

U.S. Army Environmental Center FORT DEVENS SITE INVESTIGATION FOR GROUPS 2, 7 & HISTORIC GAS STATIONS

REVISED FINAL SITE INVESTIGATION REPORT DATA ITEM A009

VOLUME II OF IV REPORT TEXT

CONTRACT DAAA15-91-D-0008

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

OCTOBER 1995

PRINTED ON RECYCLED PAPER

27 95103 ABBP

AEC Form 45, 1 Feb 93 replaces THAMA Form 45 which is obsolute.

6.0 STUDY AREA 43 - HISTORIC GAS STATIONS

The following section presents the findings and recommendations of the SI field investigations conducted at the 19 historic gas station sites, and SSI field investigations at eight historic gas stations, which make up SA 43. These sites were part of an installation-wide fuel distribution and motor pool system installed in the early 1940s and discontinued in the early 1950s. All of the historic gas station sites are located on the Main Post portion of Fort Devens (Figure 6.1-1).

Additional data for each of the SA 43 historic gas station sites (43B through 43S) was gathered under the Areas Requiring Environmental Evaluation (AREE) 61 - Maintenance and Waste Accumulation Areas program. The following is a list of corresponding AREE 61 and SA 43 site designations:

43 B	-	61 AQ
43 C	-	Part of 61 F
43 D	-	61 AR
43 E	-	61 AS
43 F	=	61 C
43 G	-	61 G
43 H and 1	-	61 I
43 J	-	61 AF
43 K	-	61 O
43 L	-	61 P
43 M	-	61 Q
43 0	*	61 S
43 P	*	61 T
43 Q	=	61 U
43 R	-	61 AT
43 S	=	61 V

The results of the AREE 61 investigation completed at each SA 43 are not included in this report.

ABB Environmental Services, Inc.

WIX099521.MB0

6.1 STUDY AREA 43A

6.1.1 Study Area Background and Conditions

SA 43A was the former central distribution facility for all of the historic gas stations. It was located in what is now the Petroleum, Oil, and Lubricant (POL) Storage yard across Market Street from the Defense Reutilization Marketing Office Building 204 (DRMO; Study Area 32), and between Antietam Street, Cook Street, and Market Street (Figure 6.1-2). Gasoline was delivered to this facility by railroad tank cars and was off-loaded into above ground storage tanks (ASTs) and USTs. From there it was transported by truck to the individual historic gas stations. The distribution facility consisted of the main gasoline station building (Building T-401), the gasoline pumphouse (P-186), and seven storage tanks totaling 76,000 gallons [three 12,000 gallon USTs, two 12,000 gallon ASTs, and two 8,000 gallon ASTs] (Barbour, 1941) (see Figure 6.1-2).

The four ASTs, originally located in a pit behind Building T-401, were removed between 1965 and 1972 (Detrick, 1991). There is no other data available on the removal of these ASTs. A total of five USTs, consisting of four 12,000 gallon USTs and one 10,000 gallon UST, were excavated from the site in 1989 and 1990 (EA, 1990). The 12,000 gallon USTs and the 10,000 gallon UST had apparently been used at the site for fuel-oil storage; however, no records of these USTs were available. The remaining three USTs were located beneath the historic gasoline pumphouse (Building P-186), and it is likely that they were used for gasoline storage, only, during the 1940s.

After removal of the USTs and 800 cubic yards of contaminated soil, confirmatory soil samples were collected from the excavation and analyzed for TPHC. The highest TPHC concentration was 237 milligrams per kilogram (mg/kg) (Environmental Applications [EA], 1990). The excavations were backfilled and no further soil removal occurred at this area.

In October 1990, a limited hydrogeological assessment of the POL site was conducted (GZA Remediation, Inc. [GZAR], 1990). GZAR concluded that "no significant fuel contamination remains in the vicinity of the former leaking underground storage tanks." However, GZAR's investigation did not include the western part of the POL area, where the ASTs and the main gasoline station (Building T401) were formerly located.

