<	.5	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	XYLEN	XDRE	23-SEP-94	0	<	.84	UGL	SBK-94-578	
VOC'S IN WATER BY GC/MS		SBK94578	XYLEN	XDRE	23-SEP-94	0	<		UGL	SBK-94-578	

SQL> exit

TABLE C-10

Chemical Quality Control Report Installation: Fort Devens, MA (DV) Group: 1A Cold Spring Brook

1

TRIP BLANKS

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
UM20	XDRE	111TCE	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	112TCE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	1.2	UGL	TRP-94-800
	XDRE	11DCE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	11DCLE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.68	UGL	TRP-94-800
	XDRE	12DCE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	12DCLE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	12DCLP	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	2CLEVE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.71	UGL	TRP-94-800
	XDRE	ACET	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	13	UGL	TRP-94-800
	XDRE	ACROLN	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	100	UGL	TRP-94-800
	XDRE	ACRYLO	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	100	UGL	TRP-94-800
	XDRE	BRDCLM	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.59	UGL	TRP-94-800
	XDRE	C13DCP	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.58	UGL	TRP-94-800
	XDRE	C2AVE	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	C2H3CL	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	2.6	UGL	TRP-94-800
	XDRE	C2H5CL	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	C6H6	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	CCL3F	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	1.4	UGL	TRP-94-800
	XDRE	CCL4	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.58	UGL	TRP-94-800
	XDRE	CH2CL2	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	CH3BR	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	CH3CL	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	3.2	UGL	TRP-94-800
	XDRE	CHBR3	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	CHCL3	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	CL2BZ	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	CLC6H5	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	2		UGL	TRP-94-800
	XDRE	CS2	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	DBRCLM	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.67		
	XDRE	ETC6H5	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	MEC6H5	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	MEK	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	2			TRP-94-800
	XDRE	MIBK	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<		UGL	TRP-94-800
	XDRE	MNBK	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	2	10 S.	UGL	TRP-94-800 TRP-94-800

TRIP BLANKS

USATHAMA Method Code	Lot	Test Name	IRDMIS Field Sample Number	Lab Number	Sample Date	Prep Date	Analysis Date	<	Value	Units	IRDMIS Site ID
								-			
UM20	XDRE	STYR	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	T13DCP	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.7	UGL	TRP-94-800
	XDRE	TCLEA	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.51	UGL	TRP-94-800
	XDRE	TCLEE	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	1.6	UGL	TRP-94-800
	XDRE	TRCLE	TRP94800	V1AW*800	23-SEP-94	26-SEP-94	26-SEP-94	<	.5	UGL	TRP-94-800
	XDRE	XYLEN	TRP94800		23-SEP-94	26-SEP-94	26-SEP-94	<	23.	UGL	TRP-94-800

TABLE C-11

Quality Control Report Installation: Fort Devens, MA (DV) Cold Sping Brook

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
TOC IN SOIL	9060 9060 9060 9060 9060 9060 9060 9060	TOC TOC TOC TOC TOC TOC TOC TOC	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	ZEQE ZEQE ZEUE ZEUE ZEUE ZEUE	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	15800 15800 16700 16700 10000 10000 8330 8330	18300 18300 17700 17700 17100 17100 7080 7080	UGG UGG UGG UGG UGG UGG UGG	115.8 115.8 106.0 106.0 171.0 171.0 85.0	8.9 8.9 8.9 67.2 67.2 67.2
		avg minimum maximum									119.5 85.0 171.0	
	9071 9071 9071 9071 9071 9071 9071 9071	TPHC TPHC TPHC TPHC TPHC TPHC TPHC TPHC	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	ZERE ZERE ZERE ZESE ZESE ZESE	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	13-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94 14-0CT-94 14-0CT-94 14-0CT-94	2400 2400 2400 2400 2260 2260 2260 2260	2210 2210 2150 2150 3000 3000 2000 2000	UGG UGG UGG UGG UGG UGG UGG	92.1 92.1 89.6 89.6 132.7 132.7 88.5 88.5	2.8 2.8 2.8 40.0 40.0 40.0
		avg minimum maximum									88.5 132.7	
HG IN SOIL BY GFAA	JB01 JB01 JB01 JB01 JB01 JB01 JB01	HG HG HG HG HG HG HG	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	QHDC QHDC QHEC QHEC QHEC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94	.802 .802 .785 .785 .784 .776 .776	.816 .816 .747 .747 .6 .6 .594	UGG UGG UGG UGG UGG UGG UGG	101.7 101.7 95.2 95.2 76.5 76.5 76.5	6.7 6.7 6.7 6.7 .0 .0
		avg minimum maximum									87.5 76.5 101.7	
SE IN SOIL BY GFAA	JD15	SE	DXCS0400	V1AS*540	MBBC	19-SEP-94	17-0CT-94	8.31	9.56	UGG	115.0	2.7

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number L	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
SE IN SOIL BY GFAA	JD15 JD15 JD15 JD15 JD15 JD15 JD15 JD15	SE	DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 M V1AS*540 M V1AS*556 M V1AS*556 M V1AS*556 M V1AS*556 M	MBBC MBCC MBCC MBCC MBCC	19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	17-0CT-94 17-0CT-94 17-0CT-94 19-0CT-94 19-0CT-94 19-0CT-94 19-0CT-94	8.31 8.15 8.15 7.89 7.89 7.96	9.56 9.13 9.13 5.52 5.52 5.05 5.05	UGG UGG UGG UGG UGG UGG	115.0 112.0 112.0 70.0 70.0 63.4 63.4	2.7 2.7 2.7 9.8 9.8 9.8 9.8
		avg minimum maximum									90.1 63.4 115.0	
PB IN SOIL BY GFAA PB IN SOIL BY GFAA PB IN SOIL BY GFAA PB IN SOIL BY GFAA	JD17 JD17 JD17 JD17	PB PB PB PB	DXCS0400 DXCS0400 DXCS0400 DXCS0400	V1AS*540 C V1AS*540 C V1AS*540 C V1AS*540 C	DBAC DBAC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94	13-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94	8.15 8.15 8.31 8.31		UGG UGG UGG UGG	99.4 99.4 91.5 91.5	8.3 8.3 8.3
		avg minimum maximum									95.4 91.5 99.4	
AS IN SOIL BY GFAA	JD19 JD19 JD19 JD19 JD19 JD19 JD19 JD19	AS AS AS AS AS AS AS AS	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 G V1AS*540 G V1AS*540 G V1AS*556 G V1AS*556 G V1AS*556 G V1AS*556 G	ABBC ABBC ABC ABCC ABCC ABCC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	13-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94 18-0CT-94 18-0CT-94 18-0CT-94	8.31 8.31 8.15 8.15 7.96 7.96 7.89 7.89	7.6 7.6 6.6	UGG UGG UGG UGG UGG UGG UGG	85.4 85.4 79.0 79.0 95.5 95.5 83.7 83.7	7.8 7.8 7.8 7.8 13.2 13.2 13.2
		avg minimum maximum									85.9 79.0 95.5	
TL IN SOIL BY GFAA	JD24 JD24 JD24 JD24 JD24 JD24 JD24	TL TL TL TL TL TL	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000	V1AS*540 R V1AS*540 R V1AS*540 R V1AS*540 R V1AS*556 R V1AS*556 R	RBHA RBHA RBHA RBIA	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94	13-0CT-94 13-0CT-94 13-0CT-94 13-0CT-94 19-0CT-94	8.15 8.15 8.31 8.31 7.89 7.89	7.78 9.12	UGG UGG UGG UGG UGG	97.5 97.5 93.6 93.6 115.6	4.1 4.1 4.1 4.1 2.2 2.2

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
TL IN SOIL BY GFAA TL IN SOIL BY GFAA	JD24 JD24	TL TL ********	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	19-0CT-94 19-0CT-94	7.96 7.96		UGG UGG	113.1 113.1	2.2
		avg minimum maximum									105.0 93.6 115.6	
SB IN SOIL BY GFAA SB IN SOIL BY GFAA	JD25 JD25	SB SB	DXCS0400 DXCS0400	V1AS*540 V1AS*540	SBTA	19-SEP-94 19-SEP-94	20-0CT-94 20-0CT-94	16.6 16.6	17.9	UGG UGG	107.8 107.8	1.2
SB IN SOIL BY GFAA SB IN SOIL BY GFAA	JD25 JD25	SB SB	DXCS0400 DXCS0400	V1AS*540 V1AS*540		19-SEP-94 19-SEP-94	20-OCT-94 20-OCT-94	16.7 16.7	17.8 17.8	UGG	106.6 106.6	1.2
SB IN SOIL BY GFAA	JD25	SB	DXCS2000	V1AS*556	SBUA	22-SEP-94	20-OCT-94	15.6	11.7	UGG	75.0	5.3
SB IN SOIL BY GFAA SB IN SOIL BY GFAA	JD25 JD25	SB SB	DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	20-0CT-94 20-0CT-94	15.6 15.6	11.7	UGG	75.0 71.2	5.3
SB IN SOIL BY GFAA	JD25	SB ******	DXCS2000	V1AS*556		22-SEP-94	20-OCT-94	15.6	11.1	UGG	71.2	5.3
		avg minimum maximum									90.1 71.2 107.8	
METALS IN SOIL BY ICAP	JS16	AG	DXCS0400	V1AS*540		19-SEP-94	06-OCT-94	16.4	14	UGG	85.4	.7
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	AG AG	DXCS0400 DXCS0400	V1AS*540 V1AS*540		19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94	16.4 16.4	13.9	UGG	85.4 84.8	.7
METALS IN SOIL BY ICAP	JS16	AG	DXCS0400	V1A5*540		19-SEP-94	06-0CT-94	16.4	13.9	UGG	84.8	.7
METALS IN SOIL BY ICAP	JS16	AG	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	15.6	14.4	UGG	92.3	1.3
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	AG AG	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-0CT-94 10-0CT-94	15.6 15.4	14.4	UGG	92.3 93.5	1.3
METALS IN SOIL BY ICAP	JS16	AG	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94	15.4	14.4	UGG	93.5	1.3
TOMES ASS AND EN SAME	3 (43)	*****	5145000000		SEE SOF	00-1001 1/10	44.1600.000	10.00	3,340		*******	164
		avg minimum maximum									89.0 84.8 93.5	
METALS IN SOIL BY ICAP	JS16	AL	DXCS0400	V1AS*540	UBVC	19-SEP-94	06-OCT-94	409	240	UGG	58.7	196.1
METALS IN SOIL BY ICAP	JS16	AL	DXCS0400	V1AS*540	UBVC	19-SEP-94	06-OCT-94	409	240	UGG	58.7	196.1
METALS IN SOIL BY ICAP	JS16	AL	DXCS0400	V1AS*540		19-SEP-94	06-OCT-94	409	2.35	UGG	.6	196.1
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	AL AL	DXCS0400 DXCS2000	V1AS*540 V1AS*556		19-SEP-94 22-SEP-94	06-OCT-94 10-OCT-94	409 389	2.35	UGG	.6	196.1
METALS IN SOIL BY ICAP	JS16	AL	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94	385	2.35	UGG	.6	1.0
METALS IN SOIL BY ICAP	JS16	AL	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	389	2.35	UGG	.6	1.0
METALS IN SOIL BY ICAP	JS16	AL	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	385	2.35	UGG	.6	1.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		******** avg minimum maximum								15875	15.1 .6 58.7	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	BA BA BA BA BA BA BA	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	123 123 123 123 117 117 115 115	115 111 111 122 122	UGG UGG UGG UGG UGG UGG UGG	93.5 93.5 90.2 90.2 104.3 104.3 101.7	3.5 3.5 3.5 3.5 2.5 2.5 2.5 2.5
		avg minimum maximum									97.4 90.2 104.3	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	BE BE BE BE BE BE BE BE	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	102 102 102 102 97.2 97.2 96.1 96.1	101 99.5 99.5 104 104	UGG UGG UGG UGG UGG UGG UGG	99.0 99.0 97.5 97.5 107.0 107.2 107.2	1.5 1.5 1.5 1.5 .2 .2
		avg minimum maximum									102.7 97.5 107.2	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	CA CA CA CA CA CA CA CA	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	10200 10200 10200 10200 9720 9720 9610 9610	9480 9390 9390 10100 10100	UGG UGG UGG UGG UGG UGG UGG	92.9 92.9 92.1 92.1 103.9 103.3 103.3	1.0 1.0 1.0 1.0 .6 .6
		avg minimum maximum									98.1 92.1 103.9	

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	CD CD CD CD CD CD CD CD	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	102 102 102 102 97.2 97.2 96.1 96.1	99.2 99.2 99 99 104 104 101	UGG UGG UGG UGG UGG UGG UGG	97.3 97.3 97.1 97.1 107.0 107.0 105.1 105.1	.2 .2 .2 .2 1.8 1.8 1.8
		avg minimum maximum									101.6 97.1 107.0	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	CO CO CO CO CO CO CO	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	205 205 205 205 205 194 194 192 192	194 194 191 191 211 211 208 208	UGG UGG UGG UGG UGG UGG UGG	94.6 94.6 93.2 93.2 108.8 108.8 108.3	1.6 1.6 1.6 1.6 4 .4
		avg minimum maximum									101.2 93.2 108.8	
METALS IN SOIL BY ICAP	J516 J516 J516 J516 J516 J516 J516 J516	CR CR CR CR CR CR CR CR CR	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	205 205 205 205 205 194 194 192 192	204 204 203 203 218 218 211 211	UGG UGG UGG UGG UGG UGG UGG	99.5 99.5 99.0 99.0 112.4 112.4 109.9	.5 .5 .5 2.2 2.2 2.2 2.2
		avg minimum maximum									105.2 99.0 112.4	
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16 JS16	cu cu	DXCS0400 DXCS0400 DXCS0400	V1AS*540 V1AS*540 V1AS*540	UBVC	19-SEP-94 19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94	102 102 102	95.9 95.9 95.3	UGG UGG UGG	94.0 94.0 93.4	.6 .6

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
METALS IN SOIL BY IC/ METALS IN SOIL BY IC/ METALS IN SOIL BY IC/ METALS IN SOIL BY IC/ METALS IN SOIL BY IC/	AP JS16 AP JS16 AP JS16	CU CU CU CU	DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBXC UBXC	19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	102 97.2 97.2 96.1 96.1	95.3 104 104 99.6 99.6	UGG UGG UGG UGG UGG	93.4 107.0 107.0 103.6 103.6	.6 3.2 3.2 3.2 3.2
		avg minimum maximum									99.5 93.4 107.0	
METALS IN SOIL BY IC/	AP JS16 AP JS16 AP JS16 AP JS16 AP JS16 AP JS16	FE FE FE FE FE FE	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	2050 2050 2050 2050 1940 1940 1920 1920	888 445 445 1470 1470 348 348	UGG UGG UGG UGG UGG UGG UGG	43.3 43.3 21.7 21.7 75.8 75.8 18.1 18.1	66.5 66.5 66.5 122.8 122.8 122.8
		avg minimum maximum		w							39.7 18.1 75.8	
METALS IN SOIL BY ICA	AP JS16 AP JS16 AP JS16 AP JS16 AP JS16 AP JS16	K K K K K K K	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	10200 10200 10200 10200 9720 9720 9610 9610	9610 9610 9610 9610 9980 9980 9830 9830	UGG UGG UGG UGG UGG UGG UGG	94.2 94.2 94.2 94.2 102.7 102.7 102.3 102.3	.0 .0 .0 .0 .4 .4 .4
		avg minimum maximum									98.3 94.2 102.7	
METALS IN SOIL BY IC/ METALS IN SOIL BY IC/	AP JS16 AP JS16 AP JS16 AP JS16 AP JS16	MG MG MG MG MG MG	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94	10200 10200 10200 10200 9720 9720 9610	10100 10100 9820 9820 10500 10500 10100	UGG UGG UGG UGG UGG UGG	99.0 96.3 96.3 108.0 108.0 105.1	2.8 2.8 2.8 2.7 2.7 2.7

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
METALS IN SOIL BY ICAP	JS16	MG ******	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-0CT-94	9610	10100	UGG	105.1	2.7
		avg minimum maximum									102.1 96.3 108.0	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16	MN MN MN MN MN MN MN	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-001-94 06-001-94 06-001-94 06-001-94 10-001-94 10-001-94 10-001-94	102 102 102 102 97.2 97.2 96.1 96.1	85.7 85.7 2.05 2.05 102 102 95.2 95.2	UGG UGG UGG UGG UGG UGG UGG	84.0 84.0 2.0 2.0 104.9 104.9 99.1	190.7 190.7 190.7 190.7 5.8 5.8 5.8 5.8
		avg minimum maximum									72.5 2.0 104.9	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	NA NA NA NA NA NA NA	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	10200 10200 10200 10200 9720 9720 9610 9610	9350 9350 9300 9300 10100 10100 9900 9900	UGG UGG UGG UGG UGG UGG UGG	91.7 91.7 91.2 91.2 103.9 103.9 103.0	555559999
		avg minimum maximum									97.4 91.2 103.9	
METALS IN SOIL BY ICAP	JS16 JS16 JS16 JS16 JS16 JS16 JS16 JS16	NI NI NI NI NI NI NI	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*5540 V1AS*556 V1AS*556 V1AS*556	UBVC UBVC UBXC UBXC UBXC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	06-001-94 06-001-94 06-001-94 06-001-94 10-001-94 10-001-94 10-001-94	102 102 102 102 97.2 97.2 96.1 96.1	100 100 100 100 111 111 106 106	UGG UGG UGG UGG UGG UGG UGG	98.0 98.0 98.0 98.0 114.2 114.2 110.3	.0 .0 .0 3.5 3.5 3.5
		avg minimum									105.1 98.0	

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
	******	maximum				************	***************************************	233211111111111111111111111111111111111			114.2	*******
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	PB PB	DXCS0400 DXCS0400	V1AS*540 V1AS*540		19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94	307 307	307 307	UGG	100.0 100.0	.7
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	PB PB	DXCS0400 DXCS0400	V1AS*540 V1AS*540	UBVC	19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94	307 307	305 305	UGG UGG	99.3 99.3	.7
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	PB PB	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-0CT-94 10-0CT-94	292 292	322 322	UGG	110.3 110.3	1.5
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	PB PB *******	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-OCT-94 10-OCT-94	288 288	313	UGG UGG	108.7 108.7	1.5
		avg minimum maximum									104.6 99.3 110.3	
METALS IN SOIL BY ICAP	JS16 JS16	V	DXCS0400 DXCS0400	V1AS*540 V1AS*540		19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94	102 102	96.8 96.8	UGG	94.9	.3
METALS IN SOIL BY ICAP	JS16	V	DXCS0400	V1AS*540	UBVC	19-SEP-94	06-OCT-94	102	96.5	UGG	94.9 94.6	.3
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	V	DXCS0400 DXCS2000	V1AS*540 V1AS*556		19-SEP-94 22-SEP-94	06-0CT-94 10-0CT-94	102 97.2	96.5 105	UGG	94.6 108.0	.3 .3 2.7
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16	V	DXCS2000 DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	97.2	105	UGG	108.0	2.7
METALS IN SOIL BY ICAP	JS16 JS16	V V *******	DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-0CT-94 10-0CT-94	96.1 96.1	101 101	UGG UGG	105.1 105.1	2.7
		avg minimum maximum									100.7 94.6 108.0	
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	ZN ZN	DXCS0400 DXCS0400	V1AS*540 V1AS*540		19-SEP-94 19-SEP-94	06-0CT-94 06-0CT-94	205 205	196	UGG UGG	95.6	2.1
METALS IN SOIL BY ICAP	JS16	ZN	DXCS0400	V1AS*540	UBVC	19-SEP-94	06-OCT-94	205	196 192	UGG	95.6 93.7	2.1 2.1
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	ZN ZN	DXCS0400 DXCS2000	V1AS*540 V1AS*556		19-SEP-94 22-SEP-94	06-0CT-94 10-0CT-94	205 194	192 217	UGG	93.7 111.9	2.1
METALS IN SOIL BY ICAP	JS16	ZN	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94	194	217	UGG	111.9	6.6
METALS IN SOIL BY ICAP METALS IN SOIL BY ICAP	JS16 JS16	ZN ZN *******	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-0CT-94 10-0CT-94	192 192	201 201	ugg ugg	104.7 104.7	6.6
		avg minimum maximum									101.5 93.7 111.9	
	LH10	AENSLF	DXCS2000	V1AS*556	UFCB	22-SEP-94	04-OCT-94	.04	.0544	UGG	136.0	7.4

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
***************************************	LH10 LH10 LH10	AENSLF AENSLF AENSLF	DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556	UFCB	22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04	.0544 .0505 .0505	UGG UGG UGG	136.0 126.3 126.3	7.4 7.4 7.4
		avg minimum maximum									131.1 126.3 136.0	
	LH10 LH10 LH10 LH10	ALDRN ALDRN ALDRN ALDRN	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04	.0494 .0494 .0443 .0443	UGG UGG UGG UGG	123.5 123.5 110.8 110.8	10.9 10.9 10.9 10.9
		avg minimum maximum									117.1 110.8 123.5	
	LH10 LH10 LH10 LH10	BENSLF BENSLF BENSLF ********	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04	.0545 .0545 .0509	UGG UGG UGG UGG	136.3 136.3 127.3 127.3	6.8 6.8 6.8
		avg minimum maximum									131.8 127.3 136.3	
	LH10 LH10 LH10 LH10 LH10 LH10	CL10BP CL10BP CL10BP CL10BP CL10BP	DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.0667 .0667 .0667 .0667 .0667 .0667	.032 .032 .0297 .0297 .0291	UGG UGG UGG UGG UGG	48.0 48.0 44.5 44.5 43.6 43.6	9.6 9.6 9.6 9.6 9.6
		avg minimum maximum									45.4 43.6 48.0	
	LH10 LH10 LH10 LH10 LH10 LH10	CL4XYL CL4XYL CL4XYL CL4XYL CL4XYL CL4XYL	DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.0667 .0667 .0667 .0667 .0667 .0667	.0683 .0683 .0673 .0673 .0661	UGG UGG UGG UGG UGG	102.4 102.4 100.9 100.9 99.1 99.1	3.3 3.3 3.3 3.3 3.3 3.3

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
***************************************		******** avg minimum maximum		*******		***********		••••••••••	*******		100.8 99.1 102.4	
	LH10 LH10 LH10 LH10	DLDRN DLDRN DLDRN DLDRN ********	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04	.0312 .0312 .03 .03	UGG	78.0 78.0 75.0 75.0	3.9 3.9 3.9 3.9
		avg minimum maximum									76.5 75.0 78.0	
	LH10 LH10 LH10 LH10	ENDRN ENDRN ENDRN ENDRN *******	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04	.0495 .0495 .0459 .0459	UGG UGG UGG UGG	123.8 123.8 114.8 114.8	7.5 7.5 7.5 7.5
		avg minimum maximum									119.3 114.8 123.8	
	LH10 LH10 LH10 LH10	HPCL HPCL HPCL HPCL	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04		UGG UGG UGG UGG	124.5 124.5 123.5 123.5	.8 .8 .8
		avg minimum maximum									124.0 123.5 124.5	
	LH10 LH10 LH10 LH10	I SODR I SODR I SODR I SODR	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.06 .06 .06		UGG UGG UGG UGG	121.5 121.5 114.8 114.8	5.6 5.6 5.6 5.6
		avg minimum maximum						- (118.2 114.8 121.5	
	LH10 LH10	LIN LIN	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	04-OCT-94 04-OCT-94	.04	.0379	UGG UGG	94.8 94.8	1.6 1.6

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
	LH10 LH10	LIN LIN *******	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94	.04 .04	.0373 .0373	UGG UGG	93.3 93.3	1.6 1.6
		avg minimum maximum									94.0 93.3 94.8	
	LH10 LH10 LH10 LH10	MEXCLR MEXCLR MEXCLR MEXCLR	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.4 .4 .4	.362 .362 .332 .332	UGG UGG UGG UGG	90.5 90.5 83.0 83.0	8.6 8.6 8.6 8.6
		avg minimum maximum									86.8 83.0 90.5	
	LH10 LH10 LH10 LH10	PPDDT PPDDT PPDDT PPDDT ********	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	UFCB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.04 .04 .04 .04	.00707 .00707 .00707 .00707	UGG UGG UGG UGG	17.7 17.7 17.7 17.7	.0 .0 .0
		avg minimum maximum									17.7 17.7 17.7	
	LH16 LH16 LH16 LH16 LH16 LH16	CL10BP CL10BP CL10BP CL10BP CL10BP CL10BP	DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556	NGHB NGHB NGHB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 05-0CT-94 05-0CT-94 04-0CT-94	.0667 .0667 .0667 .0667 .0667	.019 .019 .0174 .0174 .0172	UGG UGG UGG UGG UGG	28.5 28.5 26.1 26.1 25.8 25.8	10.1 10.1 10.1 10.1 10.1
		avg minimum maximum									26.8 25.8 28.5	
	LH16 LH16 LH16 LH16 LH16 LH16	CL4XYL CL4XYL CL4XYL CL4XYL CL4XYL CL4XYL	DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556	NGHB NGHB NGHB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 05-0CT-94 05-0CT-94	.0667 .0667 .0667 .0667 .0667 .0667	.0475 .0475 .043 .043 .0407	UGG UGG UGG UGG UGG	71.2 71.2 64.5 64.5 61.0 61.0	15.5 15.5 15.5 15.5 15.5 15.5

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		********* avg minimum maximum		31111100		***********					65.6 61.0 71.2	
	LH16 LH16 LH16 LH16	PCB016 PCB016 PCB016 PCB016	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	NGHB NGHB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94	.533 .533 .533 .533	.393	UGG UGG UGG UGG	73.7 73.7 65.1 65.1	12.4 12.4 12.4 12.4
		avg minimum maximum									69.4 65.1 73.7	
	LH16 LH16 LH16 LH16	PCB260 PCB260 PCB260 PCB260	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	NGHB NGHB	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94	.533 .533 .533 .533	.46	UGG UGG UGG UGG	86.3 86.3 66.6 66.6	25.8 25.8 25.8 25.8
		avg minimum maximum									76.5 66.6 86.3	
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	124TCB 124TCB 124TCB 124TCB 124TCB 124TCB 124TCB 124TCB 124TCB	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7 6.7 6.7	7.2 7.2 10 10 5	UGG UGG UGG UGG UGG UGG UGG	101.4 101.4 101.4 101.4 149.3 149.3 74.6 74.6	.0 .0 .0 .0 66.7 66.7 66.7
		avg minimum maximum									106.7 74.6 149.3	
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18	14DCLB 14DCLB 14DCLB 14DCLB 14DCLB 14DCLB	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556	OEKC OEKC OEKC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7	8.3 7.7 7.7 10	UGG UGG UGG UGG UGG UGG	116.9 116.9 108.5 108.5 149.3	7.5 7.5 7.5 7.5 .0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value l	Jnits	Percent Recovery	RPD
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18	14DCLB 14DCLB	DXCS2000 DXCS2000	V1AS*556 V1AS*556		22-SEP-94 22-SEP-94	10-0CT-94 10-0CT-94	6.7 6.7		JGG JGG	149.3 149.3	.0
		avg minimum maximum									131.0 108.5 149.3	
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT 24DNT	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7 6.7 6.7	5.9 L 5.7 L 5.7 L 3 L 3 L	JGG JGG JGG JGG JGG JGG JGG	83.1 83.1 80.3 80.3 44.8 44.8 44.8 44.8	3.4 3.4 3.4 3.4 .0 .0
		avg minimum maximum									63.2 44.8 83.1	
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18	2CLP 2CLP 2CLP 2CLP 2CLP 2CLP 2CLP 2CLP	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	14 14 14 14 13 13 13	17 L 16 L 20 L 20 L 20 L	JGG JGG JGG JGG JGG JGG JGG	121.4 121.4 114.3 114.3 153.8 153.8 153.8 153.8	6.1 6.1 6.1 6.1 .0 .0
		avg minimum maximum									135.9 114.3 153.8	
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	4CL3C 4CL3C 4CL3C 4CL3C 4CL3C 4CL3C 4CL3C 4CL3C 4CL3C	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	14 14 14 14 13 13 13	14 L 14 L 14 L 9 L 9 L	JGG JGG JGG JGG JGG JGG JGG	100.0 100.0 100.0 100.0 69.2 69.2 30.8 30.8	.0 .0 .0 .0 76.9 76.9 76.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
	********	minimum maximum				***************************************		*********		*****	30.8 100.0	
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	4NP	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	14 14 14 14 13 13 13	15 15 14 14 30 30 30 30	UGG UGG UGG UGG UGG UGG	107.1 107.1 100.0 100.0 230.8 230.8 230.8 230.8	6.9 6.9 6.9 6.9 .0
		avg minimum maximum									167.2 100.0 230.8	
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	ANAPNE ANAPNE ANAPNE ANAPNE ANAPNE ANAPNE ANAPNE ANAPNE ************************************	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*550 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7 6.7	7 7 7 7 10 10 10	UGG UGG UGG UGG UGG UGG UGG	98.6 98.6 98.6 98.6 149.3 149.3 149.3	.0 .0 .0 .0 .0
		avg minimum maximum									123.9 98.6 149.3	
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	NNDNPA NNDNPA NNDNPA NNDNPA NNDNPA NNDNPA NNDNPA NNDNPA	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7 6.7 6.7	6.5 6.5 6.3 6.3 4 4	UGG UGG UGG UGG UGG UGG UGG	91.5 91.5 88.7 88.7 59.7 59.7 59.7 59.7	3.1 3.1 3.1 3.1 .0 .0
		avg minimum maximum									74.9 59.7 91.5	
BNA'S IN SOIL BY GC/MS	LM18	PCP	DXCS0400	V1AS*540	OEKC	19-SEP-94	04-DCT-94	14	18	UGG	128.6	18.2

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike V alue	Value	Units	Percent Recovery	RPD
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18	PCP PCP PCP PCP PCP PCP PCP	DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	14 14 14 13 13 13	18 15 15 30 30 30 30	UGG UGG UGG UGG UGG UGG	128.6 107.1 107.1 230.8 230.8 230.8 230.8	18.2 18.2 18.2 .0 .0
		avg minimum maximum									174.3 107.1 230.8	
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	PHENOL PHENOL PHENOL PHENOL PHENOL PHENOL PHENOL ************************************	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OENC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-OCT-94 04-OCT-94 04-OCT-94 04-OCT-94 10-OCT-94 10-OCT-94 10-OCT-94	14 14 14 14 13 13 13	15 15 14 14 10 10 10	UGG UGG UGG UGG UGG UGG	107.1 107.1 100.0 100.0 76.9 76.9 76.9 76.9 76.9 76.9	6.9 6.9 6.9 .0 .0
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	maximum PYR PYR PYR PYR PYR PYR PYR PYR PYR PY	DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS2000 DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*540 V1AS*540 V1AS*540 V1AS*556 V1AS*556 V1AS*556 V1AS*556	OEKC OEKC OEKC OENC OENC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	7.1 7.1 7.1 7.1 6.7 6.7 6.7 6.7	6.3 6.3 6.3 6.3 9 9	UGG UGG UGG UGG UGG UGG UGG	88.7 88.7 88.7 134.3 134.3 134.3 134.3 134.3	.0
VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19 LM19	11DCE 11DCE 11DCE 11DCE 11DCE	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94	.1 .1 .1	.09 .09 .084	UGG UGG UGG UGG	90.0 90.0 90.0 84.0 84.0	6.9 6.9 6.9 6.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		******** avg minimum maximum									87.0 84.0 90.0	
VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19 LM19	C6H6 C6H6 C6H6 *************************	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94	.1 .1 .1	:1 :1 :1	UGG UGG UGG UGG	100.0 100.0 100.0 100.0	.0 .0 .0
VOC'S IN SOIL BY GC/MS VOC'S IN SOIL BY GC/MS VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19	minimum maximum CLC6H5 CLC6H5 CLC6H5	DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556	YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94	:1 :1 :1	.088 .088	UGG UGG UGG	100.0 100.0 88.0 88.0 86.0	2.3 2.3 2.3
VOC'S IN SOIL BY GC/MS	LM19	CLC6H5 ********* avg minimum maximum	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	.1	,086	UGG	86.0 87.0 86.0 88.0	2.3
VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19 LM19	MEC6H5 MEC6H5 MEC6H5 MEC6H5	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94	.1 .1 .1 .1	.12 .12 .12 .12	UGG UGG UGG UGG	120.0 120.0 120.0 120.0	.0 .0 .0
		avg minimum maximum									120.0 120.0 120.0	
VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19 LM19	TRCLE TRCLE TRCLE TRCLE ************************************	DXCS2000 DXCS2000 DXCS2000 DXCS2000	V1AS*556 V1AS*556 V1AS*556 V1AS*556	YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94	.1 .1 .1	.074 .074 .067 .067	UGG UGG UGG UGG	74.0 74.0 67.0 67.0 70.5 67.0	9.9 9.9 9.9 9.9

Metho	od Desc	rip	tion	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
	N WATER N WATER			SD09 SD09	TL TL *******	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	14-0CT-94 14-0CT-94	10 10		UGL UGL	84.0 80.7	4.0 4.0
PB 11	N WATER	ВУ	GFAA	SD20	minimum maximum PB	WXCS0400	V1AW*504	WCMC	19-SEP-94	14-0CT-94	40	39.9	UGL	80.7 84.0 99.8	2.8
	WATER			SD20	PB ************************************	WXCS0400	V1AW*504		19-SEP-94	14-OCT-94	40		UGL	97.0 98.4 97.0 99.8	2.8
	N WATER N WATER			SD21 SD21	SE SE ************** avg minimum maximum	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	19-0CT-94 19-0CT-94	37.5 37.5	35.4 32.9	UGL UGL	94.4 87.7 91.1 87.7 94.4	7.3 7.3
	N WATER N WATER			SD22 SD22	AS AS *********** avg minimum maximum	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	14-0CT-94 14-0CT-94	37.5 37.5	45.8 45	UGL UGL	122.1 120.0 121.1 120.0 122.1	1.8 1.8
	N WATER N WATER			SD28 SD28	SB SB ******* avg minimum	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	21-0CT-94 21-0CT-94	80 80		UGL UGL	39.0 36.0 37.5 36.0	8.0 8.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		maximum									39.0	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 SS10	AG AG	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	50 50	50.5 47	UGL UGL	101.0 94.0	7.2 7.2
		avg minimum maximum									97.5 94.0 101.0	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 SS10	AL AL	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	2000 2000	1970 1850	UGL UGL	98.5 92.5	6.3 6.3
		avg minimum maximum									95.5 92.5 98.5	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 SS10	BA BA ******	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	2000 2000	1850 1760	UGL UGL	92.5 88.0	5.0 5.0
		avg minimum maximum									90.3 88.0 92.5	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 SS10	BE BE *******	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	50 50	58.7 54.3	UGL UGL	117.4 108.6	7.8 7.8
		avg minimum maximum									113.0 108.6 117.4	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 SS10	CA CA	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	10000 10000	10800 9780	UGL UGL	108.0 97.8	9.9 9.9
		avg minimum maximum									102.9 97.8 108.0	
METALS IN WATER BY ICAP	SS10	CD	WXCS0400	V1AW*504	ZFDC	19-SEP-94	11-OCT-94	50	50.6	UGL	101.2	3.2

Method Description	USATHAMA Method Test Code Name	IRDMIS Field Sample Number	Lab . Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
METALS IN WATER BY ICAP	SS10 CD	WXCS0400	V1AW*504	ZFDC	19-SEP-94	11-0CT-94	50	49	UGL	98.0	3.2
	avg minimum maximum									99.6 98.0 101.2	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 CO SS10 CO	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	500 500	567 536	UGL UGL	113.4 107.2	5.6 5.6
	avg minimum maximum									110.3 107.2 113.4	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 CR SS10 CR	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	200 200	197 187	UGL UGL	98.5 93.5	5.2 5.2
	avg minimum maximum									96.0 93.5 98.5	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 CU SS10 CU	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	250 250	253 241	UGL UGL	101.2 96.4	4.9 4.9
	avg minimum maximum									98.8 96.4 101.2	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 FE SS10 FE	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	1000 1000	742 628	UGL UGL	74.2 62.8	16.6 16.6
	avg minimum maximum									68.5 62.8 74.2	
METALS IN WATER BY ICAP METALS IN WATER BY ICAP	SS10 K SS10 K	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	10000 10000	11300 11000	UGL UGL	113.0 110.0	2.7 2.7
	avg minimum									111.5 110.0	

Method Descrip	tion	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
-31711333111133	411110011	35235911	meximum	**********				1.0000000000000000000000000000000000000			22371	113.0	
METALS IN WATER		SS10 SS10	MG · MG	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	10000 10000	10100 9620	UGL UGL	101.0 96.2	4.9 4.9
			avg minimum maximum									98.6 96.2 101.0	
METALS IN WATER		SS10 SS10	MN MN	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	500 500	535 449	UGL UGL	107.0 89.8	17.5 17.5
			avg minimum maximum						- *			98.4 89.8 107.0	
METALS IN WATER		SS10 SS10	NA NA	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	10000 10000	10800 9630	UGL UGL	108.0 96.3	11.5 11.5
			avg minimum maximum									102.2 96.3 108.0	
METALS IN WATE METALS IN WATE		SS10 SS10	NI NI	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	500 500	580 552	UGL UGL	116.0 110.4	4.9 4.9
	- ,		avg minimum maximum									113.2 110.4 116.0	
METALS IN WATE		SS10 SS10	V V ******	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	500 500	520 494	UGL UGL	104.0 98.8	5.1 5.1
			avg minimum maximum									101.4 98.8 104.0	
METALS IN WATE		SS10 SS10	ZN ZN	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	11-0CT-94 11-0CT-94	500 500	512 481	UGL UGL	102.4 96.2	6.2

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		******** avg minimum maximum		5.0000000	00000	***************************************				2277	99.3 96.2 102.4	
SO4 IN WATER SO4 IN WATER	TT10 TT10	CL CL ******** avg minimum maximum	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	03-0CT-94 03-0CT-94	25000 25000	22000 22000	UGL UGL	88.0 88.0 88.0 88.0 88.0	.0
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	124TCB 124TCB ************* avg minimum maximum	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	50 50	UGL UGL	50.0 50.0 50.0 50.0 50.0 50.0	.0
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	14DCLB 14DCLB ************************************	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	110 100	UGL UGL	110.0 100.0 105.0 100.0 110.0	9.5 9.5
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18 UM18	246TBP 246TBP 246TBP ************************************	WXCS0400 WXCS0400 WXCS0400	V1AW*504 V1AW*504 V1AW*504	WDPC	19-SEP-94 19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94	100 100 100	75 74 72	UGL UGL UGL	75.0 74.0 72.0 73.7 72.0 75.0	4.1 4.1 4.1
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	24DNT 24DNT *******	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	88 86	UGL UGL +	88.0 86.0	2.3

Method Description		est	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
		vg inimum aximum				,				-	87.0 86.0 88.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 20		WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	200 200		UGL UGL	100.0 100.0	.0
		vg inimum aximum									100.0 100.0 100.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 2F	FBP	WXCS0400 WXCS0400 WXCS0400	V1AW*504 V1AW*504 V1AW*504	MOPC	19-SEP-94 19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94	50 50 50	42	UGL UGL UGL	84.0 84.0 76.0	9.8 9.8 9.8
		vg inimum aximum									81.3 76.0 84.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 2F UM18 2F UM18 2F	FP	WXCS0400 WXCS0400 WXCS0400	V1AW*504 V1AW*504 V1AW*504	WDPC	19-SEP-94 19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94	100 100 100	130 130 110	UGL UGL UGL	130.0 130.0 110.0	16.2 16.2 16.2
		vg inimum aximum									123.3 110.0 130.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 40		WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	200 200	180 170	UGL UGL	90.0 85.0	5.7 5.7
		vg inimum aximum									87.5 85.0 90.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 4N		WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	200 200	100 100	UGL UGL	50.0 50.0	.0
		∨g inimum									50.0 50.0	

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery	RPD
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	PHENOL PHENOL	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	200 200	280 260	UGL UGL	140.0 130.0	7.4 7.4
		avg minimum maximum									135.0 130.0 140.0	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	PYR PYR	WXCS0400 WXCS0400	V1AW*504 V1AW*504		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	83 80	UGL UGL	83.0 80.0	3.7 3.7
		avg minimum maximum									81.5 80.0 83.0	
BNA'S IN WATER BY GC/MS	UM18	TRPD14 ·	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	46	UGL	92.0	.0
+		avg minimum maximum									92.0 92.0 92.0	

TABLE C-12

Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	· Units	Percent Recovery
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1300	V1AS*549	YGNC	22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1300	V1AS*549	YGNC	22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1400	V1AS*550		22-SEP-94	28-SEP-94	.05	.048	UGG	96.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1400	V1AS*550		22-SEP-94	28-SEP-94	.05	.048	UGG	96.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1700	V1AS*553		22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1700	V1AS*553		22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1900	V1AS*555		22-SEP-94	28-SEP-94	.05	.051	UGG	102.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS1900	V1AS*555		22-SEP-94	28-SEP-94	.05	.051	UGG	102.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.052	UGG	104.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.052	UGG	104.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.049	UGG	98.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.045	UGG	90.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.045	UGG	90.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS3500	V1AS*571		22-SEP-94	28-SEP-94	.05	.048	UGG	96.0
VOC'S IN SOIL BY GC/MS	LM19	12DCD4	DXCS3500	V1AS*571		22-SEP-94	28-SEP-94		.048	UGG	
	LM19	12DCD4	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	.05			96.0
VOC'S IN SOIL BY GC/MS		12DCD4							.048	UGG	96.0
VOC'S IN SOIL BY GC/MS	LM19	*****	DDCS2000	V1AS*580	TUNC	22-SEP-94	28-SEP-94	.05	.048	UGG	96.0
		avg minimum maximum									97.6 90.0 104.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1300	V1AS*549	YGNC	22-SEP-94	28-SEP-94	.05	.039	UGG	78.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1300	V1AS*549		22-SEP-94	28-SEP-94	.05	.039	UGG	78.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1400	V1AS*550		22-SEP-94	28-SEP-94	.05	.034	UGG	68.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1400	V1AS*550		22-SEP-94	28-SEP-94	.05	.034	UGG	68.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1700	V1AS*553		22-SEP-94	28-SEP-94	.05	.043	UGG	86.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1700	V1AS*553		22-SEP-94	28-SEP-94	.05	.043	UGG	86.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1900	V1AS*555		22-SEP-94	28-SEP-94	.05	.037	UGG	74.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS1900	V1AS*555		22-SEP-94	28-SEP-94	.05	.037	UGG	74.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.037	UGG	74.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.037	UGG	74.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.035	UGG	70.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.035	UGG	
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	-05			70.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	.05	.031	UGG	62.0
VOC'S IN SOIL BY GC/MS	LM19		DXCS2000	V1AS*571		22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94	.05	.031	UGG	62.0
	LM19	4BFB							-04	UGG	80.0
VOC'S IN SOIL BY GC/MS		4BFB	DXCS3500	V1AS*571		22-SEP-94	28-SEP-94	.05	.04	UGG	80.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	-05	.039	UGG	78.0
VOC'S IN SOIL BY GC/MS	LM19	4BFB	DDCS2000	V1AS*580	TUNC	22-SEP-94	28-SEP-94	.05	.039	UGG	78.0
		avg									74.4

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
***************************************		minimum maximum		*******		***************************************		***********			62.0 86.0
VOC'S IN SOIL BY GC/MS	LM19 LM19 LM19 LM19 LM19 LM19 LM19 LM19	MEC6D8	DXCs1300 DXCs1300 DXCs1400 DXCs1400 DXCs1700 DXCs1700 DXCs1900 DXCs2000 DXCs2000 DXCs2000 DXCs2000 DXCs2000 DXCs2000 DXCs2000 DXCs3500 DXCs3500 DXCs3500 DXCs3500 DXCs3500	V1AS*549 V1AS*550 V1AS*550 V1AS*553 V1AS*555 V1AS*555 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*556 V1AS*5571 V1AS*571 V1AS*580 V1AS*580	YGNC YGNC YGNC YGNC YGNC YGNC YGNC YGNC	22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94 28-SEP-94	.05 .05 .05 .05 .05 .05 .05 .05 .05 .05	.061 .066 .066 .058 .058 .07 .07 .069 .069 .068 .063 .063 .059 .059	UGG UGG UGG UGG UGG UGG UGG UGG UGG UGG	122.0 122.0 132.0 132.0 116.0 116.0 140.0 138.0 136.0 136.0 126.0 118.0 130.0
		minimum maximum									116.0 140.0
VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS	UM20 UM20 UM20 UM20 UM20	12DCD4 12DCD4 12DCD4 12DCD4	SBK94578 SBK94578 TRP94800 TRP94800	V1AW*578 V1AW*578 V1AW*800 V1AW*800	XDRE	23-SEP-94 23-SEP-94 23-SEP-94 23-SEP-94	26-SEP-94 26-SEP-94 26-SEP-94 26-SEP-94	50 50 50 50	57 57 57 57	UGL UGL UGL UGL	114.0 114.0 114.0 114.0
		avg minimum maximum									114.0 114.0 114.0
VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS	UM20 UM20 UM20 UM20	4BFB 4BFB 4BFB 4BFB	SBK94578 SBK94578 TRP94800 TRP94800	V1AW*578 V1AW*578 V1AW*800 V1AW*800	XDRE	23-SEP-94 23-SEP-94 23-SEP-94 23-SEP-94	26-SEP-94 26-SEP-94 26-SEP-94 26-SEP-94	50 50 50 50	41 41 42 42	UGL UGL UGL UGL	82.0 82.0 84.0 84.0
		avg minimum									83.0 82.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
		maximum					4.62322633655		,,,,,,,		84.0
VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS VOC'S IN WATER BY GC/MS	UM20 UM20 UM20 UM20	MEC6D8 MEC6D8 MEC6D8 MEC6D8	SBK94578 SBK94578 TRP94800 TRP94800	V1AW*578 V1AW*578 V1AW*800 V1AW*800	XDRE XDRE	23-SEP-94 23-SEP-94 23-SEP-94 23-SEP-94	26-SEP-94 26-SEP-94 26-SEP-94 26-SEP-94	50 50 50 50	44 44 45 45	UGL UGL UGL UGL	88.0 88.0 90.0 90.0
TO S IN WALLY ST GOTTO	UNEO	********** avg minimum maximum	IN 74000	TIM GOO	ADKL.	D 01. 74	LO OLI 74	,,,	43	OUL	89.0 88.0 90.0

TABLE C-13

Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	246TBP	BXXG1527	DV7S*69	OEKC	19-SEP-94	04-OCT-94	6.7	5.7 UGG	85.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0100	V1AS*537	CENC	20-SEP-94	06-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0200	V1AS*538	OENC	21-SEP-94	06-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0200	V1AS*538	DENC	21-SEP-94	06-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540	OEKC	19-SEP-94	04-OCT-94	6.7	6.4 UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	6.4 UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540	OEKC	19-SEP-94	04-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540	OEKC	19-SEP-94	04-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540	OEKC	19-SEP-94	29-SEP-94	6.7	4.9 UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0400	V1AS*540	OEKC	19-SEP-94	29-SEP-94	6.7	4.9 UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	6.7	5.1 UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	6.7	5.1 UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0600	V1AS*542	OEKC	19-SEP-94	29-SEP-94	6.7	4.1 UGG	61.2
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0600	V1AS*542	OEKC	19-SEP-94	29-SEP-94	6.7	4.1 UGG	61.2
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0700	V1AS*543	OEKC	19-SEP-94	04-OCT-94	6.7	5.9 UGG	88.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0700	V1AS*543	OEKC	19-SEP-94	04-OCT-94	6.7	5.9 UGG	88.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0800	V1AS*544		19-SEP-94	04-OCT-94	6.7	5.3 UGG	79.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0800	V1AS*544	OEKC	19-SEP-94	04-OCT-94	6.7	5.3 UGG	79.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0900	V1AS*545		20-SEP-94	06-OCT-94	6.7	5.7 UGG	85.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS0900	V1AS*545		20-SEP-94	06-OCT-94	6.7	5.7 UGG	85.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1000	V1AS*546		20-SEP-94	06-OCT-94	6.7	5.3 UGG	79.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1000	V1AS*546		20-SEP-94	06-OCT-94	6.7	5.3 UGG	79.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	6.7	6.3 UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1200	V1AS*548		21-SEP-94	06-OCT-94	6.7	5.5 UGG	82.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1200	V1AS*548		21-SEP-94	06-DCT-94	6.7	5.5 UGG	82.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1300	V1AS*549		22-SEP-94	10-OCT-94	6.7	6.4 UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1300	V1AS*549		22-SEP-94	10-OCT-94	6.7	6.4 UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1400	V1AS*550		22-SEP-94	10-OCT-94	6.7	4.8 UGG	71.6
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1400	V1AS*550		22-SEP-94	10-OCT-94	6.7	4.8 UGG	71.6
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	6.7	6.5 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	6.7	6.9 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	6.7	6.9 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1800	V1AS*554		22-SEP-94	10-0CT-94	6.7	7 UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1800	V1AS*554		22-SEP-94	10-0CT-94	6.7	7 UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1900	V1AS*555		22-SEP-94	10-0CT-94	6.7	6.6 UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS1900	V1AS*555		22-SEP-94	10-0CT-94	6.7	6.6 UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556	24-04	22-SEP-94	10-0CT-94	6.7	5.5 UGG	82.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	5.5 UGG	82.1

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7	3.6	UGG	53.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7	3.6	UGG	53.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7	4.6	UGG	68.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7	4.6	UGG	68.7
		246TBP	DXCS2300	V1AS*559		20-SEP-94	10-0CT-94	6.7	4.6	UGG	68.7
BNA'S IN SOIL BY GC/MS	LM18			V1AS*559		20-SEP-94	10-0CT-94	6.7	4.6	UGG	68.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2300				10-0CT-94	6.7	.38	UGG	5.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2400	V1AS*560		20-SEP-94					5.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	6.7	.38	UGG	
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	6.7	1.8	UGG	26.9
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	6.7	1.8	UGG	26.9
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2700	V1AS*563	DEOC	20-SEP-94	07-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2700	V1AS*563	OEOC	20-SEP-94	07-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2800	V1AS*564	DEOC	22-SEP-94	07-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2800	V1AS*564	OEOC	22-SEP-94	07-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	6.7	2.2	UGG	32.8
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	6.7	2.2	UGG	32.8
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3000	V1AS*566		21-SEP-94	10-OCT-94	6.7	4.7	UGG	70.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3000	V1AS*566		21-SEP-94	10-OCT-94	6.7	4.7	UGG	70.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	6.7	4.2	UGG	62.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	6.7	4.2	UGG	62.7
		246TBP	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18					21-SEP-94	10-0CT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3200	V1AS*568							
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	6.7	5.1	UGG	76.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	6.7	4.7	UGG	70.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	6.7	4.7	UGG	70.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3500	V1AS*571		22-SEP-94	10-DCT-94	6.7	4	UGG	59.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXCS3500	V1AS*571	DEOC	22-SEP-94	10-OCT-94	6.7	4	UGG	59.7
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	6.7	6.7	UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	6.7	6.7	UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXGR0700	V1AS*576		19-SEP-94	06-OCT-94	6.7	6.5	UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DXGR0700	V1AS*576		19-SEP-94	06-0CT-94	6.7	6.5	UGG	97,0
BNA'S IN SOIL BY GC/MS	LM18	246TBP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	6.7	1.6	UGG	23.9
	LM18	246TBP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	6.7	1.6	UGG	23.9
BNA'S IN SOIL BY GC/MS	LHIO	240101		A IND. DOO	DEDC	LL JLF 74	10 001 34	0.7	1.0	000	.,,

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
***************************************	*******	avg minimum maximum	1	*******	*****	***************************************					75.9 5.7 104.5
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	2FBP 2FBP 2FBP 2FBP 2FBP 2FBP 2FBP 2FBP	BXXG1527 DXCS0100 DXCS0200 DXCS0200 DXCS0300 DXCS0300 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0500 DXCS1000 DXCS1000 DXCS11000 DXCS11000 DXCS11000	DV7\$*69 V1A\$*537 V1A\$*538 V1A\$*538 V1A\$*539 V1A\$*540 V1A\$*540 V1A\$*540 V1A\$*540 V1A\$*541 V1A\$*541 V1A\$*541 V1A\$*542 V1A\$*542 V1A\$*543 V1A\$*545 V1A\$*545 V1A\$*545 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546 V1A\$*546	OENC OENC OENC OENC OEKC OEKC OEKC OEKC OEKC OEKC OEKC OEK	19-SEP-94 20-SEP-94 20-SEP-94 21-SEP-94 21-SEP-94 20-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94	04-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 04-0CT-94 29-SEP-94 29-SEP-94 29-SEP-94 29-SEP-94 04-0CT-94 04-0CT-94 04-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.1 3.1 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	UGG	100.0 97.0 97.0 103.0 103.0 97.0 97.0 93.9 90.9 75.8 75.8 75.8 77.7 72.7 75.8 97.0 97.0 97.0 93.9 97.0
BNA'S IN SOIL BY GC/MS	LM18, LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	2FBP 2FBP 2FBP 2FBP 2FBP 2FBP 2FBP 2FBP	DXCS1100 DXCS1200 DXCS1200 DXCS1300 DXCS1300 DXCS1400 DXCS1400 DXCS1600 DXCS1600 DXCS1700 DXCS1700 DXCS1700 DXCS1800 DXCS1800	V1AS*547 V1AS*548 V1AS*548 V1AS*549 V1AS*550 V1AS*550 V1AS*552 V1AS*553 V1AS*553 V1AS*554 V1AS*554	OENC OENC OENC OENC OENC OENC OENC OENC	21-SEP-94 21-SEP-94 21-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94 22-SEP-94	10-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94 10-0CT-94	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.2 3.3 3.2 3.2 3.2 3.2 3.4 3.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	UGG UGG UGG UGG UGG UGG UGG UGG UGG UGG	97.0 100.0 100.0 97.0 97.0 97.0 103.0 100.0 100.0 100.0 106.1

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS1900	V1AS*555	OENC	22-SEP-94	10-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3.4 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3.4 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.5 UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.5 UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	3.3	3.8 UGG	115.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	3.3	3.8 UGG	115.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	3.3	3.8 UGG	115.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	3.3	3.8 UGG	115.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	3.3	4.2 UGG	127.3
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	3.3	4.2 UGG	127.3
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	3.3	4.1 UGG	124.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	3.3	4.1 UGG	124.2
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2600	V1AS*562		20-SEP-94	07-0CT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2700	V1AS*563		20-SEP-94	07-OCT-94	3.3	3.2 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2700	V1AS*563		20-SEP-94	07-0CT-94	3.3	3.2 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2800	V1AS*564		22-SEP-94	07-DCT-94	3.3	3.5 UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2800	V1AS*564		22-SEP-94	07-OCT-94	3.3	3.5 UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2900	V1AS*565		21-SEP-94	10-0CT-94	3.3	3.5 UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	3.3	3.5 UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3000	V1AS*566		21-SEP-94	10-OCT-94	3.3	3.4 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3000	V1AS*566		21-SEP-94	10-OCT-94	3.3	3.4 UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3400	V1AS*570		21-SEP-94	10-DCT-94	3.3	3.5 UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3400	V1AS*570		21-SEP-94	10-0CT-94	3.3	3.5 UGG	106.1
	LM18	2FBP	DXCS3500	V1AS*571		22-SEP-94	10-OCT-94	3.3	3.4 UGG	103.0
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXCS3500	V1AS*571		22-SEP-94	10-0CT-94	3.3	3.4 UGG	103.0
	LM18	2FBP	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	3.3	3.2 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DDCS0500	V1AS*574		19-SEP-94	04-0CT-94	3.3	3.2 UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXGR0600	V1AS*575		19-SEP-94	04-0CT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS						19-SEP-94	04-0CT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXGR0600	V1AS*575		19-SEP-94	06-OCT-94	3.3	2.8 UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	2FBP	DXGR0700	V1AS*576	UCKL	13-3EP-34	00-001-94	2.3	2.0 066	04.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18	2FBP 2FBP 2FBP ********	DXGR0700 DDCS2000 DDCS2000	V1AS*576 V1AS*580 V1AS*580	OEOC	19-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 10-0CT-94 10-0CT-94	3.3 3.3 3.3	2.8 4 4	UGG UGG UGG	84.8 121.2 121.2
		avg minimum maximum									99.6 72.7 127.3
BNA'S IN SOIL BY GC/MS	LM18	2FP	BXXG1527	DV75*69	OEKC	19-SEP-94	04-OCT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0200	V1AS*538		21-SEP-94	06-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0200	V1AS*538		21-SEP-94	06-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	7.8	UGG	116.4
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	7.8	UGG	116.4
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0400	V1AS*540	OEKC	19-SEP-94	29-SEP-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	ZFP	DXCS0400	V1AS*540		19-SEP-94	29-SEP-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0700	V1AS*543		19-SEP-94	04-OCT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0700	V1AS*543		19-SEP-94	04-OCT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0800	V1AS*544		19-SEP-94	04-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0800	V1AS*544		19-SEP-94	04-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0900	V1AS*545		20-SEP-94	06-0CT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS0900	V1AS*545		20-SEP-94	06-DCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1000	V1AS*546		20-SEP-94	06-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1000	V1AS*546		20-SEP-94	06-OCT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1200	V1AS*548		21-SEP-94	06-OCT-94	6.7	9.3	UGG	138.8
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1200	V1AS*548		21-SEP-94	06-0CT-94	6.7	9.3	UGG	138.8
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1300	V1AS*549		22-SEP-94	10-OCT-94	6.7	7.1	UGG	106.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1300	V1AS*549		22-SEP-94	10-OCT-94	6.7	7.1	UGG	106.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1400	V1AS*550		22-SEP-94	10-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1400	V1AS*550	OENC	22-SEP-94	10-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1600	V1AS*552	DENC	22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1700	V1AS*553	OENC	22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1800	V1AS*554		22-SEP-94	10-0CT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	6.7	8.1	UGG	120.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	ZFP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	6.5	UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	6.5	UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	5.8	UGG	86.6
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7	5.8	UGG	86.6
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7	8.3	UGG	123.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7	8.3	UGG	123.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7	8.7	UGG	129.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7	8.7	UGG	129.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	6.7	9	UGG	134.3
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	6.7	9	UGG	134.3
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	6.7	8.3	UGG	123.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	6.7	8.3	UGG	123.9
	LM18	2FP	DXCS2500	V1AS*561		20-SEP-94	10-0CT-94	6.7	8.5	UGG	126.9
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2500	V1AS*561		20-SEP-94	10-0CT-94	6.7	8.5	UGG	126.9
	LM18	2FP	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	6.7	6.7	UGG	100.0
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2600	V1AS*562		20-SEP-94	07-0CT-94	6.7	6.7	UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2700	V1AS*563		20-SEP-94	07-0CT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2700	V1AS*563		20-SEP-94	07-OCT-94	6.7	7.5	UGG	111.9
	LM18	2FP	DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS		2FP	DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	A STATE	DXCS2900	V1AS*565		21-SEP-94	10-0CT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS2900	V1AS*566		21-SEP-94	10-0CT-94	6.7	8.2	UGG	122.4
BNA'S IN SOIL BY GC/MS	LM18	2FP		V1AS*566		21-SEP-94	10-0CT-94	6.7	8.2	UGG	122.4
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3000	V1AS*567		21-SEP-94	07-0CT-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3100			21-SEP-94	07-0C1-94	6.7	7.9	UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3100	V1AS*567				6.7	9.1	UGG	135.8
BNA'S IN SOIL BY GC/MS	LM18	ZFP	DXCS3200	V1AS*568		21-SEP-94 21-SEP-94	10-OCT-94	6.7			135.8
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3200	V1AS*568			10-OCT-94		9.1	UGG	
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3300	V1AS*569		21-SEP-94	07-0CT-94	6.7	7.1	UGG	106.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	6.7	7.1	UGG	106.0
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3400	V1AS*570		21-SEP-94	10-0CT-94	6.7	9.4	UGG	140.3
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	6.7	9.4	UGG	140.3
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3500	V1AS*571		22-SEP-94	10-0CT-94 .	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DXCS3500	V1AS*571		22-SEP-94	10-0CT-94	6.7	7.7	UGG	114.9
BNA'S IN SOIL BY GC/MS	LM18	2FP	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	6.7	7.7	UGG	114.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Units	Percent Recovery
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18	2FP 2FP 2FP 2FP 2FP 2FP 2FP	DDCS0500 DXGR0600 DXGR0600 DXGR0700 DXGR0700 DDCS2000 DDCS2000	V1AS*574 V1AS*575 V1AS*575 V1AS*576 V1AS*576 V1AS*580 V1AS*580	OEKC OEKC OEKC OEKC	19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 22-SEP-94 22-SEP-94	04-0CT-94 04-0CT-94 04-0CT-94 06-0CT-94 06-0CT-94 10-0CT-94	6.7 6.7 6.7 6.7 6.7 6.7 6.7	7.7 UGG 7.1 UGG 7.1 UGG 7.9 UGG 7.9 UGG 8.1 UGG 8.1 UGG	114.9 106.0 106.0 117.9 117.9 120.9 120.9
		avg minimum maximum								114.7 86.6 140.3
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18 LM18	NBD5 NBD5 NBD5 NBD5 NBD5 NBD5 NBD5 NBD5	BXXG1527 DXCS0100 DXCS0200 DXCS0200 DXCS0200 DXCS0300 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0400 DXCS0500	DV7s*69 V1As*537 V1As*538 V1As*538 V1As*539 V1As*540 V1As*540 V1As*540 V1As*540 V1As*541 V1As*541 V1As*541 V1As*542 V1As*543 V1As*544 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545 V1As*545	OENC OENC OENC OENC OEKC OEKC OEKC OEKC OEKC OEKC OEKC OEK	19-SEP-94 20-SEP-94 21-SEP-94 21-SEP-94 21-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 19-SEP-94 20-SEP-94 20-SEP-94 20-SEP-94	04-DCT-94 06-DCT-94 06-DCT-94 06-DCT-94 06-DCT-94 06-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 29-SEP-94 29-SEP-94 29-SEP-94 29-SEP-94 29-SEP-94 04-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 04-DCT-94 06-DCT-94 06-DCT-94	3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	2.9 UGG 3.3 UGG 3.3 UGG 2.9 UGG 2.9 UGG 3.4 UGG 3.1 UGG 3.1 UGG 2.9 UGG 2.9 UGG 2.4 UGG 2.5 UGG 2.6 UGG 2.6 UGG 2.8 UGG 2.8 UGG 3.5 UGG 3.5 UGG 3.5 UGG	87.9 100.0 100.0 87.9 87.9 103.0 93.9 87.9 87.9 72.7 72.7 72.7 72.7 78.8 84.8 84.8 84.8
BNA'S IN SOIL BY GC/MS	LM18 LM18 LM18 LM18 LM18 LM18 LM18	NBD5 NBD5 NBD5 NBD5 NBD5 NBD5 NBD5	DXCS1000 DXCS1100 DXCS1100 DXCS1200 DXCS1200 DXCS1300 DXCS1300	V1AS*546 V1AS*547 V1AS*547 V1AS*548 V1AS*548 V1AS*549 V1AS*549	OENC OENC OENC OENC OENC	20-SEP-94 21-SEP-94 21-SEP-94 21-SEP-94 21-SEP-94 22-SEP-94 22-SEP-94	06-0CT-94 10-0CT-94 10-0CT-94 06-0CT-94 10-0CT-94 10-0CT-94	3.3 3.3 3.3 3.3 3.3 3.3 3.3	3.6 UGG 2.9 UGG 2.9 UGG 4 UGG 4 UGG 2.6 UGG 2.6 UGG	109.1 87.9 87.9 121.2 121.2 78.8 78.8

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1400	V1AS*550	OENC	22-SEP-94	10-OCT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1400	V1AS*550		22-SEP-94	10-OCT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.2	UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.2	UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.2	UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.2	UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	3.3	2.8	UGG	84.8
	LM18	NBD5	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	3.3	2.8	UGG	84.8
BNA'S IN SOIL BY GC/MS	(NBD5	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	3.3	2.7	UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18 LM18	NBD5	DXCS2200	V1AS*558		20-SEP-94	10-0CT-94	3.3	2.7	UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2300	V1AS*559		20-SEP-94	10-0CT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	3.3	2.4	UGG	72.7
	LM18	NBD5	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	3.3	2.4	UGG	72.7
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2500	V1AS*561		20-SEP-94	10-0CT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	3.3	2.6	UGG	78.8
	LM18	NBD5	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	3.3	2.9	UGG	87.9
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2600	V1AS*562		20-SEP-94	07-0CT-94	3.3	2.9	UGG	87.9
	LM18	NBD5	DXCS2700	V1AS*563		20-SEP-94	07-0CT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS	Secretary Secretary	NBD5	DXCS2700	V1AS*563		20-SEP-94	07-0CT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18		DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	3.3	3.5	UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18	NBD5 NBD5	DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	3.3	3.5	UGG	106.1
BNA'S IN SOIL BY GC/MS	LM18		DXCS2800	V1AS*565		21-SEP-94	10-0CT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5				21-SEP-94	10-0CT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS2900	V1AS*565 V1AS*566		21-SEP-94	10-0CT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3000						2.6		78.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3000	V1AS*566		21-SEP-94	10-0CT-94 07-0CT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3100	V1AS*567		21-SEP-94		3.3		UGG	
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3100	V1AS*567		21-SEP-94	07-0CT-94	3.3	3.4	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	3.1	UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3300	V1AS*569		21-SEP-94	07-0CT-94	3.3	3.3	UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	3.3	3.3	UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3400	V1AS*570	DEOC	21-SEP-94	10-OCT-94	3.3	3	UGG	90.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3400	V1AS*570	OEOC	21-SEP-94	10-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3500	V1AS*571	OEOC	22-SEP-94	10-OCT-94	3.3		UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXCS3500	V1AS*571		22-SEP-94	10-OCT-94	3.3		UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	3.3		UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXGR0700	V1AS*576		19-SEP-94	06-OCT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DXGR0700	V1AS*576		19-SEP-94	06-0CT-94	3.3	3	UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	3.3		UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	NBD5	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	3.3		UGG	69.7
BAR 5 IN SOIL BY GEFTS	4110	*****	DDC32000	4 ING 200	CLUC	LL SLI 74	10 001 74	3.3	2.3	odd	********
	ą.	avg minimum maximum									87.0 63.6 121.2
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	BXXG1527	DV75*69	OEKC	19-SEP-94	04-OCT-94	6.7	6.8	UGG	101.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	6.7	7.2	UGG	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	6.7	7.2	UGG	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0200	V1AS*538		21-SEP-94	06-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0200	V1AS*538		21-SEP-94	06-OCT-94	6.7	6.9	UGG	103.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	6.7	7.3	UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	29-SEP-94	6.7	5.8	UGG	86.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0400	V1AS*540		19-SEP-94	29-SEP-94	6.7	5.8	UGG	86.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	6.7	5.9	UGG	88.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	6.7		UGG	88.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	6.7	5.5	UGG	74.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	6.7	5	UGG	74.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0700	V1AS*543		19-SEP-94	04-OCT-94	6.7	6.3	UGG	94.0
	LM18	PHEND6	DXCS0700	V1AS*543		19-SEP-94	04-0CT-94	6.7		UGG	94.0
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0800	V1AS*544		19-SEP-94	04-0CT-94	6.7	6.6	UGG	
			DXCS0800	V1AS*544		19-SEP-94	04-0CT-94				98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0800	V1AS*545		20-SEP-94		6.7		UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6					06-0CT-94	6.7	7	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS0900	V1AS*545		20-SEP-94	06-0CT-94	6.7	7.	UGG	104.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1000	V1AS*546		20-SEP-94	06-0CT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1000	V1AS*546		20-SEP-94	06-0CT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1100	V1AS*547	UENC	21-SEP-94	10-OCT-94	6.7	6.2	UGG	92.5

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1200	V1AS*548	DENC	21-SEP-94	06-OCT-94	6.7	8.6	UGG	128.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1200	V1AS*548	DENC	21-SEP-94	06-OCT-94	6.7	8.6	UGG	128.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1300	V1AS*549	OENC	22-SEP-94	10-OCT-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1300	V1AS*549	DENC	22-SEP-94	10-OCT-94	6.7	6.2	UGG	92.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1400	V1AS*550	DENC	22-SEP-94	10-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1400	V1AS*550	DENC	22-SEP-94	10-OCT-94	6.7	4.9	UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1600	V1AS*552	OENC	22-SEP-94	10-OCT-94	6.7	7.5	UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1700	V1AS*553	DENC	22-SEP-94	10-OCT-94	6.7	6.8	UGG	101.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1700	V1AS*553	OENC	22-SEP-94	10-OCT-94	6.7	6.8	UGG	101.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	6.7	6.6	UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1800	V1AS*554	DENC	22-SEP-94	10-OCT-94	6.7	6.6	UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	6.7		UGG	83.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS1900	V1AS*555	DENC	22-SEP-94	10-OCT-94	6.7	5.6	UGG	83.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	77.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	77.6
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	73.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	59.7
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	6.7		UGG	59.7
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7		UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2100	V1AS*557		20-SEP-94	10-OCT-94	6.7		UGG	109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7		UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	6.7		UGG	117.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	6.7		UGG	126.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2300	V1AS*559		20-SEP-94	10-0CT-94	6.7		UGG	126.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	6.7		UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	6.7		UGG	111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	6.7		UGG	110.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	6.7		UGG	110.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	6.7		UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	6.7		UGG	95.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2700	V1AS*563		20-SEP-94	07-OCT-94	6.7		UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2700	V1AS*563		20-SEP-94	07-0CT-94	6.7		UGG	98.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	6.7		UGG	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2800	V1AS*564		22-SEP-94	07-0CT-94	6.7		UGG	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	6.7		UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2900	V1AS*565		21-SEP-94	10-0CT-94	6.7		UGG	94.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS2900	V1AS*566		21-SEP-94 21-SEP-94	10-0CT-94			UGG	110.4
	LM18	PHEND6	DXCS3000	V1AS*566		21-SEP-94	10-0CT-94	6.7		UGG	110.4
BNA'S IN SOIL BY GC/MS	LM18		DXCS3100	V1AS*567		21-SEP-94 21-SEP-94	07-0CT-94	6.7		UGG	100.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3100	V1AS*567		21-SEP-94 21-SEP-94	07-0CT-94	6.7			12.00
BNA'S IN SOIL BY GC/MS		PHEND6								UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3200	V1AS*568	UEUL	21-SEP-94	10-0CT-94	6.7	8.1	UGG	120.9

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value U	nits	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3200	V1AS*568	OEOC	21-SEP-94	10-OCT-94	6.7	8.1 U	GG	120.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	6.7	6.4 U	GG	95.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3300	V1AS*569		21-SEP-94	07-OCT-94	6.7	6.4 U	GG	95.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	6.7		GG	119.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	6.7		GG	119.4
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3500	V1AS*571		22-SEP-94	10-OCT-94	6.7		3G	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXCS3500	V1AS*571		22-SEP-94	10-OCT-94	6.7		GG	107.5
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	6.7	6.7 U		100.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	6.7	6.7 U		100.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	6.7	5.3 U		79.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	6.7	5.3 U		79.1
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXGR0700	V1AS*576		19-SEP-94	06-0CT-94	6.7		G	109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DXGR0700	V1AS*576		19-SEP-94	06-0CT-94	6.7	7.3 U		109.0
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	6.7	7.5 U		111.9
BNA'S IN SOIL BY GC/MS	LM18	PHEND6	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	6.7	7.5 U	iG _	111.9
		avg minimum maximum									99.8 59.7 128.4
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	BXXG1527	DV7S*69	DEKC	19-SEP-94	04-OCT-94	3.3	2.5 U	G	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	3.3	3.3 U	G	100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0100	V1AS*537		20-SEP-94	06-OCT-94	3.3	3.3 U		100.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0200	V1AS*538		21-SEP-94	06-DCT-94	3.3	3 0		90.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0200	V1AS*538		21-SEP-94	06-OCT-94	3.3	3 U		90.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	3.3	3.3 U		100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0300	V1AS*539		20-SEP-94	06-OCT-94	3.3	3.3 U		100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	29-SEP-94	3.3	2.6 U		78.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	29-SEP-94	3.3	2.6 U		78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	3.3	2.5 U		75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	3.3	2.5 U		75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	3.3	2.3 U		69.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0400	V1AS*540		19-SEP-94	04-OCT-94	3.3	2.3 U		69.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	3.3	2.1 U		63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	3.3	2.1 U		63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	3.3	2.4 U		72.
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0600	V1AS*542		19-SEP-94	29-SEP-94	3.3	2.4 U		72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0700	V1AS*543		19-SEP-94	04-0CT-94	3.3	2.5 U		75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0700	V1AS*543		19-SEP-94	04-OCT-94	3.3	2.5 U		75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0800	V1AS*544		19-SEP-94	04-OCT-94	3.3	2.1 U		63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0800	V1AS*544		19-SEP-94	04-OCT-94	3.3	2.1 U		63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0900	V1AS*545		20-SEP-94	06-0CT-94	3.3	3.3 U		100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS0900	V1AS*545	DENC	20-SEP-94	06-OCT-94	3.3	3.3 U	G	100.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1000	V1AS*546	DENC	20-SEP-94	06-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1000	V1AS*546	DENC	20-SEP-94	06-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1100	V1AS*547		21-SEP-94	10-OCT-94	3.3	2.8 UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1100	V1AS*547	DENC	21-SEP-94	10-OCT-94	3.3	2.8 UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1200	V1AS*548		21-SEP-94	06-OCT-94	3.3	2.9 UGG	87.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1200	V1AS*548		21-SEP-94	06-DCT-94	3.3	2.9 UGG	87.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1300	V1AS*549		22-SEP-94	10-OCT-94	3.3	2.6 UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1300	V1AS*549			10-OCT-94	3.3	2.6 UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1400	V1AS*550		22-SEP-94	10-OCT-94	3.3	2.5 UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1400	V1AS*550		22-SEP-94	10-0CT-94	3.3	2.5 UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1600	V1AS*552		22-SEP-94	10-OCT-94	3.3	3.7 UGG	112.1
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	3.3	2.9 UGG	87.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1700	V1AS*553		22-SEP-94	10-OCT-94	3.3	2.9 UGG	87.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	3.3	2.8 UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1800	V1AS*554		22-SEP-94	10-OCT-94	3.3	2.8 UGG	84.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS1900	V1AS*555		22-SEP-94	10-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3 UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	3 UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	3.3	2.2 UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2000	V1AS*556			10-DCT-94	3.3	2.2 UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2100	V1AS*557			10-OCT-94	3.3	2.4 UGG	72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2100	V1AS*557		20-SEP-94	10-DCT-94	3.3	2.4 UGG	72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD 14	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2200	V1AS*558		20-SEP-94	10-OCT-94	3.3	3.3 UGG	100.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2300	V1AS*559		20-SEP-94	10-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2400	V1AS*560		20-SEP-94	10-OCT-94	3.3	2.1 UGG	63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2400	V1AS*560		and the second second	10-OCT-94	3.3	2.1 UGG	63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	3.3	3 UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2500	V1AS*561		20-SEP-94	10-OCT-94	3.3	3 UGG	90.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2600	V1AS*562		20-SEP-94	07-OCT-94	3.3	2.7 UGG	81.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2700	V1AS*563		20-SEP-94	07-OCT-94	3.3	2.4 UGG	72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2700	V1AS*563		20-SEP-94	07-OCT-94	3.3	2.4 UGG	72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2800	V1AS*564		22-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2800	V1AS*564		22-SEP-94	07-OCT-94	3.3	3.1 UGG	93.9
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2900	V1AS*565		21-SEP-94	10-DCT-94	3.3	2.2 UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS2900	V1AS*565		21-SEP-94	10-OCT-94	3.3	2.2 UGG	66.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3000			21-SEP-94	10-OCT-94	3.3	2.6 UGG	78.8

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3000	V1AS*566		21-SEP-94	10-0CT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	3.3	2.1	UGG	63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3100	V1AS*567		21-SEP-94	07-OCT-94	3.3	2.1	UGG	63.6
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18 LM18	TRPD14	DXCS3200	V1AS*568		21-SEP-94	10-OCT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS BNA'S IN SOIL BY GC/MS	LM18	TRPD14 TRPD14	DXCS3300 DXCS3300	V1AS*569 V1AS*569		21-SEP-94 21-SEP-94	07-0CT-94 07-0CT-94	3.3	2.3	UGG	69.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3400	V1AS*570		21-SEP-94	10-OCT-94	3.3 3.3	2.3	UGG	69.7 75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3400	V1AS*570		21-SEP-94	10-0CT-94	3.3	2.5	UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3500	V1AS*571		22-SEP-94	10-0CT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXCS3500	V1AS*571		22-SEP-94	10-OCT-94	3.3	2.6	UGG	78.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	3.3	2.5	UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	3.3	2.5	UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	3.3	3.2	UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXGR0600	V1AS*575		19-SEP-94	04-OCT-94	3.3	3.2	UGG	97.0
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXGR0700	V1AS*576		19-SEP-94	06-OCT-94	3.3	2.5	UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DXGR0700	V1AS*576		19-SEP-94	06-0CT-94	3.3	2.5	UGG	75.8
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	3.3	2.4	UGG	72.7
BNA'S IN SOIL BY GC/MS	LM18	TRPD14	DDCS2000	V1AS*580	OFOC	22-SEP-94	10-OCT-94	3.3	2.4	UGG	72.7
		a∨g minimum maximum									81.5 63.6 112.1
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0100	V1AW*501	LIDILIC	20-SEP-94	05-0CT-94	100	37	UGL	37.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0100	V1AW*501		20-SEP-94	05-0CT-94	100	37	UGL	37.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	53	UGL	53.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	53	UGL	53.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	100	51	UGL	51.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	100	51	UGL	51.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	75	UGL	75.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	75	UGL	75.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	72	UGL	72.0
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	246TBP 246TBP	WXCS0400 WXCS0500	V1AW*504 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	72	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94 28-SEP-94	100	75 75	UGL	75.0 75.0
	UM18	246TBP	WXCS0600	V1AW*506		19-SEP-94	28-SEP-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	-,,,,,	- (0101									
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0600	V1AV*506	WDPC	19-SEP-94	28-SEP-94	100	76	UGI	76 N
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	246TBP 246TBP	WXCS0600 WXCS0700	V1AW*506 V1AW*507		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	100 100	76 71	UGL	76.0 71.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0800	V1AW*508	WDPC	19-SEP-94	28-SEP-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0800	V1AW*508	MOPC	19-SEP-94	28-SEP-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	100	44	UGL	44.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	100	44	UGL	44.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	100	64	UGL	64.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	100	64	UGL	64.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	100	58	UGL	58.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	100	58	UGL	58.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	100	63	UGL	63.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	100	63	UGL	63.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1300	V1AW*513		22-SEP-94	06-OCT-94	100	68	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1300	V1AW*513		22-SEP-94	06-OCT-94	100	68	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	100	54	UGL	54.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	100	54	UGL	54.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	100	48	UGL	48.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	100	48	UGL	48.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	100	63	UGL	63.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	100	63	UGL	63.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	100	56	UGL	56.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	100	56	UGL	56.0
	UM18	246TBP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	60	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	60	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS		246TBP	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	100	50	UGL	50.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2100	V1AW*521		20-SEP-94	05-0CT-94	100	50	UGL	50.0
BNA'S IN WATER BY GC/MS	UM18			V1AW*524		20-SEP-94	05-0CT-94	100	44	UGL	44.0
BNA'S IN WATER BY GC/MS	UM18	246TBP 246TBP	WXCS2400 WXCS2400	V1AW*524		20-SEP-94	05-0CT-94	100	44	UGL	44.0
BNA'S IN WATER BY GC/MS	UM18					20-SEP-94	05-0CT-94	100	48	UGL	48.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2600	V1AW*526							
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2600	V1AW*526		20-SEP-94	05-0CT-94	100 100	48	UGL	48.0 44.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	17777	44		
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	100	59	UGL	44.0 59.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2800	V1AW*528		22-SEP-94	05-0CT-94	100			
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS2800	V1AW*528		22-SEP-94	05-0CT-94	100	59	UGL	59.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	100	52	UGL	52.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	100	52	UGL	52.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3100	V1AW*531		21-SEP-94	06-DCT-94	100	45	UGL	45.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	100	45	UGL	45.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	100	56	UGL	56.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	100	56	UGL	56.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	100	45	UGL	45.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	100	45	UGL	45.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3400	V1AW*534	MDUC	21-SEP-94	06-OCT-94	100	50	UGL	50.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3400	V1AW*534	MDUC	21-SEP-94	06-0CT-94	100	50	UGL	50.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3500	V1AW*535	WDUC	22-SEP-94	06-OCT-94	100	43	UGL	43.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WXCS3500	V1AW*535	MDUC	22-SEP-94	06-OCT-94	100	43	UGL	43.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	71	UGL	71.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	71	UGL	71.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	100	42	UGL	42.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	100	42	UGL	42.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	100	66	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	100	66	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94579	V1AW*579		23-SEP-94	06-0CT-94	100	67	UGL	67.0
BNA'S IN WATER BY GC/MS	UM18	246TBP	SBK94579	V1AW*579	MOTO	23-SEP-94	06-OCT-94	100	67	UGL	67.0

		avg minimum maximum									58.2 37.0 78.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0100	V1AW*501	MDUC	20-SEP-94	05-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0100	V1AW*501		20-SEP-94	05-0CT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0500	V1AW*505	MOPC	19-SEP-94	28-SEP-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0600	V1AW*506	WDPC	19-SEP-94	28-SEP-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0600	V1AW*506	MOPC	19-SEP-94	28-SEP-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0700	V1AW*507	WDPC	19-SEP-94	28-SEP-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	50	33	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	50	33	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS0900	V1AW*509	WDUC	20-SEP-94	05-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1100	V1AW*511		21-SEP-94	D6-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	50	43	UGL	86.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1200	V1AW*512	WOTC	21-SEP-94	06-DCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1300	V1AW*513		22-SEP-94	06-OCT-94	50	45	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1300	V1AW*513		22-SEP-94	06-OCT-94	50	45	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1600	V1AW*516	200	22-SEP-94	05-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	50	28	UGL	56.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	50	28	UGL	56.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	50	35	UGL	70.0
(B. THE NOTE OF SEC.) 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	UM18	2FBP	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS		2FBP	WXCS2400	V1AW*524		20-SEP-94	05-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18 UM18	2FBP	WXCS2400	V1AW*524		20-SEP-94	05-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	7.1134 E.	2FBP	WXCS2600	V1AW*526		20-SEP-94	05-0CT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2600	V1AW*526		20-SEP-94	05-0CT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18		WXCS2700	V1AW*527		20-SEP-94	05-0CT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2700	V1AW*527		20-SEP-94	05-0CT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2700	V1AW*528		22-SEP-94	05-0CT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS2800	V1AW*528		22-SEP-94	05-0CT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	2FBP		V1AW*530		21-SEP-94	05-0CT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3000				05-0CT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3000	V1AW*530		21-SEP-94					
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3100	V1AW*531		21-SEP-94	06-0CT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	LM18	2FBP	WXCS3200	V1AW*532		21-SEP-94	06-DCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3200	V1AW*532		21-SEP-94	06-DCT-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3300	V1AW*533		21-SEP-94	06-DCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3400	V1AW*534		21-SEP-94	06-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3400	V1AW*534		21-SEP-94	06-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3500	V1AW*535		22-SEP-94	06-OCT-94	50	33	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WXCS3500	V1AW*535		22-SEP-94	06-OCT-94	50	33	UGL	66.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	SBK94577	V1AW*577	MDUC	22-SEP-94	06-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	50	35	UGL	70.0
BNA'S IN WATER BY GC/MS	LM18	2FBP	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FBP	SBK94578	V1AW*578	WOTC	23-SEP-94	06-OCT-94	50	38	UGL	76.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	2FBP 2FBP ********	SBK94579 SBK94579	V1AW*579 V1AW*579		23-SEP-94 23-SEP-94	06-0CT-94 06-0CT-94	50 50	39 39	UGL UGL	78.0 78.0
		avg minimum maximum									75.9 56.0 90.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0100	V1AW*501	MDUC	20-SEP-94	05-OCT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0100	V1AW*501		20-SEP-94	05-OCT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	97	UGL	97.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	97	UGL	97.0
BNA'S IN WATER BY GC/MS	LM18	2FP	WXCS0300	V1AW*503	MDUC	20-SEP-94	05-OCT-94	100	99	UGL	99.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0300	V1AW*503	WDUC	20-SEP-94	05-OCT-94	100	99	UGL	99.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WOPC	19-SEP-94	28-SEP-94	100	130	UGL	130.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	130	UGL	130.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WOPC	19-SEP-94	28-SEP-94	100	130	UGL	130.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	130	UGL	130.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WOPC	19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0600	V1AW*506	MDPC	19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0600	V1AW*506		19-SEP-94	28-SEP-94	100	110	UGL	110.0
	UM18	2FP	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	100	110	UGL	110.0
	UM18	2FP	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	100	110	UGL	110.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	100	120	UGL	120.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCSQ800	V1AW*508		19-SEP-94	28-SEP-94	100	120	UGL	120.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	100	87	UGL	87.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1100	V1AW*511		21-SEP-94	06-0CT-94	100	87	UGL	87.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1200	V1AW*512		21-SEP-94	06-0CT-94	100	85	UGL	85.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	100	85	UGL	85.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1300	V1AW*513		22-SEP-94	06-0CT-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1300	V1AW*513		22-SEP-94	06-0CT-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1600	V1AW*516	Janes Janes	22-SEP-94	05-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1700	V1AW*517	MOVC	22-SEP-94	12-OCT-94	100	88	UGL	88.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1800	V1AW*518	MDVC	22-SEP-94	12-0CT-94	100	81	UGL	81.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	100	81	UGL	81.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	100	88	UGL	88.0
		2FP	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	100	72	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18		WXCS2100	V1AW*521	MOUC	20-SEP-94	05-0CT-94	100	72	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	2FP		V1AW*524	MDUC	20-SEP-94	05-0CT-94	100	70	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2400			20-SEP-94	05-0CT-94	100	70	UGL	70.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2400	V1AW*524							
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2600	V1AW*526		20-SEP-94	05-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2600	V1AW*526		20-SEP-94	05-0CT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	100	99	UGL	99.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	100	99	UGL	99.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3100	V1AW*531	WDUC	21-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3200	V1AW*532	WDUC	21-SEP-94	06-OCT-94	100	93	UGL	93.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3200	V1AW*532	WDUC	21-SEP-94	06-OCT-94	100	93	UGL	93.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3300	V1AW*533	WDUC	21-SEP-94	06-0CT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3300	V1AW*533	WDUC	21-SEP-94	06-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3400	V1AW*534	WDUC	21-SEP-94	06-0CT-94	100	73	UGL	73.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3400	V1AW*534	WDUC	21-SEP-94	06-OCT-94	100	73	UGL	73.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3500	V1AW*535		22-SEP-94	06-0CT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WXCS3500	V1AW*535		22-SEP-94	06-0CT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	2FP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	2FP	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	100	81	UGL	81.0
BNA'S IN WATER BY GC/MS	UM18	2FP	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	100	81	UGL	81.0
BNA'S IN WATER BY GC/MS	UM18	2FP	SBK94578	V1AW*578		23-SEP-94	06-0CT-94	100	82	UGL	82.0
그 하다 이 물이들을 내 그들은 사람이 있습니다. 하는 이 없는 이 경기 계속이 되었다.	UM18	2FP	SBK94578	V1AW*578		23-SEP-94	06-0CT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS		2FP	SBK94579	V1AW*579	200	23-SEP-94	06-0CT-94	100	85	UGL	85.0
BNA'S IN WATER BY GC/MS	UM18	2FP	SBK94579	V1AW*579		23-SEP-94	06-0CT-94	100	85	UGL	85.0
BNA'S IN WATER BY GC/MS	UM18	*****	3BK94379	VIAW-579	MDIC	23-5EP-94	00-001-94	100	65	UGL	65.0
		avg minimum maximum									90.9 70.0 130.0
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	NBD5 NBD5	WXCS0100 WXCS0100	V1AW*501 V1AW*501	-	20-SEP-94 20-SEP-94	05-0CT-94 05-0CT-94	50 50	32 32	UGL UGL	64.0 64.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	50		UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	50		UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	50	37	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	50	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	50	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	47	UGL	94.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	47	UGL	94.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0500	V1AW*505	MOPC	19-SEP-94	28-SEP-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0600	V1AW*506	MDPC	19-SEP-94	28-SEP-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0600	V1AW*506	WDPC	19-SEP-94	28-SEP-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0700	V1AW*507	WDPC	19-SEP-94	28-SEP-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0700	V1AW*507	WDPC	19-SEP-94	28-SEP-94	50		UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0800	V1AW*508	WDPC	19-SEP-94	28-SEP-94	50		UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0800	V1AW*508	WDPC	19-SEP-94	28-SEP-94	50		UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0900	V1AW*509	WDUC	20-SEP-94	05-OCT-94	50		UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	50		UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1000	V1AW*510		20-SEP-94	06-DCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1100	V1AW*511		21-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1200	V1AW*512		21-SEP-94	06-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1300	V1AW*513		22-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1300	V1AW*513	MOTO	22-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	50		UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	50		UGL	54.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	50		UGL	54.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS 1900	V1AW*519		22-SEP-94	12-OCT-94	50		UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	50		UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2000	V1AW*520		22-SEP-94	12-0CT-94	50		UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2000	V1AW*520		22-SEP-94	12-0CT-94	50		UGL	
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2000	V1AW*521		20-SEP-94	05-OCT-94				74.0
Table 4 (1) 16 (10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		27722					TE TO A.A. C. (1)	50		UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2100	V1AW*521		20-SEP-94	05-0CT-94	50		UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2400	V1AW*524	MOUC	20-SEP-94	05-OCT-94	50	32	UGL	64.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2400	V1AW*524	WDUC	20-SEP-94	05-OCT-94	50	32	UGL	64.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2600	V1AW*526		20-SEP-94	05-OCT-94	50	32	UGL	64.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2600	V1AW*526		20-SEP-94	05-OCT-94	50	32	UGL	64.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3000	V1AW*530		21-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	LM18	NBD5	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3400	V1AW*534		21-SEP-94	06-OCT-94	50	30	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3400	V1AW*534		21-SEP-94	06-0CT-94	50	30	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3500	V1AW*535		22-SEP-94	06-0CT-94	50	30	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WXCS3500	V1AW*535		22-SEP-94	06-0CT-94	50	30	UGL	60.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	50	41	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	50	41	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94577	V1AW*577		22-SEP-94	06-0CT-94	50	31	UGL	62.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94579	V1AW*579		23-SEP-94	06-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS	UM18	NBD5	SBK94579	V1AW*579		23-SEP-94	06-OCT-94	50	36	UGL	72.0
		avg minimum maximum									72.6 54.0 100.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0100	V1AW*501		20-SEP-94	05-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0100	V1AW*501	WDUC	20-SEP-94	05-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	94	UGL	94.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0200	V1AW*502		21-SEP-94	05-OCT-94	100	94	UGL	94.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0300	V1AW*503		20-SEP-94	05-OCT-94	100	88	UGL	88.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	160	UGL	160.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	160	UGL	160.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	140	UGL	140.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	100	140	UGL	140.0
BNA'S IN WATER BY GC/MS	LM18	PHEND6	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	100	96	UGL	96.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0400	V1AW*504	MOPC	19-SEP-94	28-SEP-94	100	96	UGL	96.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	100	86	UGL	86.0
BNA'S IN WATER BY GC/MS	LM18	PHEND6	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	100	86	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0600	V1AW*506		19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0600	V1AW*506		19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0800	V1AW*508	MOPC	19-SEP-94	28-SEP-94	100	100	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0900	V1AW*509	MDUC	20-SEP-94	05-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1000	V1AW*510	MOTO	20-SEP-94	06-DCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1000	V1AW*510	WOTC	20-SEP-94	06-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1100	V1AW*511	MOTO	21-SEP-94	06-DCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1100	V1AW*511	WOTC	21-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1200	V1AW*512	WDTC	21-SEP-94	06-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1200	V1AW*512	WOTC	21-SEP-94	06-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1300	V1AW*513		22-SEP-94	06-DCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1300	V1AW*513	WDTC	22-SEP-94	06-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1400	V1AW*514	MDUC	22-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1400	V1AW*514		22-SEP-94	05-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1600			22-SEP-94	05-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1600	V1AW*516		22-SEP-94	05-OCT-94	100	78	UGL	78.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	100	80	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1700	V1AW*517		22-SEP-94	12-OCT-94	100	80	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1800	V1AW*518		22-SEP-94	12-OCT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1800	V1AW*518		22-SEP-94	12-0CT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS1900	V1AW*519		22-SEP-94	12-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2000	V1AW*520	1000	22-SEP-94	12-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2000	V1AW*520		22-SEP-94	12-OCT-94	100	84	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2100	V1AW*521		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2400	V1AW*524		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2400	V1AW*524		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2600	V1AW*526		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2600	V1AW*526		20-SEP-94	05-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2700	V1AW*527		20-SEP-94	05-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	LM18	PHEND6	WXCS2700	V1AW*527		20-SEP-94	05-0CT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS2800	V1AW*528		22-SEP-94	05-OCT-94	100	90	UGL	90.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3000	V1AW*530	200	21-SEP-94	05-OCT-94	100	80	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3000	V1AW*530	WOUL	21-SEP-94	05-OCT-94	100	80	UGL	80.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value	Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3100	V1AW*531		21-SEP-94	06-OCT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3200	V1AW*532		21-SEP-94	06-OCT-94	100	82	UGL	82.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3300	V1AW*533		21-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3400	V1AW*534		21-SEP-94	06-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	LM18	PHEND6	WXCS3400	V1AW*534		21-SEP-94	06-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	LIM18	PHEND6	WXCS3500	V1AW*535		22-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WXCS3500	V1AW*535		22-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	96	UGL	96.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	100	96	UGL	96.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94577	V1AW*577		22-SEP-94	06-OCT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94577	V1AW*577		22-SEP-94	06-0CT-94	100	76	UGL	76.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94578	V1AW*578		23-SEP-94	06-OCT-94	100	36	UGL	36.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94579	V1AW*579		23-SEP-94	06-0CT-94	100	74	UGL	74.0
BNA'S IN WATER BY GC/MS	UM18	PHEND6	SBK94579	V1AW*579	MOTO	23-SEP-94	06-0CT-94	100	74	UGL	74.0
		avg minimum maximum									80.1 36.0 160.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0100	V1AW*501	MDUC	20-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0100	V1AW*501		20-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0200	V1AW*502	MDUC	21-SEP-94	05-OCT-94	50	51	UGL	102.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0200	V1AW*502	MDUC	21-SEP-94	05-OCT-94	50	51	UGL	102.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0300	V1AW*503	WDUC	20-SEP-94	05-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0300	V1AW*503	WDUC	20-SEP-94	05-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0400	V1AW*504	WDPC	19-SEP-94	28-SEP-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0400	V1AW*504		19-SEP-94	28-SEP-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	50	54	UGL	108.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	50	54	UGL	108.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0600	V1AW*506	MOPC	19-SEP-94	28-SEP-94	50	49	UGL	98.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0600	V1AW*506		19-SEP-94	28-SEP-94	50	49	UGL	98.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0700	V1AW*507	WDPC	19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0700	V1AW*507		19-SEP-94	28-SEP-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS	LM18	TRPD14	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	50	50	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0800	V1AW*508		19-SEP-94	28-SEP-94	50	50	UGL	100.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS0900	V1AW*509		20-SEP-94	05-OCT-94	50	46	UGL	92.0
BNA'S IN WATER BY GC/MS	LM18	TRPD14	WXCS1000	V1AW*510		20-SEP-94	06-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	WXCS1000	V1AW*510	WOTC	20-SEP-94	06-OCT-94	50	40	UGL	80.0

BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W	XCS1200 XCS1200 XCS1300 XCS1300 XCS1400 XCS1400	V1AW*511 V1AW*511 V1AW*512 V1AW*512 V1AW*513 V1AW*513 V1AW*514	WDTC WDTC WDTC WDTC	21-SEP-94 21-SEP-94 21-SEP-94 21-SEP-94 22-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94 06-0CT-94	50 50 50 50	42 42 41 41	UGL UGL UGL UGL	84.0 84.0 82.0
BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W	XCS1100 XCS1200 XCS1200 XCS1300 XCS1300 XCS1400 XCS1400	V1AW*511 V1AW*512 V1AW*512 V1AW*513 V1AW*513 V1AW*514	WDTC WDTC WDTC WDTC	21-SEP-94 21-SEP-94 21-SEP-94	06-0CT-94 06-0CT-94 06-0CT-94	50 50 50	42	UGL UGL	84.0 82.0
BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W PD14 W PD14 W PD14 W PD14 W PD14 W PD14 W	XCS1200 XCS1200 XCS1300 XCS1300 XCS1400 XCS1400	V1AW*512 V1AW*512 V1AW*513 V1AW*513 V1AW*514	WDTC WDTC	21-SEP-94 21-SEP-94	06-0CT-94 06-0CT-94	50 50	41	UGL	82.0
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W PD14 W PD14 W PD14 W PD14 W PD14 W	XCS1200 XCS1300 XCS1300 XCS1400 XCS1400	V1AW*512 V1AW*513 V1AW*513 V1AW*514	WDTC WDTC	21-SEP-94	06-OCT-94	50			
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W PD14 W PD14 W PD14 W PD14 W	XCS1300 XCS1300 XCS1400 XCS1400	V1AW*513 V1AW*513 V1AW*514	WOTC						82.0
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W PD14 W PD14 W PD14 W	XCS1300 XCS1400 XCS1400	V1AW*513 V1AW*514			06-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR 118 TR	PD14 W PD14 W PD14 W	XCS1400 XCS1400	V1AW*514		22-SEP-94	06-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR 118 TR	PD14 W	XCS1400		LDUC	22-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS UM BNA'S IN WATER BY GC/MS UM	118 TR 118 TR 118 TR	PD14 W		V1AW*514		22-SEP-94	05-OCT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS UM	118 TR		XCS1600	V1AW*516		22-SEP-94	05-OCT-94	50	43	UGL	86.0
	18 TR	PUIA W		V1AW*516		22-SEP-94	05-OCT-94	50	43	UGL	86.0
				V1AW*517		22-SEP-94	12-OCT-94	50	52	UGL	104.0
BNA'S IN WATER BY GC/MS UM	18 TR			V1AW*517		22-SEP-94	12-OCT-94	50	52	UGL	104.0
BNA'S IN WATER BY GC/MS UM				V1AW*518		22-SEP-94	12-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS UM				V1AW*518		22-SEP-94	12-OCT-94	50	38	UGL	76.0
BNA'S IN WATER BY GC/MS UM				V1AW*519		22-SEP-94	12-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS UM				V1AW*519		22-SEP-94	12-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS UM		CATALINE STATE		V1AW*520		22-SEP-94	12-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS UM				V1AW*520		22-SEP-94	12-OCT-94	50	48	UGL	96.0
BNA'S IN WATER BY GC/MS UM				V1AW*521		20-SEP-94	05-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*521		20-SEP-94	05-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*524		20-SEP-94	05-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS UM				V1AW*524		20-SEP-94	05-OCT-94	50	40	UGL	80.0
BNA'S IN WATER BY GC/MS UM				V1AW*526		20-SEP-94	05-OCT-94	50	41	UGL	82.0
BNA'S IN WATER BY GC/MS UM				V1AW*526		20-SEP-94	05-OCT-94	50	41	UGL	82.0
BNA'S IN WATER BY GC/MS UM				V1AW*527		20-SEP-94	05-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*527		20-SEP-94	05-OCT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*528		22-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS UM				V1AW*528		22-SEP-94	05-OCT-94	50	42	UGL	84.0
BNA'S IN WATER BY GC/MS UM				V1AW*530		21-SEP-94	05-OCT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS UM				V1AW*530		21-SEP-94	05-OCT-94	50	34	UGL	68.0
BNA'S IN WATER BY GC/MS UM				V1AW*531		21-SEP-94	06-0CT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS UM				V1AW*531		21-SEP-94	06-0CT-94	50	36	UGL	72.0
BNA'S IN WATER BY GC/MS UM				V1AW*532		21-SEP-94	06-0CT-94	50	47	UGL	94.0
BNA'S IN WATER BY GC/MS UM				V1AW*532		21-SEP-94	06-0CT-94	50	47	UGL	94.0
BNA'S IN WATER BY GC/MS UM				V1AW*533		21-SEP-94	06-0CT-94	50	39	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*533		21-SEP-94	06-0CT-94	50	39	UGL	
BNA'S IN WATER BY GC/MS UM				V1AW*534		21-SEP-94	06-0CT-94	50	41	UGL	78.0
BNA'S IN WATER BY GC/MS UM				V1AW*534		21-SEP-94	06-0CT-94	50	41	UGL	82.0
BNA'S IN WATER BY GC/MS UM				V1AW*535		22-SEP-94	06-0CT-94	50	44	UGL	82.0 88.0
BNA'S IN WATER BY GC/MS UM				V1AW*535		22-SEP-94	06-0CT-94	50	44	UGL	
BNA'S IN WATER BY GC/MS UM				V1AW*573		19-SEP-94	28-SEP-94	50	47	UGL	88.0 94.0
BNA'S IN WATER BY GC/MS UM				V1AW*573		19-SEP-94	28-SEP-94	50	47	UGL	
BNA'S IN WATER BY GC/MS UM				V1AW*577		22-SEP-94	06-0CT-94	50	43	UGL	94.0 86.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	22.00	Spike Value	Value	. Units	Percent Recovery
BNA'S IN WATER BY GC/MS	UM18	TRPD14	SBK94577	V1AW*577	WDUC	22-SEP-94	06-OCT-94		50	43	UGL	86.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	SBK94578	V1AW*578	WDTC	23-SEP-94	06-0CT-94		50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	SBK94578	V1AW*578	WDTC	23-SEP-94	06-OCT-94		50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14	SBK94579	V1AW*579	WDTC	23-SEP-94	06-0CT-94		50	40	UGL	80.0
BNA'S IN WATER BY GC/MS	UM18	TRPD14 *******	SBK94579	V1AW*579	WDTC	23-SEP-94	06-0CT-94		50	40	UGL	80.0
		avg minimum maximum										86.5 68.0 108.0

TABLE C-14

Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Meth	od Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	~	Value	Units	RPD
TOC	TN 0011	0040	TOO	DDCCOEOO	1/14c+E7/	3575	10 orn 0/	07 007 0/		400000	Uco	70.7
	IN SOIL IN SOIL	9060 9060	TOC	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	07-OCT-94 06-OCT-94		199000 85600	UGG	79.7 79.7
	IN SOIL	9060	TOC	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94		63600	UGG	11.5
	IN SOIL	9060	TOC	DDCS2000	V1AS*580		22-SEP-94	07-0CT-94		56700	UGG	11.5
HG II	N SOIL BY GFAA	JB01	HG	DDCS0500	V1AS*574	QHEC	19-SEP-94	13-OCT-94	<	.05	UGG	.0
HG II	N SOIL BY GFAA	JB01	HG	DXCS0500	V1AS*541	QHDC	19-SEP-94	06-OCT-94	<	.05	UGG	.0
HG II	N SOIL BY GFAA	JB01	HG	DXCS2000	V1AS*556	QHEC	22-SEP-94	13-OCT-94	<	.05	UGG	.0
HG II	N SOIL BY GFAA	JB01	HG	DDCS2000	V1AS*580	QHEC	22-SEP-94	13-OCT-94	<	.05	UGG	.0
42.5	. 111 13 121		12				40 0/	47 0/		0.40		450.0
	N SOIL BY GFAA	JD15	SE	DXCS0500	V1AS*541		19-SEP-94	17-OCT-94		2.18	UGG	158.8
	N SOIL BY GFAA	JD15	SE	DDCS0500	V1AS*574		19-SEP-94	19-0CT-94	<	.25	UGG	158.8
	N SOIL BY GFAA	JD15	SE	DXCS2000	V1AS*556		22-SEP-94	19-OCT-94		.925	UGG	-1
SE II	N SOIL BY GFAA	JD15	SE	DDCS2000	V1AS*580	WRCC	22-SEP-94	19-0CT-94		.924	UGG	.1
AS II	N SOIL BY GFAA	JD19	AS	DDCS0500	V1AS*574	ORCC	19-SEP-94	18-OCT-94		38.4	UGG	1.3
	N SOIL BY GFAA	JD19	AS	DXCS0500	V1AS*541		19-SEP-94	13-OCT-94		37.9	UGG	1.3
	N SOIL BY GFAA	JD19	AS	DDCS2000	V1AS*580		22-SEP-94	18-OCT-94		22.3	UGG	6.0
	N SOIL BY GFAA	JD19	AS	DXCS2000	V1AS*556		22-SEP-94	18-OCT-94		21	UGG	6.0
		720			v. A carbon d			all some				
	N SOIL BY GFAA	JD24	TL	DXCS0500	V1AS*541		19-SEP-94	13-OCT-94	<	.5	UGG	.0
	N SOIL BY GFAA	JD24	TL	DDCS0500	V1AS*574		19-SEP-94	19-OCT-94	<	.5	UGG	.0
	N SOIL BY GFAA	JD24	TL	DXCS2000	V1AS*556		22-SEP-94	19-OCT-94	<	.5	UGG	.0
TL II	N SOIL BY GFAA	JD24	TL	DDCS2000	V1AS*580	RBIA	22-SEP-94	19-OCT-94	<	.5	UGG	.0
CP TI	N SOIL BY GFAA	JD25	SB	DDCS0500	V1AS*574	COLIA	19-SEP-94	20-OCT-94	<	1.09	UGG	
	N SOIL BY GFAA	JD25	SB	DXCS0500	V1AS*541		19-SEP-94	20-0CT-94		1.09	UGG	.0
	N SOIL BY GFAA	JD25	SB	DXCS2000	V1AS*556		22-SEP-94	20-0CT-94 20-0CT-94	< <	1.09	UGG	.0
	N SOIL BY GFAA	JD25	SB	DDCS2000	V1AS*580		22-SEP-94	20-0CT-94 20-0CT-94	<	1.09	UGG	.0
30 11	SOIL DI GEAM	JUEJ	36	DDC32000	4 IN3. 200	SOUA	EL-SEP-74	20-001-94		1.09	Udd	.0
META	LS IN SOIL BY ICAP	JS16	AG	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-OCT-94	<	.589	UGG	.0

Method Description		rest Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS IN SOIL BY ICAP	JS16 A	AG	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94	<	.589	UGG	.0
METALS IN SOIL BY ICAP		AG	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94	<	.589	UGG	.0
METALS IN SOIL BY ICAP	JS16 A	AG	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	<	.589	UGG	.0
METALS IN SOIL BY ICAP	JS16 A	AL.	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-OCT-94		13900	UGG	135.5
METALS IN SOIL BY ICAP	JS16 A	AL	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94		2670	UGG	135.5
METALS IN SOIL BY ICAP	JS16 A	AL	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		21600	UGG	6.7
METALS IN SOIL BY ICAP	JS16 A	AL	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		20200	UGG	6.7
METALS IN SOIL BY ICAP		ВА	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	5.18	UGG	190.2
METALS IN SOIL BY ICAP		BA	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		207	UGG	190.2
METALS IN SOIL BY ICAP		BA	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94		84.2	UGG	6.6
METALS IN SOIL BY ICAP	JS16 B	BA	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		78.8	UGG	6.6
METALS IN SOIL BY ICAP		BE	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		3.37	UGG	148.3
METALS IN SOIL BY ICAP		BE	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	.5	UGG	148.3
METALS IN SOIL BY ICAP		BE	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	.5	UGG	.0
METALS IN SOIL BY ICAP	JS16 E	3E	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94	<	.5	UGG	.0
METALS IN SOIL BY ICAP		CA	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		6470	UGG	145.5
METALS IN SOIL BY ICAP		CA	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94		1020	UGG	145.5
METALS IN SOIL BY ICAP		CA	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94		4890	UGG	53.0
METALS IN SOIL BY ICAP	JS16 C	CA	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		2840	UGG	53.0
METALS IN SOIL BY ICAP		CD	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		6.43	UGG	160.7
METALS IN SOIL BY ICAP		CD	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	.7	UGG	160.7
METALS IN SOIL BY ICAP		CD	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94		2.96	UGG	1.3
METALS IN SOIL BY ICAP	JS16 C	CD	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		3	UGG	1.3
METALS IN SOIL BY ICAP		CO	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94		20.6	UGG	139.7
METALS IN SOIL BY ICAP		CO	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		116	UGG	139.7
METALS IN SOIL BY ICAP		CO	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94		9.12	UGG	13.1
METALS IN SOIL BY ICAP	JS16 C	00	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		10.4	UGG	13.1
METALS IN SOIL BY ICAP		CR	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94	<	4.05	UGG	.0
METALS IN SOIL BY ICAP		CR	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	4.05	UGG	.0
METALS IN SOIL BY ICAP	JS16 C	CR	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		56.7	UGG	6.4

Method	Descr	ipti	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS	IN SO	IL B	Y ICAP	JS16	CR	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		53.2	UGG	6.4
METALS				JS16	cu	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	.965	UGG	186.7
METALS				JS16	CU	DXCS0500	V1AS*541		19-SEP-94	06-0CT-94		28	UGG	186.7
METALS				JS16	CU	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94		44.2	UGG	12.0
METALS	IN SO	IL B	Y ICAP	JS16	CU	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		39.2	UGG	12.0
METALS				JS16	FE	DXCS0500	V1AS*541		19-SEP-94	06-0CT-94		28300	UGG	142.1
METALS				JS16	FE	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94		4790	UGG	142.1
METALS				JS16	FE	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94		22800	UGG	5.4
METALS	IN SO	IL B	Y ICAP	JS16	FE	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		21600	UGG	5.4
METALS	IN SO	IL B	Y ICAP	JS16	K	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94	<	100	UGG	.0
METALS	IN SO	IL B	Y ICAP	JS16	K	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-OCT-94	<	100	UGG	.0
METALS	IN SO	IL B	Y ICAP	JS16	K	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		1620	UGG	1.2
METALS	IN SO	IL B	Y ICAP	JS16	K	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		1600	UGG	1.2
METALS	IN SO	IL B	Y ICAP	JS16	MG	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-OCT-94		1390	UGG	173.2
METALS	IN SO	IL B	Y ICAP	JS16	MG	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94	<	100	UGG	173.2
METALS	IN SO	IL B	Y ICAP	JS16	MG	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		5690	UGG	6.3
METALS	IN SO	IL B	Y ICAP	JS16	MG	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		5340	UGG	6.3
METALS	IN SO	IL B	Y ICAP	JS16	MN	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-0CT-94		5560	UGG	147.3
METALS	IN SO	IL B	Y ICAP	JS16	MN	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94		843	UGG	147.3
METALS	IN SO	IL B	Y ICAP	JS16	MN	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		174	UGG	7.8
METALS	IN SO	IL B	Y ICAP	JS16	MN	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-0CT-94		161	UGG	7.8
METALS	IN SO	IL B	Y ICAP	JS16	NA	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-0CT-94		1980	UGG	180.8
METALS	IN SO	IL B	Y ICAP	JS16	NA	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94	<	100	UGG	180.8
METALS	IN SO	IL B	Y ICAP	JS16	NA	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		984	UGG	18.3
METALS	IN SO	IL B	Y ICAP	JS16	NA	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94		819	UGG	18.3
METALS	IN SO	IL B	Y ICAP	JS16	NI	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94		23.2	UGG	144.8
METALS				JS16	NI	DXCS0500	V1AS*541		19-SEP-94	06-OCT-94		145	UGG	144.8
METALS		5.55		JS16	NI	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94		37.2	UGG	9.6
METALS				JS16	NI	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94		33.8	UGG	9.6

Method Description		USATHAMA		IRDMIS Field								
NETALS IN SOIL BY ICAP	Method Description					Lot			<	Value	Units	RPD
NETALS IN SOIL BY ICAP	****************			General	*****	44444		********		******		
METALS IN SOIL BY ICAP												
NETALS IN SOIL BY ICAP	METALS IN SOIL BY ICAP	JS16	РВ	DXCS2000	V1A5*556	OBXC	22-SEP-94	10-001-94		222	UGG	11.1
METALS IN SOIL BY ICAP	METALS IN SOIL BY ICAP	JS16	V	DDCS0500	V1AS*574	UBXC	19-SEP-94	10-OCT-94	<	3.39	UGG	153.4
METALS IN SOIL BY ICAP			V	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-OCT-94		25.7	UGG	153.4
METALS IN SOIL BY ICAP		JS16	V	DDCS2000	V1AS*580	UBXC	22-SEP-94	10-OCT-94		41.2	UGG	7.0
METALS IN SOIL BY ICAP JS16 ZN DDCS0500 V1AS*574 UBXC 19-SEP-94 10-OCT-94 105 UGG 140.8		JS16	٧	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-0CT-94		38.4	UGG	7.0
METALS IN SOIL BY ICAP JS16 ZN DDCS0500 V1As*574 UBXC 19-SEP-94 10-OCT-94 105 UGG 140.8	METALS IN SOIL BY ICAP	JS16	ZN	DXCS0500	V1AS*541	UBVC	19-SEP-94	06-0CT-94		604	UGG	140.8
METALS IN SOIL BY ICAP JS16 ZN DDCS2000 V1As*556 UBXC 22-SEP-94 10-OCT-94 176 UGG 9.5					V1AS*574	UBXC	19-SEP-94	10-OCT-94		105	UGG	140.8
## BNA'S IN SOIL BY GC/MS LM18 124TCB DDCS0500 V1As*574 OEKC 19-SEP-94 04-OCT-94 < .04 UGG .0 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS0500 V1As*554 OEKC 19-SEP-94 29-SEP-94 < .04 UGG .0 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .2 UGG .163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .2 UGG .163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .2 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1As*556 OENC 22-SEP-94 04-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1As*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1As*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG .163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1As*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1As*554 OEKC 19-SEP-94 29-SEP-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1As*556 OENC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1As*574 OEKC 19-SEP-94 Q4-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1As*574 OEKC 19-SEP-94 Q4-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1As*574 OEKC 19-SEP-94 Q4-OCT-94 < .6 UGG .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1As*574 OEKC 19-SEP-94 Q4-OCT-94 < .6 UGG .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 OEKC 19-SEP-94 Q4-OCT-94 < .6 UGG .0 UGG .0 BNA'S IN SOIL BY GC/MS LM1							22-SEP-94	10-OCT-94		176	UGG	9.5
BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*554 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*550 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*550 0ENC 22-SEP-94 10-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 04-OCT-94 < .998 UGG .0	METALS IN SOIL BY ICAP	JS16	ZN	DXCS2000	V1AS*556	UBXC	22-SEP-94	10-OCT-94		160	UGG	9.5
BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*554 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*550 0ENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*550 0ENC 22-SEP-94 10-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*580 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 0EDC 22-SEP-94 04-OCT-94 < .998 UGG .0								Av. (0.0 to 6.2)				
BNA'S IN SOIL BY GC/MS LM18 124TCB DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .2 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*574 OEKC 19-SEP-94 29-SEP-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*541 OEKC 19-SEP-94 04-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .0 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .0 UGG 163.6 BNA'S IN SOIL BY GC/M	BNA'S IN SOIL BY GC/MS											
BNA'S IN SOIL BY GC/MS												
BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCSO500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DDCSO500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG .6 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DDCSO500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCSO500 V1AS*541 OEKC 19-SEP-94 04-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCSO500 V1AS*541 OEKC 19-SEP-94 04-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCSO500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG .6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCSO500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCSC5000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .5 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCSC5000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*574 OEKC 19-SEP-94 10-OCT-94 < .6 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG .63.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 .0-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCSC500 V1AS*580 OEOC 22-SEP-94 .0-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCSC5000 V1AS*580 OEOC 22-SEP-94 .0-OCT-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 12DCLB DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .11 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*576 OENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .0 UGG .0 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 04-OCT-94 < .0 UGG .0 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*580 OEOC 22-SEP-94 04-OCT-94 < .0 UGG .0	BNA'S IN SOIL BY GC/MS	LM18	124TCB	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18 12DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DCLB DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 DEKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*580 DEOC 22-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS0500 V1AS*574 0EKC 19-SEP-94 04-DCT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*574 0EKC 19-SEP-94 29-SEP-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 0EKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*580 0EOC 22-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*556 0ENC 22-SEP-94 29-SEP-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 0EOC 22-SEP-94 10-0CT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*580 0EOC 22-SEP-94 10-0CT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*556 0ENC 22-SEP-94 10-0CT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*580 0EOC 22-SEP-94 10-0CT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 0EOC 22-SEP-94 10-0CT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*580 0EOC 22-SEP-94 04-0CT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS											
BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .14 UGG .0 BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*556 DENC 22-SEP-94 10-DCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 DEDC 22-SEP-94 10-DCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 DEKC 19-SEP-94 04-DCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*574 DEKC 19-SEP-94 10-DCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*556 DENC 22-SEP-94 10-DCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*580 DEDC 22-SEP-94 10-DCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*580 DEDC 22-SEP-94 04-DCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 DEKC 19-SEP-94 04-DCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS	LM18	12DCLB	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	6	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18 12DPH DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 12DPH DDCS2000 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < 5 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*580 0EOC 22-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 0EOC 22-SEP-94 10-0CT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS2000 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS								<			
BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .13 UGG .0 BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS	LM18	12DPH	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18 13DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .098 UGG .0												
BNA'S IN SOIL BY GC/MS LM18 13DCLB DDCS2000 V1AS*580 0EOC 22-SEP-94 10-OCT-94 < 6 UGG 163.6 BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .098 UGG .0												
BNA'S IN SOIL BY GC/MS LM18 14DCLB DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .098 UGG .0 BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .098 UGG .0									<			
BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .098 UGG .0	BNA'S IN SOIL BY GC/MS	LM18	13DCLB	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	6	UGG	163.6
	BNA'S IN SOIL BY GC/MS	LM18	14DCLB	DDCS0500			19-SEP-94	04-OCT-94	<			
The second of the second state of the second	BNA'S IN SOIL BY GC/MS		14DCLB						<			
BNA'S IN SOIL BY GC/MS LM18 14DCLB DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .5 UGG 163.6	BNA'S IN SOIL BY GC/MS	LM18	14DCLB	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.5	UGG	163.6

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN SOIL BY GC/MS	LM18	14DCLB	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	245TCP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	4.1	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	245TCP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.1	UGG	-0
BNA'S IN SOIL BY GC/MS	LM18	245TCP	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	.5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	245TCP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	246TCP	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	246TCP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	246TCP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	246TCP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DCLP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.18	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DCLP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.18	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DCLP	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.9	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DCLP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	9	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DMPN	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.69	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DMPN	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.69	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DMPN	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	30	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DMPN	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DNP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	1.2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DNP	DDCS0500	V1AS*574		19-SEP-94	04-DCT-94	<	1.2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DNP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	60	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DNP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	6	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DNT	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DNT	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	24DNT	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.7	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	24DNT	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	7	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	26DNT	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.085	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	26DNT	DDCS0500	V1AS*574	1000	19-SEP-94	04-OCT-94	<	.085	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	26DNT	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.4	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	26DNT	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	4	UGG	163.6

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN SOIL BY GC/MS	LM18	2CLP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.06	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2CLP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.06	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2CLP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2CLP	DDCS2000	V1AS*580		22-SEP-94	10-0CT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2CNAP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.036	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2CNAP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.036	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2CNAP	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2CNAP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2MNAP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.049	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2MNAP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.049	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2MNAP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2MNAP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2MP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.029	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2MP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.029	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2MP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2MP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2NAN1L	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.062	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2NANIL	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94 .	<	.062	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2NAN1L	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	.3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2NANIL	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2NP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	-14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2NP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	2NP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.7	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	2NP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	7	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	33DCBD	DDCS0500	V1AS*574		19-SEP-94	04-DCT-94	<	6.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	33DCBD	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	6.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	33DCBD	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	300	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	33DCBD	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	30	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	3NAN1L	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.45	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	3NAN1L	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.45	UGG	.0

Metho	d D	escri	ptic	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	SOIL	BY	GC/MS	LM18	3NANIL	DDC\$2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	3NANIL	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	46DN2C	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.55	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	46DN2C	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.55	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	46DN2C	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	30	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	46DN2C	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	3	UGG	163.6
				GC/MS	LM18	4BRPPE	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.033	UGG	.0
				GC/MS	LM18	4BRPPE	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.033	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4BRPPE	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4BRPPE	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CANIL	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.81	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CANIL	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.81	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CANIL	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	40	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CANIL	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	4	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CL3C	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.095	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CL3C	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.095	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CL3C	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.5	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CL3C	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM1B	4CLPPE	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.033	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CLPPE	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.033	UGG	.0
				GC/MS	LM18	4CLPPE	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4CLPPE	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4MP	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.24	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4MP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.24	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4MP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4MP	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4NAN1L	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.41	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4NANIL	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.41	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	4NANIL	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	4NANIL	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	2	UGG	163,6

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
		52,000	11 100001100	022224	03500	710017355533		-	12618653	552110	10000000
BNA'S IN SOIL BY GC/MS	LM18	4NP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	4NP	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	4NP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	70	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	4NP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	7	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ABHC	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ABHC	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ABHC	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ABHC	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ACLDAN	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.33	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ACLDAN	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.33	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ACLDAN	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ACLDAN	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	AENSLF	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.62	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	AENSLF	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.62	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	AENSLF	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	30	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	AENSLF	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ALDRN	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.33	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ALDRN	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.33	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ALDRN	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ALDRN	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ANAPNE	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.036	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ANAPNE	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.036	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ANAPNE	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ANAPNE	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ANAPYL	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.033	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ANAPYL	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.033	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	ANAPYL	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ANAPYL	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ANTRO	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.033	UGG	.0

BMA'S IN SOIL BY GC/MS	e Units RPD
BMA'S IN SOIL BY GC/MS LM18 ANTRC DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 22 BNA'S IN SOIL BY GC/MS LM18 ANTRC DXCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < 22 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DXCS0500 V1AS*576 OENC 22-SEP-94 04-OCT-94 < .059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DXCS0500 V1AS*556 OENC 22-SEP-94 04-OCT-94 < .059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .33 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .34 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .34 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .11 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .26 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .26 BNA'S IN SOIL BY GC/MS LM18 B2CIEP DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .26 BNA'S IN SOIL BY GC/MS LM18 B2CIEP DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .26 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .26 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .27 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .27 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .27 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-O	1100 0
BNA'S IN SOIL BY GC/MS	
BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS500 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*580 0EOC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*574 0EKC 19-SEP-94 04-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 059 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*550 0EOC 22-SEP-94 10-0CT-94 059 BN	
BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .059 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .3 BNA'S IN SOIL BY GC/MS LM18 B2CEXM DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .3 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .1 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .1 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .1 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .0 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .0 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .0 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .6 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .6 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .6 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .3 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .3 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .3 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*580 OEOC	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 B2CEPE DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .23 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .1 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .1 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CIEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*560 OENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS	UGG .0
BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS500 V1AS*574 DEKC 19-SEP-94 10-DCT-94 <	
BNA'S IN SOIL BY GC/MS LM18 B2CIPE DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*574 OEKC 19-SEP-94 29-SEP-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .31 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .81 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .82 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .82 BNA'S IN SOIL BY GC/MS LM18 BAANTR	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 10-0CT-94 10-0KS IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*580 0E0C 22-SEP-94 10-0KS-94 10-0KS IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*580 0E0C 22-SEP-94 10-0KS-94	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 10-0CT-94 10-0KS IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*580 0E0C 22-SEP-94 10-0KS-94 10-0KS IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*580 0E0C 22-SEP-94 10-0KS-94	UGG .0
BNA'S IN SOIL BY GC/MS LM18 B2CIPE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*574 DENC 19-SEP-94 04-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .80 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*550 DEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2	
BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS0500 V1AS*574 DEKC 19-SEP-94 29-SEP-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .23 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*581 DEOC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*554 DEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*554 DEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0	
BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*55	27.75.75 LOPEZ 27.75
BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .033 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 DENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 DEDC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*55	UGG .0
BNA'S IN SOIL BY GC/MS LM18 B2CLEE DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2CLEE DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .22 BNA'S IN SOIL BY GC/MS LM18 B2EHP DCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*541 OEKC 19-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .33 BNA'S IN SOIL BY GC/MS LM18 BAANTR DCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .88 BNA'S IN SOIL BY GC/MS LM18 BAANTR DCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .88 BNA'S IN SOIL BY GC/MS LM18 BAANTR DCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .88 BNA'S IN SOIL BY GC/MS LM18 BAANTR DCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .88 BNA'S IN SOIL BY GC/MS LM18 BAANTR DCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DCS0500 V1AS*574 OEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 B2CHE DDCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < 2 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .33 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < 30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 32 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBPANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBPANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .62 BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < 30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 32 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBPANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBPANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	UGG .0
BNA'S IN SOIL BY GC/MS LM18 B2EHP DDCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 30 BNA'S IN SOIL BY GC/MS LM18 B2EHP DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 37 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < 1.77 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < 1.77 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*580 DEOC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*576 DENC 22-SEP-94 04-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPAR DXCS2000 V1AS*576 DENC 22-SEP-94 04-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPAR DXCS2000 V1AS*576 DENC 22-SEP-94 04-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 BAPAR DXCS2000 V1AS*576 DENC 22-SEP-94 04-OCT-94 < 1.78 BNA'S IN SOIL BY GC/MS LM18 B	
BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*541 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*540 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*540 OEOC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*550 OEOC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .17 BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	UGG .0
BNA'S IN SOIL BY GC/MS LM18 BAANTR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAANTR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < .8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 OENC 22-SEP-94 10-OCT-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < 8 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*580 0E0C 22-SEP-94 10-OCT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*556 0ENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 0EKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 DEDC 22-SEP-94 10-OCT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 DENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 DEKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 DEKC 19-SEP-94 04-OCT-94 < .21	
BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < 25 BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 OEOC 22-SEP-94 10-OCT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < 21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < 21	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 BAPYR DDCS2000 V1AS*580 0E0C 22-SEP-94 10-0CT-94 < 10 BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 0ENC 22-SEP-94 10-0CT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .21	UGG .O
BNA'S IN SOIL BY GC/MS LM18 BAPYR DXCS2000 V1AS*556 OENC 22-SEP-94 10-OCT-94 < 1 BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 OEKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	UGG .0
BNA'S IN SOIL BY GC/MS LM18 BBFANT DXCS0500 V1AS*541 0EKC 19-SEP-94 29-SEP-94 < .21 BNA'S IN SOIL BY GC/MS LM18 BBFANT DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .21	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 BBFANT DDCS0500 V1AS*574 OEKC 19-SEP-94 04-OCT-94 < .21	UGG 163.6
BNA'S IN SOIL BY GC/MS LM18 BBFANT DDCS0500 V1AS*574 0EKC 19-SEP-94 04-0CT-94 < .21	UGG .0
	17.7.7.1

Method Description	USATHAMA Method Code	Test Name	Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< 1	/alue	Units	RPD
BNA'S IN SOIL BY GC/MS	LM18	BBFANT	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	ввнс	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BBHC	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BBHC	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BBHC	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BBZP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BBZP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BBZP	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BBZP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENSLF	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.62	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENSLF	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.62	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENSLF	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-0CT-94	<	30	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENSLF	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENZID	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	4	.85	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENZID	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.85	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENZID	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	40	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENZID	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	4	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENZOA	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	6.1	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENZOA	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	6.1	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BENZOA	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	300	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BENZOA	DXCS2000	V1AS*556	OENC	22-SEP-94	10-DCT-94	<	30	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BGHIPY	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.25	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BGHIPY	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.25	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	BGHIPY	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BGHIPY	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BKFANT	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	•	.066	UGG	151.6
BNA'S IN SOIL BY GC/MS	LM18	BKFANT	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94		.48	UGG	151.6
BNA'S IN SOIL BY GC/MS	LM18	BKFANT	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	BKFANT	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	3	UGG	163.6

Method	d De	escri	ptic	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	SOIL	BY	GC/MS	LM18	BZALC	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.19	UGG	.0
BNA'S					LM18	BZALC	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.19	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	BZALC	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	BZALC	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S					LM18	C27	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94		6.4	UGG	52.9
BNA'S	IN	SOIL	BY	GC/MS	LM18	C27	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94		11	UGG	52.9
BNA'S	IN	SOIL	BY	GC/MS	LM18	C29	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94		44	UGG	31.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	C29	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		32	UGG	31.6
BNA'S					LM18	CARBAZ	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.1	UGG	.0
BNA'S					LM18	CARBAZ	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.1	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	CARBAZ	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94	<	.5	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	CARBAZ	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	5	UGG	163.6
BNA'S					LM18	CHRY	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94			UGG	154.7
BNA'S					LM18	CHRY	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.12	UGG	154.7
				GC/MS	LM18	CHRY	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.6	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	CHRY	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	6	UGG	163.6
BNA'S					LM18	CL6BZ	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.033	UGG	.0
BNA'S					LM18	CL6BZ	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.033	UGG	.0
				GC/MS	LM18	CL6BZ	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	-2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	CL6BZ	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
				GC/MS	LM18	CL6CP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	6.2	UGG	.0
				GC/MS	LM18	CL6CP	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	6.2	UGG	.0
				GC/MS	LM18	CL6CP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	300	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	CL6CP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	30	UGG	163.6
				GC/MS	LM18	CL6ET	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.15	UGG	.0
				GC/MS	LM18	CLEET	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	. 15	UGG	.0
BNA'S					LM18	CL6ET	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.8	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	CL6ET	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	8	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	DBAHA	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.21	UGG	,0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
		~~***	2222222	**********	OFIG.	40 000 0/	04-0CT-94		24	UGG	
BNA'S IN SOIL BY GC/MS		DBAHA	DDCS0500	V1AS*574		19-SEP-94	10-OCT-94	<	.21	UGG	163.6
BNA'S IN SOIL BY GC/MS		DBAHA	DDCS2000	V1AS*580		22-SEP-94	ST TEL ST	<	10		
BNA'S IN SOIL BY GC/MS	LM18	DBAHA	DXCS2000	V1AS*556	UENC	22-SEP-94	10-0CT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DBHC	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DBHC	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DBHC	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DBHC	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DBZFUR	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.035	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DBZFUR	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.035	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DBZFUR	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DBZFUR	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DEP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.24	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DEP	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.24	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DEP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DEP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DLDRN	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.31	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DLDRN	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.31	UGG	.0
BNA'S IN SOIL BY GC/MS		DLDRN	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS		DLDRN	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DMP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DMP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.17	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DMP	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DMP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	8	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DNBP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.061	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DNBP	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-DCT-94	<	.061	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DNBP	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DNBP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	DNOP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.19	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DNOP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.19	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	DNOP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	10	UGG	163.6
DIVI O THE SOIL DE GOVERS	2110	21101	DOULDOU	. Ind 500	5200	EE 0E1 7-7	15.00, 74	4			,,,,,,

Table: H-Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Method	d D	escr	pti	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	SOI	BY	GC/MS	LM18	DNOP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S	IN	SOI	ВУ	GC/MS	LM18	ENDRN	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.45	UGG	.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	ENDRN	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.45	UGG	.0
BNA'S	IN	SOI	BY	GC/MS	LM18	ENDRN	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	ENDRN	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
				GC/MS	LM18	ENDRNA	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.53	UGG	.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	ENDRNA	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.53	UGG	.0
				GC/MS	LM18	ENDRNA	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	ENDRNA	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	ENDRNK	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.53	UGG	.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	ENDRNK	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.53	UGG	.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	ENDRNK	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOI	. BY	GC/MS	LM18	ENDRNK	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
				GC/MS	LM18	ESFS04	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.62	UGG	.0
				GC/MS	LM18	ESFS04	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94 -	<	.62	UGG	.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	ESFS04	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	30	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	ESFS04	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	3	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	FANT	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-DCT-94		1.7	UGG	26.7
BNA'S	IN	SOI	. BY	GC/MS	LM18	FANT	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94		1.3	UGG	26.7
BNA'S	IN	SOI	. BY	GC/MS	LM18	FANT	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	3	UGG	100.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	FANT	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94		1	UGG	100.0
BNA'S	IN	SOI	. BY	GC/MS	LM18	FLRENE	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.033	UGG	.0
				GC/MS	LM18	FLRENE	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.033	UGG	.0
				GC/MS	LM18	FLRENE	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S	IN	SOI	BY	GC/MS	LM18	FLRENE	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
				GC/MS	LM18	GCLDAN	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.33	UGG	.0
				GC/MS	LM18	GCLDAN	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.33	UGG	.0
				GC/MS	LM18	GCLDAN	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	11	SOI	. BY	GC/MS	LM18	GCLDAN	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	2	UGG	163.6

Method	De	scri	ptic	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	SOIL	BY	GC/MS	LM18	HCBD	DXCS0500	V1AS*541	OFKC	19-SEP-94	29-SEP-94	ζ	.23	UGG	.0
BNA'S					LM18	HCBD	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.23	UGG	.0
BNA'S					LM18	HCBD	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S					LM18	HCBD	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCL	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.13	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCL	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.13	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCL	DXCS2000	V1AS*556	DENC	22-SEP-94	10-0CT-94	<	.5	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCL	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S	11	SOIL	BY	GC/MS	LM18	HPCLE	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.33	UGG	.0
BNA'S					LM18	HPCLE	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.33	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCLE	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	HPCLE	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	ICDPYR	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.29	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	ICDPYR	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.29	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	ICDPYR	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	ICDPYR	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	ISOPHR	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.033	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	ISOPHR	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.033	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	ISOPHR	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	ISOPHR	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	LIN	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	.27	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	LIN	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.27	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	LIN	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	LIN	DXCS2000	V1AS*556	CENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S					LM18	MEXCLR	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.33	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	MEXCLR	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.33	UGG	.0
BNA'S					LM18	MEXCLR	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S	IN	SOIL	BY	GC/MS	LM18	MEXCLR	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	2	UGG	163.6
BNA'S					LM18	NAP	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.037	UGG	.0
BNA'S	IN	SOIL	BY	GC/MS	LM18	NAP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.037	UGG	.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN SOIL BY GC/MS	LM18	NAP	DXCS2000	V1AS*556		22-SEP-94	10-0CT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NAP	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NB	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.045	UGG -	.0
BNA'S IN SOIL BY GC/MS	LM18	NB	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.045	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NB	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	.2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NB	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDMEA	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDMEA	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.14	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDMEA	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	.5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDMEA	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDNPA	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	.2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDNPA	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDNPA	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDNPA	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDPA	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.19	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDPA	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.19	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	NNDPA	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	NNDPA	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	1	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB016	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB016	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB016	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	50	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB016	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB221	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB221	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB221	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	50	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB221	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB232	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB232	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB232	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	50	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB232	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	5	UGG	163.6

	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	¢	Value	Units	RPD
				*******	*****	***********	************				
BNA'S IN SOIL BY GC/MS	LM18	PCB242	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB242	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	1.4	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB242	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	50	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB242	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	5	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB248	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB248	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	2	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB248	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	100	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB248	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB254	DDCS0500	V1AS*574	DEKC	19-SEP-94	04-OCT-94	<	2.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB254	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94	<	2.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB254	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	100	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB254	DXCS2000	V1AS*556	DENC	22-SEP-94	10-0CT-94	<	10	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB260	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	2.6	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB260	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	2.6	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCB260	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	200	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCB260	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCP	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94 -	<	1.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCP	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	1.3	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PCP	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	60	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PCP	DXCS2000	V1AS*556	OENC	22-SEP-94	10-0CT-94	<	6	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PHANTR	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		.92	UGG	21.7
BNA'S IN SOIL BY GC/MS	LM18	PHANTR	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94		.74	UGG	21.7
BNA'S IN SOIL BY GC/MS	LM18	PHANTR	DXCS2000	V1AS*556	DENC	22-SEP-94	10-DCT-94		.8	UGG	85.7
BNA'S IN SOIL BY GC/MS	LM18	PHANTR	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-0CT-94	<	2	UGG	85.7
BNA'S IN SOIL BY GC/MS	LM18	PHENOL	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.11	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PHENOL	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	.11	UGG	.0
BNA'S IN SOIL BY GC/MS	LM18	PHENOL	DXCS2000	V1AS*556		22-SEP-94	10-OCT-94	<	.6	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PHENOL	DDCS2000	V1AS*580	OEOC	22-SEP-94	10-OCT-94	<	6	UGG	163.6
BNA'S IN SOIL BY GC/MS	LM18	PPDDD	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.27	UGG	.0

Table: H-Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

USATHAMA Method Method Description Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN SOIL BY GC/MS LM18	PPDDD	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.27	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PPDDD	DDCS2000	V1AS*580	DEOC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PPDDD	DXCS2000	V1AS*556	DENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PPDDE	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94	<	.31	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PPDDE	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.31	UGG	.0
	PPDDE	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PPDDE	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PPDDT	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94	<	.31	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PPDDT	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	.31	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PPDDT	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	20	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PPDDT	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	2	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	PYR	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94		- 1.4	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PYR	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94		1.4	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PYR	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	2	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	PYR	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94		2	UGG	.0
	TXPHEN	DXCS0500	V1AS*541		19-SEP-94	29-SEP-94	<	2.6	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	TXPHEN	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94	<	2.6	UGG	.0
	TXPHEN	DDCS2000	V1AS*580		22-SEP-94	10-OCT-94	<	200	UGG	163.6
BNA'S IN SOIL BY GC/MS LM18	TXPHEN	DXCS2000	V1AS*556	OENC	22-SEP-94	10-OCT-94	<	20	UGG	163.6
	UNK610	DDCS0500	V1AS*574		19-SEP-94	04-OCT-94		2	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	UNK610	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94		2	UGG	.0
BNA'S IN SOIL BY GC/MS LM18	UNK611	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		3	UGG	40.0
BNA'S IN SOIL BY GC/MS LM18	UNK611	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94		2	UGG	40.0
BNA'S IN SOIL BY GC/MS LM18	UNK618	DXCS0500	V1AS*541	DEKC	19-SEP-94	29-SEP-94		10	UGG	50.0
BNA'S IN SOIL BY GC/MS LM18	UNK618	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		6	UGG	50.0
	UNK629	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		6	UGG	100.0
BNA'S IN SOIL BY GC/MS LM18	UNK629	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94		2	UGG	100.0
BNA'S IN SOIL BY GC/MS LM18	UNK632	DDCS0500	V1AS*574	OEKC	19-SEP-94	04-OCT-94		6	UGG	18.2

Method	d b	escri	pti	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	SOIL	BY	GC/MS	LM18	UNK632	DXCS0500	V1AS*541	OEKC	19-SEP-94	29-SEP-94		5	UGG	18.2
				GC/MS GC/MS	LM18 LM18	UNK634 UNK634	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		4 2	UGG UGG	66.7 66.7
				GC/MS GC/MS	LM18 LM18	UNK639 UNK639	DXCS0500 DDCS0500	V1AS*541 V1AS*574		19-SEP-94 19-SEP-94	29-SEP-94 04-OCT-94		3	UGG UGG	.0
				GC/MS GC/MS	LM18 LM18	UNK647 UNK647	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		20 20	UGG UGG	.0
				GC/MS GC/MS	LM18 LM18	UNK657 UNK657	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		40 40	UGG UGG	.0
				GC/MS GC/MS	LM18 LM18	UNK660 UNK660	DXCS0500 DDCS0500	V1AS*541 V1AS*574		19-SEP-94 19-SEP-94	29-SEP-94 04-OCT-94		20 10	UGG UGG	66.7 66.7
	200			GC/MS GC/MS	LM18 LM18	UNK661 UNK661	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		6	UGG UGG	.0
				GC/MS GC/MS	LM18 LM18	UNK663 UNK663	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		4 3	UGG UGG	28.6 28.6
				GC/MS GC/MS	LM18 LM18	UNK664 UNK664	DDCS0500 DXCS0500	V1AS*574 V1AS*541		19-SEP-94 19-SEP-94	04-0CT-94 29-SEP-94		3	UGG UGG	28.6 28.6
				GC/MS GC/MS	LM18 LM18	UNK669 UNK669	DXCS0500 DDCS0500	V1AS*541 V1AS*574		19-SEP-94 19-SEP-94	29-SEP-94 04-OCT-94		30 30	UGG UGG	.0
				GC/MS GC/MS	LM19 LM19	111TCE 111TCE	DXCS2000 DDCS2000	V1AS*556 V1AS*580		22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94	< <	.0044	UGG UGG	.0
				GC/MS GC/MS	LM19 LM19	112TCE 112TCE	DXCS2000 DDCS2000	V1AS*556 V1AS*580		22-SEP-94 22-SEP-94	28-SEP-94 28-SEP-94	< <	.0054	UGG UGG	.0
voc's	IN	SOIL	BY	GC/MS	LM19	11DCE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0039	UGG	.0

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
VOC'S IN SOIL BY GC/MS	LM19	11DCE	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0039	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	11DCLE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0023	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	11DCLE	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0023	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCE	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.003	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.003	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCLE	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0017	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCLE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0017	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCLP	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0029	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	12DCLP	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0029	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	2CLEVE	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.01	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	2CLEVE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.01	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	ACET	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94		.052	UGG	39.1
VOC'S IN SOIL BY GC/MS	LM19	ACET	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94		.035	UGG	39.1
VOC'S IN SOIL BY GC/MS	LM19	ACROLN	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	ACROLN	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	ACRYLO	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	ACRYLO	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	BRDCLM	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0029	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	BRDCLM	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0029	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C13DCP	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0032	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C13DCP	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0032	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C2AVE	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.032	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C2AVE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.032	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C2H3CL	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0062	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C2H3CL	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	. <	.0062	UGG	.0

Table: H-Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
HOOLE IN DOLL BY OR MO	1440	oouEc.	DVCC2000	V1AS*556	VONC	22-SEP-94	28-SEP-94	<	.012	UGG	.0
VOC'S IN SOIL BY GC/MS VOC'S IN SOIL BY GC/MS	LM19 LM19	C2H5CL C2H5CL	DXCS2000 DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.012	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	C6H6	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0015	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	Сене	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	<	.0015	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CCL3F	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94		.041	UGG	27.8
VOC'S IN SOIL BY GC/MS	LM19	CCL3F	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94		.031	UGG	27.8
VOC'S IN SOIL BY GC/MS	LM19	CCL4	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.007	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CCL4	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.007	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH2CL2	DXCS2000	V1AS*556		22-SEP-94	28-SEP-94	<	.012	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH2CL2	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.012	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH3BR	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0057	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH3BR	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0057	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH3CL	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0088	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CH3CL	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0088	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CHBR3	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0069	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CHBR3	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0069	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CHCL3	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.00087	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CHCL3	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.00087	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CL2BZ	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CL2BZ	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.1	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CLC6H5	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.00086	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CLC6H5	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.00086	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CS2	DDCS2000	V1AS*580		22-SEP-94	28-SEP-94	<	.0044	UGG	.0
VOC'S IN SOIL BY GC/MS	LM19	CS2	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0044	UGG	.0

Descri	ptic	on	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPI
	BV	00.000		DDDDI II	nnnnnnnn	MARATRO	VONO	22 000 04	20 000 04		0074		******
N SUIL	BI	GC/MS	LM 19	DBKCLM	DXCS2000	V 1A5"330	TONC	22-SEP-94	28-SEP-94	<	.0031	UGG	
N SOLL	RY	GC/MS	IM19	ETC6H5	DDC\$2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0017	UGG	
		30,110	D.112	Libons	DAGGEGGG	TING 550	10.10	LE OLI 74	LO SEI 74		.0017	odd	
N SOIL	BY	GC/MS	LM19	MEC6H5	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.00078	UGG	68.9
N SOIL	BY	GC/MS	LM19	MEC6H5	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94		.0016	UGG	68.
										<			
N SOIL	BY	GC/MS	LM19	MEK '	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.07	UGG	
N SOLL	DV	CC /MC	IM10	MIDE	DDC63000	V14C#580	VCNC	22-SED-04	28-650-0/		027	HCC	- 0
M SOIL	. DI	GC/M3	LM19	HIDK	DAGSZOOO	A IMP. DOO	TUNE	22-3EF-74	20-3EF-74	•	.021	Udd	
N SOIL	BY	GC/MS	LM19	MNBK	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.032	UGG	
N SOIL	BY	GC/MS	LM19	MNBK	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.032	UGG	. (
						1777222							
										<			
N SOIL	. BY	GC/MS	LM19	STYR	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0026	UGG	.1
N SOLL	DV	CC /MC	1 M10	TIZDED	DDC62000	V1AC*580	VCNC	22-SED-0/	28-SED-O/	,	0038	Hee	
N SOIL		de/ Ho	Litt	TIJDU	DACSEGGG	VIAS 330	TONE	LL JLI 74	20 321 74	•	.0020	odd	
N SOIL	BY	GC/MS	LM19	TCLEA	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0024	UGG	
N SOIL	BY	GC/MS	LM19	TCLEA	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.0024	UGG	. (
										<			
N SOIL	BY	GC/MS	LM19	TCLEE	DXCS2000	V1AS*556	YGNC	22-SEP-94	28-SEP-94	<	.00081	UGG	
	DV	00.000	1410	70015	PD003000	V440+F00	VONO	22 250 0/	20 050 0/		0000	1100	
N SUIL	BI	GC/MS	LMIA	INCLE	DXC52000	A 142,230	TUNE	22-3EP-94	20-3EP-94	<	.0028	UGG	- 2
N SOTI	BY	GC/MS	LM19	XYLEN	DDCS2000	V1AS*580	YGNC	22-SEP-94	28-SEP-94	<	.0015	UGG	. (
		/				00				-			
	N SOIL	N SOIL BY	Description N SOIL BY GC/MS	Description Method Code N SOIL BY GC/MS LM19	Description Method Code Name N SOIL BY GC/MS LM19 DBRCLM N SOIL BY GC/MS LM19 DBRCLM N SOIL BY GC/MS LM19 ETC6H5 N SOIL BY GC/MS LM19 ETC6H5 N SOIL BY GC/MS LM19 MEC6H5 N SOIL BY GC/MS LM19 MEC6H5 N SOIL BY GC/MS LM19 MEK N SOIL BY GC/MS LM19 MIBK N SOIL BY GC/MS LM19 T13DCP N SOIL BY GC/MS LM19 TCLEA N SOIL BY GC/MS LM19 TCLEA N SOIL BY GC/MS LM19 TCLEE	USATHAMA Method Test Sample	USATHAMA Method Test Sample Lab	USATHAMA Method Test Sample Lab Number Lot	USATHAMA Method Test Sample Number Lot Date	USATHAMA Method Test Sample Number Lot Date Date	USATHAMA Method Test Sample Number Lot Date Date Sample Sample Number Lot Date Date Sample Sample Sample Date Sample Sample Date Sample Sample Date Sample Date Sample Sample Sample Date Sample Sample Date Sample Sample Date Sample Sample Date Sample Date Sample Sample Sample Date Sample Sample Sample Date Sample Date Sample Sample Sample Date Sample Sa	Description	Description

Analysis Date < Value Units RPD)
11-0CT-94 < .243 UGL .0	
14-OCT-94 < 6.99 UGL .0	
14-OCT-94 27.3 UGL 92.0 14-OCT-94 10.1 UGL 92.0	
19-0CT-94 < 3.02 UGL 8.5 19-0CT-94 3.3 UGL 8.5	
14-OCT-94 5.54 UGL 87.2 14-OCT-94 14.1 UGL 87.2	
21-OCT-94 < 3.03 UGL .0 21-OCT-94 < 3.03 UGL .0)
11-OCT-94 < 4.6 UGL .0	
11-OCT-94 4740 UGL 82.6 11-OCT-94 1970 UGL 82.6	
11-0CT-94 136 UGL 70.6 11-0CT-94 65 UGL 70.6	
11-0CT-94 < 5 UGL .C 11-0CT-94 < 5 UGL .C	
11-OCT-94 14500 UGL 15.6	5

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS IN WATER BY ICAP	SS10	CA	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94		12400	UGL	15.6
METALS IN WATER BY ICAP	SS10	CD	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94	<	4.01	UGL	.0
METALS IN WATER BY ICAP	SS10	CD	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94	<	4.01	UGL	.0
METALS IN WATER BY ICAP	SS10	co	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		44.3	UGL	55.7
METALS IN WATER BY ICAP	SS10	CO	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94	<	25	UGL	55.7
METALS IN WATER BY ICAP	SS10	CR	WDCS0500	V1AW*573		19-SEP-94	11-0CT-94	<	6.02	UGL	.0
METALS IN WATER BY ICAP	SS10	CR	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94	<	6.02	UGL	.0
METALS IN WATER BY ICAP	SS10	CU	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		8.94	UGL	10.0
METALS IN WATER BY ICAP	SS10	CU	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94	<	8.09	UGL	10.0
METALS IN WATER BY ICAP	SS10	FE	WDCS0500	V1AW*573		19-SEP-94	11-0CT-94		14000	UGL	83.3
METALS IN WATER BY ICAP	SS10	FE	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94		5770	UGL	83.3
METALS IN WATER BY ICAP	SS10	K	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		2500	UGL	31.5
METALS IN WATER BY ICAP	SS10	K	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94		1820	UGL	31.5
METALS IN WATER BY ICAP	SS10	MG	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		1770	UGL	18.5
METALS IN WATER BY ICAP	SS10	MG	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94		1470	UGL	18.5
METALS IN WATER BY ICAP	SS10	MN	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		6050	UGL	102.9
METALS IN WATER BY ICAP	SS10	MN	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94		1940	UGL	102.9
METALS IN WATER BY ICAP	SS10	NA.	WXCS0500	V1AW*505		19-SEP-94	11-OCT-94		15900	UGL	.6
METALS IN WATER BY ICAP	SS10	NA.	WDCS0500	V1AW*573	ZFDC	19-SEP-94	11-0CT-94		15800	UGL	.6
METALS IN WATER BY ICAP	SS10	NI	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		42.1	UGL	20.4
METALS IN WATER BY ICAP	SS10	NI	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-0CT-94	<	34.3	UGL	20.4
METALS IN WATER BY ICAP	SS10	V	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94	<	11	UGL	.0
METALS IN WATER BY ICAP	SS10	V	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-OCT-94	<	11	UGL	.0
METALS IN WATER BY ICAP	SS10	ZN	WDCS0500	V1AW*573		19-SEP-94	11-OCT-94		187	UGL	50.2
METALS IN WATER BY ICAP	SS10	ZN	WXCS0500	V1AW*505	ZFDC	19-SEP-94	11-0CT-94		112	UGL	50.2

Table: H-Quality Control Report Installation: Fort Devens, MA (DV) Cold Spring Brook

Method Description	USATHAMA Method Test Code Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD

SO4 IN WATER	TT10 CL	WXCS0500	V1AW*505		19-SEP-94	03-OCT-94		31800	UGL	.0
SO4 IN WATER	TT10 CL	WDCS0500	V1AW*573	PDSA	19-SEP-94	03-OCT-94		31800	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 124TCB	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 124TCB	WDCS0500	V1AW*573	MDPC	19-SEP-94	28-SEP-94	<	1.8	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 12DCLB	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 12DCLB	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 12DPH	WXCS0500	V1AW*505	LDPC	19-SEP-94	28-SEP-94	<	2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 12DPH	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 13DCLB	WXCS0500	V1AW*505	LDDC	19-SEP-94	28-SEP-94	<	1.7	LICI	.0
BNA'S IN WATER BY GC/MS	UM18 13DCLB	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	1.7		.0
DIA 3 IN WATER OF GOTTO	U110 1300ED	MD 000500	* I/W 212		17 011 74	20 02. 74			Jul	
BNA'S IN WATER BY GC/MS	UM18 14DCLB	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	1.7		.0
BNA'S IN WATER BY GC/MS	UM18 14DCLB	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 245TCP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	5.2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 245TCP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	5.2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 246TCP	WXCS0500	V1AW*505	LIDEC	19-SEP-94	28-SEP-94	<	4.2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 246TCP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
			n and a second second		A			200		
BNA'S IN WATER BY GC/MS	UM18 24DCLP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 24DCLP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	2.9	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 24DMPN	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	5.8	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 24DMPN	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	5.8	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 24DNP	WXCS0500	V1AW*505	WOPC	19-SEP-94	28-SEP-94	<	21	UGL	.0
	UM18 24DNP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
DUAZO IN HATED BY COMO	18410 2/DUT	INCOMENO	MAINENE	LDDC	10 crn 0/	20 CED 0/		, -	ucı	•
BNA'S IN WATER BY GC/MS	UM18 24DNT	WXCS0500	V1AW*505	MUPL	19-SEP-94	28-SEP-94	<	4.5	UGL	.0

	USATHAMA Method Test Code Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN WATER BY GC/MS	UM18 24DNT	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	4.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 26DNT	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.79	UGL	.0
	UM18 Z6DNT	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	.79	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2CLP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.99	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2CLP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	.99	UGL	.0
	UM18 2CNAP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2CNAP	WDCS0500	V1AW*573	MOPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2MNAP	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2MNAP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
	UM18 ZMP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2MP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	3.9	UGL	.0
	UM18 2NANIL	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2NANIL	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	4.3	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2NP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	3.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 2NP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	3.7	UGL	.0
	UM18 33DCBD	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	12	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 33DCBD	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	12	UGL	.0
	UM18 3NANIL	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 3NANIL	WDCS0500	V1AW*573	MOPC	19-SEP-94	28-SEP-94	<	4.9	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 46DN2C	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	17	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 46DN2C	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	17	UGL	.0
	UM18 4BRPPE	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4BRPPE	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	4.2	UGL	.0
	UM18 4CANIL	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4CANIL	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	7.3	UGL	.0

Method Description	USATHAMA Method Test Code Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
DUALS IN HATER BY SOME	IMAR /0170	INCOCEDO	MAINENE	1000	19-SEP-94	28-SEP-94		4	UGL	
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 4CL3C UM18 4CL3C	WXCS0500 WDCS0500	V1AW*505 V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4CLPPE	WXCS0500	V1AW*505	WOPC	19-SEP-94	28-SEP-94	<	5.1	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4CLPPE	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4MP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.52	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4MP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	.52	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4NANIL	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4NANIL	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	5.2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4NP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 4NP	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	12	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ABHC	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ABHC	WDCS0500	V1AW*573	MDPC	19-SEP-94	28-SEP-94	<	4	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ACLDAN	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	5.1	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ACLDAN	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	5.1	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 AENSLF	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	9.2		.0
BNA'S IN WATER BY GC/MS	UM18 AENSLF	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	9.2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ALDRN	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	4.7		.0
BNA'S IN WATER BY GC/MS	UM18 ALDRN	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	4.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ANAPNE	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	1.7		.0
BNA'S IN WATER BY GC/MS	UM18 ANAPNE	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ANAPYL	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ANAPYL	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ANTRC	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ANTRC	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0

	USATHAMA Method Test Code Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< Valu	e Units	RPD
	UM18 B2CEXM UM18 B2CEXM	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 1.5 < 1.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 B2CIPE UM18 B2CIPE	WDCS0500 WXCS0500	V1AW*573 V1AW*505	WDPC	19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 5.3 < 5.3	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 B2CLEE	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	< 1.9	UGL	.0
	UM18 B2CLEE	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	< 1.9		.0
	UM18 B2EHP UM18 B2EHP	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 4.8		23.9 23.9
manager of the state of the sta	UM18 BAANTR UM18 BAANTR	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 1.6 < 1.6		.0
	UM18 BAPYR UM18 BAPYR	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 4.7 < 4.7	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 BBFANT	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	< 5.4	UGL	.0
	UM18 BBFANT	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	< 5.4		.0
	UM18 BBHC UM18 BBHC	WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 4	UGL	.0
	UM18 BBZP UM18 BBZP	WXCS0500 WDCS0500	V1AW*505 V1AW*573		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 3.4 < 3.4		.0
	UM18 BENSLF UM18 BENSLF	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 9.2 < 9.2	UGL UGL	.0
	UM18 BENZID UM18 BENZID	WDCS0500 WXCS0500	V1AW*573 V1AW*505		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94	< 10 < 10		.0
BNA'S IN WATER BY GC/MS	UM18 BENZOA	WDCS0500	V1AW*573	WDPC	19-SEP-94 19-SEP-94	28-SEP-94	< 13	UGL	.0
	UM18 BENZOA UM18 BGHIPY	WXCS0500	V1AW*505 V1AW*573		19-SEP-94	28-SEP-94 28-SEP-94	< 13 < 6.1		.0

Method Desc	ription	1	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN WA	TER BY	GC/MS	UM18	BGHIPY	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	6.1	UGL	.0
BNA'S IN WA	TER RY	GC/MS	UM18	BKFANT	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	< .	.87	UGL	.0
BNA'S IN WA		77 77 77 77 77	UM18	BKFANT	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	.87	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	BZALC	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	.72	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	BZALC	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.72	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CARBAZ	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CARBAZ	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	1.5	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CHRY	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CHRY	WDCS0500	V1AW*573	MDPC	19-SEP-94	28-SEP-94	<	2.4	UGL	.0
BNA'S IN WA			UM18	CL6BZ	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CL6BZ	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	1.6	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CL6CP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	8.6		.0
BNA'S IN WA	TER BY	GC/MS	UM18	CL6CP	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	8.6	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CL6ET	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	1.5	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	CL6ET	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	1.5	UGL	.0
BNA'S IN WA			UM18	DBAHA	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DBAHA	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	6.5	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DBHC	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	4	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DBHC	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DBZFUR	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DBZFUR	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	1.7	UGL	.0
BNA'S IN WA			UM18	DEP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	2	UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DEP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	2	UGL	.0
BNA'S IN WA			LM18	DLDRN	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WA	TER BY	GC/MS	UM18	DLDRN	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4.7	UGL	.0

Metho	d D	escrip	tío	n	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
RNA'S	IN	UATER	RY	GC/MS	UM18	DMP	WDCS0500	V1AW*573	LIDEC	19-SEP-94	28-SEP-94	<	1.5	UGL	.0
				GC/MS	UM18	DMP	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
				GC/MS	UM18	DNBP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	DNBP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	3.7	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	DNOP	WDCS0500	V1AW*573	MDPC	19-SEP-94	28-SEP-94	<	15	UGL	.0
				GC/MS	UM18	DNOP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	ENDRN	WDCS0500	V1AW*573	MDPC	19-SEP-94	28-SEP-94	<	7.6	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	ENDRN	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<		UGL	.0
				GC/MS	UM18	ENDRNA	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	ВҮ	GC/MS	UM18	ENDRNA	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	8	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	ENDRNK	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	8	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	ENDRNK	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	8	UGL	.0
				GC/MS	UM18	ESFS04	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	ESFS04	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	9.2	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	FANT	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	3.3	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	FANT	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	3.3	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	FLRENE	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	3.7	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	FLRENE	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	GCLDAN	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	5.1	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	GCLDAN	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	5.1	UGL	.0
				GC/MS	UM18	HCBD	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	HCBD	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	3.4	UGL	.0
				GC/MS	UM18	HPCL	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	HPCL	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	2	UGL	.0

	USATHAMA Method Test	IRDMIS Field Sample	Lab		Sample	Analysis				
Method Description	Code Name	Number	Number	Lot	Date	Date	<	Value	Units	RPD
BNA'S IN WATER BY GC/MS	UM18 HPCLE	WDCS0500	V1AW*573	MOPC	19-SEP-94	28-SEP-94	<	5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 HPCLE	WXCS0500	V1AW*505		19-SEP-94	28-SEP-94	<	5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ICDPYR	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	8.6	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ICDPYR	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	8.6	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ISOPHR	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	4.8	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 ISOPHR	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4.8	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 LIN	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	4	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 LIN	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 MEXCLR	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S IN WATER BY GC/MS	UM18 MEXCLR	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	5.1	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NAP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NAP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NB	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NB	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDMEA	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDMEA	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	2	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDNPA	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	4.4	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDNPA	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4.4	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDPA	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	3	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 NNDPA	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	3	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 PCB016	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	21	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 PCB016	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	21	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 PCB221	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	21	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 PCB221	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	21	UGL	.0
BNA'S IN WATER BY GC/MS	UM18 PCB232	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	21	UGL	.0

Metho	d D	escrip	tio	n	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB232	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	21	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB242	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	30	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB242	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	30	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB248	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	30	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB248	WXCS0500	V1AW*505	MDPC	19-SEP-94	28-SEP-94	<	30	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB254	WDCS0500	V1AW*573	WDPC	19-SEP-94	28-SEP-94	<	36	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB254	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	36	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB260	WDCS0500	V1AW*573	MOPC	19-SEP-94	28-SEP-94	<	36	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCB260	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	36	UGL	.0
				GC/MS	UM18	PCP	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	18	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PCP	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	18	UGL	.0
				GC/MS	UM18	PHANTR	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PHANTR	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	.5	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PHENOL	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<	9.2	UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PHENOL	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	9.2	UGL	.0
				GC/MS	UM18	PPDDD	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PPDDD	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4	UGL	.0
				GC/MS	UM18	PPDDE	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PPDDE	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	4.7	UGL	.0
		WATER			UM18	PPDDT	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PPDDT	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	9.2	UGL	.0
		WATER			UM18	PYR	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	PYR	WXCS0500	V1AW*505	WDPC	19-SEP-94	28-SEP-94	<	2.8	UGL	.0
		WATER			UM18	TXPHEN	WDCS0500	V1AW*573		19-SEP-94	28-SEP-94	<		UGL	.0
BNA'S	IN	WATER	BY	GC/MS	UM18	TXPHEN	WXCS0500	V1AW*505	MOPC	19-SEP-94	28-SEP-94	<	36	UGL	.0

SAMPLE DUPLICATES

Method Description	USATHAMA Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
BNA'S IN WATER BY GC/MS BNA'S IN WATER BY GC/MS	UM18 UM18	UNK517 UNK517	WXCS0500 WDCS0500	V1AW*505 V1AW*573		19-SEP-94 19-SEP-94	28-SEP-94 28-SEP-94			UGL UGL	66.7 66.7

SQL> exit

TABLE C-15

Chemical Quality Control Report Installation: Fort Devens, MA (DV) Lower Cold Spring Brook - ADL Samples

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value	Unit
	1602	TSS	ATVF	BL959031	17-JUL-95	17-JUL-95	<	4	UGL
	2340	HARD	ATRZ	BL959001	05-AUG-95	11-AUG-95	<	818	UGL
	3102	ALK	ATOG	BL959011	21-JUL-95	21-JUL-95	<	10000	UGL
	4151	TOC	ATPS	BL958721	20-JUL-95	20-JUL-95	<	1000	UGL
	4181	TPHC			19-JUL-95	26-JUL-95	<		UGG
		TPHC			19-JUL-95	26-JUL-95	<		UGG
		TPHC	ATRB	B955321	17-JUL-95	27-JUL-95	<	100	UGL
METALS/WATER/GFAA	AX8	AS	ATSA	BL954351	29-JUL-95	21-AUG-95	<	2.35	UGL
METALS/WATER/CVAA	CC8	HG	ATQH	BL957081	26-JUL-95	27-JUL-95	<	-1	UGL
METALS/SOIL/GFAA	JD20	SE	ATSZ	BL956221	07-AUG-95	22-AUG-95	<	-449	UGG
METALS/SOIL/GFAA	JD21	PB	ATSY	BL956231	07-AUG-95	09-AUG-95		.903	UGG
METALS/SOIL/ICP	JS12	AG	ATRX	BL956201	05-AUG-95	08-AUG-95	<	.803	UGG
METALS/SOIL/ICP		AL	ATRX	BL956201	05-AUG-95	08-AUG-95		482	UGG
METALS/SOIL/ICP		BA	ATRX	BL956201	05-AUG-95	08-AUG-95		8.59	
METALS/SOIL/ICP		BE			05-AUG-95	08-AUG-95	<	.427	
METALS/SOIL/ICP		CA			05-AUG-95	08-AUG-95			UGG
METALS/SOIL/ICP		CD			05-AUG-95	08-AUG-95	<		UGG
METALS/SOIL/ICP		CO			05-AUG-95	08-AUG-95	<		UGG
METALS/SOIL/ICP		CR			05-AUG-95	08-AUG-95	<	1.04	
METALS/SOIL/ICP		CU			05-AUG-95	08-AUG-95	<	2.84	
METALS/SOIL/ICP		FE			05-AUG-95	08-AUG-95		1070	
METALS/SOIL/ICP		K			05-AUG-95	08-AUG-95			UGG
METALS/SOIL/ICP		MG			05-AUG-95	08-AUG-95			UGG
METALS/SOIL/ICP		MN		BL956201		08-AUG-95		22.3	
METALS/SOIL/ICP		NA	ATRX	BL956201	05-AUG-95	08-AUG-95	<	38.7	UGG

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value	Unit
METALS/SOIL/ICP	JS12	NI	ATRX	BL956201	05-AUG-95	08-AUG-95	<	2.74	UGG
METALS/SOIL/ICP		SB		BL956201		08-AUG-95	<	19.6	UGG
METALS/SOIL/ICP		TL		BL956201	05-AUG-95	08-AUG-95	<	34.3	UGG
METALS/SOIL/ICP		٧	ATRX	BL956201	05-AUG-95	08-AUG-95		2.04	UGG
METALS/SOIL/ICP		ZN	ATRX	BL956201	05-AUG-95	08-AUG-95		3.18	UGG
PESTICIDES/SOIL/GCEC	LH17	ABHC	ATMG	BL958431	14-JUL-95	09-AUG-95	<	.0028	
PESTICIDES/SOIL/GCEC	and a	AENSLF	ATMG	BL958431	14-JUL-95	09-AUG-95	<	.001	
PESTICIDES/SOIL/GCEC		ALDRN	ATMG	BL958431	14-JUL-95	09-AUG-95	<	.0014	
PESTICIDES/SOIL/GCEC		BBHC			14-JUL-95	09-AUG-95	<	.0077	
PESTICIDES/SOIL/GCEC		BENSLF			14-JUL-95	09-AUG-95	<	.0007	
PESTICIDES/SOIL/GCEC		CLDAN	ATMG	BL958431	14-JUL-95	09-AUG-95	<	.0684	
PESTICIDES/SOIL/GCEC		DBHC			14-JUL-95	09-AUG-95	<	.0085	
PESTICIDES/SOIL/GCEC		DLDRN			14-JUL-95	09-AUG-95	<	-0016	
PESTICIDES/SOIL/GCEC		ENDRN			14-JUL-95	09-AUG-95	<	.0065	
PESTICIDES/SOIL/GCEC		ENDRNA			14-JUL-95	09-AUG-95	<	.0005	
PESTICIDES/SOIL/GCEC		HPCL			14-JUL-95	09-AUG-95	<	.0022	
PESTICIDES/SOIL/GCEC		HPCLE			14-JUL-95	09-AUG-95	<	.0013	
PESTICIDES/SOIL/GCEC		ISODR			14-JUL-95	09-AUG-95	<	.003	
PESTICIDES/SOIL/GCEC		LIN			14-JUL-95	09-AUG-95	<	.001	
PESTICIDES/SOIL/GCEC		MEXCLR			14-JUL-95	09-AUG-95	<	.0359	
PESTICIDES/SOIL/GCEC		PCB016			14-JUL-95	09-AUG-95	<		UGG
PESTICIDES/SOIL/GCEC		PCB221			14-JUL-95	09-AUG-95	<	-1	
PESTICIDES/SOIL/GCEC		PCB232			14-JUL-95	09-AUG-95	<	-1	
PESTICIDES/SOIL/GCEC		PCB242			14-JUL-95	09-AUG-95	<		UGG
PESTICIDES/SOIL/GCEC		PCB248			14-JUL-95	09-AUG-95	<		UGG
PESTICIDES/SOIL/GCEC		PCB254			14-JUL-95	09-AUG-95	<	.0479	
PESTICIDES/SOIL/GCEC		PCB260			14-JUL-95	09-AUG-95	<	.0479	
PESTICIDES/SOIL/GCEC		PPDDD			14-JUL-95	09-AUG-95	<	.0027	
PESTICIDES/SOIL/GCEC		PPDDE			14-JUL-95	09-AUG-95	<	.0027	
PESTICIDES/SOIL/GCEC		PPDDT			14-JUL-95	09-AUG-95	<	.0035	
PESTICIDES/SOIL/GCEC		TXPHEN	ATMG	BL958431	14-JUL-95	09-AUG-95	<	.226	UGG
	LKTC	TOC	ATOT	BL955481	21-JUL-95	21-JUL-95	<	1000	UGG

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
					44 05			
SEMIVOLATILES/SOIL/GCMS	LM25	124TCB	ATMJ		14-JUL-95	26-JUL-95	<	.22 UGG
SEMIVOLATILES/SOIL/GCMS		12DCLB			14-JUL-95	26-JUL-95	<	.042 UGG
SEMIVOLATILES/SOIL/GOMS		13DCLB			14-JUL-95	26-JUL-95	<	.042 UGG
SEMIVOLATILES/SOIL/GOMS		14DCLB			14-JUL-95	26-JUL-95	<	.034 UGG
SEMIVOLATILES/SOIL/GCMS		245TCP			14-JUL-95	26-JUL-95	<	.49 UGG
SEMIVOLATILES/SOIL/GCMS		246TCP	****		14-JUL-95	26-JUL-95	<	.061 UGG
SEMIVOLATILES/SOIL/GOMS		24DCLP	ATMJ		14-JUL-95	26-JUL-95	<	.065 UGG
SEMIVOLATILES/SOIL/GOMS		24DMPN			14-JUL-95	26-JUL-95	<	3 UGG 4.7 UGG
SEMIVOLATILES/SOIL/GCMS		24DNP			14-JUL-95	26-JUL-95	<	2.20
SEMIVOLATILES/SOIL/GCMS		24DNT			14-JUL-95	26-JUL-95	<	1.4 UGG
SEMIVOLATILES/SOIL/GCMS		2CLP			14-JUL-95 14-JUL-95	26-JUL-95 26-JUL-95	< <	.055 UGG .24 UGG
SEMIVOLATILES/SOIL/GOMS		2CNAP			14-JUL-95	26-JUL-95		.032 UGG
SEMIVOLATILES/SOIL/GOMS		2MNAP				26-JUL-95	<	.098 UGG
SEMI VOLATILES/SOIL/GOMS		2MP	ATMJ		14-JUL-95	26-JUL-95	< <	3.1 UGG
SEMIVOLATILES/SOIL/GCMS		2NAN I L 2NP	ATMJ		14-JUL-95	26-JUL-95	<	1.1 UGG
SEMIVOLATILES/SOIL/GOMS		33DCBD			14-JUL-95	26-JUL-95	<	1.6 UGG
SEMIVOLATILES/SOIL/GOMS		3NANIL			14-JUL-95	26-JUL-95	~	3 UGG
SEMIVOLATILES/SOIL/GCMS	*	46DN2C			14-JUL-95	26-JUL-95	<	.8 UGG
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS		4BRPPE	ATHJ			26-JUL-95	<	.041 UGG
SEMIVOLATILES/SOIL/GOMS		4CL3C	ATMJ		14-JUL-95	26-JUL-95	<	.93 UGG
SEMIVOLATILES/SOIL/GCMS		4CLPPE			14-JUL-95	26-JUL-95	<	.17 UGG
SEMIVOLATILES/SOIL/GCMS		4MP			14-JUL-95	26-JUL-95	<	.24 UGG
SEMI VOLATILES/SOIL/GCMS		4NP			14-JUL-95	26-JUL-95	<	3.3 UGG
SEMIVOLATILES/SOIL/GOMS		ANAPNE			14-JUL-95	26-JUL-95	<	.041 UGG
SEMIVOLATILES/SOIL/GCMS		ANAPYL			14-JUL-95	26-JUL-95	<	.033 UGG
SEMIVOLATILES/SOIL/GCMS		ANTRC			14-JUL-95	26-JUL-95	<	.71 UGG
SEMIVOLATILES/SOIL/GCMS		B2CEXM	ATMJ		14-JUL-95	26-JUL-95	<	.19 UGG
SEMI VOLATILES/SOIL/GCMS		BZEHP	ATMJ		14-JUL-95	26-JUL-95	<	.48 UGG
SEMIVOLATILES/SOIL/GCMS		BAANTR	LMTA		14-JUL-95	26-JUL-95	<	.041 UGG
SEMI VOLATILES/SOIL/GCMS		BAPYR			14-JUL-95	26-JUL-95	<	1.2 UGG
SEMIVOLATILES/SOIL/GOMS		BBFANT			14-JUL-95	26-JUL-95	<	.31 UGG
SEMIVOLATILES/SOIL/GOMS		BBZP			14-JUL-95	26-JUL-95	<	1.8 UGG

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
SEMIVOLATILES/SOIL/GCMS	LM25	BGHIPY	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	.18 UGG
SEMIVOLATILES/SOIL/GCMS		BKFANT			14-JUL-95	26-JUL-95	<	.13 UGG
SEMIVOLATILES/SOIL/GCMS		BZALC			14-JUL-95	26-JUL-95	<	.032 UGG
SEMIVOLATILES/SOIL/GCMS		C16A	ATMJ	BL958331	14-JUL-95	26-JUL-95		1 UGG
SEMIVOLATILES/SOIL/GOMS		CHRY	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	.032 UGG
SEMIVOLATILES/SOIL/GCMS		CL6BZ	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	.08 UGG
SEMIVOLATILES/SOIL/GCMS		CL6CP	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	.52 UGG
SEMIVOLATILES/SOIL/GCMS		CL6ET	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	1.8 UGG
SEMIVOLATILES/SOIL/GCMS		DBAHA	ATMJ	BL958331	14-JUL-95	26-JUL-95	<	.31 UGG
SEMIVOLATILES/SOIL/GCMS		DBZFUR			14-JUL-95	26-JUL-95	<	.38 UGG
SEMIVOLATILES/SOIL/GOMS		DEP			14-JUL-95	26-JUL-95	<	.24 UGG
SEMIVOLATILES/SOIL/GOMS		DMP			14-JUL-95	26-JUL-95	<	.063 UGG
SEMIVOLATILES/SOIL/GOMS		DNBP			14-JUL-95	26-JUL-95	<	1.3 UGG
SEMIVOLATILES/SOIL/GOMS		DNOP			14-JUL-95	26-JUL-95	<	. 23 UGG
SEMIVOLATILES/SOIL/GCMS		FANT			14-JUL-95	26-JUL-95	<	.032 UGG
SEMIVOLATILES/SOIL/GOMS		FLRENE			14-JUL-95	26-JUL-95	<	.065 UGG
SEMIVOLATILES/SOIL/GCMS		HCBD			14-JUL-95	26-JUL-95	<	.97 UGG
SEMIVOLATILES/SOIL/GOMS		ICDPYR			14-JUL-95	26-JUL-95	<	2.4 UGG
SEMIVOLATILES/SOIL/GOMS		ISOPHR			14-JUL-95	26-JUL-95	<	.39 UGG
SEMIVOLATILES/SOIL/GCMS		NAP			14-JUL-95	26-JUL-95	<	.74 UGG
SEMIVOLATILES/SOIL/GCMS		NB			14-JUL-95	26-JUL-95	<	1.8 UGG
SEMIVOLATILES/SOIL/GOMS		NNDNPA			14-JUL-95	26-JUL-95	<	1.1 UGG
SEMIVOLATILES/SOIL/GOMS		NNDPA			14-JUL-95	26-JUL-95	<	.29 UGG
SEMIVOLATILES/SOIL/GOMS		ODECA			14-JUL-95	26-JUL-95		.3 UGG
SEMIVOLATILES/SOIL/GCMS		PCP			14-JUL-95	26-JUL-95	<	.76 UGG .032 UGG
SEMIVOLATILES/SOIL/GOMS		PHANTR			14-JUL-95	26-JUL-95	<	.052 UGG
SEMIVOLATILES/SOIL/GOMS		PHENOL			14-JUL-95	26-JUL-95	<	.052 UGG
SEMIVOLATILES/SOIL/GOMS		PYR			14-JUL-95	26-JUL-95	<	.065 UGG
SEMIVOLATILES/SOIL/GOMS		UNK526			14-JUL-95	26-JUL-95 26-JUL-95		.7 UGG
SEMIVOLATILES/SOIL/GCMS		UNK527			14-JUL-95 14-JUL-95	26-JUL-95		.7 UGG
SEMIVOLATILES/SOIL/GCMS		UNK632						4 UGG
SEMIVOLATILES/SOIL/GCMS		UNK641			14-JUL-95 14-JUL-95	26-JUL-95 26-JUL-95		.6 UGG
SEMIVOLATILES/SOIL/GOMS		UNK650 UNK680			14-JUL-95	26-JUL-95		.7 UGG
SEMIVOLATILES/SOIL/GOMS		UNKOOU	AIMJ	DEA30331	14-20F-33	50-20F-32		., 000

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
					***********		-	
METALS/WATER/GFAA	SD18	РВ	ATSB	BL954371	29-JUL-95	21-AUG-95	<	4.47 UGL
METALS/WATER/GFAA	SD25	SE	ATSC	BL954361	29-JUL-95	22-AUG-95	<	2.53 UGL
METALS/WATER/ICP	SS12	AG			11-AUG-95	11-AUG-95	<	10 UGL
METALS/WATER/ICP		AL			11-AUG-95	11-AUG-95	<	112 UGL
METALS/WATER/ICP		BA			11-AUG-95	11-AUG-95	<	2.82 UGL
METALS/WATER/ICP		BE	ATRY	BL954341	11-AUG-95	11-AUG-95	<	1.12 UGL
METALS/WATER/ICP		CA	ATRY	BL954341	11-AUG-95	11-AUG-95	<	105 UGL
METALS/WATER/ICP		CD			11-AUG-95	11-AUG-95	<	6.78 UGL
METALS/WATER/ICP		CO			11-AUG-95	11-AUG-95	<	25 UGL
METALS/WATER/ICP		CR			11-AUG-95	11-AUG-95	<	16.8 UGL
METALS/WATER/ICP		, CD			11-AUG-95	11-AUG-95	<	18.8 UGL
METALS/WATER/ICP		FE	ATRY	BL954341	11-AUG-95	11-AUG-95	<	77.5 UGL
METALS/WATER/ICP		K	ATRY	BL954341	11-AUG-95	11-AUG-95	<	1240 UGL
METALS/WATER/ICP		MG	ATRY	BL954341	11-AUG-95	11-AUG-95	<	135 UGL
METALS/WATER/ICP		MN	ATRY	BL954341	11-AUG-95	11-AUG-95	<	9.67 UGL
METALS/WATER/ICP		NA	ATRY	BL954341	11-AUG-95	11-AUG-95	<	279 UGL
METALS/WATER/ICP		NI	ATRY	BL954341	11-AUG-95	11-AUG-95	<	32.1 UGL
METALS/WATER/ICP		SB	ATRY	BL954341	11-AUG-95	11-AUG-95	<	60 UGL
METALS/WATER/ICP		TL	ATRY	BL954341	11-AUG-95	11-AUG-95	<	125 UGL
METALS/WATER/ICP		V	ATRY	BL954341	11-AUG-95	11-AUG-95	<	27.6 UGL
METALS/WATER/ICP		ZN	ATRY	BL954341	11-AUG-95	11-AUG-95	<	18 UGL
ANIONS/WATER/IONCHROM	TT09	CL		BL959021		20-JUL-95	<	278 UGL
ANIONS/WATER/IONCHROM		S04	ATOB	BL959021	20-JUL-95	20-JUL-95	<	175 UGL
PESTICIDES/WATER/GCEC	UH20	ABHC			14-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		ACLDAN			14-JUL-95	01-AUG-95	<	.0312 UGL
PESTICIDES/WATER/GCEC		AENSLF		BL958671		01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		ALDRN			14-JUL-95	01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		BBHC			14-JUL-95	01-AUG-95	<	.0099 UGL
PESTICIDES/WATER/GCEC		BENSLF	ATMH	BL958671	14-JUL-95	01-AUG-95	<	.0077 UGL

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
PESTICIDES/WATER/GCEC	UH20	DBHC	ATMH	BL958671	14-JUL-95	01-AUG-95	<	.0034 UGL
PESTICIDES/WATER/GCEC	UIILU	DLDRN		BL958671		01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		ENDRN		BL958671		01-AUG-95	<	-0176 UGL
PESTICIDES/WATER/GCEC		ENDRNA	ATMH	BL 958671	14-JUL-95	01-AUG-95	<	.0504 UGL
PESTICIDES/WATER/GCEC		HPCL			14-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		HPCLE			14-JUL-95	01-AUG-95	<	.0063 UGL
PESTICIDES/WATER/GCEC		ISODR			14-JUL-95	01-AUG-95		.00702 UGL
PESTICIDES/WATER/GCEC		LIN			14-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		MEXCLR			14-JUL-95	01-AUG-95	<	.075 UGL
PESTICIDES/WATER/GCEC		PCB016			14-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		PCB221	ATMH	BL958671	14-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		PCB232	ATMH	BL958671	14-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		PCB242			14-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		PCB248			14-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		PC8254			14-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		PCB260			14-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		PPDDD			14-JUL-95	01-AUG-95	<	.0081 UGL
PESTICIDES/WATER/GCEC		PPDDE			14-JUL-95	01-AUG-95	<	.0039 UGL
PESTICIDES/WATER/GCEC		PPDDT			14-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		TXPHEN	ATMH	BL958671	14-JUL-95	01-AUG-95	<	1.64 UGL
ORGANICS/WATER/GCMS	UM25	123TCB	ATML	BL958541	15-JUL-95	26-JUL-95	<	5.8 UGL
ORGANICS/WATER/GCMS		124TCB	ATML	BL958541	15-JUL-95	26-JUL-95	<	2.4 UGL
ORGANICS/WATER/GCMS		12DCLB	ATML	BL958541	15-JUL-95	26-JUL-95	<	1.2 UGL
ORGANICS/WATER/GCMS		12DPH			15-JUL-95	26-JUL-95	<	13 UGL
ORGANICS/WATER/GCMS		13DCLB			15-JUL-95	26-JUL-95	<	3.4 UGL
ORGANICS/WATER/GCMS		13DNB			15-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		14DCLB			15-JUL-95	26-JUL-95	<	1.5 UGL
ORGANICS/WATER/GCMS		236TCP			15-JUL-95	26-JUL-95	<	1.7 UGL
ORGANICS/WATER/GCMS	1.0	245TCP			15-JUL-95	26-JUL-95	<	2.8 UGL
ORGANICS/WATER/GCMS		246TCP			15-JUL-95	26-JUL-95	<	3.6 UGL
ORGANICS/WATER/GCMS		24DCLP			15-JUL-95	26-JUL-95	<	8.4 UGL
ORGANICS/WATER/GCMS		24DMPN			15-JUL-95	26-JUL-95	<	4.4 UGL
ORGANICS/WATER/GCMS		24DNP	ATML	BL958541	15-JUL-95	26-JUL-95	<	180 UGL

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value	Unit
ORGANICS/WATER/GCMS	UM25	24DNT	ATML	BL958541	15-JUL-95	26-JUL-95	<	5.8	UGL
ORGANICS/WATER/GCMS		26DNA			15-JUL-95	26-JUL-95	<	8.8	UGL
ORGANICS/WATER/GCMS		26DNT			15-JUL-95	26-JUL-95	<	6.7	UGL.
ORGANICS/WATER/GCMS		2CLP	ATML	BL958541	15-JUL-95	26-JUL-95	<	2.8	UGL
ORGANICS/WATER/GCMS		2CNAP	ATML	BL958541	15-JUL-95	26-JUL-95	<	2.6	UGL
ORGANICS/WATER/GCMS		2MNAP	ATML	BL958541	15-JUL-95	26-JUL-95	<	1.3	UGL
ORGANICS/WATER/GCMS		2MP	ATML	BL958541	15-JUL-95	26-JUL-95	<	3.6	UGL
ORGANICS/WATER/GCMS		2NANIL	ATML	BL958541	15-JUL-95	26-JUL-95	<	31	UGL
ORGANICS/WATER/GCMS		2NP	ATML	BL958541	15-JUL-95	26-JUL-95	<	8.2	
ORGANICS/WATER/GCMS		33DCBD			15-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		35DNA			15-JUL-95	26-JUL-95	<	21	
ORGANICS/WATER/GCMS		3NANIL			15-JUL-95	26-JUL-95	<	15	
ORGANICS/WATER/GCMS		3NT			15-JUL-95	26-JUL-95	<	2.9	
ORGANICS/WATER/GCMS		46DN2C			15-JUL-95	26-JUL-95	<	50	
ORGANICS/WATER/GCMS		4BRPPE			15-JUL-95	26-JUL-95	<	22	
ORGANICS/WATER/GCMS		4CANIL			15-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		4CL3C			15-JUL-95	26-JUL-95	<	8.5	
ORGANICS/WATER/GCMS		4CLPPE			15-JUL-95	26-JUL-95	<	23	
ORGANICS/WATER/GCMS		4MP			15-JUL-95	26-JUL-95	<	2.8	
ORGANICS/WATER/GCMS		4NANIL			15-JUL-95	26-JUL-95	<	31	
ORGANICS/WATER/GCMS		4NP			15-JUL-95	26-JUL-95	<	96	
ORGANICS/WATER/GCMS		ABHC			15-JUL-95	26-JUL-95	<	5.3	
ORGANICS/WATER/GCMS		AENSLF			15-JUL-95	26-JUL-95	<	23	
ORGANICS/WATER/GCMS		ALDRN			15-JUL-95	26-JUL-95	<	13	
ORGANICS/WATER/GCMS		ANAPNE			15-JUL-95	26-JUL-95	<	5.8	
ORGANICS/WATER/GCMS		ANAPYL			15-JUL-95	26-JUL-95	<	5.1	
ORGANICS/WATER/GCMS		ANTRC			15-JUL-95	26-JUL-95	<	5.2	
ORGANICS/WATER/GCMS		ATZ			15-JUL-95	26-JUL-95	<	5.9	
ORGANICS/WATER/GCMS		B2CEXM			15-JUL-95	26-JUL-95	<	6.8	
ORGANICS/WATER/GCMS		BZCIPE			15-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		B2CLEE			15-JUL-95	26-JUL-95	<	.68	
ORGANICS/WATER/GCMS		B2EHP			15-JUL-95	26-JUL-95	<	7.7	
ORGANICS/WATER/GCMS		BAANTR			15-JUL-95	26-JUL-95	<	9.8	
ORGANICS/WATER/GCMS		BAPYR	ATML	BL958541	15-JUL-95	26-JUL-95	<	14	UGL