ABB Environmental Services, Inc.

W0099521 M80

SECTION 6

Five new USTs were installed at the POL storage yard, in 1991. These USTs are currently used to store fuel for military vehicles used on Fort Devens.

In 1992, a limited soil removal for surface soil contamination, was completed. Soil was removed from around the existing pump and valve pit which is used to fill fuel distribution trucks. The area around the pump and valve pit and the existing UST refill pipes was paved to act as a containment structure for future spills.

6.1.2 Site Investigation Program Summary

The SI at SA 43a was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992b) and in conformance to the provisions of the POP (ABB-ES, 1992a). The field sampling program at SA 43A was designed to investigate the nature and distribution of subsurface soil and, if possible, groundwater contamination. Subsurface soil samples were collected for field analysis at two areas within SA 43A (see Figure 6.1-2). SA 43A was divided into two areas due to the different site conditions at each area. Area 1, located at the corner of Antietam Street and Cook Street, is comprised of the former gas station (Building T-401) and the area around the former ASTs. Area 2 consists of the active POL storage yard and the former gasoline pumphouse and historic USTs (see Figure 6.1-2).

The field investigation at each area consisted of a surficial geophysical investigation, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the soil samples collected with the TerraProbe unit, soil borings to collect subsurface soil samples for laboratory analysis, and a geodetic survey to locate the TerraProbe points and soil borings. The soil samples collected with the TerraProbe unit were analyzed on a GC for BTEX and on an IR unit for TPHC. The TPHC analysis used a slightly modified version of USEPA Method 418.1 (see Section 3.2.3 for details).

<u>Area 1</u>. The surficial geophysical investigation was conducted at Area 1 consisting of a metal detector survey, a magnetometer survey, and a GPR survey. These surveys were designed to determine if there were any abandoned USTs or associated piping present at Area 1 (Figure 6.1-3).

ABB Environmental Services, Inc.

W0099521.M80

A total of 22 soil samples were collected from eight TerraProbe points at Area 1 (see Figure 6.1-3). The remaining eight proposed TerraProbe points were not sampled due to difficult subsurface conditions encountered in the initial eight points. Eight soil samples were collected from 0 feet to 2 feet, and five soil samples were collected from 11 feet to 21 feet for field analysis, nine soil samples were collected between 25 feet and 32 feet bgs, which appears to be the approximate depth of the water table at Area 1. All of the subsurface soil samples were analyzed in the field for BTEX and TPHC.

Two subsurface soil samples were collected for laboratory analysis from one soil boring (43A-92-01X) drilled at Area 1 (see Figure 6.1-3). Soil samples were collected from 0 feet to 2 feet and 27 feet to 29 feet bgs. Both soil samples were analyzed for VOCs, TPHC, and lead.

<u>Area 2</u>. The surficial geophysical investigation was conducted at Area 2 consisting of a metal detector survey, a magnetometer survey, and a GPR survey (Figure 6.1-4). These surveys were designed to determine if there were any abandoned USTs or associated piping present at Area 2.

A total of 22 soil samples were collected from nine TerraProbe points for field analysis (see Figure 6-4). The remaining point, TP-19, was not sampled. Three soil samples were collected from TerraProbe points at 0 feet to 2 feet, and nine soil samples were collected from 11 feet to 16 feet, and ten soil samples were collected from 22 feet to 28 feet, which appears to be the approximate depth of the groundwater table at Area 2. All of the subsurface soil samples were analyzed in the field for BTEX and TPHC.

Two subsurface soil samples were collected for laboratory analysis from the one soil boring (43A-92-02X) drilled at Area 2 (see Figure 6.1-4). Soil samples were collected from 10 feet to 12 feet and 25 feet to 27 feet bgs. Both soil samples were analyzed for VOCs, TPHC, and lead. The three existing monitoring wells around Area 2 (POL-1, POL-2, and POL-3) were not sampled as part of the SI field investigation. However, the wells have been sampled in the past and the results are presented below.

ABB Environmental Services, Inc.

W0099521.MS0

6.1.3 Field Investigation Results and Observations

The soils at SA 43A consisted of poorly graded sand with trace amounts of silt. The soil boring 43A-92-01X at Area 1 was advanced to 32 feet bgs and the soil boring 43A-92-02X at Area 2 was advanced to 29 feet. The water table was encountered at 26.8 feet at Area 1 and at 26.1 feet at Area 2. Because no groundwater monitoring wells were installed as part of this SI field investigation, the aquifer properties and groundwater quality at SA 43A could not be determined. Soil boring logs are provided in Appendix B.

<u>Area 1</u>. The geophysical surveys performed at Area 1 did not indicate the presence of any abandoned USTs or associated piping. The geophysical measurements collected during the surveys are provided in Appendix L,

Eight soil samples were collected from 0 feet to 2 feet and five soil samples were collected from 11 feet to 21 feet for field analysis. No BTEX compounds were detected in any of these samples, however, TPHC was detected at 180 ppm in the 2 foot sample collected from TP-04. No other TPHC was detected (Table 6.1-1; Figure 6.1-5 and 6.1-6). Nine soil samples were collected from depths of 25 feet to 32 feet bgs, which appears to be the approximate depth of the groundwater table at Area 1. BTEX compounds and TPHC were detected in TP-12, only. Toluene, ethylbenzene and xylenes were detected, with a total concentration of 57,000 ppb, and TPHC was detected at 4,000 ppm. No benzene was detected (see Table 6.1-1; Figure 6.1-7).

Two subsurface soil samples were collected for laboratory analysis from 43A-92-01X (Figure 6.1-8). No VOCs or TPHC were detected in the 0 foot to 2 foot sample. Lead was detected above the established Fort Devens background concentration at 120 μ g/g in this sample. VOCs and TPHC were detected in the soil sample collected from 27 feet to 29 feet. Tetrachloroethylene was detected at 0.01 μ g/g and TPHC was detected at 44.1 μ g/g. Lead was detected at 6.05 μ g/g which was below the established background concentration (Table 6.1-2; see Figure 6.1-8).

<u>Area 2</u>. The geophysical surveys completed at Area 2 indicated the location of the active fiberglass USTs, but did not identify any abandoned USTs or associated piping. The geophysical measurements collected during the surveys are presented in Appendix L.

ABB Environmental Services, Inc.

W0099521.M80

Three soil samples were collected from three TerraProbe points at 0 feet to 2 feet bgs. No BTEX compounds were detected in any of the samples, but TPHC was detected in all three ranging from 610 ppm to 1,200 ppm (see Table 6.1-1; Figure 6.1-9). Nine soil samples were collected from 11 feet to 16 feet at Area 2. No BTEX compounds or TPHC were detected in any of these samples (Figure 6.1-10). Ten soil samples were collected from 22 feet to 28 feet, which appears to be the approximate depth of the groundwater table at Area 2. Toluene, ethylbenzene, and xylenes were detected in several samples collected from this depth. TPHC was detected in six of the 10 samples ranging from <52 ppm to 180,000 ppm (see Table 6.1-1; Figure 6.1-11).

Two subsurface soil samples were collected for laboratory analysis from 43A-92-02X (Figure 6.1-12). No VOCs or TPHC were detected in the 10 foot sample. Xylene was detected at 0.03 μ g/g and TPHC was detected at (10,900 μ g/g) in the 25 foot to 27 foot sample. Lead was not detected above the established background concentration in either of the samples collected (see Table 6.1-2; see Figure 6.1-12).