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
ORGANICS/WATER/GCMS	UM25	BBFANT	ATMI	RI 958541	15-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS	UND	BBHC			15-JUL-95	26-JUL-95	<	17 UGL
ORGANICS/WATER/GCMS		BBZP			15-JUL-95	26-JUL-95	<	28 UGL
ORGANICS/WATER/GCMS		BENSLF			15-JUL-95	26-JUL-95	<	42 UGL
ORGANICS/WATER/GCMS		BENZOA			15-JUL-95	26-JUL-95	<	3.1 UGL
ORGANICS/WATER/GCMS		BGHIPY			15-JUL-95	26-JUL-95	<	15 UGL
ORGANICS/WATER/GCMS		BKFANT			15-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		BRMCIL	ATML	BL958541	15-JUL-95	26-JUL-95	<	2.9 UGL
ORGANICS/WATER/GCMS		BZALC			15-JUL-95	26-JUL-95	<	4 UGL
ORGANICS/WATER/GCMS		CHRY	ATML	BL958541	15-JUL-95	26-JUL-95	<	7.4 UGL
ORGANICS/WATER/GCMS		CL6BZ	ATML	BL958541	15-JUL-95	26-JUL-95	<	12 UGL
ORGANICS/WATER/GCMS		CL6CP	ATML	BL958541	15-JUL-95	26-JUL-95	<	54 UGL
ORGANICS/WATER/GCMS		CL6ET			15-JUL-95	26-JUL-95	<	8.3 UGL
ORGANICS/WATER/GCMS		CLDAN			15-JUL-95	26-JUL-95	<	37 UGL
ORGANICS/WATER/GCMS		CPMS			15-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		CPMSO			15-JUL-95	26-JUL-95	<	15 UGL
ORGANICS/WATER/GCMS		CPMS02	ATML	BL958541	15-JUL-95	26-JUL-95	<	5.3 UGL
ORGANICS/WATER/GCMS		DBAHA	ATML	BL958541	15-JUL-95	26-JUL-95	<	12 UGL
ORGANICS/WATER/GCMS		DBCP			15-JUL-95	26-JUL-95	<	12 UGL
ORGANICS/WATER/GCMS		DBHC			15-JUL-95	26-JUL-95	<	3 UGL
ORGANICS/WATER/GCMS		DBZFUR			15-JUL-95	26-JUL-95	<	5.1 UGL
ORGANICS/WATER/GCMS		DCPD			15-JUL-95	26-JUL-95	<	5.5 UGL
ORGANICS/WATER/GCMS		DDVP			15-JUL-95	26-JUL-95	<	8.5 UGL
ORGANICS/WATER/GCMS		DEP			15-JUL-95	26-JUL-95	<	5.9 UGL
ORGANICS/WATER/GCMS		DIMP			15-JUL-95	26-JUL-95	<	21 UGL
ORGANICS/WATER/GCMS		DITH			15-JUL-95	26-JUL-95	<	3.3 UGL
ORGANICS/WATER/GCMS		DLDRN			15-JUL-95	26-JUL-95	<	26 UGL
ORGANICS/WATER/GCMS		DMMP			15-JUL-95	26-JUL-95	<	130 UGL
ORGANICS/WATER/GCMS		DMP			15-JUL-95	26-JUL-95	<	2.2 UGL
ORGANICS/WATER/GCMS		DNBP			15-JUL-95	26-JUL-95	<	33 UGL
ORGANICS/WATER/GCMS		DNOP			15-JUL-95	26-JUL-95	<	1.5 UGL
ORGANICS/WATER/GCMS		ENDRN			15-JUL-95	26-JUL-95	<	18 UGL
ORGANICS/WATER/GCMS		ENDRNA			15-JUL-95	26-JUL-95	<	5 UGL
ORGANICS/WATER/GCMS		ENDRNK	ATML	BL958541	15-JUL-95	26-JUL-95	<	6 UGL

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
ORGANICS/WATER/GCMS	UM25	ESFS04	ATML	BL958541	15-JUL-95	26-JUL-95	<	50 UGL
ORGANICS/WATER/GCMS		FAMPHR	ATML		15-JUL-95	26-JUL-95	<	20 UGL
ORGANICS/WATER/GCMS		FANT	ATML	BL958541	15-JUL-95	26-JUL-95	<	24 UGL
ORGANICS/WATER/GCMS		FLRENE			15-JUL-95	26-JUL-95	<	9.2 UGL
ORGANICS/WATER/GCMS		HCBD	ATML	BL958541	15-JUL-95	26-JUL-95	<	8.7 UGL
ORGANICS/WATER/GCMS		HPCL	ATML	BL958541	15-JUL-95	26-JUL-95	<	38 UGL
ORGANICS/WATER/GCMS		HPCLE	ATML	BL958541	15-JUL-95	26-JUL-95	<	28 UGL
ORGANICS/WATER/GCMS		ICDPYR	ATML	BL958541	15-JUL-95	26-JUL-95	<	21 UGL
ORGANICS/WATER/GCMS		ISODR	ATML	BL958541	15-JUL-95	26-JUL-95	<	7.8 UGL
ORGANICS/WATER/GCMS		ISOPHR	ATML	BL958541	15-JUL-95	26-JUL-95	<	2.4 UGL
ORGANICS/WATER/GCMS		KEP	ATML	BL958541	15-JUL-95	26-JUL-95	<	20 UGL
ORGANICS/WATER/GCMS		LIN	ATML	BL958541	15-JUL-95	26-JUL-95	<	7.2 UGL
ORGANICS/WATER/GCMS		MEXCLR	ATML	BL958541	15-JUL-95	26-JUL-95	<	11 UGL
ORGANICS/WATER/GCMS		MIREX			15-JUL-95	26-JUL-95	<	24 UGL
ORGANICS/WATER/GCMS		MLTHN			15-JUL-95	26-JUL-95	<	21 UGL
ORGANICS/WATER/GCMS		NAP	ATML	BL958541	15-JUL-95	26-JUL-95	<	.5 UGL
ORGANICS/WATER/GCMS	Y	NB			15-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		NNDMEA			15-JUL-95	26-JUL-95	<	9.7 UGL
ORGANICS/WATER/GCMS		NNDNPA			15-JUL-95	26-JUL-95	<	6.8 UGL
ORGANICS/WATER/GCMS		NNDPA			15-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		OXAT			15-JUL-95	26-JUL-95	<	27 UGL
ORGANICS/WATER/GCMS		PCB016			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB221			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB232			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB242			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB248			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB254			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PCB260			15-JUL-95	26-JUL-95	<	13 UGL
ORGANICS/WATER/GCMS		PCP			15-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		PHANTR			15-JUL-95	26-JUL-95	<	9.9 UGL
ORGANICS/WATER/GCMS		PHENOL			15-JUL-95	26-JUL-95	<	2.2 UGL
ORGANICS/WATER/GCMS		PPDDD			15-JUL-95	26-JUL-95	<	18 UGL
ORGANICS/WATER/GCMS		PPDDE			15-JUL-95	26-JUL-95	<	14 UGL
ORGANICS/WATER/GCMS		PPDDT	ATML	BL958541	15-JUL-95	26-JUL-95	<	18 UGL

Method Description	IRDMIS Method Code	Test Name	Lot	Lab Number	Prep Date	Analysis Date	<	Value Unit
					47		-	
ORGANICS/WATER/GCMS	UM25	PRTHN			15-JUL-95	26-JUL-95	<	37 UGL
ORGANICS/WATER/GCMS		PYR	ATML	BL958541	15-JUL-95	26-JUL-95	<	17 UGL
ORGANICS/WATER/GCMS		SUPONA	ATML	BL958541	15-JUL-95	26-JUL-95	<	19 UGL
ORGANICS/WATER/GCMS		TXPHEN	ATML	BL958541	15-JUL-95	26-JUL-95	<	17 UGL
METALS/SOIL/CVAA	Y9	HG	ATQB	BL953461	25-JUL-95	26-JUL-95	<	.05 UGG

TABLE C-16

RINSE BLANKS

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value	Unit
	1602	SSW-95-09J	WR0910X1	UC02133	TSS	ATVF	10-JUL-95	17-JUL-95	<	4	UGL
	2340	SSW-95-09J	WR0910X1	UC02133	HARD	ATRZ	10-JUL-95	11-AUG-95	<	818	UGL
	3102	SSW-95-09J	WR0910X1	UC02133	ALK	ATOG	10-JUL-95	21-JUL-95	<	10000	UGL
	4151	SSN-95-09J SSD-95-09L		UC02133 UC02146	TOC TOC		10-JUL-95 10-JUL-95	20-JUL-95 20-JUL-95	<	19900	
	4181	SSD-95-09L SSW-95-09J		UC02146 UC02133	TPHC TPHC		10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <		UGL UGL
METALS/WATER/GFAA METALS/WATER/GFAA METALS/WATER/GFAA	AX8	SSD-95-25A SSW-95-09J SSW-95-09J	WR0910X1	UC02132 UC02133 UC02134	AS AS AS	ATSA	10-JUL-95 10-JUL-95 10-JUL-95	21-AUG-95 21-AUG-95 21-AUG-95	« «	2.35 2.35 2.35	UGL
METALS/WATER/CVAA METALS/WATER/CVAA METALS/WATER/CVAA	CC8	SSD-95-25A SSW-95-09J SSW-95-09J	WC0910X1	UC02132 UC02134 UC02133	HG HG HG	ATQH	10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 27-JUL-95	× × ×	.1	UGL UGL UGL
METALS/WATER/GFAA METALS/WATER/GFAA METALS/WATER/GFAA	SD18	SSD-95-25A SSW-95-09J SSW-95-09J	WR0910X1	UC02132 UC02133 UC02134	PB PB PB	ATSB	10-JUL-95 10-JUL-95 10-JUL-95	21-AUG-95 21-AUG-95 21-AUG-95	< < <	4.47 4.47 4.47	UGL
METALS/WATER/GFAA METALS/WATER/GFAA METALS/WATER/GFAA	S025	SSD-95-25A SSW-95-09J SSW-95-09J	WC0910X1	UC02132 UC02134 UC02133	SE SE SE	ATSC	10-JUL-95 10-JUL-95 10-JUL-95	22-AUG-95 22-AUG-95 22-AUG-95	< < <	2.53 2.53 2.53	UGL
METALS/WATER/ICP METALS/WATER/ICP METALS/WATER/ICP	SS12	SSD-95-25A SSW-95-09J SSW-95-09J	WR0910X1 WC0910X1	UC02132 UC02133 UC02134	AG AG AG	ATRY	10-JUL-95 10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95 11-AUG-95	< < <	10 10	UGL UGL UGL
METALS/WATER/ICP METALS/WATER/ICP METALS/WATER/ICP METALS/WATER/ICP		SSD-95-25A SSW-95-09J SSW-95-09J SSD-95-25A	WR0910X1 WC0910X1	UC02132 UC02133 UC02134 UC02132	AL AL AL BA	ATRY	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95 11-AUG-95 11-AUG-95	V V V	112	UGL
METALS/WATER/ICP METALS/WATER/ICP		SSW-95-09J SSW-95-09J	WC0910X1	UC02134 UC02133	BA BA	ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	2.82	UGL

RINSE BLANKS

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value Unit
METALS/WATER/ICP	SS12	SSW-95-09J	WR0910X1	UC02133	BE	ATRY	10-JUL-95	11-AUG-95	<	1.12 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	BE	ATRY	10-JUL-95	11-AUG-95	<	1.12 UGL
METALS/WATER/ICP		SSD-95-25A		UC02132	BE	ATRY	10-JUL-95	11-AUG-95	<	1.12 UGL
METALS/WATER/ICP		SSD-95-25A		UC02132	CA	ATRY	10-JUL-95	11-AUG-95	<	105 UGL
METALS/WATER/ICP		SSW-95-09J		UC02134	CA	ATRY	10-JUL-95	11-AUG-95	<	105 UGL
METALS/WATER/ICP		SSW-95-09J		UC02133	CA	ATRY	10-JUL-95	11-AUG-95	<	105 UGL
METALS/WATER/ICP		SSD-95-25A		UC02132	CD	ATRY	10-JUL-95	11-AUG-95	<	6.78 UGL
METALS/WATER/ICP		SSW-95-09J		UC02134	CD	ATRY	10-JUL-95	11-AUG-95	<	. 6.78 UGL
METALS/WATER/ICP		SSN-95-09J	WR0910X1	UC02133	CD	ATRY	10-JUL-95	11-AUG-95	<	6.78 UGL
METALS/WATER/ICP		SSD-95-25A		UC02132	CO	ATRY	10-JUL-95	11-AUG-95	<	25 UGL
METALS/WATER/ICP		SSW-95-09J		UC02134	CO	ATRY	10-JUL-95	11-AUG-95	<	25 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	CO	ATRY	10-JUL-95	11-AUG-95	<	25 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	CR	ATRY	10-JUL-95	11-AUG-95	<	16.8 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	CR	ATRY	10-JUL-95	11-AUG-95	<	16.8 UGL
METALS/WATER/ICP		SSH-95-09J		UC02134	CR	ATRY	10-JUL-95	11-AUG-95	<	16.8 UGL
METALS/WATER/ICP		SSD-95-25A		UC02132	CU	ATRY	10-JUL-95	11-AUG-95	<	18.8 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	CU	ATRY	10-JUL-95	11-AUG-95	<	18.8 UGL
METALS/WATER/ICP		SSN-95-09J	WC0910X1	UC02134	CU	ATRY	10-JUL-95	11-AUG-95	<	18.8 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	FE	ATRY	10-JUL-95	11-AUG-95		109 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	FE	ATRY	10-JUL-95	11-AUG-95	<	77.5 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	FE		10-JUL-95	11-AUG-95	<	77.5 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	K	ATRY	10-JUL-95	11-AUG-95	<	1240 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	K	ATRY	10-JUL-95	11-AUG-95	<	1240 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	K	ATRY	10-JUL-95	11-AUG-95	<	1240 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	MG	ATRY	10-JUL-95	11-AUG-95	<	135 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	MG	ATRY	10-JUL-95	11-AUG-95	<	135 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	MG	ATRY	10-JUL-95	11-AUG-95	<	135 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	MN	ATRY	10-JUL-95	11-AUG-95	<	9.67 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	MN	ATRY	10-JUL-95	11-AUG-95	<	9.67 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	MN	ATRY	10-JUL-95	11-AUG-95	<	9.67 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	NA	ATRY	10-JUL-95	11-AUG-95	<	279 UGL
METALS/WATER/ICP		SSH-95-09J	WC0910X1	UC02134	NA	ATRY	10-JUL-95	11-AUG-95	<	279 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	NA	ATRY	10-JUL-95	11-AUG-95	<	279 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	NI	ATRY	10-JUL-95	11-AUG-95	<	32.1 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	NI		10-JUL-95	11-AUG-95	<	32.1 UGL
METALS/WATER/ICP		SSW-95-09J		UC02133	NI		10-JUL-95	11-AUG-95	<	32,1 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	SB	ATRY	10-JUL-95	11-AUG-95	<	60 UGL

RINSE BLANKS

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value Unit
METALS/WATER/ICP	SS12	SSW-95-09J	WC0910X1	UC02134	SB	ATRY	10-JUL-95	11-AUG-95	<	60 UGL
METALS/WATER/ICP		SSW-95-09J		UC02133	SB		10-JUL-95	11-AUG-95	<	60 UGL
METALS/WATER/ICP		SSW-95-09J		UC02133	TL	ATRY	10-JUL-95	11-AUG-95	<	125 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	TL	ATRY	10-JUL-95	11-AUG-95	<	125 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	TL	ATRY	10-JUL-95	11-AUG-95	<	125 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	V	ATRY	10-JUL-95	11-AUG-95	<	27.6 UGL
METALS/WATER/ICP		SSW-95-09J	WC0910X1	UC02134	V	ATRY	10-JUL-95	11-AUG-95	<	27.6 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	٧		10-JUL-95	11-AUG-95	<	· 27.6 UGL
METALS/WATER/ICP		SSW-95-09J	WR0910X1	UC02133	ZN		10-JUL-95	11-AUG-95		85.6 UGL
METALS/WATER/ICP		SSW-95-09J		UC02134	ZN		10-JUL-95	11-AUG-95		19.4 UGL
METALS/WATER/ICP		SSD-95-25A	DR250100	UC02132	ZN	ATRY	10-JUL-95	11-AUG-95	<	18 UGL
ANIONS/WATER/IONCHROM	TT09	SSW-95-09J	WR0910X1	UC02133	CL	ATOB	10-JUL-95	20-JUL-95	<	278 UGL
ANIONS/WATER/IONCHROM		SSW-95-09J	WR0910X1	UC02133	S04	ATOB	10-JUL-95	20-JUL-95	<	175 UGL
PESTICIDES/WATER/GCEC	UH20	SSD-95-25A	DR250100	UC02132	ABHC	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	ABHC	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	ACLDAN		10-JUL-95	01-AUG-95	<	.0312 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J		UC02133	ACLDAN		10-JUL-95	01-AUG-95	<	.0312 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	AENSLF		10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSM-95-09J		UC02133	AENSLF		10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	ALDRN		10-JUL-95	01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J		UC02133	ALDRN		10-JUL-95	01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	BBHC		10-JUL-95	01-AUG-95	<	.0099 UGL
PESTICIDES/WATER/GCEC		SSM-95-09J		UC02133	BBHC		10-JUL-95	01-AUG-95	<	.0099 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	BENSLF		10-JUL-95	01-AUG-95	<	.0077 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J		UC02133	BENSLF		10-JUL-95	01-AUG-95	<	.0077 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	DBHC		10-JUL-95	01-AUG-95	<	.0034 UGL
PESTICIDES/WATER/GCEC		SSN-95-09J		UC02133	DBHC		10-JUL-95	01-AUG-95	<	.0034 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	DLDRN		10-JUL-95	01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J		UC02133	DLDRN		10-JUL-95	01-AUG-95	<	.0074 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132	ENDRN		10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	<	.0176 UGL
PESTICIDES/WATER/GCEC		SSN-95-09J		UC02133	ENDRN			01-AUG-95	<	.0504 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A		UC02132 UC02133	ENDRNA ENDRNA		10-JUL-95 10-JUL-95	01-AUG-95	< <	.0504 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J SSD-95-25A		UC02133	HPCL		10-JUL-95	01-AUG-95		.229 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J		UC02132	HPCL		10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		PAN-AD-NAP	MK03 IOV I	0002133	HECL	AIRI	10-00L-93	UI MUG 73		100E3 OGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	٠.	Value Unit
PESTICIDES/WATER/GCEC	UH20	SSD-95-25A	DR250100	UC02132	HPCLE	ATMH	10-JUL-95	01-AUG-95	<	.0063 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	HPCLE	ATMH	10-JUL-95	01-AUG-95	<	.0063 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	ISODR	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	ISODR	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	LIN	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	LIN	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	MEXCLR	ATMH	10-JUL-95	01-AUG-95	<	.075 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	MEXCLR	ATMH	10-JUL-95	01-AUG-95	<	075 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PCB016		10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB016		10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PCB221	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB221	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PC8232	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB232	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSN-95-09J	WR0910X1	UC02133	PCB242	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB242	HMTA	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PCB248	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB248	ATMH	10-JUL-95	01-AUG-95	<	.385 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PCB254	HMTA	10-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB254	HMTA	10-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PCB260	ATMH	10-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PCB260		10-JUL-95	01-AUG-95	<	.176 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PPDDD	ATMH	10-JUL-95	01-AUG-95	<	.0081 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PPDDD	ATMH	10-JUL-95	01-AUG-95	<	.0081 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PPDDE	ATMH	10-JUL-95	01-AUG-95	<	.0039 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PPDDE	ATMH	10-JUL-95	01-AUG-95	<	.0039 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	PPDDT	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	PPDDT	ATMH	10-JUL-95	01-AUG-95	<	.0025 UGL
PESTICIDES/WATER/GCEC		SSW-95-09J	WR0910X1	UC02133	TXPHEN	ATMH	10-JUL-95	01-AUG-95	<	1.64 UGL
PESTICIDES/WATER/GCEC		SSD-95-25A	DR250100	UC02132	TXPHEN	HMTA	10-JUL-95	01-AUG-95	<	1.64 UGL
ORGANICS/WATER/GCMS	UM25	SSD-95-25A		UC02132	123TCB		10-JUL-95	26-JUL-95	<	5.8 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	123TCB		10-JUL-95	26-JUL-95	<	5.8 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	124TCB		10-JUL-95	26-JUL-95	<	2.4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	124TCB		10-JUL-95	26-JUL-95	<	2.4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	120CLB		10-JUL-95	26-JUL-95	<	1.2 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	12DCLB	ATML	10-JUL-95	26-JUL-95	<	1.2 UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value	e Unit
ORGANICS/WATER/GCMS	UM25	SSD-95-25A	DR250100	UC02132	120PH	ATML	10-JUL-95	26-JUL-95	<	13	3 UGL
ORGANICS/WATER/GCMS	C. 200	SSW-95-09J	WR0910X1	UC02133	12DPH	ATML	10-JUL-95	26-JUL-95	<	13	3 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	13DCLB	ATML	10-JUL-95	26-JUL-95	<	3.4	4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	13DCLB	ATML	10-JUL-95	26-JUL-95	<	3.4	4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	13DNB	ATML	10-JUL-95	26-JUL-95	<	10	0 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	13DNB	ATML	10-JUL-95	26-JUL-95	<	10	0 UGL
DRGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	14DCLB	ATML	10-JUL-95	26-JUL-95	<	1.5	5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	14DCLB	ATML	10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	236TCP	ATML	10-JUL-95	26-JUL-95	<	1.7	7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	236TCP	ATML	10-JUL-95	26-JUL-95	<		7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	245TCP	ATML	10-JUL-95	26-JUL-95	<	2.8	B UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	245TCP	ATML	10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	246TCP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	246TCP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	24DCLP		10-JUL-95	26-JUL-95	<		4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	24DCLP		10-JUL-95	26-JUL-95	<		4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	24DMPN		10-JUL-95	26-JUL-95	<		4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	24DMPN		10-JUL-95	26-JUL-95	<		4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	24DNP		10-JUL-95	26-JUL-95	<		O UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	24DNP		10-JUL-95	26-JUL-95	<		O UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	24DNT	ATML		26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	24DNT		10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	26DNA		10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS	-	SSW-95-09J		UC02133	26DNA		10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	26DNT		10-JUL-95	26-JUL-95	<		7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	26DNT		10-JUL-95	26-JUL-95	<		7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	2CLP		10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	2CLP		10-JUL-95	26-JUL-95	<		B UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	2CNAP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	2CNAP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	2MNAP		10-JUL-95	26-JUL-95	<		3 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	2MNAP		10-JUL-95	26-JUL-95	<		3 UGL
DRGANICS/WATER/GCMS		SSW-95-09J		UC02133	2MP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	2MP		10-JUL-95	26-JUL-95	<		5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	2NANIL.		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ZNANIL		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	2NP	ATML	10-JUL-95	26-JUL-95	<	8.2	2 UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	٧	alue	Unit
ORGANICS/WATER/GCMS	UM25	SSD-95-25A	DR250100	UC02132	2NP		10-JUL-95	26-JUL-95	<		8.2	
ORGANICS/WATER/GCMS	49.75	SSW-95-09J	WR0910X1	UC02133	33DCBD	ATML	10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	33DCBD		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	35DNA		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	35DNA		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	3NANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	3NANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	3NT		10-JUL-95	26-JUL-95	<		2.9	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	3NT		10-JUL-95	26-JUL-95	<		2.9	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	46DNZC		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	46DN2C		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4BRPPE		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4BRPPE		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4CANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4CANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4CL3C		10-JUL-95	26-JUL-95	<		8.5	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4CL3C		10-JUL-95	26-JUL-95	<		8.5	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4CLPPE		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4CLPPE		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4MP		10-JUL-95	26-JUL-95	<		2.8	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4MP		10-JUL-95	26-JUL-95	<		2.8	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4NANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4NANIL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	4NP		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	4NP		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ABHC		10-JUL-95	26-JUL-95	<		5.3	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ABHC		10-JUL-95	26-JUL-95	<		5.3	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	AENSLF		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	AENSLF		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ALDRN		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ALDRN		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ANAPNE		10-JUL-95	26-JUL-95	<		5.8	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ANAPNE		10-JUL-95	26-JUL-95	<		5.8	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ANAPYL		10-JUL-95	26-JUL-95	<		5.1	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ANAPYL		10-JUL-95	26-JUL-95	<		5.1	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ANTRC		10-JUL-95	26-JUL-95	<		5.2	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	ANTRC	ATML	10-JUL-95	26-JUL-95	<		5.2	UGL

Method Description	IRDMIS Method Code	IROMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value Unit
ORGANICS/WATER/GCMS	UM25	SSW-95-09J	WR0910X1	UC02133	ATZ	ATML	10-JUL-95	26-JUL-95	<	5.9 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	ATZ	ATML	10-JUL-95	26-JUL-95	<	5.9 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	B2CEXM	ATML	10-JUL-95	26-JUL-95	<	6.8 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	B2CEXM	ATML	10-JUL-95	26-JUL-95	<	6.8 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	B2CIPE	ATML	10-JUL-95	26-JUL-95	<	5 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	B2CIPE	ATML	10-JUL-95	26-JUL-95	<	5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	B2CLEE	ATML	10-JUL-95	26-JUL-95	<	.68 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	B2CLEE	ATML	10-JUL-95	26-JUL-95	<	. 68 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	B2EHP	ATML	10-JUL-95	26-JUL-95	<	7.7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	B2EHP	ATML	10-JUL-95	26-JUL-95	<	7.7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BAANTR	ATML	10-JUL-95	26-JUL-95	<	9.8 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BAANTR	ATML	10-JUL-95	26-JUL-95	<	9.8 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BAPYR	ATML	10-JUL-95	26-JUL-95	<	14 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BAPYR	ATML	10-JUL-95	26-JUL-95	<	14 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BBFANT	ATML	10-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BBFANT		10-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BBHC	ATML	10-JUL-95	26-JUL-95	<	17 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BBHC	ATML	10-JUL-95	26-JUL-95	<	17 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BBZP		10-JUL-95	26-JUL-95	<	28 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BBZP		10-JUL-95	26-JUL-95	<	28 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BENSLF	ATML	10-JUL-95	26-JUL-95	<	42 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BENSLF		10-JUL-95	26-JUL-95	<	42 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BENZOA		10-JUL-95	26-JUL-95	<	3.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BENZOA		10-JUL-95	26-JUL-95	<	3.1 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BGHIPY	ATML	10-JUL-95	26-JUL-95	<	15 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BGHIPY	ATML	10-JUL-95	26-JUL-95	<	15 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BKFANT	ATML	10-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BKFANT	ATML	10-JUL-95	26-JUL-95	<	10 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BRMCIL		10-JUL-95	26-JUL-95	<	2.9 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	BRMCIL		10-JUL-95	26-JUL-95	<	2.9 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	BZALC		10-JUL-95	26-JUL-95	<	4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	BZALC		10-JUL-95	26-JUL-95	<	4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CHRY		10-JUL-95	26-JUL-95	<	7.4 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	CHRY		10-JUL-95	26-JUL-95	<	7.4 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CL6BZ		10-JUL-95	26-JUL-95	<	12 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	CL68Z		10-JUL-95	26-JUL-95	<	12 UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CL6CP	ATML	10-JUL-95	26-JUL-95	<	54 UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	*	Value	Unit
ORGANICS/WATER/GCMS	UM25	SSD-95-25A	DR250100	UC02132	CL6CP	ATML	10-JUL-95	26-JUL-95	<	54	UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CL6ET	ATML	10-JUL-95	26-JUL-95	<	8.3	UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	CL6ET	ATML	10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CLDAN		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	CLDAN	ATML	10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CPMS		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	CPMS		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CPMSO	ATML	10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	CPMSO		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	CPMSO2		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	CPMSO2		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	DBAHA		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DBAHA		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DBCP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DBCP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DBHC		10-JUL-95	26-JUL-95	<	3	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DBHC		10-JUL-95	26-JUL-95	<	_ 3	7.00
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DBZFUR		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DBZFUR		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DCPD		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DCPD		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSM-95-09J		UC02133	DDVP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DDVP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DEP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DEP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSM-95-09J		UC02133	DIMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DIMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DITH		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DITH		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DLDRN		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DLDRN		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DMMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DMMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DMP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	DNBP		10-JUL-95	26-JUL-95	<		UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DK250100	UC02132	DNBP	AIML	10-JUL-95	26-JUL-95	<	23	UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Ve	alue	Unit
ORGANICS/WATER/GCMS	UM25	SSM-95-09J	WR0910X1	UC02133	DNOP		10-JUL-95	26-JUL-95	<		1.5	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	DNOP		10-JUL-95	26-JUL-95	<		1.5	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	ENDRN	ATML	10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	ENDRN		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSH-95-09J	WR0910X1	UC02133	ENDRNA		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ENDRNA		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	ENDRNK		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ENDRNK		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	ESFS04		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	ESFS04		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	FAMPHR		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	FAMPHR		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	FANT		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS	8	SSD-95-25A	DR250100	UC02132	FANT		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	FLRENE		10-JUL-95	26-JUL-95	<		9.2	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	FLRENE		10-JUL-95	26-JUL-95	<		9.2	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	HCBD		10-JUL-95	26-JUL-95	<		8.7	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	HCBD		10-JUL-95	26-JUL-95	<		8.7	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	HPCL		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	HPCL	ATML	10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSH-95-09J	WR0910X1	UC02133	HPCLE	ATML	10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	HPCLE		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	ICDPYR		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	1CDPYR		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	ISODR	ATML	10-JUL-95	26-JUL-95	<		7.8	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	ISODR		10-JUL-95	26-JUL-95	<		7.8	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	ISOPHR		10-JUL-95	26-JUL-95	<		2.4	UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	ISOPHR	ATML	10-JUL-95	26-JUL-95	<		2.4	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	KEP		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	KEP		10-JUL-95	26-JUL-95	<			UGL
ORGANICS/WATER/GCMS		SSH-95-09J		UC02133	LIN		10-JUL-95	26-JUL-95	<		7.2	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	LIN		10-JUL-95	26-JUL-95	<		7.2	
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	MEXCLR		10-JUL-95	26-JUL-95	<		11	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	MEXCLR		10-JUL-95	26-JUL-95	<		11	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	MIREX		10-JUL-95	26-JUL-95	<		24	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	MIREX		10-JUL-95	26-JUL-95	<		24	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	MLTHN	ATML	10-JUL-95	26-JUL-95	<		21	UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Value Unit
ORGANICS/WATER/GCMS	UM25	SSD-95-25A	DR250100	UC02132	MLTHN	ATML	10-JUL-95	26-JUL-95	<	21 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	NAP	ATML	10-JUL-95	26-JUL-95	<	.5 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	NAP	ATML	10-JUL-95	26-JUL-95	<	.5 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	NB		10-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	NB	ATML	10-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	NNDMEA	ATML	10-JUL-95	26-JUL-95	<	9.7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	NNDMEA	ATML	10-JUL-95	26-JUL-95	<	9.7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	NNDNPA	ATML	10-JUL-95	26-JUL-95	<	. 6.8 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	NNDNPA	ATML	10-JUL-95	26-JUL-95	<	6.8 UGL
ORGANICS/WATER/GCMS		SSH-95-09J		UC02133	NNDPA		10-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	NNDPA		10-JUL-95	26-JUL-95	<	3.7 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	OXAT		10-JUL-95	26-JUL-95	<	27 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	DXAT		10-JUL-95	26-JUL-95	<	27 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PCB016	ATML	10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB016		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	PCB221		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB221		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PCB232		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB232		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PCB242		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB242		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	PCB248		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB248		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	PCB254		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB254		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PCB260		10-JUL-95	26-JUL-95	<	13 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCB260		10-JUL-95	26-JUL-95	<	13 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PCP		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PCP		10-JUL-95	26-JUL-95	<	9.1 UGL
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	PHANTR		10-JUL-95	26-JUL-95	<	9.9 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PHANTR		10-JUL-95	26-JUL-95	<	9.9 UGL
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	PHENOL		10-JUL-95	26-JUL-95	<	2.2 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PHENOL		10-JUL-95	26-JUL-95	<	2.2 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PPDDD		10-JUL-95	26-JUL-95	<	18 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PPDDD		10-JUL-95	26-JUL-95	<	18 UGL
ORGANICS/WATER/GCMS		SSW-95-09J		UC02133	PPDDE		10-JUL-95	26-JUL-95	<	14 UGL
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PPDDE		10-JUL-95	26-JUL-95	<	14 UGL

Method Description	IRDMIS Method Code	IRDMIS Site ID	IRDMIS Field Sample Number	Lab Number	Test Name	Lot	Sample Date	Analysis Date	<	Valı	ue Uni	t ·
ORGANICS/WATER/GCMS	UM25	SSW-95-09J	WR0910X1	UC02133	PPDDT	ATML	10-JUL-95	26-JUL-95	<	1	8 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	PPDDT	ATML		26-JUL-95	<		8 UGL	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	PRTHN	ATML	10-JUL-95	26-JUL-95	<	- 7	7 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	PRTHN	ATML	10-JUL-95	26-JUL-95	<	3	7 UGL	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	PYR	ATML	10-JUL-95	26-JUL-95	<	1	7 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	PYR		10-JUL-95	26-JUL-95	<	1	7 UGL	
ORGANICS/WATER/GCMS		SSW-95-09J	WR0910X1	UC02133	SUPONA	ATML	10-JUL-95	26-JUL-95	<	1	9 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	SUPONA	ATML	10-JUL-95	26-JUL-95	<		9 UGL	
ORGANICS/WATER/GCMS		SSM-95-09J		UC02133	TXPHEN		10-JUL-95	26-JUL-95	<		7 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	TXPHEN		10-JUL-95	26-JUL-95	<		7 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	UNK580		10-JUL-95	26-JUL-95			20 UGL	
ORGANICS/WATER/GCMS		SSM-95-091		UC02133	UNK588		10-JUL-95	26-JUL-95		- 1	0 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	UNK588		10-JUL-95	26-JUL-95			7 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	UNK595		10-JUL-95	26-JUL-95			5 UGL	
ORGANICS/WATER/GCMS		SSD-95-25A		UC02132	UNK598		10-JUL-95	26-JUL-95			6 UGL	
ORGANICS/WATER/GCMS		SSN-95-09J		UC02133	UNK632		10-JUL-95	26-JUL-95		_	O UGL	
ORGANICS/WATER/GCMS		SSD-95-25A	DR250100	UC02132	UNK632	AIML	10-JUL-95	26-JUL-95			9 UGL	

TABLE C-17

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
METALS/WATER/GFAA METALS/WATER/GFAA	8XA 8XA	AS AS ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	22-AUG-95 22-AUG-95	25 25	58 UGL 54.1 UGL	232.0 216.4	7.0 7.0
		avg minimum maximum								224.2 216.4 232.0	
METALS/SOIL/GFAA METALS/SOIL/GFAA	B9 B9	AS AS ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	22-AUG-95 22-AUG-95	2.5 2.5	12.3 UGG 11.7 UGG	492.0 468.0	5.0 5.0
		avg minimum maximum								480.0 468.0 492.0	
METALS/WATER/CVAA METALS/WATER/CVAA	CC8	HG HG *****	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	1	1.03 UGL .896 UGL	103.0 89.6	13.9 13.9
		avg minimum maximum	į.							96.3 89.6 103.0	
METALS/SOIL/GFAA METALS/SOIL/GFAA	JD20 JD20		DM140100 DZ140100			10-JUL-95 10-JUL-95	22-AUG-95 22-AUG-95	5 5	2.72 UGG 2.57 UGG	54.4 51.4	5.7 5.7
		avg minimum maximum								52.9 51.4 54.4	
METALS/SOIL/GFAA METALS/SOIL/GFAA	JD21 JD21		DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	2.5 2.5	4.26 UGG 4.23 UGG	170.4 169.2	.7 .7
		avg minimum								169.8 169.2	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
7,1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	*******	maximum	***********	******		***********	***********			170.4	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	AG AG *****	DM140100 DZ140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	5 5	3.3 UGG 3.25 UGG	66.0 65.0	1.5 1.5
		avg minimum maximum								65.5 65.0 66.0	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	AL AL ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	200 200	6200 UGG 5840 UGG	3100.0 2920.0	6.0
		avg minimum maximum								3010.0 2920.0 3100.0	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	BA BA *****	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	200	228 UGG 228 UGG	114.0 114.0	0.0
		avg minimum maximum	*							114.0 114.0 114.0	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	BE BE *****	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	5 5	5.16 UGG 5.1 UGG	103.2 102.0	1.2
		avg minimum maximum								102.6 102.0 103.2	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CD CD ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	5 5	14.1 UGG 11.8 UGG	282.0 236.0	17.8 17.8
		avg minimum maximum								259.0 236.0 282.0	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CO CO	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	50 50	53.3 UGG 53.2 UGG	106.6 106.4	.2
		avg minimum maximum								106.5 106.4 106.6	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CR CR	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	20 20	40.3 UGG 36.7 UGG	201.5 183.5	9.4 9.4
		avg minimum maximum								192.5 183.5 201.5	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CU CU ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	25 25	53.8 UGG 48.5 UGG	215.2 194.0	10.4 10.4
		avg minimum maximum								204.6 194.0 215.2	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	FE FE ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	100 100	12100 UGG 11700 UGG	12100.0 11700.0	3.4 3.4
		avg minimum maximum								11900.0 11700.0 12100.0	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	MN MN ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	50 50	236 UGG 230 UGG	472.0 460.0	2.6
		avg minimum maximum								466.0 460.0 472.0	
METALS/SOIL/ICP	JS12	NI	DZ140100	UC02121M	ATRX	10-JUL-95	08-AUG-95	50	81.5 UGG	163.0	4.5

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
METALS/SOIL/ICP	JS12	NI ******	DM140100	UC02121M	ATRX	10-JUL-95	08-AUG-95	50	77.9 UGG	155.8	4.5
		avg minimum maximum								159.4 155.8 163.0	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	SB SB ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	50 50	19.6 UGG 19.6 UGG	39.2 39.2	0.0
		avg minimum maximum								39.2 39.2 39.2	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	V V ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	50 50	72.7 UGG 72 UGG	145.4 144.0	1.0 1.0
		avg minimum maximum		- 4						144.7 144.0 145.4	
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	ZN ZN ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	50 50	259 UGG 229 UGG	518.0 458.0	12.3 12.3
		avg minimum maximum								488.0 458.0 518.0	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	AENSLF AENSLF	DM140100 DZ140100	UC02121M UC02121M		10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.07 .07	.036 UGG .034 UGG	51.4 48.6	5.7 5.7
		avg minimum maximum			i					50.0 48.6 51.4	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	ALDRN ALDRN	DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.06 .06	.05 UGG .0476 UGG	83.3 79.3	4.9

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
100000000000000000000000000000000000000		******					***************************************				
		avg minimum maximum								81.3 79.3 83.3	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	CLDAN CLDAN	DM140100 DZ140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.6 .6	.0684 UGG .0684 UGG	11.4 11.4	0.0
		avg minimum maximum								11.4 11.4 11.4	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	DLDRN DLDRN ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.08 .08	.0606 UGG .0569 UGG	75.8 71.1	6.3 6.3
		avg minimum maximum								73.4 71.1 75.8	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	ENDRN ENDRN ******	DM140100 DZ140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.04	.036 UGG .032 UGG	90.0 80.0	11.8 11.8
		avg minimum maximum								85.0 80.0 90.0	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	HPCL HPCL	DM140100 DZ140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.08 .08	.0601 UGG .0597 UGG	75.1 74.6	.7 .7
		avg minimum maximum								74.9 74.6 75.1	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	LIN LIN *******	DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.08 .08	.0625 UGG .06 UGG	78.1 75.0	4.1 4.1
		avg								76.6	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
	*******	minimum maximum						***********	********	75.0 78.1	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	MEXCLR MEXCLR	DM140100 DZ140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.8 .8	.294 UGG .273 UGG	36.8 34.1	7.4 7.4
		avg minimum maximum								35.4 34.1 36.8	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB016 PCB016 ******	DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	1.5 1.5	.1 UGG .1 UGG	6.7 6.7	0.0
		avg minimum maximum								6.7 6.7 6.7	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB260 PCB260 *******	DZ140100 DM140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	1.5 1.5	.0479 UGG .0479 UGG	3.2 3.2	0.0
		avg minimum maximum								3.2 3.2 3.2	
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PPDDT PPDDT *******	DM140100 DZ140100			10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	.08 .08	.132 UGG .073 UGG	165.0 91.3	57.6 57.6
		avg minimum maximum					2			128.1 91.3 165.0	
METALS/WATER/GFAA METALS/WATER/GFAA	SD18 SD18	PB PB *******	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	21-AUG-95 21-AUG-95	25 25	52.2 UGL 51.6 UGL	208.8 206.4	1.2
		avg minimum								207.6 206.4	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
		maximum								208.8	
METALS/WATER/GFAA METALS/WATER/GFAA	SD 25 SD 25	SE SE ******	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	22-AUG-95 22-AUG-95	50 50	112 UGL 105 UGL	224.0 210.0 217.0	6.5 6.5
		avg minimum maximum								210.0 224.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	AG AG *******	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	50 50	62.5 UGL 60.6 UGL	125.0 121.2	3.1 3.1
		avg minimum maximum								123.1 121.2 125.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	AL AL *******	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	2000 2000	2100 UGL 2090 UGL	105.0 104.5	.5 .5
		avg minimum maximum								104.8 104.5 105.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	BA BA *******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	2000 2000	2110 UGL 2100 UGL	105.5 105.0	.5 .5
		avg minimum maximum								105.3 105.0 105.5	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	BE BE ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	50 50	59.6 UGL 58.8 UGL	119.2 117.6	1.4
		avg minimum								118.4 117.6	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
***************************************		maximum								119.2	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	CD CD	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	50 50	59.7 UGL 58.6 UGL	119.4 117.2	1.9
		avg minimum maximum								118.3 117.2 119.4	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	CO CO	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	570 UGL 569 UGL	114.0 113.8	.2
		avg minimum maximum								113.9 113.8 114.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	CR CR ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	200 200	230 UGL 227 UGL	115.0 113.5	1.3
		avg minimum maximum								114.3 113.5 115.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	CU CU ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	250 250	272 UGL 268 UGL	108.8 107.2	1.5 1.5
		avg minimum maximum								108.0 107.2 108.8	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	FE FE ******	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	1000 1000	1190 UGL 1190 UGL	119.0 119.0	0.0
		avg minimum maximum								119.0 119.0 119.0	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	MN MN ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	604 UGL 602 UGL	120.8 120.4	.3
		avg minimum maximum								120.6 120.4 120.8	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	NI NI *****	WZ0910X1 WM0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	577 UGL 575 UGL	115.4 115.0	.3
		avg minimum maximum								115.2 115.0 115.4	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	SB SB ******	WM0910X1 WZ0910X1	UC02139M UC02139M		10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	544 UGL 526 UGL	108.8 105.2	3.4 3.4
		avg minimum maximum	19	(1) (2)						107.0 105.2 108.8	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	V V ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	545 UGL 541 UGL	109.0 108.2	.7 .7
		avg minimum maximum								108.6 108.2 109.0	
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	ZN ZN ******	WM0910X1 WZ0910X1			10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	500 500	588 UGL 578 UGL	117.6 115.6	1.7 1.7
		avg minimum maximum								116.6 115.6 117.6	
PESTICIDES/WATER/GCEC	UH20	AENSLF	WZ0911X1	UC02143M	ATMH	10-JUL-95	01-AUG-95	-25	.0977 UGL	39.1	7.3

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
PESTICIDES/WATER/GCEC	UH20	AENSLF	WM0911X1	UC02143M	ATMH	10-JUL-95	01-AUG-95	.25	.0908 UGL	36.3	7.3
		avg minimum maximum								37.7 36.3 39.1	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	ALDRN ALDRN	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	:1	.0436 UGL .0435 UGL	43.6 43.5	.2
		avg minimum maximum								43.6 43.5 43.6	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	DLDRN DLDRN	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	.25 .25	.176 UGL .161 UGL	70.4 64.4	8.9 8.9
		avg minimum maximum								67.4 64.4 70.4	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	ENDRN ENDRN *******	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	.25 .25	.296 UGL .268 UGL	118.4 107.2	9.9 9.9
		avg minimum maximum								112.8 107.2 118.4	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	HPCL HPCL	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	:1	.0479 UGL .0469 UGL	47.9 46.9	2.1
		avg minimum maximum								47.4 46.9 47.9	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	LIN LIN ******	WM0911X1 WZ0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	.25 .25	.0705 UGL .0694 UGL	28.2 27.8	1.6 1.6

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	Value Unit	Percent Recovery	RPD
		avg minimum maximum			07770					28.0 27.8 28.2	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	MEXCLR MEXCLR	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	2 2	1.45 UGL 1.35 UGL	72.5 67.5	7.1 7.1
		avg minimum maximum								70.0 67.5 72.5	
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	PPDDT PPDDT	WZ0911X1 WM0911X1			10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	.2	.0901 UGL .0848 UGL	45.1 42.4	6.1
		avg minimum maximum								43.7 42.4 45.1	
METALS/SOIL/CVAA METALS/SOIL/CVAA	Y9 Y9	HG HG *****	DM140100 DZ140100			10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95	.5 .5	.65 UGG .605 UGG	130.0 121.0	7.2 7.2
		avg minimum maximum								125.5 121.0 130.0	

TABLE C-18

Chemical Quality Control Report Installation: Fort Devens, MA (DV) Lower Cold Spring Brook - ADL Samples

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	UNC_VALUE Unit	Percent Recovery
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	.48 UGG	9.6
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95	5	.52 UGG	10.4
SEMIVOLATILES/SOIL/GOMS	LM25	246TBP	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	5	.49 UGG	9.8
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX2101X1	UC02124	ATMJ	10-JUL-95	27-JUL-95	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.3 UGG	46.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX090400	UC02125		10-JUL-95	27-JUL-95	5	2.5 UGG	50.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX090800	UC02126	ATMJ	10-JUL-95	27-JUL-95	5	4.6 UGG	92.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX090900	UC02127		10-JUL-95	27-JUL-95	5	2.4 UGG	48.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX091000	UC02128		10-JUL-95	27-JUL-95	5	2.2 UGG	44.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX091100	UC02129		10-JUL-95	27-JUL-95	5	2.3 UGG	46.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TBP	DX091200	UC02130	ATMJ	10-JUL-95	27-JUL-95	5	1.9 UGG	38.0
		avg minimum maximum								39.4 9.6 92.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	.49 UGG	9.8
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	5	.47 UGG	9.4
SEMIVOLATILES/SOIL/GOMS	LM25	2CLPD4	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	5	.47 UGG	9.4
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX2101X1	UC02124		10-JUL-95	27-JUL-95	5	2.1 UGG	42.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX090400	UC02125	LMTA	10-JUL-95	27-JUL-95	5	2.4 UGG	48.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX090800	UC02126		10-JUL-95	27-JUL-95	5	4.4 UGG	88.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX090900	UC02127		10-JUL-95	27-JUL-95	5 5 5 5	2.3 UGG	46.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX091000	UC02128		10-JUL-95	27-JUL-95	5	1.9 UGG	38.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX091100	UC02129		10-JUL-95	27-JUL-95	5	2 UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLPD4	DX091200	UC02130	ATMJ	10-JUL-95	27-JUL-95	5	1.6 UGG	32.0
										74.7
		avg minimum								36.3 9.4
		maximum								88.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	.61 UGG	12.2
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX250100	UC02119		10-JUL-95	27-JUL-95	5	.61 UGG	12.2
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX250200	UC02120		10-JUL-95	28-JUL-95	5	.61 UGG	12.2
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX2101X1	UC02124		10-JUL-95	27-JUL-95	5	2.5 UGG	50.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX090400	UC02125		10-JUL-95	27-JUL-95	5 5 5 5 5	2.7 UGG	54.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX090800	UC02126		10-JUL-95	27-JUL-95	5	4.6 UGG	92.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX090900	UC02127		10-JUL-95	27-JUL-95	5	2.7 UGG	54.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX091000	UC02128		10-JUL-95	27-JUL-95	5	2.2 UGG	44.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX091100	UC02129		10-JUL-95	27-JUL-95	5	2.6 UGG	52.0
SEMIVOLATILES/SOIL/GCMS	LM25	2FBP	DX091200	UC02130	LMTA	10-JUL-95	27-JUL-95	5	2.4 UGG	48.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	UNC_VALUE Unit	Percent Recovery
***************************************	*******	******	********	*******		**********	**********			
		avg minimum maximum								43.1 12.2 92.0
SEMIVOLATILES/SOIL/GCMS	LM25 LM25 LM25 LM25 LM25 LM25 LM25 LM25	2FP 2FP 2FP 2FP 2FP 2FP 2FP 2FP 2FP 2FP	DD250100 DX250100 DX250200 DX2101X1 DX090400 DX090800 DX090900 DX091100 DX091100 DX091200	UC02118 UC02119 UC02120 UC02124 UC02125 UC02126 UC02127 UC02128 UC02129 UC02130	LMTA LMTA LMTA LMTA LMTA LMTA LMTA LMTA	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 28-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	55 55 55 55 55 55 55 55 55	.36 UGG .34 UGG .33 UGG 1.6 UGG 1.8 UGG 3.8 UGG 1.7 UGG 1.5 UGG 1.1 UGG	7.2 6.8 6.6 32.0 36.0 76.0 34.0 30.0 32.0
		avg minimum maximum								28.1 6.6 76.0
SEMIVOLATILES/SOIL/GCMS	LM25 LM25 LM25 LM25 LM25 LM25 LM25 LM25	NBD5 NBD5 NBD5 NBD5 NBD5 NBD5 NBD5 NBD5	DD 250100 DX250100 DX250200 DX2101X1 DX090400 DX090800 DX090900 DX091100 DX091100 DX091200	UC02118 UC02119 UC02120 UC02124 UC02125 UC02126 UC02127 UC02128 UC02129 UC02130	LMTA LMTA LMTA LMTA LMTA LMTA LMTA LMTA	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 28-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.44 UGG .42 UGG .44 UGG 1.9 UGG 1.9 UGG 3.7 UGG 1.8 UGG 1.6 UGG 1.7 UGG 1.6 UGG	8.8 8.4 8.8 38.0 74.0 36.0 32.0 34.0
		a∨g minimum maximum								31.0 8.4 74.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25 LM25 LM25 LM25 LM25	PHEND6 PHEND6 PHEND6 PHEND6 PHEND6	DD250100 DX250100 DX250200 DX2101X1 DX090400	UC02118 UC02119 UC02120 UC02124 UC02125	LMTA LMTA LMTA	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 28-JUL-95 27-JUL-95 27-JUL-95	5 5 5 5 5	.61 UGG .59 UGG .59 UGG 2.6 UGG 3 UGG	12.2 11.8 11.8 52.0 60.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spîke Value	UNC_VALUE Unit	Percent Recovery
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25 LM25 LM25 LM25 LM25	PHEND6 PHEND6 PHEND6 PHEND6 PHEND6 ************************************	DX090800 DX090900 DX091000 DX091100 DX091200	UC02126 UC02127 UC02128 UC02129 UC02130	ATMJ ATMJ ATMJ	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	5 5 5 5 5	5.3 UGG 2.9 UGG 2.4 UGG 2.6 UGG 2.2 UGG	106.0 58.0 48.0 52.0 44.0
		avg minimum maximum								45.6 11.8 106.0
SEMIVOLATILES/SOIL/GCMS	LM25 LM25 LM25 LM25 LM25 LM25 LM25 LM25	TRPD14 TR	DD250100 DX250100 DX250200 DX2101X1 DX090400 DX090800 DX090900 DX091000 DX091100 DX091200	UC02118 UC02119 UC02120 UC02124 UC02125 UC02126 UC02127 UC02128 UC02129 UC02130	LMTA LMTA LMTA LMTA LMTA LMTA LMTA LMTA	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 28-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.55 UGG .56 UGG .53 UGG 2.3 UGG 2.7 UGG 4.7 UGG 2.7 UGG 2.3 UGG 2.6 UGG 2.4 UGG	11.0 11.2 10.6 46.0 54.0 94.0 54.0 46.0 52.0 48.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25	246TBP 246TBP 246TBP 246TBP 246TBP 246TBP 246TBP 246TBP 246TBP avg	DR250100 WR0910X1 WX0908X1 WX0909X1 WX09910X1 WD0910X1 WX0911X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141 UC02143	ATML ATML ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100 100	83 UGL 93 UGL 95 UGL 92 UGL 85 UGL 95 UGL 72 UGL	94.0 83.0 93.0 95.0 92.0 85.0 95.0 72.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	minimum maximum 2CLPD4 2CLPD4	DR250100 WR0910X1	UC02132 UC02133		10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95	100 100	79 UGL 87 UGL	72.0 95.0 79.0 87.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value	UNC_VALUE Unit	Percent Recovery
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25	2CLPD4 2CLPD4 2CLPD4 2CLPD4 2CLPD4 2CLPD4	WX0908X1 WX0909X1 WX0910X1 WD0910X1 WX0911X1	UC02135 UC02137 UC02139 UC02141 UC02143	ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100	90 UGL 85 UGL 83 UGL 86 UGL 77 UGL	90.0 85.0 83.0 86.0 77.0
		avg minimum maximum								83.9 77.0 90.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25	2FBP 2FBP 2FBP 2FBP 2FBP 2FBP 2FBP	DR250100 WR0910X1 WX0908X1 WX0909X1 WX0910X1 WD0910X1 WX0911X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141 UC02143	ATML ATML ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100 100	75 UGL 85 UGL 87 UGL 86 UGL 80 UGL 87 UGL 68 UGL	75.0 85.0 87.0 86.0 80.0 87.0 68.0
		avg minimum maximum								81.1 68.0 87.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25	2FP 2FP 2FP 2FP 2FP 2FP 2FP 2FP	DR250100 WR0910X1 WX0908X1 WX0909X1 WX0910X1 WD0910X1 WX0911X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141 UC02143	ATML ATML ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100 100	41 UGL 50 UGL 51 UGL 48 UGL 45 UGL 48 UGL 45 UGL	41.0 50.0 51.0 48.0 45.0 48.0 45.0
		avg minimum maximum								46.9 41.0 51.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25	NBD5 NBD5 NBD5 NBD5 NBD5 NBD5	DR250100 WR0910X1 WX0908X1 WX0909X1 WX0910X1 WD0910X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141	ATML ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100	76 UGL 90 UGL 91 UGL 91 UGL 85 UGL 91 UGL	76.0 90.0 91.0 91.0 85.0 91.0

SVOC SURROGATES

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	Spike Value UNC	_VALUE Unit	Percent Recovery
ORGANICS/WATER/GCMS	UM25	NBD5	WX0911X1	UC02143	ATML	10-JUL-95	27-JUL-95	100	72 UGL	72.0
		avg minimum maximum								85.1 72.0 91.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25	PHEND6 PHEND6 PHEND6 PHEND6 PHEND6 PHEND6 PHEND6 ************************************	DR250100 WR0910X1 WX0908X1 WX0909X1 WX09910X1 WD0910X1 WX0911X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141 UC02143		10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100	32 UGL 38 UGL 41 UGL 37 UGL 37 UGL 39 UGL 35 UGL	32.0 38.0 41.0 37.0 37.0 39.0 35.0 37.0 32.0 41.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25	TRPD14 TRPD14 TRPD14 TRPD14 TRPD14 TRPD14 TRPD14 TRPD14 TRPD14 ************************************	DR250100 WR0910X1 WX0908X1 WX0909X1 WX0910X1 WD0910X1 WX0911X1	UC02132 UC02133 UC02135 UC02137 UC02139 UC02141 UC02143	ATML ATML ATML ATML ATML	10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95 10-JUL-95	26-JUL-95 26-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95 27-JUL-95	100 100 100 100 100 100	46 UGL 61 UGL 73 UGL 71 UGL 68 UGL 69 UGL 55 UGL	46.0 61.0 73.0 71.0 68.0 69.0 55.0

SQL> spool off;

TABLE C-19

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/WATER/GFAA	AX8	AS	WD0910X1	UC02141	ATSA	10-JUL-95	22-AUG-95		4.38	UGL	90.4
METALS/WATER/GFAA	8XA	AS	WX0910X1	UC02139	ATSA	10-JUL-95	22-AUG-95		11.6	UGL	90.4
METALS/SOIL/GFAA	В9	AS	DD140100	UC02122	ATSX	10-JUL-95	22-AUG-95		17.7	UGG	16.5
METALS/SOIL/GFAA	В9	AS	DX140100	UC02121	ATSX	10-JUL-95	22-AUG-95		15	UGG	16.5
METALS/WATER/CVAA	CC8	HG	WX0910X1	UC02139	ATQH	10-JUL-95	27-JUL-95	<	-1	UGL	0.0
METALS/WATER/CVAA	CC8	HG	WD0910X1	UC02141	ATQH	10-JUL-95	27-JUL-95	<	.1	UGL	0.0
METALS/SOIL/GFAA	JD20	SE	DX140100	UC02121	ATSZ	10-JUL-95	22-AUG-95	<	.449	UGG	0.0
METALS/SOIL/GFAA	JD20	SE	DD140100	UC02122	ATSZ	10-JUL-95	22-AUG-95	<	.449	UGG	0.0
METALS/SOIL/GFAA	JD21	РВ	DX140100	UC02121	ATSY	10-JUL-95	09-AUG-95		140	UGG	0.0
METALS/SOIL/GFAA	JD21	РВ	DD140100	UC02122	ATSY	10-JUL-95	09-AUG-95		140	UGG	0.0
METALS/SOIL/ICP	JS12	AG	DX140100	UC02121	ATRX	10-JUL-95	08-AUG-95	<	.803	UGG	0.0
METALS/SOIL/ICP	JS12	AG	DD140100	UC02122	ATRX	10-JUL-95	08-AUG-95	<	.803	UGG	0.0
METALS/SOIL/ICP	JS12 JS12	AL AL	DD140100 DX140100	UC02122 UC02121	ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		9990 9860	UGG	1.3
METALS/SOIL/ICP	1512	AL			AIKA						
METALS/SOIL/ICP	JS12	BA	DX140100	UC02121	ATRX	10-JUL-95	08-AUG-95		67.5	UGG	13.3
METALS/SOIL/ICP	JS12	BA	DD140100	UC02122	ATRX	10-JUL-95	08-AUG-95		59.1	UGG	13.3
METALS/SOIL/ICP	JS12	BE	DD140100	UC02122	ATRX	10-JUL-95	08-AUG-95	<	.427	UGG	0.0
METALS/SOIL/ICP	JS12	BE	DX140100	UC02121	ATRX	10-JUL-95	08-AUG-95	<	.427	UGG	0.0
METALS/SOIL/ICP	JS12	CA	DD140100	UC02122	ATRX	10-JUL-95	08-AUG-95		3910	UGG	31.7

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/SOIL/ICP	JS12	CA	DX140100	UC02121	ATRX	10-JUL-95	08-AUG-95		2840	UGG	31.7
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CD CD	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		19.5 13.2	UGG UGG	38.5 38.5
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CO	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		9.99 8.88	UGG UGG	11.8 11.8
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	CR CR	DX140100 DD140100	UC02121 UC02122	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		50.7 31	UGG UGG	48.2 48.2
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	cu cu	DX140100 DD140100	UC02121 UC02122	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		44.1 50	UGG UGG	12.5 12.5
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	FE FE	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		20700 19900	UGG UGG	3.9 3.9
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	K K	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		1690 1600	UGG UGG	5.5 5.5
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	MG MG	DD 140100 DX 140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		3790 3650	UGG UGG	3.8 3.8
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	MN MN	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		530 287	UGG UGG	59.5 59.5
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	NA NA	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		631 147	UGG UGG	124.4 124.4
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	NI NI	DX140100 DD140100	UC02121 UC02122	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		48.5 44.4	UGG UGG	8.8 8.8
METALS/SOIL/ICP	JS12	SB	DD140100	UC02122	ATRX	10-JUL-95	08-AUG-95	<	19.6	UGG	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/SOIL/ICP	JS12	SB	DX140100	UC02121	ATRX	10-JUL-95	08-AUG-95	<	19.6	UGG	0.0
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	TL TL	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95	< <	34.3 34.3	UGG UGG	0.0
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	V V	DD140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		41.7 40.5	UGG UGG	2.9
METALS/SOIL/ICP METALS/SOIL/ICP	JS12 JS12	ZN ZN	DD 140100 DX140100	UC02122 UC02121	ATRX ATRX	10-JUL-95 10-JUL-95	08-AUG-95 08-AUG-95		433 328	UGG UGG	27.6 27.6
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	ABHC ABHC	DX140100 DD140100	UC02121 UC02122	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.0028	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	AENSLF AENSLF	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.00616	UGG UGG	2.5 2.5
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	ALDRN ALDRN	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.0136 .0135	UGG UGG	.7 .7
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	BBHC BBHC	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.0077 .0077	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	BENSLF BENSLF	DX140100 DD140100	UC02121 UC02122	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.00184 .00156	UGG UGG	16.5 16.5
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	CLDAN CLDAN	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	<	.0684	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	DBHC DBHC	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.0085	UGG UGG	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
PESTICIDES/SOIL/GCEC	LH17	DLDRN'	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	-	.00741	UGG	3.8
PESTICIDES/SOIL/GCEC	LH17	DLDRN	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95		.0077	UGG	3.8
PESTICIDES/SOIL/GCEC	LH17	ENDRN	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.0065	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	ENDRN	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.0065	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	ENDRNA	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.0005	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	ENDRNA	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.0005	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	HPCL	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.0022	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	HPCL	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.0022	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	HPCLE	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95		.0112	UGG	158.4
PESTICIDES/SOIL/GCEC	LH17	HPCLE	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.0013	UGG	158.4
PESTICIDES/SOIL/GCEC	LH17	ISODR	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.003	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	ISODR	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.003	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	LIN	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.001	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	LIN	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.001	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	MEXCLR	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.0359	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	MEXCLR	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.0359	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB016	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.1	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB016	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	-1	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB221	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.1	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB221	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.1	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB232	DD140100	UC02122	ATMG	10-JUL-95	09-AUG-95	<	.1	UGG	0.0
PESTICIDES/SOIL/GCEC	LH17	PCB232	DX140100	UC02121	ATMG	10-JUL-95	09-AUG-95	<	.1	UGG	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB242 PCB242	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.1	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB248 PCB248	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	:1	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB254 PCB254	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		1.16	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PCB260 PCB260	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.0479 .0479	UGG UGG	0.0
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PPDDD PPDDD	DX140100 DD140100	UC02121 UC02122	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.0354	UGG UGG	.3
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PPDDE PPDDE	DX140100 DD140100	UC02121 UC02122	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.027	UGG UGG	3.8 3.8
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	PPDDT PPDDT	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95		.0876	UGG UGG	18.1 18.1
PESTICIDES/SOIL/GCEC PESTICIDES/SOIL/GCEC	LH17 LH17	TXPHEN TXPHEN	DD140100 DX140100	UC02122 UC02121	ATMG ATMG	10-JUL-95 10-JUL-95	09-AUG-95 09-AUG-95	< <	.226	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	124TCB 124TCB	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	2 2	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	12DCLB 12DCLB	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.4	UGG UGG	0.0
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	13DCLB 13DCLB	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.4	UGG UGG	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************	*******	*********		*******		**********	*********				******
SEMIVOLATILES/SOIL/GCMS	LM25	14DCLB	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.3	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	14DCLB	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	.3	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	245TCP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	245TCP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TCP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	246TCP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DCLP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DCLP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DMPN	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DMPN	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GOMS	LM25	24DNP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	50	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DNP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	50	UGG	0.0
SEMIVOLATILES/SOIL/GOMS	LM25	24DNT	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	10	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	24DNT	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	10	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CLP	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CNAP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2CNAP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2MNAP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		.6	UGG	66.7
SEMIVOLATILES/SOIL/GCMS	LM25	2MNAP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.3	UGG	66.7
SEMIVOLATILES/SOIL/GCMS	LM25	2MP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	1	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	2MP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	1	UGG	0.0

IRDMIS Method Method Description Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
					40 05	67 W 65		70		
SEMIVOLATILES/SOIL/GCMS LM25 SEMIVOLATILES/SOIL/GCMS LM25	2NANIL 2NANIL	DX250100 DD250100	UC02119 UC02118	ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	30 30	UGG	0.0
SEMI VOLATILES/SUIL/GUMS LM23	ZNANIL	00230100	0002118	AINU	10-301-93	21-001-95		30	odd	0.0
SEMIVOLATILES/SOIL/GCMS LM25	2NP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	10	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	2NP	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95	<	10	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	33DCBD	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	20	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	33DCBD	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	20	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	3NAN I L	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	3NAN1L	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	46DN2C	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	8	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	46DN2C	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	8	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4BRPPE	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.4	UGG	0.0
SEMIVOLATILES/SOIL/GOMS LM25	4BRPPE	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	.4	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4CL3C	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95	<	9	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4CL3C	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95	<	9	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4CLPPE	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4CLPPE	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4MP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4MP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4NP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	4NP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	30	UGG	0.0
SEMIVOLATILES/SOIL/GCMS LM25	ANAPNE	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		4	UGG	66.7
SEMIVOLATILES/SOIL/GCMS LM25	ANAPNE	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		2	UGG	66.7

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD	
***************************************	*******										*******	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	ANAPYL ANAPYL	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		9	UGG UGG	25.0 25.0	
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	ANTRC ANTRC	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	<	20 7	UGG UGG	96.3 96.3	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	B2CEXM B2CEXM	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	2 2	UGG UGG	0.0	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	BZEHP BZEHP	DX250100 DD250100	UC02119 UC02118	LMTA LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	5	UGG UGG	0.0	
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	BAANTR BAANTR	DX250100 DD250100	UC02119 UC02118	LMTA LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		60 40	UGG UGG	40.0 40.0	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	BAPYR BAPYR	DX250100 DD250100	UC02119 UC02118	LMTA LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		30 30	UGG UGG	0.0	
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	BBFANT BBFANT	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		60 50	UGG UGG	18.2 18.2	
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	BBZP BBZP	DX250100 DD250100	UC02119 UC02118	ATMJ LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	20 20	UGG UGG	0.0	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	BGHIPY BGHIPY	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		30 20	UGG UGG	40.0 40.0	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	BKFANT BKFANT	DX250100 DD250100	UC02119 UC02118	ATMJ LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		20 20	UGG UGG	0.0	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	BZALC BZALC	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.3	UGG UGG	0.0	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
	*******	*********	*********		*****	************					
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	CHRY CHRY	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		50 40	UGG UGG	22.2 22.2
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	CL6BZ CL6BZ	DX250100 DD250100	UC02119 UC02118	LMTA	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.8	UGG UGG	0.0
SEMI VOLATILES/ SUTE/ GUAS	בויובט	CLOBZ	DD230100	0002110	ATPIO	10 002 75	21 002 75	- 2	.0	odd	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	CL6CP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	CL6CP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	CL6ET	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95	<	20	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	CL6ET	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95	<	20	UGG	0.0
				14.22.02					90		15.5
SEMIVOLATILES/SOIL/GCMS	LM25	DBAHA	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		6	UGG	40.0
SEMIVOLATILES/SOIL/GOMS	LM25	DBAHA	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	DBZFUR	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95	<	4	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DBZFUR	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	4	UGG	0.0
SEMIVOLATILES/SOIL/GOMS	LM25	DEP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DEP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	< <	2	UGG	0.0
SEMI VOLATILES/SUIL/GUMS	LMZJ	DEF	00230100	UCUZITO	Aimo	10-30E-93	21-30L-93	,	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DMP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DMP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	.6	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DNBP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	10	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	DNBP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	10	UGG	0.0
			Dice to 14						15		
SEMIVOLATILES/SOIL/GOMS	LM25	DNOP	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GOMS	LM25	DNOP	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	<	2	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	FANT	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		60	UGG	187.1
SEMIVOLATILES/SOIL/GCMS	LM25	FANT	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		2	UGG	187.1

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************	*******										
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	FLRENE FLRENE	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	<	20 .6	UGG UGG	188.3 188.3
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	HCBD HCBD	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	10 10	UGG UGG	0.0
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	ICDPYR ICDPYR	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	20 20	UGG UGG	0.0
SEMIVOLATILES/SOIL/GOMS SEMIVOLATILES/SOIL/GOMS	LM25 LM25	I SOPHR I SOPHR	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	4	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	NAP NAP	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	7	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	NB NB	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	20 20	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	NNDNPA NNDNPA	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	10 10	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	NNDPA NNDPA	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	3	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	PCP PCP	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	8	UGG UGG	0.0
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	PHANTR PHANTR	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		100 70	UGG UGG	35.3 35.3
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25 LM25	PHENOL PHENOL	DX250100 DD250100	UC02119 UC02118	ATMJ ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.5	UGG UGG	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD	
SEMIVOLATILES/SOIL/GCMS	LM25	PYR	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		90	UGG	25.0	
SEMIVOLATILES/SOIL/GCMS	LM25	PYR	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95		70	UGG	25.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK604	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95		6	UGG	18.2	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK604	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		5	UGG	18.2	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DX090900	UC02127	ATMJ	10-JUL-95	27-JUL-95		1	UGG	0.0	
SEMIVOLATILES/SOIL/GOMS	LM25	UNK609	DX090900	UC02127	ATMJ	10-JUL-95	27-JUL-95		1	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DX091100	UC02129	ATMJ	10-JUL-95	27-JUL-95		.7	UGG	0.0	
SEMIVOLATILES/SOIL/GOMS	LM25	UNK609	DX091100	UC02129	ATMJ	10-JUL-95	27-JUL-95		.7	UGG	0.0	
SEMIVOLATILES/SOIL/GOMS	LM25 LM25	UNK609 UNK609	DX250100 DX250100	UC02119 UC02119	ATMJ	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95		5	UGG	22.2	
SEMIVOLATILES/SOIL/GCMS SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DD250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		4	UGG	22.2	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	22.2	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95		4	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK609	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95		4	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK614	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		3	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK614	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		3	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK614	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95		3	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK614	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95		3	UGG	0.0	
SEMIVOLATILES/SOIL/GOMS	LM25	UNK620	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		4	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK620	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK621	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		40	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK621	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		40	UGG	0.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK623	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95		9	UGG	25.0	
SEMIVOLATILES/SQIL/GCMS	LM25	UNK623	DX250200	UC02120	LMTA	10-JUL-95	28-JUL-95		7	UGG	25.0	
SEMIVOLATILES/SOIL/GCMS	LM25	UNK629	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		4	UGG	28.6	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< Value	units	RPD
SEMIVOLATILES/SOIL/GCMS	LM25	UNK629	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	3	UGG	28.6
SEMI VOLATILES/SOIL/GLAS	LMZ	UNKOZY	00230100	0002110	AIMU	10-305-33	27-JUL-95	3	UGG	20.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK630	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	9	UGG	11.8
SEMIVOLATILES/SOIL/GCMS	LM25	UNK630	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	8	UGG	11.8
SEMIVOLATILES/SOIL/GOMS	LM25	UNK631	DX090900	UC02127	ATMJ	10-JUL-95	27-JUL-95	1	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK631	DX090900	UC02127	ATMJ	10-JUL-95	27-JUL-95	1	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK631	DX091100	UC02129	LMTA	10-JUL-95	27-JUL-95	.7	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK631	DX091100	UC02129	ATMJ	10-JUL-95	27-JUL-95	.7	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK631	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	4	UGG	28.6
SEMIVOLATILES/SOIL/GOMS	LM25	UNK631	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	3	UGG	28.6
SEMIVOLATILES/SOIL/GOMS	LM25	UNK632	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK632	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK637	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	UGG	50.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK637	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	3	UGG	50.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK637	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	7	UGG	33.3
SEMIVOLATILES/SOIL/GCMS	LM25	UNK637	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	5	UGG	33.3
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	6	UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DX250100	UC02119	LMTA	10-JUL-95	27-JUL-95	5	UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	5	UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	4	UGG	40.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	9	UGG	25.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK639	DX250200	UC02120	LMTA	10-JUL-95	28-JUL-95	7	UGG	25.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK640	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95	4	UGG	28.6
SEMIVOLATILES/SOIL/GCMS	LM25	UNK640	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95	3	UGG	28.6
SEMIVOLATILES/SOIL/GOMS	LM25	UNK640	DX250200	UC02120	ATMJ	10-JUL-95	28-JUL-95	4	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK640	DX250200	UC02120	LMTA	10-JUL-95	28-JUL-95	4	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK641	DX091200	UC02130	ATMJ	10-JUL-95	27-JUL-95	4	UGG	120.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
SEMIVOLATILES/SOIL/GCMS	LM25	UNK641	DX091200	UC02130	ATMJ	10-JUL-95	27-JUL-95		1	UGG	120.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK641	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		7	UGG	54.5
SEMIVOLATILES/SOIL/GCMS	LM25	UNK641	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		4	UGG	54.5
SEMIVOLATILES/SOIL/GCMS	LM25	UNK644	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	30.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK644	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		3	UGG	30.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK644	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		3	UGG	30.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK646	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	28.6
SEMIVOLATILES/SOIL/GOMS	LM25	UNK646	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		3	UGG	28.6
SEMIVOLATILES/SOIL/GCMS	LM25	UNK650	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		3	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK650	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		3	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK666	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		8	UGG	13.3
SEMIVOLATILES/SOIL/GCMS	LM25	UNK666	DD250100	UC02118	LMTA	10-JUL-95	27-JUL-95		7	UGG	13.3
SEMIVOLATILES/SOIL/GCMS	LM25	UNK680	DD250100	UC02118	ATMJ	10-JUL-95	27-JUL-95		4	UGG	28.6
SEMIVOLATILES/SOIL/GCMS	LM25	UNK680	DX250100	UC02119	ATMJ	10-JUL-95	27-JUL-95		3	UGG	28.6
SEMIVOLATILES/SOIL/GCMS	LM25	UNK692	DX091100	UC02129	ATMJ	10-JUL-95	27-JUL-95		1	UGG	0.0
SEMIVOLATILES/SOIL/GCMS	LM25	UNK692	DX091100	UC02129	ATMJ	10-JUL-95	27-JUL-95		1	UGG	0.0
METALS/WATER/GFAA	SD 18	РВ	WX0910X1	UC02139	ATSB	10-JUL-95	21-AUG-95	<	4.47	UGL	0.0
METALS/WATER/GFAA	SD18	PB	WD0910X1	UC02141	ATSB	10-JUL-95	21-AUG-95	<	4.47	UGL	0.0
METALS/WATER/GFAA	SD25	SE	WX0910X1	UC02139	ATSC	10-JUL-95	22-AUG-95	<	2.53	UGL	0.0
METALS/WATER/GFAA	SD25	SE	WD0910X1	UC02141	ATSC	10-JUL-95	22-AUG-95	<	2.53	UGL	0.0
METAL C CHATED (10D	0012	40	WX0910X1	UC02139	ATOV	10-JUL-95	11-AUG-95	<	10	UGL	0.0
METALS/WATER/ICP	SS12	AG	MYOALOYI	0002139	ATRY	10-101-33	LI-MOR-AD		10	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/WATER/ICP	SS12	AG	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	10	UGL	0.0
METALS/WATER/ICP	SS12	AL	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	112	UGL	0.0
METALS/WATER/ICP	SS12	AL	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	112	UGL	0.0
METALS/WATER/ICP	SS12	BA	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95		8.22	UGL	15.3
METALS/WATER/ICP	SS12	ВА	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95		7.05	UGL	15.3
METALS/WATER/ICP	SS12	BE	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95		1.31	UGL	9.6
METALS/WATER/ICP	SS12	BE	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95		1.19	UGL	9.6
METALS/WATER/ICP	SS12	CA	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95		26900	UGL	12.2
METALS/WATER/ICP	SS12	CA	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95		23800	UGL	12.2
METALS/WATER/ICP	SS12	CD	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	6.78	UGL	0.0
METALS/WATER/ICP	SS12	CD	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	6.78	UGL	0.0
METALS/WATER/ICP	SS12	CO	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	25	UGL	0.0
METALS/WATER/ICP	SS12	CO	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	25	UGL	0.0
METALS/WATER/ICP	SS12	CR	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	16.8	UGL	0.0
METALS/WATER/ICP	SS12	CR	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	16.8	UGL	0.0
METALS/WATER/ICP	SS12	CU	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	18.8	UGL	0.0
METALS/WATER/ICP	SS12	CU	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	18.8	UGL	0.0
METALS/WATER/ICP	SS12	FE	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	77.5	UGL	78.7
METALS/WATER/ICP	SS12	FE	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95		178	UGL	78.7
METALS/WATER/ICP	SS12	K	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95	<	1240	UGL	0.0
METALS/WATER/ICP	SS12	K	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95	<	1240	UGL	0.0
METALS/WATER/ICP	SS12	MG	WD0910X1	UC02141	ATRY	10-JUL-95	11-AUG-95		4010	UGL	11.3

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/WATER/ICP	SS12	MG	WX0910X1	UC02139	ATRY	10-JUL-95	11-AUG-95		3580	UGL	11.3
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	MN MN	WX0910X1 WD0910X1	UC02139 UC02141	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95		45.4 56	UGL UGL	20.9 20.9
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	NA NA	WD0910X1 WX0910X1	UC02141 UC02139	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95		22600 20300	UGL UGL	10.7 10.7
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	NI NI	WD0910X1 WX0910X1	UC02141 UC02139	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	32.1 32.1	UGL UGL	0.0
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	SB SB	WD0910X1 WX0910X1	UC02141 UC02139	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	60 60	UGL UGL	0.0
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	TL TL	WX0910X1 WD0910X1	UC02139 UC02141	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	125 125	UGL UGL	0.0
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	V	WD0910X1 WX0910X1	UC02141 UC02139	ATRY ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	27.6 27.6	UGL UGL	0.0
METALS/WATER/ICP METALS/WATER/ICP	SS12 SS12	ZN ZN	WD0910X1 WX0910X1	UC02141 UC02139	ATRY	10-JUL-95 10-JUL-95	11-AUG-95 11-AUG-95	< <	18 18	UGL UGL	0.0
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	ABHC ABHC	WD0911X1 WX0911X1	UC02145 UC02143	ATMH ATMH	10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95		.00479 .00444	UGL UGL	7.6 7.6
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	ACLDAN ACLDAN	WX0911X1 WD0911X1	UC02143 UC02145	ATMH ATMH	10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	< <	.0312	UGL UGL	0.0
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	AENSLF AENSLF	WD0911X1 WX0911X1	UC02145 UC02143	ATMH ATMH	10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	<	.00436	UGL UGL	54.2 54.2

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
PESTICIDES/WATER/GCEC	UH20	ALDRN	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0074	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ALDRN	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0074	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	BBHC	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95		.0119	UGL	18.3
PESTICIDES/WATER/GCEC	UH20	BBHC	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0099	UGL	18.3
PESTICIDES/WATER/GCEC	UH20	BENSLF	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0077	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	BENSLF	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0077	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	DBHC	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95		.0037	UGL	8.5
PESTICIDES/WATER/GCEC	UH20	DBHC	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0034	UGL	8.5
PESTICIDES/WATER/GCEC	UH20	DLDRN	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0074	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	DLDRN	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0074	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ENDRN	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ENDRN	WX0911X1	UC02143	HMTA	10-JUL-95	01-AUG-95	<	.0176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ENDRNA	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95		.0639	UGL	23.6
PESTICIDES/WATER/GCEC	UH20	ENDRNA	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0504	UGL	23.6
PESTICIDES/WATER/GCEC	UH20	HPCL	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95		.0034	UGL	30.5
PESTICIDES/WATER/GCEC	UH20	HPCL	WX0911X1	UC02143	HMTA	10-JUL-95	01-AUG-95	<	.0025	UGL	30.5
PESTICIDES/WATER/GCEC	UH20	HPCLE	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0063	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	HPCLE	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0063	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ISODR	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0025	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	ISODR	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0025	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	LIN	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95		.00553	UGL	26.6
PESTICIDES/WATER/GCEC	UH20	LIN	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95		.00423	UGL	26.6

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
PESTICIDES/WATER/GCEC	UH20	MEXCLR	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.075	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	MEXCLR	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.075	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB016	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB016	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB221	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB221	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB232	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB232	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB242	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB242	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB248	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB248	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.385	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB254	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB254	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB260	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PCB260	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.176	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PPDDD	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95		.0178	UGL	74.9
PESTICIDES/WATER/GCEC	UH20	PPDDD	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0081	UGL	74.9
PESTICIDES/WATER/GCEC	UH20	PPDDE	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95	<	.0039	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PPDDE	WX0911X1	UC02143	ATMH	10-JUL-95	01-AUG-95	<	.0039	UGL	0.0
PESTICIDES/WATER/GCEC	UH20	PPDDT	WD0911X1	UC02145	ATMH	10-JUL-95	01-AUG-95		.00314	UGL	22.7
PESTICIDES/WATER/GCEC	UH20	PPDDT	WX0911X1	UC02143	HMTA	10-JUL-95	01-AUG-95	<	.0025	UGL	22.7

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
PESTICIDES/WATER/GCEC PESTICIDES/WATER/GCEC	UH20 UH20	TXPHEN TXPHEN	WD0911X1 WX0911X1	UC02145 UC02143	ATMH ATMH	10-JUL-95 10-JUL-95	01-AUG-95 01-AUG-95	< <	1.64 1.64	UGL UGL	0.0
ODCANICO (HATED (COMO	UM25	123TCB	WX0910X1	UC02139	4.744	40 05	27 111 05				
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25	123TCB	WD0910X1	UC02141	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	<	5.8 5.8	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	124TCB 124TCB	WX0910X1 WD0910X1	UC02139 UC02141	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	2.4	UGL UGL	0.0
ORGANICS/WATER/GCMS	UM25	120CLB	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	1.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	12DCLB	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	1.2	UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	120PH 120PH	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	<	13 13	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	13DCLB 13DCLB	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	3.4 3.4	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	13DNB 13DNB	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	10 10	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	14DCLB 14DCLB	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	1.5	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	236TCP 236TCP	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	1.7	UGL UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	245TCP 245TCP	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	2.8	UGL UGL	0.0
ORGANICS/WATER/GCMS	UM25	246TCP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	3.6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	246TCP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	3.6	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
									2511110000	21112	001211
ORGANICS/WATER/GCMS	UM25	24DCLP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	8.4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DCLP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	8.4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DMPN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	4.4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DMPN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	4.4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DNP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	180	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DNP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	180	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DNT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	24DNT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	26DNA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	8.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	26DNA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	8.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	26DNT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	6.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	26DNT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	6.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2CLP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	2.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2CLP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2CNAP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	2.6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2CNAP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2MNAP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	1.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2MNAP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	1.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2MP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	3.6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2MP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	3.6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2NANIL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	31	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2NAN I L	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	31	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************	*******	********									
	18405	4.4		110004/4		*** *** ***			2.2		
ORGANICS/WATER/GCMS	UM25	2NP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	8.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	2NP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	8.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	33DCBD	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	33DCBD	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0
											1.3.3.31
ORGANICS/WATER/GCMS	UM25	35DNA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0
ORGANICS/WATER/GCMS	UM25	35DNA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0
ORGANICS/WATER/GCMS	UM25	3NANIL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	15	UGL	0.0
ORGANICS/WATER/GCMS	UM25	3NANIL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	15	UGL	0.0
	51,125	2.0.11.12	WD 07 10/11	0002111		10 002 75	L, 00L 75		1.2	OUL	0.0
ORGANICS/WATER/GCMS	UM25	3NT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	2.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	3NT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	46DN2C	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	50	UGL	0.0
ORGANICS/WATER/GCMS	UM25	46DN2C	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	50	UGL	
UNGANICS/WATER/GCMS	טוועט	40UNZC	WAUSTUAT	0002139	AIML	10-205-32	51-30F-A2		50	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4BRPPE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	22	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4BRPPE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	22	UGL	0.0
	1002	N. C. C. C.	10 LO								
ORGANICS/WATER/GCMS	UM25	4CANIL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4CANIL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4CL3C	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	8.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4CL3C	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	2	8.5	UGL	0.0
	7.7						21 202 75	1.5	0.2	Jul	0.0
ORGANICS/WATER/GCMS	UM25	4CLPPE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	23	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4CLPPE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	23	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4MP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	20	Her	0.0
ORGANICS/WATER/GCMS	UM25	4MP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.8	UGL	0.0
ORGANICS WATER GUIS	טווט	-41.11	WAUT TOAT	0002139	ATPIL	10-105-37	51-10F-30		2.0	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
	*******	*********		*******	*****						
ORGANICS/WATER/GCMS	UM25	4NANIL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	31	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4NANIL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	31	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4NP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	96	UGL	0.0
ORGANICS/WATER/GCMS	UM25	4NP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	96	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ABHC	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ABHC	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	AENSLF	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	23	UGL	0.0
ORGANICS/WATER/GCMS	UM25	AENSLF	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	23	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ALDRN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	13	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ALDRN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	13	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANAPNE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANAPNE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANAPYL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANAPYL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANTRC	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ANTRC	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ATZ	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ATZ	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2CEXM	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	6.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2CEXM	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	6.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2CIPE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2CIPE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************		*********	*********	******		***********					
ODCANI OC / IATED / COMO	INGE	DOCLET	LD0010V1	UC024/4		10 111 05	27 111 05	0.1	40	Link	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	B2CLEE B2CLEE	WD0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	.68	UGL	0.0
ORGANICS/ WATER/ GCM3	טווט	BECLEE	WAUFIUAT	0002137	ATPIL	10-30E-33	21-301-93	•	.00	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2EHP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	7.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	B2EHP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	7.7	UGL	0.0
		24.00.00					10 11		414	2.0	2121
ORGANICS/WATER/GCMS	UM25	BAANTR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BAANTR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.8	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BAPYR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	14	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BAPYR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	14	UGL	0.0
ORGANIZOS) MATERY GENS	ONES	Dru TK	MAO / TOAT	OCOL 137	ATTIL	10 402 75	Er dol 75		17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BBFANT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	10	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BBFANT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	10	UGL	0.0
00040100 (14750 (0040	1000	PRUG	10001041	110004/4		40 05	27 00		4.7		
ORGANICS/WATER/GCMS	UM25	BBHC	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BBHC	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BBZP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	28	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BBZP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	28	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BENSLF	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	42	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BENSLF	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	42	UGL	0.0
Singular purpose history					-	12 00 00 00					
ORGANICS/WATER/GCMS	UM25	BENZOA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	3.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BENZOA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	3.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BGHIPY	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	15	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BGHIPY	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	15	UGL	0.0
on a milety delib		24011		5002137	ATTEC.	10 000 75	L. UUL /3			Jul	0.0
ORGANICS/WATER/GCMS	UM25	BKFANT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	10	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BKFANT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	10	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< Valu	e Units	RPD
ORGANICS/WATER/GCMS	UM25	BRMCIL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 2.9		0.0
ORGANICS/WATER/GCMS	UM25	BRMCIL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 2.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BZALC	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	BZALC	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CHRY	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 7.4	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CHRY	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 7.4		0.0
ORGANICS/WATER/GCMS	UM25	CL6BZ	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 12	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CL6BZ	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 12		0.0
ORGANICS/WATER/GCMS	UM25	CL6CP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 54	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CL6CP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 54		0.0
ORGANICS/WATER/GCMS	UM25	CL6ET	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 8.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CL6ET	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 8.3		0.0
ORGANICS/WATER/GCMS	UM25	CLDAN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 37	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CLDAN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 37		0.0
ORGANICS/WATER/GCMS	UM25	CPMS	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 10	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CPMS	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 10		0.0
ORGANICS/WATER/GCMS	UM25	CPMSO	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 15	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CPMSO	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 15		0.0
ORGANICS/WATER/GCMS	UM25	CPMSO2	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 5.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	CPMS02	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 5.3		0.0
ORGANICS/WATER/GCMS	UM25	DBAHA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 12	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DBAHA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 12		0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< Value	Units	RPD

ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	DBCP DBCP	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< 12 < 12	UGL UGL	0.0
Site Miles, Miles, delle	0,,00	DD01	WYG TOY I	COOLIST	747714	10 002 75	L. 10L 75		Our	0.0
ORGANICS/WATER/GCMS	UM25	DBHC	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DBHC	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DBZFUR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 5.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DBZFUR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 5.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DCPD	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 5.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DCPD	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 5.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DDVP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 8.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DDVP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 8.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DEP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 5.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DEP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 5.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DIMP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 21	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DIMP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 21	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DITH	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 3.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DITH	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 3.3	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DLDRN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 26	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DLDRN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 26	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DMMP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 130	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DMMP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 130	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DMP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	< 2.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DMP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	< 2.2	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************	*******	********	*******		*****					*****	
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	DNBP DNBP	WD0910X1 WX0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	33 33	UGL UGL	0.0
ORGANICS/WATER/GCMS	UM25	DNOP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	1.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	DNOP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	1.5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRNA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRNA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	5	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRNK	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ENDRNK	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	6	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ESFS04	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	50	UGL	0.0
ORGANICS/WATER/GCMS	UM25	ESFSO4	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	50	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FAMPHR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	20	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FAMPHR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	20	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FANT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	24	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FANT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	24	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FLRENE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	FLRENE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	HCBD	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	8.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	HCBD	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	8.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	HPCL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	38	UGL	0.0
ORGANICS/WATER/GCMS	UM25	HPCL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	38	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD	
					*****	*********	********				*******	
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	HPCLE HPCLE	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	28 28	UGL UGL	0.0	
5,12,111,20, 11,121, 20,15												
ORGANICS/WATER/GCMS	UM25	ICDPYR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	ICDPYR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	ISODR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	7.8	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	ISODR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	7.8	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	ISOPHR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	2.4	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	ISOPHR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.4	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	KEP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	20	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	KEP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	20	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	LIN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	7.2	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	LIN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	7.2	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MEXCLR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	11	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MEXCLR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	11	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MIREX	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	24	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MIREX	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	24	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MLTHN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	MLTHN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	21	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	NAP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	.5	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	NAP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	.5	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	NB	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	3.7	UGL	0.0	
ORGANICS/WATER/GCMS	UM25	NB	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	3.7	UGL	0.0	

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	< 1	/alue	Units	RPD
				(00000000 (000000000000000000000000000	100000						
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	NNDMEA NNDMEA	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	9.7 9.7	UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	NNDNPA NNDNPA	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	6.8	UGL UGL	0.0
UKGANICS/WATER/GCMS		NNUNFA									200
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	NNDPA NNDPA	WD0910X1 WX0910X1	UC02141 UC02139	ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	<	3.7 3.7	UGL	0.0
ORGANICS/WATER/GCMS	UM25	OXAT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	27	UGL	0.0
ORGANICS/WATER/GCMS	UM25	OXAT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	27	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB016	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB016	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB221	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB221	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB232	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB232	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS ORGANICS/WATER/GCMS	UM25 UM25	PCB242 PCB242	WD0910X1	UC02141 UC02139	ATML ATML	10-JUL-95 10-JUL-95	27-JUL-95 27-JUL-95	< <	9.1 9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB248	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB248	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB254	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB254	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB260	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	13	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCB260	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	13	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************										*****	******
ORGANICS/WATER/GCMS	UM25	PCP	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PCP	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.1	UGL	0.0
5. mar. 1. 50, m. 1. 2. 1, 25. 10	0.72	1 9/	may roat	0002137	******	10 002 73	L! 00L /3		7.1	OUL	0.0
ORGANICS/WATER/GCMS	UM25	PHANTR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	9.9	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PHANTR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	9.9	UGL	0.0
ODCANICO (HATED (COMO	· mar	DUENO	100010V1	1100001/1		10 "" 05	27 25		2.2	Mai	
ORGANICS/WATER/GCMS	UM25	PHENOL	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	2.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PHENOL	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	2.2	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PPDDD	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PPDDD	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
		1110									
ORGANICS/WATER/GCMS	UM25	PPDDE	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	14	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PPDDE	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	14	UGL	0.0
	9 to 2 and 2	00000							No.		
ORGANICS/WATER/GCMS	UM25	PPDDT	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PPDDT	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	18	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PRTHN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	37	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PRTHN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	37	UGL	0.0
OKANITES / MATERY GENS	UNLS	rictio	WAOTION	GCOZ 137	ATRIC	10 000 73	21 002 75		31	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PYR	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	PYR	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	SUPONA	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	19	UGL	0.0
ORGANICS/WATER/GCMS	UM25	SUPONA	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	19	UGL	0.0
ORGANICS/WATER/GCMS	UM25	TXPHEN	WD0910X1	UC02141	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ORGANICS/WATER/GCMS	UM25	TXPHEN	WX0910X1	UC02139	ATML	10-JUL-95	27-JUL-95	<	17	UGL	0.0
ONDANTES/WATER/ GCP13	UNLJ	AFTIEN	#AUT IUA I	0002139	ATML	10-301-73	51-30F-33		17	UGL	0.0
METALS/SOIL/CVAA	Y9	HG	DX140100	UC02121	ATQB	10-JUL-95	26-JUL-95		.281	UGG	4.0
HETALS/ SUIL/ CVAA	17	nu	DA 140 100	0002121	AIND	10-30[-93	20-JUL-93		.201	UGG	4.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Şample Date	Analysis Date	<	Value	Units	RPD
METALS/SOIL/CVAA	Y9	HG	DD140100	UC02122	ATQB	10-JUL-95	26-JUL-95		.27	UGG	4.0

TABLE C-20

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
METALS/WATER/GFAA	AX8	AS	WJ0910X1	UC02140	ATSA	10-JUL-95	22-AUG-95		3.89	UGL	42.0
METALS/WATER/GFAA	8XA	AS	WE0910X1	UC02142	ATSA	10-JUL-95	22-AUG-95		2.54	UGL	42.0
METALS/WATER/CVAA	CC8	HG	WJ0910X1	UC02140	ATQH	10-JUL-95	27-JUL-95	<	.1	UGL	0.0
METALS/WATER/CVAA	CC8	HG	WE0910X1	UC02142	ATQH	10-JUL-95	27-JUL-95	<	.1	UGL	0.0
METALS/WATER/GFAA	SD18	PB	WJ0910X1	UC02140	ATSB	10-JUL-95	21-AUG-95	<	4.47	UGL	0.0
METALS/WATER/GFAA	SD 18	PB	WE0910X1	UC02142	ATSB	10-JUL-95	21-AUG-95	<	4.47	UGL	0.0
METALS/WATER/GFAA	SD25	SE	WJ0910X1	UC02140	ATSC	10-JUL-95	22-AUG-95	<	2.53	UGL	0.0
METALS/WATER/GFAA	SD25	SE	WE0910X1	UC02142	ATSC	10-JUL-95	22-AUG-95	<	2.53	UGL	0.0
METALS/WATER/ICP	SS12	AG	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	10	UGL	0.0
METALS/WATER/ICP	SS12	AG	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	10	UGL	0.0
METALS/WATER/ICP	SS12	AL	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	112	UGL	0.0
METALS/WATER/ICP	SS12	AL	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	112	UGL	0.0
METALS/WATER/ICP	SS12	BA	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		7.75	UGL	9.5
METALS/WATER/ICP	SS12	BA	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		7.05	UGL	9.5
METALS/WATER/ICP	SS12	BE	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		1.27	UGL	4.8
METALS/WATER/ICP	SS12	BE	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		1.21	UGL	4.8
METALS/WATER/ICP	SS12	CA	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		25900	UGL	6.4
METALS/WATER/ICP	SS12	CA	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		24300	UGL	6.4
METALS/WATER/ICP	SS12	CD	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	6.78	UGL	0.0
METALS/WATER/ICP	SS12	CD	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	6.78	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
***************************************			*********								
METALS/WATER/ICP	SS12	co	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	25	UGL	0.0
METALS/WATER/ICP	SS12	CO	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	25	UGL	0.0
TIETRES, MITER, 151		1									17.4
METALS/WATER/ICP	SS12	CR	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	16.8	UGL	0.0
METALS/WATER/ICP	SS12	CR	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	16.8	UGL	0.0
METALS/WATER/ICP	SS12	CU	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	18.8	UGL	0.0
METALS/WATER/ICP	SS12	CU	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	18.8	UGL	0.0
PIETAES, MATERY TO	0012	55	WGG 10/11								
METALS/WATER/ICP	SS12	FE	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	77.5	UGL	73.2
METALS/WATER/ICP	SS12	FE	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		167	UGL	73.2
	0040	P.	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		1340	UGL	7.8
METALS/WATER/ICP	SS12	K K	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	1240	UGL	7.8
METALS/WATER/ICP	SS12	K	MJOALOXI	0002140	AIKI	10-30L-93	11-AUG-95	•	1240	UGL	7.0
METALS/WATER/ICP	SS12	MG	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		3850	UGL	5.9
METALS/WATER/ICP	SS12	MG	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		3630	UGL	5.9
			.=004004			40 05	44 4110 05		/7.0		407 5
METALS/WATER/ICP	SS12	MN	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		43.9	UGL	107.5
METALS/WATER/ICP	SS12	MN	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		146	UGL	107.5
METALS/WATER/ICP	SS12	NA	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95		21900	UGL	5.6
METALS/WATER/ICP	SS12	NA	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95		20700	UGL	5.6
		6.		110004/0		10 111 05	11-AUG-95		77.4	UGL	0.0
METALS/WATER/ICP	SS12	NI	WE0910X1	UC02142 UC02140	ATRY	10-JUL-95 10-JUL-95	11-AUG-95	<	32.1 32.1	UGL	0.0
METALS/WATER/ICP	SS12	NI	WJ0910X1	0002140	ATRY	10-30F-32	11-A0G-93	<	32.1	UGL	0.0
METALS/WATER/ICP	SS12	SB	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	60	UGL	0.0
METALS/WATER/ICP	SS12	SB	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	60	UGL	0.0
	- Court								1.2	where	4.2
METALS/WATER/ICP	SS12	TL	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	125	UGL	0.0
METALS/WATER/ICP	SS12	TL	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	125	UGL	0.0

Method Description	IRDMIS Method Code	Test Name	IRDMIS Field Sample Number	Lab Number	Lot	Sample Date	Analysis Date	<	Value	Units	RPD
							***************************************				********
METALS/WATER/ICP	SS12	٧	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	27.6	UGL	0.0
METALS/WATER/ICP	SS12	٧	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	27.6	UGL	0.0
METALS/WATER/ICP	SS12	ZN	WE0910X1	UC02142	ATRY	10-JUL-95	11-AUG-95	<	18	UGL	0.0
METALS/WATER/ICP	SS12	ZN	WJ0910X1	UC02140	ATRY	10-JUL-95	11-AUG-95	<	18	UGL	0.0

- ABB Environmental Services, Inc., (ABB-ES), 1993e. Final Project Operations Plan for Site Investigations and Remedial Investigations, Fort Devens, Massachusetts. Prepared for U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland. Portland, Maine; July.
- U.S. Environmental Protection Agency (USEPA), 1988. Statement of Work for Organics Analysis, SOW No. 2/88.
- U.S. Environmental Protection Agency (USEPA), 1989. Laboratory Data
 Validation Functional guidelines for Evaluating
 Inorganics Analysis. Prepared for Hazardous Site Evaluation Division, U.S. Environmental Protection Agency. U.S. environmental Protection Agency Data Review Workgroup.