The existing monitoring wells (POL-1, POL-2, and POL-3) were sampled by Ecology and Environment (E&E) personnel in early 1993. The groundwater samples were analyzed for VOC, SVOCs, inorganics (POL-1 and POL-3), and hardness. Chloroform and di-n-butylphthalate were detected in POL-1 and POL-3. Chloroform in POL-3 at 0.73 μ g/L and di-n-butylphthalate in POL-1 at 4.0 μ g/L. Trichloroethene and/or xylene were detected in each sample (Table 6.1-3; see Figure 6.1-12). Each of the inorganic analytes detected were above the established Fort Devens background; these samples were unfiltered. A filtered inorganics sample was also collected from POL-3. The results of this sample showed only two inorganic analytes, calcium and sodium, above the established Fort Devens background (see Table 6.1-3).

6.1.4 Nature and Distribution of Contamination (Field Analytical and Laboratory Results)

<u>Area 1</u>. The objective of the field sampling program at Area 1 was to investigate the presence or absence of soil and groundwater contamination caused by spills or leaks associated with the historic gas station. The primary concern at Area 1 was that fuel-related contaminants had percolated through the soil to the groundwater. To evaluate the migration pathways surface soil and subsurface soil samples,

ABB Environmental Services, Inc.

W0099521.M8D

SECTION 6

including subsurface soil samples from the water table, were collected and analyzed in the field and at an off-site laboratory. The results of the surface soil and intermediate subsurface soil samples (0 feet to 21 feet), collected for field analysis, appear to indicated that spills and/or leaks associated with the former ASTs, did not cause a significant amount of contamination in and around Area 1. However, elevated concentrations of fuel-related contaminants were detected in the field analysis sample collected at the water table from TP-12. This contamination appears to be a result of an upgradient (Area 2 to the northeast) source due to the lack of shallow soil contamination. The laboratory results did not correlate well with the field analysis sample, however, TPHC was detected at the water table above the laboratory detection limit.

Area 2. The objective of the field sampling program at Area 2 was to investigate the presence or absence of soil and groundwater contamination caused by spills or leaks from former USTs which were associated with the historic gas station. The primary concern at Area 2 was that the fuel-related contaminants had percolated through the soil to the groundwater. To evaluate the migration pathways, surface soil and subsurface soil samples, including subsurface soil samples from the water table, were collected and analyzed in the field and at an off-site laboratory. The results of the surface soil samples indicated the presence of TPHC around the existing pump and valve pit. This contaminated soil has subsequently been removed from the site during the 1992 soil removal. The intermediate subsurface soil samples (11 feet to 16 feet) appear to indicated that spills and/or leaks associated with the refueling activities in the POL storage yard, have not caused a significant amount of soil contamination at these depths at Area 2. However, elevated concentrations of fuel-related contaminants were detected at the water table in six of the ten subsurface soil samples collected for field analysis. Laboratory analysis of the subsurface soil sample collected from the water table confirmed these results. This contamination appears to be a result of leaks and residual soil contamination associated with one or more of the former USTs. It appears, from the soil results from Area 1, that the contaminants from Area 2 are migrating to the southwest along the top of the water table.

Groundwater samples were collected from the existing monitoring well as part of the Group 1B field investigation. The results of these groundwater samples showed that a fuel-related compound and a solvent were present in the groundwater at the existing monitoring well locations. Inorganic analytes detected above their established background appeared to be caused by abundant TSS.

ABB Environmental Services, Inc.

W0059521.M80

However, based on these results and the results of the soil samples collected at the water table at Area 1 and Area 2, it appears that groundwater contamination is present at 43A.

6.1.5 Source Evaluation and Migration Potential

Fuel-related VOCs and TPHC were detected in subsurface soil samples collected at the water table at Area 1 and Area 2. No groundwater samples were collected for field or laboratory analysis during the 1992 SI field investigation; however, groundwater samples collected as part of the Group 1B investigation, from existing monitoring wells, indicate the presence of a fuel-related compound and a solvent-related compound in the groundwater at this site. The primary transport mechanism for the contaminants detected at this site is via dissolved phase or free product in the groundwater.

6.1.6 Preliminary Human Health Risk Evaluation

Field-screening of 23 shallow and intermediate depth TerraProbe soil samples revealed no measurable concentrations of BTEX to a depth of 21 feet. TPHC was detected above the method detection limit in three of these 23 samples, ranging from 180 ppm to 1,200 ppm. When these results are compared to the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline, there appears be no significant risk to public health from soil contamination at SA 43A.

At depths below 21 feet, the approximate water table depth, field-screening results from 16 TerraProbe soil samples indicate significant contamination from toluene, ethylbenzene, and xylenes in soils primarily located in the active POL yard (Area 2). Additionally, TPHC levels range up to 23,000 ppm. These results are clearly indicative of significant groundwater contamination from petroleum products.

Two confirmatory borings by ABB-ES support the field-screening results. Shallow soils in both Area 1 (43A-92-01X) and Area 2 (43A-92-02X) showed little TPHC contamination, although lead was detected at 120 μ g/g at the surface in Area 1. However, below 25 feet a soil sample from each boring showed TPHC contamination, with the Area 1 sample being relatively low at 44 μ g/g and the Area 2 sample confirming groundwater contamination at 10,900 μ g/g. Although

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

the concentration of lead in the surface soil (120 μ g/g) exceeds the background level, it is below the interim cleanup level of 500 to 1,000 ppm for lead.

6.1.7 Conclusions and Recommendations

Although human health risks are not significant and ecological risks are not relevant to the subsurface environment of this study area, it is apparent from the data collected that the groundwater quality (and subsurface soil in the saturated zone) at SA 43A has been adversely impacted by historical activities.

Based on these findings, it is recommended that an RI/FS be conducted at this study area to further define the distribution of contamination and evaluate the need for clean up. It is also recommended that this study area be administratively transferred to Group 1B due to its geographical location.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.1-1 FIELD SCREENING RESULTS HISTORIC GAS STATION - SITE A

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	TPH ppm	TOTAL BTEX ppb	BEN*	TOL*	E-BEN"	M/P XYL** ppb	Q-XYL* ppb	COMMENTS
AREA 1		127.2										
43TSA02XX201XF	43A	SOIL	TP-02	2	<52	0	ND	ND	ND	ND	ND	
43TSA02X2501XF	43A	SOIL	TP-02	25	< 55	0	ND	ND	ND	ND	ND	
43TSA04XX201XF	43A	SOIL	TP=04	2	180	0	ND	ND	ND	ND	ND	1
43TSA04X2901XF	43A	SOIL	TP-04	29	< 57	Ó	ND	ND	ND	ND	ND	
43TSA06XX201XF	43A	SOIL	TP-06	2	< 54	0	ND	ND	ND	ND	ND	
43TSA06X1101XF	43A	SOIL	TP-06	- 11	< 58	0	ND	ND	ND	ND	ND	
43TSA06X2501XE	43A	SOIL	TP-06	25	< 52	0	ND	ND	ND	ND	ND	
43TSA10XX201XF	43A	SOIL	TP-10	2	< 55	Q	ND	ND	ND	ND	ND	
43TSA10X1101XF	43A	SOIL	TP-10	11	<52	0	ND	ND	ND	ND	ND	
43TSA10X2801XF	43A	SOIL	TP-10	28	< 62	0	ND	ND	ND	ND	ND	
43TSA11XX201XF	43A	SOIL	TP-11	2	<52	0	ND	ND	ND	ND	ND	
43TSA11X2901XF	43A	SOIL	TP-11	29	< 52	0	ND	ND	ND	ND	ND	
43TSA11X3201XF	43.A	SOIL	TP-11	32	< 55	0	ND	ND	ND	ND	ND	
4315A12XX201XF	43.A.	SOIL	TP-12	2	< 52	0	ND	ND	ND	ND	ND	
43TSA12X1401XF	43A	SOIL	TP-12	14	< 55	0	ND	ND	ND	ND	ND	
43TSA12X2801XF	43A	SOL	TP-12	28	4000	57000	ND	9100	11000	30000	6900	

NOTES:

* = ND denotes a non detect or concentrations below 5 ppb.