W0129510.080 7005-15

1.0 Introduction

The purpose of this Attachment is to summarize results for quality control samples collected during the July 1995 sampling event conducted at lower Cold Stream Brook, Fort Devens. Four surface water and five sediment samples were collected and analyzed for inorganics, SVOCs, and pesticides using USAEC procedures, and TSS, hardness, alkalinity, TOC, TPHC, and anions (Cl and SO4) using USEPA methods, outlined in Section 1.0 of Appendix C. Quality control samples included laboratory method blanks, rinse blanks, field duplicates, and matrix spikes.

2.0 Quality Control Blanks

Quality control blanks include laboratory method blanks, and field equipment rinse blanks.

2.1 Laboratory Method Blanks

A single lot of data was reported for each method and one method blank was analyzed for each lot/method. Method blank results are presented in Table C-15.

Inorganics:

No target elements were detected in any aqueous method blanks, indicating the laboratory was free of contamination during sample analyses.

Target elements were detected above CRLs in the soil method blank. Detected elements include lead, aluminum, barium, calcium, iron, potassium, magnesium, manganese, vanadium, and zinc. These elements are present in the blank soil used for method blank analyses under the USAEC program and detection of the above elements is not interpreted to indicate laboratory contamination.

Semivolatile Organics:

No target analytes were detected in water method blanks. Two non-target compounds were detected in soil method blanks. Compounds included hexadecanoic acid (C16A) and octadecanoic acid (ODECA). Several unknowns

were also reported at low concentrations in soil blanks ranging from 0.3 μ g/g to 0.7 μ g/g. The presence of these compounds in soil samples is likely related to laboratory introduced contamination.

Pesticides:

No pesticide target compounds were detected in soil method blanks. Isodrin (ISODR) was detected in the water method blank at a very low concentration of 0.007 μ g/L. Blank data indicate there was no significant laboratory related contamination in blanks.

USEPA Methods:

No positive detections were reported in TSS, hardness, alkalinity, TOC, of TPHC method blanks.

2.2 Rinse Blanks

Depending on the analytical method, one to three rinse blanks were collected during the July sampling event. Rinse blank results are presented in Table C-16.

Inorganics:

Rinse blanks indicate there was little carryover contamination during sample collection. The only elements detected include iron in one rinse blank at 109 μ g/L and zinc in two blanks ranging from 19 μ g/L to 86 μ g/L.

Semivolatile organics:

No target compounds were detected in any rinse blanks indicating carry over of target analytes due to contaminated equipment did not occur during sample collection. Several unknowns were reported in rinse blanks at low concentrations ranging from 5 μ g/L to 20 μ g/L.

Pesticides:

The majority of pesticide target compounds were not detected in two rinse blanks. One compound, heptachlor (HPCL), was detected in the sediment rinse blank at 0.229 μ g/L. However, heptachlor was not detected in any sample.

USEPA Methods:

No rinse blank contamination was reported in TSS, hardness, alkalinity, TOC, TPHC, or anion blanks.

3.0 Matrix Spike Results

Matrix spike analyses were conducted for inorganics and pesticides only. Results of matrix spike analyses are presented in Table C-17.

Inorganics:

One soil MS/MSD pair was analyzed. Only a small percent of results for target elements fell within the 75% - 125% control limit goals for the project. Recoveries for the majority of target analytes were high. This sample (Field Sample No. DZ140100) was collected from within a Storm Drain System No. 14 during the same field event that lower Cold Stream Brook samples were collected. Based on historic information, sediments in System No. 14 contain high concentrations of elements and some pesticides. The sediment matrix may be very different than sediments in lower Cold Stream Brook and data from DZ140100 will not be used to qualify the accuracy and precision of results of samples collected from lower Cold Stream Brook.

The surface water matrix spike sample (Field Sample No. WM0910X1) had the majority of water matrix spike element recoveries (87%) were within the 75% - 125% control limit goals for the project. High recoveries were reported for arsenic, selenium, and lead. Recoveries for arsenic, selenium, and lead were approximately 2 times the spike values. Based on these results arsenic observed in samples would be considered estimated and biased high. No lead or selenium was detected in surface water samples.

Pesticides:

One matrix spike sample was collected in association with sediments from lower Cold Stream Brook. As outlined above for inorganics, this sample was collected from a different area and may have different matrix characteristics. Fifty percent of spike compounds were within the 50% - 160% recovery control limit goals for the project. Low recoveries were observed for chlordane, methoxychlor, Aroclor 1016, and Aroclor 1260. High recoveries were observed for the MS for DDT. Acceptable recoveries for DDT were reported for the MSD. With the exception of DDT, these compounds were not detected in sediments at lower Cold Stream Brook and no qualification of the results is recommended.

Fifty percent of spike compounds in surface water samples were within spike recovery control limit goals. Low recoveries were reported for endosulfan I, aldrin, heptachlor, and DDT. Recoveries ranged from 36% to 48%. Positive results for endosulfan I, heptachlor, and DDT in surface water samples may be biased low. These compounds were detected in one sample (SSW-95-09K). Recoveries were greater than 30% indicating that usable data were obtained for all target compounds.

3.1 Semivolatile Surrogate Recoveries

Surrogate recovery goals for Fort Devens field investigations were discussed previously in Appendix C, Section 4.0. Surrogate recovery data are summarized for sediment and surface water samples collected from lower Cold Stream Brook in Table C-18. Table C-18 contains results for additional samples within the analytical lot which were collected from sites other than lower Cold Stream Brook; however, only the lower Cold Stream Brook samples are discussed. The first four digits of the Field Sample No. for lower Cold Brook Stream Samples are identified as DX09 for sediments and WX09 for surface waters.

Recoveries of surrogates in surface water samples were within USEPA control limits for all surrogates in all samples. Surrogate recoveries reported in soil samples were within USEPA control limits for 98% of the results. These data indicate that excellent accuracy of measurements were obtained for SVOCs in the sediment and surface water media.

4.0 Field Duplicate Results

Results of field duplicate sample analyses were used to evaluate the precision of the sampling and analysis process. A single surface water duplicate, and a single sediment duplicate were collected. The field duplicate associated with lower Cold Stream Brook sediment samples was collected from a different study area (Area 14 or Area 25) as discussed in Section 3.0 above for matrix spikes. Results from the sediment duplicates are presented below, however, qualification of lower Cold Stream Brook results are not recommended based on results from Area 14. Duplicate RPD goals of less than 50% were used for soils, and RPD goals of 30% were used for water samples. Table C-19 contains analytical results for field duplicate samples. Table C-20 contains analytical results for filtered field duplicate samples.

Inorganics:

Filtered and unfiltered surface water samples were collected from lower Cold Stream Brook. Eighty-seven percent of filtered results had RPDs less than 30%. Results for arsenic, iron, and manganese exceeded the 30% RPD goal. All three elements were detected at concentration just slightly greater than the analytical method CRL. No qualification of filtered data will be done based on these results. Ninety-one percent of unfiltered results had RPDs less than 30%. Results for arsenic and iron exceeded the RPD goals. Arsenic and iron results in unfiltered samples should be considered estimated values.

Ninety-one percent of sediment results met RPD goals indicating good precision of measurement in samples collected during the field effort at Area 14. Manganese and sodium results exceeded RPD goals of 50%. Low concentrations of these elements were present in these samples and no qualification of lower Cold Stream Brook Samples is recommended.

Semivolatile Organics:

All target compounds for method UM25 were non-detect for both the original and duplicate surface water sample indicating complete agreement of results.

The SVOC field duplicate sediment sample associated with lower Cold Stream Brook sediments was collected from Area 25. Ninety-one percent of target compound results met the 50% RPD goal. PAH compounds were the primary target compounds detected. Variability in detected concentrations was observed in four of fourteen (28%) of the detected PAH. These data suggest some variability in results for sediments collected at Area 25, however, the majority of PAH met RPD goals indicating good precision for the majority of PAH results.

Pesticides:

Eighty-eight percent of surface water pesticide results met RPD goals. The majority of detected pesticides were at low concentrations near the CRL. Many of the detected pesticides were not reported in the associated duplicate. These data suggest that surface water pesticide results should be considered estimated values.

Ninety-six percent of target compound RPDs in the sediment duplicate were within percent difference goals. An RPD of 158 was reported for heptachlor epoxide (HPCLE), however, this compound was not detected in any lower Cold Stream Brook samples, and no qualification of results is recommended.

SURVEY DATA

ABB Environmental Services, Inc.

W0129510.080 7005-15

131 Main Street Reading, Massachusetts 01867 Tel: 617 944-4808 Fax: 617 944-9676

November 14, 1994

Mr. Stanley W. Reed, P.E. ABB Environmental Services, Inc. 110 Free Street P. O. Box 7050 Portland, ME 04112-7050

Subject:

Multi-Task Work Order

Option #4, Cold Spring Brook Fort Devens, Massachusetts

Dear Mr. Reed:

Enclosed please an AutoCAD .DWG file for the Cold Spring Brook sediment sampling locations and outfall data at Fort Devens. The following table contains the sediment sampling locations and outfall data for the project:

SEDIMENT LOCATION NUMBER	NORTH COORD.	EAST COORD.	ELEVATION
57D-92-02X	563339.3	578072.3	212.77
CSD-94-01X	560156.3	574498.9	225.73
CSD-94-02X	560110.8	574780.5	224.09
CSD-94-03X	560158.0	575070.9	222.80
CSD-94-04X	561397.1	574918.8	227.42
CSD-94-05X	561387.9	575224.1	224.99
CSD-94-06X	561288.4	575520.5	221.59
CSD-94-07X	561222.1	575653.0	220.28
CSD-94-08X	561218.9	575709.6	219.53
CSD-94-09X	561273.0	575839.8	219.02
CSD-94-11X	561424.8	576062.4	217.55
CSD-94-12X	561452.0	576169.4	217.95

SEDIMENT LOCATION NUMBER	NORTH COORD.	EAST COORD.	ELEVATION
CSD-94-13X	561595.5	576314.5	217.58
CSD-94-14X	561722.2	576460.2	217.75
CSD-94-16X	562008.3	577345.0	215.93
CSD-94-17X	561686.8	576516.2	218.21
CSD-94-18X	562075.6	577301.7	215.27
CSD-94-19X	561741.9	576799.3	217.20
CSD-94-20X	561766.9	576432.9	217.76
CSD-94-21X	563309.8	577509.9	221.73
CSD-94-22X	563387.3	577594.9	226.62
CSD-94-23X	563295.5	577578.0	222.01
CSD-94-24X	563262.3	577730.4	221.04
CSD-94-25X	563192.6	577802.9	221.16
CSD-94-26X	562447.6	577638.7	212.83
CSD-94-27X	562927.0	577861.8	214.00
CSD-94-28X	563481.8	578193.9	213.21
CSD-94-29X	564236.2	578481.5	219.99
CSD-94-30X	564152.6	578452.7	217.97
CSD-94-31X	563786.0	578517.9	215.04
CSD-94-32X	564176.5	578693.5	213.38
CSD-94-33X	564302.6	578869.0	214.60
GRD-94-06X	564622.8	575675.4	229.94
GRD-94-07X	564753.6	575619.8	217.83
INV-12" CONC	563391.9	577595.9	228.84
INV-24" CONC	563391.3	577593.6	227.83
INV-30" CONC SYS 2, 3 & 4	563332.1	577454.3	226.13
INV-12" VC-SYS5	564489.4	575746.6	240.85
INV-10" CLAY-SYS6	561742.3	575750,3	231.41
INV-10" CLAY-SYS6	561741.3	575750.9	230.43

SEDIMENT LOCATION NUMBER	NORTH COORD.	EAST COORD.	ELEVATION
INV-10" CLAY-SYS6	561741.3	575749.8	230.35
INV-12" PVC-SYS8	560397.5	574912.7	227.37
INV-20" CI-SYS7	561292.8	575354.7	222.47
INV-20" CI-SYS7	561331.9	575299.0	223.12
INV-21" CONC-SYS1	564405.4	578341.4	234.13
INV-21" CONC-SYS2	564402.7	578338.2	236.62
INV-60" CONC-SYS9	560271.3	574027.8	224.60
INV-12" CONC	561438.6	574768.9	229.48

In addition to this, you will find a Lotus .WK1 file containing the sediment sampling locations and outfall data for the project as requested. If you have any problems loading the .DWG file or should you have any questions, please feel free to call us.

Very truly yours,

MARTINAGE ENGINEERING ASSOCIATES, INC.

Glenn D. Sprague

Enclosure

\GLENN\ABBDEV.OP4

DEVELOPMENT OF ECOLOGICAL SURFACE SOIL PROTECTIVE CONTAMINANT LEVELS

ABB Environmental Services, Inc.

W0129510.080 7005-15

APPENDIX E DEVELOPMENT OF ECOLOGICAL SURFACE SOIL PROTECTIVE CONTAMINANT LEVELS

No state or federal standards or guidelines exist for surface soil exposure; this medium has therefore been evaluated through comparison of maximum analyte concentrations in surface soils to protective contaminant levels (PCLs) obtained through a computer-generated chronic exposure food chain model. An acceptable level of risk (Hazard Quotient [HQ] equals 1) associated with chronic exposure to each surface soil analyte at Cold Spring Brook was established in order to develop conservative PCLs for the screening level PREs. The PCLs used at Cold Spring Brook are based on a methodology submitted by ABB-ES to the U.S. Army and reviewed by Massachusetts DEP and USEPA Region I. The Lower Cold Spring Brook Data Package PCLs include up-to-date references and regulatory guidance that was unavailable when earlier Fort Devens PREs were conducted.

The terrestrial food chain model was developed to estimate the potential dietary exposure levels of contaminants for several potential receptor species representing trophic levels within the ecological community that may exist at Cold Spring Brook. Indicator receptor species were chosen to represent various taxonomic groups and trophic levels. It was assumed that each species evaluated is representative of other species within a given trophic level at Cold Spring Brook (i.e., a trophic guilding approach was employed).

The following indicator species were selected to represent exposure to terrestrial organisms via ingestion of food and surface soil at Cold Spring Brook: short-tailed shrew (Blarina brevicauda), the American woodcock (Scolopax minor), the red fox (Vulpes vulpes), and the red-tailed hawk (Buteo jamaicensis). A site acreage (area of contaminated soil present at the Cold Spring Brook) of 2 acres was used in the PCL calculation. This area is approximately equal to the home range of the short-tailed shrew, and is smaller than the home ranges of the other indicator species evaluated.

Detailed information for each of the above-listed species regarding diet, home-range, and other biological exposure parameters used in the food web model, were obtained from the Wildlife Exposure Factors Handbook (USEPA, 1994) and other literature sources, and are provided in table E-1.

The food-chain model was used to estimate contaminant levels in various primary prey items (e.g., invertebrates and plants) consumed by each receptor species. Estimated contaminant tissue residues in each prey species were estimated using specific bioaccumulation factors (BAFs), as shown in the following equation:

Prey Tissue Concentration (mg/kg) = Soil Concentration (mg/kg) × Bioaccumulation Factor (BAF)

Other BAFs were used to estimate tissue concentrations in secondary prey items such as small birds and rodents. The BAF data base is presented in Table E-2. For BAF derivation, when possible, chemical- and taxon-specific bioaccumulation data for plants, invertebrates, mammals, and birds were obtained from the literature. When these data were unavailable, BAFs were calculated using structure-activity relationships (SAR) or were obtained from empirical data or extrapolations, as described below.

- For plants, when literature values were unavailable, plant BAFs for semi-volatile organic chemicals and pesticides were calculated using a regression equation from Travis and Arms (1988) that is based on the uptake of organic contaminants into plant tissue. Log K_{ow}s ≥5 of the following classes of compounds were averaged to provide one BAF for that compound class: PAHs, phthalates, phenols, and furans. Based on evidence provided by Suter (1993) which suggests that compounds with log K_{ow}s less than 5 do not bioaccumulate in plants, BAFs for compounds or classes of compounds with log K_{ow}s less than 5 were conservatively assumed to be 0.02. Plant BAFs for inorganic chemicals were obtained from Baes et al. (1984).
- For terrestrial invertebrates, when literature values were unavailable, a single BAF for PAHs was calculated using data presented in Beyer (1990); dry weight was converted to wet weight assuming earthworms are 80% water. This value was used as a surrogate for all semivolatile compounds.
- For small mammals, when literature values were unavailable for semivolatile organic compounds, BAFs for small mammals were estimated using a regression equation based on the uptake of organic contaminants into beef tissue from Travis and Arms (1988). Log K_{ow}s ≥5 of the following classes of compounds were averaged to provide one BAF for that compound class: PAHs, phthalates, phenols, and furans. BAFs for inorganics were derived from ingestion-to-beef biotransfer factors (BTFs) presented in Baes et al. (1984)
- For small birds, when literature values were unavailable, the small mammal BAF value was used as a surrogate.

The potential dietary exposure (PDE) level, for each modeled receptor species, was calculated by multiplying each predicted prey species tissue concentration by the proportion of that prey type in the diet, summing these values, adding soil exposure, and multiplying by the Site Foraging Frequency (SFF) of the given receptor species. Incidental soil ingestion associated with foraging, preening, and cleaning activities, was conservatively assumed to represent five percent of total dietary intake. The PDE is represented by the following equation:

$$PDE = [P_1 \times T_1 + P_2 \times T_2 + ... + P_n \times T_n + soil exposure] \times SFF$$

where:

PDE = Potential dietary exposure (mg/kg)

P_n = Percent of diet composed of prey item n

 T_n = Tissue concentration in prey item n (mg/kg)

Soil Exposure = (0.05)(Soil concentration in mg/kg)

SFF = Site Foraging Frequency; Area of Contaminated Soil

(acres)/Home range (acres)

Finally, the potential dietary exposure for each receptor species was multiplied by the receptor-specific ingestion rate and divided by the estimated body weight to calculate a Total Body Dose (TBD):

$$TBD = PDE \times IR \times \frac{1}{BW}$$

where:

TBD = Total Body Dose (mg/kgBW-day)
PDE = Potential dietary exposure (mg/kg)

IR = Ingestion rate (kg/day)

BW = Body weight (kg)

Because the TBD estimates are normalized to the ingestion and body weight of the particular receptor being evaluated, they are directly comparable to estimated Reference Toxicity Values (RTVs) derived from the literature. The comparison of the TBD estimate with the appropriate RTV results in an index (the Hazard Index) of potential impact associated with exposure to that particular chemical.

Toxicity data evaluated for terrestrial receptors consists of acute and chronic oral ingestion studies which were preferentially chosen in the following order: 1) feeding studies, 2) gavage studies, 3) drinking water studies. Based on these data, RTVs were developed to represent a threshold dosage for effects to terrestrial organisms. RTVs are expressed in mg/kg BW (body weight)/day (dose normalized to body weight). From the toxicological data base (Table E-3), chemical-specific toxicity values for analytes detected in Cold Spring Brook surface soil were selected as the RTVs (Table E-4) for each type of receptor (indicator species) evaluated.

The RTV selection procedure included the following general guidelines:

- When taxon-specific data were unavailable, available toxicological data were used as surrogate toxicological benchmarks for various indicator species (e.g., a value from a sublethal avian study was used for an avian receptor RTV, regardless of avian species tested in the study). Acceptable canine toxicity values were preferentially chosen to represent red fox and raccoon RTVs.
- RTVs were generally based on the reported Lowest Observed Adverse Effect Level (LOAEL) for endpoints from chronic or subchronic studies (i.e., those lasting >14

days). When LOAEL data were unavailable, No Adverse Effect Level (NOAEL) data from subchronic or chronic studies were used. Sensitive endpoints such as reproductive toxicity, were preferentially selected as RTVs because they relate most directly to the selected assessment endpoints (e.g., population declines). Mortality data were generally not selected for RTVs because they do not represent the most sensitive endpoints (e.g., reproductive effects should occur at lower dose levels than those required to cause mortality), and were used only when chronic or sub-chronic studies which evaluated non-lethal endpoints were unavailable.

- When no chronic or sub-chronic duration studies were available for RTV derivation for any terrestrial receptor type, acute study values were used to estimate benchmark values. In these cases, a factor of 0.2 was applied to the acute mortality endpoint (e.g., the LD 50) and a factor of 0.1 was then applied to that value for conservatively extrapolating from acute to chronic values (the acute-chronic ratio for many chemicals is approximately 10 [Newell et al., 1987]).
- When acceptable study results were unavailable, the CPC was assigned an appropriate surrogate chemical for which adequate toxicological data exists (e.g., 4,4'-DDT was used as a surrogate for 4,4'-DDD and 4,4'-DDE).
- Efforts were made to avoid deriving RTVs based on carcinogenicity as an endpoint.
 For some PAHs, however, no other data were available. Therefore, all PAHs were assigned the RTV for benzo(a)pyrene, which is based on a reproductive endpoint, as a surrogate.

Development of Protective Contaminant Levels (PCLs)

In order to develop PCLs, an acceptable level of risk associated with exposure to each contaminant (Hazard Quotient [HQ] = 1) was multiplied by the particular contaminant-specific RTV to estimate a Target Intake Dosage (TID), expressed as mg/kgBW-day, as shown by the following equation:

 $TR \times RTV = TID$

TR = Target Risk (HQ = 1.0)

RTV = Reference Toxicity Value (mg/kgBW-day)
TID = Target Intake Dosage (mg/kgBW-day)

The TID was multiplied by the Dietary Contribution Factor (DCF) (the inverse of the equation used to derive TBD) to estimate the PCL of the particular contaminant, as shown by the following equation:

$TID \times DCF = PCL$

TID = Target Intake Dosage (mg/kgBW-day)

DCF = Dietary Contribution Factor (kgBW-day/kg)

PCL = Protective Contaminant Level (mg/kg)

PCLs were developed for all analytes for each of the terrestrial receptor organisms evaluated through the food chain model; these PCLs are presented in Table E-5. The lowest resultant PCLs were selected as the PCL values for use in these PREs. For the majority of the contaminants evaluated, the short-tailed shrew (due to its small home range, voracious appetite, and insectivorous diet) was found to be the ecological receptor species with the lowest PCL. The PCL values used in the risk evaluation represent the concentration of each analyte in surface soil that, if not exceeded, is expected to be protective of all terrestrial organisms. The calculated PCL values for some higher trophic level receptors exceeded a soil level of 50% contaminant for some analytes, suggesting that the analyte poses no risk to the receptor. The PCL values for these analytes have been denoted as "No Effects Likely" (NEL) in Table E-5.

American woodcock Scolope	# <i>IIIIIIII</i>	1			
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessmen		
Home range (acres)	Territory size 7.9 to 187 acres.		63 acres [b]		
Exposure duration (unitless)	Summer resident, migrant. Mar Nov.; Arrives in northern range in early March and leaves in late September		0.75		
Diet	68% earthworms; 16% beetles, flies, and insects, 5% other animals, and 10% plants.				
Ingestion rate (kg/day)			0.13 kg fresh weight/day		
Body weight (kg)			0.17kg		
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR _{air} = 0.4089 * BW(kg) ^{0.77}		0.1 m ³ /day		
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all birds: $L = 0.059 * BW(kg)^{0.67}$		0.0181/day		

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

American robin Turdus mig	gratorius					
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment			
Home range (acres)	Foraging home range for summer adults feeding nestlings = 0.15 ha, for fledglings = 0.81 ha		1.2 acres [b]			
Exposure duration (unitless)	duration (unitless) Summer resident, migrant. MarNov.					
Diet	Adult birds in the eastern U.S.; diet is 32% invertebrates and 68% plants.					
Ingestion rate (kg/day)			0.097 kg fresh weight/day. [b]			
Body weight (kg)	0.0648 - 0.0842kg		0.081 kg [b]			
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR $_{\rm air} = 0.4089 * {\rm BW(kg)}^{0.77}$		0.059 m ³ /day			
Drinking water intake rate (l/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all birds: $L = 0.059 * BW(kg)$ 0.67	0.0111/day				

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

Short-tailed shrew Blarina	brevicauda				
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment		
Home range (acres)			0.9 acres [b]		
Exposure duration (unitless)	Active year-round; longevity is less than 5 months to as much as 20 months.		1.0		
Diet	Diet consists of 61% to 70.5% invertebrates, 11% to 13% vegetation, and approximately 15% "miscellaneous other".				
Ingestion rate (kg/day)	Reported values of 7.95 g/day and 0.49 to 0.62 g/BW-day		0.0087kg fresh weight/day [b]		
Body weight (kg)			0.017 kg [b]		
Daily inhalation rate (m ³/day)	Allometric relationship between body weight (BW) and inhalation rate: IR _{air} = 0.5458 * BW(kg) ^{0.8}		0.021 m ³ /day		
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: $L = 0.099 * BW(kg)^{0.9}$		0.00251/day		

a All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

[[]c] The 15% of the dietary intake that is "miscellaneous" was accounted for by including 5% soil ingestion, and adding an additional 5% intake to plant ingestion and an additional 4% intake to invertebrate ingestion.

Red fox Vulpes vulpes				
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessmen	
Home range (acres)			2600 acres	
Exposure duration (unitless)	Active year-round		1.0	
Diet consists of 37% (summer) to 92% (spring) small mammals, 2% (spring) to 43% (summer) birds and eggs, up to 11% invertebrates, and up to 16% vegetation.			Plants: 16% Invertebrates: 4% Small mammals: 61% Birds: 14% Soil: 5%	
Ingestion rate (kg/day)	Average of ingestion rates for free-ranging fox		0.41 kg fresh weight/day [b]	
Body weight (kg)			4.3 kg [b]	
Daily inhalation rate (m ³ /day)			1.8 m ³ /day [b]	
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: $L = 0.099 * BW(kg)^{0.9}$		0.371/day	

[[]a] All values derived from USEPA (1993) unles otherwise indicated. [b] Average of reported values.

Red-tailed hawk Buteo jame	aicensis					
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment			
Home range (acres)	Range of reported values is 150 to 2512 ha		500 acres [b]			
Exposure duration (unitless)	Active year-round	1.0				
Diet	Small mammals, nesting birds, insects, carrion, domestic animals.	Plants: 2% Invertebrates: 1% Small mammals: 74% Birds: 18% Soil: 5%				
Ingestion rate (kg/day)			0.11 kg fresh weight/day [c]			
Body weight (kg)			1.1 kg [c]			
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR $_{air} = 0.4089 * BW(kg)$ 0.77		0.44 m ³ /day			
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: $L = 0.099 * BW(kg)^{0.9}$		0.063 1/day			

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Selected as conservative value. Actual range may be greater.

[[]c] Average of reported values.

Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessmen	
Home range (acres)	Territory size 7.9 to 187 acres.		63 acres [b]	
Exposure duration (unitless)	Summer resident, migrant. Mar Nov.; Arrives in northern range in early March and leaves in late September		0.75	
Diet	68% earthworms; 16% beetles, flies, and insects, 5% other animals, and 10% plants.	Invertebrates: 85% Plants: 10% Soil: 5%		
Ingestion rate (kg/day)			0.13 kg fresh weight/day	
Body weight (kg)			0.17 kg	
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR _{air} = 0.4089 * BW(kg) ^{0.77}		0.1 m ³ /day	
Drinking water intake rate (l/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all birds: $L = 0.059 * BW(kg)^{0.67}$		0.0181/day	

[[]a] All values derived from USEPA (1993) unles otherwise indicated.
[b] Average of reported values.

American robin Turdus mig	gratorius					
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment			
Home range (acres)	Foraging home range for summer adults feeding nestlings = 0.15 ha, for fledglings = 0.81 ha		1.2 acres [b]			
Exposure duration (unitless)	e duration (unitless) Summer resident, migrant. MarNov.					
Diet	Adult birds in the eastern U.S.; diet is 32% invertebrates and 68% plants.		Invertebrates: 30% Plants: 65% Soil: 5%			
Ingestion rate (kg/day)			0.097 kg fresh weight/day			
Body weight (kg)	0.0648 - 0.0842kg		0.081 kg [b]			
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR $_{air} = 0.4089 * BW(kg)$ 0.77		0.059 m ³ /day			
Drinking water intake rate (l/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all birds: $L = 0.059 * BW(kg)^{0.67}$		0.0111/day			

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

Short-tailed shrew Blarina	brevicauda			
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment	
Home range (acres)			0.9 acres [b]	
Exposure duration (unitless)	1.0			
Diet	Diet consists of 61% to 70.5% invertebrates, 11% to 13% vegetation, and approximately 15% "miscellaneous other".	Plants: 15% [c] Invertebrates: 80% [c] Soil: 5%		
Ingestion rate (kg/day)	Reported values of 7.95 g/day and 0.49 to 0.62 g/BW-day		0.0087kg fresh weight/day [b]	
Body weight (kg)			0.017kg [b]	
Daily inhalation rate (m ³/day)	Allometric relationship between body weight (BW) and inhalation rate: IR air = 0.5458 * BW(kg) 0.8		0.021 m ³ /day	
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: $L = 0.099 * BW(kg)^{0.9}$	0.00251/day		

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

[[]c] The 15% of the dietary intake that is "miscellaneous" was accounted for by including 5% soil ingestion, and additional 5% intake to plant ingestion and an additional 4% intake to invertebrate ingestion.

Red fox - Vulpes vulpes				
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment	
Home range (acres)			2600 acres	
Exposure duration (unitless)	Active year-round		1.0	
Diet	Diet consists of 37% (summer) to 92% (spring) small mammals, 2% (spring) to 43% (summer) birds and eggs, up to 11% invertebrates, and up to 16% vegetation.			
Ingestion rate (kg/day)	Average of ingestion rates for free-ranging fox		0.41 kg fresh weight/day [b]	
Body weight (kg)			4.3 kg [b]	
Daily inhalation rate (m ³ /day)			1.8 m ³ /day [b]	
Drinking water intake rate (l/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: $L = 0.099 * BW(kg)^{0.9}$		0.371/day	

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Average of reported values.

A-2-2-1	(D. 17.16. V 5.17.	CANAL TRUESMAN	10000000000000000000000000000000000	
Exposure parameter	Reported values	Reference [a]	Value selected for ecological risk assessment	
Home range (acres)	Range of reported values is 150 to 2512 ha		500 acres [b]	
Exposure duration (unitless)	Active year-round	1.0		
Diet	Small mammals, nesting birds, insects, carrion, domestic animals.		Plants: 2% Invertebrates: 1% Small mammals: 74% Birds: 18% Soil: 5%	
Ingestion rate (kg/day)			0.11 kg fresh weight/day [c]	
Body weight (kg)			1.1 kg [c]	
Daily inhalation rate (m ³ /day)	Allometric relationship between body weight (BW) and inhalation rate: IR _{air} = 0.4089* BW(kg) 0.77		0.44 m ³ /day	
Drinking water intake rate (1/day)	Allometric relationship between body weight (BW) and drinking water rate (L) for all mammals: L = 0.099 * BW(kg) 0.9		0.063 l/day	

[[]a] All values derived from USEPA (1993) unles otherwise indicated.

[[]b] Selected as conservative value. Actual range may be greater.

[[]c] Average of reported values.

TABLE E-2 BIOACCUMULATION DATABASE

						BIOACC	CUMULATION FACTOR (BAF) [
CHEMICAL	log K	ce] [b]		Invert [c]		Plant [d]		Small Iammal (e		Small Bird [f]		
SEMIVOLATILES	1000	SCIED!		1				*************	•			
1,4-Dichlorobenzene	3.5		3.5	5.0E-02		2.0E-02		4.8E-03		4.8E-03		
2,4,6-Trichlorophenol	3.7		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
2,4-Dinitrotoluene	2.1		2.1	5.0E-02		2.0E-02		1.9E-04		1.9E-04		
2,6-Dinitrotoluene	2.1		2.1	5.0E-02		2.0E-02		1.9E-04		1.9E-04		
2-Methylnaphthalene	-1.9		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
2-Methyphenol	2		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
2-Nitrophenol	1.9		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
3-Nitroaniline	1.4		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
4-Chloroaniline	1.8		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
4-Chloro-3-methylphenol	3.1		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
4-Methyphenol	1.9		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
4-Nitroaniline	1.4		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
4-Nitrophenol	1.9		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
Acenaphthene	3.9		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Acenaphthylene	4.1		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Anthracene	4.5		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Benzo(a)anthracene	5.7		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Benzo(a)pyrene	6		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Benzo(b)fluoranthene	6.1		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Benzo(g.h,i)perylene	6.6		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Benzo(k)fluoranthene	6.1		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Bis(2-ethylhexyl)phthalate	5.1		5.5	5.0E-02		5.1E-03		4.8E-01		4.8E-01		
Butyibenzylphthalate	4.9	630	5.5	5.0E-02		5.1E-03		4.8E-01		4.8E-01		
Carbazole	3.76	[1]	5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Chrysene	5.7		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Dibenzofuran	4.1		4.1	5.0E-02		2.0E-02		1.9E-02		1.9E-02		
Dibenz(a,h)anthracene	6.5		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Diethylphthalate	3.2		5.5	5.0E-02		5.1E-03		4.8E-01		4.8E-01		
Di-n-butylphthalate	5.2		5.5	5.0E-02		5.1E-03	1.6	4.8E-01		4.8E-01		
Di-n-octylphthalate	9.2	222	5.5	5.0E-02		5.1E-03		4.8E-01		4.8E-01		
Fluoranthene	4.95	[2]	5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Fluorene	4.2		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Indeno(1,2,3-c,d)pyrene	6.6		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Naphthalene	3.6		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Nitrobenzene	1.9		1.9	5.0E-02		2.0E-02		1.2E-04		1.2E-04		
N-Nitrosodiphenylamine	3.1		3.1	5.0E-02		2.0E-02		1.9E-03		1.9E-03		
Phenanthrene	4.5		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
Phenol	1.5		1.7	5.0E-02		2.0E-02		7.6E-05		7.6E-05		
Pyrene	5.3		5.1	5.0E-02		8.7E-03		1.9E-01		1.9E-01		
2,4,6-Trinitrotoluene	1.6	_	1.6	5.0E-02	_	2.0E-02	_	6.0E-05		6.0E-05	_	
PESTICIDES/PCBs												
4,4'-DDD	6			3.3E+00	[g]	1.3E-03	[h]	1.2E+00	[i]	2.9E+00	[i]	
4,4'-DDE	5.7			1.7E+00	[g]	2.0E-03	[h]	1.2E+00	[i]	2.9E+00	[i]	
4,4'-DDT	6.4			5.7E-01	[g]	7.7E-04	[b]	1.2E+00	Ü	2.9E+00	[i]	
Aldrin	3			5.6E-01	[k]	2.0E-02		2.9E+00	[i]	2.9E+00		
Aroclor-1254	6	[3]		5.8E+00	[1]	6.1E-03	[m]	3.8E+00	[n]	3.2E-01	[0]	
Aroclor-1260	7.1	[3]		5.8E+00	[1]	6.1E-03	[m]	3.8E+00	[n]	3.2E-01	[0]	
BHC-alpha	3.8	- 2-3		2.6E+00	[p]	2.0E-02		2.9E+00	[i]	2.9E+00		
BHC-beta	3.8			2.6E+00	[p]	2.0E-02		2.9E+00	[i]	2.9E+00		
BHC-delta	4.1			2.6E+00	[p]	2.0E-02		2.9E+00	[i]	2.9E+00		
BHC-gamma (Lindane)	4.1			2.6E+00	[k]	2.0E-02		2.9E+00	[i]	2.9E+00		
Chlordane-alpha	5.5			1.6E+00	[9]	5.1E-03		5.5E-01	[r]	1.8E+00	[8]	
Chlordane-gamma	5.5			1.6E+00	[t]	5.1E-03		5.5E-01	[1]	1.8E+00	[8]	
Dieldrin	4.6			5.5E+00	[k]	2.0E-02		1.5E+00	[u]	4.4E-01	[v	
Endosulfan I	3.6			5.5E+00	[w]	2.0E-02		2.9E+00	[i]	2.9E+00		
Endosulfan II	3.6			5.5E+00	[w]	2.0E-02		2.9E+00	[i]	2.9E+00		
Endosulfan sulfate	3.1			5.5E+00	[w]	2.0E-02		2.9E+00	[i]	2.9E+00		
Endrin	5.6			1.9E+00	[t]	4.5E-03		2.9E+00	[i]	2.9E+00		
Endrin aldehyde	3.14	[4]		1.9E+00	[x]	2.0E-02		2.9E+00	[i]	2.9E+00		
Endrin ketone	3.14	[4]		1.9E+00	[x]	2.0E-02		2.9E+00	[i]	2.9E+00		

TABLE E-2 BIOACCUMULATION DATABASE

		BIOACCUMULATION FACTOR (BA)							
CHEMICAL	log Kom [Source] [b]	Invert je	1	Plant [d]	ı	Small Iammai	[e]	Small Bird [f]	
Heptachlor	4.3	1.0E+00	[y]	2.0E-02		2.9E+00	[i]	2.9E+00	
Heptachlor epoxide	5.4	1.0E+00	[t]	5.9E-03		2.9E+00	[i]	2.9E+00	
Methoxychlor	4.8	5.7E-01	[z]	2.0E-02		2.9E+00	[i]	2.9E+00	
INORGANICS						-			
Aluminum	*	7.5E-02	[88]	6.0E-03	[ab]	7.5E-02	[ac]	7.5E-02	
Antimony		5.0E-02	[22]	4.0E-02	[ad]	5.0E-02	[ac]	5.0E-02	
Arsenic		6.6E-03	[ac]	2.5E-01	[ab]	1.0E-01	[ac]	1.0E-01	
Berium		7.5E-03	[22]	2.5E-02	[ab]	7.5E-03	[ac]	7.5E-03	
Beryllium		5.0E-02	[aa]	2.0E-03	[ad]	5.0E-02	[af]	5.0E-02	
Cadmium		1.1E+01	[1]	4.0E-01	[ab]	2.1E+00	[ac]	3.8E-01	[ag]
Chromium		1.6E-01	[1]	6.3E-03	[ab]	2.8E-01	[ac]	2.8E-01	
Cobalt		1.0E+00	[aa]	9.3E-03	[ab]	1.0E+00	[ac]	1.0E+00	
Copper		1.6E-01	[1]	6.0E-02	[ab]	6.0E-01	[ah]	6.0E-01	
Cyanide		0.0E+00	[ai]	1.0E+00	[aj]	0.0E+00	[ai]	0.0E+00	
Lead		[ak]		5.6E-02	[al]	1.5E-02	[ac]	1.5E-02	
Manganese		2.0E-02	[aa]	1.3E-01	[ab]	2.0E-02	[ac]	2.0E-02	
Mercury		6.8E-02	[am]	4.9E-02	[ab]	1.0E-02	[an]	2.3E+00	[an]
Nickel		2.3E-01	[ao]	1.4E-02	[al]	3.0E-01	[ac]	3.0E-01	
Selenium		7.6E-01	[ac]	1.6E-01	[ab]	7.5E-01	[ac]	5.1E-01	[ap]
Silver		1.5E-01	[aa]	8.0E-02	[ad]	1.5E-01	[ac]	1.5E-01	7.67
Thallium	100	2.0E+00	[aa]	8.0E-03	[ad]	2.0E+00	[ac]	2.0E+00	
Tin		1.5E+00	[88]	6.0E-03	[ad]	1.5E+00	[ac]	1.5E+00	
Vanadium		1.3E-01	[aa]	1.1E-03	[ad]	1.3E-01	[ac]	1.3E-01	
Zinc	W. 1	1.8E+00	[l]	9.3E-01	[ab]	2.1E+00	[aq]	2.1E+00	

Notes

- [a] Units for bioaccumulation factors (BAFs) are (mg/kg fresh wt tissue over mg/kg dry wt soil) for invertebrates and plants, and (mg/kg fresh wt tissue over mg/kg fresh wt. food) for small mammals and small birds. No BAFs were calculated for VOAs since available e suggests that these analytes do not bioaccumulate.
- [b] From Superfund Chemical Data Matrix (USEPA, 1993) unless otherwise noted. Log Kědows for classes of semivolatile compounds were averaged to provide an average BAF value. Compounds were grouped accordingly: PAHs (5.1), phthalates (5.5), phenola (1.7), 2,4/2,6-DNT (2.1), dibenzofuran (4.1), nitrobenzene (1.9), N-nitrosodiphenylamine (3.1), and 2,4,6-TNT (1.6).
 - [1] Hansch and Leo (1979)
 - [2] USEPA (1992), Dermal Exposure Guidance.
 - [3] USEPA (1990) Basics of Pump-and-Treat Ground-Water Remediation Technology
 - [4] Arthur D. Little, Inc. (1981).
- [c] Average of earthworm BAFs (Beyer, 1990) converted from dry weight to wet weight assuming earthworm is 80% water, unless otherwise noted.
- [d] Plant BAF calciulated using the following equation presented by Travis and Arms (1988) unless otherwise noted: log (Plant Uptake Factor)=1.588-0.578 log Kow; if log Kow < 5, BAF assumed to be 0.02 assuming plants are 80% water.</p>
- [e] Calculated using the following equation by Travis and Arms (1988) unless otherwise noted: log (biotransfer factor) = log Kow-7.6. BTF converted to BAF by multiplying by average food ingestion rate of 12 kg/d. BAF converted from wet/dry wt to wet/wet wt assuming food is 80% water.
- [f] Small mammal BAF value used unless otherwise noted.
- [g] Geometric means of 4,4'-DDT [Davis (1968), Davis & Harrison (1966), Wheatley & Hardman (1968), Bailey et al. (1970), Cramp & Olney (1967), and Beyer & Gish (1980)], 4,4'-DDE [Davis (1968), Davis & Harrison (1966), Cramp & Olney (1967), Collett & Harrison (1968), Hunt & Sacho (1969), and Gish (1970)], and 4,4-DDD [Barker (1958), Davis (1968), Davis & Harrison (1966), Cramp & Olney (1967), Collett & Harrison (1968), Wheatley & Hardman (1968), Hunt & Sacho (1969), Bailey et al. (1970), Dimond et al. (1970), Gish (1970), and Beyer & Gish (1980)] reported for earthworms. Dry soil concentrations calculated assuming 10% moisture content in sandy-loam soils (Donahue et al., 1977).
- [h] Geometric mean of 4,4-DDD, and 4,4-DDD, and 4,4-DDD BAFs (fresh wt/dry wt) reported for roots (carrot, potato, sugar beet), grains (corn, oats), and legumes (alfalfa) derived from USEPA (1985) converted from dry weight to wet-weight per values provided by Suter (1993).
- Whole-body pheasant BAF for 4,4'-DDT presented in USEPA (1985); derived from Kenaga (1973). Used as surrogate for other
 pesticides for both birds and mammals.
- BAF for shrews and voles calculated using measured concentrations of DDTsdRs in stomach content and in whole body (Forsyth & Petrle, 1984).
- [k] Geometric mean of reported BAFs for earthworms (Edwards & Thompson, 1973). Values provided by Gish (1970) were converted from dry weight to wet weight by multiplying by a conversion factor of 0.2 assuming 80% water composition of earthworms.
- [1] BCF for earthworms from Dierexsens et al. (1985).
- [m] Plant uptake factor for a PCB congener (2,3,4'-trichlorobiphenyl) from Crossland, Bennett, and Wolff (1987) for uptake from sediment into pondweed and starwort. Laboratory-derived value for 28 days used as representative of equilibrium conditions. Converted from dry weight plant tissue to wet weight by applying a factor of 0.2 (assuming plant is 80% water).
- [n] BAF calculated from discussion in Eisler (1986) stating that Arcelor 1254 residues in subcutaneous fat of adult minks were up to 38 times dietary levels. Converted to whole body concentrations assuming 10% lipid content.
- [o] BAF calculated from data presented in Eisler, 1986. Kestrels fed 33 mg PCB/kg diet for 62-69 days accumulated 107 mg PCB/kg lipid weight in muscle. Assuming muscle is 10% lipid content, the muscle concentration is about 10.7 mg/kg.

TABLE E-2 BIOACCUMULATION DATABASE

Notes, (cont):

[p] Value for gamma-BHC used as a surrogate

[q] Value for gamma-chlordane used as a surrogate

- [r] BAF calculated from data presented in Eisler, 1990. Rats fed 20 mg/kg diet technical chlordane (equivalent to 3.6 mg/kg diet cis- and trans-chlordane) for 350 days accumulated 20 mg/kg in lipids. Assuming 10% lipid content, the whole body concentration is about 2 mg/kg.
- [a] BAF calculated from data presented in Eisler, 1990. Red-winged blackbirds fed 10 mg/kg diet technical chlordane (equivalent to 1.8 mg/kg diet cis- and trans- chlordane) for 84 days accumulated 1.8 mg/kg wet weight whole body residue.

[t] Geometric mean of reported BAFs for earthworms (Gish, 1970) converted from dry weight to wet weight assuming 80% water composition of earthworms.

[u] BAF calculated from data presented by Potter et al (1974). Based on an average dieldrin concentration in cow muscle and fat of 0.17 mg/kg (dry weight) and a dieldrin concentration of 0.11 mg/kg in the diet (dry weight).

[v] Jeffries and Davis (1968).

[w] Value for dieldrin used as a surrogate.

[x] Value for endrin used as a surrogate.

[y] Value for heptachlor epoxide used as a surrogate.

[z] Value for 4,4'-DDT used as a surrogate.

[aa] Prey-specific value not available; value shown is small mammal BAF for this chemical.

[ab] Plant BAFs derived from an uptake study (Cherry & Guthrie, 1979) with two sedge species that were exposed to contaminated sediment. Converted from dry weight plant tissue to wet weight by applying a factor of 0.2 (assuming plants are 80% water).

[ac] Value derived from biotransfer factors (BTFs), presented in Baes et al. (1984) for uptake into cattle. BTF converted to BAF by multiplying by food ingestion rate of 50 kg/day wet weight.

[ad] Value from Baes et al. (1984) multiplied by 0.2 to represent 80% water composition of plants.

[ae] Average of values for industrial soils from Beyer and Cromartie (1987) multiplied by 0.2 to represent 80% water composition in earthworms.

[af] Mean of values reported for šiSorex araneus) in MacFadyen (1980).

[ag] Based on accumulation of cadmium in kidneys of European quait in Pimentel et al. (1984).

[ah] Mammal value for copper and plant value for cadmium from Levine et al., 1989. Lead does not accumulate in plant tissue, therefore, a BAF of zero was assigned.

[ai] Cyanide has not been shown to bioaccumulate in any organisms.

[aj] Cyanide is naturally occurring in some plants; the extent to which it is taken up from soil is unknown and therefore a BAF of 1 is conservatively assumed.

[ak] BAF from regression equation for worms derived from Corp and Morgan (1991):

logY = 1.16 + 0.916 log(X) - 0.326 log(Ca)

tissue concentration.

X = average or maximum site soil lead concentration (mg/kg).

Ca = average site soil calcium concentration (mg/kg).

Y is converted from dry weight to wet weight by multiplying Y by 0.2 (assuming worm is 80% water). This value is then divided by the lead concentration.

[al] Values for lead and nickel from Mudroch & Capobianco (1979) represent an average of BAFs from sediment in several lakes, rivers, and bays

into water lilies. Values converted from dry weight plant tissue to wet weight by applying a factor of 0.2 (assuming plants are 80% water).

[am] Uptake value (fresh wt./dry wt.) for earthworms from USEPA (1985c) sludge document. Fresh weight tissue concentrations calculated assuming 80% body water content.

[an] USEPA, 1985c.

- [ao] Value from nickel sludge document (USEPA, 1985) multiplied by 0.2 to represent 80% water composition of earthworms.
- [ap] Based on average of reported ratio of selenium in diet to liver, kidney, and breast tissue of chickens (Eisler, 1985a).

[aq] Mean of values for šiMicrotus agrestis) and šiApodemus sylvaticus) in MacFadyen (1980).

NC = Not Calculated

NA = Not Available

ANALYTE .	(mg/kgB)		CHRON (mg/kgBW-		TEST SPECIES	TEST TYPE	DURATION	EFFECT	REFERENCE
	1,1250 1	OABL	LOAEL N	OAEL.					
VOLATILE ORGANIC COMPOUR	NDS								
1,1,1-Trichloroethane (surrogate			90		Guinea Pig	Oral (subchronic)	90 days	Hepstotoxicity	IRIS, 1991
for 1,1,2-TCA)	10300	2060 [n]			Rat	Single oral dose		Mortality	NIOSH, 1985
1,1,2,2- Tetrachloroethane	100	250			Rat	Single oral dose		Mortality	ATSDR, 1988
			3.2		Rat	Oral (subchronic)	27 weeks	Irreversible testicular damage	ATSDR, 1988
1,1-Dichloroet hene (surrogate	200	40 (a)			Rat	Single oral dose		Mortality	IRIS, 1988
for 1,2-DCE)	1 2 2	100	9		Rat	Oral (chronic)	2 years	Liver lesions	IRIS, 1988
1,2-Dichloroethane (surrogate	670	130 [a]	1		Rat	Single oral dose		Mortality	NIOSH, 1985
for 1,1-dichloroethane)	489	100 [m]			Mouse	Single oral dose		Mortality	NIOSH, 1985
		1-1	120		Rat	Oral (subchronic)	13 weeks	NOAEL for reproductive effects	ATSDR, 1992
2-Butanone (surrogate for				173	Rat	Oral (subchronic)	13 weeks	NOAEL for neurological effects	ATSDR, 1990
2-hexanone and 4-methyl-	2737	550 [a]		-	Rat	Single oral dose	COCTE!	Mortality	ATSDR, 1990
2-pentanone)		[-1	1						1
Acetone	9750	1950 [=]	1		Rat	Single oral dose		Mortality	Sax, 1984
ALCONE	3,20	1300 [-]	500		Rat	Oral (subchronic)	90 days	Increased liver/kidney weight; nephrotoxicity	IRIS, 1993
Benzene	3800	760 [a]	100000		Rat	Single oral dose	50 talya	Mortality	TDB, 1984
Вендере	3000	700 [a]	10		Rat	Oral (chronic)	187 days	Hematopoietic effects	USEPA, 1984
Carbon disulfide			10	11	Rabbit	Converted inhalation	34 weeks	NOAEL for Fetotoxicity/malformations	IRIS, 1991
Carbon tetrachloride			7.1		Rat	Oral (chronic)	12 weeks	Liver lesions	IRIS,1991
Carbon tetrachionide	2800	560 [a]	1000	- 1	Rat	Single oral dose	12 weeks	Mortality	Sax, 1984
Chlorobenzene	2800	200 [8]	100	- 41	Rat	Oral (subchronic)	93-99 days	Increased liver and kedney weight	USEPA, 1984
Chlorocenzene			136.3		Dog	Oral (subchronic)	13 weeks	Histopathological changes in liver	IRIS, 1991
	1		89.3		Mouse	Oral (subchronic)	13 weeks	Increased liver weight, hepatic necrosis	USEPA 1984
Chloroform	- 1		12.9		Dog (beagle)	Oral (chronic)	7.5 years	Liver cost formation	IRIS,1991
			291	-	Rat	Oral (subchronic)	182 days	Liver and kidney toxicity	IRIS, 1991
Ethylbenzene	3500	700 [a]			Rat	Single oral dose	102 ways	Mortality	NIOSH, 1985
MARINE MINER	3500	/uo [m]	52.6	5.9	Rat		2	Livertoxicity	IRIS,1991
Methylene chloride			32.0	12.5		Oral (chronic)	2 years		The state of the s
	4005	400 7		12.5	Rat	Oral (subchronic)	3 months	Mortality, blood chemistry, histopathology	USEPA, 1984
	1900	380 [a]			Rabbit	Single oral dose	100 - 1	Mortality	Sax, 1984
Styrene			285	95	Rat	Oral (chronic)	120 weeks	Reduced growth; increased liver/kidney weights	IRIS, 1991
	Serial and	****	400	200	Dog	Oral (subchronic)	19 months	Histopathologic liver effects; RBC effects	IRIS, 1991
English and the	>5000	1000 [a]			Rat	Single oral dose		Mortality	USEPA, 1982
Tetrachloroethene	8850				Rat	Single oral dose		Mortality	NIOSH, 1985
	8100	1620 [a]			Mouse	Single oral dose	2/10/20	Mortality	TDB, 1984
Daniel Control	1		100		Mouse	Oral (subchronic)	6 weeks	Hepstotoxicity	Buben and O'Flaherty, 1985
Toluene	1223		446		Rat	Oral (subchronic)	13 weeks	Increased liver and kidney weight	IRIS, 1991
	5000	1000 [a]			Rat	Single oral dose		Mortality	NIOSH, 1985
and the second second		1.30.00	76		Rat	Oral (subchronic)	13 weeks	Decreasd open field activity	ATSDR, 1992
Trichloroethene	2402	480 [a]			Mouse	Single oral dose		Mortality	NIOSH, 1985
10.1003	7193	1440 [a]			Rat	Single oral dose		Mortality	NIOSH, 1985
Vinyl chloride	I I I		130		Rat	Oral (subchronic)	13 weeks	Hematological/biochemical/organ weight effects	USEPA, 1980
	500	100 [a]			Rat	Single oral dose		Mortality	NIOSH, 1985
Xylenes (total)	4300	860 [a]			Rat	Single oral dose		Mortality	NIOSH, 1985
			500	250	Rat	Oral (chronic)	103 weeks	Hyperactivity, decreased BW, mortality	IRIS, 1991
	20000	2014 [c]			Japanese quail	Oral (acute)	5 days	Mortality	Hill and Camardese, 1986

TA. ,-3
INGESTION TOXICITY DATABASE

ANALYTE	ACU (mg/kgBY ORAL		CHRONIC (mg/kgBW-day)	TEST SPECIES	TEST TYPE	DURATION	RPPECT	REPERÈNCE
	1.D ₅₀ 1	.OABL	LOAEL NOAEL					
وبياريم ومرافقوا المرازع البا	Landra							
SEMI-VOLATILE ORGANIC COMP	OUNDS		300	Mouse	Oral (chronic)	- America	IN A second seco	NTP. 1987
1,4-Dichlorobenzene (surrogate			150	- C.	and the second second	2 years	Nephropathy, renal tubular degeneration	Property Communication Communi
for 1,2-dichlorobenzene)			(87) -	Rat	Oral (chronic)	2 years	Increased incidence of nephropathy	NIP, 1987
	21.6	4 [9]		Rat	Single oral dose		Mortality	NTP, 1987
2,4 - Dimet hylphenol	400	80 [a]		Mouse	Single oral dose		Mortality	Sax, 1984
2,4-DNT (also surrogate	100		40	Rat	Oral (chronic)	24 months	Anemia	ATSDR, 1988
for 2,6-DNT)	268	54 [a]		Rat	Single oral dose	dynamic	Mortality	NIOSH, 1985
			10	Dog	Oral (chronic)	24 months	Bilisty hyperplasia	ATSDR, 1988
	100		95	Mouse	Oral (chronic)	24 months	Liver dysplasia	ATSDR, 1988
	25	5 [m]		Dog	Oral (subchronic)	13 weeks	Mortality	ATSDR, 1988
	790	158 [a]		Mouse	Single oral dose	75.77	Mortality	NIOSH, 1985
	1300			Guinea pig	Single oral dose	Art with	Mortality	NIOSH, 1985
4-Chlorosniline			12.5	Rat	Oral (chronic)	102 weeks	Fibrosis of the splenic capsule	IRIS, 1993
4-Methylphenol (surrogate	1800		500	Rat	Single oral dose	1,500-3-0	Mortality	Verschueren, 1983
for 2-met hylphenol)			175	Rat	Oral		Decreased RBC counts	ATSDR, 1990
	1100	220 [a]		Rabbit	Single oral dose		Mortality	Verschneren, 1983
			50	Rat	Oral (subchronic)	13 weeks	CNS stimulation	ATSDR, 1990
			50	Rat	Single oral dose	90 days	Loss in body weight/neurotoxicity	USEPA, 1991
4-Nitrophenol	1	400		Mouse	Oral (acute)	8 days	19% mortality during gestation period	ATSDR, 1990
	1	220		Rabbit	Single oral dose		3/8 of individuals died	ATSDR, 1990
Acenaphthene			350 175	Mouse	Oral (chronic)	90 days	Liver weight increase	IRIS, 1990
•			2000	Rat	Oral (chronic)	32 days	Physiological changes	USEPA. 1984
Acenaphthylene	1		600	Rat	Oral (ckronic)	40 days	Physiological changes	USEPA, 1984
Anthracene			3300	Rodents	Oral (chronic)	NS	Carcinogenicity	Eisler, 1987
			1000	Mouse	Oral (chronic)	90 days	Clinical and pathological effects	IRIS, 1990
Benzoic scid			40	Rat	Oral (chronic)	17 months	Decreased resistance to stress	IRIS, 1990
Benzo(a)anthracene			2	Rodents	Oral (chronic)	NS	Carcinogenicity	Eisler, 1987
Benzo(a)pyrene (also used as surrogate		40	10.70	Rat	Oral (acute)	Pregnancy	Sterility in offspring	USEPA, 1984
for dibenz(a,h)anthracene)			10	Rat	Oral (chronic)	Pregnancy	Decreased gonad weight	USEPA. 1984
to: mostic (Su)minimorno)			50	Rat	Oral (chronic)	3.5 months	Reproductive effects	USEPA, 1984
			4.7	Mouse	Oral (chronic)	110 days	Tumor growth	Neal and Rigdon, 1967
	1	10[c]	7.7	Mouse	Gavage	9 days	Decreased fertility and litter size	MacKenzie and Angevine, 198
		rofel	2.5	Rat	Oral (chronic)	NS NS	Papillomas in stomach	
Benzo(b)fluoranthene			40	Rodents	Oral (chronic)	NS NS	Carcinogenicity	USEPA, 1985
Benzo(g,h,i)perylene			90	Rodents	Oral (chronic)	NS NS	Carcinogenicity	Eisler, 1987 Eisler, 1987

TABLE E-3 INGESTION TOXICITY DATABASE

	ACU	TB	CHRON	IC.					
	(mg/kgBV	(veb-)	(mg/kgBW-	day					
A. C.	A Children	-,,	(-0-0	-"			10000000	1	
ANALYTE	ORAL	F			TEST SPECIES	TEST TYPE	DURATION	EPPBCT	REFERENCE
	LD ₅₀ L	OARL	LOAEL N	JABL					
Bis(2-ethylhexyl)phthalate	0.0		19	3.8	Guinea pig	Oral (chronic)	1 year	Increased liver weight	IRIS, 1992
	30600		100		Rat	Oral LD50	NR	Mortality	RTECS, 1993
	0.00	7140			Rat	Oral	NR	Reproductive effects	RTECS, 1993
		35			Rat	Oral	NR	Reproductive effects	RTECS, 1993
		6000			Rat	Oral	NR	Reproductive effects	RTECS, 1993
		17200			Rat	Oral	NR	Reproductive effects	RTECS, 1993
		10000			Rat	Oral	NR	Reproductive effects	RTECS, 1993
	The second	9766			Rat	Oral	NR	Reproductive effects	RTECS, 1993
	30000				Mouse	Oral LD50	NR.	Mortality	RTECS, 1993
	170	78880	V		Mouse	Oral	NR	Reproductive effects	RTECS, 1993
		4200			Mouse	Oral	NR	Reproductive effects	RTECS, 1993
		50	0		Mouse	Oral	NR	Reproductive effects	RTECS, 1993
	7 (1000			Mouse	Oral	NR	Reproductive effects	RTECS, 1993
		2040			Mouse	Oral	NR	Reproductive effects	RTECS, 1993
	34000		X		Rabbit	Oral LD ₅₀	NR	Mortality	RTECS, 1993
	26000				Guinea pig	Oral LD ₅₀	NR	Mortality	RTECS, 1993
	1	20000			Guinea pig	Oral	NR	Reproductive effects	RTECS, 1993
		20000	10		Mammal	Oral	NR	Reproductive effects	RTECS, 1993
		509000			Mammal	Oral	NR	Reproductive effects	RTECS, 1993
	800				Mouse	Oral LD ₅₀	200	Mortality	RTECS, 1993 and NIOSH, 1985
		125			Mouse	Oral (subchronic)	13 weeks	Renal effects	RTECS, 1993
	8600				Rat	Single oral dose	15 weeks	Mortality	NIOSH, 1985
Butylbenzylphthalate	8000	1720 [a]		1858	Dog	Oral (subchronic)	90 days	Hemstological effects; liver/kidney function	IRIS, 1991
Butytoenzyipninatate				159	Rat	Oral (subchronic)	6 month	Increased liver weight	IRIS, 1991
Carbazole	500	100 (-1	10 (6)	139	Rat	Single oral dose	O monta	Mortality	USEPA, 1986
Chrysene	300	100 [a]	10 [b] 99		Rodents	Oral (chronic)	NS	Carcinogenicity	Eisler 1987
Dibenzofuran	1	500	**		Rodents	Single oral dose	No	LC20	ATSDR, 1991
LAGENZOTURA		500	125		Rodents	Oral (chronic)	13 weeks	LC10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			12	60	Mouse	Oral (chronic)	103 weeks	Multinuclear hepatocytes	ATSDR, 1991 ATSDR, 1991
Distributables			3160	750	Rat	Oral (subchronic)	16 weeks		IRIS, 1993
Diethylphthalate	8600	1720 [=]		130	Rat	Single oral dose	10 weeks	Decreased body weight gain, decreased food utilization Mortality	NIOSH, 1985
Natural control	8000	1720 [2]	25		Dog	Oral (chronic)	2 year	Low body weight gain, high liver/kidney weights	IRIS, 1992
Diphenylamine			31		Rat	Oral (chronic)	2 year	Kidney lesions	IRIS, 1992
			125		Rat	Oral (chronic)	2 generation		IRIS, 1992
N: - bushishishis /	1		125		Rat	The later of the same of the later of the la		Reduced litter size and weight of young	The Art of the Control of the Contro
Di-a-butylphthalate (surrogate			600	125	Rat	Oral (subchronic)	48 days	LOAEL for reproductive effects	ATSDR, 1989
for di-n-octylphthalate)	6513	1200 (-1		123	Mouse	Oral (chronic)	1 year	Mortality	IRIS, 1991
Downstham	6313	1302 [a]	250	125	Mouse	Single oral dose	00 4	Mortality	Sax, 1984
Fluoranthene	2000	400 (-1		12	Rodents	Oral (subchronic)	90 days	Nephropathy, clinical and pathological effects	IRIS, 1990
-	2000	400 [a]	250	125	A COMPANY OF	Single oral dose	12	Mortality	Fisler, 1987
Fluorene	7.20	10.		123	Mouse	Oral (chronic)	13 weeks	Hematological changes	IRIS, 1990
Hexachlorobenzene	57	10 [2]			Japanese quail Rat	Oral (acute)	5 days	Mortality	Hill et al., 1975
	32	6.5 [a]			100000	Single oral dose		Mortality	Allen et al., 1979
Indeno(1,2,3-cd)pyrene	0.450	600 Ft =	72		Rodents	Oral (chronic)	NS	Carcinogenicity	Eisler, 1987
Isophorone	3450	690 [Ъ]			Rat	Oral (acute)	*/***	Mortality	ATSDR, 1988
			179		Rat	Oral (chronic)	2 years	Kidney disorders	IRIS, 1991

TA :-3
INGESTION TO ... ITY DATABASE

ANALYTE	ACL (mg/kgB	W-day)	CHRON (mg/kgBW-	day)	TEST SPECIES	TEST TYPE	DURATION	EFFECT	REFERENCE
V. Int. I	LD ₅₀	LOARL	LOAEL NO	DARL	Rat	O-strates in	100 weeks	Ocular lesions	TTCTTA 4000
Naphthalene (surrogate			35.7		Rat	Oral (chronic) Oral (subchronic)	. 13 weeks	Decreased body weight gain	USEPA, 1990 USEPA, 1990
for 2-methylnaphthalene)	f22	*****	1431		Mouse	CONTRACTOR OF THE PARTY OF THE	. 13 weeks		The second production of the Party Control of the P
Nitrobenzene	533 640	110 [=]			Rat	Single oral dose		Mortality Mortality	ATSDR, 1990 Sax, 1984
	040	128 [a]	13 [ъ]	4000		control of the contro		NOAEL	
Nitrocellulose				1800	Rat	Oral (chronic)		NOAEL.	Ellis et al., 1978
	4400	****		1800	dog	Oral (chronic)		1 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Ellis et al., 1978
N-Nitrosodiphenylamine	1650	330 [a]			Rat	Single oral dose	1 000 00	Mortality	Sax, 1984
Pentachlorophenol	380	76 [a]			Mallard	Single oral dose		Mortality	Eisler, 1989
4	138			40	Chipmunk (Eastern		(E	Mortality	Eisler, 1989
			- 44	10	Mouse	Oral (chronic)	2 years	NOAEL for histopathological/hematological changes	Eisler, 1989
	1 1 1 1 1 22 1	2007	30	6	Rat	Oral (chronic)	8 months	Decrease in body weight	Eisler, 1989
	27	5.4 [2]			Rat	Single oral dose		Mortality	Eisler, 1989
	504	100 [a]	10 [b]		Pheasant	Single oral dose		Mortality	Eisler, 1989
	65				Mouse	Single oral dose		Mortality	Eisler, 1989
				3	Rat	Oral (chronic)	2 year	NOAEL for effects on growth, survival, and reproduction	Eisler, 1989
			3	1.5	Rat	Oral (subchronic)	12 weeks	Effects to kidney, liver, and blood chemistry	Eisler, 1989
	150	30 [a]	14		Dog	Single oral dose	0.2.7.5	Mortality	Eisler, 1989
Phena nthrene	L TA		120		Rat	Oral (subchronic)	6 months	Increased liver weight	ATSDR, 1989
	700	140 [a]			Rodents	Single oral dose		Mortality	Eisler, 1987
Phenol	530				Rat	Single oral dose		Mortality	USEPA, 1980
	414	80 [2]			Rat	Single oral dose	1 TO 1 TO 1 TO 1	Mortality	TDB, 1984
			120		Rat	Oral (subchronic)	Gestational	Reduced fetal body weights	IRIS, 1993
12	600			- 1	Rabbit	Single oral dose		Mortality	USEPA, 1980
	400				Rabbit	Single oral dose		Mortality	USEPA, 1980
	500	100 [a]		- 1)	Dog	Single oral dose		Mortality	USEPA, 1980
	100		1		Cat	Single oral dose		Mortality	USEPA, 1980
	340		1000		Rat	Single oral dose		Mortality	USEPA, 1980
Ругеве			125	75	Mouse	Oral (chronic)	13 weeks	Renal effects	IRIS, 1990
	800	160 [a]			Mouse	Single oral dose		Mortality	NIOSH, 1985
	2700				Rat	Single oral dose	100	Mortality	NIOSH, 1985
Trinkroglycerin (surrogate			31.5		Rat	Oral (chronic)	24 months	Hepat otoxicity	Ellis et al., 1978
for nitroglycerine)			4000	115	Mouse	Oral (chronic)	24 months	NOAEL	Ellis et al., 1978
, and		25			Dog	Oral (acute)	5 days	Methemoglobinemin	Ellis et al., 1978
				1	Dog	Oral (subchronic)	4 months	NOAEL	Ellis et al., 1978

ANALYTB	ACUTE (mg/kgBW-da ORAL LD ₅₀ LOAE		TEST SPECIES	TEST TYPE	DURATION	BYECT	REFERENCE
PESTICIDES/PCB4							
DDT (also used as surrogate for	200		Mouse	Single oral dose	F 1 - W	Mortality	USEPA, 1985
DDE and DDD)	100	0.75 0.15	Mouse	Oral (chronic)	24 month	Hepstocellular swelling and necrosis (males)	IRIS, 1991
	100 20	[3]	Rat	Single oral dose		Mortality	USEPA, 1985
	1002 4	10	Rat	Oral (chronic)	27 weeks	Kidney necrosis	ATSDR, 1992
		0.5	Rat	Oral (chronic)	2 year	Liverlesions	IRIS, 1991
		0.2	Rst	Oral (chronic)	3 generations	Reproductive effects	IRIS, 1991
		91.4 [d]	Chicken	Oral (subchronic)	10 weeks	Decreased reproductive success; toxic symptoms	USEPA 1985
	4000		Rock dove	Single oral dose		Mortality	USFWS, 1984
	2276	0.14 [d]	Black duck	Oral (chronic)	2 years	Reduced eggshell thickness	Longcore and Stendell, 1977
	2240		Mallard	Single oral dose	130,722	Mortality	USFWS, 1984
	52.0	7.2 [d]	Mallard	Oral (chronic)	43-417 days	Mortality	USFWS, 1984
		2.8 [d]	Mallard	Oral (chronic)	96 days	Reduced eggshell thickness	Longcore and Stendell, 1977
	595 120	[a]	California quail	Single oral dose		Mortality	USFWS, 1984
	841		Japanese quail	Single oral dose		Mortality	USFWS, 1984
	1334		Pheasant	Single oral dose		Mortality	USFWS, 1984
	1200		Sandhill crape	Single oral dose		Mortality	USFWS, 1984
	200	0.56 [4]	Kestrel	Oral (chronic)	7 wk - 1 year	Reduced eggshell thickness	USEPA 1985
		0.16 [d]	Kestrel	Oral (chronic)	1 year	Reduced eggshell thickness	Wiemeyer, et al., 1986
		0.14 [d]	Barn Owl	Oral (chronic)	2 years	Reduced eggshell thickness	Longcore and Stendell, 1977
	2000	914-3151	Bullfrog	Single oral dose	-77.000	Mortality	USEPA, 1985
	2000	7.6	Frog (Rans tempor	TO SERVICE STATE OF THE PARTY O	20 days	Mortality	Harri et al., 1979
	60 12	[0]	Dog	Single oral dose		Mortality	USEPA 1985
		5.0	Dog	Oral (chronic)	3 generations	Premature puberty	ATSDR, 1992
		80	Dog	Oral (chronic)	40 months	Liver damage	ATSDR, 1992
PCBs		99	Mouse	Oral (acute)	2 weeks	Increased liver weight	Sanders and Kirkpatrick, 1975
CDS	,	13-65	Mouse	Oral (chronic)	6-11 months	Hepst omegaly	USEPA 1985
(Arodor 1254)	500 100	24/2 425	Rat	Single oral dose	V-11 MOMMA	Mortality	Eisler, 1986
(Arodor 1260)	1300	[-1	Rat	Single oral dose		Mortality	Eisler, 1986
(Arodor 1254)	1300	7.6	Rat	Oral (chronic)	2 generations	Reduced litter size	USEPA 1985
(Alociot 1234)		6.4	Rat	Oral (chronic)	9 weeks	Fetal mortality/maternal toxicity	ATSDR, 1987
		0.08	Rat	Oral (chronic)	NS	Increase in F1 male liver weights	USEPA, 1976
		0.9	Chicken	Oral (chronic)	NS NS	Embryonic mortality	USEPA, 1976
		0.9	Rock dove	Oral (chronic)	NS	Parental incubation behavior	Peakall and Peakall, 1973
(Arodor 1254)		5.0	Japanese quail	Oral (chronic)	NS NS	Reproduction unimpaired	Eisler 1986
(CHINAUL LEAT)		3.0	American kestrel	Oral (chronic)	69 days	Reduced sperm concentration	Eisler, 1986
(Arodor 1254)	4000		Mink	Single oral dose	us casys	Mortality	Eisler, 1986
	3000		Mink	Single oral dose		Mortality	Eider, 1986
(Arodor 1242)	750		Mink	Single oral dose		Mortality	Eisler, 1986
(Arodor 1221)	730	0.0075	277		A months		
		0.0075	Mink	Oral (chronic)	4 months	Impaired reproduction	Newell, et al., 1987
Charles S.		0.37	Dog (beagle)	Oral (chronic)	2 years	LOAFL	USEPA, 1976
Atrazine	A contract of	400	Rat	Oral (subchronic)	14 days	Liver and growth effects	Eisler, 1989
		100	Chicken	Oral (acute)	7 days	NOAEL	Eisler, 1989
		37.5	Dog	Oral (chronic)	2 years	Reduced hemoglobin	Eisler 1989

TA 3-3
INGESTION TOXICITY DATABASE

	ACUTE (mg/kgBW-		CHRONIC (/lgBW-day)					
ANALYTE	ORAL			TEST SPECIES	TEST TYPE	DURATION	RFFBCT	REFERENCE
777	LD _{S0} LOA	EL LOA	EL NOAEL		1		Erro.	AGFEAGAGE
BHC-alpha	LLONG LUM	DL INA	2.5	Rat	Oral (chronic)	56 weeks	Liver necrosis	
БИС-пірав			32.5	Mouse		377 (1277)		ATSDR, 1992
			65	Mouse	Oral (chronic)	24 wks	Hepstocellular carcinoma	ATSDR, 1992
	177 3		63	Rat	Oral (chronic)	50 wks	Hepstomegaly	ATSDR, 1992
BHC-beta	11/	5 [a]	40	0.75	Single oral dose	27.00	Mortality	Sax, 1984
Bric-beta			-	Rat	Oral (acute)	2-14 days	Renal hypertrophy	ATSDR, 1992
	2000 400		2.5	Rat	Oral (chronic)	13 wks.	Mortality, comatose, ovary atrophy	ATSDR, 1992
BHC-delta	6000 120	0 [n]		Rat	Single oral dose	22.02	Mortality	Sax, 1984
BHC-dem	4000		50	Rat	Oral (chronic)	24, 48 weeks	Hepatic necrosis	ATSDR, 1992
	1000 20	(a)	9.05	Rat	Single oral dose	100000	Mortality	Sax, 1984
BHC-gamma (lindane)		777	5.0	Rat	Oral (chronic)	15 weeks	NOAEL for reproductive effects	ATSDR, 1992
			0.33	Rat	Oral (chronic)	18 weeks	Liver and kidney toxicity	IRIS, 1991
			1.55	Rat	Oral (chronic)	2 years	Liver and kidney toxicity	IRIS, 1991
		5		Mouse	Single oral dose	Gestation	Increased resorptions	ATSDR, 1992
		6 [a]		Bobwhite	Oral (acute)	5 days	Mortality	Hill et al., 1975
	360			Mallard	Oral (acute)	5 days	Mortality	Hill et al., 1975
			12.5	Dog	Oral (chronic)	32 weeks	Hepatic effects	ATSDR, 1992
Chlordanes	1 000	13	0.47	Mouse	Oral (chronic)	2 years	Hepatocelluar hypertrophy and necrosis	ATSDR, 1992
(alpha + gamma)	335			Rat (male)	Single oral dose	1 22	Mortality	Allea et al., 1979
	430			Rat (female)	Single oral dose	- Carlotta	Mortality	Allen et al., 1979
		0	.273 0.055	Mouse	Oral (chronic)	30 months	Regional liver hypertrophy (females)	ATSDR, 1992
	300			Rabbit	Single oral dose		Mortality	Allen et al., 1979
			16	Rat	Oral (chronic)	Mult-generational	Decreased fertility	ATSDR, 1992
	100		0.031[d	Young chicken	Oral (subchronic)	4 weeks	NOAEL for egg hatchability	Eisler, 1990
	100 2	20 [11]		Rabbit	Single oral dose		Mortality	Allen et al., 1979
	180	Str'		Goat	Single oral dose		Mortality	Allen et al., 1979
	13	10		Cattle	Single oral dose		Minimum Lethal Dose (MLD)	Allea et al., 1979
	35			Japanese quail	Oral (acute)	5 days	Mortality	Hill et al., 1975
	29			Bobwhite	Oral (scate)	5 days	Mortality	Hill et al., 1975
	62	534		Mallard	Oral (acute)	5 days	Mortality	Hill et al., 1975
	24	5 [a]		Pheasant	Single oral dose		Mortality	USFWS, 1984
	200			Dog	Single oral dose		Mortality	Allen et al., 1979
	20	10		Dog	Single oral dose		Minimum Lethal Dose (MLD)	Allen et al., 1979
		0	375	Dog	Oral (chronic)	2 years	Histologie changes	USEPA, 1988
Diazinon	76 15	2 [1]	1.52 [b]	Rat	Single oral dose	100000000000000000000000000000000000000	Mortality	Sax, 1984
	250			Guinea pig	Single oral dose		Mortality	Sax. 1984
	8400			Chicken	Single oral dose	I M	Mortality	Sax. 1984
	3.54			Mallard	Single oral dose		Mortality	USFWS. 1984
	19367 - 1 - 4	6 [a] 0	.086 [Ъ]	Pheasant	Single oral dose		Mortality	USFWS, 1984
		0 [a]	40 fb1	Bullfrog	Single oral dose		Mortality	USFWS, 1984

ANALYTE	ACUTE (mg/kgBW-day) ORAL LD50 LOAEL	CHRONIC (mg/kgBW-day) LOAHL NOAHL	TEST SPECIES	TEST TYPE	DURATION	EPPECT	REFERENCE
Dieldrin (surrogate	38		Mouse	Single oral dose		Mortality	Allen et al., 1979
for Aldrin)		0.1	Mouse	Oral (chronic)	2 year	Liver enlargement w/ histopathology	IRIS, 1991
		1.3	Mouse	Oral (chronic)	2 year	Hepatic cancer	ATSDR, 1993
		0.33	Mouse	Oral (chronic)	80 weeks	Body tremors	ATSDR, 1993
	46		Rat	Single oral dose		Mortality	Allen et al., 1979
		2	Rat	Oral (chronic)	2 year	Histologic changes	ATSDR, 1993
		0.05 0.005	Rat	Oral (chronic)	2 year	Liver lesions	IRIS, 1991
	25	20,000	Guinea pig	Single oral dose	10.00	Mortality	Allen et al., 1979
	45		Rabbit	Single oral dose		Mortality	Allen et al., 1979
	48	-	House sparrow	Single oral dose		Mortality	USFWS, 1984
	20		Chicken	Single oral dose		Mortality	Allen et al., 1979
	27 5 [a]		Rock dove	Single oral dose		Mortality	USFWS, 1984
	9		Gray partridge	Single oral dose		Mortality	USFWS, 1984
	25		Chukar	Single oral dose		Mortality	USFWS, 1984
	6	1 1	Japanese quail	Oral (acute)	5 days	Mortality	Hill et al., 1975
	70		Japanese quail	Single oral dose		Mortality	USFWS, 1984
	9		California quail	Single oral dose		Mortality	USFWS, 1984
	3		Bobwhite	Oral (scate)	5 days	Mortality	Hill et al., 1975
	79		Pheasant	Single oral dose	J Cary 2	Mortality	USFWS, 1984
	12		Mallard	Oral (acute)	5 days	Mortality	Hill et al., 1975
	11		Mallard	Oral (acute)	5 days	Mortality	Hill et al., 1975
	381		Mallard	Single oral dose	Julys	Mortality	USFWS, 1984
	501		Mallard	Oral (subchronic)	30 days	Minimum Lethal Dose (MLD)	USFWS, 1984
	100		Whistling duck	Single oral dose	50 days	Mortality	USFWS, 1984
	141		Canada goose	Single oral dose		Mortality	USFWS, 1984
	35		Monkey	Single oral dose		Minimum Lethal Dose (MLD)	
	100		Gost	Single oral dose		Mortality	Allen et al., 1979
	50		Sheep	Single oral dose		Mortality	Allen et al., 1979 Allen et al., 1979
	60		Cattle	Single oral dose		Mortality	
	75		Mule deer	Company of the Compan			Allen et al., 1979
	300		Cat	Single oral dose Single oral dose		Mortality Mortality	Allen et al., 1979
	65		2.5	THE RESERVE OF THE PERSON OF T			Allen et al., 1979
	35		Dog	Single oral dose		Mortality	Allen et al., 1979
	35	0.05 0.00	Dog	Single oral dose		Minimum Lethal Dose (MLD)	Allen et al., 1979
		0.05 0.005	Dog	Oral (chronic)	2 year	Increased liver weight; liver/body weight	IRIS, 1991
	1	0.5	Dog	Oral (chronic)	25 months	Hepatocyte degeneration	ATSDR, 1993
		0.1	Monkey	Oral (chronic)	120 days	Tremors and Convusions	Smith et al., 1976
	3.5	0.65	Mouse	Oral (subchronic)	4 wks	Decreased pup survival	Virgo Bellward., 1975
	0.25	122.3	Rat	Oral (subchronic)	120 days	Operant behavior	Burt, 1976
	100	0,025	Rat	Oral (subchronic)	120 days	Operant behavior	Smith, 1976
	15		Mouse	Single oral dose	1 day	Malformations	Ottolenghi, 1974

TA .-3
INGESTION TOXICITY DATABASE

ANALYTE	ORAL	W-day)	CHRONIC (mg/kgBW-day) LOAEL NOAEL	TEST SPECIES	TEST TYPE	DURATION	BFFECT	REFERENCE
Endosulfan (surrogate for	-		0.9	Mouse	Oral (chronic)	78 weeks	Mortality	ATSDR, 1990
Endosulfan I, Endosulfan II,			0.26	Mouse	Oral (chronic)	78 weeks	Ovarian cyst development	ATSDR, 1990
and Endosulfan sulfate)	24	4.8 [a]	1.37	Rat	Single oral dose	V417-0-2	Mortality	ATSDR, 1990
Port of the second			100	Rat	Oral (chronic)	2 years	Renal tubular damage	USEPA, 1980
			10	Rat	Oral (chronic)	2 years	Reduced testes weight	USEPA, 1980
			0.15	Rat	Oral (chronic)	2 generations	Kidney toxicity	IRIS, 1991
	33			Mallard	Single oral dose		Mortality	USFWS, 1984
	31.2	6.24 [a]		Mallard	Single oral dose		Mortality	USFWS, 1984
	80	7227		Pheasant	Single oral dose		Mortality	USFWS, 1984
Endrin (surrogate for			0.53	Mouse	Oral (chronic)	50 wks	Mortality	ATSDR 1989
aldehyde and ketone forms)			0.1	Dog	Oral (chronic)	19 months	Decreased weight gain	USEPA, 1985
C	3	0.6 [a]	3	Rat	Single oral dose	1000000	Mortality	Sax, 1984
	1.8	0.36 [a]		Bird	Single oral dose		Mortality	Sax, 1984
Heptachlor (surrogate for		- 1	0.013	Dog	Oral (chronic)	60 weeks	Increased liver to body weight ratio	IRIS, 1993
heptachlor epoxide)			0.25	Rat	Oral (chronic)	2 year	Increased liver/BW ratio	IRIS, 1991
A 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	- 1		0.35	Rat	Oral (chronic)	1 generation	Increased pup death	IRIS, 1991
			0.15	Cat	Oral (chronic)	2 year	Increased liver weight	USEPA, 1987
	40	8 [a]	1	Rat	Single oral dose		Mortality	Sax, 1984
	62	12 [n]		Chicken	Single oral dose		Mortality	Sax, 1984
Malathion			1000	Rat	Oral (chronic)	2 years	Decreased food intake and growth	Arthur D. Little, Inc., 1987
	403	80.6 [a]	8.06 [b]	Horned lark	Single oral dose		Mortality	USFWS, 1984
Methoxychlor			10	Rat	Oral (chronic)	2 years	Growth retardation	USEPA, 1985
			60	Rat	Oral (chronic)	6 wks	Early onset of puberty and decreased litter size	Harris et al., 1975
		200		Rat	Oral (acute)	6-20 days	Increased in percent dead and early onset of puberty	Khera et al., 1978 & Gray, 1989
Parathion			2.3	Rat	Oral (subchronic)	16 days	Reproductive effects	NIOSH, 1985
			6	Rat	Oral (chronic)	2 years	NOAEL (feeding, growth)	Wier and Hazelton, 1982
		9		Quail	Oral (acute)	6 days	Decreased cholinesterase activity; food avoidance	Bussiere, et al., 1989
Pyrethrins	1500			Rat	Single oral dose		Mortality	Farm Chemicals Handbook, 1991
	200			Rat	Single oral dose		Mortality	Sax, 1984
	1200			Rat	Single oral dose		Mortality	Sax, 1984
	370	74 [a]	7 [b]	Muskrat	Single oral dose		Mortality	Sax, 1984
Rotenone	132	-		Rat	Single oral dose		Mortality	Sax, 1984
1000000	350	70 [a]	7 [ь]	Muskrat	Single oral dose		Mortality	Sax, 1984
	50	12.00	2.5	Hamster	Single oral dose		Mortality	Sax, 1984
	1680			Pheasant	Single oral dose		Mortality	USFWS, 1984

ANALYTB.	ACUTE (mg/kgBW-day) ORAL LD50 LOAEL	CHRONIC (mg/kgBW-day) LOAHL NOAHL	TEST SPECIES	TEST TYPE	DURATION	BPPACT	REPHRENCE
METALS							
Aluminum		425	Mouse	Oral (chronic)	2-3 genrins	Reduced body weight gain of newborns	NIOSH, 1985
		100	Rat	Oral (subchronic)	15 days	Reduced growth	Bernuzzi, et al., 1989
Ammonia	48.4		Rat	Dermal (acute)	. 60 min.	Mortality	ATSDR, 1989
	1000 200 [a]	20 [b]	Rat, Rabbit, Cat	Oral (acute)	4,000	Mortality	ATSDR, 1989
	2245	224.5 [b]	Rabbit	Oral (subchronic)	36 days	Renal damage	ATSDR, 1989
		318	Dog	Oral (subchronic)	11 weeks	Bone deformity and softening	ATSDR, 1989
		936	Rat	Oral (chronic)	330 days	Bone loss, reduced body weight	ATSDR, 1989
Antimony	4 [6]	0.35 (water)	Rat	Oral (chronic)	NS	Longevity; blood glucose; cholesteral	IRIS, 1993
		41.8 (food)	Rat	Oral (subchronic)	24 weeks	Decreased RBC, swelling of hepatic cords	ATSDR, 1990
Arsenic		7.5	Rat	Oral (chronic)	NS	Weight loss	USEPA, 1984
	14	1.55	Humster	Single oral dose	Gestation	7-36% Fetal mortality	ATSDR, 1991
0	323 64.6 [a]		Mallard	Single oral dose	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mortality	Eisler, 1988
	386		Pheasant	Single oral dose		Mortality	Fisler, 1988
		3.1	Dog	Oral (chronic)	2 years	Mortality	ATSDR, 1991
Barium		0.825	Mouse	Oral (chronic)	lifetime	NOEL	IRIS, 1990
		5.1	Rat	Oral (chronic)	16 months	NOEL	IRIS, 1990
		0.25	Rat	Oral (chronic)	lifetime	NOEL	IRIS, 1990
		31.5	Rat	Oral (chronic)	13 weeks	NOEL	IRIS, 1990
V.		142	Rat	Oral (chronic)	68 weeks	Renal ultrastructure changes	IRIS, 1993
		91	Rat	Oral (subchronic)	13 weeks	LOAEL for renal effects	Dietz et al., 1992
	198		Rat	Oral (acute)	10 days	Decreased ovarian weight	ATSDR, 1990
	430		Rat	Oral (subchronic)	13 weeks	20% population mortality	Dietz et al., 1992
Beryllium	10 2[a]		Rat	Single oral dose		Mortality	USEPA, 1985
Derjana		0.22	Rat	Oral (chronic)	NS	Increase in lung sarcomas	USEPA 1985
		10	Rat	Oral (subchronic)	24 - 28 days	Rickets	ATSDR, 1991
		0.85	Rat	Oral (chronic)	3.2 years	NOAEL	ATSDR, 1987
Cadmium		1.75	Mouse	Oral (chronic)	18 months	Histopathological effects	ATSDR, 1993
	X	0.32	Mouse	Oral (subchronic)	28 days	Alteration in blood chemistry	Eisler 1985
		1.8	Mouse (young)	Oral (chronic)	28 days	Blood chemistry altered	Eisler 1985
	250	147	Rat	Single oral dose	100	Mortality	Eisler, 1985
		100	Rat	Single oral dose		Testicular damage	Eisler, 1985
	1	14	Rat	Oral (subchronic)	12 weeks	Hepatic and renal effects	ATSDR, 1993
		12.5	Rat	Oral (subchronic)	Gest, days 6-15	NOAEL for reproductive effects	Machener & Lorke, 1981
	150 30 (a)	1000000	Guinea pig	Single oral dose	2004 0072 0 13	Mortality	Eisler, 1985
	150 50[2]	7.6	Japanese quail	Oral (subchronic)	6 weeks	Bone marrow hypoplasia	Eisler, 1985
		200	Mallard	Oral (chronic)	90 days	Egg production suppressed	Eisler, 1985
		200	Mallard	Oral (chronic)	90 days	NOEL	Eisler, 1985
		20	Mallard (young)	Oral (chronic)	12 weeks	Kidney lesions	Eisler, 1985
		0.75	Dog Dog	Oral (subchronic)	3 months	NOAEL	ATSDR, 1993
Chromium (III)	(Advisory)	1400	Rat	Oral (subchronic)	90 days	NOAEL for histopethologic and reproductive effects	Ivankovic and Preussman, 1975
Curomium (iii)	2000 [b]	200	Black Duck	Oral (subchronic)	5 months	NOAEL for reproductive effects	Outridge and Scheuhammer, 1993