** = ND denotes a non detect or concentrations below 10 ppb

*** = Detection of Noncalibrated Petroleum Hydrocarbons

= Study area

TABLE 6.1-1 FIELD SCREENING RESULTS INSTORIC GAS STATION - SITE A

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (fcet)	ТРН ррш	TOTAL BTEX ppb	BEN*	TOL*	E-BEN*	M/P XYL** ppb	O-XYL*	COMMENTS
43TSA14XX201XF	43A	SOIL.	TP-14	2	< 52	0	ND	ND	ND	ND	ND	
43TSA14X1101XF	43A	SOIL	TP-14	11	<51	- û	ND	CBM	ND	ND	ND	
43TSA14X2101XF	43A	SOIL	TP-14	21	< 56	0	ND	ND	ND	ND	ND	
43TSA14X2601XF	43A	SOIL	TP-14	26	< 55	0	ND	ND	ND	ND	ND	1
43TSA16XX201XF	43A	SOIL	TP-16	2	<54	Ô	ND	ND	ND	ND	ND	
43TSA16X2601XF	43A.	SOIL	TP-16	26	< 52	0	ND	ND	ND	ND	ND	
AREA 2							-			-		
43TSA17XX101XF	43A	SOIL	TP-17	1	1200	0	ND	ND	ND	ND	ND	*** PHC's Desected
43TSA18X1301XF	43A	SOIL	TP-18	13	<53	0	ND	ND	ND	ND	ND	
43TSA18X2601XF	43A	SOIL	TP-18	26	3400	220	ND	ND	37	130	54	*** PHC's Detected
43TSA20X1501XF	43A	SOIL	TP-20	15	<62	0	ND	ND	ND	ND	ND	
43TSA20X1601XF	43A	SOIL	TP-20	16	<55	0	ND	ND	ND	ND	ND	
49TSA20X2501XF	43A	SOIL	TP-20	25	<65	0	ND	ND	ND	ŃD	ND	F=
43TSA20X2501XF	43A	SOIL	TF-20	26	<62	0	ND	ND	ND	ND	ND	
43TSA21X1101XF	43A	SOIL	TP-21	11	<52	0	ND	ND	ND	ND	ND	
43TSA21X2301XF	43A	SOIL	TP-21	23	23000	22400	ND	2000	2700	13000	4700	
43TWA21X250LXF	43A	SOIL	TP-21	25	150090	190	ND	ND	44	110	54	*** PHC's Detested

NOTES:

* = ND denotes a non detect or concentrations below 5 ppb.

** = ND denotes a non detect or concentrations below 10 ppb

*** = Detection of Noncalibrated Petroleum Hydrocarbons

= Study area.

TABLE 6.1-1 FIELD SCREENING RESULTS HISTORIC GAS STATION - SITE A

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	ТРН ррш	TOTAL BTEX ppb	BEN*	TOL.	E-BEN* ppb	M/P XYL** ppb	O-XYL*	COMMENTS
43TSA22X1501XF	43A	SOIL	JP-22	15	<52	0	ND	ND	ND	ND	ND	
43TSA22X2301XF	43A	SOIL	TP-22	13	<52		MD	ND	ND	ND	ND	
43TSA22X2801XF	43A	SOIL	TP-22	28	21(10)	7600	ND	610	1600	3200	2200	
43TSA23X150EXF	43A	SOIL	TP-23	15	<54	D	ND	ND	ND	ND	ND	
43TSA24XX201XF	43A	SOIL.	TP-24	2	610	0	ND	ND	ND	ND	ND	
43TSA24X1501XF	43A	SOIL	TP-24	15	<55	٥	ND	ND	ND	ND	ND	
43T5A24X2601XF	43A	SOIL	TP-24	26	<65	D	ND	ND	ND	ND	ND	
43TSA25X1501XF	43A	SOIL	TP-25	15	<53	Q	ND	ND	ND	ND	ND	
43TSA25X2201XF	43.A	SOIL	TP-25	22	<fi3< td=""><td>Ø</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td></td></fi3<>	Ø	ND	ND	ND	ND	ND	
43TSA26XX201XF	43A	SOIL	TP-26	2	610	0	ND	ND	ND	ND	ND	
43TSA26X1301XF	43.A	SOIL	TP-26	13	<51	Ø	ND	ND	ND	ND	ND	
43TSA26X2601XF	43A	SOIL	TP-26	26	1600	250	ND	9.2	33	140	17	*** PHC's Detected,

NOTES:

* = ND denotes a non detect or concentrations below 1 pph.

** = ND denotes a non detect or concentrations below 10 pph

*** = Detection of Noncalibrated Petroleum Hydrocarbons

= Study area

TABLE 6.1-2 INORGANIC AND ORGANIC COMPOUNDS IN SOIL SA 43A - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	BACK -	BORING	43A-9	2-01X	43A-9	2-02X
ANALYTE	GROUND	DEPTH	.0	27	10	25
ORGANICS (ug/g)						
ACETONE		< 0,0008	< 0.0008	< 0.0008	< 0.0008	
TETRACHLOROETHYLENE/TETRACHLO	OROETHEME		< 0,0008	0.01	< 0.0008	< 0.0008
XYLENES			< 0.0015	< 0.0015	< 0.0015	0.03
INORGANICS (ug/g)						
LEAD	48.4		120.0	6.05	3.73	3.42
OTHER (ug/g)						
TOTAL ORGANIC CARBON	NA	653.0	NA	10500.0		
TOTAL PETROLEUM HYDROCARBONS	< 27.9	44.1	< 27.9	10900.0		

NOTES;

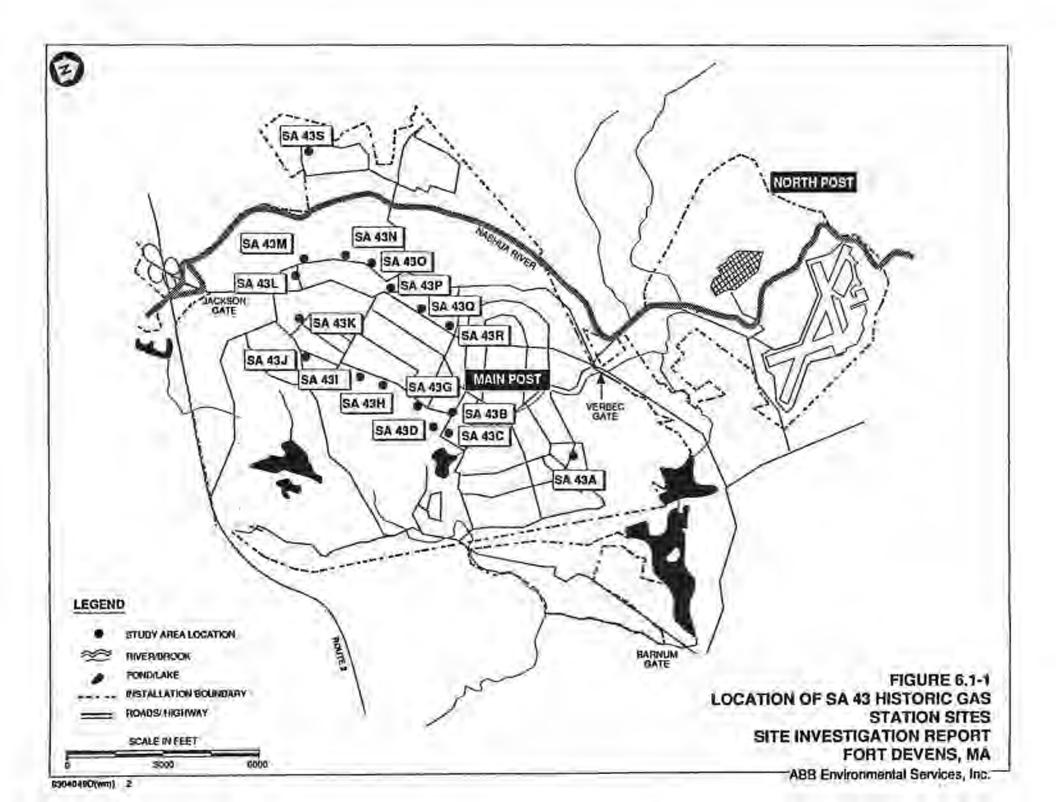
TABLE LISTS DETECTED ANALYTES ONLY – SEE PROJECT ANALYTE LIST FOR SUMMARY < = LESS THAN DETECTION LIMIT SHOWN NA = NOT ANALYZED