TA ,-3
INGESTION TOXICITY DATABASE

	ACUTE (mg/kgBW-day)	CHRONIC (mg/kgBW-day)					
ANALYTE	ORAL		TEST SPECIES	TEST TYPE	DURATION	EFFECT	REFERENCE
	LD _{SO} LOARL	LOARL NOARL					
Cobalt	91 18[1]		Rat	Single oral dose		Mortality	ATSDR, 1990
	157		Ret	Single oral dose		Hepatic/renal hyperemia	ATSDR, 1990
		4.2	Rat	Oral (subchronic)	8 weeks	Decreased body weight gain	ATSDR, 1990
		20	Rat	Oral (chronic)	69 days	Testicular at rophy	ATSDR, 1990
	20	C-X	Guinea pig	Oral (subchronic)	5 week	Mortality	ATSDR, 1990
		5	Dog	Oral (subchronic)	4 weeks	Increased red blood cell count	ATSDR, 1990
Copper	152		Rat	Single oral dose	7.002	TDIo for reproductive effects	NIOSH, 1985
	100	100	Mice	Oral (chronic)	30 days	Decreased litter sizes with teratogenic effects	Lecyk, 1980
		152	Rat	Oral (chronic)	22 weeks	Fetotoxicity, CNS abnormalities	NIOSH, 1985
		1.4	Swine	Oral (chronic)	9 months	Mortality	USEPA, 1980
	2.09	1.7	Mallard	Oral (acute)	29 days	No effect on survivorship	
	2.09	29	Mallard	Oral (subchronic)	NS NS	LOAEL.	Demayo et al., 1982
Cyanide		30	Rat	Oral (subchronic)	11.5 months	Increased thyroid weight, myelin degeneration	NRC, 1977
Супшис	8.5	30	Mouse	Single oral dose	I I.J HORRES	Mortality	IRIS, 1993
	6,3	11	Young chickens	Oral	20 days		Arthur D. Little, Inc., 1987
		11	Pig	Oral	110 days	Decreased growth and food intake Thyroid hypofunction during pregnancy	Elzubier and Davis, 1988
	12	11.9	Hamsters	Oral	45/25/	4 182 2 10 10 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Tewe and Maner, 1981b
	1.1	11.9	Mallard duck	Single oral dose	12 days	Decreased fetal weight and delayed ossification	Frakes et al., 1986
	1.1	1.5			370	Mortality in 6% of population	Eisler, 1991
Lead	36	1.5	Mouse	Oral (chronic)	NS	Reduced sucess of implanted ova	Eisler, 1988
	12		Rat	Single oral dose		Mortality	Eisler, 1988
	17		Rat	Single oral dose	2 - 4 400	LDLO	Eisler, 1988
	2,5		Rat	Oral (acute)	Days 12-14 (preg)	Increased fetal resorption rate; decreased fetal BW	McClain and Becker, 1972
	1		Rat	Oral (acute)	Days 5-15 (preg)	Increased resorptions/dam	Kennedy et al., 1975
	1.5		Rat	Oral (subchronic)	3 weeks	Increased locomotor activity	Eisler, 1988
		7	Rat	Oral (chronic)	2 generations	NOAEL for developmental effects	Kimmel et al., 1980 and Grant et al., 1980
		2.16	Rat	Oral (chronic)	2 years	Decreased ALAD synthesis	ATSDR, 1988
		25	Rat	Oral (chronic)	NS	Increased locomotor activity	Eisler, 1988
	300 60 [a]		Guinea pig	Single oral dose		Mortality	Sax, 1984
		0.51	Rabbit	Oral (chronic)	NS	Mortality	USEPA, 1988
		169	Chicken	Oral (subchronic)	4 weeks	Growth rate suppressed	Eisler, 1988
		6.25	Rock dove	Oral (chronic)	NS	Kidney pathology, learning deficiences	Anders et al., 1982 and Dietz et al., 1979
	75		Rock dove	Single oral dose		Mortality	Kendall and Scanlon, 1985
	151	110	Mallard	Oral (subchronic)	NS	Some mortality and ALAD decrease	Eisler, 1988
	151	1.75	Mallard	Oral (chronic)	12 weeks	Decrease in ALAD activity	
	24.6	4.75	Japanese quail	Single oral dose	12 WCCES	Mortality	Eisler, 1988
	24.0	2.8	Starling	Oral (acute)	11 days	Reduced food consumption	Fisler, 1988
	125	4.0	Kestrel (nestlings)	1 C - C - C - C - C - C - C - C - C - C	57 St 50	The state of the s	Eisler, 1988
	25		The state of the s	Oral (acute)	10 days	Abnormal development	Eisler, 1988
	625		Kestrel (nestlings)	Oral (acute)	10 days	ALAD depression	Eisler, 1988
	625	2.46	Kestrel (nestlings)	Oral (acute)	10 days	Mortality and developmental effects	Eisler, 1988
		0.89	Kestrel	Oral (chronic)	5 months	NOEL	Eisler, 1988
(1) Y		4.4	Kestrel	Oral (chronic)	5 months	Blood ALAD reduced 80%	Eislez, 1988
		6	Cattle (calves)	Oral (subchronic)	105 days	Mortality	Eisler, 1988
	200	2.4	Horse	Oral (chronic)	NS	Mortality	Eisler, 1988
	300		Dog	Oral (acute)	NS	LDLO	ATSDR, 1988

TABLE E-3
INGESTION TOXICITY DATABASE

	ACUTB (mg/kgBW-day)	CHRONIC (mg/kgBW-day)			4 - 4		77.76
ANALYTE	ORAL		TEST SPECIES	TEST TYPE	DURATION	EFFECT	REFERENCE
	LD _{SO} LOAEL	LOAEL NOAEL					
Anganese	1 2 2	2300	Mouse	Oral (subchronic)	6 months	Mortality	ATSDR, 1990
		140	Mouse	Oral (subchronic)	90 days	Delayed growth of testes	ATSDR, 1990
		810	Mouse	Oral (chronic)	103 weeks	Mortality	ATSDR, 1990
	410	100	Rat	Single oral dose	7.0,010	Mortality	ATSDR, 1990
	225		Rat	Oral (acate)	20 day	Mortality	ATSDR, 1990
	7.7	12	Rat	Oral (subchronic)	10 weeks	Hepatic effects	ATSDR, 1990
	1240	620	Rat	Oral (subchronic)	20 days	Decreased litter weight during gestation	ATSDR, 1990
		930	Rat	Oral (chronic)	103 weeks	Mortality	ATSDR, 1990
	400	3370	Guinea pig	Single oral dose	200,7150-5	Mortality	USEPA, 1984
		25	Monkey	Oral (chronic)	18 months	Weakness, rigidity	ATSDR, 1990
		250	Rodents/livestock	Oral (subchronic)	10 days - 2 months	Decreased growth rate	Cunningham et al., 1966
	2300		Mouse	Oral (subchronic)	180 days	NOAEL for mortality	Gianutsos and Murray, 1982
Mercury	22	19.0	Mouse	Single oral dose		Mortality	NIOSH, 1985
7.45		6.3	Mouse	Oral (subchronic)	18 days	Mortality; neurological symptoms	Suzuki, 1979
		5	Mouse	Oral (subchronic)	38 days	Mortality; neurological symptoms	Suzuki, 1979
		0.9	Mouse	Oral (subchronic)	50 days	Embryotoxicity and teratogenicity	Suzuki, 1979
		1	Mouse	Oral (subchronic)	45 days	Hypophagia, weight loss, weakness of hind legs	Suzuki, 1979
		4	Mouse	Oral (subchronic)	Day 6-17 (gest)	Stillbirths and acoustal death	Suzuki, 1979
		0.7	Mouse	Oral (subchronic)	Day 0-18 (gest)	Embryolethality and teratogenicity	Suzuki, 1979
		4	Ret	Oral (subchronic)	Day 6-14 (gcst)	Retarded fetus growth and terstogenicity	Suzuki, 1979
		0.12 [d]	Rat	Oral (subchronic)	Gest. + 16 days	Behavioral changes in offspring	Suzuki, 1979
		0.5	Ret	Oral (chronic)	NS	Reduced fertility	Eisler, 1987
		0.16 [d]	Rat	Oral (chronic)	38 days	Adverse behavioral change	Eisler, 1987
	18 3,6 [a]		Rat	Single oral dose		Mortality	NIOSH, 1985
		0.5	Pig	Oral (chronic)	Pregnancy	High incidence of stillbirths	Eisler, 1987
	12.6	C	House sparrow	Single oral dose		Mortality	Eisler, 1987
	22.8		Rock dove	Single oral dose	10.75	Mortality	Eisler, 1987
		3	Pigeon	Oral (subchronic)	17 days	Behavioral alterations	Eisler, 1987
	N.	1	Pigeon	Oral (subchronic)	5 weeks	Behavioral alterations	Eisler, 1987
		0.25 [d]	Starling	Oral (chronic)	8 weeks	Kidney lesions	Eislez, 1987
	20		Chicken	Single oral dose		Mortality	Fimreite, 1979
	190		Bantam chicken	Single oral dose		Mortality	Finreite, 1979
	11.5		Prairie chicken	Single oral dose		Mortality	Eisler, 1987
	26.9		Chukar	Single oral dose		Mortality	Eisler, 1987
	11 2 [a]		Coturnix	Single oral dose	Jan 1990	Mortality	Eisler, 1987
	100	0.22 [d]	Black duck	Oral (chronic)	28 weeks	Reproduction inhibited, brain lesions	Eisler, 1987
	37.8	4-27	Fulvous whistling de			Mortality	Eisler, 1987
	23.8		Northern bobwhite	Single oral dose	222	Mortality	Eisler, 1987
	523		Bobwhite quail	Oral (acute	5 days	Mortality	Hill et al., 1975
	14.4		Japanese quail	Single oral dose	4. P. S.	Mortality	Eisler, 1987
		0.81	Japanese quail	Oral (subchronic)	3 weeks	Depressed gonad weights	Eisler, 1987
		0.10	Japanese quail	Oral (subchronic)	9 weeks	Alterations in brain and plasma enzyme activities	Eisler, 1987
	100	5.0	Japanese quail	Oral (chronic)	NS	Reproductive effects	Fimreite, 1979
	17.6	0.44	Gray partridge	Single oral dose	40.1	Mortality	Eisler, 1987
		0.64	Gray pheasant	Oral (chronic)	30 days	Reduced reproductive ability	Eisler, 1987
	11.5 17.9		Ring-necked phear	The second second second		Mortality	Eisler, 1987
	17.9	0.5	Mule deer Rhesus monkey	Single oral dose Oral (chronic)	Pregnancy	Mortality Maternally toxic and abortient	Eisler, 1987 Eisler, 1987

TA I-3
INGESTION TOXICITY DATABASE

ANALYTE	ACUTE (=g/kgHW-day) ORAL LD ₅₀ LOASL	CHRONIC (mg/kgBW-day) LOAEL NOAEL	TBST SPECIES	TEST TYPE	DURATION	EFFECT	REPERINCE
Mercury cont.	2	,	River otter	Single oral dose		Mortality	Eisler, 1987
	1		Mink	Single oral dose	190 V	Mortality	Einler, 1987
		0.029	Mink	Oral (subchronic)	2 months	Mortality	Fisler, 1987
		0.25	Cat	Oral (chronic)	Day 10-58 (gest)	Increased incidence of anomalous fetuses	Eisler, 1987
		0.1	Dog	Oral (chronic)	Pregnancy	High incidence of stillbirths	Eisler, 1987
Nickel	67 13.4 [a:		Rat	Single oral dose		Mortality	ATSDR, 1991
		50	Rat	Oral (chronic)	2 years	Decreased body weight gain	ATSDR, 1991
	504 [c 100 [a	10 [Ы]	Japanese quail	Oral (acute)	5 days	NOAEL	Hill and Camardese, 1986
	10000	62.5	Dog	Oral (chronic)	2 years	Histological lesions in bone marrow	ATSDR, 1991
Nitrate	1330 ГЬ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mouse	Oral (subchronic)	3 weeks	Elevated methemoglobin levels	USEPA, 1985
Court of the Court	425	88	Mouse	Oral (subchronic)	3 weeks	NOAEL	USEPA, 1985
	2500 [ъ	250	Rat	Oral (chronic)	6 months	Spices hemorrhages	USEPA, 1985
Sclenium	0	0.4	Rat	Oral (chronic)	2 years	Decrease in breeding	ATSDR, 1988
		0.045	Rat	Oral (chrozic)	NS	Histological changes in heart and kidney	Eisler, 1985
		0.6	Japanese quail	Oral (chronic)	NS	Reduced egg hatching	Eisler, 1985
		0.72	Mallard	Oral (aubchronic)	3 months	NOAEL for teratogenic effects	Eisler 1985
	3.3	11 22 11	Horse	Single oral dose		MLD	Eisler, 1985
	0.5		Rat	Single oral dose		Mortality	ATSDR, 1988
Silver	34 6.8 fa		Mouse	Intraperitoncal (scu	e)	Mortality	NIOSH, 1985
	181		Rat	Oral (acute)	2 week	Mortality	ATSDR, 1990
		222.2	Rat	Oral (chronic)	37 week	Weight gain	ATSDR, 1990
		18.1	Mouse	Oral (chronic)	125 days	Hypoactivity	ATSDR, 1990
Sulfate (magnesium)	3000	300 [Ъ]	Mouse	Single oral dose		Mortality	NIOSH, 1985
(sodium)	1198	120 [ъ]	Rabbit	Single oral dose		Mortality	NIOSH, 1985
Thallium		0.61	Heron	Oral	NR	NOEAL for egg-hat chability	Smith et al., 1968
		0.7	Rat	Oral (subchronic)	30-60 days	Adverse testicular effects	IRIS, 1993
	35		Rat	Single oral dose		Mortality	Sax, 1984
	23.7		Pheasant	Single oral dose		Mortality	USFWS, 1984
Tin (inorganic)	188 37.6 [a	3.76 [b]	Rat	Single oral dose		Mortality	Eisler, 1989
(inorganic)	1000000	20	Rat	Oral (chronic)	13 weeks	NOEL	Eisleg 1989
(dibutykin)		0.1	Rat	Oral (chronic)	12 weeks	Kidney damage	Eisler, 1989
(dibutyltin)		2	Rat	Oral (subchronic)	90 days	NOEL	Eisler, 1989
(triethyltin)	35 [6	3.5	Mallard	Oral (subchronic)	NS	Vacuolization of spinal chord	Eisler, 1989
(triethyltin)		12.9	Chicken	Oral (chronic)	15 weeks	Muscular weakness	Eisler, 1989
(dialkytin)		15.1	Japanese quail	Oral (subchronic)	2 weeks	NOEL	Eisler, 1989
Vanadium		0.89	Rat	Oral (chronic)	2.5 years	Decreased hair cystine	IRIS, 1989
	3	2.87	Rat	Oral (subchronic)	3 months	Adverse renal effects	ATSDR, 1990
		2.5	Rat	Oral (chronic)	103 days	Decreased hair cystine, hemoglobia	IRIS, 1989
	96 20 [a		Japanese quail	Oral (acute)	5 days	Mortality	Hill and Camardese, 1986
		15	Rat	Oral (subchronic)	2 months	Hypertension	Susic and Kentera, 1986
	16		Rat	Single oral dose	W MOMINS	NOAEL for mortality	Llobet and Domingo, 1984
	70	11	Chicken	Oral (subchronic)	6 weeks	Decrease in ogg-laying	USEPA, 1988

ANALYTE	ACUTE (mg/kgEW-day) ORAL	CHRONIC (mg/kgBW-dny)	TEST SPECIES	TEST TYPB	DURATION	EFFECT	REFERENCE
Zinc	2510 LOARL 2510	160 200 300	Rat Rat Rat	Single oral dose Oral (subchronic) Oral Oral Oral	NS Gestation 144 days 3–13 days	Mortality Kidney toxicity Fetal resorptions in 4 to 20% of population No adverse effects Mortality and gastrointestinal effects	Sax, 1984 Llobet, et al., 1988 Shlicker and Cox, 1968 Aulerich et al., 1991 Straube et al., 1980

NOTES:

- [a] For chemicals lacking LOAEL or NOAEL data, an Acute Oral Criterion (AOC) is calculated by applying a factor of 0.2 to the acute LD50; this value is expected to protect 99.9% of the exposed population from acute effects (USEPA, 1986).
- [b] Estimated by applying an acute-chronic ratio of 10.
- [c] Value for benzo(a) pyrene chosen as a surrogate for all PAHs. Chemical-specific toxicity studies for ecologically significant endpoints are lacking for other PAHs.
- [d] Converted to dose per kilogram body weight by multiplying by ingestion rate and dividing by body weight. The following ingestion rate and body weight data were used:

Species	Ingestion Rate	Reference				
de la companya della companya della companya de la companya della	(kg/day)	(kg)		Т		
Rat (Male)	0.025	0.35	USEPA, 1988			
Rat (Female)	0.02	0.25	USEPA, 1988			
Mouse	0.0035	0.03	USEPA, 1988			
Rabbit	0.059	2.2	USEPA, 1988			
Hamster		0.12	USEPA, 1988			
Guinea pig		0.875	USEPA, 1988			
Chicken	0.106	1.16	USEPA, 1988			
Pig		150	USEPA, 1988			
Dog	0.5	12.7	USEPA, 1988			
Beagle dog		14	USEPA, 1988			
Mink	0.0465	1.613	USEPA, 1988			
Ferret		1.35	USEPA, 1988			
Bird		1	Sax, 1984			
Bobwhite	0.015	0.17	Kenaga, 1973			
California quail	0.014[f]	0.139	USEPA, 1988			
Japanese quail		see Califor	mia quail			
Corturnix		see California quail				
Grey partridge		0.39	Dunning, 1984			
Pheasant (ring-	necked)	1.135	Dunning, 1984			
Rock dove		0.542	Dunning, 1984			
Starling	0.01	0.0437	USEPA, 1988			
Mallard Duck	0.09	1.25	Terres, 1987			
Duck	0.112[f]	1.6	USEPA, 1988			
Black duck		1.25	USEPA, 1988			
Young chickens		0.07	USEPA, 1988			
Kestrel	0.01	0.179	USEPA, 1988			
Screech Owl	0.0086	0.169	USEPA, 1988			
Barn owl		0.466	USEPA, 1988			

[e] Value for gamma-BHC used as a surrogate for all other BHC isomers.

NS = Not Stated

BW = Body Weight

LOAEL = Lowest Observed Adverse Effect Level

NOAEL = No Observed Adverse Effect Level

TABLE E-4 REFERENCE TOXICITY VALUES FOR ANALYTES DETECTED IN SURFACE SOIL AT COLD SPRING BROOK

	Short-tailed	American	Red	Red-tailed
Chemical	Shrew	Woodcock	Fox	Hawk
PAL METALS (µg/gBW-day)				
Aluminum	425	425	425	42.
Arsenic	3.1	3.1	3.1	3.1
Barium	198	198	198	198
Beryllium	10	10	10	10
Cadmium	12.5	12.5	12.5	12.5
Calcium	NA NA	NA	NA	NA NA
Chromium	1400	200	1400	200
Cobalt	20	20	20	20
Copper	100	100	100	100
Iron	NA	NA	NA	NA NA
Lead	7	6.25	7	6.25
Magneseium	NA NA	NA	NA	NA NA
Manganese	250	250	250	250
Mercury	0.7	0.22	0.1	0.22
Nickel	50	10	62.5	10
Potassium	NA NA	NA	NA	N/
Sodium	NA NA	NA	NA	N/
Tin	20	12.9	20	12.9
Vanadium	15	11	15	11
Zinc	200	200	200	200
PAL SEMIVOLATILE ORGAN 2-Methylnaphthalene	IICS (μg/gBW-day)	10	10	10
2-Methylnaphthalene Acenaphthene	10	10	10	10
	10	10	10	10
Acenaphthylene	10	10	10	10
Anthracene		10		
Benzo(a)anthracene	10	10	10	10
Benzo(a)pyrene	10	10	10	10
Benzo(b)fluoranthene	10	10	10	10
Benzo(g,h,i)perylene	10	10	10	10
Benzo(k)fluoranthene	35	35	35	35
Bis(2-ethylhexyl)phthalate	10	10	10	10
Chrysene	100		(0.00)	
Dibenz(a,h)anthracene	10	10	10	10
Di-n-butylphthalate	125	125	125	125
Fluoranthene	10	10	10	10
Fluorene	10	10	10	10
Indeno(1,2,3-cd)pyrene	10	10	10	10
Phenanthrene	10	10	10	10
Phenol	120	120	120	120
Pyrene	10	10	10	10

Reference Toxicity Values are derived from the Toxicity Database (Table E-3) NA: Not Available/Not Applicable

TABLE E-5
ECOLOGICAL PROTECTIVE CONTAMINANT LEVELS FOR ANALYTES DETECTED IN SURFACE SOILS
AT COLD SPRING BROOK

Analyte	Shrew	Woodcock	Fox	Hawk
Semivolatile Organic Compounds (mg/kg)				
2-Methylnaphthalene	2.1E+02	4.4E+03	NEL	3.9E+05
Acenaphthene	2.1E+02	4.4E+03	NEL	3.9E+05
Acenaphthylene	2.1E+02	4.4E+03	NEL	3.9E+05
Anthracene	2.1E+02	4.4E+03	NEL	3.9E+05
Benzo(a)anthracene	2.1E+02	4.4E+03	NEL	3.9E+05
Benzo(a)pyrene	2.1E+02	4.4E+03	NEL	3.9E+05
Benzo(b)fluoranthene	2.1E+02	4.4E+03	NEL	3.9E+05
Benzo(g,h,i)perylene	2.1E+02	4.4E+03	NEL	3.9E+05
Benzo(k)fluoranthene	2.1E+02	4.4E+03	NEL	3.9E+05
Bis(2-ethylhexyl)phthalate	7.5E+02	1.6E+04	NEL	3.9E+05
Chrysene	2.1E+02	4.4E+03	NEL	3.9E+05
Dibenz(a,h)anthracene	2.1E+02	4.4E+03	NEL	3.9E+05
Di-n-butylphthalate	2.7E+03	5.5E+04	NEL	NEL
Fluoranthene	2.1E+02	4.4E+03	NEL	3.9E+05
Fluorene	2.1E+02	4.4E+03	NEL	3.9E+05
Indeno(1,2,3-od)pyrene	2.1E+02	4.4E+03	NEL	3.9E+05
Phenanthrene	2.1E+02	4.4E+03	NEL	3.9E+05
Phenol	2.5E+03	5.2E+04	NEL	NEL
Pyrene	2.1E+02	4.4E+03	NEL	3.9E+05
Inorganics (mg/kg)				
Aluminum	7.5E+03	1.5E+05	9.8E+07	1.9E+07
Arsenic	6.5E+01	1.6E+03	4.4E+05	1.3E+05
Barium	6.5E+03	1.4E+05	4.9E+07	9.7E+06
Berylium	2.2E+02	4.4E+03	2.5E+06	4.6E+05
Cadmium	2.9E+00	5.7E+01	1.5E+04	2.3E+03
Calcium	NA	NA	NA	NA
Chromium	1.5E+04	4.4E+04	2.2E+08	5.6E+06
Cobalt	4.6E+01	9.1E+02	4.4E+05	7.2E+04
Copper	1.0E+03	2.1E+04	1.0E+07	1.8E+06
Iron	NA	NA	NA	NA
Lead	1.9E+02	3.8E+03	1.6E+06	3.0E+05
Magnesium	NA -	NA	NA	NA
Manganese	5.7E+03	1.3E+05	4.7E+07	1.2E+07
Mercury	1.2E+01	8.0E+01	2.2E+04	1.0E+04
Nickel	4.1E+02	1.7E+03	8.1E+06	2.4E+05
Potassium	NA	NA	NA	NA
Selenium	1.1E+00	3.5E+01	1.3E+04	3.4E+03
Sodium	NA	NA	NA	NA
Tin	3.1E+01	4.0E+02	2.2E+05	2.2E+04
Vanadium	2.0E+02	3.0E+03	3.1E+06	4.3E+05
Zinc	2.4E+02	5.0E+03	1.2E+06	1.9E+05

NOTES

NA = Not Available. No bioaccumulation or benchmark data are available for calculating PCLs.

NEL = No Effects Likely. Due to the exposure assumptions incorporated in the food chain models, (i.e., PAHs and phthalates are not anticipated to accumulate in the food chain), the concentrations of analytes detected at the site are not likely to have adverse effects on higher trophic level receptors.

REFERENCE LIST FOR APPENDIX E

- Allen, J.R. et al., 1979. "Comparative Toxicology of Chlorinated Compounds on Mammalian Species"; Pharmac. Ther.; 7: 513-549.
- Anders, E., D.D. Dietz, C.R. Bagnell, Jr., J. Gaynor, M.R. Krigman, D.W. Ross, J.D. Leander, and P. Mushak, 1982. "Morphological, Pharmacokinetic, and Hematological Studies of Lead Exposed Pigeons"; Environ. Res.; Vol. 28; 344-363.
- Arthur D. Little, Inc., 1987. "The Installation Restoration Program Toxicology Guide"; Volume 2; Harry G. Armstrong Aerospace Medical Research Laboratory; Wright-Patterson Air Force Base; Cambridge, MA; pp 56.1 to 56.17.
- Arthur D. Little, Inc., 1981. "Reference Constants for Priority Pollutants and Selected Chemicals"; Reference No. 84204; March, 1981; 33pp.
- ATSDR, 1993. "Toxicological Profile for Cadmium"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1993. Toxicological Profile for Dieldrin; Agency for Toxic Substances and Disease Registry; U.S. Public Health Service.
- ATSDR, 1992. "Toxicological Profile for 1,2-Dichloroethane"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1992.
- ATSDR, 1992. "Toxicological Profile for the alpha-, beta-, gamma-, and deltaisomers of Hexachlorocyclohexane"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service; December 1988.
- ATSDR, 1992. "Toxicological Profile for Chlordane"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service; October 1992.
- ATSDR, 1992. "Toxicological Profile for DDT, DDE, and DDD"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, December 1988
- ATSDR, 1992. "Toxicological Profile for Toluene"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.
- ATSDR, 1991. "Toxicological Profile for Arsenic"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service

- ATSDR, 1991. "Toxicological Profile for Beryllium"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1991. "Toxicological Profile for Dibenzofuran"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1991. "Toxicological Profile for Nickel"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October, 1987.
- ATSDR, 1990. "Toxicological Profile for 2-butanone"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February, 1990.
- ATSDR, 1990. "Toxicological Profile for Antimony"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.
- ATSDR, 1990. "Toxicological Profile for Cobalt"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1990. "Toxicological Profile for Cresols"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1990. "Toxicological Profile for Endosulfan"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, December 1988.
- ATSDR, 1990. "Toxicological Profile for Manganese"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1990.
- ATSDR, 1990. "Toxicological Profile for Naphthalene"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service; October 1990.
- ATSDR, 1990. "Toxicological Profile for Nitrophenol"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service; October 1990.
- ATSDR, 1990. "Toxicological Profile for Silver"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.
- ATSDR, 1990. "Toxicological Profile for Vanadium"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1989. "Toxicological Profile for Ammonia"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February, 1990.

- ATSDR, 1989. "Toxicological Profile for Di-n-butylphthalate"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1989.
- ATSDR, 1989. "Toxicological Profile for Endrin and Endrin Aldehyde"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service. October 1989.
- ATSDR, 1989. "Toxicological Profile for Polycyclic Aromatic Hydrocarbons (Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene)"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1989.
- ATSDR, 1988. "Toxicological Profile for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service
- ATSDR, 1988. "Toxicological Profile for 1,1,2,2-Tetrachloroethane"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, April 1989.
- ATSDR, 1988. "Toxicological Profile for Isophorone"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, December 1988.
- ATSDR, 1988. "Toxicological Profile for Lead"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, February 1988.
- ATSDR, 1988. "Toxicological Profile for Selenium"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, December 1988.
- ATSDR, 1987. "Toxicological Profile for Beryllium"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1987.
- ATSDR, 1987. "Toxicological Profile for Selected PCBs"; Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, October 1987.
- Aulerich, R.J., S.J. Bursian, R.H. Poppenga, W.E. Braselton, T.P. Mullaney, 1991. "Toleration of High Concentrations of Dietary Zinc by Mink"; <u>J. Vet Invest.</u>; Vol. 3; 232-237.
- Bailey, S., P.J. Bunyan, D.M. Jennings and A. Taylor, 1970. Pestic. Sci. 1,66 (1970).
- Barker, R.J., 1958. "Notes on some ecological effects of DDT sprayed on elms"; Journal of Wildlife Management, Vol. 22, Pgs. 269-274.

- Bernuzzi, V., D.Desor, and P.R. Lehr, 1989. "Effects of Postnatal Aluminum Lactate Exposure on Neuromotor Maturation in Rat"; <u>Bulletin of Environmental Contamination and Toxicology</u> 42:451-5.
- Beyer, W.N., and C.D. Gish, 1980. "Persistence in earthworms and potential hazards to birds of soil applied DDT, dieldrin and heptachlor"; Journal of Applied Ecology, Vol. 17, pgs. 295-307.
- Beyer, W.N., 1990. <u>Evaluating Soil Contamination</u>; Biological Report 90(2); U.S. Fish and Wildlife Service.
- Buben, J.A., and E.J. O'Flaherty, 1985. "Delineation of the Role of Metabolism in the Hepatotoxicity of Trichloroethylene and Perchloroethylene: A Dose-Effect Study"; Toxicol Appl Pharmacol; Vol. 78; 105-122; as cited in ATSDR (1991).
- Burt, W.H., and R.P. Grossenheider, 1976. A Field Guide to the Mammals; Houghton and Mifflin Co., Boston, MA 289 pp.
- Bussiere J.L, R.J. Kendall, T.E. Lacher, Jr., and R.S. Bennet, 1989. "Effect of Methyl Parathion on Food Discrimination in Northern Bobwhite"; <u>Environmental Toxicology and Chemistry</u> 8:1125-32.
- Collett, N. and D.L. Harrison, 1968. "Some observations on the effects of using organochlorine sprays in an orchard"; New Zealand Journal of Science, Vol. 11, Pgs. 371-379.
- Cramp, S., and P.J.S. Olney, 1967. Sixth Report Joint Committee British Trust for Ornithology and Royal Society for Protection of Birds on Toxic Chemicals. 26 pp.
- Cunningham, G.N., M.B. Wise and E.R. Barrick, 1966. Effect of high dietary levels of manganese on the performance and blood constituents of calves. J. Animal Sci. 25:532.
- Davis, B.N.K., 1968. "The soil macrofauna and organochlorine insectice residues at twelve agricultural sites near Huntingdon"; Annals of Applied Biology, Vol. 61, pgs. 29-45.
- Davis, B.N.K., and R.B. Harrison, Nature, Lond., 211, 1424 (1966).
- Demayo, A., M.C. Taylor, and K.W. Taylor, 1982. <u>Effects of Copper on Humans</u>, <u>Laboratory and Farm Animals</u>, <u>Terrestrial Plants</u>, and <u>Aquatic Life</u>; CRC Critical Reviews in Environmental Control; August 1982; pp. 183-255.

- Diercxsens, P., D. deWeck, N. Borsinger, B. Rosset, and J. Tarradellas, 1985. "Earthworm Contamination by PCBs and Heavy Metals"; Chemosphere 14:511-522.
- Dietz, D.D., D.E. McMilland, and P. Mushak, 1979. "Effects of Chronic Lead Administration on Acquisition and Performance of Serial Position Sequences by Pigeons"; Toxicol. Appl. Pharmacol.; Vol. 47; 377-384.
- Dietz, D.D., Elwell, M.R., Davis, W.E., Meirhenry, E.F., 1992. Subchronic toxicity of barium chloride dihydrate administered to rats and mice in the drinking water. <u>Fund Appl Toxicol</u> 19:527-537
- Dimond, J.B., G.Y. Belyea, R.E. Kadunce, S.A. Getchell, and J.A. Blease, 1970. "DDT residues in robins and earthworms associated with contaminated forest soils"; The Canadian Entomologist, Vol. 102, Pgs. 1122-1130.
- Donahue, R.L., R.W. Miller, and J.C. Skickluna, 1977. Soils: An Introduction to Soils and Plant Growth; Fourth Edition; New Jersey; Prentice-Hall.
- Dunning, J.B., 1984. <u>Body Weights of 686 Species of North American Birds</u>. Western Bird Banding Association; Monograph No. 1; Cave Creek, Arizona; May, 1984.
- Edwards, C.A. and A.R. Thompson, 1973. "Pesticides and the soil fauna"; Residue Reviews, Vol. 45, pgs. 1-79.
- Eisler, R., 1991. "Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.23),55 pp.
- Eisler, R., 1990. "Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.21), 49 pp.
- Eisler, R., 1989. "Atrazine Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.18), 53 pp.
- Eisler, R., 1989. "Pentachlorophenol Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.17), 92 pp.
- Eisler, R., 1989. "Tin Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.15), 83 pp.
- Eisler, R., 1988. "Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.12), 92 pp.

- Eisler, R., 1988. "Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.14), 134 pp.
- Eisler, R., 1987. "Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.10), 90 pp.
- Eisler, R., 1987. "Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.11), 81 pp.
- Eisler, R., 1986. "Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85 (1.7), 72 pp.
- Eisler, R. 1985. "Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85(1.2), 46 pp.
- Eisler, R. 1985. "Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review"; U.S. Fish and Wildlife Service Biological Report 85(1.5), 57 pp.
- Ellis, H.V. III, J.H. Hagensen, J.R. Hodgson, J.L. Minor, and C-B. Hong, 1978. "Mammalian Toxicity of Munitions Compounds Phase III: Effects of Life-Time Exposure Part II: Trinitroglycerin"; Midwest Research Institute; NTIS GRAI8008.
- Ellis, H.V. III, J.H. Hagensen, J.R. Hodgson, J.L. Minor, and C-B. Hong, 1978.

 "Mammalian Toxicity of Munitions Compounds Phase III: Effects of Life-Time Exposure Part III: Nitrocellulose"; Midwest Research Institute; NTIS GRAI8009.
- Elzubeir, E.A., and R.H. Davis, 1988. Sodium nitroprusside, a convenient source of dietary cyanide for the study of chronic cyanide toxicity. Br. Poult. Sci. 29:779-783. Farm Chemicals Handbook, 1991.
- Fimreite, N., 1979. "Accumulation and Effects of Mercury on Birds"; Pages 601-626 in The Biogeochemistry of Mercury in the Environment, J.O. Nriagu (Ed.); Elsevier/North Holland Biomedical Press, New York.
- Forsyth, D.J. and Peterle, T.J., 1984. Species and Age Differences in Accumulation of ³⁶Cl-DDT by Voles and Shrews in the Field. Env. Poll. (series A); 33 (1984): 327-340.
- Frakes, R.A., R.P. Sharma, C.C. Willhite, et al., 1986. Effect of cyanogenic glycosides and protein content in cassava diets on hamster prenatal development. Fundam. Appl. Toxicol. 7:191-198.

- Gianutsos, G., and M.T. Murray, 1982. Alterations in brain dopamine and GABA following inorganic or organic mangaese administration. Neurotoxicology 3:75-81.
- Gish, C.D., 1970. "Organochlorine insecticide residues in soils and soil invertebrates from agricultural lands"; Pesticides Monit. J., Vol. 3, No. 71.
- Grant, L.D., C.A. Kimmel, G.L. West, C.M. Martinez-Vargas, and J.L. Howard, 1980.
 "Chronic Low-level Lead Toxicity in the Rat: II. Effects on Postnatal Physical and Behavioral Development"; Toxicol. Appl. Pharmacol.; Vol. 56; 42-58.
- Gray, L.E., J.S. Otsby, J.M. Ferrell, et al., 1989. "A Dose-Response Analysis of Methoxychlor-induced Alterations of Reproductive Development and Function in the Rat"; Fundam. Appl. Toxicol.; Vol. 12; 92-108.
- Hansch, C.H. and A. Leo, 1979. <u>Substituent Constants for Correlation Analysis in Chemistry and Biology</u>; John Wiley and Sons, Inc., 330 pp.
- Harris, S.J.; H.C. Eceil, and J. Bitman, 1974. "Effect of Several Dietary Levels of Technical Methoxychlor on Reproduction in Rats"; J. Agr. Food Chem. Vol. 22; 969-973.
- Hill, E.F., and M.B. Camardese, 1986. "Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix", U.S. Fish and Wildlife Service Tech. Rep. No. 2, Washington, D.C.
- Hill, E.F. et al., 1975. "Lethal Dietary Toxicities of Environmental Pollutants to Birds"; U.S. Fish and Wildlife Service Special Scientific Report, Wildlife No. 191, Washington, D.C.
- Hunt, L.B., and R.J. Sacho, 1969. J. Wild. Mgmt. 33, 336 (1969).
- Integrated Risk Information System (IRIS), 1988-1993. "Volumes I and II. Chemical Files". U.S. Environmental Protection Agency.
- Ivankovic, S., and R. Preussmann, 1975. "Absence of Toxic and Carcinogenic Effects After Administration of High Doses of Chromium Oxide Pigment in Sub-acute and Longterm Feeding Experiments in Rats"; Food Cosmetics and Toxicology 13:347-51.
- Kenaga, E.E., 1973. "Factors to be Considered in the Evaluation of Pesticides to Birds in Their Environment"; in Environmental Quality and Safety. Global Aspects of Chemistry, Toxicology and Technology as Applied to the Environment; Volume 2, Academic Press, New York, NY; p. 166-181.

- Kendall, R.J., and P.F. Scanlon, 1985. "Histology and Ultrastructure of Kidney Tissue from Ringed Turtle Doves that Ingested Lead"; <u>J. Environ. Pathol. Toxicol. Oncol.</u>; Vol. 6; 85-96.
- Kennedy, G., D. Arnold, and J.C. Calandra, 1975. "Teratogenic Evaluation of Lead Compounds in Mice and Rats"; Food and Cosmetics Toxicology 13: 629-632
- Khera, K.S., C. Whalen and G. Trivett, 1978. "Teratogenicity Studies on Linuron, Malathion, and Methoxychlor on Reproduction in Rats"; <u>Toxicol. Appl. Pharmacol.</u>; Vol. 45; 435-444.
- Kimmel, C.A., L.D. Grant, C.S. Sloan, and B.C. Gladen, 1980. "Chronic Low-level Lead Toxicity on the Rat"; Toxicol. Appl. Pharmacol.; Vol. 56; 28-41.
- Lecyk, M., 1980. Toxicity of Cupric Sulfate in Mice Embryonic Development. Zool. Pol. 28(2): 101-105.
- Llobet, J.M. et al., 1988. "Subchronic Oral Toxicity of Zinc in Rats"; Bulletin of Environmental Contamination and Toxicology; Vol. 41; 36-43.
- Longcore, J.R., and R.C. Stendell, 1977. "Shell Thinning and Reproductive Impairment in Black Ducks After Cessation of DDE Dosage"; <u>Arch. Environm. Contam. Toxicol.</u> 6:293-304.
- Macfadyen, Amyan, 1980. Advances in Ecological Research, Volume II; Academic Press, NY, 1980; 327 pp.
- Machemer, L. and D. Lorke, 1981. "Embryotoxic Effect of Cadmium on Rats upon Oral Administration"; Toxicology and Applied Pharmacology; Vol. 58; 438-443.
- MacKenzie, K.M. and D.M. Angevine, 1981. "Infertility in Mice Exposed in Utero to Benzo(a)pyrene"; Biol. Repro.; Vol. 24; 183-191.
- Massachussetts Department of Environmental Protection (MADEP), 1992. Risk Assessment Shortform Residential Scenario; V. 1.6.,1992, Policy # WSC/ORS142-92
- McClain, R.M., and B.A. Becker, 1972. "Effects of Organo-lead Compounds on Rat Embryonic and Fetal Development"; <u>Toxicology and Applied Pharmacology</u> 21: 265-274
- National Institute for Occupational Safety and Health (NIOSH), 1985. "Registry of Toxic Effects of Chemical Substances"; NIOSH Publication No. 86-103, U.S. Department of

- Health and Human Services.
- National Toxicology Program (NTP), 1987. "Toxicology and Carcinogenesis Studies of Dichlorobenzene in Rats and Mice"; Technical Report Series No. 319, U.S. Department of Health and Human Services; January 1987.
- Neal, J., and R.H. Rigdon, 1967. "Gastric Tumors in Mice Fed Benzo(a)pyrene: A Quantitative Study"; Tex. Rep. Biol. Med.; Vol. 25; 553-557.
- Newell, A.J., D.W. Johnson, and L.K. Allen, 1987. "Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife"; Technical Report 87-3, Division of Fish and Wildlife.
- Ottolenghi, A.D., Haseman, J.K. and Suggs, F., 1974. Teratogenic Effects of Aldrin, Dieldrin, and Endrin in Hamsters and Mice. Teratology 9:11-16.
- Outridge, P.M., Scheuhammer, A.M., 1993. Bioaccumulation and toxicology of chromium: Implications for wildlife. Rev. Environ. Contam. Toxicol. 130:31-77
- Peakall, D.B., and M.C. Peakall, 1973. "Effect of Polychlorinated Biphenyl on the Reproduction of Artificially Incubated Dove Eggs"; <u>Journal of Applied Ecology</u> 10: 863-868.
- Registry of Toxic Effects of Chemical Substances (RTECS), 1993, 1994. On-line Database Search.
- Sanders, O.T., and R.L. Kirkpatrick, 1975. "Effects of a Polychlorinated Biphenyl (PCB) on Sleeping Times, Plasma Corticosteroids, and Testicular Activities of White-footed Mice"; Environmental Physiology and Biochemistry 5(5): 308-313.
- Sax, N.I., 1984. <u>Dangerous Properties of Industrial Material</u>; 6th Edition; Van Nostrand Reinhold Company, New York.
- Schlicker, S.A., and D.H. Cox, 1968. "Maternal Dietary Zinc, and Development and Zinc, Iron, and Copper Content of the Rat Fetus"; J. Nutrition; Vol. 95; 287-294.
- Smith, R.M, W.L. Cunningham Jr., and G.A. Van Gelder, 1976. "Dieldrin Toxicity and Successive Discrimination Reversal in Squirrel Monkeys, Saimiri sciureus"; J. Toxicol. Environ. Health; Vol. 1; 747.
- Straube, E.F., N.H. Schuster, and A.J. Sinclair, 1980. "Zinc Toxicity in the Ferret"; J. Comp. Pathol.; Vol. 90; 355-361.

- Susic, D., and D. Kentera, 1986. Effect of chronic vanadate administration on pulmonary circulation in the rat. Respiration 49:68-72.
- Suter, Glen W., 1993. "Ecological Risk Assessment"; Lewis Publishers, Chelsea Michigan; 1993.
- Suzuki, T., 1979. "Dose-effect and Dose-response Relationships of Mercury and its Derivatives"; Pages 399-431 in The Biogeochemistry of Mercury in the Environment, J.O. Nriagu (Ed.); Elsevier/North Holland Biomedical Press, New York.
- Terres, J.K., 1987. <u>Audubon Encyclopedia of North American Birds</u>; Published by Alfred Knopf, New York, 1109 pp.
- Tewe, O.O. and J.H. Maner, 1981. Performance and pathophysiological changes in pregnant pigs fed cassava diets containing different levels of cyanide. Res. Vet. Sci. 30:147-151.
- Toxicology Data Bank (TDB), 1984. National Library of Medicine.
- Travis, C.C., Arms, A.D., 1988. "Bioconcentration of organics in beef, milk, and vegetation". Environ. Sci. Tech. 22: 271-274
- USEPA, 1993. Wildlife Exposure Factors Handbook. Office of Research and Development, Washington, DC. EPA/600/R-93/187a. December.
- USEPA, 1993. Superfund Chemical Data Matrix (SCDM); March, 1993.
- USEPA, 1992e. "Dermal Exposure Assessment: Principals and Applications Interim Report". Office of Research and Development. EPA/600/8-91/011B. January.
- USEPA, 1990. "Basics of Pump-and-Treat Ground Water Remediation Technology"; U.S. Environmental Protection Agency, Office of Research and Development, EPA-600/8-90/003.
- USEPA, 1990. "Health Effects Advisory for Naphthalene"; U.S. Environmental Protection Agency, Office of Drinking Water, Washington, D.C.
- USEPA, 1988. "Health Effects Advisory for Chlordane"; Office of Drinking Water, Washington, D.C.
- USEPA, 1988. "Health Effects Advisory for Lead"; Office of Drinking Water, Washington,

D.C.

- USEPA, 1987. "Standard Evaluation Procedure: Ecological Risk Assessment"; Office of Pesticide Programs, Hazard Evaluation Procedure; U.S. Environmental Protection Agency; USEPA-540/9-85-001; Washington, D.C.
- USEPA, 1986. "Health and Environmental Effects Profile for Carbazole"; Environmental Criteria and Assessment Office; April 1986.
- USEPA, 1986. "Hazard Evaluation Division Standard Evaluation Procedure: Ecological Risk Assessment"; Office of Pesticide Programs; EPA 540/9-85-001; Washington, D.C.
- USEPA, 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Benzo(a)pyrene"; U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- USEPA, 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: DDT/DDE/DDD"; U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- USEPA, 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Mercury"; U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- USEPA, 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Nickel"; U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- USEPA, 1985. "Environmental Profiles and Hazard Indices for Constituents of Municipal Sludge: Polychlorinated Biphenyls"; U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.
- USEPA, 1985. "Health Advisory for Endrin"; Office of Drinking Water, Washington, D.C.; September 1985.
- USEPA, 1985. "Health Advisory for Methoxychlor"; Office of Drinking Water, Washington, D.C.; September 1985.
- USEPA, 1985. "Health Advisory for Nitrate/Nitrite, Draft"; Office of Drinking Water; Washington, D.C.
- USEPA, 1984. "Health Effects Assessment for Acenapthylene", Environmental Criteria and

- Assessment Office, September, 1984.
- USEPA, 1984. "Health Effects Assessment for Benzene", Environmental Criteria and Assessment Office, September, 1984.
- USEPA, 1984. "Health Effects Assessment for Benzo(a)pyrene"; Office of Emergency and Remedial Response, United States Environmental Protection Agency, ECAO-CIN-H)22; September 1984.
- USEPA, 1984. "Health Effects Assessment for Chlorobenzene", Environmental Criteria and Assessment Office, September, 1984. ECAO-CIN-HO40
- USEPA, 1984. "Health Effects Assessment for Methylene Chloride", Environmental Criteria and Assessment Office, September, 1984.
- USEPA, 1980. "Ambient Water Quality Criteria for Copper"; Environmental Criteria and Assessment Office; Office of Water Regulations and Standards Criteria Division, EPA-440/5-80-036.
- USEPA, 1980. "Ambient Water Quality Criteria for Endosulfan"; Washington, D.C.; Report No. 440/5-80-043.
- USEPA, 1980. "Ambient Water Quality Criteria for Phenol"; Washington, D.C.; Report No. 440/5-80-066.
- USEPA, 1980. "Ambient Water Quality Criteria for Vinyl Chloride"; Washington, D.C.; Report No. 44/5-80-078.
- USEPA, 1976. Quality Criteria for Water; USEPA, Washington, D.C., July, 1976; 267 pp.
- U.S. Fish and Wildlife Service (USFWS), 1984. "Handbook of Toxicity of Pesticides to Wildlife"; United States Department of the Interior, Fish and Wildlife Service; Resource Publication 153; Washington, D.C.
- Verschueren, Karel, 1983. <u>Handbook of Environmental Data on Organic Chemicals:</u>
 <u>Second Edition</u>; Van Nostrand Reinhold, New York, 1310 pp.
- Virgo, B.B., and G.D. Bellward, 1975. "Effects of Dietary Dieldrin on Reproduction in the Swiss-Vancouver (SWV) Mouse"; Environ. Physiol. Biochem; Vol. 5; 440-450.
- Weir, R.J. and L. Hazelton, 1982. "Organic Phosphates"; In: Patty's Industrial

- Hygiene and Toxicology by Patty, F.A.; John Wiley and Sons; New York.
- Wheatley, G.A. and J.A. Hardman, 1968. "Organochlorine insecticide residues in earthworms from arable soils"; J. Sci. Fd Agric., Vol. 19, April 1968.
- Wiemeyer, S.N., et al., 1986. "Residues in American Kestrels and Relations to Reproduction"; U.S. Fish and Wildlife Service Tech Report No. 6, Washington D.C.

PRELIMINARY BIOASSESSMENT OF LOWER COLD SPRING BROOK

ABB Environmental Services, Inc.

W0129510.080 7005-15

PRELIMINARY BIOASSESSMENT OF COLD SPRING BROOK AT FORT DEVENS, MASSACHUSETTS

Prepared for

ABB ENVIRONMENTAL SERVICES, INC.
Corporate Place 128
107 Audubon Road
Wakefield, Massachusetts 01880

Prepared by

NORMANDEAU ASSOCIATES 25 Nashua Road Bedford, New Hampshire 03110-5500

R-14067.000

February 1995

TABLE OF CONTENTS

	PAGE	
1.0	INTRODUCTION	
2.0	METHODS 2	
	2.1 HABITAT ASSESSMENT 2	
91	2.2 SAMPLE COLLECTION	
	2.3 SAMPLE PROCESSING	
	2.4 DATA ANALYSIS	
3.0	RESULTS AND DISCUSSION	
	3.1 STREAM HABITAT 6	
	3.2 MACROINVERTEBRATES	
4.0	REFERENCES	,
APF	PENDICES	
	APPENDIX A - HABITAT DATA	

LIST OF FIGURES

	PAGE
1.	(Provided by Client)
	LIST OF TABLES
	PAGE
1.	HABITAT SCORES FOR MACROINVERTEBRATE SAMPLING STATIONS FOR THE COLD SPRING BROOK BIOASSESSMENT
2.	WATER QUALITY DATA FOR COLD SPRING BROOK MACROINVERTEBRATE SAMPLING STATIONS. DATA COLLECTED 26 AND 28 SEPTEMBER 1994
3.	BIOLOGICAL SCORES FOR BENTHIC AND EPIPHYTIC SAMPLES COL- LECTED FROM COLD SPRING BROOK, FT. DEVENS, MA, SEPTEMBER 1994
4.	NUMBER OF ORGANISMS AND AMOUNT OF SAMPLE PROCESSED FROM MACROINVERTEBRATE SAMPLES COLLECTED FROM COLD SPRING BROOK, FORT DEVENS, MA IN SEPTEMBER 1994

1.0 INTRODUCTION

This report describes results of the Cold Spring Brook bioassessment in Fort Devens, Massachusetts. The bioassessment involved measurement of habitat characteristics and macroinvertebrate abundance and diversity at eight potentially impacted ("experimental") stations and two upstream "reference" stations. Macroinvertebrate subsamples from each station were identified to family. Habitat and biological metrics were analyzed according to USEPA's Rapid Bioassessment Protocol II (Plafkin et al. 1989).

2.0 METHODS

2.1 HABITAT ASSESSMENT

Physical habitat characteristics were assessed using metrics described in Plafkin et al. (1989). This assessment quantified nine physical habitat parameters designated primary, secondary, or tertiary depending upon their relative contribution to habitat quality, and points are assigned accordingly. The greater the point total assigned to a station, the better the habitat quality within that station. Primary parameters characterize the various micro-habitats available within a station. The parameters are: 1) bottom substrate and available cover, 2) substrate embeddedness, and 3) stream flow at representative low flow. Primary parameters can receive up to 20 points each. Secondary parameters describe stream channel configuration and evaluate the degree of channel alteration. These parameters are: 1) channel alteration, 2) bottom scouring and deposition, and 3) pool/riffle ratio. Secondary parameters can receive up to 15 points each. Tertiary parameters describe stream bank structure and include: 1) bank stability, 2) bank vegetative stability, and 3) streamside cover. Each tertiary parameter can be awarded a maximum of 10 points.

Once totaled at each station the values assigned to each of the nine parameters are used to compare the degree of habitat similarity between the upstream and downstream stations. The degree of similarity is expressed as a percent.

2.2 SAMPLE COLLECTION

Macroinvertebrate samples were collected at ten locations along Cold Spring Brook in Fort Devens, Massachusetts during 26 and 28 September 1994 (Figure 1). Duplicate benthic samples were collected using a 6" by 6" pole-mounted Ekman grab. In addition, one kick sample, using a 600µ mesh dip net was collected from the epiphytic habitat at each station. After collection, each sample was washed through a 600µ sieve-bottomed bucket, placed in a labeled sample container, and preserved with 10% formalin.

Figure 1. (Provided by Client)

and the second s

2.3 SAMPLE PROCESSING

In the laboratory, samples were evenly distributed in a white enamel pan and a 100 organism subsample was removed for analysis. Subsampling procedures followed guidelines described in Plafkin et al. (1989). The remaining sample was archived for future analysis, if necessary.

All organisms were identified to the family taxonomic level when possible.

Organisms that were damaged or could not be reliably be identified to the family taxonomic level (e.g., Oligochaeta, Nematoda, Hirudinea) were identified to higher taxonomic levels.

2.4 DATA ANALYSIS

Analytical metrics described in Plafkin et al. (1989) for RBP II were used to analyze the data from each station. These metrics included:

- Taxonomic Richness reflects the health of the community through a
 measurement of the variety of taxa. This metric generally increases with
 water quality.
- 2) <u>Hilsenhoff Biotic Index</u> assigns a tolerance value to each taxon ranging from 0 (pollution sensitive) to 10 (pollution tolerant). The formula for calculating the Biotic Index is:

$$BI = \frac{\sum x_{i}t_{i}}{n}$$

where x: = number of individuals within species i

t: = tolerance value of species i

n: = total number of organisms within a sample

Severely polluted sites will have biotic index values of 8.51-10.00, moderately polluted sites have values of 5.51-6.50, and sites with little or no pollution have values of 0.00-3.50 (Hilsenhoff 1987).

- Scraper/Filterer Ratio organically enriched sites produce a large amount of filamentous algae and increase the percentage of filterers.
- 4,5) EPT Index and EPT/Chironomidae Ratio the number of EPT taxa observed in a sample, when compared to the total number of taxa, indicates whether a substantial portion of the community is comprised of taxa sensitive to environmental stress. The number of EPT taxa is determined by totaling taxa within the mayfly (Ephemeroptera), stonefly (Plecoptera), and caddisfly (Trichoptera) insect orders. Taxa within these groups are considered intolerant of most forms of pollution and are often poorly represented in samples from stressed environments.

Conversely, the midge family Chironomidae is considered tolerant of environmental stress. Comparing the relative abundance of sensitive taxa with the relative abundance of tolerant (Chironomidae) taxa provides an estimate of the balance between a sample's sensitive and tolerant organisms referred to as the EPT/Chironomidae ratio.

- 6) Percent contribution of the dominant taxon the percent of the numerically dominant taxon compared to the total number of organisms. A community dominated by relatively few species would indicate environmental stress.
- 7) Community Loss Index Measures the loss of benthic taxa between a reference station and the station of comparison. The Community Loss Index was developed by Courtemanch and Davies (1987) and is an index of compositional dissimilarity, with values increasing as the degree of dissimilarity with the reference station increases. Values range from 0 to "infinity."

The biological condition of each experimental station was evaluated by comparing reference stations to experimental stations. Cumulative scoring criteria were based upon similarity to reference stations, expressed as a percent. Stations were grouped into four biological condition categories termed non-impaired (>83%), slightly impaired (54-79%), moderately impaired (21-50%), and severely impaired (<17%).

Mean values of the two benthic samples at each station were analyzed separately from the epiphytic sample data. Comparison between reference and experimental stations was conducted separately for benthic data and epiphytic data.

3.0 RESULTS AND DISCUSSION

3.1 STREAM HABITAT

Cold Spring Brook is a low gradient stream with slow current velocity, sand and mud substrate, and an abundance of aquatic vegetation; habitat characteristics at all stations, except Station 3, were similar. In general, the stream was approximately 1-5 ft deep, 5-20 ft wide, had a current velocity of about 0.1 ft. per second, and had a substrate comprised primarily of sand, mud, and detritus. Station 3 was originally chosen as a lotic reference station for comparison with Stations 8 and 11, however, the results of the field work indicated that Station 2 was more suitable as a reference station for all stations including Stations 8 and 11 because the habitat at Station 2 was more comparable. Habitat data for all stations are presented in Appendix A and summarized in Tables 1 and 2.

As shown in Table 1, the habitat score at reference Station 2 was 41. Scores for other experimental stations ranged from 23 to 39. Most of the experimental stations had habitats categorized as "comparable" or "supporting" when compared to reference Station 2 (Plafkin et al. 1989). These two categories indicate that the available habitat could support a biological community similar to the reference station. Station 20 was the only experimental station that had a habitat categorized as "non-supporting" relative to reference Station 2 (Plafkin et al. 1989); Station 20 had much poorer habitat than the reference station. Station 3 had habitat that was much better than the reference station or any other station, therefore its use as a reference station is inappropriate (equivalent to "non-supporting").

3.2 MACROINVERTEBRATES

The benthic biological communities at all stations, except Station 18, were similar; epiphytic communities were similar at all Stations (Appendix B). Most stations were dominated by the amphipod family Talitridae. The abundance of taxa (richness) representing Ephemeroptera, Plecoptera, and Trichoptera (EPT) was low at all stations. The low EPT richness is expected, given the habitat quality in Cold Spring Creek. Most EPT taxa are

TABLE 1. HABITAT SCORES FOR MACROINVERTEBRATE SAMPLING STATIONS FOR THE COLD SPRING BROOK BIOASSESSMENT.

	PARAMETER VALUE								RESULT			
STATION	SUBSTRATE	EMBEDDEDNESS			SCOOPING/ DEPOSITION	POOL/ RIFFLE	BANK STABILITY	VEGETATIVE STABILITY	COVER	HABITAT SCORE	% COMP TO STA. 2	ASSESSMENT CATEGORY
2	2	0	2	4	7	0	10	10	6	41	100	REFERENCE
3	6	16	11	1 7	8	1 11	9	10	i 10 i	88	215	
8	1	0		1 4	7	3	1 6	9	i 6 i	38	93	COMPARABLE
11	0	0	0	7	7	1 4	8	8	5 1	39	95	COMPARABLE
13	0	0	0	1	2	0	8	9	j 5 j	25	61	PARTIALLY SUPPORTIN
18	3	0	1 1	j 0	7	1 1	9	9	3 . 1	33	80	SUPPORTING
20	0	0	0	1	7	0	6	6	3 1	23	56	NON-SUPPORTING
27	5	0	1 1	1 1	7	0	9	9	3 1	35	85	SUPPORTING
32	5	0] 2	1	5	0	9	9	3 1	34	83	SUPPORTING
34	5	0	1 2	1 0	7	1 0	9	9	1 5 1	37	90	COMPARABLE

^{*}Macroinvertebrate habitat quality at Station 3 was much higher than at any other station. Therefore, use of this station as a reference station and comparing habitat data with any other station would be inappropriate.

TABLE 2. WATER QUALITY DATA FOR COLD SPRING BROOK, FORT DEVENS, MA, MACROINVERTEBRATE SAMPLING STATIONS. DATA COLLECTED 26 AND 28 SEPTEMBER 1994.

Station	Temp(°C)	DO (mg/l)	pН	Conductivity
2	16.0	10.2	6.0	270
3	17.6	12.5	6.2	261
8	16.0	8.1	5.9	236
11	14.0	7.4	6.0	264
13	15.9	5.5	6.1	258
18	17.5	4.3	5.8	161
20	18.5	9.2	5.6	190
27	17.1	3.2	5.8	163
32	15.9	1.9	5.8	228
34	16.0	2.2	5.7	227

normally found in riffle areas of swift streams with coarse (cobble, gravel) substrates and little sedimentation. However, the presence of Ephemeridae, a burrowing ephemeropteran, was not surprising since this family normally burrows into mud substrates in lakes, ponds, and slowly moving rivers and streams. The abundance of Talitridae (probably *Hyalella azteca*) was also expected. This amphipod is commonly found in benthic and kick samples from ponds and slowly moving streams. The presence of the mayflies Baetidae and Leptophlebiidae was somewhat unexpected. Most members of these families usually prefer quiet areas downstream of rocks in clean swept streams with faster current.

The biological condition scoring for each station showed that no impairment was seen in any of the epiphytic samples when data were compared between the experimental stations and reference Station 2 (Table 3). Benthic data showed moderate impairment at Station 3, severe impairment at Station 18, and no impairment at the other stations. The severe impairment designation at Station 18 is due to the absence of organisms from either of the two benthic samples from this station (Appendix B). Benthic samples from Stations 3, 11, 27, and 34 also had very low numbers of organisms from at least one of the duplicate benthic samples, including zero organisms in one replicate at Station 34 (Table 4). Stations 27 and 32 had highly variable numbers of organisms between the two benthic samples. For example at Station 27, only 13 organisms were found in the replicate A benthic sample after 100% of the sample was processed, whereas in the replicate B benthic sample, 99 organisms were found and only 33% of the sample was processed. Similarly, it appears that there were lower numbers of epiphytic organisms at some stations which also had low numbers of benthic organisms (e.g. Station 3, 8, 32).

These data indicate that Cold Spring Brook generally has a depauperate macroinvertebrate community with a patchy distribution. Given the low numbers and patchy distribution of benthic organisms throughout the Cold Spring Brook system, having one station with no organisms in either benthic sample is statistically possible but unusual. Additional sampling would be required to confirm the absence of benthic organisms at this station.

TABLE 3. BIOLOGICAL SCORES FOR BENTHIC AND EPIPHYTIC SAMPLES COLLECTED FROM COLD SPRING BROOK, FT. DEVENS, MA, SEPTEMBER 1994.

STATION	HABITAT TYPE	TAXA RICHNESS	нві	S/F	EPT/CHIR	% DOM	EPT RICHNESS	COMM. LOSS INDEX	SCORE	% COMPARABILITY WITH STATION 2	BIOLOGICAL CONDITION CATEGORY
3	Benthic	3	6	6	6	0	0	3	24	67	Moderately impaired
3	Epiphytic	6	6	6	6 .	0	6	6	36	100	Non-impaired
8	Benthic	6	6	6	6	3	6	6	39	108	Non-impaired
8	Epiphytic	6	6	6	6	0	0	6	30	83	Non-impaired
11	Benthic	6	6	6	6	3	6	6	39	108	Non-impaired
- 11	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
13	Benthic	6	6	6	6	0	6	3	33	92	Non-impaired
13	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
18	Benthic	0	0	0	0	0	0	0	0	0	Severely impaired
18	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
- 20	Benthic	6	6	6	6	6	6	6	42	117	Non-impaired
20	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
27	Benthic	6	6	6	6	0	6	3	33	92	Non-impaired
27	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
32	Benthic	6	6	6	6	0	0	3	27	75	Non-impaired
32	Epiphytic	6	6	6	6	0	6	6	36	100	Non-impaired
34	Benthic	6	6	6	6	3	0	3	30	83	Non-impaired
34	Epiphytic	6	6	6	6	0	0	6	30	83	Non-impaired

HBI = Hilsenhoff Biotic Index

S/F = Scraper/Filterer Ratio

EPT/CIIIR = EPT/Chironomid Ratio

% DOM = % Contribution of dominant taxon

Comm. Loss Index = Community Loss Index (Courtemanch and Davies 1987)

TABLE 4. NUMBER OF ORGANISMS AND AMOUNT OF SAMPLE PROCESSED FROM MACROINVERTEBRATE SAMPLES COLLECTED FROM COLD SPRING BROOK, FORT DEVENS, MA IN SEPTEMBER 1994.

		BENTH	IC REP. A	BENTH	IC REP. B	EPIP	HYTIC
	Station	Number of Grids Processed	Number of Organisms	Number of Grids Processed	Number of Organisms	Number of Grids Processed	Number of Organisms
6	2	46/48	** 88	48/48	78	3/48	99
	3	48/48	12	48/48	6	48/48	21
	8	44/48	98	- 48/48	69	41/48	83
	11	45/48	99	48/48	9	36/48	100
	13	40/48	102	48/48	52	16/48	106
	18	80/80	0	80/80	0	7/48	102
	20	46/48	101	38/48	104	13/48	97
	27	48/48	13	16/48	99	24/48	102
	32	8/48	99	48/48	40	48/48	98
	34	48/48	0	48/48	33	26/48	100

The biological metric values, in general, reflected the low habitat quality found in Cold Spring Brook. Taxa richness and EPT richness were both low compared to that expected from a faster stream with a cobble and gravel substrate. Biotic index values were mostly in the 6.0-8.0 range indicating the abundance of moderately tolerant organisms. The scraper/filterer ratio and EPT/Chironomidae ratio were both very low at most stations. These low values can be attributed to the physical habitat limitations of Cold Spring Brook. Scrapers and filterers as well as EPT taxa prefer faster water with coarse substrates and little sedimentation.

Even though biological condition scores were low at most stations, they were comparable to scores found at the reference station. Scores for several stations were actually higher than at the reference station. These increased scores may be due to minor differences in habitat quality, although Station 20 had the highest benthic biological condition score (117) but the lowest habitat score (23). The increased scores may also be reflecting natural variability of the biological community. Even if two sections of a stream appear to have identical physical habitats, their biological communities may be slightly different due to differences at the microhabitat level. Macroinvertebrates are attuned to these microhabitat differences which may not be apparent at the macrohabitat level. These differences at the microhabitat level could cause a change in the total abundance or in the taxonomic composition between two sites.

The abundance of data indicating that the macroinvertebrate community in Cold Spring Brook was not impaired by degraded water quality is somewhat expected given the poor habitat quality in Cold Spring Brook. Macroinvertebrate communities from sluggish unpolluted streams, with sand and mud substrates, are typically dominated by chironomids, oligochaetes, and other pollution tolerant taxa (high biotic index values). The presence of pollution tolerant organisms, by itself, does not indicate degraded or impaired conditions; the presence of pollution tolerant organisms in both experimental and reference stations is not indicative of pollution unless pollution-intolerant organisms occur more frequently in the reference station than in the experimental stations. Since few pollution intolerant organisms were found at any site (including the reference site), no impairment is indicated by the biotic

index score. The low numbers of pollution intolerant organisms is most likely due to physical habitat limitations.

The precision of a bioassessment is greatly influenced by the taxonomic level to which the organisms are identified. For example, the true fly family Chironomidae is comprised of approximately 670 species in North America (Borror et al. 1976). In general, most species are pollution tolerant or moderately tolerant. However, some species are pollution intolerant. When chironomids are identified to the family taxonomic level (Chironomidae) their biotic index value is 6 (moderately tolerant). If these same organisms were identified to the genus or species level, their individual biotic index values could be much higher or lower, and would provide a more accurate biotic index score for that station. Taxa richness, percent dominance by a single taxon, EPT richness, and community loss index are also influenced by the level of taxonomy used. When lower taxonomic levels are determined, taxa richness and EPT richness increase, while percent dominance by a single taxon decreases. Community loss index values may increase, decrease, or remain the same depending on how many taxa are unique to the experimental and control sites.

4.0 REFERENCES

- Borror, D.J., D.M. DeLong, and C.A. Triplehorn. 1976. An Introduction to the Study of Insects. Holt, Rinehart and Winston, New York, NY.
- Courtemanch, D.L. and S.P. Davies. 1987. A coefficient of community loss to assess detrimental change in aquatic communities. Wat. Res. 21(2):217-222.
- Hilsenhoff, W.L. 1987. An improved biotic index of organic stream pollution. Great Lakes Entomol. 20(1):31-39.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic Macroinvertebrates and Fish. EPA/444/4-89-001.

APPENDIX A HABITAT DATA

PROJECT NAME	Ft DWGS PRO			TERIZATIONWATER OUD DATA SHEET 28 74 STATION _	2 (ref	TIMANDEAU ASSOCIATES INC VIRONMENTAL CONSULTANTS
	NACTERIZATIONS					Completed by: WRA
Forost File Local Watershed No Local Watershed Estimated Stream High Water Mark Canopy Cover: SEDIMENT/SUB Sediment Odors: Sediment Dapos	Erosion: one INPS Poliution: I	Agricultural Moderate No Evidence Estimated Stream Volocity Partly Open Sowage P Slight M Sawdust P	Dam Prosoni; Parily Shaded oboleum Chemicoloum Profuse		m Poolm	Completed by: WRA Base open writer/swar
Inorgani	c Substrate Compo	nonts		Organio	Substrate Components	
Substrate Type	Diamotor		Composition npling Area	Substrate Type	Characteristics	Percent Composition In Sampling Area
Bodrock Boulder Cotble Gravel Sand Silt Clay	>256-mm (10 ln) 64-256 mm (2 6- 2 64-mm (0.1-2.5 0.06-2.00-mm (p .00406-mm <.004-mm (slick)	tO In.) i In.) itty)		Dobitus Muck-Mud Mari	Sticks, Wood, Coarse Plant Materials (CPOM) Black, Very Fine Organic (FPOM) Grey, Shell Fragments	50% 50%
WATER QUALI Temperature I Instruments Use Stream Type: Water Oxfors: Water Surface C Turbidity:	Cokiwater	Oxygen U, 2 (Wermwater Sewage Sheen Silghly Turbid	Globa Flo	cilvity 2 70 Other	olor	
WEATHER COL Photograph Hur Observations ar	mbor D	ich 15	1 15		ж	

,

HADITAT ASSESSMENT FIELD DATA SHEET

PROJECT NAME Ft. Druis PROJECT 1467 DATE 4/28/94 STATION_

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

2043

Habitat Parameter	Excellent	Good	Foir	Poor
i. * Bottom substrate/ Available cover (*)	Greater than 50% rubble, gravel, submerged logs, undercul banks, or other habital	30-50% rubble, gravel or other stable habitat, adequate habitat	10-30% rubble, gravel or other stable habitat. Habitat availability less than destrable. 5-10	Less than 10% rubble, gravel or other stable habitat Lack of habitat is obvious
2. Embeddedness ^(b)	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % surrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Gravel, cobble, and boulder particles are over 75 % surrounded by tine sediment
	16-20	11-15	6-10	0-5
3. 0.15 cme (5 cfe) 'Flow, et rep. low flow or	Cald >0.05 cme (2cfs) Werm > 0.15 cms (5 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 8-10	<0.01 cms (.5 cfs) <0.03 cms (1 cfs) 0-5
0.15 cms (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shallow habitots all present.	Only 3 of the 4 hebital categories present (missing rilles or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing rillies/runs receive lower score).	Dominated by one velocity/depth category (usually pool).
	16-20	- 11-15	6-10	0.5
4, * Channel alteration (*)	Little or no enlarge- ment of Islands or point bars, and/or no channelization,	Bome new incresse in ber formation, mostly from course gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse send on old and new bers; pools partially filled w/elit; and/or ambank -ments on both banks	ileavy deposite of fine meterial, increased ber development; most pools filled w/silt; end/or extensive channelization.
	12-15	8-11	-ments on doin betys (4,7	0-3
5. Bottom scooping and deposition (*)	Less Then 5% of the bottom effected by scouring and deposition.	5-30% nifected, Scour at constrictions and where grades eleepen, Some deposition in pools.	Some Illing of pools.	More then 50% of the bottom changing nearly year long. Pools simost absent due to deposition. Only large rocks in sittle exposed.
	12-15	0-11	(i)	0-3

⁽e) From Boll 1982.

Hote: "-Habitat parameters not currently incorporated into BIOS

⁽b) From Platte et al 1983.

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

3043

Isbitat Parameter	Excellent	Good	Falr	Poor	
8. Pool/fillile, run/bend ratio (+) (distance between tillies divided by etream width)	5-7. Variety of habitat. Deep riffles and pools 12-15	7-15. Adequate depth in pools and riffles. Bends provide habitat. 8-11	15-25, Occasional illie or bend. Bottom contours provide some habitat.	> 25. Essentially a straigh stream. Generally all flat water or shallow riffle, Poor habitat. 0-3	
7. Rank Stability (*)	Stable. No evidence of ercelon or benk felture. Side slopes gener- elty <30%, Little potential for future problem 9-10	Moderately stable. Introquent, email areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme flooils. 6-8	Moderately unstable. Moderate frequency and size of erosional sress. Side slopes up to 60% on some banks. High erosion potential during extreme high flow. 3-5	Unstable, Many eroded areas, 6ide slopes >60% common, "raw" areas frequent slong straight sections and bends,	
8. Dank Vegetative Blability (*)	Over 80% of the etreambank surfaces covered by vegetation or boulders and couble.	50-79% of the streambank eurlaces covered by vegetation, gravel or larger material. 6-8	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less then 25% of the etresmbank surfaces covered by vegetation, gravel or larger material.	
9. Streamside cover ^(b)	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is soil, rock, bridge materials culverts or mine tallings,	
	9-10	8-8	3-5	0.2	

	F4. D	***			ATA SHEET		3 ref	ENVID	DUMENTAL	SOCIATES INC. CONSULTANTS	
OUECT NAME _	PN	OVECT 1	563 DAT	E - IZE	2177 8	TATION	4 101		. 10	1+3	
HYSICAL CHARA	ACTERIZATIONS							C	ompleted .	f3 by: WRA	
IPANIAN ZONEAI	NSTREAM FEAT	UNES							,		
redominant Burron Forest Fleic		: Agricultural	Hosklon	pa) Co	mmercial	Industrial	Other_A	runy !	Rase		
ocal Watershod E Non ocal Watershod N	•	Moderate No Evidence	Hoavy Some Po	tental Sourc	6	bylous Source		. 1		le arecis	
stmated Steam t	Width 20 m	Estimated Stree		8' 100	FIIMo	m Run_	_m Pool	_m She _ No <u>X</u>		ic areas	
anopy Cover:		Partly Open	Party Sha	dod Sha	dod	-0.0	4 6 6	d.			
SEDIMENT/SUDS	IIVĀŢĒ;										
iediment Odore:	(Hormal	Sowage	Petroloum	Chemical	Anseroblo	None	Other		-		
Sodiment Oils:	Abson	Slight	Moderate	Profuse							
Sediment Deposits	: Sludge	Sawdust	Paper Filter	Sand	Rollot Shells	Other -		_			
	왕				10000100001	Other —					
Are there undersid	왕	h are not deep				lo	Substrate Compo	onenia .		_	
Are there undersid	les of stones whik	ch are not deep monts Perce	ly embodded b	lack?	Yes N	lo Organio S	Substrate Compo		Percent Compo		
inorganic s bstrate Type Backock	los of stones whike Substrate Compo	nonts Percei	ly emboddod b	lack?	Yes N	lo	Characteris Sticks, Wood,	ides	Percent Compo In Sampling A		
Inorganic s bstrate Type lectrock louider cotale	Dlameter >256 mm (10 In 64-265 mm (2 6	Percei	ly embodded b	lack?	Substra Dot	Organic t ats Type situs	Characteris Sticks, Wood, Coarse Plant Materials (CP) 10% OM)			, -
Inorganic s Inorganic s Inorga	Diameter >255-mm (10 in 64-256 mm (0.1-2. 0.04-2.00 mm (0.1-2.	Percei	ly embodded b	lack?	Substra Dot	Organic S ate Type Iltua ck-Mud	Characterio Sticks, Wood, Coarse Plant Materials (CP Black, Very Fl Organia (FPO) 10% OM)	In Sampling A	roa))
Inorganic to Inorganic Inorganic to Inorganic Inor	Diameter >256 mm (10 in 64-265 mm (2.6 2.64 mm (0.1-2 0.04-06 mm <.004-mm (slick)	Percei	ly embodded b	lack?	Substra Dot	Organic S ate Type Iltua ck-Mud	Characterio Sticks, Wood, Coarso Plant Materials (CP Black, Very Fi) 10% OM)	In Sampling A	مرسا	%
Inorganic s Inorga	Diameter >255-mm (10 in 64-256 mm (2.5 2.64-mm (0.1-2 0.04-2.00-mm (3.004-06-mm (alick)	Percei In Si	nt Composition	lack?	Substra Dolu Muc	Organio S ato Typo ultua ck-Mud	Characteries Sticks, Wood, Coarse Plant Materials (CP- Black, Very Fl Organia (FPO Grey, Shell Fragments	> 10% > 10% OM) Ine (M) 90%	Sanch/Corre	ace/ srave(10-20%	%
bstrate Type Bodrock Boulder Cotble Gravel Sand Sill Clay WATER QUALITY	Diameter >256 mm (10 in 64-266 mm (2 6 2 64 mm (0.1-2 0.04-2.00 mm <.004 mm (silck) 17 (Perceins 10 In.) 5 In.) Oxygen 12.5	nt Composition ampling Area	lack?	Substra Dolu Muc	Organio S ato Typo ultua ck-Mud	Characteries Sticks, Wood, Coarse Plant Materials (CP- Black, Very Fl Organia (FPO Grey, Shell Fragments	7 10% > 10% OM) Ind M) 90% CERTIC	Sanch/Core	ace/ srave(10-20%	%
bstrate Type Bothock Boulder Cotble Sravel Sand Silt Clay WATER QUALITY Temporature 17: Instruments Used Stream Type: Water Odors: Water Surface Oil	Diameter >256 mm (10 in 64.266 mm (2.6 2.64 mm (0.1-2 0.04-06 mm <0.04-mm (slick) 17.4	Percei In Si	nt Composition ampling Area Petroleu Globe	Gonductivity	Substra Dote Muc Mer	Organio S ato Typo ultua ck-Mud	Characteries Sticks, Wood, Coarse Plant Materials (CP) Black, Very Fl Organia (FPO) Groy, Shell Fragments	7 10% > 10% OM) Ind M) 90% CERTIC	Sanch/Core Sanch/Core Core check	ace/ srave(10-20%	
Are there undersid	Dlameter >255 mm (10 in 64 255 mm (2 6 2 64 mm (0 1 2 0 004 2 00 mm (0 004 06 mm < 004 mm (slick) 17 4 6 ch Coldwater Tormal a: Slick Clear	Perceins 10 In.) 5 In.) Warmwater Sowage Shoon	nt Composition ampling Area Petroleu Globe	Gonductivity Thomas	Substra Dote Muc Mar 261 Other	Organic S ate Type altua ck-Mud d	Characterie Sticks, Wood, Coarse Plant Materials (CP) Black, Very Fi Organia (FPO) Grey, Shell Fragments	90% DC NO.	Sanct/Cove	ace/ stave 10-20% 12.2 ppn heald be 9.16	
Inorganic s Inorga	Dlameter Dlameter 255 mm (10 in 64.255 mm (2.6 2.64 mm (0.1-2 0.04.250 mm (0.04-2 0.04.06 mm (0.04-2 0.04.06 mm (5lick) 7.77.4 C ph - c 0.04.06 mm (5lick) 6.05 Dissolved Colchester Silick Clear	Perceins 10 In.) 5 In.) Warmwater Sowage Shoon	on Composition ampling Area Perclau Globa	Gonductivity m Chomic Flocks Turbid	Substra Dote Muc Mar 261 Other	Organic S ate Type altua ck-Mud d	Characterie Sticks, Wood, Coarse Plant Materials (CP) Black, Very Fi Organia (FPO) Grey, Shell Fragments	90% DC NO.	Sanch/Correllor A	ace/ stave 10-20% 12.2 ppn heald be 9.16	

HADITAT ASSESSMENT FIELD DATA SHEET

PROJECT NAME FT. DOUGS PROJECT # 14067 DATE 4 28 94 STATION 3

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

2043

Excellent	Good	Fair	Poor	-
Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habitat. adequate habitat.	10-30% rubble, gravel or other stable hebitet, highlight availability less than dealrable.	Less than 10% rubble, gravel or other stable habitat Lack of habitat is obvious	
Gravel, cobble, and boulder particles are between 0 and 25 % aurrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounted by line sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Gravel, couble, and boulder particles are over 75 % autrounded by line sediment	
(15:20	11-15	6-10	0-5	_
Cold >0.05 cms (2cfs) Werm > 0.15 cms (5 cfs) 10-20	0.03-0.05 cme (1-2 cfs) 0,05-0,15 cme (2-5 cfs) 11-15	0.01-0.03 cme (.5-1 cfs) 0.03-0.05 cme (1-2 cfs) 6-10	<0.01 cms (.5 cfs) <0.03 cms (1 cfs) 0.5	
Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shallow habitate all	Only 3 of the 4 habitat categories present (missing rilles or runs receive lower score than missing pools).	Only 2 of the 4 habital categories present (missing rilles/runs receive lower score).	Dominated by one velocity/depth category (usually pool).	
16-20	(f):15	6-10	0.5	1
Little or no enlarge- ment of Islands or point bars, and/or no channelization.	Some new incresse in ber formation, mostly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse sand on old and new bare; pools partially filled w/sill; and/or embank -ments on both banks	Heavy deposits of fine material, increased bar development; most pool filled w/silt; and/or extensive channelization	
12-15	8-11	40	0-3	_
Less Than 5% of the bottom affected by acousing and deposition.	5-30% affected, Scour at constrictions and where grades steepen, Some deposition in pools.	30-50% affected. Deposits and acour at obstructions, constructions and bends. Some filling of pools.	More than 50% of the bottom changing nearly year long. Pools almost absent due to deposition Only large rocks in sittle exposed.	
	*			-
12-15	(B)11	4-7	0-3	_
	Orester than 50% subble, gravel, submerged logs, undercut banks, or other habitat 16-20 Oravel, cobble, and boulder particles are between 0 and 25 % aurrounded by line sediment Cold >0.05 cms (2cfs) Warm > 0.15 cms (5 cfs) 10-20 Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shallow habitate ell present. 16-20 Little or no enlargement of islands or point bars, and/or no channelization. 12-15 Less Than 5% of the bottom silected by acouring and	Oreoter then 50% rubble, gravel, submerged logs, undercut banks, or other habitat 16-20 Oravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment Cold > 0.05 cms (2cls) Warm > 0.15 cms (5 cls) Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shellow isabitate ell present. Little or no enlargement of islands or point bare, and/or no channelization. Less Then 5% of the bottom sifected by scouring and where grades steepen,	Greeter than 50% rubble, gravel gravel, submerged logs, tundercut banks, or other stable habitat, adequate habitat. 16-20 Gravel, cobble, and boulder particles are between 0 and 25 % autrounded by line sediment Cold > 0.05 cms (2cts) Warm > 0.15 cms (5 cts) 10-20 Cold > 0.05 ms (2cts) Warm > 0.15 cms (5 cts) 10-20 Cold > 0.03 m/s), deep (-0.5 m); slow, shallow (-0.5 m); lest (-0.5 m); lest (-0.5 m); feet 10-20 Little or no enlargement of islands or point bars, and/or no channelization. Little or no enlargement of islands or point bars, and/or no channelization. Less Than 5% of the bottom alfacted by scouring and deposition. Some deposition in pools. 30-50% rubble, gravel or other stable habitat, adequate habitat. Itabitat availability less than dealrable. Itabitat avai	Orester than 50% rubble, gravel or other stable habitat, adequate habitat. 16-20 Orsvet, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment 16-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20 Cold > 0.05 cms (2cls) Only 3 of the 4 habitat categories present (missing rillies/rune receive lower score than messing pools). Cold > 0.05 cms (2cls) Cold > 0.05 cms (2cls) Only 2 of the 4 habitat categories present (missing rillies/rune receive lower score). Cold > 0.05 cms (1cls) Cold > 0.05 cms

(b) From Platte at al 1983.

Note: "-Habitat parameters not currently Incorporated Into BIOS

HABITAT ASSESSMENT FIELD DATA SHEET (cont.)

PROJECT HAME FT DEJENS PROJECT # 14067 DATE 9/28/94 STATION 3

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

3083

liabitat Parameter	Excellent	Good	Fair	Poor			
6. Pool/Billie, run/bend ratio (*) (distance between rillies divided by stream width)	5-7. Variety of Institut. Deep riffes and pools 12-15	7-15. Adequate depth In pools and riffes. Dends provide habitat. 8(1),	15-25. Occassional riffle or bend. Bottom contours provide some finbitat.	> 25. Essentially a straight stream. Generally all flat water or shallow tiffle. Poor habitat. 0-3			
7. Bank Stability (*)	Stuble, No evidence of erosion or bank failure, Side slopes gener- ally <20%, Little potential for future problem (9-)0	Moderately stable, intraquent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential intextreme floods.	Moderately unstable. Moderate frequency and size of erosional areas. Side alopes up to 50% on some banks, flighterosion potential during extreme high flow. 3-5	Unstable, Many eroded areas, Side alopes >60% common. "raw" areas frequent along straight sections and bends.			
8. Bank Vegetalive Blability (b)	Over 80% of the etresmbank surfaces covered by vegetation or boulders and cobble.	50-79% of the streambank surfaces covered by vagetation, gravel or larger material. 6-8	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material. 0-2			
9. Streemelde caver (6)	Dominant vegetation le shrub	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is soil, rock, bridge materials, culverts or mine tellings.			
	0-(0)	0-8	3-5	0.2			
Column Totals	98 —	·—.	_				

Boore 58

BROTECT HAVES O'S, CA.	45 FIEL!	TERIZATIONWATER QU D DATA SHEET 28 194 STATION	& \ EN	RMANDEAU ASSOCIATES II VINONMENTAL CONSULTAN
HOSEOT FORMED IN	_ Those of the bate	- Cimion -	- awn	str of swale 7
PHYSICAL CHARACTERIZA	TIONS			10+3/1001
RIPARIAN ZONEANSTREAM	FEATURES			Completed by: WRA
Predominant Surrounding Lan Forest Fleid/Pasture	nd Use: Posidondal !	Commercial Industrial	Other Milar	1 Rose
Local Watershed Eroslon:	Moderate Heavy			1
Local Watershad NP3 Pollutk	a solution to the	Obvious Sour	COS	
Estmated Steam Width 2.5	m Estimated Stream Doppin: - 5 A	-8 hillo_ m Run_	X m Pool m	No Rittles
High Water Markm	Volocity 011-01511 Bam Prosent:	Yos_ No_X Chan	nolized: Yes_ No	X
Canopy Cover: Open		Shaded		X.C.
			140	
SEDIMENT/SUBSTRATE;		5 200-12 100m	2.0	
Sediment Odore: Cliorma	(1) (1) (2) (3) (4)	The second secon	Other	
Sediment Oils: Abson				1
Sedment Deposite: Sludge	s Sawdust Paper Fibor Sand	Natici Shells Other -		
Inorganic Substrate C			Cululate Communicate	Y
morganic Sobsessio (Percent Composition	Оідшю	Substrate Components	Percent Composition
ubstrate Type Dlam		Substrate Type	Characteristics	In Sampling Area
Gravel 2 64 mm	n (2 5-10 ln.) (0.1-2.5 ln.) ·mm (gritty) nm	Doublus Muck-Mud Mart	Materials (CPOM) Black, Very Fine Organic (FPOM)	5% 45% Aind 40% Sand
WATER QUALITY Temperature 16.0 C Dis	salved Oxygan 8.1 pl 15.9 Conduct	Niviny 236 Other		
Stream Typo: Cokk Water Odors: Horm Water Surface Oits: Silck Turbidity: Clear	Shoan Globe Flor		color	
WEATHER COMBITIONS Photograph Number	partly doudy, 60-2003			•
Observations and/or Sketch	0.1 11.12		9.	
	Pict. 11+12			

Sta 2(1.+)

Officers

50% W

Coud 270 pl 60 temp 160°C po 10.2pph PROJECT NAME FINE PROJECT 1 14067 DATE 7/28/94 STATION 9

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

20+3

Ilabitat Parameter	Excellent	Good	Falr	Poor	_
1. * Bottom substrate/ Available cover (*)	Greeter than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habitat. adequate habitat.	10-30% rubble, gravel or other stable habitat. Habitat availability less than desirable.	Less than 10% rubble, gravel or other stable hobitat Lock of hobitat is obvious	1
	16-20	11-13	6-10	0.3	_
2. Embeddedness (h)	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by fine sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by line sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Gravel, cobble, and boulder particles are over 75 % surrounded by fine sediment	0
	16-20	11-15	6-10	0-5	
3. 0.15 cme (5 cle) *Flow, at rep. tow flow or	Cold >0.05 cms (2cfs) Warm > 0.15 cms (5 cfs) 10-20	0.03-0.05 cme (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 8-10	<0.01 cms (.5 cls) <0.03 cms (1 cls) 0.5	
0.15 cms (5 cls) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shellow (<0.5 m); feet (>0.3 m/s), deep feet, ehallow habitate all present.	Only 3 of the 4 habitat categories present (missing riffles or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing riffes/rune receive lower score).	Dominated by one velocity/depth category (usually pool).	2
	16-20	11-15	0-10	0.5	_
4. * Channel alteration (*)	Little or no enlarge- ment of Islands or point bare, and/or no channelization.	Same new incresse in bar formation, mostly from coerse gravel; and/or some channelization present	Moderate deposition of new gravel, coarse send on old and new bare; pools partially filled w/silt; and/or embank -ments on both banks	Heavy deposits of fine material, increased bar development; most po- filled w/elit; and/or extensive channelization	le .
	12-15	8-11	<i>(3)</i> 7	0-3	_7
5. Bottom scooping and deposition (*)	Less Then 5% of the bottom affected by acouring and deposition.	5-30% affected, Scour at constrictions and where grades alespen, Some deposition in pools,	30-50% affected. Deposits and scour at obstructions, constrictions and bends. Some filling of pools.	More than 50% of the bottom changing nearly year long. Poole almos absent due to deposition only large rocks in title exposed.	
	12-15	8-11	4.5	0-3	

flote: *- Habitat parameters not currently incorporated into BIOS

PROJECT NAME (4. Deve-5 PROJECT # 14062 DATE 9 28 74 STATION 8

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 30 F 3

isbitat Parameter	Excellent	Good	Falr	Poor	
6. Pool/Rillie, run/bend ratio (*) (distance between tilles divided by stream width)	5-7. Variety of fieblist. Deep riffles and pools	7-15. Adequate depth in pools and tillles. Bends provide habitat.	15-25. Occassional rillie or bend. Bottom contours provide some habitat.	> 25. Essentially a straigh stream. Generally all flat water or shallow riffle. Poor habitat.	
	12-15	B-11	4-7	0.3	
7. Dank Stability (*)	Stuble, Ho evidence of ercelon or bank failure. Side slopes gener- sily <30%, Little potential for future problem 9-10	Moderately stable, infrequent, email areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods.	Moderately unstable, Moderate frequency and size of erosional eress. Side alopes up to 60% on some banks, fligh erosion potential during extreme high flow. 3-5	Unstable, Many eroded areas, Side slopes >60% common, "raw" ereas frequent along straight sections and bends,	
8. Bank Vagetative Stability (b)	Over 80% of the covered by vegetation or boulders	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the etreembank surfaces covered by vegetation, gravel or larger material.	
	end cobble.	6-8	3-5	0.2	
9. Streamside cover (6)	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominent vegetation is grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is soil, rock, bridge materials	
	9-10	(e e	2-8	culverte or mine tellinge. 0-2	
Column Totals	30 —				

Boore 38

For	1 Deven	5		DATA SHEET	IN QUALITY	NORMANDEAU ASSOCIATES INC ENVIRONMENTAL CONSULTANT
PROJECT HAME	ICI RION	PROJECT 1 14	067_ DATE 91	26/94 STATIC	DN NC	unctrown of Swale *6
PHYSICAL CHARA	CTENIZATIO	119				completed by: Jan
RIPARIAN ZONEAL	ISTREAM FE	ATURES				Completed by: you
Predominant Surrou Forest Field	unding Land U VPastura	se: Agricultural	Rosidontial	Commercial (Ind	other Ace	ny Base
Local Watershod Er	1	Moderate	Hoavy			
Local Watershed N	PS Pollution:	No Evidence	Some Potential Sc	Obvlou	s Sources	
Estimated Steam V	Midth 20 m	Estimated Stre	am Dopth: 1	Ritte m	Run m Pool	m
Iligh Water Mark	m	Volocity Hom	Dam Prosent:	Yes_ No X	Channellzed; Yes	No.X
Canopy Cover:	Open	Party Open		Shadod		7.50
SEDIMENT/SUDS	IPATE;					
Sediment Odors:	Hormal	Sowage	Potroloum Chemica	al Ansoroblo I	None Other	
Sodiment Oils:	Abson	Slight	Moderate Profuse			
Sediment Deposits			Paper Fiber Sand	Relict Shells (other none	<u></u>
			ly embodded black?		no stancs	11
	Substrate Com		y umoduoud 14mon	444	Riganic Substrate Compon	ania X
morganio	Jobsephilo Colli		nt Composition		Mulio Dubattata Composi	Percent Composition
ubstrate Type	Dlamotor		ampling Area	Substrate Ty	pe Characterist	cs In Sampling Area
Bodrock		73		Dotifus	Sticks, Wood,	10%
	>256 mm (10				Coarso Pinnt Materials (CPO	un - 0
	64-255 mm (2 2 64 mm (0.1-			Muck-Mu		
Sand	0.08-2.00 mm			500,000	Organic (FPOM	
Sitt	mm-80, 100.			Mari	Groy, Shall	
WATER QUALITY Tomporature 14 C	C Dissolv	od Oxygon <u>7.</u> Y	plific Conducti	lulty 204 unles	Fragmonts	
Instrumenta Used_			11,000			
Stream Type: Water Oders: Water Surface Oils Turbidity:	Cokwata Vornal Sikk Closr	Sowago Shoon Slighly Turb	Petroloum Che Globe Floc		or	
WEATHER COND Photograph Humb		Pict 1/2	13 pomerama			-
Observations and	or Skatch					

HABITAT ASSESSMENT FIELD DATA SHEET

PROJECT HAME FT DAJES PROJECT & 14067 DATE 21. Squt94 STATION 11

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

2 043

Inbitat Perometer	Excellent	Good	Folt	Poor		
f, * Bottom aubstrate/ Available cover (*)	Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habitat. adequate habitat.	10-30% rubble, gravel or other stable habitat. Habitat availability less than destrable.	Less than 10% rubble, gravel or other stable habitet. Lock of habitet to obvious		
	16-20	11-15	6-10	0 0.5		
2. Embeddedness ^(h)	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by line sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Gravel, couble, and boulder particles are over 75 % surrounded by fine sediment		
	16-20	11-15	6-10	0 0-5		
3. 0.15 cms (5 cfs) "Flow, at rep. low	Colil >0.05 cms (2cls) Werm > 0.15 cms (5 cls)	0.03-0.05 cme (1-2 cfs) 0.05-0.15 cme (2-5 cfs)	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs)	<0.01 cms (.5 cfs) <0.03 cms (1 cfs)		
llow of	10-20	11-15	6-10	D 0.5		
0.15 cme (5 cfe) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shallow habitate all present.	Only 3 of the 4 habitat categories present (missing tillies or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing rilles/runs receive lower score).	Dominated by one velocity/depth category (usually pool).		
	16-20	11-15	6-10	0-5		
4. * Channel alteration (e)	Little or no enlarge- ment of felands or point bars, and/or no channelization.	Some new incresse in ber formation, mostly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse sand on old and new bars; pools partially filled w/silt; and/or embank -ments on both banks	Heavy deposits of fine material, increased bar development; most pool filled w/silt; and/or extensive channelization		
	12-15	8-11	7 4-7	0-3		
5. Bottom scooping end deposition (4)	Less Then 5% of the bottom effected by acouring and deposition.	5-30% effected, Scour at constrictions and where grades steepen, Some deposition in pools,	30-50% affected. Deposits and acour at obstructions, constructions and bends, Some filling of pools.	More than 50% of the bottom changing nearly year long. Pools almost absent due to deposition only large rocks		
	12-15	8-11	7 47	In tillle exposed.		

¹⁴ From Ball 1982.

Note: "Habital parameters not currently incorporated into BIOS

⁽b) From Platts at at 1983.

HABITAT ASSESSMENT FIELD DATA SHEET (cont.)

PROJECT NAME FTOWW PROJECT , 14067 DATE 26 34144 STATION L

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

30-13

Itabitat Parameter	Excellent	Good	Fair	Poor > 25. Essentially a straigh stream, Generally all flat water or shellow riffle. Poor habitat. 0-3 Unstable, Many eroded areas, Side elopes >60% common. "raw" areas frequent elong straight sections and bends.	
6. Pool/Allile, run/bend ratio (*) (distance between rillies divided by stream width)	5-7. Variety of habitat. Deep riffles and pools	7-15. Adequate depth in pools and siffles. Bends provide habitat. 8-11	15-25. Occassional tillie or bend. Bottom contours provide some habitat.		
7. Bank Stubility (*)	Stable, the evidence of erosion or bank failure. Side slopes generally <30%, Little potential for future problem	Moderately stable, infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme iloods.	Moderately unstable. Moderate frequency and size of erosional erese. Side slopes up to 60% on some banks, fligh erosion potential during extreme high flow.		
	0-10	8 8.8	3-5	0-2	
8. Bank Vegetative Blability (b)	Over 80% of the streambank surfaces covered by vegetation or boulders	50-79% of the streambank surfaces covered by vegetation, gravet or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the atreambank surfaces covered by vegetation, gravel or larger material.	
	end cobble. 9-10	8 6.8	3-5	0.2	
9. Stresmelde caver (h)	Dominant vegetation le shrub	Dominant vegetation is of tree form.	Dominant vegetation is gress or forbes,	Over 50% of the Stream- bank has no vegetation and dominat material is soll, rock, bridge materials	
	9-10	0-8	5 3.8	culverte or mine tellinge. 0-2	

F	Fort Devens		HYSICAL CHA	NACTERIZ FIELD DAT				IORMANDEAU A: ENVIRONMENTAL	
NOTECT HAME			1067 DATE	9/26/	94_ 8	нопът	13	1063	3
PHYSICAL CHAP	TACTERIZATION	9						Complete	1 by Pan
DIPADIAN ZONE	MISTREAM FEA	TUNES			•				11.
Prodominant Sum Forest Fle	ounding Land Use	e: Agricultural	Rosidontal	Ú Comi	norcial	Industrial	Other Arm	y-Base	
Local Watershoul	NPS Pollution;	Moderate No Evidence	Hoavy Some Pote	intal Sources	6	bylous Source	hand (
Estmated Steam	Welth 15-20	Estimated Stre	am Dopth:		Pille	m Run_	m Pool_1 pf	,	
I figh Water Mark		Volochy 601	Sps Dam Prose	ont: Yes	/ No_	Channo	lized: Yes_	No V	
Canopy Cover:	6		1		d		-	_	4
SEDIMENT/SUDS	STRATE;	Party Open	per la company de la company d					1	
Sedment Odore:	(loma)	Sowage	Petroleum C	hemical (Angeroblo	None	Other		
Sedment Oils:	Absorb	Slight	Moderate P	rofuse	~~				
Sedment Deposit	te: Sludge	Sawdust	Paper Filter S	land R	olict Shells	Other	ione		
Are there underst	des of stones whi	kh are not deep	y embedded bla	ck? Ye	e N	o no stu	nes		
Inorganic	Substrate Comp	onents				Organio Si	ubstrate Component		
ubstrate Type	Dlamater		ont Composition lampling Area	-	Substr	te Type	Characteristics	Percent Comp	
Bedrock		0			Dou	live	Sticks, Wood,	ni/5 11 1 5	
Boulder Colbie	>256·mm (10 kr 64·266 mm (2.0	5-10 lo.1					Coarse Plant & ele Materials (CPOM)	catails).	
Gravol	2 64 mm (0.1-2	.5 ln.)			Muc	k-Mud	Dinen, Tull I min	85	
Sand Silt	0.08-2.00-mm (Olity)	10		Mar		Organic (FPOM) Grey, Shell	85.	
Clay	<.004 mm (sllcl		10		1714		Fragmonts		
City		d Oxygon 5.5	pl1 <u>[0.</u>] C	onductivity <u>1</u>	58 Olhor			,	
WATER QUALIT									
WATER QUALIT Temporature 15.	d	-	V			i i			
WATER QUALIT Temperature 15: Instrumenta Uson Stream Typo:	dCoklwater	Warmwalor	Potroloum	Chomical	Flage	Other			
WATER QUALIT Temperature 15.	dCoklwater Normal	Warmwater Sowage Sheen	Potroloum Globe	Chemical Flocks Turbid	None Opaque	Other	_		

Observations and/or Sketch

PROJECT NAME FY: DEVENS PROJECT # 14067 DATE 265 4454 STATION 13

HABITAT ASSESSMENT FIELD DATA SHEET

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

2013

Itabitat Parameter	Excellent	Good	Folr	Poor
1. * Bottom substrate/ Available cover (*)	Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other sinble habitat. adequate habitat.	10-30% rubble, gravel or other stable habitat. Hobitat availability less than desirable. 6-10	Lees than 10% rubble, gravel or other stable habitat. Lack of habitat is obvious
	10-20	11-13		
2. Embeddedness ^(b)	Oravel, cobbie, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by line sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Oravel, couble, and boulder particles are over 75 % surrounded by tine sediment
	16-20	11-15	6-10	0-5 ()
3. 0.15 cms (5 cls) *Flow, at rep. low flow or	Cold >0.05 cms (2cfs) Werm > 0.15 cms (5 cfs) 10-20	0.03-0.05 cme (1-2 cls) 0.05-0.15 cme (2-5 cls) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 8-10	<0.01 cms (.5 cfs) <0.03 cms (1 cfs) 0.5
0.15 cms (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shellow (<0.5 m); last (>0.3 m/5), deep; last, shallow habitats all present.	Only 3 of the 4 habitat categories present (missing rillies or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing rillies/runs receive lower score).	Dominated by one velocity/depth category (usually pool).
	16-20	11-15	6-10	0.5
4. * Channel alteration (4)	Little or no enlarge- ment of Islands or point bers, and/or no channelization.	Some new incresse in ber formation, mostly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse sand on old and new bare; pools partially filled Walli; and/or embank -ments on both banks	liesvy deposite of fine meterial, incressed bar development; most pools filled w/ellt; and/or extensive channelization.
	12-15	8-11	4-7	0.3 /
5. Boltom scooping and deposition (*)	Less Then 5% of the bottom effected by scouring and deposition.	5-30% affected, Scour at constrictions and where grades steepen. Some deposition in pools.	30-50% affected, Deposits and scour at obstructions, con- strictions and bends, Some filling of pools.	More than 50% of the bottom changing nearly year long. Pools almost absent due to deposition. Only large rocks in tille exposed.
3	12-15	8-11	4-7	0.3 2

⁽⁴⁾ From Ball 1982.

Note: "-Habitat parameters not currently incorporated into BIOS

⁽b) From Platte et al 1983.

PROJECT NAME Ft yevens

PROJECT 14067 DATE 265494 STATION 13

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 3 of 3

				3013
tabitat Parameter	Excellent	Good	· Fatr	Poor
3. Pool/Rillie, run/bend ratio (*) (distance between rillies divided by stream width)	5-7. Variety of habitat. Deep riffice and pools	7-15. Adequate depth in pools and riffies. Bends provide habitst.	15-25; Occassional tille or bend. Bottom contours provide some hubitut.	> 25. Essentially a straight stream. Generally all flat water or shollow stills. Poor habitat.
	12-15	8-11	4-7	0·3 D
7. Bank Stability (*)	Stable, No syldence of ercelon or bank failure, Side alopes gener- ally <30%, Little potential for future problem	Moderately stable. Infrequent, small areas of erosion mostly licated over. Side slopes up to 40% on one bank. Slight potential in extreme lloods.	Moderately unstable. Moderate frequency and elze of erosional areas. Side slopes up to 60% on some banks, 1 lighterosion potential during extreme high flow.	Unstable. Many eroded areas, Side slopes >60% common. "raw" areas frequent slong straight sections and bends.
	0-10	8 6.8	3.5	0.2
8. Bank Vegetative Stability (b)	Over 80% of the streambank surfaces covered by vagetation or boulders and cobbie.	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the etream- benk surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material.
	9 9-10	6-8	3-5	0.2
9, Bireemelde caver ⁽⁶⁾	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is soll, rock, bridge material
	9-10	6-8	5 1.8	culverte or mine tellinge. 0-2

	FIELD DATA SHEET LEWINGHAE	AU ASSOCIATES INC. ITAL CONSULTANTS
Fort Deug PROJECT NAME	PROJECT 1 14067 DATE -1 28 94 STATION 18	£3
PHYSICAL CHARACTERIZATIO	ONS	lexell by iwan
RIPARIAN ZONEMNSTREAM FE	EATURES .	
Prodominant Surrounding Land U Forest Floid/Pesture	Use: Agricultural (Mosidondal) Commercial (Industrial Other Army Bas	e
Local Watershed Eroslon: Hone	Módorato Hoavy	19
Local Watershed NPS Pollution:		
Estinated Steam Widthm		Chaune 910)
High Water Markm	Volocity CO11 4/5 Dam Prosent: Yes_ No_X Channelized: Yes_ No_X	
Canopy Cover: Open	Party Open Party Shaded Shaded	
SEDIMENT/SUBSTRATE;		
Sediment Odors: Hormal	Sawago Petrolaum Chemical Anaorobio None Other	
Sedment Oils: Absent	Slight Moderate Profuse	
Sediment Deposits: Sludge	Sawdust Paper Filtor Sand Rollet Shells Other	
Are there undersides of stones w	which are not deeply embedded black? Yes No	
Inorganic Substrate Com	mponents Organic Substrate Components	
Substrate Type Dlamete	for In Sampling Area Substrate Type Characteristics In Sam	Composition npling Area
Borkock	1	THACKING CLOSES
Boulder >256 mm (10 Colbie 64-256 mm (2	United States (CPOM)	
Oravel 2 64 mm (0.1 Sand 0.06-2 00 mm	1-2.5 ln.) Muck Mud Black, Vary Fine -2 5 /o	
Silt .001-,08-mm	Marl Groy, Sholl	
WATER QUALITY O Temperature 11:50 Dissolutionstruments Used	olved Oxygen H.3 PHM 5.8 Conductivity 161 Other	
Stream Type: Coklwate Water Odors: Hormal	Shoon Globe Flocks None Other O'gan's	
Water Surface Oils: Slick Turbidity: Clear	Slighly Turbid Turbid Opaque Water Color From 3 Parmet	
Water Surface Oils: Slick	Slighly Turbid furbid Opaque Water Color 7460 3100	-
Water Surface Oils: Slick Clear WEATHER COMMITTEES WEATHER COMMITTEES WEATHER COMMITTEES WEATHER COMMITTEES WATER SURFACE OILS SINCE OILS S	pict. 7 98 - Looking Downstream	

HADITAT ASSESSMENT FIELD DATA SHEET

PROJECT NAME (ST.) (UTIL) PROJECT 1 14067 DATE 9 28/94 STATION_

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

2043

Isblist Perometer	Excellent	Good	Falr	Poor
f. * Bottom substrate/ Available cover (*)	Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habitat, adequate habitat.	10-30% rubble, gravel or other stable habitat. Habitat evallability less than desirable.	Less than 10% rubble, grevel or other etable habitat. Lack of habitat is obvious 0-5
?. Embeddedness ^(h)	Oravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Gravel, cobble, and boulder particles are over 75 % surrounded by time sediment
	16.20	11-15	6-10	0-5
J. 0.15 cms (5 cfs) "Flow, at tap. low flow or	Cold >0.05 cms (2cls) Werm > 0.15 cms (5 cls) 10-20	0.03-0.05 cms (1-2 cfs) 0.05 0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	<0.01 cms (.5 cls) <0.03 cms (1 cls) 0-5
0.15 cms (5 cfs) Velocitý, Depth	Slow (<0.3 m/s), deep (>0.5 m); elow, shellow (<0.5 m); fest (>0.3 m/s), deep; fest, shellow hebliste all present.	Only 3 of the 4 habitat categories present (missing rilles or runs receive lower score than missing pools).	Only 2 of the 4 habitat calegories present (missing rilles/runs receive lower score).	Dominated by one velocity/depth category (usually pool).
	18-20	11-15	6-10	0.5
4. * Channel alteration ^(a)	Little or no enlarge- ment of Islands or point hers, and/or no channelization.	Some new increase in bar formation, mostly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse eand on old and new bare; pools partially filled w/slit; and/or embank -ments on both banks	Heavy deposits of fine material, incressed bar development; most pools filled w/silt; and/or extensive channelization.
	12-15	8-11	4-7	0-3
5. Boltom scooping and deposition (*)	Less Than 5% of the bottom affected by according and deposition.	5-30% nilected, Scour at constrictions and where grades eleepen, Some deposition in pools.	Some filling of pools. 7	More than 50% of the bottom changing nearly year long. Pools elmost absent due to deposition. Only large rocks in rillie exposed.
	12-15	0-11	4-7	0-3

⁽b) From Platts et al 1983.

Note: "-Habitat parameters not currently incorporated into BIOS

PROJECT NAME FT. DEVENS PROJECT # 14067 DATE 2854744 STATION 18

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL.CONSULTANTS

3 of 3

Isblist Parameter	Excellent	Good	Felr	Poor
5. Pool/fillile, run/bend ratio (*) (distance between rillies divided by stream width)	5-7. Variety of habitat. Deep siffies and pools	7-15. Adequate depth In pools and riffles. Bends provide habitet. 8-11	15-25. Occassional tillie or bend. Boltom contours provide some habitat.	> 25. Essentially a straight atream. Generally all fiel water or shallow riffle. Poor habitot.
7. Bank Stubility (*)	Stable. He evidence of ereston or benk failure. Side elopes gener- elly <30% Little patential for luture problem	Moderately stable, infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods,	Moderately unstable. Moderate frequency and size of erosional eress. Side slopes up to 60% on some banke. High erosion potential during extreme high flow.	Unstable. Many eroded areas. Side alopes >60% common. "row" ereas frequent along straight sections and bends.
	9-10	6-8	1-5	0.2
8. Bank Vegetative Stability (L)	Over 80% of the streambank surfaces? covered by vegetation or boulders and cobbie.	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material.
	9-10	6-8	3-5	0.2
9. Streemelde cover (h)	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominant vegetation is grees or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is
			3	soil, rock, bridge meterials culverte or mine tallinge.
	9-10	8-8	3-8	0.2
Column Totals	33	D	3	_1_
		1		

		PHY	나빠 하다 보기하는 무슨 없었다. 없었다	TERIZATIONWAT	ER QUALITY		MANDEAU ASSOCIATES IN RONMENTAL CONSULTANT
PROJECT NAME	Ft. Deven	PROJECT I 14	567 DATE 0	1/28/54 STAT	10N 20		57 Area 10f3
THOSE INME	Julia Marie	nozor •	Jan Dall	1			30' offshore
PHYSICAL CHAI	NACTERIZATIO	113			35.776		Completed by : WRY
RIPARIAN ZONE	ANSTREAM FE	ATURES					Completed by . Will
Predominant Sun Forest Fic	rounding Land U old/Pasture	se: Agricultural	Flosidential	Commercial (Tr	ndustrial Other	Army	Base
Local Watershod	Eroston:			_			
Local Watershed	NPS Pollution	Moderate No Evidence	Hoavy Some Potential	Source - Cobulo	NIS Sources		. 1/0
Estimated Steam	1.6.	Estimated Stream		Rilliem	riun m Poo		Ponded Swamp
High Water Mark			Dam Prosont:	Yos No	Channellzed:	es_ No_	x above Dam
Canopy Cover:	Ороп	Party Open	Party Shadod	Shadod			No Defined
SEDIMENT/SUD	STRATE						Channel
Sediment Odore:		Sowago P	otroloum Cham	ical Anserobio	None Other	organic	
Sedment Oils:	Absent		oderate Profus		Hune Calul 2		
Sedment Depos			per Fiber Sand	Relict Shells	Other		
		hich are not deeply		Yes No	J		
	c Substate Com				Organic Substrate C	Components	
Substrate Type	Diamotor		Composition npling Area	Substrate '	Type Char	acteristics	Percent Composition In Sampling Area
Backock	0.11			Double		Vood, > 45	%
Boulder Colbie	>256·mm (10 64·256·mm (2				Coarse Material	tonath .	-0/
Gravel	2 64 mm (0.1	2.5 ln.)		Muck-N	flud Black, V	ory Fine	5%
Sand Sill	0.06-2.00·mm	(Gruh)		Mari	Grey, S	(FPOM)	
Clay	<.004 mm (sll	ck)			Fragmo		
WATER QUALI Temperature 12	.50 Dissolv	ed Oxygen 9.2	pl16 Gondu	cilvityOther	n a25℃ —		
Stream Type: Water Oders: Water Surface C Turbidity:	Coldwate Hormst Dile: Silck Clear	Warmwaton Sowage Shoop Slighty Turbld	Globe FI	ocks Nons	Water Color		
WEATHER COL	HDITIONS P	hichies	9+10				
Observations as		2.00			*		

2.1

PROJECT NAME (1.) CUCAS PROJECT 14067 DATE 9 38 94 STATION 20

NORMANDEAU ASSOCIÁTES INC. ENVIRONMENTAL CONSULTANTS

Hobital Parameter	Excellent	Good	Folt	Poor
1. * Bottom substrate/ Available cover (*)	Greater than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable (tablist, adequate habitat.	10-30% rubble, gravel or other stable hebitat. Habitat availability less than destrable. 6-10	Less than 10% rubble, gravel or other stable habitat. Lack of habitat is obvious
2. Embeddedness ^(h)	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobbie, and boulder particles are between 25 and 50 % aurrounded by line sediment	Gravel, cobble, and boulder particles are between 50 and 75 % aurrounded by line sediment	Gravel, cobble, and boulder particles are over 75 % surrounded by fine sediment
	16-20	11-15	6-10	0.5
3. 0.15 cms (5 cfs) 'Flow, at rep. low flow or	Cold >0.05 cms (2cls) Warm > 0.15 cms (5 cls) 10-20	0.03-0.05 cm# (1-2 cfs) 0.05-0.15 cm# (2-5 cfe) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	<0.01 cme (.5 cfs) <0.03 cme (1 cfs) 0.5
0.15 cms (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); elow, shallow (<0.5 m); fast (>0.3 m/5), deep; fast, shallow habitate all present.	Only 3 of the 4 habitat categories present (missing riffes or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing rilles/runs receive lower score).	Dominated by one velocity/depth category (usually pool).
	16-20	11-15	6-10	0.5
4. * Channel alteration (*)	Little or no enlarge- ment of islands or point bare, and/or no channelization.	Some new increase in bar formation, mostly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse sand on old and new bare; pools partially filled w/elit; and/or embank -mants on both banks	tiesvy deposits of fine material, increased bar development; most pools lilled wisilt; and/or extensive channelization,
	12-15	B-11	4-7	0-3
5. Bottom scooping and deposition (*)	Less Then 5% of the bottom effected by ecouring and deposition.	5-30% effected, Scour at constrictions and where grades eleepen, Some deposition in pools,	30-50% affected, Deposits and acour at obstructions, con- atrictions and bends, Some tilling of pools.	More then 50% of the bottom changing nearly year long. Pools almost absent due to deposition. Only large rocke in riffle exposed.
	12-15	8-11	4(7)	0-3

¹⁴ From Dall 1982,

Hote: "-Heblist parameters not currently incorporated into BIOS

⁽b) From Platte et al 1983.

PROJECT NAME PROJECT PROJECT 1400 DATE 9 28/94 STATION 20

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

30f3

labitat Parameter	Excellent	Good	Fair	Poor	
3. Pool/Rillie, run/bend ratio (*) (distance between rillies divided by atream width)	5-7. Variety of habitat. Deep riffles and pools	7-15. Adequate depth in pools and tillles. Bends provide habitat.	15-25, Occassional riffle or bend. Bottom contours provide some hubitet. 4-7.	> 25. Essentially a straight stream. Concretly all flat water or shallow riffle. Poor habital.	tock
7. Dank Stobillty (*)	Stuble. No evidence of ercelon or bank failure. Side slopes gener- ally <30%. Little potential for future problem 9-10	Moderately stable, infrequent, small areas of erosian mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme flaces.	Moderately unstable. Moderate frequency and size of erosional areas. Side slopes up to 60% on some banks. High erosion potential during extreme high flow. 3-5	Unstable, Many eroded steps, Side slopes >60% common, "raw" steps frequent slong straight sections and bends.	Rei
8. Dank Vegetative Stability (h)	Over 80% of the streambank surfaces covered by vegetation or boulders and coubte.	50-79% of the atreambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material.	tro
9, Biresmelde caver (6)	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbes,	Over 50% of the Stream- bank has no vegetation and dominat material is soil, rock, bridge materials, culverts or mine tellings.	,
	9-10	6-8	3 🛈 s	0-2	ک
Column Totals	- 23	-	-	-	15 8

PROJECT NAME		PERIZATIONWATER QUALITY DATA SHEET NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 1 o.f.3
PHYSICAL CHAP	ACTERIZATIONS .	Completell by: wex
	INSTREAM FEATURES	
	ounding Land Use: Id/Pasture Agricultural Residential	Commercial Industrial Other Army Base
Local Watershed	Eroslon:	
tion Local Watershed		Obvious Sources Ones water 3-20'
Estimated Steam	4 1 241	Yes No Y Channellzed: Yes No Y
High Wotor Mark_		
Canopy Cover:	Open Party Open Party Shaded S	Shadod
SEDIMENT/SUDS	STIMTE; .	
Sediment Odore:	Hormal Sewage Petroloum Chamica	al Anaeroblo (Hone) Other
Sedment Oils:	Absent Slight (Moderate) Profuse	
Sediment Deposit	la: Sludge Sawdust Paper Filter Sand	Rollet Shells Other Mud / Sand / Datitus
Are there underst	dos of stones which are not deeply embedded black?	Yea No
Inorganic	Substrate Components	Organic Substrata Components
obstrate Type	Percent Composition In Sampling Area	Substrate Type Characteristics Percent Composition in Sampling Area
Bockock	Are Mat. V	Davitue Sticks, Wood, 735% Autochill mons
Boulder Colbie	> 256·mm (10 ln) 64·266 inin (2 6·10 ln.)	
Gravel Sand	2 64 mm (0.1-2.5 ln.) 0.06-2.00 mm (gritty)	Muck-Mud Black, Very Fine 125 6 Mul
Silt	.004 .000. Hon.	Mari Groy, Sholl Lix 3/ Cr. 19 al
WATER QUALIT Tomporature 17 Instruments Used	Cokwater Warmwater Normal Sewage Patrolaum Cher	mical (None Other
Stream Type: Water Odors: Water Surface O	1170 mile NONE CONTROL 12 10 10 10 10 10 10 10 10 10 10 10 10 10	
Water Odors:	ile: Silch Shoon Globa Floci Cloar Silghly Turbid Turb	old Opaque Water Color
Water Odors: Water Surface O	CTOOR Slighly Turbid Turb	tures a sta 34

4

4:

PROJECT NAME Ft. Devens PROJECT 1 1406 PATE 9 28 94 STATION 27

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 2 0+3

labitat Parameter	Excellent	Good	Folr	Poor	
1. * Bottom substrate/ Available cover (*)	Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat 16-20	30-50% rubble, gravel or other stable habitat. adequate habitat. 11-15	t0-30% rubble, gravel or other stable habitat. Habitat availability less than desirable. 6-10	Less than 10% rubble, gravel or other stable habitat Enck of habitat is obvious	for plant
2. Embeddedness ^(h)	Oravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 % aurrounded by fine sediment	Gravel, cobble, and boulder particles are over 75 % surrounded by line sediment	
	16-20	11-15	6-10	0-9	
3. 0.15 cms (5 cfs) *Flow, strep. low flow or	Cold >0.05 cms (2cls) Warm > 0.15 cms (5 cls) 10-20	0.03-0.05 cme (1-2 cfe) 0.05-0.15 cme (2-5 cfe) 11-15	0.01-0.03 cme (.5-1 cfs) 0.03-0.05 cme (1-2 cfs) 6-10	<0.01 cme (.5 cle) <0.03 cme (1 cle) 0-5	
0.15 cms (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/s), deep; fast, shallow habitate all present.	Only 3 of the 4 habitat categories present (missing titles or runs receive lower score than missing pools).	Only 2 of the 4 heblist categories present (missing rillies/runs seceive lower acore).	Dominated by one velocity/depth category (usually pool).	
	16-20	11-15	6-10	0-5	
4, * Channel alteration (*)	Little or no enlarge- ment of Islands or point bare, and/or no channelization.	Some new increase in bar formation, mostly from coarse gravel; and/or some obsenuelization present.	Moderate deposition of new gravel, coarse sand on old and new bars; pools partially filled w/slit; and/or embank -ments on both banks	Heavy deposits of fine material, increased bar development; most pools filled wisilt; and/or extensive channelization.	
	12-15	0-11	4-7	0.3 1	
5, Bottom econping and deposition (*)	Less Than 5% of the bottom affected by ecowing and deposition.	5-30% allected, Scour at constrictions and where grades aleepen. Bome deposition in pools,	Some Illing of pools.	More than 50% of the bottom changing nearly year long. Pools almost absent due to deposition. Only large rocks in tille exposed.	
	12-15	6-11	T 4.7	0-3	
From Doll 1982.	0	0	-	7	

HABITAT ASSESSMENT FIELD DATA SHEET (cont.)

PROJECT NAME FT. DEVCLS PROJECT 14067 DATE 1/28/94 STATION 27

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

labitat Parameter	Excellent	Qood	Falr	> 25. Essentially a straight stream. Generally all flat water or shallow tillle. Paor habitat.	
6. Pool/fillie, run/bend tatio (*) (distance between rillies divided by etream width)	8-7. Variety of habital. Deep riffles and pools	7-15. Adequate depth in pools and tittles. Bends provide habitat.	15-25. Occassional riffle or bend. Bottom contours provide some hubital.		
		B-11	4-7	0.3 0	
7. Bank Stubility (*)	Stuble. He evidence of erosion or bank failure. Side slopes gener- sity <30%. Little potential for future problem 9-10	Moderately stable, infrequent, email areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods.	Moderately unstable. Moderate frequency and size of erosional areas. Side alopes up to 60% on some banks. High erosion potential during extreme high flow. 3-5	Unetable, Many eroded sreps, Side slopes >60% common, "raw" sreps frequent slong straight sections and bends,	
8. Bank Vegetalive Stability (b)	Over 60% of the etreambank surfaces covered by vegetation or baulders and cobbie.	50-79% of the streambank surfaces covered by vegstation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the atreambank surfaces covered by vegetation, gravel or lerger meterial.	
	0-10	6.0	3-5	0.2	
9. Biresmelde caver (b)	Dominant vegetation is shrub	Dominant vegetation is of tree form.	Dominant vegetation is grees or forbes.	Over 50% of the Stream- benk has no vegetation and dominat material is	
	9-10	0-0	3 3.0	soll, rock, bildge materiale culverts or mine tellings. 0 2	
Column Totale	18	_0	3	D	
Sa	75	-			

3

PITYSICAL CHARACTERIZATIONS RIPARIAN ZONE/INSTREAM FEATURES Prodominant Surrounding Land Use: Forest Floid/Pasture Agricultural Flosidential Commercial Industrial Other Agricultural Flosidential Sources Forest Floid/Pasture Agricultural Flosidential Commercial Industrial Other Agricultural Flosidential Sources Forest Floid/Pasture Agricultural Flosidential Sources Floid Flo		FRIZATIONWATER QUALITY DATA SHEET 18 94 STATION 94-	ENVIRONMENTAL C	ONSULTANT
Prodominant Surrounding Land Use: Forest Flok/Pesbure Agricultural Rosidential Commercial Industrial Other Agricultural Rosidential Sources Industrial Other Rosidential Sources Industrial Rosidential Ro			Completo	I by: wRA
Substrate Type Diameter In Sampling Area Substrate Type Characteristics Percent Composition In Sampling Area Doubtes Sticks Wood.	Prodominant Surrounding Land Use: Forest Field/Pesture Agricultural Flosidential C Local Watershed Erosion: Hone Moderate Heavy Local Watershed NPS Pollution: No Evidence Some Potential Sour Estimated Stream Width I m Estimated Stream Depth: 5.5 (1) High Water Mark m Velocity D Dam Present: Y Canopy Cover: Open Party Open Party Shaded Sh SEDIMENT/SUBSTRATE; Sediment Odors: Normal Sewage Petroleum Chemical Sediment Odors: Normal Sewage Petroleum Chemical Sediment Odors: Normal Sewage Petroleum Chemical Sediment Odors: Studge Sawdust Paper Fiber Sand Are there undersides of stones which are not deeply embedded black?	Ansoroblo None Other Was No NO State	Pool No 1.ffla Pool M No 1.ffla I: Yos_ No_X	
Bockock Dobline Sticks Wood.	Percent Composition		Percent Compos	
Colule 64-256 mm (2 5-10 ln.) Gravel 2 64 mm (0.1-2.5 ln.) Sand 0.08-2.00 mm (gritty) Silt .00400 mm Clay <.004 mm (elick) 3.5% Dety ites Maioriais (CPOM) Muck-Mud Black, Very Fine . Organic (FPOM) Mari Gray, Shell Fragmonts	Boulder >258-mm (10 ln.) Colbie 64:256-mm (2 6:10 ln.) Oravel 2 64-mm (0.1:2.5 ln.) Sand 0.08:2.00-mm (crity) Sill .004:.08-mm	Muck-Mud Bla	cks, Wood, arso Plant ligitals (CPOM) ck, Vary Fine panic (FPOM) by, Shell	
WATER QUALITY OF Dissolved Oxygen 1.9 pH.5.8 Conductivity 28 Other Instruments Used Stream Typo: Cokhwater Warmwater Water Octors: Normal Sewage Petroleum Chemical Hone Other Water Surface Oils: Silck Shoen Globe Flocks None Turbidity: Clear Silghly Turbid Opaque Water Color	WATER QUALITY OF Dissolved Oxygen 19 p15 8 Conductivity Instruments Used Stream Type: Cokiwster Warmwater Water Oxide: Normal Sawage Petroleum Chemit Water Surface Oils: Silck Shoan Globe Flocks	Other		

HADITAT ASSESSMENT FIELD DATA SHEET

PROJECT NAME PT. DENCED PROJECT 14007 DATE 9/28/94 STATION 32

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 2 of 3

Itabitat Parameter	Excellent	Good	Folt	Poor
1. * Bottom substrate/ Available cover (*)	Orester than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habitat. odequate habitat.	10-30% rubble, gravel or other stable habitat, Habitat avallability less than destrable, 8-10	Less than 10% rubble, gravel or other stable hoblint. Lock of habitat is obvious
2. Embeddedness (h)		7.7		
z, embeddeuness	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by fine sediment	Gravel, cobble, and boulder particles are between 25 and 50 % surrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fine sediment	Oravel, cobble, and boulder particles are over 75 % surrounded by tine sediment
	16-20	11-15	6-10	0-5
3, 0.15 cms (5 cfs) *Flow, at rep. low flow or	Cold >0.05 cms (2cls) Warm > 0.15 cms (5 cls) 10-20	0.03-0.05 cme (1-2 cfe) 0.05-0.15 cme (2-5 cfe) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	<0.01 cms (.5 cfs) <0.03 cms (1 cfs) 0.5
0.15 cms (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); elow, shellow (<0.5 m); feet (>0.3 m/5), deep; feet, shellow habitate all present.	Only 3 of the 4 hebitet categories present (missing rifles or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (missing riffes/runs receive lower score).	Dominated by one velocity/depth category (usually pool).
	10-20	11-15	8-10	0-5
4. * Channel alteration (a)	Little or no enlarge- ment of felands or point bars, and/or no channelization,	Some new increase in bar formation, mostly from coarse gravel; and/or some obsenselization present.	Moderate deposition of new gravel, coarse eand on old and new bare; pools partially filled w/ellt; and/or embank -ments on both banks	Heavy deposits of fine material, increased bar development; most pools filled w/silt; and/or extensive channelization.
	12-15	8-11	4-7	0.3
5. Bollom scooping and deposition (*)	Less Than 5% of the bottom affected by scouring and deposition.	5-30% affected, Scour at constitctions and where grades atterne. Some deposition in pools.	30-50% affected. Deposits and acour at obstructions, constitutions and bends. Some filling of pools.	More than 50% of the bottom changing nearly year long. Pools simost absent due to deposition. Only large rocks in tills exposed.
	12-15	0-11	5 4-7	0-3

⁽⁻⁾ From Ball 1982.

Hote: '-Habitat parameters not currently incorporated into BIOS

⁽b) From Platta et al 1083.

PROJECT NAME FINDENS PROJECT & 14047 DATE 2854 94 STATION 32

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 30f3

				2013
Inbitat Parameter	Excellent	Good	Fair	Poor
5. Pool/fillie, run/bend ratio (*) (distance between tilles divided by stream width)	5-7. Variety of finbital. Deep riffles and pools	7-15. Adequate depth in pools and sillies. Bends provide habitat.	15-25. Occassional title or bend. Bottom contours provide some hubitat.	> 25. Essentially a straight stream. Generally all list water or shallow tillis. Poor habitat.
	12-15	8-11	4-7	0.3
7. Bank Stability (*)	Stuble. No evidence of erosion or bank failure. Side slopes gener- sity <30%. Little potential for future problem	Moderately stable, intrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods.	Moderately unstable. Moderate frequency and size of erosional areas. Side slopes up to 60% on some banks, fligh erosion potential during extreme high flow. 3-5	Unstable, Many eroded areas, Side alopes >60% common. "raw" ereas frequent along straight sections and bends. 0-2
8. Bank Vegetative Blability (b)	Over 80% of the streambank surfaces covered by vegetation or boulders	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material.
	(9-10	6-8	3-5	0-2
9. Stresmelde caver (6)	Dominant vegetation is strub	Dominant vegetation is of tree form,	Dominant vegetation is grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is soil, rock, bridge materials culverts or mine tallings.
	9-10	0-0	(3-)	0-2
Column Totals	18	0	3	7

PHYSICAL CHARACTERIZATIONWATER QUALITY NORMANDEAU ASSOCIATES INC. FIELD DATA SHEET **ENVIRONMENTAL CONSULTANTS** il Own Ms PROJECT NAME (a) 1 1 L-PROJECT Completed by west PHYSICAL CHARACTERIZATIONS *DIPADIAN ZONEANSTREAM FEATURES* Predominant Surrounding Land Use: Residental Industrial) FloldPasture Apricultural Commercial Other Forost Local Watershed Eroslon: Moderate -None Hoavy Local Watershed NPS Pollution: Some Potential Sources No Evidence Obvious Sources Estinated Steam Width 1.0 m Estimated Stream Dopth: Velocity 0.5 11/5 Dam Prosont: High Water Mark You No Y Channolized: Yes Party Open Shadod Party Shaded Canopy Covor: Opon -SEDIMENT/SUBSTRATE: Other Sodiment Odors: Hormel Sewage Petroloum Chemical Annoroble Bedment Oils: Absent Slight Moderate Profuse Other Sedment Deposite: Sludge Paper Fiber Sand Relict Shalls 9swdust Are there undereldes of stones which are not deeply embedded black? Yes No Inorganic Substrate Components Organic Substrate Components Percent Composition Percent Composition Substrate Type Diamotor Substrate Type Characteristics In Sampling Area In Sampling Area Doultes Sticks, Wood, Bodrock Coarse Plant Doulder >256-mm (10 ln) Motorials (CPOM) Cottile 64-266 mm (2 6-10 ln.) Gravol 2 64 mm (0.1-2.5 ln.) Muck-Mud Black, Very Fine 20% Organic (FPOM) 0.08-2.00 mm (griffy) Sand Mad Grey, Shell Silt .004 .06 min 20% Sauch <.004 mm (slick) Fragmonts Clay Tamporature Dissolved Oxygen Othor Conductivity Instrumenta Used (Warmwater) Steam Typo: Coklyuter Chemical (None> Petroloum Other Water Odore: Normal Sawago Globe Flocks ·ONODA! Water Color Brown Oreings - Tron - Sume US Water Surface Oila: Slick Shoon Turbid (Opaque) Turbldity: Clost Slighly Turbld WEATHER CONDITIONS Photograph Humber Observations and/or Sketch gual samples viot mostly plant moderal

HABITAT ASSESSMENT FIELD DATA SHEET

PROJECT NAME PROJECT & LYOLT DATE 9/28/94 STATION_

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS 2 of 3

Inbitat Parameter	Excellent	Good	Folr	Poor
1. * Bottom substrate/ Available cover (*)	Greater than 50% rubble, gravel, submerged logs, undercut banks, or other habitat	30-50% rubble, gravel or other stable habital, adequate habitat.	10-30% rubble, gravel or other stable habitat. Habitat availability less than destroble. 6-10	Less then 10% rubble, gravel or other stable habitat. Lack of habitat is obvious
(6)				Active Market
2. Embaddadness ^(h)	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by line sediment	Gravel, cobble, and boulder particles are between 25 and 50 % autrounded by fine sediment	Oravel, cobble, and boulder particles are between 50 and 75 % surrounded by line sediment	Gravel, couble, and boulder particles are over 75 % surrounded by tine sediment
	16-20	11-15	6-10	0-5
3. 0.15 cms (5 cfs) *I low, strep. low flow or	Cold >0.05 cms (2cls) Warm > 0.15 cms (5 cls) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	<0.01 cms (.5 cfs) <0.03 cms (1 cfs) 0-5
0.15 cme (5 cfs) Velocity, Depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/s), deep; fast, shallow habitats all present.	Only 3 of the 4 habitat categories present (missing riffes or runs receive lower score than missing pools).	Only 2 of the 4 habital categories present (missing riffles/runs racelys lower score).	Dominated by one velocity/depth category (usually pool).
	16-20	11-15	6-10	0-5
4. * Channel atteration (*)	Little or no enlarge- ment of Islands or point bare, and/or no channelization.	Some new increase in ber formation, mustly from coarse gravel; and/or some channelization present.	Moderate deposition of new gravel, costae eand on old and new bare; pools partially filled w/sill; and/or embank -mants on both banks	ilesvy deposits of fine material, incressed bar development; most pools filled w/silt; and/or extensive channelization.
	12-15	0-11	4-7	0-3
5. Boltom econping and deposition (*)	Less Then 5% of the bottom effected by scouring and deposition.	5-30% affected, Scour st constrictions and where grades steepen. Some deposition in pools.	30-50% affected. Deposits and scour at obstructions, constructions and bends. Some Illing of pools.	More than 50% of the bottom changing nearly year long. Pools almost absent due to deposition. I
	fi2)15	8-11	7 47	In tillie exposed.

(4) From Ball 1982.

(b) From Platts et al 1983.

Hote: "-Habital parameters not currently incorporated into BIOS

HABITAT ASSESSMENT FIELD DATA SHEET (CONL.)

PROJECT NAME FIT DEVELS PROJECT & 14067 DATE 9/28/94 STATION 34

NORMANDEAU ASSOCIATES INC. ENVIRONMENTAL CONSULTANTS

30f3

Habitat Parameter	Excellent	Good	Felr	Poor	
6. Pool/fillile, run/bend tatio (*) (distance between sillies divided by etreom width)	habitat. Deep riffes in pools and siffes. siffe or and pools Bends provide habitat. contour		15-25, Occassional sille or bend. Bottom contours provide some habitat.	> 25. Essentially a straig stream. Generally all flat water or similow citile. Poor habitat.	
	12-15	B-11	4-7	0.3	
7. Bank Stability (*)	Stable. No evidence of erosion or bank failure. Side slopes gener- ally <30%. Little potential for future problem	Moderately stable, Infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods, 6-8	Moderately unstable. Moderate frequency and size of erosional areas. Side slopes up to 60% on some banks. High erosion potential during extreme high flow. 3-5	Unstable. Many eroded ereas. Side elopes >60% common. "raw" ereas frequent along straight sections end bends. 0-2	
C SUNSTINCTION			21 1-1 /2 30 10 10 10 10 10 10 10 10 10 10 10 10 10		
8. Bank Vegetalive Stability (b)	Over 80% of the atreambank surfaces covered by vegetation or boulders of and cobble.	50-79% of the streambank audisces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation, gravel or larger material.	
	0-10	6.9	3-5	0.2	
9, Stresmelde cover (h)	Dominent vegetation le strub	Dominant vegetation is of tree form.	Dominent vegetation le grass or forbes.	Over 50% of the Stream- bank has no vegetation and dominat material is coil, rack, bridge material culverts or mine tailings.	
	9-10	6-8	3-8	0.2	
Column Totale					
				-	

Boore 37

APPENDIX B BIOLOGICAL DATA

DATE: 28 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	HBI	REP. A 46/48 grids	REP. B 48/48 grids	MEAN
EPHEMEROPTERA (mayflies)					
Baetidae	CG	4	- 0	1	0.5
ODONATA (dragonflies)					
Corduliidae	P	5	1	0	0.5
NEMATODA			0	1	0.5
OLIGOCHAETA (WORMS)	CG	9	56	23	39.5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	30	53	41.5
MOLLUSCA					
Sphaeriidae (clams)	CF	8	1	0	0.5
TOTAL				78	83

Taxa Richness =	6
Hilsenhoff Biotic Index =	8.39
Scraper/Filterer Ratio =	0
EPT/Chironomidae Ratio =	0
% Dominant Taxon (Jalitridae) =	50.00
EPT Richness =	1
Community Loss Index =	Reference Station

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

TAXON	FUNCTIONA GROUP	L HBI	NUMBER 3/48 grids
EPHEMEROPTERA (mayflies)			
Baetidae	CG	4	4
ODONATA (dragonflies)			
Coenagrionidae	P	9	1
CRUSTACEA			
Amphipoda (scuds)			
Talitridae	CG	8	94
TOTAL			99
Taxa Richness =			3
Hilsenhoff Biotic Index =			7.85
Scraper/Filterer Ratio =			. 0
EPT/Chironomidae Ratio =			0
% Dominant Taxon (Talitri	dae) =		94.95
EPT Richness =			1
Community Loss Index =		Reference	Station

DATE: 28 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	IBH	REP. A 48/48 grids	REP. 8 48/48 grids	MEAN
DIPTERA (true flies)					
Chironomidae	CG	6	0	2	1
OLIGOCHAETA (worms)	CG	9	0	1	0.5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	11	3	7
MOLLUSCA					
Sphaeriidae (clams)	CF	8	1	0	0.5
TOTAL			12	 6	9
			÷	% COMPAR REFERENC	
5.75					
Taxa Richness =			7 07		66.67
Hilsenhoff Biotic Inde			7.83		107.05
Scraper/Filterer Ratio			0		100.00
EPT/Chironomidae Ratio % Dominant Taxon (Tali			77.78		77.78
EPT Richness =	(0		0
Community Loss Index =			1.25		1.25
Committy Loss Times -					

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC

PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	ивт	NUMBER 48/48 grids
EPHEMEROPTERA (mayfl	ies)		
Leptophlebiidae	CG	2	1
ODONATA (dragonflies			
Coenagrionidae	Р	9	1
MEGALOPTERA (fishfli	es)		
Corydalidae	Р	0	1
TRICHOPTERA (caddisf	lies)		1
Leptoceridae	P	4	1
CRUSTACEA			
Amphipoda (scuds)			
Talitridae	CG	8	15
Isopoda (sowbugs)			
Asellidae	CG	8	1
TOTAL			21

	2	COMPARISON WITH	
		FERENCE STATION	
Taxa Richness =	7	233.33	
Hilsenhoff Biotic Index =	6.81	115.26	
Scraper/Filterer Ratio =	0	100.00	
EPT/Chironomidae Ratio =	0	100.00	
% Dominant Taxon (Talitridae) =	71.43	71.43	
EPT Richness =	3	300.00	
Community Loss Index =	0.14	0.14	

STATION: 8 DATE: 28 SEPT 1994 HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	HBI	REP. A 44/48 grids	REP. B 48/48 grids	MEAN
EPHEMEROPTERA (mayflies) Ephemeridae	CG	4	1	0	0.5
Leptophlebiidae	CG	2	0	1	0.5
reprobutentinge	. CG	2	· ·		0.5
MEGALOPTERA (fishflies)					
Corydalidae	P	0	8	2	5
TRICHOPTERA (caddisflies	s)				
Phryganeidae	Sh	4	4	4	4
Polycentropodidae	CF	6	5	3	* 4
DIPTERA (true flies)					
Chironomidae	CG	6	12	2	7
Ptychopteridae			10	2	6
Tipulidae	SH	3	2	4	3
OLIGOCHAETA (worms)	CG	9	6	4	5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	32	27	29.5
Isopoda (sowbugs)					
Asellidae	CG	8	1	0	0.5
MOLLUSCA .					
Ancylidae (limpets)	Sc	6			
Planorbidae (snails)	Sc	6			
Sphaeriidae (clams)	CF	8	17	20	18.5
TOTAL			98	69	83.5
				% COMP	ARISON WITH
				REFERE	NCE STATION
Taxa Richness =			12		200.00
Hilsenhoff Biotic Index			6.31		132.86
Scraper/Filterer Ratio =			0		100.00
EPT/Chironomidae Ratio			1.29		100.00
% Dominant Taxon (Talita	ridae) =		35.33		35.33
EPT Richness =			4		400.00
Community Loss Index =			0.33		0.33

TOTAL

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

NUMBER FUNCTIONAL 41/48 TAXON GROUP HBI grids TRICHOPTERA (caddisflies) Glossosomatidae Sc 0 Phryganeidae Sh 2 Polycentropodidae CF 2 DIPTERA (true flies) Chironomidae 2 CG 2 Ptychopteridae Tabanidae 1 Tipulidae ... Sh OLIGOCHAETA (WORMS) CG CRUSTACEA Amphipoda (scuds) Talitridae 8 56 CG Isopoda (sowbugs) Asellidae CG 8 1 DECAPODA (crawfish) Cambaridae CG 6 1 MOLLUSCA Sphaeriidae (clams) 13 CF 8 83

	5	% COMPARISON WITH REFERENCE STATION
Taxa Richness =	12	400.00
Hilsenhoff Biotic Index =	7.41	105.92
Scraper/Filterer Ratio =	0	100.00
EPT/Chironomidae Ratio =	2.50	100.00
% Dominant Taxon (Talitridae) =	67.47	67.47
EPT Richness =	0	0
Community Loss Index =	0.17	0.17

DATE: 26 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

	-H	_		_	
	FUNCTIONAL		REP. A	REP. 8	
HOXAT	GROUP	HBI	grids	grids	MEAN
EPHEMEROPTERA (mayflie	es)				
Ephemeridae	CG	4	2	1	1.5
MEGALOPTERA (fishflies					
Corydalidae	. P	0	9	2	5.5
TRICHOPTERA (caddisfli	es)				
Leptoceridae	P	4	1	0	0.5
Polycentropodidae	CF	6	14	0	7
DIPTERA (true flies)					
Chironomidae	CG	6	43	1	22
OLIGOCHAETA (WORMS)	CG	9	2	1	1.5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	28	4	16
TOTAL			99	9	54
					ARISON WIT
Taxa Richness =			7		116.67
Hilsenhoff Biotic Inde	x =		5.99		139.98
Scraper/Filterer Ratio			0		100.00
EPT/Chironomidae Ratio			0.41		100.00
% Dominant Taxon (Chir	onomidae) =		40.74		40.80
EPT Richness =			3		300.00
Community Loss Index =			0.71		0.71

TOTAL

STATION: 11 DATE: 26 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

100

			NUMBER
	FUNCTIONAL		36/48
TAXON	GROUP	HBI	grids
EPHEMEROPTERA (mayfli	es)		
Baetidae	CG	4	1
Leptophlebiidae	CG	2	4
ODONATA (dragonflies)			
Aeshnidae	P	3	6
Calopterygidae	P	5	1
HENIPTERA (water bugs)		
Corixidae	P	5	2
MEGALOPTERA (fishflie	es)		
Corydal idae	P	0	1
TRICHOPTERA (caddisfl	ies)		
Phryganeidae	Sh	4	1
DIPTERA (true flies)			
Chironomidae	CG	6	2
Tipulidae	SH	3	1
CRUSTACEA			
Amphipoda (scuds)			
Talitridae	CG	8	79
Gammaridae .	CG	4	1
Isopoda (sowbugs)			
Asellidae .	CG	8	1

		% COMPARISON WITH REFERENCE STATION
Taxa Richness =	12	400.00
Hilsenhoff Biotic Index =	7.08	110.85
Scraper/Filterer Ratio =	0	100.00
EPT/Chironomidae Ratio =	3	100.00
% Dominant Taxon (Talitridae) =	79.00	79.00
EPT Richness =	3	300.00
Community Loss Index =	0.08	0.08

DATE: 26 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	HBI	REP. A 40/48 grids	REP. B 48/48 grids	MEAN
MEGALOPTERA (fishflies)				
Corydalidae	P	Ö	6	0	3
TRICHOPTERA (caddisfli	es)			V	
Polycentropodidae	CF	6	1	0	0.5
DIPTERA (true flies)					
Chironomidae	CG	6	18	0	9
Tabanidae	P	5	0	5	2.5
Tipulidae	SH	3	1	0	0.5
OLIGOCHAETA (WORMS)	CG	9	0	1	0.5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	76	46	61
TOTAL			102	52	77
					ARISON W
Taxa Richness =			7		116.67
Hilsenhoff Biotic Inde	x =		7.32		114.59
Scraper/Filterer Ratio			0		100.00
EPT/Chironomidae Ratio			0.06		100.00
% Dominant Taxon (Tali	tridae) =		79.22		79.22
EPT Richness =			1		100.00
Community Loss Index =			0.71		0.71

DATE: 26 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

			NUMBER
	FUNCTIONAL		16/48
TAXON	GROUP	H81	grids
EPHEMEROPTERA (mayflies)			
Baetidae	CG	4.	2
Leptophlebiidae	CG	2	2
ODONATA (dragonflies)			
Corduliidae	P	5	1
HEMIPTERA (water bugs)			
Belostomatidae	P		4
MEGALOPTERA (fishflies)			
Corydalidae	P	0	1
TRICHOPTERA (caddisflies)			7
Polycentropodidae	CF	6	1
DIPTERA (true flies)			
Chironomidae	CG	6	2
Tabanidae	Р	5	1
CRUSTACEA			
Amphipoda (scuds)			2012
Gammaridae	CG	4	2
Talitridae	CG ,	8	90
TOTAL	91		106
			% COMPARISON WI
Taxa Richness =		10	333.33
Hilsenhoff Biotic Index =		7.25	108.33
Scraper/Filterer Ratio =		0	100.00
EPT/Chironomidae Ratio =	9	2.50	100.00
% Dominant Taxon (Talitridae) =		84.91	84.91
PT Richness =		3	300.00
Community Loss Index = .		0.10	0.10

. 1

.

.

STATION: 18 DATE: 28 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	HBI	REP. A 80/80 grids	80/80	MEAN
	NO	ANIMALS	FOUND	IN SAMPLES	
TOTAL		÷	0	0	C
		•			
Taxa Richness =			0		0.00
Hilsenhoff Biotic Index =	•		0.00		0.00
Scraper/Filterer Ratio =			0		0.00
EPT/Chironomidae Ratio =			0.00		0.00
% Dominant Taxon =			0.00		0
EPT Richness =			0		0
Community Loss Index =					

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	н	BI	NUMBER 7/48 grids
EPHEMEROPTERA (mayflies)		-		
Leptophlebiidae	CG		2	3
ODONATA (dragonflies)				
Coenagrionidae	P		9	6
HEMIPTERA (water bugs)				
Corixidae	P		5	4
COLEOPTERA (beetles)				
Dytiscidae	P		5	2
Elmidae	Sc		4	1
TRICHOPTERA (caddisflies)				
Phryganeidae	SH		4	1
DIPTERA (true flies)				
Chironomidae .	CG		6	3
OLIGOCHAETA (WORMS)	CG		9	2
CRUSTACEA				
Amphipoda (scuds)				
Talitridae	CG		8	59
Isopoda (sowbugs)				
Asellidae	CG		8	3
TURBELLARIA (flatworms)	CG		6	3
MOLLUSCA				
Hydrobiidae (snails)	Sc		8	6
Planorbidae (snails)	Sc		6	9
TOTAL				102
				ARISON WITH
			REFERE	NCE STATION
Taxa Richness =		13		433.33
Hilsenhoff Biotic Index =		7.35		106.74
Scraper/Filterer Ratio =		0		100.00
EPT/Chironomidae Ratio =		1.33		100.00
L Dominant Taxon (Planorbidae)	=	57.84		57.84
EPT Richness =		2		200.00
Community Loss Index =				0.23

DATE: 28 SEPT 1994

8,0

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	нві	REP. A 46/48 grids	REP. B 38/48 grids	MEAN
TRICHOPTERA (caddisflie	s)	4			
Phryganeidae	Sh	3	- 0	4	2
DIPTERA (true flies)					
Chironomidae	CG	6	0	23	11.5
Tabanidae	P	6	3	12	7.5
OLIGOCHAETA (WORMS)	CG	9	22	6	14
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	32	40	36
MOLLUSCA					
Hydrobiidae (snails)	Sc	8	32	7	19.5
Planorbidae (snails)	Sc	6	6	0	3
Sphaeriidae (clams)	CF	8	6	12	9
TOTAL			101	104	102.5
					ARISON WI
				KEFERE	NCE SINII
Taxa Richness =			8		133.33
Hilsenhoff Biotic Index			7.61		110.19
Scraper/Filterer Ratio			6.33		100.00
PT/Chironomidae Ratio			0.17		100.00
C Dominant Taxon (Hydro	biidae) =		19.02		19.02
EPT Richness =			1		100.00
Community Loss Index =			0.50		0.50

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	нві	NUMBER 13/48 grids
ODONATA (dragonflies)			9
Aeshnidae	P	3	1
Coenagrionidae	P	9	13
TRICHOPTERA (caddisflies)			
Limnephilidae	Sh	4	1
DIPTERA (true flies)			
Chironomidae	CG	6	2
CRUSTACEA			
Amphipoda (scuds)			
Talitridae	CG	8	50
MOLLUSCA			
Gastropoda			4
Hydrobiidae (snails)	Sc	8	18
Lymnaeidae (snails)	CG	6	2
Planorbidae (snails)	Sc	6	4
Sphaeriidae (clams)	CF	8	2
TOTAL			97

	5.0		% COMPARISON WITH
			REFERENCE STATION
Taxa Richness =		10	333.33
Hilsenhoff Biotic Index =		6.14	127.74
Scraper/Filterer Ratio =		11	100.00
EPT/Chironomidae Ratio =		0.50	100.00
% Dominant Taxon (Talitridae) :	=	51.55	51.55
EPT Richness =		1	100.00
Community Loss Index =		0.10	0.10

STATION: 27 DATE: 28 SEPT 1994 HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	HBI	REP. A 48/48 grids	REP. B 16/48 grids	MEAN
ODONATA (drågonflies)					
Coenagrionidae	P	9	0	1	0.5
TRICHOPTERA (caddisflie	s)				
Polycentropodidae	CF	6	1	1	1
DIPTERA (true flies)					
Chironomidae	CG	6	1	2	1.5
CRUSTACEA					
Amphipoda (scuds)				05	
Talitridae (sopoda (sowbugs)	CG	8	8	95	51.5
Asellidae	CG	8	1	0	0.5
HIRUDINEA (leeches)	P	10	1	0	0.5
MOLLUSCA					
Hydrobiidae (snails)	Sc	8	1	0	0.5
TOTAL ,			13	99	56
					ARISON WIT
(axa Richness =			7		116.67
lilsenhoff Biotic Index			7.94		105.64
Scraper/Filterer Ratio			1		100.00
PT/Chironomidae Ratio			0.67		100.00
Dominant Taxon (Talit	ridae) =		91.96		91.96
EPT Richness =			1		100.00
Community Loss Index =			0.71	100	0.71

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC

PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP		HB I	NUMBER 24/48 grids	
EPHEMEROPTERA (mayflies) Leptophlebiidae	CG		2	1	
ODONATA (dragonflies)					
Coenagrionidae	P		9	10	
Corduliidae	P		5	1	
HEMIPTERA (water bugs)					
Belostomatidae	P			2	
TRICHOPTERA (caddisflies)					
Phryganeidae	Sh		4	1	
Polycentropodidae	CF		6	1	
DIPTERA (true flies)					
Chironomidae	CG		6	2	
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG		8	77	
Isopoda (sowbugs)				C.5.	
Asellidae	CG		8	2	
TURBELLARIA (flatworms)	CG		6	1	
MOLLUSCA					
Hydrobiidae (snails)	Sc		8	2	
Lymnaeidae (snails)	CG		6	2 2	
TOTAL				102	
				% COMPARISON WITH	
Taxa Richness =		43		400.00	
Taxa Richness = Hilsenhoff Biotic Index =		7.70		400.00 101.98	
그런 가프로 마이 전에서 보면 가게 되었다. 그리는 가는 사람이 되었다.		7.70		100.00	
Scraper/Filterer Ratio =		1.50		100.00	
EPT/Chironomidae Ratio = % Dominant Taxon (Talitridae) =		77.00		77.00	
& Dominant Taxon (Taittridae) = EPT Richness =		77.00		300.00	
Community Loss Index =		0.08		0.08	
POLITICA FORD THEEY -		0.00	1.0	0.00	

DATE: 28 SEPT 1994

HABITAT TYPE: BENTHIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	нві	REP. A 8/48 grids	REP. B 48/48 grids	MEAN
DIPTERA (true flies)					
Chironomidae	CG	6	13	8	10.5
NEMATODA			5	7	6
OLIGOCHAETA (worms)	ÇG	9	1	0	0.5
CRUSTACEA					
Amphipoda (scuds)					
Talitridae	CG	8	79	25	52
Isopoda (sowbugs)					
Asellidae	CG	8	1	0	0.5
TOTAL			99	40	69.5
				% COMPARISON WIT	
				KEFERI	ENCE STATE
Taxa Richness =			5		83.33
Hilsenhoff Biotic Index =			7.01		119.55
Scraper/Filterer Ratio =			0	100.00	
EPT/Chironomidae Ratio =			0.00	100.00	
% Dominant Taxon (Talitridae) =			74.82	74.82	
EPT Richness =			0		0
Community Loss Index =			0.80		0.80

STATION: 32

DATE: 28 SEPT 1994

HABITAT TYPE: EPIPHYTIC

PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	нві	NUMBER 48/48 grids
EDUCATION (mortion)			
EPHEMEROPTERA (mayflies) Leptophlebiidae	CG	2	4
DIPTERA (true flies)			
Chironomidae	CG	6	5
OLIGOCHAETA (WORMS)	CG	9	4
CRUSTACEA			
Amphipoda (scuds)			
Talitridae	CG	8	81
Isopoda (sowbugs)			
Asellidae	CG	8	4
TOTAL			98
			RISON WITH
Taxa Richness =		5	166.6
Hilsenhoff Biotic Index =		7.69	102.0
Scraper/Filterer Ratio =		0	100.0
EPT/Chironomidae Ratio =		0.80	100.0
% Dominant Taxon (Talitridae) =		82.65	82.6
EPT Richness =		1	100.0
Community Loss Index =		0.40	0.4

STATION: 34 DATE: 28 SEPT 1994 HABITAT TYPE: EPIPHYTIC PROJECT: FT. DEVENS

TAXON	FUNCTIONAL GROUP	нві	NUMBER 26/48 grids
ODONATA (dragonflies)			
Coenagrionidae	P	9	1
COLEOPTERA (beetles)			
Elmidae	Sc	4	3
DIPTERA (true flies)			
Chironomidae	CG	6	5
OLIGOCHAETA (worms)	CG	9	2
CRUSTACEA			
Amphipoda (scuds)			
Gammaridae	CG	4	1
Talitridae	CG	8	51
Isopoda (sowbugs)			
Asellidae	CG	8	37
TOTAL			100

		% COMPARISON WITH
		REFERENCE STATION
Taxa Richness =	7	233.33
Hilsenhoff Biotic Index =	7.77	101.01
Scraper/Filterer Ratio =	0	100.00
EPT/Chironomidae Ratio =	0	100.00
% Dominant Taxon (Talitridae) =	51.00	51.00
EPT Richness =	0	0
Community Loss Index =	0.14	0.14

TOXICITY EVALUATION OF THE SEDIMENT COLLECTED FROM LOWER COLD SPRING BROOK

W0129510.080 7005-15

TOXICITY EVALUATION OF THE SEDIMENT COLLECTED FROM COLD SPRING BROOK, FORT DEVENS, MASSACHUSETTS

ABB Environmental Services, Inc.
Corporate Place 128
107 Audubon Road
Wakefield, MA 01880

SLI Report #94-11-5529 SLI Study #13109.0994.6127.121/101

PROGRAM MANAGER: Krzysztof M. Jop STUDY DIRECTOR: Arthur E. Putt

Springborn Laboratories, Inc. Environmental Sciences Division 790 Main Street Wareham, Massachusetts 02571-1075

6 February 1995

FINAL REPORT

TABLE OF CONTENTS

																P	age
LIS.	OF TABLES					٠.,		• •	 				 		 	 	. з
1.0	INTRODUCTIO	ON	,			٠.,		٠.	 		٠.		 		 		. 4
2.0	MATERIALS A	AND METHO	DS						 				 		 		. 5
	2.1 Test Sa	amples							 			٠.	 		 		. 5
	2.2 Toxicity	Tests							 				 		 		. 6
	2.2.1	Preparation	of the	Sedi	ments	s			 				 		 		. 6
		2 Acute Toxic															
	2.2.3	3. Subchroni	C Toxic	ity Te	st wit	h M	idge	es	 	٠.		٠.	 ٠.		 ٠.		10
3.0	RESULTS								 				 				13
		Toxicity Tests															
		onic Toxicity															
4.0	CONCLUSION							٠.	 ٠.	٠.		٠.	 	•	 		14
REF	ERENCES								 				 	•	 	 	16
TAE	LES								 				 		 	 	17
SIG	NATURES AND	APPROVAL							 				 		 		23

LIST OF TABLES

		Page
Table 1.	Water quality parameters (dissolved oxygen, pH, temperature, total alkalinity, total hardness and specific conductivity) measured in the overlying water during 10-day static acute renewal toxicity tests with <i>Hyallela azteca</i>	18
Table 2.	Percent mortality observed for each sediment sample at the termination of the 10-day static acute renewal toxicity tests with Hyallela azteca	19
Table 3.	Water quality parameters (dissolved oxygen, pH, temperature, total alkalinity, total hardness and specific conductivity) measured in the overlying water during 10-day static renewal subchronic toxicity tests with Chironomus tentans	20
Table 4.	Mean percent mortality of Chironomus tentans at the termination of 10-day static renewal subchronic toxicity tests	21
Table 5.	Concentrations of selected parameters measured in the water and sediment of Cold Spring Brook	22

1.0 INTRODUCTION

Decisions regarding the need for remediation and efficacy of remedial alternatives at sites containing waste materials often depend on information concerning the environmental risks posed by conditions at the site. As part of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) remedial alternatives or removal actions for hazardous waste sites should include an an assessment of potential effects. An essential part of this is an evaluation of the degree and spatial extent of contamination at the site.

The environmental program at Fort Devens, Massachusetts, has been designed to address environmental degradation and the risk to ecological receptors within several aquatic systems. The Cold Spring Brook system was one of these potentially contaminated sites. A laboratory testing program was incorporated into the environmental program at Cold Spring Brook to assess the potential toxicity of sediments to aquatic organisms. Information derived from the testing program will be used as a "weight-of-evidence" approach to evaluate ecological risk in aquatic systems and may also be used to help derive preliminary remedial goals and/or target cleanup levels for contaminated sites.

The hazards posed by a chemical when released into the environment are a function of the concentration achieved in the water column and sediment as a result of its use in addition to the environmental conditions that determine its bioavailability. The process of environmental assessment combines the knowledge of the properties which influence the behavior of a chemical in the environment with an understanding of the acute and chronic toxicity of the chemical and its potential for bioaccumulation. Bioavailability of sediment-associated contaminants can be defined as the fraction of the total contaminant in the interstitial water and on the sediment particles that is available to the organism. Analytical measurement of contaminant concentration in the sediment does not always reflect the bioavailable fraction of sediment-associated contaminants; therefore, a simple measure of the sediment residue is insufficient to define the exposure concentration. Further, because feeding by benthic organisms

is generally limited to the fine grain material which sorbs most contaminants, the potential exposure could be much greater than anticipated from the whole sediment concentration when ingestion is a route of exposure. The assessment of the effects of contaminants in sediment environments is complicated because organisms can be simultaneously exposed to multiple toxicants with different modes of action and routes of effects. In recognition of these concerns, ABB Environmental Services, Inc. in Wakefield, Massachusetts included a battery of screening evaluation assays as a part of the site characterization of Cold Spring Brook, Fort Devens, Massachusetts.

The objective of this testing program was to evaluate the toxicity of ten sediments to two freshwater species. Toxicity of the bulk sediment samples was measured using epibenthic and benthic organisms, *Hyallela azteca* and *Chironomus tentans*, respectively. Each species selected for this program is ecologically important and subject to contaminant exposure through various routes. Toxicity of the bulk sediment samples was evaluated using an acute test with *Hyallela azteca* and a subchronic test with *Chironomus tentans*. All sediment samples were collected from the area within Cold Spring Brook in Fort Devens, Massachusetts. The use of a set of assays using organisms with a range of sensitivities enables rapid identification of toxic versus nontoxic sediments and facilitates the prioritization of further investigations like determination of the potential causes of the observed effects.

All testing was conducted at Springborn Laboratories, Inc. (SLI), Environmental Sciences Division, Wareham, Massachusetts. All original raw data and the final report produced during this study are stored at Springborn.

2.0 MATERIALS AND METHODS

2.1 Test Samples

The toxicity tests were conducted using sediment collected from Cold Spring Brook, Fort Devens, Massachusetts. Approximately 4 liters of sediment was collected from each location by

ABB Environmental Services, Inc. personnel. Sample IDs and sample collection dates are as follows: sample 08X was collected on 19 September 1994, samples 03X and 27X were collected on 20 September 1994, samples 02X, 11X, 18X, 32X and 34X were collected on 21 September 1994, and samples 13X and 20X were collected on 22 September. All samples were received at Springborn on 23 September 1994. Following receipt at Springborn, any samples that were not immediately tested were stored refrigerated at approximately 4 ± 2 °C. Refrigerated samples were warmed to room temperature before use in the toxicity tests.

2.2 Toxicity Tests

This testing program included acute toxicity tests with *Hyallela azteca* and subchronic toxicity tests with *Chironomus tentans* conducted with the bulk sediment samples.

The bulk sediment samples were used to estimate the effect on survival of amphipods (Hyallela azteca) and survival and growth of midges (Chironomus tentans). Test organisms (each species separately) were placed in beakers containing the sediment and clean overlying water and were incubated under standard conditions for 10 days. After the exposure period, the surviving organisms were counted. Sediment toxicity was estimated by comparing the response of exposed organisms in the test sediment with the reference sediment.

2.2.1 Preparation of the Sediments

Prior to use in the toxicity tests, each sediment sample was passed through a 2 mm stainless steel sieve. Eight-hundred mL of the sediment was used to initiate the acute test with Hyallela azteca and 100 mL of the sediment was used initiate the subchronic test with Chironomus tentans. The reference sediment used during this test was collected from Strohs Folly Brook, Wareham, Massachusetts. The site of collection of the reference sediment is known to be relatively free of contaminants and is frequently used by Springborn as reference sediment for benthic testing.

2.2.2 Acute Toxicity Test with Amphipods

2.2.2.1 Study Protocol and Conduct

Procedures used in the acute toxicity test followed those described in the Springborn protocol entitled "Protocol for Conduct of a Static-Renewal Toxicity Test with Amphipods Hyallela azteca to Meet U.S. EPA Guidelines for Bioassessment of Hazardous Waste Site Sediment", Springborn Laboratories Protocol #:080994/SED-Ha-121. The methods described in this protocol meet the standard procedures described in the ASTM Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates (ASTM, 1992). The 10-day static renewal toxicity tests were conducted from 23 September to 3 October 1994 and 28 September to 8 October 1994.

2.2.2.2 Test Organism

The test organism, *Hyallela azteca* (\leq one week old), was obtained from cultures maintained at Springborn. The culture system was maintained under flow-through conditions and consisted of three 5.5 gallon glass aquaria which contained approximately 10 L of culture water. The culture water was well water which had been supplemented with untreated water from the town of Wareham, Massachusetts. The culture water had a total hardness within the range of 20 to 40 mg/L as CaCO₃, a pH range of 6.9 to 7.2, a specific conductivity within the range of 120 to 150 μ mhos/cm and a temperature of 20 \pm 2 °C. The culture area received a regulated photoperiod of 16 hours of light and 8 hours of darkness. Light at an intensity of 30 to 100 footcandles was provided at the culture solutions' surface by Durotest Vitalite $^{\odot}$ fluorescent bulbs.

The *H. azteca* cultures were fed with Trout Chow Suspension supplemented with Tetramin flake fish food. The Trout Chow Suspension was a combination of Salmon Starter trout food (50 g) and dehydrated alfalfa (10 g) mixed with dilution water (2 L). Both suspensions were prepared at Springborn.

Seven to ten days before test initiation, adult amphipods were removed from the culture tanks and placed in 5.5-gallon glass aquaria containing 10 L of dilution water. The resulting

offspring were then removed daily from the aquaria using a glass pipet and transferred to 1-L glass beakers where they were held until test initiation.

2.2.2.3 Test Procedures

The overlying water used during this study was from the same source as the culture water. During the study period, this water was characterized as being "soft" with a total hardness range as CaCO₃ of 20 to 40 mg/L, a pH range of 6.9 to 7.5, and a specific conductivity range of 80 to 150 μmhos/cm (Gravity Feed Tank Water Quality Analysis Logbook, Volume 9). Representative samples of the water source were analyzed monthly for total organic carbon (TOC) concentration. The TOC concentration of the water source for the months of September and October 1994 were 0.45 and 0.56 mg/L, respectively (TOC and TSS Master Log, Volume II). Several species of daphnids (a representative freshwater invertebrate generally recognized to be sensitive) are maintained in water from the same source as the water utilized in this study and have successfully survived and reproduced over several generations. This, in combination with the previously mentioned analyses, confirms the acceptability of this water for bioassays.

The test vessels used during this test were 1000-mL beakers. Four replicate test vessels were maintained for each sediment sample. The test was conducted in a temperature controlled water bath designed to maintain the temperature of the test solutions at 20 \pm 1 °C. The test area had a photoperiod of 16 hours of light and 8 hours of darkness, with a light intensity range of 80 to 100 footcandles. Lighting was provided by Sylvania Growlux and Cool White fluorescent bulbs.

Prior to use in the toxicity tests, all sediment samples were passed through a 2.0 mm stainless steel sieve to remove rocks, debris and large clumps of sediment. Each sediment sample was then divided between the replicate test vessels so that each test vessel contained 200 mL of the respective sediment. The resultant sediment layer in each test vessel was 2 cm deep. Overlying water (800 mL) was then gently added to each replicate. The test was initiated when 20 amphipods were added to each replicate exposure vessel (80 amphipods per test

sample and control). Test vessels were covered with plastic wrap and aeration was provided to each test vessel throughout the exposure period.

Renewal of the overlying water in each replicate test vessel was performed three times weekly by carefully siphoning off 75% (approximately 600 mL) of the existing overlying water and gently replacing it with fresh overlying water. Amphipods were fed a combination of Tetramin Flake Fish Food and Trout Chow Suspension daily at rates of 100 and 300 μ L, respectively, per test vessel. Survival was determined at test termination by sieving the sediment from each replicate test vessel to remove the amphipods for observation.

At test initiation and at each subsequent 24-hour interval, biological observations and the physical characteristics of the test solutions were observed and recorded. The dissolved oxygen concentration, pH and temperature were measured in each replicate test vessel at test initiation (day 0) and at test termination (day 10). On the remaining days of the exposure, these measurements were recorded in alternating test vessels of the test samples and the control. On renewal days, water quality measurements were made on old and new test sample solutions and the controls. At test initiation and termination, hardness, total alkalinity, and specific conductivity were measured on composite samples of overlying water from each test sample and control. Dissolved oxygen concentrations were measured using a Yellow Springs Instrument (YSI) Model #57 dissolved oxygen meter and probe; pH was measured with a Jenco Model 601A pH meter and combination electrode; and daily temperature was measured with an Ertco alcohol thermometer. Total hardness concentration was measured by the EDTA titrimetric method (APHA et al., 1985). Total alkalinity concentration was determined by potentiometric titration to an endpoint of pH 4.5 (APHA et al., 1985). Specific conductance was measured using a YSI Model #33 conductivity meter. In addition, temperature of the test solutions was continuously monitored throughout the study using a Fisher Min/Max thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.2.2.4 Statistical Analysis

At test termination, mean survival of amphipods from each test sample was statistically compared (Student's t-test) to the performance of the reference control organisms to establish significant effects. All statistical analyses were performed at the 95% level of certainty.

2.2.3. Subchronic Toxicity Test with Midges

2.2.3.1 Study Protocol and Conduct

Procedures used in the subchronic toxicity test followed those described in the Springborn protocol entitled "Protocol for Conduct of a Static-Renewal Partial Life-Cycle Toxicity Test with Midge (Chironomus tentans) to Meet U.S. EPA Guidelines for Bioassessment of Hazardous Waste Site Sediment", Springborn Laboratories Protocol #: 081294/SED-Ct-101. The methods described in this protocol meet the standard procedures described in the ASTM Standard Guide for Conducting Sediment Toxicity Tests with Freshwater Invertebrates (ASTM, 1992). The 10-day toxicity tests were conducted from 27 September to 7 October 1994.

2.2.3.2 Test Organism

The test organism, *Chironomus tentans*, 8-12 days old, was obtained from cultures maintained at Springborn. The culture system was maintained under static conditions and consisted of several 5-L glass aquaria which contained approximately 3 L of culture water. The culture water was well water which had been supplemented with untreated water from the Town of Wareham, Massachusetts. The culture water was characterized as being "soft" with a total hardness within the range of 20 to 40 mg/L as $CaCO_3$, a pH range of 6.9 to 7.5, a specific conductivity within the range of 80 to 150 μ mhos/cm and a temperature of 22 \pm 1 °C. The culture area received a regulated photoperiod of 16 hours of light and 8 hours of darkness. Light at an intensity of 30 to 100 footcandles was provided at the culture solutions' surface by Durotest Vitalite fluorescent bulbs. The midge cultures were fed a finely ground Tetramin suspension prepared at Springborn.

Second instar larvae was collected from the separate egg masses 8 to 10 days after hatching and were transferred to the 250 mL beakers containing approximately 150 mL of dilution water. Each container contained 15 midge larvae.

2.2.3.3 Test Procedures

The test was initiated when one midge larvae was introduced to each test vessel (polypropylene centrifuge tubes). Each tube contained 7.5 g (wet weight) of sediment and 47 mL of overlying water. Fifteen replicate test vessels were maintained for each sediment sample. The overlying water used during this study was from the same source as the culture water. During the study period, this water was characterized as being "soft" with a total hardness range as CaCO₃ of 20 to 40 mg/L, a pH range of 6.9 to 7.5 and a specific conductivity range of 80 to 150 µmhos/cm (Gravity Feed Tank Water Quality Analysis Logbook, Volume 9). Representative samples of the water source were analyzed monthly for TOC concentration. The TOC concentration of the water source for the months of September and October 1994 were 0.45 and 0.56 mg/L, respectively (TOC and TSS Master Log, Volume II). Several species of daphnids (a representative freshwater invertebrate generally recognized to be sensitive) are maintained in water from the same source as the water utilized in this study and have successfully survived and reproduced over several generations. This, in combination with the previously mentioned analyses, confirms the acceptability of this water for bioassays.

The test was conducted in a temperature controlled water bath designed to maintain the temperature of the test solutions at 22 \pm 1 °C. The test area had a photoperiod of 16 hours of light and 8 hours of darkness, with a light intensity range of 80 to 100 footcandles. Lighting was provided by Sylvania Growlux and Cool White fluorescent bulbs.

Prior to use in the toxicity tests all sediment samples were passed through a 2.0 mm stainless steel sieve to remove rocks, debris and large clumps of sediment. Each sediment sample was then divided between the replicate test vessels so that each test vessel contained 3 mL (7.5 grams wet weight) of the respective sediment. The resultant sediment layer in each

test vessel was 1.5 cm deep. Test vessels were covered with plastic wrap and aeration was provided to each test vessel throughout the exposure period.

Renewal of the overlying water in each replicate test vessel was performed daily by carefully siphoning off 75% (approximately 35 mL) of the existing overlying water and gently replacing it with fresh overlying water. Midge larvae were fed a 0.1 mL suspension of finely ground flaked fish food (60 mg/mL) per test vessel, daily. Survival was determined at test termination by sieving the sediment from each replicate test vessel to remove the midges for observation. Surviving midges were then dried in an oven at 60°C fro 24 hours. Collective weight of the dried organisms for each sample was determined using an analytical balance. Growth was evaluated by comparing average dry weights of test organisms for each sample site to the reference control.

At test initiation and at each subsequent 24-hour interval, biological observations and the physical characteristics of the test solutions were observed and recorded. The dissolved oxygen concentration, pH and temperature were measured daily in each replicate test vessel. At test initiation and termination, hardness, total alkalinity and specific conductivity were measured on composite samples of overlying water from each test sample and control. Dissolved oxygen concentrations were measured using a Yellow Springs Instrument (YSI) Model #57 dissolved oxygen meter and probe; pH was measured with a Jenco Model 601A pH meter and combination electrode; and daily temperature was measured with an Ertco alcohol thermometer. Total hardness concentration was measured by the EDTA titrimetric method (APHA et. al., 1985). Total alkalinity concentration was determined by potentiometric titration to an endpoint of pH 4.5 (APHA et. al., 1985). Specific conductance was measured using a YSI Model #33 conductivity meter. In addition, temperature of the test solutions was continuously monitored throughout the study using a Fisher Min/Max thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.2.3.4 Statistical Analysis

At test termination, survival of midge from each test sample was statistically compared (Student's t-test) to the performance of the reference control organisms to establish significant effects. All statistical analyses were performed at the 95% level of certainty.

3.0 RESULTS

3.1 Acute Toxicity Tests with Amphipods

A summary of the water quality parameters measured during the acute tests with the sediment samples from Cold Spring Brook and Hvalella azteca is presented in Table 1, and a summary of the biological results (percent mortality) from these tests is presented in Table 2. According to the Student's t-test, amphipod survival was significantly different in two sediment samples tested (03X and 08X) compared to the survival of the control organisms. Mean survival of amphipods in these samples (03X and 08X) was 65 to 79%, respectively, compared to 93% survival recorded in the control sediment. Surviving organisms from samples 03X, 08X and 27X were visually observed to be reduced in size when compared to the size of the control organisms. Survival among organisms exposed to the remaining sediment samples tested (27X, 11X, 13X, 32X, 20X, 021X, 34X and 18X) was 66, 85, 87, 89, 89, 90 and 91%, respectively and survival was not statistically reduced compared to the control sample. The evaluation of amphipod survival showed a statistically significant difference compared to the control amphipod survival in only two samples (03X and 08X). A third sample, 27X, with a mean survival of 66% was not statistically different from the control (i.e., 93%) because of the variability, i.e., 35 to 90%, in survival between the four replicates. It is our opinion that the reduction in survival and growth in samples 03X, 08X and 27X resulted from the contaminants present these three sediment samples.

3.2 Subchronic Toxicity Tests with Midges

A summary of the water quality parameters measured during the subchronic toxicity tests conducted with the sediment samples and *Chironomus tentans* is presented in Table 3 and a

summary of the biological results (percent mortality) is presented in Table 4. According to the Student's t-test, midge survival was not statistically different in any sediment samples compared to the survival of organisms in the reference control sample. Similarly, no reduction in dry weight was observed in any sediment sample compared with the dry weight of the organisms in the reference control sample.

4.0 CONCLUSION

The amphipod, *H. azteca* and the midge, *C. tentans* are benthic organisms commonly used for testing freshwater sediments. Both species are ecologically important and may respond to contaminants differently since they are subject to exposure through various routes. The test methods used enable examination of a variety of endpoints, including traditionally-used measures such as survival, growth and reproduction. Although used extensively in sediment testing, the sensitivity of both species (*H. azteca* and *C. tentans*) has never been directly compared. Evaluation of the response of both *H. azteca* and *C. tentans* to sediments collected from Cold Spring Brook show that amphipods were more sensitive. This is supported by current literature, *i.e.*, Ankley *et al.* (1991), that compared the sensitivity of *H. azteca* to several species of freshwater organisms, including *Ceriodaphnia dubia*. He concluded that the sensitivity of both species, *C. dubia* and *H. azteca*, is comparable.

The results of this testing program indicated that at three locations (03X, 08X and 27X) the concentrations of contaminants in the sediment affected survival and/or growth of *H. azteca*, while none of the sediments from any of the locations affected survival and growth of *C. tentans*. A statistically significant reduction in amphipod survival was observed in sediment samples 03X and 08X, while all three sediment samples showed a visual reductions in growth compared to the control. No relationship could be established between any one measured chemical parameter and the observed amphipod response. Therefore, it is reasonable to conclude that the contaminant or group of contaminants responsible for the observed toxicity to *H. azteca* was not included in the array of chemical parameters measured during this program. Review of the total organic carbon (TOC) concentration at these three sites revealed that TOC concentrations

were generally lower than several of the surrounding locations. The reduction of 1.5 to 6 times of the TOC concentration in the sediments could substantially increase the bioavailability of the contaminant or group of contaminants responsible for the toxicity.

To clearly define site implications of these contaminated sediments at Cold Spring Brook, further evaluation of the toxicity in sediments is needed to determine site clean-up and/or remediation goals. The extent of toxicity and the sources of toxicity would need to be addressed prior to establishing further plans. Both these questions could be answered by testing sediments diluted with reference sediment combined with a toxicity identification evaluation program. The knowledge of the source of toxicity would aid in decision-making process by using the most cost-effective and environmentally protective remediation or disposal technique available.

REFERENCES

- Ankley G.T., M.K. Schubauuer-Berigan and J.R. Dierkes. 1991. Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water vs. elutriate. Environ. Tox. Chem. 10: 1359-1366
- APHA, AWWA, WPCF. 1985. Standard Methods for the Examination of Water and Wastewater.

 16th Edition, Washington, DC, 1268 pp.
- ASTM. 1992. Standard Guide for Conducting Sediment Toxicity Test with Freshwater Invertebrates. American Society for Testing and Materials. 1916 Race Street, Philadelphia, PA. Volume 11.04. Designation: E 1383-90 pps. 1085-1104.
- Green, J.C., C.L. Bartels, W.J. Warren-Hicks, B.R. Parkhurst, G.L. Linder, S.A. Peterson and W.e. Miller. 1989. Protocols for the Short Term Toxicity Screening of Hazardous Waste Sites. EPA 600/3-88/029.
- U.S. EPA. 1989. Methods for Estimating the Chronic Toxicity of Effluent and Receiving Waters to Freshwater Organisms. EPA-600/4-89/001. U.S. EPA, Washington, D.C.

TABLES

THE REPORT OF THE PARTY OF THE

Table 1. Water quality parameters (dissolved oxygen, pH, temperature, total alkalinity, total hardness and specific conductivity) measured in the overlying water during 10-day static acute renewal toxicity tests with *Hyallela azteca*.

Sample ID	±	Concentration (mg/L)		(°C)	Hardness (mg/L as CaCO ₃)	Total Alkalinity (mg/L as CaCO ₃)	Specific Conductivity (µmhos/cm)
Test Dates:	23 Se	ptember to 3	October 199	4			
Control	*	7.0 - 9.3	7.0 - 8.2	20 - 21	48 - 104	46 - 94	180 - 280
27X		5.0 - 8.9	6.6 - 7.9	20 - 21	32 - 36	20 - 26	150 - 160
08X	\$ 1	6.8 - 9.2	6.9 - 7.9	20 - 21	32	20 - 24	150 - 160
11X		7.9 - 9.0	6.8 - 7.5	20 - 21	36	20 - 24	150 - 170
03X		7.7 - 9.2	6.9 - 7.6	20 - 21	36 - 40	26	150 - 170
Test Dates:	28 Se	ptember to 8	October 199	4			
Control		5.4 - 9.4	7.1 - 8.2	20	72	40 - 62	120
13X		5.1 - 9.1	6.8 - 7.6	20	40 - 44	26	160
32X		5.3 - 9.2	6.7 - 7.4	20	36	24	150 - 160
20X		5.9 - 9.7	6.8 - 8.2	20	40 - 56	26 - 48	170 - 190
02X		5.2 - 9.4	6.8 - 7.5	20	36 - 40	26 - 30	160 - 170
34X		5.3 - 9.5	6.4 - 7.3	20	32 - 36	20	150 - 160
18X		6.6 - 9.5	6.6 - 7.3	20	32 - 36	22 - 24	150 - 160

Table 2. Percent mortality observed for each sediment sample at the termination of the 10-day static acute renewal toxicity tests with Hyallela azteca.

Samp ID	ie		i.	Percent Mortalit	y .19	£1	5 8 Mg = 5
טו		Rep A	Rep B	Rep C	Rep D	Mean	
Test Dates:	23 Septe	ember to 3 Oc	tober 1994		es e = +-a-i	(+)= +	-
Control		0	5	10 *d	15	8	-
27X		65	50	10	10	34	31
08X		25	20	15	25	21ª	115
11X		20	10	15	15	15	204
03X		60	40	35	5	35ª	Å.
Test Dates:	28 Septe	ember to 8 Oc	tober 1994	20 - 2	3		
Control		10	10	10	0	8	*
13X		5	20	0	25	13	4.50
32X		10	10	20	5	11	
20X		0	15	20	10	11	
02X		0	5	5	5	4	
34X		5	10	10	15	10	
18X		15	10	5	5	9	

Statistically different as compared to the reference control (test dates 23 September to 3 October 1994).

Table 3. Water quality parameters (dissolved oxygen, pH, temperature, total alkalinity, total hardness and specific conductivity) measured in the overlying water during 10-day static renewal subchronic toxicity tests with Chironomus tentans.

Sample ID	Dissolved Oxyg Concentration (mg/L)		Temperatu (°C)	re Total Hardness (mg/L as CaCO ₃)	Total Alkalinity (mg/L as CaCO ₃)	Specific Conductivity (µmhos/cm)
Test Dates:	27 September to 7 (October 19	94			
Control #1	2.7 - 9.3	6.9 - 7.8	20 - 22	36 - 92	24 - 92	160 - 260
Control #2	3.8 - 9.3	6.9 - 7.8	20 - 22	36 - 92	24 - 100	160 - 260
13X	3.4 - 9.3	6.9 - 7.5	20 - 22	36 - 48	24 - 52	160 - 190
18X &	3.5 - 9.3	6.5 - 7.4	20 - 22	36	24 - 38	160 - 190
20X	4.1 - 9.3	6.6 - 7.6	20 - 22	36 - 40	24 - 52	160 - 190
02X	2.0 - 9.3	6.9 - 7.4	20 - 22	36 - 48	24 - 54	160 - 200
X80	2.4 - 9.3	6.8 - 7.4	20 - 22	36 - 48	24 - 62	160 - 210
03X	4.1 - 9.3	6.9 - 7.4	20 - 22	36 - 48	24 - 48	160 - 190
32X	3.9 - 9.3	6.9 - 7.5	20 - 22	36 - 48	24 - 42	160 - 170
34X	3.8 - 9.3	6.6 - 7.5	20 - 22	36 - 40	24 - 44	160 - 170
11X	4.2 - 9.3	5.8 - 7.6	20 - 22	36 - 40	24 - 38	160 - 200
27X	3.6 - 9.3	6.6 - 7.5	20 - 22	36 - 40	24 - 40	160 - 190

Table 4. Mean percent mortality of Chironomus tentans at the termination of 10-day static renewal subchronic toxicity tests.

Sample ID	127 T. 6	and fullist	Mean Mortality (%)	Average Dry Weight (mg)		
Test Dates: 27 September				Arimij	-Å	6
Control #1	275205	and the same	13		2.14	-
Control #2		A to grade	92 0. 1	1 6 With 25 c	11.97	· . [
13X	1 4	(35	13	· M	3.30	11 5
18X 20X		** B' (7	j = 12 2	3.01 3-1000 3.82	Ju se
02X	4	F.,2 = D2;	. f . e. : 27	8 1-1		*
08X	4	25 - * *		¢ 5-4	2.67	. 4
03X		Ŷ.	20		2.73	V 5
32X ·			13		2.70	e torn
34X			13		2.60	
11X	- 3		13		2.07	
27X			7		2.23	

Table 5. Concentrations of selected parameters measured in the water and sediment of Cold Spring Brook.

		400 11 11	· Un	276年	1. 1E 4. 616	Site (C)				
Chemical Analysis	Matrix ^a	02X	03X			13X	18X	20X	27X	32X	34X
Total Organic Carbon	Sediment	120	22	75.7	149	104	~113	60.2	20.5	42.4	64.7
	Sediment	120	22	75.7	5		713	00.2	32.5	42.4	04.7
Total Hardness	Water	71.6	69.6	67.6	-5-3-30	0.2430	56.4	61.6	51.6	51.2	50.4
Total Alkalinity	Water	49	48	46	41	51	34	22	35	35	27
Total Suspended Solids	Water	4	_	-	6	_	_	133	_	4	352
Total Petroleum Hydrocarbon	Sediment s	2120	103	734	534	460	203	2230	-	71.9	110
Arsenic	Sediment Water	62 4.5	14 4.2	20.7 4.7	47.4 3.9	65	63	22	9.37	11.4	25 5.2
Lead	Sediment Water	241 2.39	30.8	141 1.41	273	240 -	=	235 1.41	1	23.5 5.97	52 4.56
Nickel	Sediment	33.5	8.98	24.6	35.2	35.9	26.4	35.5	13.2	10.4	15.7
Barium	Sediment Water	117 10.1	15.7 5.37	61.2 7.38	83.7 7.29	90.1 8.39	97.3 12	81.5 16.7	35.3 8.86	39.8 7.79	42.7 10.6
Chromium	Sediment	48	8.53	26.1	44.5	30.9	_	55	14.9	11.7	-
Copper	Sediment	48.8	6.39	16.4	35.7	28.5	21.8	41.7	7.83	6.86	13.9
Zinc	Sediment	332	6.45	143	336	305	193	168	31.4	39.7	83.6

Values presented in this table for total organic carbon, total hardness and total alkalinity are presented as either mg/g (sediment) or mg/L (water). All remaining values for sediment and water analyses are presented in this table as μ g/g (sediment) and μ g/L (water), respectively.

121 Mb-

r igejê

Parmean; terricalbona

· 507" . .

2017

SIGNATURES AND APPROVAL

SUBMITTED BY:

Springborn Laboratories, Inc.

Environmental Sciences Division

790 Main Street

Wareham, Massachusetts 02571-1075

Fils

PREPARED BY:

Krzysztof M. Jop, J.D.

Program Manager

Date

ê

Arthur E. Putt Study Director Date

TABLE 4-1 FIELD PROGRAM TARGET ANALYTEGROUPS

			FIELD	PROGRAM			100	
ANALYTE	1994 5	SA 73 SI	AR	EE 70	A control of the control of	RM DRAIN MPLING	1993 SA 57 SI	1992 GP3 SI
	Surface Water	Sediment	Surface Water	Sediment	Surface Water	Sediment	Sediment	Sediment
PAL VOCs		X (2)	Х	х				X
PAL SVOCs	X	X	Х	Х	X	Х	Х	X
PAL INORGANICS	X	X	Х	Х	X	X		X
ТРНС		X	х	Х	X	X	Х	Х
TOC		X		X	Х	X	Х	X
GRAIN SIZE		X					X	X
% SOLIDS		X						
PEST/PCBs		X (3)			X	X		
WATER QUALITY	X (1)				X (1)			
TSS					Х			
OIL FINGERPRINTING							Х	

⁽¹⁾ Analyzed for water quality parameters of TSS, chloride, sulfate, total hardness, and alkalinity.
(2) Analyzed for 6 locations adjacent to SA 57 and downgradient of a historical fuel oil spill.
(3) Analyzed for samples from 10 bioassy stations.

	DITCH SAMPLE LOCATIONS									
	SSD-93-01B 08/17/93 0 FT	CSD-94-29X 09/21/94 0 FT	CSD-94-307 09/21/94 0 FT							
PAL METALS (µg/g)										
Aluminum	9620	9430	7700							
Arsenic	15.5	16	23.3							
Barium	27.1	32.4	33.2							
Beryllium	ND	ND	ND							
Cadmium	< 1.2	1.63	< 0.7							
Calcium	819	820	2470							
Chromium	24.5	32.2	15.9							
Cobalt	4.7	5.99	6.54							
Copper	44.5	46.7	15.9							
Iron	16700	13000	10400							
Lead	44	78.7	43							
Magnesium	4470	4590	2220							
Manganese	203	259	277							
Mercury	0.192	< 0.05	< 0.05							
Nickel	18	24.5	15.6							
Potassium	1700	1400	641							
Selenium	ND	ND	ND							
Sodium	76.6	519	1000							
Vanadium	18.4	21.7	18.5							
Zinc	62.9	53.9	83.5							
PAL SEMIVOLATILE ORGANICS (μ <u>α/g)</u>									
2-methylnaphthalene	0.21	< 22	< 1							
9h-carbazole	ND	ND	ND							
Acenaphthylene	5.8	< 2	< 0.7							
Anthracene	7.1	< 2	< 0.7							
Benzo [a] Anthracene	16	< 8	< 3							
Benzo [a] Pyrene	8.4	< 10	< 5							
Benzo [b] Fluoranthene	11	< 10	< 4							
Benzo [g,h,i] Perylene	11	< 10	< 5							
Benzo [k] Fluoranthene	6.3	< 30	< 1							
Bis(2-ethylhexyl) Phthalate	ND	ND	ND							
Chrysene	14	10	< 2							
Fluoranthene	30	10	6							
Fluorene	2.3	< 2	< 0.7							
Indeno [1,2,3-c,d] Pyrene	8.9	< 10	< 6							
Phenanthrene	30	4	3							
Pyrene	30	10	7							

	COLD SPRING BROOK SAMPLE LOCATIONS									
UP	STREAM			DO	WNSTREAM					
EMELOPS 1000	CSD-94-31X 09/21/94 0 FT		CSD-94-32X 09/21/94 0 FT		CSD-94-33X 09/21/94 0 FT		D-94-34X 19/21/94 0 FT			
	11000	ř.		_						
	16700		5010		9320		5790			
	14.6	1	11.4	1	5.87	1	25			
	91.2		39.8		60.4		42.7			
<	0.5	<	0.5	<	0.5	<	0.5			
	ND	11.0	ND		ND		ND			
	3260		2410	1	1600		2340			
	34.9		11.7		20.7	<	4.05			
	8.04		5.66	1	4.87		9.94			
	6.39		6.86	l	3.17	1	13.9			
	12300		6770	1	7300		9740			
	15.5	1	23.5		6.92		52			
	3500	ľ	1430		2410		1710			
	759	Į.	891		597		358			
	ND		ND	1	ND		ND			
	25		10.4	1	14.3		15.7			
	577	<	100		355	<	100			
	1.27		0.9		0.993		1.44			
	1330		891		796		1300			
	15.2	<	3.39		8.74		14.5			
-	33.2		39.7		20.3		83.6			
_	ND		ND	1	ND		ND			
	.1ND R		IND R		.1ND R		1ND R			
<	0.033	<	0.3	<	0.033	<	0.3			
	0.33	<	0.3	<	0.033	<	0.3			
<	0.17	<	2	<	0.17	<	2			
<	0.25	<	2	<	0.25	<	2			
<	0.21	<	2	<	0.21	<	2			
<	0.25	<	2	<	0.25	<	2			
<	0.066	<	0.7	<	0.066	<	0.7			
<	0.62	<	6	<	0,62	<	6			
<	0.12	<	1	<	0.12	<	1			
3	0.62	1	2	<	0.068	1	3			
<	0.033	<	0.3	<	0.033	<	0.3			
<	0.29	<	3	2	0.29	<	3			
	0.25	<	0.3	<	0.033	<	0.3			
	0.47	1	2	<	0.033	2	2			

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

TER	DITC	DITCH SAMPLE LOCATIONS						
	SSD-93-01B 08/17/93 0 FT	CSD-94-29X 09/21/94 0 FT	CSD-94-30X 09/21/94 0 FT					
PAL PESTICIDES/PCBS (µg/g)								
DDT	NA NA	NA	NA					
DDD	NA NA	NA	NA					
DDE	NA NA	NA	NA					
Dieldrin	NA	NA	NA					
Endosulfan Sulfate	NA	NA	NA					
gamma-chlordane	NA NA	NA	NA					
OTHER (µg/g)								
Total Organic Carbon	30000	32500	58400					
Total Petroleum Hydrocarbons	240	281	239					

	DOWNSTREAM								
CSD-94-32X 09/21/94 0 FT	CSD-94-33X 09/21/94 0 FT	CSD-94-34X 09/21/94 0 FT							
< 0.00707 M	NA	<	0.00707 M						
0.024 C	NA		0.0537 C						
< 0.00765	NA	<	0.00765						
< 0.00629 M	NA	<	0.00629 M						
< 0.00763	NA	<	0.00763						
3ND R	.33ND R		3ND R						
	09/21/94 0 FT < 0.00707 M 0.024 C < 0.00765 < 0.00629 M < 0.00763	09/21/94 0 FT 0 FT 0 FT 0 FT 0 FT 0 NA 0.024 C NA 0.00765 NA 0.00629 M NA 0.00763 NA	09/21/94 0 FT 0 FT 0 FT 0 OFT						

NOTES:

R = Non-target compound analyzed for but not detected.

M = Duplicate high spike analysis, not within control limits.

C = Analysis was confirmed.

NA = Not analyzed

ND = Not detectable

 $\mu g/g = micrograms/gram$

	DITCH SAMPLE LOCATIONS								
ANALYTE	SSD-93-03B 08/17/93 0 FT	CSD-94-22X 09/20/94 0 FT	CSD-94-21X 09/20/94 0 FT	CSD-94-24X 09/20/94 0 FT	CSD-94-23X 09/20/94 0 FT	CSD-94-25X 09/20/94 0 FT			
PAL METALS (µg/g)									
Aluminum	9380	6000	7840	29500	5000	14000			
Antimony	< 19.6	< 1.09	10.6	18.8	< 1.09	3.48			
Arsenic	19.2	8.4	18	60	8.55	19			
Barium	46.2	12.7	30.9	155	15.9	63.9			
Beryllium	ND	ND	ND	ND	ND	ND			
Cadmium	3.74	0.947	2.18	27.7	< 0.7	6.35			
Calcium	2240	3850	1140	3440	686	2040			
Chromium	38.4	23.5	39.5	142	19.7	57.2			
Cobalt	8	3.86	5.83	15.7	3.91	10.6			
Copper	43.9	13.4	36.1	145	12.2	49			
Iron	21900	12100	14300	42400	11100	20900			
Lead	230	18	137	410	34.8	166			
Magnesium	4200	5020	3910	14900	2430	6360			
Manganese	572	231	174	551	172	423			
	0.0751	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Mercury Nickel	22.3	18.3	22.7	82.1	15	38.3			
Potassium	1140	552	1040	4610	583	1860			
Selenium	ND	ND	ND	ND	ND	ND			
	108	327	564						
Sodium		1,200	7.75	1650	412	840			
Vanadium	28.2	19.6	24	91.4	14.2	39.5			
Zinc	171	46.9	115	573	41	184			
PAL SEMIVOLATILE ORGANICS (µg/g)									
2-methylnaphthalene	2.1	< 1	< 1	< 5	< 0.5	< 2			
2-methylphenol/2-cresol	0.35	< 0.6	< 0.6	< 3	0.3	< 1			
4-methylphenol / 4-cresol	2.2	< 5	< 5	< 20	2	< 10			
9h-carbazole	ND	ND	ND	ND	ND	ND			
Acenaphthene	3.6	1	< 0.7	< 4	0.4	< 2			
Acenaphthylene	30	< 0.7	< 0.7	< 3	0.3	< 2			
Anthracene	30	2	1	< 3	0.6	< 2			
Benzo [a] Anthracene	60	6	9	< 20	2	< 8			
Benzo [a] Pyrene	60	< 5	10	< 20	< 2	< 10			
Benzo [b] Fluoranthene	60	10	20	< 20	6	< 10			
Benzo [g,h,i] Perylene	30	< 5	< 5	< 20	< 2	< 10			
Benzo [k] Fluoranthene	70	2	6	< 7	1	< 3			
Bis(2-ethylhexyl) Phthalate	ND	ND	ND	ND	ND	ND			
Chrysene	90	10	10	< 10	6	< 6			
Dibenz [a,h] Anthracene	1.7	< 4	< 4	< 20	< 2	< 10			

	DITCH SAMPLE LOCATIONS							
ANALYTE	SSD-93-03B 08/17/93 0 FT	CSD-94-22X 09/20/94 0 FT	CSD-94-21X 09/20/94 0 FT	CSD-94-24X 09/20/94 0 FT	CSD-94-23X 09/20/94 0 FT	CSD-94-25X 09/20/94 0 FT		
Dibenzofuran	2.6	1	< 0.7	< 4	< 0.4	< 2		
Fluoranthene	100	20	20	50	8	20		
Fluorene	8.1	2	< 0.7	< 3	< 0.3	< 2		
Indeno [1,2,3-c,d] Pyrene	ND	ND	ND	ND	ND	ND		
Naphthalene	3.6	< 0.7	< 0.7	< 4	< 0.4	< 2		
Phenanthrene	100	20	10	20	5	7		
Pyrene	200	20	20	40	7	20		
PAL VOLATILE ORGANICS (µg/g)								
1,1,1-trichloroethane	ND	NA	NA	NA	NA	NA NA		
Acetone	ND	NA	NA	NA	NA	NA		
Toluene	ND	NA	NA	NA	NA	NA		
Tetrachloroethylene / Tetrachloroethene	0.24	NA	NA	NA	NA	NA		
Trichlorofluoromethane	ND	NA	NA	NA	NA	NA		
OTHER (µg/g)								
Total Organic Carbon	66000	5320	14700	154000	4490	54600		
Total Petroleum Hydrocarbons	1200	625	2500	5490	625	1220		

	COLD SPRING BROOK SAMPLE LOCATIONS								
		UPSTR	EAM		DOWNSTREAM				
ANALYTE		D-92-03X 06/23/92 0 FT	CSD-94-27X 09/20/94 0 FT		57D-92-02X 08/19/92 0 FT		CSD-94-28X 09/22/94 0 FT		
PAL METALS (µg/g)									
Aluminum		12500		6190		NA		3410	
Antimony		ND		ND	0	NA		ND	
Arsenic		95.2		9.37	1	NA		7.65	
Barium		127		35.3		NA		23.3	
Beryllium	<	0.5	<	0.5		NA	<	0.5	
Cadmium		ND		ND		NA		ND	
Calcium		5810	1	1810		NA		898	
Chromium	<	4.05		14.9		NA		8.5	
Cobalt	<	1.42		7.86		NA		6.52	
Copper		60.4	II.	7.83		NA		4.14	
Iron		15900		6590		NA		4800	
Lead -		350		8.17		NA		10.2	
Magnesium		4610		2050		NA		1340	
Manganese		339		524	(I)	NA		242	
Mercury		ND	1	ND	ll .	NA		ND	
Nickel		41		13.2		NA		8.67	
Potassium		1520		308	10.	NA	1.0	173	
Selenium	<	0.25	<	0.25		NA	<	0.25	
Sodium		2120		707		NA	1.3	516	
Vanadium		72.5		8.45	1	NA	<	3.39	
Zinc		372		31.4		NA		32.1	
PAL SEMIVOLATILE ORGANICS (μg/g)									
2-methylnaphthalene		ND		ND		ND		ND	
2-methylphenol/2-cresol		ND		ND		ND		ND	
4-methylphenol / 4-cresol		ND		ND		ND		ND	
9h-carbazole		4.68 S		.1ND R		.033ND R		.1ND	
Acenaphthene		ND		ND		ND		ND	
Acenaphthylene		4.37	<	0.033		0.075	<	0.033	
Anthracene		4.42	<	0.033		0.1	<	0.033	
Benzo [a] Anthracene		18.1	<	0.17		0.35		0.27	
Benzo [a] Pyrene		22.9	<	0.25		0.51	<	0.25	
Benzo [b] Fluoranthene		32.7	<	0.21		0.67	<	0.21	
Benzo [g,h,i] Perylene		18.9	<	0.25		0.34	<	0.25	
Benzo [k] Fluoranthene		33.2	<	0.066		0.47	<	0.066	
Bis(2-ethylhexyl) Phthalate	<	3.1		1.5	<	0.62	<	0.62	
Chrysene	1	47.1	<	0.12		0.8		0.67	
Dibenz [a,h] Anthracene		ND	100	ND		ND		ND	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

	COLD SPRING BROOK SAMPLE LOCATIONS								
	UPS	TREAM	DOWNST	REAM					
ANALYTE	G3D-92-03X 06/23/92 0 FT	CSD-94-27X 09/20/94 0 FT	57D-92-02X 08/19/92 0 FT	CSD-94-28X 09/22/94 0 FT					
Dibenzofuran	ND	ND	ND	ND					
Fluoranthene	59.4	< 0.068	1.4	1.1					
Fluorene	< 0.165	< 0.033	0.086	< 0.033					
Indeno [1,2,3-c,d] Pyrene	20.3	< 0.29	0.33	< 0.29					
Naphthalene	ND	ND	ND	ND					
Phenanthrene	19.8	< 0.033	0.78	0.39					
Pyrene	53.1	< 0.033	1.3	1.1					
PAL VOLATILE ORGANICS (µg/g)									
1,1,1-trichloroethane	< 0.0044	NA	NA	NA					
Acetone	< 0.017	NA	NA	NA					
Toluene	< 0.00078	NA	NA	NA					
Tetrachloroethylene / Tetrachloroethene	ND	NA	NA	NA					
Trichlorofluoromethane	< 0.0059	NA NA	NA NA	NA					
PAL PESTICIDES/PCBS (μg/l)									
DDT	NA NA	< 0.00707 M	NA.	NA					
DDD	NA.	< 0.00826	NA	NA					
DDE	NA	< 0.00765	NA	NA					
Dieldrin	NA	< 0.00629 M	NA	NA					
Endosulfan Sulfate	NA	< 0.00763	NA	NA					
gamma-chlordane	2ND I	R 33ND R	33ND R	33ND F					
OTHER (µg/g)	0								
Total Organic Carbon	219000	32500	24400	19700					
Total Petroleum Hydrocarbons	827	< 28	92.6	47.3					

NOTES:

M = Duplicate high spike analysis, not within control limits.

R = Non-target compound analyzed for but not detected.

S = Non-target compound analyzed for and detected.

NA = Not analyzed

ND = Not detectable

 $\mu g/g = micrograms per gram$

TABLE 4-4 BOWERS BROOK AND ASSOCIATED LOWER COLD SPRING BROOK ANALYTICAL SEDIMENT SAMPLE RESULTS

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

	BOWERS BROOK SAMPLE LOCATION CSD-94-16X
ANALYTE	09/22/94 0 FT
PAL INORGANICS (µg/g)	
Aluminum	7550
Arsenic	57.9
Barium	65.4
Beryllium	< 0.5
Calcium	3060
Chromium	< 4.05
Cobalt	23.4
Copper	20.8
Iron	11800
Lead	89
Magnesium	2070
	1140
Manganese Nickel	22.6
Potassium	< 100
Selenium	< 0.25
Sodium	2570
Vanadium	< 3.39
Zinc	147
PAL SEMIVOLATILE ORGANICS	
9h-carbazole	.1ND R
Acenaphthylene	< 0.033
Anthracene	< 0.033
Benzo [a] Anthracene	< 0.17
Benzo [a] Pyrene	< 0.25
Benzo [b] Fluoranthene	< 0.21
Benzo [g,h,i] Perylene	< 0.25
Benzo [k] Fluoranthene	1.1
Bis (2-ethylhexyl) Phthalate	< 0.62
Chrysene	1.3
	1.6
Fluoranthene	
Fluorene	< 0.033
Indeno [1,2,3-c,d] Pyrene	< 0.29
Phenanthrene	1.1
Pyrene	2.6
PAL VOLATILE ORGANICS (μg/g)	l NA
1,1,1-trichloroethane	
Acetone	NA NA
Toluene	NA.
Trichlorofluoromethane	NA NA
PAL PESTICIDES/PCBS (µg/g)	
DDT	NA.
DDD	NA.
DDE	NA
Dieldrin	NA
Endosulfan Sulfate	NA.
gamma-chlordane	.33ND R
OTHER	
Total Organic Carbon	104000
Total Petroleum Hydrocarbons	192

COLD SPRING BROOK SAMPLE LOCATIONS UPSTREAM DOWNSTREAM							
G	G3D-92-02X		SD-94-18X	CSD-94-26X			
	06/24/92		09/22/94		09/20/94		
	0 FT		OFT	1	OFT		
200000							
	12800		8910		7860		
	96		63		7.79		
	188		97.3		39.1		
<	0.5	<	0.5	<	0.5		
	17000	-3	3150	3.0	1400		
<	4.05	<	4.05		19.8		
	19		36	1			
	54.9		21.8	1	6		
		l I		1	2.34		
	23200	1	24400		6820		
	220		67	1	6.9		
	3210	1	2360		2140		
	3150		1360		275		
	41.5		26.4		12.9		
	1130		555		294		
	2.89	<	0.25	<	0.25		
	1620	15	1730		692		
	41.4		23.9		10.9		
	398		193		19.9		
_	.165ND R		.5ND R		.1ND R		
<	0.165	<	0.2	<	0.033		
<	0.165	<	0.2	<	0.033		
<	0.8	<	0.8	<	0.17		
<	1.25	<	1	<	0.25		
<	1.05	<	1	<	0.21		
	1.25						
< <	0.33	<	1	<	0.25		
		<	0.3	<	0.066		
<	3.1	<	3	<	0.62		
<	0.6	<	0.6	<	0.12		
	4.5	<	0.3	<	0.068		
<	0.165	<	0.2	<	0.033		
<	1.45	<	1	<	0.29		
	2.22	<	0.2	<	0.033		
	4.59		1	<	0.033		
_	0.0044	_	NA	1	NA		
<	2155156		7 7 7 7 7				
	0.49		NA		NA		
<	0.00078		NA		NA		
<	0.0059		NA	L	NA		
_			0.00000				
	NA	<	0.00707 M	1	NA		
	NA	100	0.0498 C		NA		
	NA	<	0.00765		NA		
	NA	<	0.00629 M		NA		
	NA	<	0.00763		NA		
_	2ND R		2ND R		.33ND R		
	166000		112000		10500		
	166000		113000	1.2.	18500		
	312		203	<	28.2		

M = Duplicate high spike analysis, not within control limits.

C = Analysis was confirmed.

R = Non-target compound analyzed for but not detected.

NA = Not analyzed

ND = Not Detected

μg/g = micrograms per gram

TABLE 4-5 STUDY AREA 57 MARSH AND ASSOCIATED LOWER COLD SPRING BROOK ANALYTICAL SEDIMENT SAMPLE RESULTS

	MARSH SAMPLE LOCATIONS									
ANALYTE		D-94-20X 09/22/94 0 FT	CSD-94-20X 09/22/94 0 FT (dup)		CSD-94-14X 09/22/94 0 FT	CSD-94-35X 09/22/94 0 FT	CSD-94-17X 09/22/94 0 FT			
PAL METALS (μg/g)										
Aluminum		20200	21600 D		8820	8540	5160			
Arsenic		21	22.3 D		11.5	26.7	26			
Barium		78.8	84.2 D) <	5.18	74.3	37.1			
Beryllium		ND	ND		ND	ND	ND			
Cadmium		2.96	3 D) <	0.7	< 0.7	< 0.7			
Calcium		2840	4890 D		10800	13000	4140			
Chromium		53.2	56.7 D	> <	4.05	31.6	14.6			
Cobalt		9.12	10.4 D	<	1.42	8.41	5.15			
Copper		39.2	44.2 D		93	44.6	16.2			
Iron		21600	22800 D		5790	12100	7560			
Lead		222	248 D		240	120	95			
Magnesium		5340	5690 D		1610	2470	1590			
Manganese	1	161	174 D		41.7	265	473			
Nickel		33.8	37.2 D	> <	1.71	22	15.3			
Potassium	1	1620	1600 D		100	563	427			
Selenium		0.925	0.924 D)	9.46	2.61	1.17			
Sodium		819	984 D		5930	2210	1020			
Vanadium		38.4	41.2 D		3.39	23.1	16.9			
Zinc		160	176 D		176	209	124			
PAL SEMIVOLATILE ORGANICS (110/0)									
9h-carbazole		ND	ND		ND	ND	ND			
Acenaphthylene		ND	ND		ND	ND	ND			
Anthracene		ND	ND		ND	ND	ND			
Benzo [a] Anthracene		ND	ND		ND	ND	ND			
Benzo [a] Pyrene		ND	ND		ND	ND	ND			
Benzo [b] Fluoranthene		ND	ND		ND	ND	ND			
Benzo [g,h,i] Perylene		ND	ND		ND	ND	ND			
Benzo [k] Fluoranthene	<	3	< 3 D) <	0.7	< 0.7	1			
Bis (2-ethylhexyl) Phthalate		ND	ND		ND	ND	ND			
Chrysene	<	6	< 6 D	> <	1	< 1	1			
Fluoranthene		1	< 3 D		0.7	< 0.7	3			

TABLE 4-5 STUDY AREA 57 MARSH AND ASSOCIATED LOWER COLD SPRING BROOK ANALYTICAL SEDIMENT SAMPLE RESULTS

	Salar (1986)	MARSH SAMPLE LOCATIONS									
ANALYTE	CSD-94-20X 09/22/94 0 FT	CSD-94-20X 09/22/94 0 FT (dup)	CSD-94-14X 09/22/94 0 FT	CSD-94-35X 09/22/94 0 FT	CSD-94-17X 09/22/94 0 FT						
Fluorene	ND	ND	ND	ND	ND						
Indeno [1,2,3-c,d] Pyrene	ND	ND	ND	ND	ND						
Phenanthrene	0.8	< 2 D	< 0.3	< 0.3	1						
Pyrene	2	< 2 D	< .0.3	< 0.3	3						
PAL VOLATILE ORGANICS (#g/g)											
1,1,1,-trichloroethane	ND	ND	ND	ND	ND						
Acetone	0.035	0.052 D	< 0.017	0.11	< 0.017						
Toluene	0.0016	< 0.00078 D	< 0.00078	0.0047	< 0.00078						
Trichlorofluoromethane	0.031	0.041 D	0.35	0.099	0.033						
PAL PESTICIDES/PCBS (μg/g)											
DDT	0.083 CM	0.09 CDM	NA	NA	NA						
DDD	0.04 C	0.041 CD	NA	NA	NA						
DDE	0.0338 C	0.035 CD	NA	NA	NA						
alpha chlordane	0.013 CS	0.0123 CSD	3ND R	3ND R	2ND R						
Dieldrin	0.0298 CM	0.0311 CDM	NA.	NA.	NA						
Endosulfan Sulfate	ND	ND	NA.	NA	NA						
gamma-chlordane	0.0276 CS	0.0298 CSD	3ND R	3ND R	2ND R						
Aroclor 1260	0.243 C	0.309 C	30ND R	30ND R	20ND R						
OTHER (μg/g)											
Total Organic Carbon	63600	56700 D	266000	148000	58400						
Total Petroleum Hydrocarbons	2700	1760 D	1380	251	375						

TABLE 4-5 STUDY AREA 57 MARSH AND ASSOCIATED LOWER COLD SPRING BROOK ANALYTICAL SEDIMENT SAMPLE RESULTS

	COLD SPRING BROOK SAMPLE LOCATIONS								
	1	JPSTREAM	DOWNSTREAM						
	CSD-94-13X		SSI	D-93-92G	CSD-94-197				
ANALYTE		09/22/94		09/16/93		09/22/94			
		0 FT	<u> </u>	0 FT		0 FT			
PAL METALS (µg/g)									
Aluminum		10000		20100		6130			
Arsenic		65		51.1		53			
Barium		90.1		118		63.5			
Beryllium	<	0.5	<	0.427	<	0.5			
Cadmium		ND		ND		ND			
Calcium		8380		5440		6980			
Chromium		30.9		39.8	<	4.05			
Cobalt		. 19	<	2.5		9.31			
Copper		28.5		63.7		21.1			
Iron	- 1	22300		30700		12700			
Lead		240		340		79			
Magnesium		3220		4340		1740			
Manganese	- 1	1580		317		1490			
Nickel	- 1	35.9		31.1	100	20.1			
Potassium	- 1	608		1540	<	100			
Selenium		3.01	<	0.449		2.34			
Sodium	<	100		38.7		1820			
Vanadium		31.8		45.6		15.8			
Zinc	_	305		290 JR		147			
PAL SEMIVOLATILE ORGANICS (µg/g)									
9h-carbazole		.5ND R		ND		.5ND R			
Acenaphthylene	<	0.2	<	0.033	<	0.2			
Anthracene	<	0.2	<	0.71	<	0.2			
Benzo [a] Anthracene	<	0.8		1.2	<	0.8			
Benzo [a] Pyrene	<	1	<	1.2	<	1			
Benzo [b] Fluoranthene	<	1	<	0.31	<	1			
Benzo [g,h,i] Perylene	<	1	<	0.18	<	1			
Benzo [k] Fluoranthene		2	<	0.13	<	0.3			
Bis (2-ethylhexyl) Phthalate	<	3	<	0.48	<	3			
Chrysene	<	0.6	<	0.032	<	0.6			
Fluoranthene		6		1	11	2			

TABLE 4-5 STUDY AREA 57 MARSH AND ASSOCIATED LOWER COLD SPRING BROOK ANALYTICAL SEDIMENT SAMPLE RESULTS

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

		COLD SPR	ING BR	OOK SAMPLE	LOCATIO	NS
	UPSTREAM			DOWNST	TREAM	
ANALYTE	C	CSD-94-13X 09/22/94 0 FT		D-93-92G 09/16/93 0 FT	CSD-94-197 09/22/94 0 FT	
Fluorene	<	0.2	<	0.065	<	0.2
Indeno [1,2,3-c,d] Pyrene	<	1	<	2.4	<	1
Phenanthrene		2	V.	1.1		1
Pyrene		. 6		2.1		2
PAL VOLATILE ORGANICS (μg/g)						
1,1,1,-trichloroethane	<	0.0044	<	0.2	<	0.0044
Acetone		0.22	<	3.3		0.66
Toluene		0.0043	<	0.1		0.0033
Trichlorofluoromethane		0.096	<	0.23		0.1
PAL PESTICIDES/PCBS (µg/g)						
DDT		0.0553 C M	<	0.1		NA
DDD		0.49 C	<	0.064		NA
DDE		0.14 C		0.0206		NA
alpha chlordane		ND		ND		NA
Dieldrin	<	0.00629 M		0.0192		NA
Endosulfan Sulfate	<	0.00763	<	1.2		NA
gamma-chlordane		ND	1.0	ND		NA
Aroclor 1260		0.0392 CS		ND		2ND R
OTHER (µg/g)						
Total Organic Carbon		124000		170000		161000
Total Petroleum Hydrocarbons		460		1800		242

NOTES:

D = duplicate

R = Non-target compound analyzed for but not detected.

S = Non-target compound analyzed for and detected.

C = Analysis was confirmed

M = Duplicate high spike analysis, not within control limits.

NA = Not analyzed

ND = Not detectable

 $\mu g/g = micrograms per gram$

			DIT	CH SAM	IPLE LOCAT	TIONS	12.27		
ANALYTE	100000000000000000000000000000000000000	D-93-06B 08/18/93 0 FT	SSD-93-06B 08/18/93 0 FT (dup)	Activities and	-92-01X 8/19/92 0 FT		-92-02X 8/19/92 0 FT		S-92-03X 08/19/92 0 FT
PAL METALS (μg/g)									
Aluminum		5750	9680 D		NA		NA		NA
Arsenic		10.3	20.9 D		NA		NA		NA
Barium		24	69 D		NA	1	NA		NA
Beryllium		ND	ND		NA		NA		NA
Cadmium	<	1.2	3.82 D		NA		NA		NA
Calcium		1190	1760 D		NA		NA		NA
Chromium		27.1	64.6 D		NA		NA		NA
Cobalt		4.23	7.39 D	1	NA		NA	1	NA
Copper	1	40.7	105 D		NA		NA		NA
ron		14900	21800 D		NA		NA	1	NA
Lead		140	420 D		NA		NA	1	NA
Magnesium		2500	3770 D		NA		NA		NA
Manganese		184	320 D		NA		NA		NA
Mercury	<	0.05	0.115 D		NA		NA		NA
Nickel	100	14.1	22.8 D		NA		NA	1	NA
Potassium		885	1670 D		NA		NA	1	NA
Selenium	1	ND	ND		NA		NA		NA
Sodium		76.2	138 D		NA		NA	1	NA
Cin	<	7.43	13.5 D		NA		NA		NA
Vanadium		16.8	36.8 D		NA		NA		NA
Zinc		83.1	189 D		NA		NA	1	NA
	•	03.1	107 1	-	In	1	INA	-	INA
PAL SEMIVOLATILE ORGANICS (µg/g) D-h carbazole	1	ND	l ND	1	ND	1	ND		ND
2-methylnaphthalene		0.19	0.15 D	<	1	<	2	<	2
Acenaphthene	1	0.19	0.13 D		0.7				
	1	3.2	2.7 D	<	0.7	<	1	<	1
Acenaphthylene Anthracene	1			<		<	1	<	1
	1	3 3.5	2.5 D	<	0.7	<	1	<	1
Benzo [a] Anthracene	1		2.7 D	<	3	<	7	<	7
Benzo [a] Pyrene	1	4.1	3.1 D	<	5	<	10	<	10
Benzo [b] Fluoranthene	1	4.9	3.5 D	<	4	<	8	<	8
Benzo [g,h,i] Perylene		4.9	3.1 D	<	5	<	10	<	10
Benzo [k] Fluoranthene	1	3.6	3 D	<	1		4		4
Bis (2-ethylhexyl) Phthalate		1.4	< 0.48 D	<	10	<	20	<	20
Chrysene		4.3	3.3 D	<	2	116	5		5
Di-n-butyl Phthalate		9.3	6.2GT D	<	1	<	2	<	2

		DITCH SAMPLE LOCATIONS									
ANALYTE	SSD-93-06B 08/18/93 0 FT	SSD-93-06B 08/18/93 0 FT (dup)	57S-92-01X 08/19/92 0 FT	57S-92-02X 08/19/92 0 FT	57S-92-03X 08/19/92 0 FT						
Dibenz [a,h] Anthracene	0.83	< 0.31 D	< 4	< 8	< 8						
Fluoranthene	5.2	4 D	< 1	9	10						
Fluorene	0.61	< 0.065 D	< 0.7	< 1	< 1						
Indeno [1,2,3-c,d] Pyrene	ND	ND	ND	ND	ND						
Phenanthrene	4.6	32 D	< 0.7	4	4						
Pyrene	5.9	4.6 D	< 0.7	10	10						
PAL VOLATILE ORGANICS (µg/g)											
1,1,1-trichloroethane	ND	ND	NA.	NA	NA.						
Acetone	ND	ND	NA.	NA	NA						
Toluene	ND	ND	NA	NA	NA						
Trichlorofluoromethane	ND	ND	NA	NA	NA						
OTHER (µg/g)											
Total Organic Carbon	75000	NA.	24500	24700	18400						
Total Petroleum Hydrocarbons	3500	2600 D	1860	1410	2210						

			COLDS	PRING BRO	OK SAM	PLE LOCATI	ONS	
	UPST	REAM	DOWNSTREAM					
ANALYTE	09/	94-10X 20/94 FT	A CONTRACTOR OF THE PARTY OF TH	D-94-11X 09/21/94 0 FT		94-12X 9/21/94 0 FT	G3	D-92-01X 06/23/92 0 FT
PAL METALS (μg/g)								
Aluminum		5030		12300		11800		17400
Arsenic		26.8		47.4		67	5	120
Barium		41.9		83.7		103		121
Beryllium	<	0.5	<	0.5	<	0.5	18	4.37
Cadmium		ND		ND		ND	li .	ND
Calcium		4500		8540		9740	1	13500
Chromium		16.7		44.5		39.7		50.7
Cobalt		5.78		16		17.2		29.8
Copper		10		35.7		37.9		42.2
Iron		8150		19200		23200	1	33100
Lead		55.5		273		258	1	340
Magnesium		1460		3650		3250		4960
Manganese		1340		934		1840		1020
Mercury		ND		ND		ND		ND
Nickel		11.6		35.2		33.6		55.1
Potassium	<	100		840		666		1580
Selenium		1.09		2.98		2.57	<	0.25
Sodium		909		1830		2000		727
Tin		ND		ND		ND		ND
Vanadium		11		38.4		34.3	1	50.2
Zinc		63.2		336		341		479
PAL SEMIVOLATILE ORGANICS (#	y/g)							
9-h carbazole		ND		ND		ND		ND
2-methylnaphthalene		.1ND R		.5ND R		.5ND R		.165ND F
Acenaphthene		ND		ND		ND		ND
Acenaphthylene	<	0.033	<	0.2	<	0.2	<	0.165
Anthracene	<	0.033	<	0.2	<	0.2	<	0.165
Benzo [a] Anthracene		0.42	<	0.8	<	0.8	<	0.8
Benzo [a] Pyrene	<	0.25	<	1	<	1	<	1.25
Benzo [b] Fluoranthene	<	0.21	<	1	<	1	<	1.05
Benzo [g,h,i] Perylene	<	0.25	<	1	<	1	<	1.25
Benzo [k] Fluoranthene		0.47		5		2	<	0.33
Bis (2-ethylhexyl) Phthalate	<	0.62	<	3	<	3	<	3.1
Chrysene		0.84	1	6	<	0.6	<	0.6
Di-n-butyl Phthalate		ND		ND		ND	1	ND

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

		COL	SPRING BROO	K SAMPLE LOCAT	IONS
	UPSTREAM			DOWNSTREAM	
ANALYTE	CSD-94-103 09/20/94 0 FT	((SD-94-11X 09/21/94 0 FT	CSD-94-12X 09/21/94 0 FT	G3D-92-01X 06/23/92 0 FT
Dibenz [a,h] Anthracene	ND		ND	ND	ND
Fluoranthene	0.89		9	3	3.69
Fluorene	< 0.033	<	0.2	< 0.2	< 0.165
Indeno [1,2,3-c,d] Pyrene	< 0.29	<	1	< 1	< 1.45
Phenanthrene	0.55		5	2	2.63
Pyrene	1.6		9	6	7.54
PAL VOLATILE ORGANICS (μg/g) 1.1.1—trichloroethane	I NA		NA	NA	< 0.0044
1,1,1-trichloroethane	NA NA		NA	NA	< 0.0044
Acetone	NA		NA	NA.	0.657
Toluene	NA	ke l	NA	NA	< 0.00078
Trichlorofluoromethane	NA NA		NA	NA	< 0.0059
PAL PESTICIDES/PCBS (µg/g)					
DDT	NA NA		0.0923 CM	NA	NA.
DDD	NA NA		0.41 C	NA	NA
DDE	NA NA		0.2 C	NA	NA
Diekhrin	NA NA	<	0.00629 CM	NA	NA
Endosulfan Sulfate	NA NA	<	0.00763	NA	NA
gamma-chlordane	.33ND	R	0.0663 CS	2ND R	2ND I
The Control of the Co					
OTHER (µg/g) Total Organic Carbon	85700	1	149000	223000	4250
Total Petroleum Hydrocarbons	272		534	574	472
OTES:	2/2		234	3/4	4/2

D = duplicate

M = Duplicate high spike analysis, not within control limits.

C = Analysis was confirmed.

R = Non-target compound analyzed for but not detected.

S = Non-target compound analyzed for and detected.

NA = Not analyzed

ND = Not detectable

 $\mu g/g = micrograms per gram$

1		DITCH SAMPLE LOCATIONS												
ANALYTE	09/	-94-04X 19/94 FT	0	D-93-07A 8/18/93 0 FT	C	SD-94-05 09/19/94 0 FT		SD-94-05 09/19/94 FT (dup)		SD-93-07B 08/18/93 0 FT	C	SD-94-06 09/19/94 0 FT		SD-94-07 09/19/94 0 FT
PAL METALS (µg/g)														
Aluminum		4280		6760		13900		2670 D		20900		6210		9760
Arsenic		12.8		9.91		37.9		38.4 D		41.6		9.75		16.2
Barium		36.2		9.65		207	<	5.18 D		545		28.5	1	82.8
Beryllium	<	0.5	<	0.427		3.37	<	0.5 D		8.35	<	0.5	<	0.5
Cadmium	<	0.7	<	1.2		6.43	<	0.7 D		10.6	<	0.7	<	0.7
Calcium		1040	11.5	6450		6470	1	1020 D		6910	1	1430	1	2430
Chromium	<	4.05	1	18.6	<	4.05	<	4.05 D	1	9.64		30.2	1	40.5
Cobalt	100	21.7		4.39	-	116		20.6 D		298		4.32	1	15
Copper		7.31		20.6		28	<	0.965 D		36.2		13.5		22
Iron		9230		15900		28300	100	4790 D		67800		10300		19600
Lead		17		26		136		83 D	1	91		109		212
Magnesium		817		2960		1390	<	100 D		923		3280	1	4600
Manganese	- 1	1610		189		5560	13	843 D		25000		264	1	1340
Nickel		19.4	1	13.7		145		23.2 D		140	li .	16.5	1	34.4
Potassium	<	100		544	<	100	<	100 D	<	131		916		1290
Selenium	<	0.25	<	0.449	-	2.18	<	0.25 D	2	0.449	<	0.25	<	0.25
Sodium	1	775		67.2		1980	1	100 D	-	455	-	642	1	932
	<	3.39	1	10.8		25.7	<	3.39 D	1	24.6		16.1	1	27.4
Vanadium Zinc		69	1	46.9		604	10	105 D		415		69.9		158
Zinc	_	09		40.9		004	-	103 D		413	_	09.9	1	130
PAL SEMIVOLATILE ORGANICS (μg/g)	10	. Tree	_	N.	_					NE	_		1	
9-h carbazole	100	ND		ND		ND	-	ND	150	ND	100	ND	1	ND
Acenaphthylene	<	0.033	ľ	0.36	<	0.033	<	0.033 D	<	0.033	<	0.3	<	0.2
Anthracene		ND	1	ND		ND		ND	16.	ND		ND	1	ND
Benzo [a] Anthracene	<	0.17	1	0.64	<	0.17	<	0.17 D	<	0.041	<	2	<	0.8
Benzo [a] Pyrene		ND	1	ND		ND		ND		ND		ND		ND
Benzo [k] Fluoranthene	<	0.066	1	0.76	<	0.066	1	0.48 D	<	0.13	<	0.7	1	3
Benzo [g,h,i] Perylene	1	ND		ND		ND	1	ND		ND		ND	1	ND
Benzo [k] Fluoranthene		ND		ND		ND		ND		ND		ND		ND
Bis(2-ethylhexyl) Phthalate		ND	1	ND		ND		ND		ND		ND	1	ND
Chrysene	<	0.12		0.84	<	0.12		0.94 D	<	0.032	<	1	1	3
Di-n-butyl Phthalate	<	0.061		5.5	<	0.061	<	0.061 D		22	<	0.6	<	0.3
Fluoranthene		0.27		1		1.3		1.7 D		1		2		6
Fluorene		ND		ND		ND		ND		ND		ND		ND
Indeno [1,2,3-c,d] Pyrene		ND	1	ND		ND	1	ND		ND		ND		ND
Phenanthrene		0.16	1	1		0.74		0.92 D	<	0.032		2		3
Pyrene		0.28		1.5		1.4		1.4 D	<	0.083		2	1	5

		DITCH SAMPLE LOCATIONS										
ANALYTE	CSD-94-04X 09/19/94 0 FT	SSD-93-07A 08/18/93 0 FT	CSD-94-05 09/19/94 0 FT	CSD-94-05 09/19/94 0 FT (dup)	SSD-93-07B 08/18/93 0 FT	CSD-94-06 09/19/94 0 FT	CSD-94-07 09/19/94 0 FT					
PAL VOLATILE ORGANICS (#g/g)												
1,1,1-trichloroethane	NA NA	ND	NA	NA	NA	NA	NA					
Acetone	NA	ND	NA	NA NA	NA	NA	NA					
Toluene	NA	ND	NA	NA	NA	NA	NA					
Trichlorofluoromethane	NA NA	ND	NA	NA	NA	NA	NA					
OTHER												
Total Organic Carbon	41700	9600	85600	199000 D	1500000	27800	63200					
Total Petroleum Hydrocarbons	219	250	470	481 D	300	2320	1590					

	COLD SPRING BROOK SAMPLE LOCATIONS									
		UPS	TREAM	DOWNSTREAM						
ANALYTE		D-92-01X 01/11/93 0 FT	57D-92-01X 08/19/92 0 FT	С	SD-94-08X 09/19/94 0 FT		SD-94-09X 09/20/94 0 FT	S	O-93-92E 09/08/93 OFT	
PAL METALS (µg/g)										
Aluminum		11700	NA	1	6770		9330		18000	
Arsenic	- 1	55.3 J	NA		20.7		39	1	54.7	
Barium		93.9	NA	1	61.2		92.3	0.00	125	
Beryllium	<	0.5	NA	<	0.5	<	0.5	<	0.427	
Cadmium		ND	NA	1	ND		ND		ND	
Calcium		9100	NA	1	2410	1	5760		12500	
Chromium		33.3	NA		26.1		31		44.3	
Cobalt	- 1	21.3	NA		10.7		16.2	1	22.4	
Copper	- 1	27.8	NA		16.4	1	28.1	1	30.1	
Iron	- 1	25600	NA		14600	1	20400		35000	
Lead		99	NA.		141		180		190	
Magnesium		3160	NA.		2990		2790		4520	
Manganese	- 1	1400	NA.		1030	1	2040		2440	
Nickel		32.2	NA NA		24.6		30.4		31.3	
Potassium		799	NA NA		816		727		1160	
Selenium	<	0.25	NA NA	<	0.25		1.78	<	0.449	
Sodium	1	1110	NA NA	-	945	1	1230		349	
Vanadium		32.4	NA NA		17.8	1	26.9		37	
Zinc		239	NA NA		143		234		359	
		239	, NA		143	-	234	1	339	
PAL SEMIVOLATILE ORGANICS (µg/g) 9-h carbazole		.5ND R	2ND R		.5ND R	_	.5ND	1		
			VED. (20)	150		1.2		101	0.000	
Acenaphthylene	<	0.2 0.2	< 0.2 < 0.2	<	0.2	<	0.2	<	0.033	
Anthracene	<		0.000	<	0.2	<	0.2	<	0.71	
Benzo [a] Anthracene	<	0.8	< 0.8	<	0.8	<	0.8		1.6	
Benzo [a] Pyrene	<	1	< 1	<	1	<	1	<	1.2	
Benzo [k] Fluoranthene	<	1	< 1	<	1	<	1	<	0.31	
Benzo [g,h,i] Perylene	<	1	< 1	<	1	<	1	<	0.18	
Benzo [k] Fluoranthene	<	0.3	< 0.3		1	<	0.3	<	0.13	
Bis(2-ethylhexyl) Phthalate	<	3	< 3	<	3	<	3	<	0.48	
Chrysene	<	0.6	< 0.6		2		4	<	0.032	
Di-n-butyl Phthalate		ND	ND		ND		ND		ND	
Fluoranthene	<	0.3	2		4		4		1.8	
Fluorene	<	0.2	< 0.2	<	0.2	<	0.2	<	0.065	
Indeno [1,2,3-c,d] Pyrene	<	1	< 1	<	1	<	1	<	2.4	
Phenanthrene	<	0.2	1		3		2		1.8	
Pyrene	<	0.2	2		3		6		2.7	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

			COLD SPRIN	G BROOK SAMPLE	LOCATIONS		
		UPST	TREAM		DOWNSTREAM		
ANALYTE		0-92-01X 01/11/93 0 FT	57D-92-01X 08/19/92 0 FT	CSD-94-08X 09/19/94 0 FT	CSD-94-09X 09/20/94 0 FT	\$SD-93-92E 09/08/93 0 FT	
PAL VOLATILE ORGANICS (#g/g)							
1,1,1-trichloroethane	<	0.0044	NA	NA	NA	< 0.2	
Acetone		0.44	NA	NA	NA	< 3.3	
Toluene	<	0.00078	NA	NA	NA	< 0.1	
Trichlorofluoromethane	<	0.0059	NA	NA	NA	< 0.23	
PAL PESTICIDES/PCBS (µg/g)							
DDT		NA	NA	0.0202 C	NA	< 0.1	
DDD		NA	NA	0.0518 C	NA	0.062	
DDE		NA	NA	< 0.00765	NA	< 0.068	
Dieldrin		NA	NA	< 0.00629	NA	< 0.079	
Endosulfan Sulfate		NA	NA	< 0.00763	NA	0.0112	
gamma-chlordane		2ND R	2ND R	2ND R	2ND		
OTHER							
Total Organic Carbon		NA	34800	75700	132000	170000	
Total Petroleum Hydrocarbons		466	497	734	635	160	

NOTES:

D = duplicate

C = Analysis was confirmed

R = Non-target compound analyzed for but not detected

NA = Not analyzed

ND = Not detectable

 $\mu g/g = micrograms per gram$

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

ANALYTE	DITCH SAMPLE LOCATION SSD-93-08A 08/18/93 0 FT
PAL METALS (μg/g)	
Aluminum	14300
Arsenic	13.2
Barium	49.2
Beryllium	0.945
Calcium	1510
Chromium	38
Cobalt	13.8
Copper	26 19200
Iron	110
Lead Magnesium	3040
	595
Manganese Mercury	ND
Nickel	17.9
Potassium	1430
Selenium	ND
Sodium	121
Vanadium	26.4
Zinc	190
PAL SEMIVOLATILE ORGANICS (µg/g)	
9h-carbazole	ND
Acenaphthylene	ND
Anthracene	ND
Panzo [a] Anthracene	ND
\[a] Pyrene	ND
) [b] Fluoranthene	ND
منست [g,h,i] Perylene	ND
Benzo [k] Fluoranthene	ND
Bis (2—ethylhexyl) Phthalate	ND
Chrysene	0.4
Di-n-butyl Phthalate	2.1
Fluoranthene	0.53
Fluorene	ND
Indeno [1,2,3-c,d] Pyrene	ND
Naphthalene	ND 0.48
Phenanthrene	0.48 0.45
Pyrone	0.43
PAL VOLATILE ORGANICS (μg/g) 1,1,1 – trichloroethane	ND
Acetone	ND
Toluene	ND
Trichlorofluoromethane	ND
PAL PESTICIDES/PCBS (µg/g) DDT	NA
DDD	NA
DDE	NA
Dieldrin	- NA
Endosulfan Sulfate	NA
gamma-chlordane	NA NA
OTHER (µg/g)	
Total Organic Carbon	66000
Total Petroleum Hydrocarbons	780

COLD SPRING BROO UPSTREAM	DO	WNSTREAM
CSD-94-03X	SS	D-93-92D
09/20/94		09/07/93
0 FT		0 FT
3590		15400
14		25.8
15.7		72.8
ND	<	0.427
1010		3140
8.53		39.4
2.98		11.7
6.39		4.76
7020		37200
30.8		34
1330		11000
516		1500
0.05 J		ND
8.98		37.4
194	1 32-	3830
0.25 502	<	0.449
6.45		91 26.9
48.7		85.2
40.7	-	03.2
1ND R	1	ND
0.033	<	0.033
0.033	<	0.71
0.17	<	0.041
0.25	<	1.2
0.17 0.25 0.21 0.25	<	0.31
	<	0.18
0.15	<	0.13
ND 0.25	< <	0.48 0.032
ND		ND
0.29	<	0.032
A 254.27	<	0.065
0.29	<	2.4
0.033 0.29 0.037		ND
0.15	<	0.032
0.4	<	0.083
***	1	0.00
NA NA		0.28
NA NA	<	3.3
NA NA	< <	0.1
IVA	1 ~	0.43
0.012 CM	<	0.1
0.0324 C	<	0.064
0.0234 C	<	0.068
ND	<	0.079
ND	<	1.2
.33ND R		
22000		50000
103		23

C = Analysis was confirmed

Duplicate high spike analysis, not within control limits. ion-target compound analyzed for but not detected.

ina = Not analyzed

ND = Not detectable

μg/g = micrograms per gram

		Di	TCH	SAI	aple L	OCA	TIONS		
ANALYTE	S	SSD-95-09L SSD-95-09K							
PAL METALS (µg/g)									
Aluminum		11600	В		3320	В	5850		
Arsenic		24.8			4.25		17.5		
Barium	- 1	64.4	В		16.3	В	19.5		
Calcium		4750	В		779	В	1080		
Chromium		46.6			9.38		17.4		
Cobalt		12.7		<	2.5		3.14		
Copper		62.9			6.24		11.1		
Iron		26300	В		6900	B	14200		
Lead		82	В		13.2	В	52		
Magnesium		4730	В	1	1410	В	3030		
Manganese		864	B		62.6	В	108		
Mercury		.163		<	.05		ND		
Nickel	- 1	29.3			5.02		13.6		
Potassium	- 1	2560	В		849	В	672		
Selenium	- 1	NA			NA		ND		
Sodium		241			61.6		98		
Vanadium		49.3	В		7.85	В	12.6		
Zinc		272	BI		25.9	BI	43.6		
PAL SEMIVOLATILE ORGANICS (µg/g)									
2-methylnaphthalene	<	.06	-		.3		NA		
Acenaphthene	<	.08			1		NA		
9h-carbazole		NA			NA		ND		
Acenaphthylene	<	.07			.7		ND		
Anthracene	<	1			5		ND		
Bis(2-ethylhexyl) Phthalate		20		<	1		NA		
Benzo [a] Anthracene	- 1	.7			7		2		
Benzo [a] Pyrene	<	2		ı	5		ND		
Benzo [b] Fluoranthene	<	.6			9		ND		
Benzo [g,h,i] Perylene	<	.4		1	2		ND		
Benzo [k] Fluoranthene	<	.3			3		ND		
Chrysene	100	1			6		3		
Dibenzofuran	<	.8			1		NA		
Di-n-butyl Phthalate	<	3		<	3		NA		
Fluoranthene		.9			10		ND		
Fluorene	<	.1			4		ND		

UPSTR	RAN		156	2 504	NG BRO	A	974		10.00	TREA			-		
SSD-93-92C		SSD-95-09J			SD-95-0	91		SD-94-0 09/20/9- 0 FT	1X	CSD- 89/	94-07 21/94 FT	~~~~	SS	D-95-0	H
3080	_	4780	В	_	4400	В	_	1720		11	100		_	2440	I
13.1	1	13.3	В		12.1	В		11.9			100			7700	ŀ
7.85	1	18.9	В		10.8	В	<	5.18			17			9.4 16.8	I
482	1	1870	В		661	В	`	408			780		П	788	1
6.24		10.8	В		14.8	В	<	4.05			48		1	5.51	
ND	<	2.5		<	2.5		2	1.42			9.6			23.2	
ND	1	8.38		`	8.8		`	3.04		100	8.8		П	2.84	
6440	10	8030	В		9840	В		3450		1 200	700		<	5080	1
6.31		32.6	В		54	В		5.48		1250	41		`	10.6	1
1370	П	1470	В		2730	В		637	- 8		130		1	932	1
214	1	195	В		64.1	В		61.5			61			517	1
ND	<	.05	ы	<	.05	ъ	<	0.05	j		247	1	1	.05	
3.94	1	7.09		1	9.52		1	4.12	- 1	- 33	3.5	•	<	26.3	
ND	1	480	В	1	527	В		195	- 4	(%)	380		2	197	1
ND	1	NA	-	1	NA	_	<	0.25		100	.78		1	NA	1
ND	Ш	112		<	38.7			409			900			38.7	
4.09	1	7.75	В	100	9.76	В	<	3.39			4.3			3.31	1
18.1		40.8	BI		57.6	BI		15.2			32			16.5	F
NA	1	.3			.2			NA			NA	-		.032	-
NA	<	.08		<	.08			NA			NA		<	.041	
ND		NA			NA		1	0.28	S	1	ND	R		NA	
0.15	<	.07		1	.9			0.12		< (0.3		<	.033	
ND	<	1		<	1			0.19		< 1	0.3		<	.71	
NA	<	1		<	1			NA			NA		<	.48	
0.64		.7			7			0.7		<	2		<	.041	
ND	<	2		<	2			0.74		<	2		<	1.2	
ND	<	.6			10			0.68		<	2		<	.31	
ND	<	.4		<	.4			0.38		<	2		<	.18	
0.51	<	.3			4			0.61		< (0.7		<	.13	
0.68		.9			8			1.3		<	1			.032	
NA	<	.8		<	.8			NA			NA		<	.38	
NA	<	3		<	3			NA			NA		<	1.3	
0.95		.8			9			2.1			5		<	.032	
0.17	<	.1		1	2			0.16		< (0.3		<	.065	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

	D	ITCH	SAMPLE LOCATIONS							
ANALYTE	SSD-95-0	9L	SSD-95-0	9 K	SSD-93-09A 8/19/93 0 FT					
Hexadecanoic Acid / Palmitic Acid	9	NB	2	NB	NA					
Indeno [1,2,3-c,d] Pyrene	NA		NA		ND					
Naphthalene	NA	1.0	NA		ND					
Octadecanoic Acid	2	NB			NA					
Phenanthrene	1	777	20		ND					
Pyrene	1		10		ND					
PAL PESTICIDES/PCBS (µg/g)										
Endosulfan Ii	.00296	C	< .0007	5.7	NA					
Dieldrin	.00504	C	.00235	C	NA					
DDT	.0113	U2	.0056	U2	NA					
DDD	.00541	C	.0121	C	NA					
DDE	.0113	U	.00428	C	NA					
gamma-chlordane	NA		NA		NA					
OTHER (µg/g)										
Total Organic Carbon	125000)	1490		51000					
Total Petroleum Hydrocarbons	965		537		270					

UPSTR	EAM		DOWN	STREAM	
SSD-93-92C	SSD-95-09J	SSD-95-091	CSD-94-01X 09/20/94 0 FT	CSD-94-02X 09/21/94 0 FT	SSD-95-09H
NA ND ND NA 1.7	3 NB NA NA 1	2 NB NA NA 10 10	NA 0.4 0.073 NA 1.6 2.4	NA < 3 < 0.4 NA 3 6	< 4 NB NA NA < .81 NB < .032 < .083
NA NA NA NA NA	.00294 C2 .0118 C .0319 U2 .0927 C .0774 U NA	.00305 C2 .0135 C .0216 U2 .106GT 2X .0203 C NA	NA NA NA NA NA .33ND R	NA NA 0.15 CM 0.56 C 0.16 C	< .00505 C < .0027
9600 NA	36600 77.8	24200 315	2080 61	120000 2120	7400 534

NOTES:

μg/g = micrograms per gram

s.u. = standard units

<= less than

2 = ending calibration not within acceptable limits B = analyte found in method blank or QC blank as well as the sample

I = low spike recovery is high

J = Value is estimated

M = Duplicate high spike analysis, not within control limits.
N = tentatively identified compound

R = Non-target compound analyzed for but not detected

S = Non-target compound analyzed for and detected

C = Analysis was confirmed

NA - Not analyzed

ND = Not detectable

X = analyte concentration is above the upper reporting level

TABLE 4-10 STORM DRAIN SYSTEM NO. 5 ANALYTICAL SEDIMENT SAMPLE RESULTS

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA.

K STATE OF THE STA		CH SAMPLE LOCAT	
ANALYTE	SSD-93-05A 08/17/93 0 FT	GRD-94-06X 09/19/94 0 FT	GRD-94-07X 09/19/94 0 FT
are-Annes I or a			
PAL METALS (µg/g)			
Aluminum	30400	10700	42200
Arsenic	43	20	5.35
Barium	99	57	< 5.18
Beryllium	1.62	< 0.5	< 0.5
Cadmium	4.59	0.931	< 0.7
Calcium	6960	591	1830
Chromium	163	36.9	< 4.05
Cobalt	28.8	13.1	< 1.42
Copper	65.6	47.3	63
Iron	48700	16300	2200
Lead	160	356	160
Magnesium	17500	4080	< 100
Manganese	1300	2410	43.2
Mercury	< 0.05	0.0961	< 0.05
Nickel	82	25.3	< 1.71
Potassium	5950	755	< 100
Selenium	< 0.449	0.67	8.64
Sodjum	270	448	5310
Vanadium	88.6	48.8	< 3.39
Zinc	301	63.7	< 8.03
PAL SEMIVOLATILE ORGANICS (µg/g)			
Acenaphthene	0.21	< 2	< 0.036
Acenaphthylene	3.8	3	< 0.033
Anthracene	4.5	< 2	< 0.033
Benzo [a] Anthracene	5.9	< 8	< 0.17
Benzo [a] Pyrene	5.8	< 10	< 0.25
Benzo [b] Fluoranthene	6,9	20	< 0.21
Benzo [g,h,i] Perylene	5	< 10	< 0.25
Benzo [k] Fluoranthene	6.2	10	< 0.066
Chrysene	7.4	20	< 0.12
Fluoranthene	7.3	30	< 0.068
Fluorene	0.91	< 2	< 0.033
Phenanthrene	8.4	10	< 0.033
Pyrene	12	30	0.66
OTHER (µg/g)			
Total Organic Carbon	55000	92600	428000
Total Petroleum Hydrocarbons	3200	1570	3200

 $\mu g/g = micrograms per gram$

ANALYTE	CSW-94-61 69/20/94	X CSW-94-01X 09/20/94 (filtered)	CSW-94-02X 09/21/94	CSW-94-02X 09/21/94 (filtered)	CSW-94-03X 09/20/94	CSW-94-03X 09/20/94 (filtered)	CSW-94-08X 09/19/94	CSW-94-08X 09/19/94 (filtered)
PAL METALS (µg/L)								
Aluminum	< 141	< 141	F 297	< 141 I	F < 141		< 141	< 141
Antimony	< 3.03	< 3.03	F < 3.03		F < 3.03	< 3.03 F	< 3.03	3.48
Arsenic	3.52	3.09	F 5.22		4.9	3.41 F	4500000	3.94
Barium	8.06	8.24	F 12.8		5.37	< 5 F	1000000	6.9
Beryllium	< 5	< 5	F < 5		< 5		< 5	< 5
Cadmium	< 4.01	< 4.01	F < 4.01		F < 4.01		< 4.01	< 4.01
Calcium	23800	23900	F 24200		23200	23100 F		22200
Chromium	< 6.02	< 6.02	F < 6.02	200	F < 6.02		< 6.02	< 6.02
Cobalt	< 25	< 25	F < 25		F < 25		< 25	< 25
Copper	< 8.09	< 8.09	F < 8.09	< 8.09 1	F < 8.09		< 8.09	< 8.09
Iron	205	85.4	F 691	144 1	F 474	82.8 F	454	207
Lead	< 1.26	< 1.26	F 2.39	< 1.26 1	F < 1.26	< 1.26 F		< 1.26
Magnesium	3380	3430	F 3410		F 3270	3280 F		3190
Manganese	49.5	48.1	F 59.2	44.7	F 45.1	10.1 F		56.4
Mercury	< .243	< .243	F < .243		F < .243	< .243 F	< .243	< .243
Nickel	< 34.3	< 34.3	F < 34.3		F < 34.3		< 34.3	< 34.3
Potassium	2160	1690	F 1350		F 1080	1490 F	17000	1490
Selenium	< 3.02	< 3.02	F < 3.02	< 3.02 1	F < 3.02	< 3.02 F	< 3.02	< 3.02
Sodium	21500	21800	F 21100	21400	F 20900	20800 F	20900	20400
Vanadium	< 11	< 11	F < 11		F < 11	(GG) (G	< 11	< 11
Zinc	< 21.1	< 21.1	F < 21.1	< 21.1	F < 21.1	< 21.1 F	< 21.1	< 21.1
PAL PESTICIDES/PCBS (µg/L)								
4,4'-ddd		~	< .0233		< .0233		< .0233	
4,4'-dat			< .034		< .034		< .034	
Bhc - Alpha			< .0385		< .0385		< .0385	
Bhc - Beta			< .024		< .024		< .024	
Bhc - Delta	100		< .0293		< .0293		< .0293	-1
Bhc - Gamma (lindane)			< .0507	4	< .0507		< .0507	
Endosulfan I			< .023		< .023		< .023	
Endrin Aldehyde			< .0285		< .0285		< .0285	
Heptachlor			< .0423		< .0423		< .0423	
Isodrin			< .0562		< .0562		< .0562	
PAL SEMIVOLATILE ORGANICS	(μg/L)							1
Bis(2-ethylhexyl) Phthalate	< 4.8		< 4.8		< 4.8		4.5	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-01X 89/26/94	CSW-94-01X 09/20/94 (filtered)	CSW-94-02X 09/21/94	CSW-94-02X 69/21/94 (flitered)	CSW-94-03X 09/20/94	CSW-94-03X 09/20/94 (filtered)	CSW-94-08X 09/19/94	CSW-94-08X 09/19/94 (filtered)
PAL WET CHEMISTRY								
Alkalinity	47000		49000		48000		46000	
Chloride	66000	- 9	33000		33000		33000	
Sulfate			44.73					
Total Hardness	70400		71600		69600		67600	
Total Suspended Solids	< 4000		4000		< 4000		< 4000	
OTHER								
Total Organic Carbon (µg/L)		1		T T				1

NOTES:

µg/L = micrograms per liter

<= less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE	,	2SW-94-09X 09/20/94		09/20/94 (filtered)	X	C	SW-94-10X 09/20/94	C	SW-94-10 09/20/94 (filtered)	X	ı	CSW-94-11X 09/21/94	•	09/21/94 (filtered)	x	CSW-94-12X 09/21/94	(SW-94-12X 09/21/94 (filtered)
PAL METALS (µg/L)																		
Aluminum	<	141	<	141		<	141	<	141	F		141	<	141	F	402	<	141
Antimony	<	3.03	1	3.3	F	<	3.03		4.11		<	3.03	<	3.03	F <	0.00		4.02
Arsenic		5.97	1	4.05	F	1	4.69	<	2.54	F	1	4.58		3.3	F	8.74	1	3.52
Barium		8.06	11.	7.09	F		7.86	1	6.9	F		7.77		6.81	F	10.4	100	8.53
Beryllium	<	5	<	5	F	<	5	<	5		<	5	<	5	F <	A 100 100 Tolerand	<	5
Cadmium	<	4.01	<	4.01	F	<	4.01	<	4.01		<	4.01	<	4.01	F <		<	4.01
Calcium		22700		22200	F		23300		22000	F		22800		21300	F	22800		21900
Chromium	<	6.02	<	6.02	F	<	6.02	<	6.02	(3)	<	6.02	<	6.02	F <	77.5	<	6.02
Cobalt	<	25	<	25	F	<	25	<	25		<	25	<	25	F <		<	25
Copper	<	8.09	<	8.09	F	<	8.09	<	8.09		<	8.09	<	8.09	F <		<	8.09
Iron		439		139	F		405		119	F		421		105	F	1200		112
Lead	<	1.26	<	1.26	F	<	1.26	<	1.26	F	<	1.26	<	1.26	F	5.1	<	1.26
Magnesium	- 1	3250		3170	F	1	3340	1	3160	F		3250	-10	3080	F	3280	1	3140
Manganese		84.3		72.2	F		81.2		69.8	F		94.5		93.7	F	272	1.	355
Mercury	<	.243	<	.243	F	<	.243	<	.243		<	.243	<	.243	F <	.243	<	.243
Nickel	<	34.3	<	34.3	F	<	34.3	<	34.3	F	<	34.3	<	34.3	F <	34.3	<	34.3
Potassium		1370		1590	F	1	1770		1820	F	1	1260		1460	F	1700		1410
Selenium	<	3.02	<	3.02	F	<	3.02	<	3.02	F	<	3.02	<	3.02	F <	3.02	<	3.02
Sodium		20500		20000	F		20600		19600	F		20000		19000	F	19800		19800
Vanadium	<	11	<	11	F	<	11	<	11	F	<	11	<	11	F <	11	<	11
Zine	<	21.1	<	21.1	F	<	21.1	<	21.1	F	<	21.1	<	21.1	F <	21.1	<	21.1
PAL PESTICIDES/PCBS (µg/L)											_							
4,4'-ddd											<	.0233						
4,4'-dct	- 1		-1			ı					<	.034			- 1		1	
Bhc - Alpha	- 1					l					<	.0385			- 1		1	
Bhc - Beta	- 1										<	.024			- 1		1	
Bhc - Delta	- 1		9			1					<	.0293			- 1		1	
Bhc - Gamma (lindane)	- 1					1					<	.0507	- 1		- 13		1	
Endosulfan I						ı					<	.023			11			
Endrin Aldehyde						l					<	.0285						
Heptachlor											<	.0423			- 1		1	
Isodrin											<	.0562						
PAL SEMIVOLATILE ORGANICS (µ	9/L)																	
Bis(2-ethylhexyl) Phthalate	<	4.8				<	4.8	\neg	_		<	4.8	1		1<	4.8	-	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-09X 09/20/94	CSW-94-09X 09/20/94 (filtered)	CSW-94-16X 69/20/94	CSW-94-10X 89/28/94 (filtered)	CSW-94-11X 09/21/94	CSW-94-11X 09/21/94 (filtered)	CSW-94-12X 09/21/94	CSW-94-12X 09/21/94 (filtered)
PAL WET CHEMISTRY								
Alkalinity	45000		46000		41000		49000	
Chloride	33000		33000		33000		33000	
Sulfate								
Total Hardness	67600		67600		67600		68400	
Total Suspended Solids	< 4000		< 4000		6000		37000	
OTHER								
Total Organic Carbon (µg/L)		1						

NOTES:

µg/L = micrograms per liter

<= less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = enalysis is unconfirmed

ANALYTE	C	SW-94-13X 09/22/94	(SW-94-13 09/22/94 (filtered)	x	CSW-94-14X 09/22/94		CSW-94-14 89/22/94 (filtered)	X		V-94-16X 9/22/94		CSW-94-16 09/22/94 (filtered)	x	•	CSW-94-17X 09/22/94	,	SW-94-17 09/22/94 (filtered)
PAL METALS (µg/L)																		
Aluminum	<	141	<	141	F	7740	<	141	F		501	<	141		<	141	<	141
Antimony	<	3.03		2.95		< 3.03	<	3.03			3.03	<	3.03			3.03		2.95
Arsenic		3.84	1	3.3	F	8.42	<	2.54	F		15.8	<	2.54	F		3.52	<	2.54
Barium	1	8.63		8.15	F	107		11.6	F		46.9		12.5	F		8.95		8.28
Beryllium	<	5	<	5		< 5	<	5		<	5	<	5		<	5	<	5
Cadmium	<	4.01	<	4.01	F	9.74	<	4.01		<	4.01	<	4.01		<	4.01	<	4.01
Calcium		24000	4	24000	F	22300		7300	F	1.4	18000		17200	F		22900		22800
Chromium	<	6.02	<	6.02	F	14	<	6.02			6.02	<	6.02	F	<	6.02	<	6.02
Cobalt	<	25	<	25	- 1	< 25	<	25			25	<	25		<	25	<	25
Copper	<	8.09	<	8.09	F	60.5	<	8.09		<	8.09	<	8.09	F	<	8.09	<	8.09
Iron	4	423		115	F	7800	<	38.8	F		6080		438	F		474		249
Lead	<	1.26	<	1.26	F	140	- 1	1.41	F		3.36	<	1.26	F	<	1.26	<	1.26
Magnesium		3450		3460	F	2020		611	F		3420		3300	F	1	3270	1	3270
Manganese	- 1	101		96.5	F	60	- 11 -	7.88	F		4480	- 1	217	F	L	102		90
Mercury	<	.243	<	.243	F	< .243	<	.243		<	.243	<	.243		<	.243	<	.243
Nickel	<	34.3	<	34.3	F	< 34.3	<	34.3	F	<	34.3	<	34.3	F	<	34.3	<	34.3
Potassium		2110		2010	F	2860		1540	F		2500		2540	F	1	1500		1460
Selenium	<	3.02	<	3.02	F	< .3.02	<	3.02	F	<	3.02	<	3.02	F	<	3.02	<	3.02
Sodium		19600		19700	F	44700		46200	F	1	32800		32800	F	1	20500		20600
Vanadium	<	11	<	11	F	16.4	<	11	F	<	11	<	11	F	<	11	<	11
Zine	<	21.1	<	21.1	F	240	<	21.1	F	<	21.1	<	21.1	F	<	21.1	<	21.1
PAL PESTICIDES/PCBS (µg/L)	-																	
4,4'-ddd	<	.0233													Т			
4,4'-ddt	<	.034	1									- 1			1			
Bhe - Alpha	<	.0385	1				- 1					- 11			1			
Bhc - Beta	<	.024										- 1			1			
Bhc - Delta	<	.0293								1		- 1			1			
Bhc - Gamma (lindane)	<	.0507	1									- 1			1			
Endosulfan I	<	.023																
Endrin Aldehyde	<	.0285																
Heptachlor	<	.0423								1								
Isodrin	<	.0562			J													
PAL SEMIVOLATILE ORGANICS	(ug/L)																	
Bis(2-ethylhexyl) Phthalate	<	4.8				< 4.8				<	4.8			_	<	4.8	1	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-13X 69/22/94	CSW-94-13X 09/22/94 (filtered)	CSW-94-14X 69/22/94	CSW-94-14X 09/22/94 (filtered)	CSW-94-16X 09/22/94	CSW-94-16X 09/22/94 (filtered)	CSW-94-17X 09/22/94	CSW-94-17X 09/22/94 (filtered)
PAL WET CHEMISTRY								10
Alkalinity	51000		13000		33000		47000	
Chloride	33000		55000		55000		33000	
Sulfate								
Total Hardness	71600		57200		62400		67200	
Total Suspended Solids	< 4000		212000		146000		9000	
OTHER								
Total Organic Carbon (µg/L)								

NOTES:

μg/L = microgrums per liter

< = less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE	CSW-94-18X 69/22/94	CSW-94-18X 09/22/94 (filtered)	CSW-94-19X 09/22/94	CSW-94-19X 09/22/94 (filtered)	CSW-94-20X 09/22/94	(SW-94-20X 09/22/94 (filtered)	CSW-94-26X 09/20/94	CSW-94-26X 09/20/94 (filtered)
PAL METALS (µg/L)								
Aluminum	< 141	< 141 F	0.00	< 141 F	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		< 141	< 141
Antimony	< 3.03	2.7.		< 3.03 F	1 1/4		< 3.03	< 3.03
Arsenic	2.98	< 2.54 F	3.73	< 2.54 F			< 2.54	< 2.54
Barium	11.5	12.5 F		8.18 F	5-1-	16.5 F	7777	9.44
Beryllium	< 5		< 5	< 5 F	2.0	< 5 F		< 5
Cadmium	< 4.01	1.7	< 4.01	< 4.01 F	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 March 1997 1997 1997	< 4.01	< 4.01
Calcium	18400	17500 F		22500 F	21300	21100 F	17300	16900
Chromium	< 6.02		< 6.02	< 6.02 F	< 6.02		< 6.02	< 6.02 < 25
Cobalt	< 25	100		< 25 F			< 25	< 25
Copper	< 8.09	< 8.09 F	< 8.09	< 8.09 F	< 8.09	< 8.09 F	< 8.09	< 8.09
Iron	305	873 F	562	105 F	1090	172 F	804	150
Lead	< 1.26	< 1.26 F	< 1.26	< 1.26 F	1.41	< 1.26 F	< 1.26	< 1.26 2870
Magnesium	3200	3300 F	3200	3230 F	2820	2810 F	2900	2870
Manganese	278	442 F	128	86.8 F	119	108 F	613	222
Mercury	< .243	< .243 F	< .243	< ,243 F	< .243	< .243 F	< .243	< .243
Nickel	< 34.3	< 34.3 F	< 34.3	< 34.3 F	< 34.3	< 34.3 F	< 34.3	< 34.3
Potassium	2040	2200 F	1580	1830 F	2620	2160 F	1730	1850
Selenium	< 3.02	< 3.02 F	< 3.02	< 3.02 F	< 3.02	< 3.02 F	< 3.02	< 3.02
Sodium	29100	32100 F	19900	20200 F	21200	20900 F	22900	22600
Vanadium	< 11	< 11 F	< 11	< 11 F	< 11	< 11 F	< 11	< 11
Zinc	< 21.1	< 21.1 F	< 21.1	< 21.1 F	< 21.1	< 21.1 F	< 21.1	< 21.1
PAL PESTICIDES/PCBS (µg/L)								
4,4'-ddd	< .0233				< .0233			
4,4'-ddt	< .034				< .034			
Bhc - Alpha	< .0385		1		< .0385			
Bhc - Beta	< .024			10	< .024			
Bhc - Delta	< .0293				< .0293			
Bhc - Gamma (lindane)	< .0507				< .0507			N.
Endosulfan I	< .023				< .023			
Endrin Aldehyde	< .0285				< .0285			
Heptachlor	< .0423				< .0423			
Isodrin	< .0562				< .0562			
PAL SEMIVOLATILE ORGANICS (ug/L)							
Bis(2-ethylhexyl) Phthalate	11		< 4.8		< 4.8		< 4.8	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-18X 09/22/94	CSW-94-18X 09/22/94 (filtered)	CSW-94-19X 09/22/94	CSW-94-19X 99/22/94 (flittered)	CSW-94-20X 09/22/94	CSW-94-28X 09/22/94 (filtered)	CSW-94-26X 09/20/94	CSW-94-26X 09/20/94 (filtered)
PAL WET CHEMISTRY								
Alkalinity	34000		47000		22000		36000	
Chloride	66000		33000		66000		66000	
Sulfate								
Total Hardness	56400		68000		61600		54400	
Total Suspended Solids	< 4000		< 4000		131000		< 4000	
OTHER								
Total Organic Carbon (µg/L)								

NOTES:

μg/L = micrograms per liter

<=less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed V = sample was subjected to unusual storage/preservation conditions

ANALYTE	CSW-94-27X 69/20/94	CSW-94-27X 09/20/94 (filtered)	CSW-94-28X 09/22/94	CSW-94-28X 09/22/94 (filtered)	CSW-94-31X 09/21/94	CSW-94-31X 09/21/94 (filtered)	CSW-94-32X 09/21/94	CSW-94-32X 69/23/94 (filtered)
PAL METALS (µg/L)								
Aluminum	< 141		< 141	< 141 F			< 141	< 141 F
Antimony	< 3.03		< 3.03	3.12 F	17 2 5 5 5 5		< 3.03	2.95 F
Arsenic	< 2.54		< 2.54	< 2.54 F		< 2.54 F	< 2.54	< 2.54 F
Barium	9.54	8.18 F	8.18	8.56 F	179	7.01 F	7.4	8.18 F
Beryllium	< 5	< 5 F	< 5	< 5 F		< 5 F	< 5	< 5 F
Cadmium	< 4.01		< 4.01	The second secon	< 4.01	< 4.01 F	< 4.01	< 4.01 F
Calcium	16700	16400 F	17800	17500 F	19700	16400 F	16400	16400 F
Chromium	< 6.02	< 6.02 F	< 6.02	< 6.02 F	6.33	< 6.02 F	< 6.02	< 6.02 F
Cobalt	< 25	< 25 F	< 25	< 25 F		< 25 F	< 25	< 25 F
Copper	< 8.09	< 8.09 F	< 8.09	< 8.09 F	< 8,09	< 8.09 F	< 8.09	< 8.09 F
Iron	381	109 F	323	151 F	40300	200 F	490	247 F
Lead	< 1.26	< 1.26 F		< 1.26 F	32.8	10.6 F	5.97	< 1.26 F
Magnesium	2800	2790 F	3050	3020 F	3640	2810 F	2790	2820 F
Manganese	209	179 F	181	132 F	6320	151 F	177	171 F
Mercury	< .243		< .243	< .243 F	< .243	< .243 F	< .243	< .243 F
Nickel	< 34.3	< 34.3 F	< 34.3	< 34.3 F	< 34.3	< 34.3 F	< 34.3	< 34.3 F
Potassium	2080	1910 F	1650	1750 F	2720	1530 F	1760	1800 F
Selenium	< 3.02	< 3.02 F	< 3.02	< 3.02 F	< 3.02	< 3.02 F	< 3.02	< 3.02 F
Sodium	22300	22200 F	26100	25900 F	23000	23000 F	22500	22600 F
Vanadium	< 11	< 11 F	< 11	< 11 F	< 11	< 11 F	< 11	< 11 F
Zinc	< 21.1	< 21.1 F	< 21.1	< 21.1 F		< 21.1 F	< 21.1	< 21.1 F
PAL PESTICIDES/PCBS (µg/L)								
4,4'-ddd	< .0233						< .0233	
4,4'-ddt	< .034						< .034	
Bhc - Alpha	< .0385		Y				< .0385	
Bhc - Beta	< .024						< .024	
Bhc - Delta	< .0293						< .0293	
Bhc - Gamma (lindane)	< .0507						< .0507	1
Endosulfan I	< .023			1 8 1 1 1			< .023	
Endrin Aldehyde	< .0285						< .0285	
Heptachlor	< .0423						< .0423	
Isodrin	< .0562			A 42			< .0562	
PAL SEMIVOLATILE ORGANI	CS (ug/L)							
Bis(2-ethylhexyl) Phthalate	< 4.8		< 4.8		< 4.8		< 4.8	

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-27X 09/20/94	CSW-94-27X 09/20/94 (filtered)	CSW-94-28X 09/22/94	CSW-94-28X 09/22/94 (filtered)	CSW-94-31X 09/21/94	CSW-94-31X 09/21/94 (filtered)	CSW-94-32X 09/21/94	CSW-94-32X 09/21/94 (filtered)
PAL WET CHEMISTRY								
Alkalinity	35000		35000		32000		35000	
Chloride	33000		66000		66000		66000	V
Sulfate	Y							
Total Hardness	51600		56000		63200		51200	
Total Suspended Solids	< 4000		< 4000		380000		4000	
OTHER	4000		< 4000		380000		4000	
Total Organic Carbon (µg/L)								

NOTES:

µg/L = micrograms per liter

< = less than

B = analyte found in method blank or QC blank as

well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE	CSW-94-33X 09/21/94	C	SW-94-33 09/21/94 (filtered)	x	ť	SW-94-34X 09/21/94	(SW-94-34 09/21/94 (filtered)		c	8W-94-35X 09/22/94	(SW-94-35 09/22/94 (filtered)	x	s	SW-95-09 07/10/95	
PAL METALS (µg/L)																	
Aluminum	1370	<	141	F		374	<	141		<	141	<	141		<	112	
Antimony	< 3.03		2.77	F	<	3.03	<	3.03	F	<	3.03		4.11	F		60	ě
Arsenic	40	<	2.54	F		5.22	<	2.54	F	<	2.54	<	2.54	F		8.94	M
Barium	89.9		7.59	F		13.3		7.98	F		9.35		8.37	F		18.1	
Beryllium	< 5	<	5	F	<	5	<	5	F	<	5	<	5	F		1.21	
Cadmium	< 4.01	<	4.01	F	<	4.01	<	4.01	F	<	4.01	<	4.01	F	<	6.78	
Calcium	17800	1	16300	F		16400	1	15500	F		11200		11200	F		24200	
Chromium	19.7	<	6.02	F		6.26	<	6.02	F	<	6.02	<	6.02	F	<	16.8	
Cobalt	< 25	<	25	F	<	25	<	25	F	<	25	<	25	F	<	25	
Copper	< 8.09	<	8.09	F	<	8.09	<	8.09	F	<	8.09	<	8.09	F	<	18.8	
Iron	19200		247	F		2120	1	429	F		389		195	F		1700	
Lead	12.9	1	2.06	F		4.56	<	1.26	F	1	2.71	<	1.26	F	<	4.47	MI
Magnesium	3210		2790	F		2830	11	2660	F	1	1300		1310	F		3620	
Manganese	1870		148	F		211		157	F	1	46.2		39.1	F		196	
Mercury	< .243	<	.243	F	<	.243	<	.243	F	<	.243	<	.243	F	<	.1	
Nickel	< 34.3	<	34.3	F	<	34.3	<	34.3	F	<	34.3	<	34.3	F	<	32.1	
Potassium	2150		1860	F		2020		1960	F		1340		801	F	<	1240	
Selenium	< 3.02	<	3.02	F	<	3.02	<	3.02	F	<	3.02	<	3.02	F	<	2.53	
Sodium	23000		22500	F		22600		22000	F		24700		24900	F		20300	
Vanadium	< 11	<	11	F	<	11	<	11	F	<	11	<	11	F	<	27.6	
Zinc	29.6	<	21.1	F	<	21.1	<	21.1	F	<	21.1	<	21.1	F	<	18	MI
PAL PESTICIDES/PCBS (µg/L)																	
4,4'-ddd					<	.0233									<	.0081	
4,4'-ddt					<	.034									<	.0025	
Bhc - Alpha					<	.0385										.0182	C
Bhc - Beta		1		- 11	<	.024									<	.0099	
Bhc - Delta	N.				<	.0293									<	.0034	
Bhc - Gamma (lindane)					<	.0507				1					<	.0025	N
Endosulfan I					<	.023									<	.0025	N
Endrin Aldehyde					<	.0285									<	.0504	
Heptachlor					<	.0423										.0034	U
Isodrin					<	.0562									<	.0025	
PAL SEMIVOLATILE ORGANIC	S (μg/L)																
Bis(2-ethylhexyl) Phthalate	< 4.8				<	4.8				<	4.8	T			<	7.7	V

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-33X 09/21/94	CSW-94-33X 09/21/94 (filtered)	CSW-94-34X 09/21/94	CSW-94-34X 99/21/94 (filtered)	C8W-94-35X 09/22/94	CSW-94-35X 09/22/94 (filtered)	8SW-95-09H 07/10/95
PAL WET CHEMISTRY							
Alkalinity	33000		27000		19000		46600 F
Chloride	33000		33000		33000		42000
Sulfate	3,000			4			13000
Total Hardness	52000		50400		31600		73900
Total Suspended Solids	192000		352000		< 4000		< 4000
OTHER							
Total Organic Carbon (µg/L)							3430

NOTES:

μg/L = micrograms per liter

< = less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE		SW-95-09 07/10/95	Н		SW-95-09 07/10/95	i	S	SW-95-05 07/10/95 (filtered)	и		88W-95-05 07/10/95	IJ	S	SW-95-09 07/18/95 (filtered)			SSW-95-09 07/10/95 (duplicate		(d	SSW-95-09. 07/10/95 uplicate/filter	
PAL METALS (µg/L)																					
Aluminum	<	112	F	<	112		<	112	F	<	112		<	112	F	<	112	D	<	112	DF
Antimony	<	60	F	<	60		<	60	F	<	60		<	60	F	<	60	D	<	60	DF
Arsenic		4.98	FM		19.9	M	<	2.35	FM		11.6	M		3.89	FM	1	4.38	DM	1	2.54	DFM
Barium		16	F		21.6			18.3	F	1	7.05			7.75	F		8.22	D	II.	7.05	DF
Beryllium	<	1.12	F		1.47		1 : 1	1.39	F		1.19			1.27	F		1.31	D		1.21	DF
Cadmium	<	6.78	F	<	6.78		<	6.78	F	<	6.78		<	6.78	F	<	6.78	D	<	6.78	DF
Calcium		24100	F		30800		164	29000	F		23800			25900	F		26900	D	n	24300	DF
Chromium	<	16.8	F	<	16.8		<	16.8	F	<	16.8		<	16.8	F	<	16.8	D	<	16.8	DF
Cobalt	<	25	F	<	25		<	25	F	<	25		<	25	F	<	25	D	<	25	DF
Copper	<	18.8	F	<	18.8		<	18.8	F	<	18.8		<	18.8	F	<	18.8	D	<	18.8	DF
Iron		437	F		3470		13	1830	F	<	77.5			167	F		178	D	<	77.5	DF
Lead	<	4.47	FMP	<	4.47	MP	<	4.47	FMP	<	4.47	MP	<	4.47	FMP	<	4.47	DMP	<	4.47	DFM
Magnesium		3610	F		3400		111	3240	F		3580			3850	F		4010	D		3630	DF
Manganese		99.9	F		704			489	F		45.4		1	146	F		56	D		43.9	DF
Mercury	<	.1	F	<	.1		<	.1	F	<	.1		<	.1	F	<	.1	D	<	.1	DF
Nickel	<	32.1	F	<	32.1		<	32.1	F	<	32.1		<	32.1	F	<	32.1	D	<	32.1	DF
Potassium	<	1240	F	100	1380		<	1240	F	<	1240		<	1240	F	<	1240	D		1340	DF
Selenium	<	2.53	F	<	2.53		<	2.53	F	<	2.53		<	2.53	F	<	2.53	D	<	2.53	DF
Sodium		20500	F		33300		100	31800	F	10	20300			21900	F		22600	D	13	20700	DF
Vanadium	<	27.6	F	<	27.6		<	27.6	F	<	27.6		<	27.6	F	<	27.6	D	<	27.6	DF
Zinc	<	18	FMI		23.8	MI	1 15	18.7	FMI	<	18	MI	<	18	FMI	<	18	DMI	<	18	DFM
PAL PESTICIDES/PCBS (µg/L)																					
4,4'-ddd					.00833	С				<	.0081		T			1					
4,4'-ddt				<	.0025	100				<	.0025					1					
Bhc - Alpha					.021	C				<	.0025		1			1			1		
Bhc - Beta				<	.0099					<	.0099		1			1					
Bhc - Delta				<	.0034						.00862	U	1			1					
Bhc - Gamma (lindane)	- 1				.00318	UN				<	.0025	N	1			1			1		
Endosulfan I				<	.0025	N				<	.0025	N	1			1					
Endrin Aldehyde				<	.0504	7.70					.0921	U	1			1			1		
Heptachlor	- 1			6	.00358	U					.0032	U	1								
Isodrin				<	.0025						.00848	BU				1					
THE STREET STREET			_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_				_	1000 /0		_			_			_		
PAL SEMIVOLATILE ORGANICS Bis(2-ethylhexyl) Phthalate	(μg/L)		_	<	7.7	v	_			<	7.7	V				1<	7.7	VD			

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	SSW-95-09H 07/10/95	88W-954 07/10/9		SSW-95-091 07/10/95 (filtered)	8	SW-95-09 07/10/95	990000000000000000000000000000000000000	SSW-95-09J 07/10/95 (filtered)	SSW-95-09 07/10/95 (duplicate)		SSW-95-09J 07/10/95 (duplicate/filtered)
PAL WET CHEMISTRY											
Alkalinity		70800	FV			44200	FV		2		
Chloride	1	57000	V			42000	V				
Sulfate		10100	V		- 1	14000	v		1 200		
Fotal Hardness		89500							82000	D	
Total Suspended Solids		< 4000			<	4000					
OTHER											
Total Organic Carbon (μg/L)		3650				1340			1150	D	

NOTES:

µg/L = micrograms per liter

< = less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

1 = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE	(SW-94-04X 09/19/94	(SW-94-04) 09/19/94 (filtered)	ζ.	CSW-94-05X 09/19/94		CSW-94-05 09/19/94 (duplicate)			W-94-05X 09/19/94 (filtered)			8W-94-05 09/19/94 Heate/filt			CSW-94-06X 09/19/94	(SW-94-06 09/19/94 (filtered)	X
PAL METALS (µg/L)												_								
Aluminum		1070	<	141	F	1970	1	4740	D		141	F	<	141	DF		208	<	141	F
Antimony	<	3.03	<	3.03	F <	3.03	<	3.03	D	100	3.03	F	<	3.03	DF	<	3.03	<	3.03	F
Arsenic	<	2.54	<	2.54	F	5.54		14.1	D	<	2.54	F	<	2.54	DF	<	2.54	<	2.54	F
Barium		42.7	1	27.8	F	65	16	136	D	4	35.4	F		33.8	DF		29		26.7	F
Beryllium	<	5	<	5	F <	5,	<	5	D	100	5	F	<	5	DF	<	5	<	5	F
Cadmium	<	4.01	<	4.01	F <		<	4.01	D	<	4.01	F	<	4.01	DF	<	4.01	<	4.01	F
Calcium	- 1	11000		10600	F	12400		14500	D		11700	F		11400	DF	1	11600		11800	F
Chromium	<	6.02	<	6.02	F <		<	6.02	D	4 - 4	6.02	F	<	6.02	DF	<	6.02	<	6.02	F
Cobalt	<	25	<	25	F <			44.3	D		25	F	<	25	DF	<	25	<	25	F
Copper	<	8.09	<	8.09	F <			8.94	D	<	8.09	F	<	8.09	DF	<	8.09	<	8.09	F
Iron		6680	<	38.8	F	5770	1	14000	D		124	F		107	DF	1	679		124	F
Lead	<	1.26	<	1.26	F	10.1	- 1	27.3	D	<	1.26	F	<	1.26	DF	1	3.58	<	1.26	F
Magnesium		1290	W.	1260	F	1470	м	1770	D		1400	F		1370	DF	1	1460		1440	F
Manganese	- 1	1450		195	F	1940	-	6050	D		385	F		336	DF	1	323		224	F
Mercury	<	.243	<	.243	F <	.243	<	.243	D		.243	F	<	.243	DF	<	.243	<	.243	F
Nickel	<	34.3	<	34.3	F <	34.3		42.1	D	<	34.3	F	<	34.3	DF	<	34.3	<	34.3	F
Potassium		1360		1560	F	1820		2500	D		1710	F		1800	DF		1830	V	1630	F
Selenium	<	3.02	<	3.02	F <	3.02		3.3	D	<	3.02	F	<	3.02	DF	<	3.02	<	3.02	F
Sodium		15000		15000	F	15900		15800	D		16500	F		15800	DF		19400		19800	F
Vanadium	<	11	<	11	F <	11	<	11	D	<	11	F	<	11	DF	<	11	<	11	F
Zinc		33.9	<	21.1	F	112		187	D	<	21.1	F	<	21.1	DF	<	21.1	<	21.1	F
PAL PESTICIDES/PCBS (µg/L)			T																	
DDD			\top				1					Т				1				
DDT												- 1				1				
Bhc - Alpha	- 1				- 1				- 4			- 1				1		1		
Bhc - Beta	- 1											- 1				1		1		
Bhc - Delta	- 1															1		1		
Bhc - Gamma (lindane)							-									1				
Endosulfan I																1				
Endrin Aldehyde					- 1					0						1				
Heptachlor	- 1											- 1				1				
Isodrin .																				
PAL SEMIVOLATILE ORGANICS (µg	7.)						-			-		_,			-	_		-		
Bis(2-ethylhexyl) Phthalate	,,,,	10	+		1<	4.8	1	6.1	D			_				1	4.5	1		_

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-04X 09/19/94	CSW-94-04X 09/19/94 (filtered)	CSW-94-05X 09/19/94	CSW-94-05X 09/19/94 (duplicate)		SW-94-05X 09/19/94 (filtered)	CSW-94-05X 09/19/94 (duplicate/filtered)	CSW-94-06X 09/19/94	CSW-94-06X 09/19/94 (filtered)
PAL WET CHEMISTRY									
Alkalinity	15000		13000	13000	D			18000	
Chloride	27400		31800	31800	D			33000	
Sulfate				R CANADA				111111111111111111111111111111111111111	
Total Hardness	32400		37600	48000	D			34800	
Total Suspended Solids	9000		9000	21000	D			10000	
OTHER								100	
Total Organic Carbon (µg/L)									

NOTES:

μg/L = micrograms per liter

<= less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE		SW-94-07X 09/19/94	ć	SW-94-07 09/19/94 (filtered)	x	SW-94-21X 09/20/94		SW-94-21 09/20/94 (flitered)	x	SW-94-24X 69/28/94	ľ	(SW-94-24 09/20/94 (filtered)	x	SW-94-30X 09/21/94	(SW-94-30 09/21/94 (filtered)	Ţ
PAL METALS (μg/L)																	
Aluminum	<	141	<	141	F	930	<	141	F	710	<	141	F	74600	<	141	F
Antimony	<	3.03	<	3.03	F <	3.03	<	3.03	F <	3.03	1	3.66	F	7.68	<	3.03	F
Arsenic	<	2.54	<	2.54	F	14		11.4	F	19.3	1	7.78	F	93.2		3.09	F
Barium		25.9		24.9	F	18		12	F	52.5		47.1	F	387		14.5	F
Beryllium	<	5	<	5	F <	5	<	5	F <	5	<	5	F <		<	5	F
Cadmium	<	4.01	<	4.01	F <	4.01	<	4.01	F <	4.01	<	4.01	F	27	<	4.01	F
Calcium		11600		11500	F	7650		7290	F	8310		8490	F	38800		14400	F
Chromium	<	6.02	<	6.02	F <	6.02	<	6.02	F <	6.02	<	6.02	F	187	<	6.02	F
Cobalt	<	25	<	25	F <	25	<	25	F <	25	<	25	F	75	<	25	F
Соррет	<	8.09	<	8.09	F <	8.09	<	8.09	F	8.97	<	8.09	F	194	<	8.09	F
Iron		332		115	F	3710	11	1680	F	6320		158	F	126000		3060	F
Lead		1.52	<	1.26	F	20.6		1.52	F	18.2	1	2.93	F	370	1	1.41	F
Magnesium	- 1	1430		1410	F	798		517	F	1450		1300	F	29600	1	2570	
Manganese	- 1	226	1	204	F	350		324	F	1190		973	F	4250	1	920	F
Mercury	<	.243	<	.243	F <	.243	<	.243	F <	.243	<	.243	F	.426	<	.243	F
Nickel	<	34.3	<	34.3	F <	34.3	<	34.3	F <	34.3	<	34.3	F	185	<	34.3	F
Potassium	- 1	1780	1	1730	F	1570		1250	F	2080		1710	F	14000		2250	F
Selenium	<	3.02	<	3.02	F <	3.02	<	3.02	F <	3.02	<	3.02	F <	3.02	<	3.02	F
Sodium		19000		19000	F	22500		22000	F	18000		18600	F	24000		22300	F
Vanadium	<	11	<	11	F <	11	<	11	F <	11	<	11	F	162	<	11	F
Zine	<	21.1	<	21.1	F	61.2	1	42.9	F	280	1	277	F	935	<	21.1	F
PAL PESTICIDES/PCBS (µg/L)																	
DDD							T				T				1		
DDT			1		- 1						1		- 1		1		
Bhc - Alpha	- 1		1		- 1		1				1		- 1		1		
Bhc - Beta	- 1				- 1		1				1		- 1				
Bhc - Delta	- 1		1								1		- 1				
Bhc - Gamma (lindane)											1		- 1				
Endosulfan I			1								1		- 1				
Endrin Aldehyde											1						
Heptachlor																	
Isodrin																	
PAL SEMIVOLATILE ORGANICS (μ	9/L)								-				_				
Bis(2-ethylhexyl) Phthalate	<	4.8	1		<	4.8	1		<	4.8	-		<	4.8	T		_

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE	CSW-94-07X 09/19/94	CSW-94-07X 09/19/94 (filtered)	SW-94-21X 09/20/94	CSW-94-21X 09/20/94 (filtered)	SW-94-24X 09/20/94	CEW-94-24X 09/20/94 (filtered)	SW-94-30X 09/21/94	CSW-94-36X 09/21/94 (filtered)
PAL WET CHEMISTRY								
Alkalinity	17000		24000		16000		30000	
Chloride	33000		28500		18700		33000	
Sulfate							40.00	
Total Hardness	34000		20000		27200		92400	
Total Suspended Solids	< 4000		31000		36000		3950000	
OTHER								
Total Organic Carbon (µg/L)			7					

NOTES:

μg/L = micrograms per liter

< - less than

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

ANALYTE	SSW-95-09K 07/10/95		8SW-95-09K 67/10/95 (duplicate)		85W-95-09K 07/10/95 (filtered)					
PAL METALS (µg/L)										
Aluminum		223					<	112	F	
Antimony	<	60					<	60	F	
Arsenic		63.4	M					26.7	FM	
Barium	- 1	30.5	- 1					25.1	F	
Beryllium		1.15	- 1					1.15	F	
Cadmium	<	6.78	- 1				<	6.78	F	
Calcium		22500	- 1					22500	F	
Chromium	<	16.8	- 1				<	16.8	F	
Cobalt	<	25	- 1				<	25	F	
Copper	<	18.8	- 1				<	18.8	F	
Iron	1	23500						9250	F	
Lead	<	4.47	MP				<	4.47	FMF	
Magnesium		2300						2290	F	
Manganese		845	- 1					835	F	
Mercury	<	.1	- 1				<	.1	F	
Nickel	<	32.1	- 1				<	32.1	F	
Potassium		1610	- 1					1420	F	
Selenium	<	2.53	- 1				<	2.53	F	
Sodium		27900	- 1				Q.	28000	F	
Vanadium	<	27.6					<	27.6	F	
Zinc	<	18	MI				<	18	FMI	
PAL PESTICIDES/PCBS (µg/L)										
DDD	<	.0081	-1		.0178	DC				
DDT	<	.0025			.00314	DU				
Bhc - Alpha		.00444	C		.00479	DU	-			
Bhc - Beta	<	.0099			.0119	DU				
Bhc - Delta		.0037	U	<	.0034	D				
Bhc - Gamma (lindane)		.00423	UN		.00553	DUN				
Endosulfan I	<	.0025	N		.00436	DUN				
Endrin Aldehyde		.0639	U	<	.0504	D				
Heptachlor	<	.0025	100		.0034	DU				
Isodrin	<	.0025		<	.0025	D				
PAL SEMIVOLATILE ORGANIC										
Bis(2-ethylhexyl) Phthalate	<	7.7	V				91			

LOWER COLD SPRING BROOK SITE INVESTIGATION FORT DEVENS, MA

ANALYTE.	SSW-95-091 07/10/95	C	8SW-95-09K 97/19/95 (duplicate)	88W-95-09K 07/10/95 (filtered)
PAL WET CHEMISTRY				
Alkalinity	53100	FV		
Chloride	39000	V		
Sulfate	5640	v		
Total Hardness	64500			
Total Suspended Solids	< 59000	- 1		
OTHER				
Total Organic Carbon (μg/L)	13300			

NOTES:

μg/L = micrograms per liter

< = less that

B = analyte found in method blank or QC blank as well as the sample.

C = analysis was confirmed

D = duplicate

F = filtered

I = low spike recovery is high

M = high spike recovery is high

N = high spike recovery is low

U = analysis is unconfirmed

5.0 PRELIMINARY RISK EVALUATION

This PRE is a screening-level evaluation of actual and potential risks that environmental contaminants may pose to ecological receptors in the vicinity of lower Cold Spring Brook. The specific objectives of this PRE are to:

- review and summarize the existing analytical data collected for surface soil, sediment, and surface water in the vicinity of lower Cold Spring Brook,
- qualitatively characterize the ecological communities at the site to identify potential ecological receptors and contaminant exposure pathways,
- compare the analytical data to available ecological screening guidelines and criteria,
- qualitatively evaluate the health and diversity of the lower Cold Spring Brook macroinvertebrate community,
- evaluate the toxicity of lower Cold Spring Brook sediment to aquatic receptors and,
- identify data gaps and make recommendations for future actions.

The PRE for lower Cold Spring Brook is presented in three subsections. Subsection 5.1 presents the methodology used to conduct the PRE; Subsection 5.2 presents the results of the PRE; and Subsection 5.3 presents the PRE summary and interpretations.

Based of the difficulty experienced by study investigators in accessing most lower Cold Spring Brook sample locations, it was concluded that human exposure pathways were not significant. Consequently, the PRE does not evaluate potential human health effects.

5.1 PRE METHODOLOGIES

This PRE evaluates surface water, surface soil, and sediment analytical data collected between 1992 and 1994 in lower Cold Spring Brook, in the lower Cold Spring Brook floodplain, and in storm drain systems tributary to lower Cold Spring Brook. Although all drainage ditch samples collected in the field were labelled as sediment, several ditch samples were treated as surface soil in the PRE because of the terrestrial nature of the habitat and the lack of standing water at these locations throughout most of the year. All drainage ditch samples collected in Storm Drain Systems No. 1/2, 6, 8, and 5 were treated in this manner. All data are summarized in Section 4. In addition, the PRE evaluates bioassessment data gathered during the 1994 field program at lower Cold Spring Brook.

Previous Fort Devens SI reports for the Groups 3, 5, and 6 SAs (ABB-ES, 1993a), for the Groups 2, 7, and Historic Gas Stations SAs (ABB-ES, 1993b), and for the Railroad Roundhouse SA (ABB-ES, 1995b) describe the PRE methodology in detail. The lower Cold Spring Brook PRE includes site-specific macroinvertebrate and toxicity testing, as well as a benchmark screening section. This additional empirical information allows for a more site-specific evaluation of aquatic ecological risks than a PRE based solely on benchmark screening. Because exposure pathways to human receptors are lacking at lower Cold Spring Brook, this PRE does not include a public health component.

5.1.1 Data Assessment

As described in Section 4, this report evaluates data from several previous investigations. The following data sets are evaluated in the lower Cold Spring Brook ecological PRE:

- Lower Cold Spring Brook surface water and sediment (see Figure 2-1)
- Storm Drain Systems No. 1/2 surface water and surface soil (see Figure 4-1)
- Storm Drain Systems No. 2/3/4 surface water and sediment (see Figure 4-2)

- Storm Drain System No. 6 surface soil (see Figure 4-4)
- Storm Drain System No. 7 surface water and sediment (see Figure 4-5)
- Storm Drain System No. 8 surface soil (see Figure 2-1)
- Storm Drain System No. 9 sediment (see Figure 4-6)

In addition, this PRE contains an evaluation of surface soil in Storm Drain System No. 5 (see Figure 2-1), which drains to Grove Pond, and an evaluation of surface water and sediment in the dammed region of Cold Spring Brook near SA 57 (see Figure 4-3).

To evaluate each of the data sets described above, data were screened against background (surface soil) or upgradient reference data (surface water and sediment) to eliminate analytes from evaluation in the PRE. The background surface soil data set consisted of chemical data gathered from 20 surface soil sample locations selected to establish background concentrations of inorganic analytes for Group 1A sites. The values approximate the 68th percentile upper bound limits (the mean values plus one standard deviation) of these chemicals (ABB-ES, 1993c). The upgradient surface water and sediment location used as a reference station was SSD/SSW-93-92C (A.D. Little, 1994b). These samples, located in Cold Spring Brook approximately 1,000 feet upstream of the intersection of Patton Road and Barnum Pond, represent chemical concentrations in the brook upstream of the influence of Storm Drain Systems No. 1/2, 2/3/4, 6, 7, 8, 9, and the SA 57 area. SSD/SSW-93-92C is shown in Figure 4-6. Analytes were eliminated from the PRE if the maximum detected concentration was less than the background or upgradient screening value.

Calcium, magnesium, potassium, and sodium were excluded as ecological chemicals of potential concern (COPCs) for all media; these analytes are considered to be essential nutrients and are only toxic at elevated concentrations. Evidence suggests that there is little potential for toxic effects resulting from over-exposure to these essential nutrients. The highly controlled physiological regulatory mechanisms for these inorganic ions suggest that there is little, if any, potential for bioaccumulation, and available toxicity data demonstrate that high

dietary intakes of these nutrients are well-tolerated (NAS, 1977; NRC, 1982; 1984a,b).

PRE data summaries include the frequency of detection, range of detection limits, range of detected concentrations, average detected concentration, and for inorganic analytes, background or upgradient screening concentrations. For data sets that only include one sample location, a range of detected concentrations may be presented if a duplicate was collected at that sample location.

5.1.2 Ecological Characterization

This subsection contains a brief, qualitative description of ecological resources in the vicinity of lower Cold Spring Brook.

Cold Spring Brook is a perennial stream located along the eastern boundary of the Main Post at Fort Devens. The brook receives overland runoff and storm drainage from undeveloped land, land in industrial use, and parking lots and roadways. The section of Cold Spring Brook located west of the B&MRR right-of-way contains the brook headwaters. This region collects runoff from the eastern portion of the Main Post at Fort Devens, including the Magazine Area and the area in the vicinity of the Cold Spring Brook Landfill. The brook in this region flows north through forested woodlands and wetlands before passing beneath the B&MRR right-of-way near Barnum Road.

The brook collects runoff from the industrial area along Barnum Road as it flows northeast from the railroad right-of-way. All of the storm drain systems evaluated in this PRE discharge to lower Cold Spring Brook between Patton Road and the Fort Devens property boundary near the Barnum Gate. Approximately mid-way between the railroad right-of-way and Barnum Gate, Cold Spring Brook receives additional surface water flow from Bowers Brook, a perennial stream carrying surface water flow from Bare Hill Pond in Harvard. The Bowers Brook watershed is considered a potential additional source of contaminants to lower Cold Spring Brook from off-site agricultural activities. As Cold Spring Brook flows north, it leaves Fort Devens property and ultimately discharges to Grove Pond (see Figure 1-2).

Gross signs of vegetative stress that may be attributable to contamination from the Fort Devens industrial area were surveyed during a site visit conducted by ABB-ES ecologists in Fall 1995. With the exception of a small unvegetated area located in Storm Drain System No. 2/3/4, no signs of plant stress or phytotoxicity were detected during the survey. The lack of vegetation in a 400 square foot portion of the ditch in the vicinity of CSD-94-23X could either be attributable to contaminant-related phytotoxicity or to physical conditions (e.g., periodic ponding or high velocity storm surges).

5.1.2.1 Vegetative Cover Types. Between the headwaters and Storm Drain System No. 6, the lower Cold Spring Brook floodplain is generally a forested swamp habitat dominated by red maples (Acer rubrum). The U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory identifies this region of Cold Spring Brook as palustrine forested wetlands, with a combination of broad-leaved deciduous and needle-leaved evergreen trees dominating the forest composition (Figure 5-1) (USFWS, 1977). Various oak species (Quercus spp.), grey birch (Betula populifolia), white pine (Pinus strobus), silky dogwood (Cornus amonum), sheep laurel (Kalmia angustifolia), swamp azalea (Rhododendron viscosum), poison sumac (Rhus vernix), American elm (Ulmus americana), nannyberry (Viburnum lentago), buckthorn (Rhamnus frangula), highbush blueberry (Vaccinium corymbosum), and speckled alder (Alnus rugosa) also occur in the floodplain of lower Cold Spring Brook. Typical floodplain herbaceous components include various graminoids, cinnamon fern (Osmunda cinnamomea), royal fern (Osmunda regalis), and sphagnum mosses (Sphagnum sp.).

Downstream of Storm Drain System No. 6 (in the vicinity of sampling stations CSD-94-12X and -13X), until discharge to Grove Pond, the USFWS characterizes the Cold Spring Brook floodplain as a scrub/shrub swamp, with emergent marsh characteristics (see Figure 5-1). Duckweed (*Lemna minor*), arrow arum (*Peltandra virginica*), and cattail (*Typha latifolia*) occur in the stream channel. Floodplain wetland vegetation includes sheep laurel, speckled alder, sweet gale (*Myrica gale*), swamp rose (*Rosa palustris*), red maple, arrowwood (*Viburnum recognitum*), forget-me-not (*Myosotis scorpioides*), purple loosestrife (*Lythrum salicaria*), Japanese knotweed (*Polygonum cuspidatum*), sphagnum mosses, and various grasses. Red maple and white pine dominate the tree canopy along the stream banks. Red oak (*Quercus rubra*), white oak (*Quercus alba*), and willow (*Salix nigra*) are also located in this area.

Lower Cold Spring Brook is a warm water stream that contains predominantly slow-moving (lentic) environments, as well as discreet channelized regions with more lotic characteristics. The only true riffle habitat in lower Cold Spring Brook is in the vicinity of sampling station CSW/CSD-94-03X, directly downgradient of an old man-made dam. Stream channel width ranges from as little as 5 feet, in the forested floodplain, to a wide, braided and dendritic channel in a downstream, emergent marsh and forested swamp. Stream depths range from 3 to 5 inches to several feet; deeper water (up to 3 to 4 feet) is found more commonly in the emergent marsh portions of the stream than in the forested floodplain. The banks of lower Cold Spring Brook tend to be poorly defined, with limited bank habitat; however, stretches of the stream bank are approximately 1 to 2 feet in height, and may provide limited habitat for mammals such as the mink (Mustella vison). Discreet regions of the stream channel are scoured, with filamentous green algae and aquatic macrophytes growing in the channel. Although no fish sampling was conducted, it is likely that deeper portions of lower Cold Spring Brook provide limited habitat for warmwater fish typical of southeastern New England.

5.1.2.2 Ecological Characterization of Storm Drain Systems. Eight storm drain systems convey stormwater from Fort Devens into lower Cold Spring Brook. Each of these drain systems is a potential source of contamination to lower Cold Spring Brook. A ninth system, System No. 5, drains to Grove Pond. The following discussion provides a qualitative ecological characterization of these storm drain systems. Additional information regarding the individual storm drain systems is contained in Section 1.

Storm Drain Systems No. 1/2. Limited wetland habitat occurs in the vicinity of Storm Drain Systems No. 1/2. No standing water was observed in the drainage ditch leading to the lower Cold Spring Brook floodplain. A qualitative evaluation of soils in this storm drain system did not show any hydric soil indicators. Some leaf litter was observed in the ditch. Vegetation in the vicinity of Storm Drain System No. 1/2 included upland trees; the only wetland species noted in the region were an occasional northern arrowwood and cinnamon fern in the ditch channel.

Storm Drain Systems No. 2/3/4. The vegetation within this outfall area is dominated by common reed (*Phragmites communis*). During sampling, several areas of the storm drain system did not contain standing water. In forested areas, the tree layer consists primarily of red maple, grey birch, paper birch (*Betula*

papyrifera), American elm, and red oak. Shrubs located in the area include silky dogwood, red osier dogwood (Cornus stolonifera), northern arrowwood, tartarian honeysuckle (Lonicera tartarica), highbush blueberry, and black cherry (Prunus serotina) saplings. Several unidentified grasses and ferns, as well as sedge (Carex sp.) and jewelweed (Impatiens capensis) comprise the herbaceous layer in the floodplain in the vicinity of Storm Drain Systems No. 2/3/4.

Storm Drain System No. 5. Although this storm drain system is not part of the lower Cold Spring Brook floodplain, the evaluation of System No. 5 has been presented in this SI because of its proximity to the Cold Spring Brook storm drain systems.

No wetland habitat occurs in the vicinity of Storm Drain System No. 5, except where the system discharges to Grove Pond. No standing water was observed in the drainage ditch and a qualitative evaluation of soils in this storm drain system did not show any hydric soil indicators. Considerable leaf litter was observed in the ditch, and no signs of active flow were observed. Vegetation in the vicinity of Storm Drain System No. 5 is dominated by upland trees such as white and scarlet oaks (Quercus alba, Q. coccinea), and shrubs such as sheep laurel and witch hazel (Hamamelis virginiana). At the point of discharge to Grove Pond, hydrophytic vegetation such as northern arrowwood, elderberry (Sambucus canadensis), royal fern, and cinnamon fern occur.

Storm Drain System No. 6. The System No. 6 drainage ditch receives runoff from an outfall pipe at the edge of a parking lot south of Barnum Road. The intermittent discharge meanders through a forested floodplain dominated by red maple and white pine before discharging into lower Cold Spring Brook.

SA 57. Lower Cold Spring Brook in the vicinity of SA 57 is a poorly defined channel flowing through a wetland with emergent marsh and scrub-shrub swamp characteristics. The floodplain forest in the upstream portions of SA 57 includes red maple and white pine. The emergent and shrubby regions of the site are dominated by broad-leaved cattail, speckled alder, tussock sedge (*Carex stricta*), red maple saplings, cinnamon fern, and other emergent species.

Storm Drain System No. 7. Cold Spring Brook is well-defined in this area, and is characterized as a scrub/shrub swamp dominated by a shrub layer of northern

arrowwood, speckled alder, poison sumac, highbush blueberry, and silky dogwood. The 80-100 foot high tree canopy is dominated by red maple, red oak, and white pine. Cinnamon fern, interrupted fern (Osmunda claytoniana), brambles (Rubus sp.), jewelweed, and sphagnum moss comprise the herbaceous layer in this area.

Storm Drain System No. 8. The System No. 8 outfall does not contain any channelized areas. Storm water from this system flows into the wetlands associated with the dammed area of lower Cold Spring Brook adjacent to the B&MRR tracks.

Storm Drain System No. 9. Storm Drain System No. 9 is an extensive system that drains paved residential areas, railroad tracks, and unpaved storage yards near the intersection of Bates Service Road and Cavite Street. The system runs east along Cavite Street, then drains south along Saratoga Street and discharges into Cold Spring Brook at the junction of Saratoga Street and Barnum Road.

A railyard located to the north and east of System No. 9 has been in place since 1942. The northwestern part of System No. 9 is occupied by housing units that were constructed in the 1950s. An historical blacksmith shop, lumber yard, and dispatch office located in the center of System No. 9 are currently occupied by the electric shop, hazardous waste storage area, and heating shop. The AREEs associated with System No. 9 include 61D(AP), 61AV, 61AX, 61AY, 69F, and 63S. SA 29 is also located in the vicinity of System No. 9.

5.1.2.3 Wildlife Habitat at Lower Cold Spring Brook. The various wetland cover types in the vicinity of lower Cold Spring Brook are expected to provide diverse wildlife habitat. Species typically occurring in floodplain wetland systems in New England include mink, river otter (Lutra canadensis), and muskrat (Ondatra zibethicus). Beaver (Castor canadensis) activity has been observed in a ponded area downstream of System No. 9. Birds common to floodplain marshes and forests include wood duck (Aix sponsa), swamp sparrow (Melosprza georgiana), great blue heron (Ardea herodias), Virginia rail (Rallus limicola), and red-winged blackbird (Agelaius phoeniceus). Green frogs (Rana clamitans) have been observed in the lower Cold Spring Brook watershed, and it is likely that the eastern painted turtle (Chrysemys picta) may find habitat in this area. Although no fish samples have been collected from lower Cold Spring Brook, the deeper portions of the brook may provide habitat for fish species similar to those found

in Cold Spring Brook Pond, such as golden shiner (*Notemigonus crysoleucas*), pumpkinseed (*Lepomis gibbossus*), and chain pickerel (*Esox niger*).

5.1.2.4 Endangered and Threatened Species. According to the Fort Devens Endangered Species and Basewide Biological Survey (ABB-ES, 1993d), no state or federally listed rare and endangered species occur in lower Cold Spring Brook or its floodplain.

5.1.3 Benchmark Screening

Benchmark screening compares analytical data to available toxicity screening benchmarks, guidelines, and criteria. The purpose of the benchmark screening evaluation is to focus on primary ecological exposure pathways and to identify potential ecological risk from exposure to contaminants.

Benchmark screening evaluations were conducted for the following groups of ecological receptors:

- aquatic receptors exposed to contaminated sediments and surface water (e.g., fish and macroinvertebrates),
- terrestrial vertebrate receptors exposed to contaminated ditch and floodplain surface soils (e.g., mammals and birds),
- terrestrial invertebrate receptors exposed to contaminated ditch and floodplain surface soils (e.g., earthworms), and,
- terrestrial plant receptors exposed to contaminated ditch and floodplain surface soils.
- 5.1.3.1 Sediment. Several different sediment benchmark values were used in the lower Cold Spring Brook PRE. Analytical data were compared to the range of screening values, rather than to any one particular value. Sediment benchmark values used in the ecological PRE include the following:
 - USEPA Sediment Quality Criteria. Draft and Final Sediment
 Quality Criteria (SQC) for several hydrophobic organic compounds
 have been developed and published by the USEPA (1988 [draft] and

1993a,b,c,d [final]). No USEPA SQC are available to evaluate the effects of inorganic constituents on aquatic life. The USEPA SQC are intended to protect benthic organisms which are exposed primarily to contaminants in the interstitial water between sediment particles.

The USEPA sediment toxicity threshold criteria for organic chemicals were carbon-normalized based on the average TOC measured at each site. Carbon-normalized criteria were calculated by multiplying the percent carbon by the appropriate SQC, and ecological risk was evaluated by directly comparing the carbon-normalized value with the sediment analytical data.

- National Oceanographic and Atmospheric Administration (NOAA) Sediment Threshold Values. Long and Morgan (1990) have developed biological effects-based criteria for evaluating sediment concentration data. Although this NOAA study is designed primarily for evaluating the toxicity of marine and estuarine sediments, USEPA Region I has suggested that Long and Morgan (1990) criteria may be used as a source of information for the evaluation of freshwater sediments at hazardous waste sites. The Effects Range-Low (ER-L) of Long and Morgan (1990) represents the 10th percentile concentration of contamination in estuarine sediments with observed (or predicted) effects.
- Ontario Ministry of the Environment Provincial Sediment Quality Guidelines. Persaud et al. (1992) have developed Provincial Sediment Quality Guidelines (PSQGs) for use in evaluating sediments throughout Ontario. These biologically-based guidelines were derived to protect those organisms directly affected by contaminated sediment: the bottom-dwelling, or benthic, species. The PSQGs are intended to provide guidance for sediment-related decisions, ranging from prevention of adverse effects to remedial action. Analyte concentrations were compared against the Lowest Effect Level PSQGs, which represent the level of contamination which has no effect on the majority of sediment-dwelling organisms.

- N.Y. State Department of Environmental Conservation Sediment Criteria. The New York State Department of Environmental Conservation (NYSDEC) Bureau of Environmental Protection, Division of Fish and Wildlife has published sediment criteria in a document entitled "Sediment Criteria - December 1989" (NYSDEC, 1989). This report is a guidance document, not a NYSDEC standard or policy. The NYSDEC guidance document contains criteria for several organic and inorganic constituents found in sediment samples. When appropriate, the NYSDEC criteria for organic analytes were normalized for TOC content.
- **5.1.3.2 Soils.** No state or federal standards or guidelines exist for surface soil exposure, so this exposure pathway was evaluated by comparing analyte concentrations in surface soil to protective contaminant levels (PCLs) for terrestrial vertebrate receptors, phytotoxicity benchmark values for plants, and invertebrate toxicity benchmark values for terrestrial invertebrates.

For risk screening, PCLs were compared directly to analytical data. The PCLs were calculated using a computer-generated chronic exposure food web model, and are similar to guidelines available in the literature. The methodology for PCL calculation is discussed in detail in Appendix E. PCLs for lower Cold Spring Brook were based on potential contaminant exposure to the short-tailed shrew (Blarina brevicauda), the American woodcock (Scolopax minor), the red fox (Vulpes vulpes), or the red-tailed hawk (Buteo jamaicensis). Table E-1 presents PCLs for the ecological receptors evaluated for potential contaminant exposures at lower Cold Spring Brook. The lowest PCL for each analyte was selected for comparison to the analytical soil data. Because of study-specific variables such as pH, organic carbon content, medium substrate, and the chemical form of the contaminant in the literature study, some terrestrial vertebrate PCLs were lower than the inorganic background screening value. For these analytes, the background concentration was used as an alternative benchmark value.

Phytotoxicity risk screening was conducted through a direct comparison of phytotoxicity benchmarks to maximum detected surface soil analyte concentrations. Terrestrial phytotoxicity data were obtained from the Oak Ridge National Laboratory (ORNL) (Suter et al., 1993). Generally, plant benchmark values represent significant phytotoxic endpoints, such as reduction in root weight or decrease in top weight. Because terrestrial phytotoxicity data are generally

limited, a number of surrogate values were used as phytotoxicity benchmark values: 2,4-dinitrophenol was used to screen all other phenolic compounds; di-n-butylphthalate was used to screen all other phthalate esters; toluene was used to screen all other aromatic VOCs; and DDT was used to screen all other pesticides (Suter et al., 1993). Because of study-specific variables such as pH, organic carbon content, medium substrate, and the chemical form of the contaminant in the literature study, some phytotoxicity values were lower than the inorganic background screening value. For these analytes, no alternative benchmark value was available for screening.

In order to assess potential effects of surface soil contaminants on terrestrial invertebrates (e.g., earthworms), toxicity data for earthworms were obtained from the literature. Earthworm toxicity risk screening was conducted via a direct comparison of the analytical data to earthworm toxicity benchmarks. In general, toxicity data for reproductive effects were chosen as benchmarks. When reproductive data were unavailable, appropriate mortality endpoints were chosen as benchmarks. Data on earthworm toxicity from organic chemicals are limited. Neuhauser et al. (1985) conducted 14-day soil tests on one to two chemicals from each of several organic chemical classes (e.g., phenols, amines, aromatic VOCs, halogenated aliphatic VOCs, polynuclear aromatic hydrocarbons (PAHs), and phthalate esters). A single representative benchmark was generated for each class of compounds, and all compounds within a chemical class were assigned the same benchmark value. Because LC₅₀ data do not represent protective soil chemical concentrations (e.g., they represent chemical concentrations lethal to 50 percent of the tested population), one-fifth of the LC₅₀ value was used. The resultant chemical concentration (selected as the benchmark) is expected to be protective of 99.9 percent of the exposed population from lethal effects (USEPA, 1986b).

5.1.3.3 Surface Water. Surface water benchmark values used in the lower Cold Spring Brook ecological PRE include Ambient Water Quality Criteria (AWQC) published by the USEPA. AWQC have been developed for the protection of fresh water and marine aquatic life. Chronic USEPA AWQC represent the four-day average chemical concentration not to be exceeded more than once every three years. These criteria are intended to be protective of all life stages of aquatic plants and animals (USEPA, 1986a). For some contaminants, chronic criteria were not available, and acute criteria, Lowest Observed Effect Levels (LOELs), and proposed criteria were used instead.

5.1.4 Qualitative Macroinvertebrate Survey

A qualitative macroinvertebrate study was conducted at 10 surface water and sediment sampling locations along lower Cold Spring Brook (Figure 5-2). The purpose of the macroinvertebrate sampling was to qualitatively characterize benthic fauna, determine whether the benthic communities are grossly impaired, attempt to identify source areas responsible for any observed impairment, and potentially to serve as a baseline to evaluate the success of future remedial actions.

Stream macroinvertebrates in lower Cold Spring Brook were collected between September 26 and 28, 1994. Duplicate benthic samples were collected using a pole-mounted Eckman grab. One kick sample, using a dip net, was also collected from the epiphytic habitat at each of the 10 sampling stations. After collection, each sample was washed through a sieve-bottomed bucket, placed in a labeled container, and preserved. In the laboratory, subsamples of 100 organisms were removed for analysis according to guidelines as described in Plafkin et al. (1989). Benthic organisms in each subsample were counted, generally identified to the family level, and assigned a Functional Feeding Group classification.

Analytical metrics described in Plafkin et al. (1989) for Rapid Bioassessment Protocol (RBP) II were used to analyze the data from each sampling station. The metrics are described in Appendix F and summarized in Table 5-1. The biological condition of each experimental station was evaluated by comparing habitat quality scores at reference stations to those of experimental stations, and using cumulative scoring criteria based on similarity to reference stations. Comparison between reference and experimental stations were compared separately for benthic data and epiphytic data.

5.1.5 Aquatic Laboratory Toxicity Tests

A screening-level laboratory toxicity testing program was conducted to assess the toxicity of sediments to aquatic organisms residing within lower Cold Spring Brook sediments. The testing program evaluated the toxicity of 10 sediment samples to two freshwater species. The sediment samples for toxicity testing were collected from the 10 macroinvertebrate field sampling stations (see Figure 5-2). Information derived from the toxicity tests are used to establish baseline

conditions and as a "weight-of-evidence" approach to evaluate ecological effects from the storm drain systems and other potential sources of contamination.

The toxicity of bulk sediment samples was measured using an acute test with an amphipod (Hyalella azteca) and a subchronic test with a midge (Chironomus tentans). The 10 sediment samples were collected from lower Cold Spring Brook between September 19 and 21, 1994 by ABB-ES. Test organisms were placed in beakers containing sediment samples and clean overlying water, and were incubated under standard conditions for 10 days. After the exposure period, the surviving organisms were counted. Sediment toxicity was estimated by statistically comparing the response of exposed organisms in the test sediment with the reference sediment.

The sediment toxicity tests are described in greater detail in Appendix G.

5.2 PRELIMINARY RISK EVALUATION RESULTS

This subsection presents the results of the PRE for lower Cold Spring Brook. The PRE consisted of three components: benchmark screening of sediment, surface soil, and surface water; a qualitative macroinvertebrate survey; and aquatic laboratory toxicity tests. A brief summary and interpretation of the results is included in Subsection 5.3.

5.2.1 Sediment and Surface Soil Screening Results

Analytical chemistry data from sediment samples were compared to available toxicity screening benchmarks, guidelines, and criteria. This PRE includes screening for seven storm drain systems that flow into lower Cold Spring Brook, lower Cold Spring Brook itself, and System No. 5 which drains north into Grove Pond. Four of the storm drain systems that represent terrestrial habitats and do not support aquatic life were screened against surface soil benchmarks. This subsection discusses the PRE screening results in the following order:

- Storm Drain Systems No. 1/2: surface soil
- Storm Drain Systems No. 2/3/4: sediment
- SA 57 Marsh: sediment
- Storm Drain System No. 6: surface soil

ABB Environmental Services, Inc.

- Storm Drain System No. 7: sediment
- Storm Drain System No. 8: surface soil
- Storm Drain System No. 9: and upstream subsection of lower Cold Spring Brook: sediment
- Storm Drain System No. 5: surface soil
- Downstream subsection of lower Cold Spring Brook: sediment

5.2.1.1 Storm Drain Systems No. 1/2. The PRE for Storm Drain Systems No. 1/2 evaluates risks to terrestrial receptors from exposure to surface soils in this intermittent drainage ditch. Based on site observations, the storm drain system does not support aquatic life, and "sediment" samples collected at the site were evaluated as surface soils in this PRE. The PRE compares maximum surface soil concentrations (among three sampling stations from 1993 and 1994) to surface soil PCLs for terrestrial vertebrates, phytotoxicity screening values, and invertebrate screening values. As described in Subsection 5.1.3.2, PCLs were derived from a chronic exposure food chain model for the following four receptor species: short-tailed shrew, American woodcock, red fox, and red-tailed hawk. Table 5-2 presents the analyte concentrations and screening values used. Figure 4-1 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the screening of organic and inorganic chemicals.

Organic analytes detected in Storm Drain Systems No. 1/2 samples included 14 SVOCs, 13 of which are classified as PAHs. TPHC was detected in all three sample locations, with a maximum concentration of 261 milligrams per kilogram (mg/kg). Concentrations of SVOCs within this system were below all available terrestrial vertebrate and invertebrate screening values. No phytotoxicity screening values were available for any of the SVOCs detected in surface soils within Storm Drain Systems No. 1/2. Of the three sample locations, SVOCs were frequently detected in only one sample, SSD-93-01B (the only sample from 1993 within the storm drain system). This is the most upstream sampling point in the storm drain system, and is closest to potential contaminant sources.

Eighteen inorganic analytes were detected in Storm Drain Systems No. 1/2 surface soil. Maximum concentrations were screened against background surface soil concentrations established for Group 1A sites at Fort Devens (ABB-ES, 1993c). For the nine inorganics that exceeded background concentrations, maximum concentrations were then compared to available surface soil screening

values, as shown in Table 5-2. None of the inorganic contaminant concentrations exceeded available screening values.

The lack of phytotoxicity values for all SVOCs and several inorganics detected in surface soil samples within this system represents an uncertainty in this PRE. Invertebrate screening values are also not available for several inorganic chemicals. It is unknown what potential adverse effects may occur to these receptors as a result of exposure to these analytes.

<u>Summary.</u> This screening-level PRE for Storm Drain Systems No. 1/2 suggests that ecological receptors are not at risk from surface soil contamination. Although surface soil concentrations for several inorganic chemicals exceed background soil concentrations, the comparison of site concentrations with surface soil PCLs indicates that terrestrial receptors are probably not at risk.

5.2.1.2 Storm Drain Systems No. 2/3/4. The PRE for Storm Drain Systems No. 2/3/4 evaluates risks to aquatic receptors from exposure to sediments. The evaluation consists of a comparison of maximum sediment contaminant concentrations at six sampling stations to sediment benchmark values. Table 5-3 presents the analyte concentrations and screening values used in the Storm Drain Systems No. 2/3/4 PRE. Figure 4-2 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

Organic analytes detected in samples from Storm Drain Systems No. 2/3/4 included one VOC (tetrachloroethylene) and 19 SVOCs. Of the 19 SVOCs, 15 are classified as PAHs. Maximum concentrations of 11 PAHs exceeded all available sediment screening values by one to four orders of magnitude. The total PAH concentrations in Storm Drain Systems No. 2/3/4 ranged from 35.6 mg/kg at sample location CSD-94-23X to 847 mg/kg at location SSD-93-03B. The TPHC concentrations ranged between 625 and 5,490 mg/kg within the storm drain system.

The sample from station SSD-93-03B (the only sample collected during 1993 within the storm drain system) was the source for all maximum concentrations of organic chemicals in Storm Drain Systems No. 2/3/4. This is the most upstream sampling point in this system, and is closest to potential contaminant sources. In general, the four upstream sampling locations had greater concentrations of

organic chemicals than the two samples located downstream towards Cold Spring Brook, suggesting a relationship between the industrial drainage area associated with the storm drain system and organic analytes detected in the system.

Nineteen inorganic analytes were detected in sediment from Storm Drain Systems No. 2/3/4. Maximum concentrations were screened against upstream concentrations. All maximum concentrations of inorganic analytes exceeded concentrations detected in this upstream location. Following a screening against upstream concentrations, inorganic concentrations were compared to available sediment screening values, as shown in Table 5-3. Maximum concentrations of antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc exceeded all available screening values. Maximum concentrations of these inorganics were typically one or two orders of magnitude greater than the screening values.

All maximum inorganic concentrations, with the exception of calcium, were detected at sample location CSD-94-24X. This sample was collected just upstream of the intersection of System No. 2 with Systems No. 3 and No. 4. Sample CSD-94-23X, directly downgradient of station CSD-94-24X, generally had the lowest concentrations of inorganics. At the sample location just downgradient of station CSD-94-23X, CSD-94-25X, inorganic contaminant concentrations were typically higher than all but one of the six samples. These data suggest that no clear trends in inorganic contaminant concentrations exist relative to industrial source areas.

The relatively low levels of PAHs and inorganic analytes in the vicinity of CSD-93-23X suggests that the lack of vegetation noted during the Fall 1994 ecological field survey may be attributable to physical factors rather than contaminant-related phytotoxicity (see Subsection 2.2.1).

Summary. This screening-level PRE for Storm Drain Systems No. 2/3/4 indicates that sediment concentrations of PAHs and several inorganics exceed available screening values and may represent a risk to aquatic and benthic organisms. The lack of sediment screening values for tetrachloroethylene, cresols (2- and 4-methylphenol), aluminum, barium, and vanadium detected in sediment samples represents an uncertainty in this PRE. It is unknown what potential adverse effects may occur to aquatic receptors as a result of exposure to these analytes. The magnitude of exceedances for PAHs and certain inorganics suggests that

these analytes may pose risks to sensitive aquatic receptors occurring in this storm drain system. However, given the generally poor quality of aquatic habitat in the vicinity of the one upgradient sample with high organic concentrations (SSD-93-03B), it is unlikely that aquatic risks from PAHs are widespread.

5.2.1.3 Study Area 57 Marsh. Although SA 57 will be evaluated separately in an RI, a PRE has been completed for the SA 57 marsh. The SA 57 marsh PRE evaluates risks to aquatic receptors from exposure to sediments. The evaluation consisted of a comparison of maximum sediment contaminant concentrations at four sampling stations (CSD-94-14X, CSD-94-17X, CSD-94-20X, and CSD-94-35X) to sediment benchmark values. Table 5-4 presents the analyte concentrations and screening values used in the SA 57 marsh PRE. Figure 4-3 presents the locations of these samples. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

Organic analytes detected in SA 57 marsh samples included three VOCs, five SVOCs, six pesticides, and the PCB Aroclor-1260. TPHC was also detected in all four sediment samples at concentrations ranging from 251 mg/kg to 2,700 mg/kg. Laboratory analysis of pesticides and PCBs was completed for only one sample within the SA 57 marsh. Maximum concentrations of four of the SVOCs (all PAHs), all of the pesticides, and the PCB exceeded the lowest sediment screening values. In addition, alpha- and gamma-chlordane were detected at concentrations in excess of the highest sediment screening value. Screening value exceedances for PAHs were marginal, while screening value exceedances for pesticides were generally greater by one order of magnitude. No screening value was available for TPHC.

The maximum concentrations of all PAHs were detected in sample CSD-94-17X. PAHs were not detected in samples CSD-94-14X and CSD-94-35X, and detections in sample CSD-94-20X were below available screening values (the maximum TPHC concentration of 2,700 mg/kg was detected at location CSD-94-20X, however). Based on the isolated detections of PAHs at concentrations in excess of screening values, and the relatively low magnitude of exceedances, it is unlikely that aquatic receptors occurring in the SA 57 marsh would be at risk from exposure to PAHs.

Sample CSD-94-20X was the only sample analyzed for pesticides and PCBs. It is not known if this sample is representative of potential pesticide and PCB

contamination within the SA 57 marsh. Interpretation of potential risks is confounded by the magnitude of the range of available sediment screening values, which encompasses a range of up to three orders of magnitude for some analytes.

Eighteen inorganic analytes were detected in SA 57 marsh sediment. Maximum concentrations were screened against concentrations detected in the upstream sample location. All maximum concentrations of inorganic analytes exceeded concentrations detected in this upstream location. Following a screening against upstream concentrations, inorganic concentrations were compared to available sediment screening values, as shown in Table 5-4. With the exception of cobalt, the maximum detected concentrations of all inorganics for which screening values were available exceeded the lowest screening value. In addition to exceeding the lowest screening value, copper, lead, manganese, nickel, and zinc were detected at maximum concentrations that exceeded the maximum sediment screening value. Maximum contaminant concentrations generally exceeded screening values by less than one order of magnitude, and often the exceedance was marginal.

The maximum concentrations of several inorganics were detected in sample CSD-94-20X, although the concentrations of many inorganics did not differ substantially among the four sediment samples collected within the SA 57 marsh. In general, these inorganic concentrations were well in excess of the upstream concentrations used for screening, suggesting that the presence of inorganic analytes in SA 57 sediment may not be indicative of natural conditions.

Summary. This screening-level PRE for the SA 57 marsh indicates that sediment concentrations of PAHs, pesticides, and several inorganics exceed available screening values and may represent a risk to sensitive aquatic and benthic organisms. The lack of sediment screening values for the VOCs, aluminum, barium, selenium, vanadium, and TPHC detected in sediment samples within the SA 57 marsh represents an uncertainty in this PRE. It is unknown what potential adverse effects may occur to aquatic receptors as a result of exposure to these analytes.

5.2.1.4 Storm Drain System No. 6. The Storm Drain System No. 6 PRE evaluates risks to terrestrial receptors from exposure to surface soils in this dry drainage ditch. Based on site observations, System No. 6 does not support aquatic life, and "sediment" samples collected at the site were evaluated as surface soils in this PRE. The PRE consisted of a comparison of maximum surface soil

concentrations at four sampling stations from 1992 and 1993 to surface soil PCLs for terrestrial vertebrates, phytotoxicity screening values, and invertebrate screening values. As described in Subsection 5.1.3.2, PCLs were derived from a chronic exposure food chain model for the following four receptor species: short-tailed shrew, American woodcock, red fox, and red-tailed hawk. Table 5-5 presents the analyte concentrations and screening values used. Figure 4-4 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the screening of organic and inorganic chemicals.

Organic analytes detected in System No. 6 samples included 17 SVOCs, 14 of which are classified as PAHs. TPHC was detected in all four samples, with a maximum concentration of 3,500 mg/kg. Concentrations of SVOCs within System No. 6 were below all available terrestrial vertebrate, plant, and invertebrate screening values. Of the four sample locations, SVOCs were frequently detected in only one sample, SSD-93-06B. This is the most upstream sampling point in System No. 6, and is closest to potential contaminant sources.

Laboratory analysis of inorganics was completed for only one sample at System No. 6. Nineteen inorganic analytes were detected in sample SSD-93-06B and its duplicate. Maximum concentrations of the sample and its duplicate were screened against background surface soil concentrations established for Group 1A sites at Fort Devens (ABB-ES, 1993c). For the 12 inorganics that exceeded background concentrations, the maximum concentration of the sample and its duplicate were then compared to available surface soil screening values, as shown in Table 5-5. The concentration of cadmium (3.82 mg/kg) exceeded the vertebrate and phytotoxicity screening values by approximately a factor of two. Chromium and zinc concentrations (64.6 and 189 mg/kg, respectively) slightly exceeded the invertebrate screening values for those two chemicals. In addition, the lead concentration (420 mg/kg) exceeded the vertebrate screening value by approximately a factor of two. Screening of the average of the sample and its duplicate, rather than the maximum, would substantially reduce the exceedances for cadmium, lead, and zinc. The average chromium concentration, in fact, would be less than the invertebrate screening value.

The lack of phytotoxicity values for all SVOCs except phthalates and for several inorganics detected in surface soil samples at System No. 6 represents an uncertainty in this PRE. Invertebrate screening values are also not available for

several inorganics. It is unknown what potential adverse effects may occur to these receptors as a result of exposure to these analytes.

A comparison of maximum concentrations with available screening values indicates that terrestrial receptors are not at risk from exposure to SVOCs and many inorganics in System No. 6 surface soils. The maximum concentrations of cadmium, chromium, and zinc only slightly exceeded their respective terrestrial screening values, and the maximum lead concentration of 420 mg/kg exceeded the vertebrate screening value (220 mg/kg) by approximately a factor of two. However, maximum concentrations of these inorganics were all detected in one of a duplicate pair of samples; the concentrations detected in the other sample of the pair were much less than the vertebrate screening values. Because these two samples are both measures of the same environmental concentration, the average of these two analytical results is most representative of the actual exposure concentration at the location (SSD-93-06B). The average concentration of cadmium, chromium, and zinc detected in these two samples does not exceed terrestrial screening values, and the average concentration of lead (280 mg/kg) only slightly exceeds the terrestrial vertebrate screening value. It is unlikely that vertebrate receptors are at risk from exposure to inorganics in System No. 6 surface soils.

No other surface soil samples in System No. 6 were analyzed for inorganic analytes; however, several sediment samples collected downstream of the confluence of System No. 6 and Cold Spring Brook had concentrations of lead ranging from 258 to 340 mg/kg. It is possible that System No. 6 contributed to elevated lead concentrations in Cold Spring Brook.

<u>Summary.</u> This screening-level PRE indicates that it is unlikely that terrestrial receptors are at risk from exposure to System No. 6 surface soil.

5.2.1.5 Storm Drain System No. 7. The Storm Drain System No. 7 PRE evaluates risks to aquatic receptors from exposure to sediments. The evaluation consisted of a comparison of maximum sediment contaminant concentrations at six sampling stations to sediment benchmark values. Table 5-6 presents the analyte concentrations and screening values used in the System No. 7 PRE. Figure 4-5 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

Organic analytes detected in System No. 7 samples included eight SVOCs. Of the eight SVOCs, seven are classified as PAHs. Maximum concentrations of five PAHs (benzo(a)anthracene, chrysene, fluoranthene, phenanthrene, and pyrene) exceeded NOAA ER-L sediment screening values by approximately one order of magnitude. The total PAH concentrations detected in System No. 7 ranged from 0.71 mg/kg at sample location CSD-94-04X to 20 mg/kg at location CSD-94-07X. The TPHC concentrations ranged between 219 and 2,320 mg/kg within the storm drain system.

Sample CSD-94-07X was the source of most maximum concentrations of organic chemicals that exceeded NOAA ER-L values in System No. 7. This is the furthest downstream sampling point in System No. 7, and is closest to the discharge point to lower Cold Spring Brook. The most upstream sample, CSD-94-04X, had the lowest concentrations and the fewest detections of SVOCs. Low concentrations of SVOCs, in general, were fairly constant throughout the storm drain system. TPHC concentrations at the two most downstream locations (CSD-94-06X and CSD-94-07X) were an order of magnitude greater than in the other four samples, suggesting that the source may not be the floor/area drains serving Buildings 3712 and 3713.

Organic sediment screening values for USEPA SQCs and NYSDEC guidelines were carbon-normalized according to the average TOC detected at the site. Because of an error in the USAEC IRDMIS database (sample SSD-93-07B was reported as having a TOC of 150 percent), the average TOC for System No. 7 was recalculated based on five samples rather than six.

Nineteen inorganic analytes were detected in System No. 7 sediment. Maximum concentrations were screened against concentrations detected in the upstream sample. All maximum concentrations of inorganic analytes exceeded concentrations detected in this upstream location. Following a screening of upstream concentrations, inorganic concentrations were compared to available sediment screening values, as shown in Table 5-6. Maximum concentrations of arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, and zinc exceeded most available screening values. Maximum concentrations of these inorganics were typically one or two orders of magnitude greater than the screening values. Mean concentrations of these chemicals also exceeded most screening values.

Maximum concentrations of nickel and zinc were detected in sample CSD-94-05X. This sample is located between the industrial area and Barnum Road. The remaining maximum inorganic concentrations that exceeded screening values were detected downstream of Barnum Road. Sample SSD-93-07B, located just downstream of the Barnum Road crossing, contained maximum concentrations of arsenic, cadmium, cobalt, copper, iron, and manganese. This analysis indicates that contaminant concentrations tend to be higher towards Barnum Road than upstream towards industrial sources.

This screening-level PRE for System No. 7 indicates that sediment concentrations of PAHs and several inorganics exceed available screening values and may represent a risk to aquatic and benthic organisms. Sediment contaminant concentrations are greatest between Barnum Road and Cold Spring Brook, suggesting that the source of contaminants may be a result of road runoff rather than industrial input. The lack of sediment screening values for di-n-butylphthalate, aluminum, barium, beryllium, selenium, and vanadium detected in sediment samples at System No. 7 represents an uncertainty in this PRE. It is unknown what potential adverse effects may occur to aquatic receptors as a result of exposure to these analytes.

5.2.1.6 Storm Drain System No. 8. System No. 8 consists of a culvert that provides a conduit under Barnum Road for runoff from a wooded area north of Barnum Road. The PRE evaluates risks to terrestrial receptors from exposure to surface soils near the discharge end of the culvert. Based on site observations, the storm drain system does not represent aquatic habitat or support aquatic life, and "sediment" samples collected at the site were evaluated as surface soils in this PRE. The PRE evaluation consists of a comparison of surface soil concentrations detected in the single surface soil sample to surface soil PCLs for terrestrial vertebrates, phytotoxicity screening values, and invertebrate screening values. As described in Subsection 5.1.3.2, PCLs were derived from a chronic exposure food chain model for the following four receptor species: short-tailed shrew, American woodcock, red fox, and red-tailed hawk. Table 5-7 presents the analyte concentrations and screening values used. Figure 2-1 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the screening of organic and inorganic chemicals.

Organic analytes detected in the System No. 8 soil sample included five SVOCs, four of which are classified as PAHs. TPHC was also detected at a concentration

of 780 mg/kg. Concentrations of SVOCs within System No. 8 were below all available terrestrial vertebrate and invertebrate screening values. A phytotoxicity screening value was available only for di-n-butylphthalate, and this screening value was not exceeded.

Seventeen inorganic analytes were detected in System No. 8 surface soil. Maximum concentrations were screened against background surface soil concentrations established for Group 1A sites at Fort Devens (ABB-ES, 1993c). For the 10 inorganic analytes that exceeded background concentrations, maximum concentrations were then compared to available surface soil screening values, as shown in Table 5-7. The detected concentration of manganese (595 mg/kg) marginally exceeded its phytotoxicity screening value, and the maximum concentration of zinc (190 mg/kg) exceeded its invertebrate screening value by a factor of less than two. No vertebrate screening values were exceeded.

The lack of phytotoxicity values for all PAHs and several inorganics detected in surface soil samples at System No. 8 represents an uncertainty in this PRE. Invertebrate screening values are also not available for several inorganics, and no screening values for any receptor group were available for TPHC. It is unknown what potential adverse effects may occur to these receptors as a result of exposure to these analytes. However, since System No. 8 is a small, man-made drainage-way with a limited watershed, it is unlikely that it provides significant habitat to sensitive plant and invertebrate species. In addition, those inorganic analytes that were detected at a concentration in excess of the background screening value generally exceeded background by marginal amounts, suggesting that the inorganic analytes detected are not a result of any identifiable source, but may instead be indicative of naturally occurring conditions. This, in addition to the low magnitude of exceedances of available screening values, suggests that plant and invertebrate receptors potentially occurring in System No. 8 would not be adversely affected by exposure to the analytes detected in surface soil.

This screening-level PRE for System No. 8 indicates that terrestrial vertebrate, terrestrial invertebrate, and plant receptors are unlikely to be at risk from exposure to analytes detected in System No. 8 surface soil.

5.2.1.7 Storm Drain System No. 9 and the Upstream Subsection of Lower Cold Spring Brook. The Storm Drain System No. 9 PRE evaluates risks to aquatic receptors from exposure to sediments collected from two distinct locations: System

No. 9, and an upstream section along lower Cold Spring Brook. The Cold Spring Brook samples evaluated in this PRE were collected upgradient of all industrial area storm drain systems except System No. 9; samples from this location may be affected by System No. 9, by run-off from the area surrounding the intersection of Saratoga Street and Dakota Street, or by upper Cold Spring Brook.

The PRE consists of a comparison of maximum sediment contaminant concentrations to sediment benchmark values. Available sediment data for System No. 9 consist of a single sampling station (SSD-93-09A) collected at the outfall of System No. 9 during 1993. Available sediment data for the upstream subsection of lower Cold Spring Brook consists of five sampling stations: CSD-94-01X through CSD-94-03X (which were collected during 1994 from immediately upstream to immediately downstream of the ponded area east of the B&MRR), SSD-95-09H (collected in 1995 near the outlet of the ponded area east of the B&MRR), and SSD-95-09I (collected during 1995 immediately upstream of the B&MRR) (see Figure 4-6).

Three additional samples collected in 1995 upgradient of the System No. 9 area are evaluated qualitatively in the PRE. These samples include SSD-95-09J (collected in Cold Spring Brook upstream of the study area), SSD-95-09K (collected in a small, isolated cattail marsh at the intersection of Saratoga Road and Dakota Street), and SSD-95-09L (collected in a ditch along Saratoga Road near the Commissary) (see Figure 4-6). Sample SSD-95-09J was used to identify chemicals potentially migrating from upstream areas of Cold Spring Brook (i.e., prior to any storm drain system influence); it was not used for COPC screening. Samples SSD-95-09K and SSD-95-09L were collected from two locations that contribute runoff to the same Patton Road culvert that receives the discharge from System No. 9. These data may be indicative of chemical impacts to System No. 9 and the upstream subsection of lower Cold Spring Brook. The analytical data collected in 1995 appear to be chemically distinctive from, and not compatible with, the earlier data. Consequently, these three samples (SSD-95-09J, SSD-95-09K, and SSD-95-09L) were evaluated only in relation to the other samples collected in 1995 (SSD-95-09H and SSD-95-09I).

Table 5-8 presents the analyte concentrations and screening values used in the System No. 9 evaluation, and Table 5-9 presents the analyte concentrations and screening values used in the upgradient subsection of lower Cold Spring Brook.

Figure 4-6 presents the locations of samples collected within these two areas. The following paragraphs discuss the results of the two PRE screenings.

System No. 9. Two organic analytes, benzo(a)anthracene and chrysene, were detected in the System No. 9 sediment sample. TPHC was also detected in the sample at a concentration of 270 mg/kg. Maximum concentrations of two SVOCs exceeded the lowest sediment screening values by approximately one order of magnitude. However, neither analyte exceeded the upper sediment screening value. No screening value was available for TPHC.

Sixteen inorganic analytes were detected in System No. 9 sediment. Maximum concentrations were screened against concentrations detected in an upstream sample location (SSD-93-92C) (A.D. Little, 1994b). With the exception of manganese, all maximum concentrations of inorganic analytes exceeded concentrations detected in this upstream location. Following a screening of upstream concentrations, inorganic concentrations were compared to available sediment screening values, as shown in Table 5-8. The detected concentration of arsenic (17.5 mg/kg) exceeded the lowest arsenic screening value and the detected concentration of lead (53 mg/kg) exceeded the upper lead screening value of 35 mg/kg. Given the relatively low magnitude of screening value exceedances, it is unlikely that the presence of arsenic and lead at the concentrations detected, would present a risk to aquatic receptors potentially occurring at System No. 9.

This screening-level PRE for System No. 9 indicates that sediment concentrations of arsenic and lead are unlikely to pose a risk to aquatic and benthic organisms.

Upstream Subsection of Lower Cold Spring Brook. Twenty-four organic analytes, 15 of which are classified as PAHs, and six pesticides were detected in sediment samples from the upstream subsection of lower Cold Spring Brook. TPHC was detected at a maximum concentration of 2,120 mg/kg. Maximum concentrations of eleven SVOCS exceeded minimum screening values by up to two orders of magnitude. In addition, maximum concentrations of three SVOCs slightly exceeded the upper sediment screening values. Maximum concentrations of all six pesticides exceeded the lowest sediment screening value, and two pesticides (gamma-chlordane and Endosulfan II) exceeded the upper sediment screening value. The interpretation of potential aquatic receptor risks associated with exposure to organics in sediment is confounded by the range of available

screening values, which varies by up to three orders of magnitude for several analytes. No screening value was available for TPHC.

Eighteen inorganic analytes were detected in sediments from the upstream subsection of lower Cold Spring Brook. Maximum concentrations were screened against concentrations detected in the sediment sample, SSD-93-92C (see Figure 4-6). All maximum concentrations of inorganic analytes exceeded concentrations detected in this upstream location. Inorganic concentrations that exceeded upstream concentrations were then compared to available sediment screening values (Table 5-9). The maximum detected concentrations of arsenic, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc exceeded sediment screening values. The maximum concentrations of these inorganic analytes generally exceeded their screening values by one order of magnitude or less.

Most of the analytes that exceeded sediment screening values in the upstream subsection of lower Cold Spring Brook were also detected in SSD-94-09J, SSD-95-09K, and SSD-95-09L at concentrations exceeding screening values. All the PAHs of concern were detected at SSD-95-09K at concentrations higher than the minimum, and sometimes maximum, screening values. All the inorganics in the upstream subsection of lower Cold Spring Brook that exceeded sediment screening values were also detected in SSD-95-09L at concentrations that exceeded screening values.

This screening-level PRE for the upstream subsection of lower Cold Spring Brook indicates that sediment concentrations of SVOCs, pesticides, and several inorganics exceed available screening values. As a result, this may represent a risk to sensitive aquatic and benthic organisms. The lack of sediment screening values for aluminum, barium, selenium, vanadium, and TPHC detected in sediment samples at System No. 9 represents an uncertainty in this PRE. It is unknown what potential adverse effects may occur to aquatic receptors as a result of exposure to these analytes. Although the number of screening value exceedances in the upstream portion of lower Cold Spring Brook suggests that potential risks to sensitive aquatic receptors exist, it should be noted that very few compounds (including the DDD, DDE, DDT, arsenic, lead, and manganese) were detected at concentrations that exceed sediment screening values in the most downstream sample (CSD-94-03X) of this group. It is possible that the slow moving, marshy area downstream of the B&MRR acts as a sink for most of the SVOCs, pesticides, and inorganics detected at higher concentrations upstream.

5.2.1.8 Storm Drain System No. 5 . Storm Drain System No. 5 lies in a different watershed than the other storm drain systems evaluated in this SI report, and drains north into Grove Pond. The PRE evaluates risks to terrestrial receptors from exposure to surface soils in this dry drainage ditch. Based on site observations, the storm drain system does not support aquatic life, and "sediment" samples collected at the site were evaluated as surface soil conditions in this PRE. The PRE consists of a comparison of maximum surface soil concentrations at three sampling stations from 1993 and 1994 to surface soil PCLs for terrestrial vertebrates, phytotoxicity screening values, and invertebrate screening values. As described in Subsection 5.1.3.2, PCLs were derived from a chronic exposure food chain model for the following four receptor species: short-tailed shrew, American woodcock, red fox, and red-tailed hawk. Table 5-11 presents the analyte concentrations and screening values used. Figure 2-1 presents the locations of samples collected within this storm drain system. The following paragraphs discuss the results of the screening of organic and inorganic chemicals.

Organic analytes detected in System No. 5 samples included 13 SVOCs, all of which are classified as PAHs. Concentrations of SVOCs within System No. 5 were below all available terrestrial vertebrate and invertebrate screening values. No phytotoxicity screening values were available for any of the SVOCs detected in surface soils within System No. 5. Of the three sample locations, SVOCs were most frequently detected in SSD-93-05A (the only sample from 1993 within the storm drain system). This is the most upstream sampling point in System No. 5, and is closest to potential contaminant sources. Several maximum concentrations of PAHs were also detected in sample location GRD-94-06X.

Twenty inorganic analytes were detected in System No. 5 surface soil. Maximum concentrations were screened against background surface soil concentrations established for Group 1A sites at Fort Devens (ABB-ES, 1993c). For the 19 inorganic chemicals that exceeded background concentrations, maximum concentrations were then compared to available surface soil screening values, as shown in Table 5-11. The maximum concentrations of aluminum (42,200 mg/kg) and cadmium (4.59 mg/kg) slightly exceeded the vertebrate and phytotoxicity screening values. The maximum chromium concentration (163 mg/kg) exceeded the invertebrate screening value by approximately a factor of three. Concentrations of cobalt, manganese, and nickel (28.8, 2,410, and 82 mg/kg, respectively) exceeded the phytotoxicity values by as much as a factor of five. The

maximum zinc concentration (301 mg/kg) exceeded both the vertebrate and the invertebrate screening concentrations.

Of the three sample locations, maximum concentrations of inorganic analytes were detected most frequently in SSD-93-05A (the only sample from 1993 within the storm drain system). This is the most upstream sampling point in System No. 5, and is closest to potential contaminant sources.

The lack of phytotoxicity values for all SVOCs and several inorganics detected in surface soil samples at System No. 5 represents an uncertainty in this PRE. Invertebrate screening values are also not available for several inorganics. It is unknown what potential adverse effects may occur to these receptors as a result of exposure to these analytes.

This screening-level PRE for System No. 5 indicates that surface soil concentrations of aluminum, cadmium, chromium, cobalt, lead, manganese, nickel, selenium, and zinc exceed several of the available screening values. Except for aluminum, the average concentrations of these contaminants slightly exceed or do not exceed the screening values, indicating that it is unlikely that terrestrial receptors are at risk from soils in System No. 5.

5.2.1.9 Downstream Subsection of Lower Cold Spring Brook. The lower Cold Spring Brook PRE evaluates risks to aquatic receptors from exposure to sediments. The evaluation consists of a comparison of maximum sediment contaminant concentrations at 25 sampling stations from 1992, 1993, and 1994 to sediment benchmark values. Table 5-10 presents the analyte concentrations and screening values used in the lower Cold Spring Brook PRE. Figure 2-1 presents the locations of these samples between SSD-93-92D (upstream extent) and CSD-94-34X (downstream extent) collected along lower Cold Spring Brook and evaluated in this PRE. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

Nine samples were analyzed for VOCs. The following four VOCs were detected: 1,1,1-trichloroethane, acetone, toluene, and trichlorofluoromethane. No sediment screening values were available for these four VOCs. Detections of VOCs were most common in two samples, CSD-94-13X and CSD-94-19X. These two samples were collected in the vicinity of the SA 57 area.

All 25 samples were analyzed for SVOCs. Of the 15 SVOCs detected, 13 are classified as PAHs. Maximum concentrations of all PAHs except acenaphthalene exceeded NOAA ER-L sediment screening values by one to three orders of magnitude. Maximum concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, fluoranthene, and phenanthrene also exceeded USEPA SQCs. Frequency of detection for SVOCs in lower Cold Spring Brook, however, were low. Average concentrations were much lower than maximum concentrations, and were at concentrations below all USEPA SQC. The total PAH concentrations in lower Cold Spring Brook ranged from no detections to a maximum of 334 mg/kg at location G3D-92-03X. The TPHC concentrations ranged from 23 and 1,800 mg/kg within lower Cold Spring Brook.

Sample G3D-92-03X was the source of all maximum concentrations of PAHs that exceeded sediment screening values in lower Cold Spring Brook. During the 1994 field sampling effort, sample CSD-94-27X was collected in the same location as G3D-92-03X. No PAHs were detected in the 1994 sample. Additional analysis of SVOC detections and locations reveals that PAHs seem to be most prevalent between the confluences of System No. 6 and SA 57, and just downstream of SA 57. The maximum TPHC concentration was also detected in this vicinity, at SSD-93-92G, just downstream of the drainage confluence with SA 57.

Ten samples within lower Cold Spring Brook were analyzed for pesticides and PCBs. Maximum concentrations of DDD, DDE, DDT, gamma-chlordane, dieldrin, and endosulfan sulfate exceeded several sediment guidelines. Maximum concentrations of pesticides were most commonly detected in samples CSD-94-11X and CSD-94-13X, located between System No. 6 and the SA 57 marsh. No pesticides were detected in System No. 6, or in immediately upstream sample locations CSD-94-10X or CSD-94-12X. Therefore, it is possible that the slow moving, depositional areas at CSD-94-11X and CSD-94-13X act as sink for pesticides that may have migrated from upstream areas.

Chemical analysis for inorganics was completed for 23 of the 25 samples within lower Cold Spring Brook. Eighteen inorganic analytes were detected in Cold Spring Brook sediment. Maximum concentrations were screened against concentrations detected in the upstream sample location. All maximum concentrations of inorganic analytes exceeded values reported for the upstream location. Following a screening of upstream concentrations, inorganic

concentrations were compared to available sediment screening values, as shown in Table 5-10. Of these, maximum concentrations of arsenic, chromium, iron, lead, manganese, nickel, and zinc exceeded most available screening values. Maximum concentrations of these inorganics were typically one or two orders of magnitude greater than the screening values. With the exception of chromium, mean concentrations also exceeded most screening values.

Maximum concentrations of arsenic, chromium, nickel and zinc were detected in sample G3D-92-01X. This sample is located just upstream of the SA 57 confluence near sediment sample location CSD-94-13X. The maximum concentration of manganese (3,150 mg/kg) was detected at sample G3D-92-02X, downstream of the SA 57 marsh near sediment sample CSD-94-19X. These maximum detected concentrations from sediment samples collected in 1992 are higher than the levels detected in nearby sediment samples collected in 1994, which only slightly exceed the sediment screening concentrations. It is likely that the sediment data from 1994 is more representative of current conditions in this area of lower Cold Spring Brook.

The maximum lead concentration (350 mg/kg) was detected in sample G3D-92-03X collected in 1992; this location is co-located with sample CSD-94-27X (8.17 mg/kg) which was collected in 1994. The sediment data collected in 1994 are well below the sediment screening values; therefore, the results of the 1994 sampling event may be more representative of current conditions. There do not seem to be any additional trends of contaminant detections within lower Cold Spring Brook.

The lack of sediment screening values for all VOCs, bis(2-ethylhexyl)phthalate, carbazole, aluminum, barium, beryllium, selenium, and vanadium detected in sediment samples in lower Cold Spring Brook represents an uncertainty in this PRE. It is unknown what potential adverse effects may occur to aquatic receptors as a result of exposure to these analytes. The magnitude of exceedances for other SVOCs and inorganics, however, suggests that these analytes may pose risks to sensitive aquatic receptors occurring in the stream.

This screening-level PRE for lower Cold Spring Brook indicates that sediment concentrations of PAHs, pesticides, and several inorganics exceed available screening values; however, potential risks to aquatic and benthic organisms are unclear due to the inconsistencies observed between the 1992 and 1994 data. No

particular "hot spots" are apparent in the stream, although samples directly downstream of SA 57 frequently contained elevated concentrations of contaminants. It is possible that levels of pesticides from an unknown source, and PAHs, TPHC, and some inorganics detected in the vicinity of SA 57 may cause risk to aquatic and benthic receptors.

5.2.2 Surface Water Screening Results

Analytical data for surface water samples collected during low to moderate flow conditions in September 1994 and July 1995 were compared to available USEPA AWQC values. This surface water PRE evaluates inorganic data from filtered samples collected in 1994 and 1995. Surface water samples collected in 1992 and 1993 were not filtered and were considered less representative of current conditions, therefore, they were not considered in this PRE. Maximum concentrations of inorganics were screened against concentrations detected in the upstream sample location (SSW-93-92C) (A.D. Little, 1994b). This subsection discusses the PRE screening results in the following order:

- Storm Drain Systems No. 7 and 2/3/4: surface water
- SA 57 Marsh: surface water
- Upstream subsection of lower Cold Spring Brook: surface water
- Downstream subsection of Lower Cold Spring Brook: surface water

The following subsections present the surface water PREs for these two data groups.

5.2.2.1 Storm Drain Systems No. 7 and 2/3/4. The PRE for the storm drain systems evaluated risks to aquatic receptors from exposure to surface water collected in Storm Drain Systems No. 7 and 2/3/4. The evaluation consisted of a comparison of maximum surface water contaminant concentrations at 7 sampling stations from 1994 to surface water benchmark values. Screening value exceedances were identified and discussed by outfall location. Table 5-12 presents the analyte concentrations and screening values used in the PRE for the storm drain systems. Figures 4-2 and 4-5 present sample collection locations. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

One organic analyte (bis(2-ethylhexyl)phthalate) was reported in storm drain system surface water samples. The maximum detected concentration of 10 micrograms per liter (μ g/L) did not exceed the surface screening value of 160 μ g/L.

Eleven inorganic analytes were detected in filtered surface water collected in the storm drain systems. Maximum concentrations were screened against concentrations detected in SSW-93-92C. Maximum concentrations of nine inorganic analytes exceeded concentrations detected in this upstream location, however, risk from two analytes (magnesium and potassium) were not evaluated in this PRE because these analytes are considered essential nutrients. Following a screening of upstream concentrations, inorganic concentrations were compared to available AWQC, as shown in Table 5-12. Iron, lead, and zinc were detected in filtered surface water samples at maximum concentrations that exceeded surface water screening values. The maximum detected concentration of lead (2.93 μ g/L) barely exceeded its screening value (1.0 μ g/L); iron (3,060 μ g/L) and zinc (277 μ g/L) exceeded their screening values by a factor of three and five, respectively. Alkalinity results (30,000 μ g/L) were 50 percent greater than available AWQC.

Iron concentrations from two samples (CSW-94-21X and CSW-94-30X) exceeded the screening value. Zinc was detected at a concentration in excess of its screening value at CSW-94-24X, and lead concentrations at three locations (CSW-94-21X, CSW-94-24X, and CSW-94-30X) slightly exceeded the screening value.

Samples CSW-94-21X and CSW-94-24X are associated with Storm Drain Systems No. 2/3/4. The maximum concentrations of iron, lead, and zinc were detected in these samples, suggesting that the majority of risk to aquatic receptors potentially exposed to storm drain system surface waters is associated with Storm Drain Systems No. 2/3/4. These analytes were also detected in sediment from these storm drain systems at concentrations in excess of sediment screening values. However, since these inorganic analytes were not detected at concentrations in excess of screening values in downstream Cold Spring Brook surface waters, it is unlikely that they present a substantial ecological risk to aquatic receptors occurring in the lower portion of Cold Spring Brook.

The lack of surface water screening values for barium and manganese represent an uncertainty in this evaluation. It is unknown what potential effects to aquatic receptors may occur as a result of exposures to these analytes. Given the ephemeral nature of aquatic habitat in the ditches, it is unlikely that sensitive aquatic receptors would be found there.

The screening level PRE for storm drain system surface water indicates that unfiltered surface water concentrations of bis(2-ethylhexyl)phthalate and filtered surface water concentrations of inorganic analytes are unlikely to present a risk to aquatic receptors.

5.2.2.2 SA 57 Marsh. This PRE evaluated risks to aquatic receptors from exposure to surface water collected from the SA 57 marsh. The evaluation consisted of a comparison of maximum surface water contaminant concentrations at four sampling stations from 1994 to surface water benchmark values. Table 5-13 presents the analyte concentrations and screening values used in the PRE for the SA 57 marsh. Figure 4-3 presents sample collection locations. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

No organic analytes were reported in SA 57 marsh surface water samples. Nine inorganic analytes were detected in filtered surface water collected in the SA 57 marsh. Maximum concentrations were screened against concentrations detected in SSW-93-92C. Maximum concentrations of all nine inorganic analytes exceeded concentrations detected in this upstream location, however, risks from four analytes (calcium, magnesium, potassium, and sodium) were not evaluated in this PRE because these analytes are considered essential nutrients. Following a screening of upstream concentrations, inorganic concentrations were compared to available AWQC, as shown in Table 5-13. No maximum concentrations exceeded surface water screening values. Alkalinity results $(47,000 \, \mu g/L)$ were approximately two times greater than available AWQC.

The lack of surface water screening values for barium and manganese represent an uncertainty in this evaluation. It is unknown what potential effects to aquatic receptors may occur as a result of exposures to these analytes. The screening level PRE for SA 57 marsh surface water indicates organic and inorganic analytes are not likely to present a risk to aquatic receptors.

5.2.2.3 Upstream Subsection of Lower Cold Spring Brook. This PRE evaluated risks to aquatic receptors from exposure to surface water collected in the

upstream subsection of lower Cold Spring Brook. The evaluation consisted of a comparison of maximum surface water contaminant concentrations at 5 sampling stations (CSW-94-01X, CSW-94-02X, CSW-94-03X, SSW-95-09H, and SSW-94-09I) to surface water benchmark values. Table 5-14 presents the analyte concentrations and screening values used in the PRE for the upstream subsection of lower Cold Spring Brook. Figure 2-1 presents sample collection locations. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

Four pesticides (alpha-BHC, gamma-BHC, DDD, and heptachlor) were reported in surface water samples from this study area. The maximum detected concentration of only DDD (0.0083 μ g/L) exceeded its surface water screening value of 0.001 μ g/L.

Ten inorganic analytes were detected in filtered surface water collected in the study area. Maximum concentrations were screened against concentrations detected in SSW-93-92C. Maximum concentrations of all ten inorganic analytes exceeded concentrations detected in this upstream location, however, risk from four analytes (calcium, magnesium, potassium, and sodium) were not evaluated in this PRE because these analytes are considered essential nutrients. Following a screening of upstream concentrations, inorganic concentrations were compared to available AWQC, as shown in Table 5-14. Only iron (1,830 μ g/L) was detected in filtered surface water samples at a maximum concentration that exceeded its surface water screening value (1,000 μ g/L). Alkalinity results (49,000 μ g/L) were approximately 2.5 times greater than available AWQC.

DDD and iron were detected at only one location (SSW-95-09I) that exceeded their screening values. DDD and iron were also detected at higher concentrations at upgradient surface water sample location SSW-95-09K.

The lack of surface water screening values for barium and manganese represent an uncertainty in this evaluation. It is unknown what potential effects to aquatic receptors may occur as a result of exposures to these analytes. H

The screening level PRE for the upstream subsection of lower Cold Spring Brook surface water indicates that unfiltered surface water concentrations of DDD and filtered surface water concentrations of iron may potentially cause risk to aquatic receptors. Both these analytes were detected in sediment at concentrations that

exceeded screening values, therefore, it is likely that the presence of these analytes in surface water reflect elevated sediment concentrations. However, the slight exceedances suggest that the potential for risk to aquatic receptors from exposure to these analytes in surface water is minimal.

5.2.2.4 Downstream Subsection of Lower Cold Spring Brook. The lower Cold Spring Brook PRE evaluates risks to aquatic receptors from exposure to surface water. The evaluation consisted of a comparison of maximum surface water contaminant concentrations at 16 sampling stations from 1994 to surface water benchmark values. Table 5-15 presents the analyte concentrations and screening values used in the lower Cold Spring Brook PRE. Figure 2-1 presents the locations of samples collected within the brook. The following paragraphs discuss the results of the PRE screening of organic and inorganic chemicals.

One organic analyte (bis(2-ethylhexyl)phthalate) was reported in lower Cold Spring Brook surface water samples. The maximum detected concentration of 11 μ g/L did not exceed the surface water screening value of 360 μ g/L.

Ten inorganic analytes were detected in filtered surface water collected in lower Cold Spring Brook. Only lead was detected at a maximum concentration that exceeded its screening value. Lead was detected in two filtered surface water samples, CSW-94-31X and CSW-94-33X. However, only one sample CSW-94-31X contained lead at a concentration ($10.6~\mu g/L$) that exceeded its screening value ($1.7~\mu g/L$). Lead was not detected in filtered samples immediately upgradient or downgradient of sample CSW-94-31X, suggesting that storm drain outfalls are not likely to be a source for this occurrence. This, in addition to the relatively low frequency of detection (e.g., two of 16 samples), suggests that the lead detected in filtered surface water samples from lower Cold Spring Brook is associated with natural sources, and not a result of activities which may have contaminated lower Cold Spring Brook.

The lack of surface water screening values for barium, manganese, and sodium detected in surface water samples at lower Cold Spring Brook represents an uncertainty in this evaluation. It is unknown what potential effects to aquatic receptors may occur as a result of exposures to these analytes. However, given the quality of aquatic habitat in lower Cold Spring Brook (i.e., it is generally characterized as slow moving and depositional), it is unlikely that more sensitive

aquatic receptors typically found in riffle-run habitats would occur in this brook (as suggested in the Preliminary Bioassessment Report, Appendix F).

The screening level PRE for lower Cold Spring Brook surface water indicates that unfiltered surface water concentrations of bis(2-ethylhexyl)phthalate and filtered surface water concentrations of inorganic analytes are unlikely to present a risk to aquatic receptors.

5.2.3 Macroinvertebrate Survey Results

In order to compare the sediment and surface water analytical results to site-specific conditions, a bioassessment was conducted to measure habitat characteristics and macroinvertebrate abundance and diversity. Macroinvertebrate subsamples from each station were identified, and habitat and biological metrics were analyzed according to the USEPA RBP II (Plafkin et al., 1989). This subsection summarizes the results of the bioassessment. Appendix F includes the full report of this study.

Representatives of ABB-ES, USEPA, Massachusetts Department of Environmental Protection (MADEP), USFWS, the Army, and Fort Devens agreed in a meeting held 31 August 1994 upon ten locations (two reference and eight sampling locations) to characterize the benthic quality in lower Cold Spring Brook. Two reference locations (CSD-94-02X and CSD-94-03X) were selected in the uppermost portion of lower Cold Spring Brook to represent stream conditions prior to potential contaminant influence from System 8, System 7, SA 57, Systems 2/3/4, and Systems 1/2. CSD-94-02X was selected to represent low velocity, swamp-like depositional habitats along lower Cold Spring Brook, and CSD-94-03X was selected to represent depositional areas of riffle-run habitats in the brook. The remaining eight macroinvertebrate sample locations were spaced along the brook at significant junctures (i.e., at system outfalls, upstream of SA 57 and at the mouth of SA 57, at Bowers Brook, and close to the base boundary).

As agreed upon in the 31 August 1994 meeting, macroinvertebrate samples were collected in the fall of 1994 at stations corresponding to agreed on surface water/sediment sample locations along lower Cold Spring Brook. Sub-samples consisting of 100 organisms (or the entire sample, if it contained fewer than 100 organisms) were isolated and all organisms were identified to the family level, whenever possible. Samples were processed in the laboratory using a modified

method of Plafkin et al. (1989). The metric values selected for analyses of the macroinvertebrate data include taxonomic richness, the Hilsenhoff Biotic Index, Scraper/Filter Ratio, Ephemeroptera-Plecoptera-Trichoptera (EPT) Index, EPT/Chironomidae Ratio, percent contribution of the dominant taxon, and the Community Loss Index. The values calculated for each of these metrics are listed in Appendix F.

The biological condition of sampling stations was evaluated by comparing the experimental stations to a reference station (CSD-94-02X). Station CSD-94-03X was originally proposed as a lotic reference station for comparison with stations CSD-94-08X and CSD-94-11X, but because station CSD-94-03X had different habitat than any other station (i.e., more riffle run habitat), its use as a reference station was considered inappropriate. Station CSD-94-02X, the most upstream of the 10 bioassessment stations, was selected as the most suitable reference station for the remaining bioassessment stations. Most of the experimental stations had habitats categorized as "comparable" or "supporting" when compared to reference station CSD-94-02X. These categories are meant to demonstrate that the available habitat at the experimental stations could support a similar biological community to that of the reference station. One station, CSD-94-13X, had habitat categorized as partially supporting relative to reference station CSD-94-02X, and one station, CSD-94-20X, had habitat categorized as "non-supporting".

The benthic communities at all stations except station CSD-94-18X were similar to the reference station. Benthic data showed moderate impairment at station CSD-94-03X, impairment at station CSD-94-18X, and no impairment at other stations. The two benthic samples from station CSD-94-18X contained no organisms. Most stations were dominated by the amphipod family Talitridae.

The biological metric values, in general, reflected the low habitat quality found in lower Cold Spring Brook. Taxa richness and EPT richness were both low compared to values typical of a faster stream with a cobble and gravel substrate. The biotic index values indicated the abundance of moderately pollution-tolerant organisms. The scraper/filterer ratio and EPT/Chironomidae ratio were both very low at most stations. Because scrapers and filterers as well as EPT taxa prefer faster water with coarse substrates and little sedimentation, the low values observed at lower Cold Spring Brook may be attributed to the physical habitat limitations.

Epiphytic communities were similar at all stations. The biological condition scoring for each station showed that no impairment was seen in any of the epiphytic samples when experimental stations were compared to reference station CSD-94-02X. Nevertheless, it appeared that there were lower numbers of epiphytic organisms at some stations that also had low numbers of benthic organisms (e.g., stations CSD-94-03X, -08X, and -32X).

Although biological condition scores were low at most stations, they were comparable to scores found at the reference station (CSD-94-02X). These data suggest that the macroinvertebrate community in lower Cold Spring Brook, which tends to be dominated by pollution-tolerant organisms, was not impaired by contaminant contributions from downstream storm drain discharges. The presence of pollution-tolerant organisms does not necessarily indicate degraded or impaired conditions unless pollution-intolerant organisms occur more frequently in the reference station that in the experimental stations. At lower Cold Spring Brook, the low number of pollution-intolerant organisms most likely results from physical habitat limitations.

5.2.4 Aquatic Laboratory Toxicity Results

A laboratory toxicity testing program was incorporated into the PRE of lower Cold Spring Brook to help evaluate ecological risks in this aquatic system. Comparison of chemical concentrations to screening values does not always yield an accurate assessment of risks. For example, analytical measurement of contaminant concentration in sediment may not reflect the bioavailable fraction of sediment associated with contaminants. In addition, organisms may be exposed to multiple contaminants with different modes of toxicity, and this would not be addressed in a simple screen against benchmarks. The toxicity testing evaluated the toxicity of ten sediment samples collected from lower Cold Spring Brook to two freshwater species. This subsection summarizes the results of the aquatic laboratory toxicity study. Appendix G includes the full report of this study.

The toxicity of bulk sediment samples was measured using an acute test with an amphipod (*Hyalella azteca*) and a subchronic test with a midge (*Chironomus tentans*). Amphipod survival was significantly different in two sediment samples tested (CSD-94-03X and CSD-94-08X) compared to the survival of the control organisms. A third sample, CSD-94-27X, appeared to affect survival, but because of the high variability in survival among four replicates of the sample, results

were not statistically different from the control. Surviving organisms from the same three samples, CSD-94-03X, CSD-94-08X, and CSD-94-27X, appeared to be reduced in size when compared to the size of the control organisms.

Results of the midge survival study indicate that no sediment samples were statistically different from the reference sample. Similarly, no reduction in dry weight was observed in any sediment sample compared with the dry weight of the organisms in the reference sample.

Results of the toxicity testing program indicated that exposure to sediment at three locations (03X, 08X, and 27X) affected survival and/or growth of *H. azteca*, while none of the sediments affected survival and growth of *C. tentans*. These results indicate that *H. azteca* is more sensitive than *C. tentans* to lower Cold Spring Brook sediment chemistry. No relationship could be established, however, between measured chemical parameters and the observed amphipod response. It is possible that sediment conditions such as sulfide concentration or the relatively low TOC concentration in the samples may have affected chemical bioavailability and toxicity.

5.3 SUMMARY AND INTERPRETATION

The following subsections summarize the results of lower Cold Spring Brook investigations.

5.3.1 General Overview of Study Results

The ecological PRE for lower Cold Spring Brook includes analyses of four sources of data: laboratory results from surface water, surface soil, and sediment samples collected in lower Cold Spring Brook and associated storm drain systems during 1992, 1993, 1994 and 1995; results from a 1994 qualitative macroinvertebrate and community analysis; results from a 1994 laboratory aquatic toxicity test; and results from an ecological characterization field program. The macroinvertebrate and aquatic toxicity studies provide data to assess site risks that were unavailable for earlier PREs conducted at Fort Devens. These additional data allow for greater emphasis on site-specific conditions rather than literature screening values. Several general conclusions drawn from the PRE are presented in this subsection.

Lower Cold Spring Brook is a low gradient stream with slow current velocity, a sand and mud substrate, and an abundance of aquatic vegetation. The biological metric values analyzed in the bioassessment study yield a low habitat quality rating for lower Cold Spring Brook. Because higher quality habitat is associated with a faster stream having a cobble and gravel substrate, the lower quality habitat observed in lower Cold Spring Brook is not necessarily indicative of chemical contamination of the stream. The habitat observations do suggest, however, that sensitive aquatic receptors are not likely to be found in lower Cold Spring Brook, and use of the most conservative toxicity benchmarks for screening purposes may be overprotective.

In general, surface water chemical concentrations were not found to be substantially higher than upgradient concentrations. Iron, lead, and zinc were detected in storm drain systems at concentrations that exceeded the AWQC for these chemicals. In lower Cold Spring Brook, lead was the only contaminant detected at a concentration that exceeded an AWQC. Because the AWQC are protective of sensitive species, such as salmonids, that do not occur in lower Cold Spring Brook, it is unlikely that surface water in lower Cold Spring Brook or in the evaluated drainage ditches leading to it poses a risk to aquatic receptors.

Benchmark screening of contaminants detected in sediment samples indicated possible risks to aquatic receptors. However, the macroinvertebrate and aquatic toxicity studies demonstrated increased mortality at only a small number of stations. Among sediment samples evaluated, the storm drain systems contained higher contaminant concentrations than lower Cold Spring Brook. Those storm drain systems that were dry most of the year (Systems No. 1/2, System No. 5, System No. 6, and System No. 8) and were evaluated for exposure to terrestrial organisms had surface soil concentrations that were not indicative of ecological risks.

5.3.2 Analysis of Results by Storm Drain System

Storm Drain Systems No. 1/2. SVOCs and inorganics detected in soil were below all PCLs. In surface water, iron and lead were detected at concentrations that exceeded the AWQC for these chemicals. Bioassessment and aquatic toxicity results from stations located downstream of Systems No. 1/2 in lower Cold Spring Brook (CSD-94-32X and -34X) did not demonstrate any adverse effects. No

AREEs, AOCs, or SAs are associated with this storm drain system, and the PRE suggests that ecological risks are not associated with Systems No. 1/2.

Storm Drain Systems No. 2/3/4. Several PAHs and inorganic chemicals were detected in sediment samples at concentrations that exceeded sediment screening values. Systems No. 2/3/4 also contained the highest TPHC concentration (5,440 mg/kg) detected in the watershed. Surface water concentrations of iron, lead, and zinc exceeded AWQC in this storm drain system. No bioassessment and aquatic toxicity station was located in the vicinity of the outfall of these systems. Therefore, no site-specific toxicity information is available to compare to the screening results.

The majority of maximum concentrations were detected at upstream sample locations, closest to industrial sources. Several AREEs, AOCs, and SAs are associated with these storm drain systems.

SA 57 Marsh. The SA 57 marsh contained sediments with detected concentrations of VOCs, SVOCs, pesticides, PCBs, and inorganics. TPHC was detected at a maximum concentration of 2,700 mg/kg. SVOCs were detected at concentrations that marginally exceeded screening values, while pesticides, PCBs, and inorganics significantly exceeded screening values. Detections of pesticides and maximum concentrations of inorganics in sediment were found at 1994 sampling station CSD-94-20X. Although this station was also categorized as containing "non-supporting" habitat in the bioassessment study, macroinvertebrate and aquatic toxicity results did not indicate any increased mortality to aquatic receptors.

Storm Drain System No. 6. SVOCs detected in soil were below all PCLs, and concentrations of cadmium, chromium, lead, and zinc were marginally above PCLs. Bioassessment and aquatic toxicity results from station CSD-94-11X located downstream of System No. 6 in lower Cold Spring Brook did not demonstrate any adverse effects.

Storm Drain System No. 7. Five PAHs were detected in sediment at maximum concentrations that exceeded NOAA ER-Ls, but did not exceed USEPA SQCs. TPHC was detected at a maximum concentration of 2,320 mg/kg. Concentrations of several inorganic chemicals exceeded available screening values. Increased mortality of *Hyalella azteca* was observed in 1994 sampling station CSD-94-08X

located at the intersection of System No. 7 with Cold Spring Brook. This sample contained no maximum concentrations of any contaminants. Results from the *Chironomus tentans* and macroinvertebrate studies, however, did not indicate any increased mortality to aquatic receptors.

In general, maximum concentrations were detected between Barnum Road and the confluence with lower Cold Spring Brook, indicating potential contaminant inputs from road runoff or other sources south rather than industrial drainage.

Storm Drain System No. 8. SVOCs detected in soil were below all PCLs, and concentrations of manganese and zinc were marginally above screening values for plants or invertebrates. No bioassessment and aquatic toxicity station was located in the vicinity of the outfall of System No. 8. No AREEs, AOCs, or SAs are associated with this storm drain system.

Storm Drain System No. 9. Within the storm drain system, two PAHs were detected in sediment at maximum concentrations that exceeded NOAA ER-Ls, but did not exceed USEPA SQCs. Concentrations of arsenic and lead exceeded available sediment screening values. Downgradient of the storm drain system in the ponded area of Cold Spring Brook, contaminant concentrations tended to be higher. Eleven PAHs were detected in sediment at maximum concentrations that exceeded NOAA ER-Ls; four PAHs were detected at concentrations that exceeded USEPA SQCs. TPHC was detected at a maximum concentration of 2,120 mg/kg. Pesticides and several inorganic analytes were also detected in sediment in this area at concentrations above screening values. Two analytes detected in surface water that exceeded screening values (DDD and iron) were also detected at concentrations in sediment that exceeded minimum screening values. It is possible that elevated concentrations in sediment may contribute to elevated concentrations in surface water.

Sampling station CSD-94-02X, located in the middle of the ponded area, was used as a reference station for the bioassessment study. Although in the habitat scores, station CSD-94-03X (located slightly downstream of the ponded area) was determined to represent habitat of as good or better quality as the reference station, this station exhibited increased mortality of *Hyalella azteca*. Results from the *Chironomus tentans* and macroinvertebrate studies did not indicate any increased mortality to aquatic receptors associated with System No. 9.

Storm Drain System No. 5. SVOCs detected in soil were below all PCLs, and concentrations of several inorganics were above screening values. TPHC was detected at a maximum concentration of 3,200 mg/kg. The majority of contamination was located at the furthest upgradient station, directly below the System No. 5 outlet. No bioassessment and aquatic toxicity station was located in the vicinity of the outlet of System No. 5.

5.3.3 Lower Cold Spring Brook

Within Cold Spring Brook, several PAHs, pesticides, and inorganic chemicals were detected in sediment samples at concentrations that exceeded sediment screening values. TPHC was detected at a maximum concentration of 1,800 mg/kg. The maximum concentrations of PAHs and lead were detected in a 1992 sample that was resampled in 1994. This new sample did not show any detections of PAHs and had a much lower concentration of lead. In addition to this sample, the majority of maximum concentrations of PAHs and pesticides were detected between System No. 6 and the SA 57 marsh. Maximum concentrations of inorganics were generally located downstream of the SA 57 marsh. Lead was detected in surface water (between Systems No. 1/2 and Systems No. 2/3/4) at a concentration exceeding the AWQC.

Results of the bioassessment and aquatic toxicity studies revealed isolated areas of marginal effects. Compared to the reference station, 1994 sampling station CSD-94-13X (located between System No. 6 and the SA 57 marsh) was determined to have partially-supporting habitat. At station CSD-94-18X, located at the intersection of Bowers Brook and Cold Spring Brook, no macroinvertebrates were found, indicating severe benthic impairment. The sporadic presence of benthic organisms collected at the lower Cold Spring Brook sampling locations generally precluded the detection of statically significant effects to the macroinvertebrate community; however, the observed absence of benthic organisms in the duplicate macroinvertebrate samples collected at CSD-94-18X is notable.

The reason for the lack of benthic organisms was not determined, although it is hypothesized that a stressor other than the contaminants measured in this study could have adversely affected the benthic habitat in this area (e.g., physical limitations, as indicated by a relatively low habitat quality score, may be a cause). Measured analyte concentrations at CSD-94-18X, when compared to

concentrations at other bioassessment stations, do not appear to be great enough to account for the discrepancy. In addition, laboratory toxicity testing to evaluate contaminant toxicity did not identify significant survival or growth effects on test organisms from exposure to sediment collected at CSD-94-18X.

During laboratory toxicity tests, samples from stations CSD-94-08X (located at the outfall of System No. 7) and CSD-94-27X exhibited increased mortality of *Hyalella azteca*. Results from the *Chironomus tentans* and macroinvertebrate studies at other lower Cold Spring Brook stations, however, did not indicate any increased mortality to aquatic receptors.