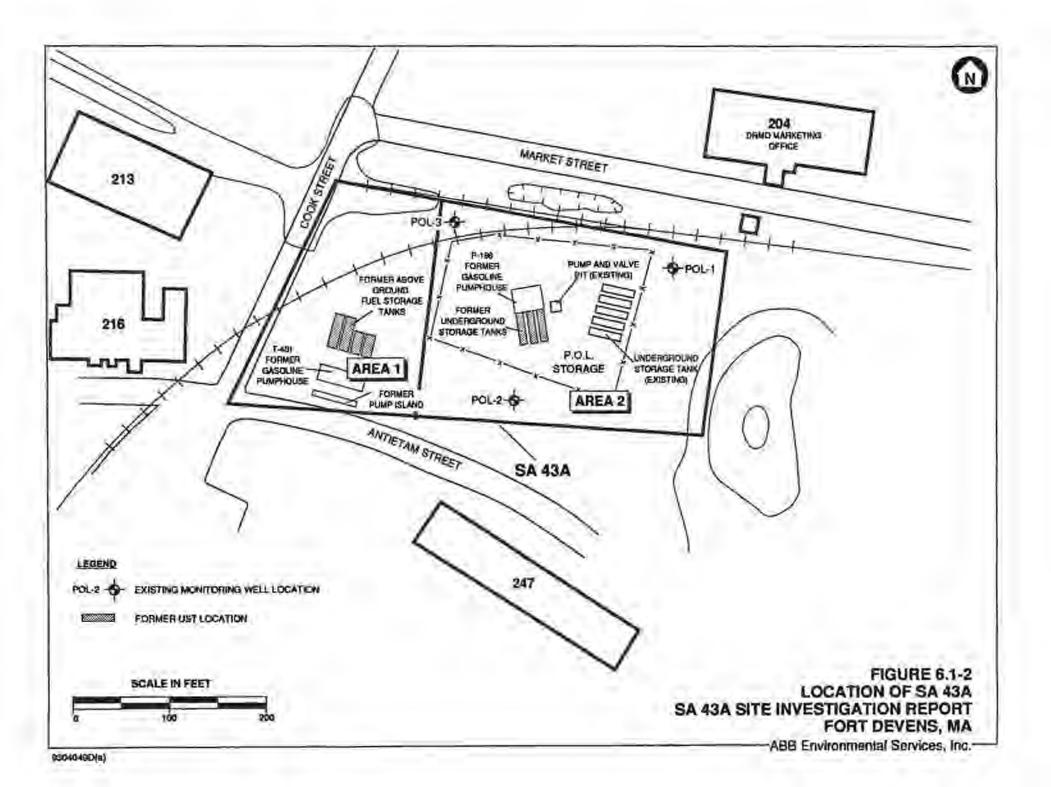
TABLE 6.1-3

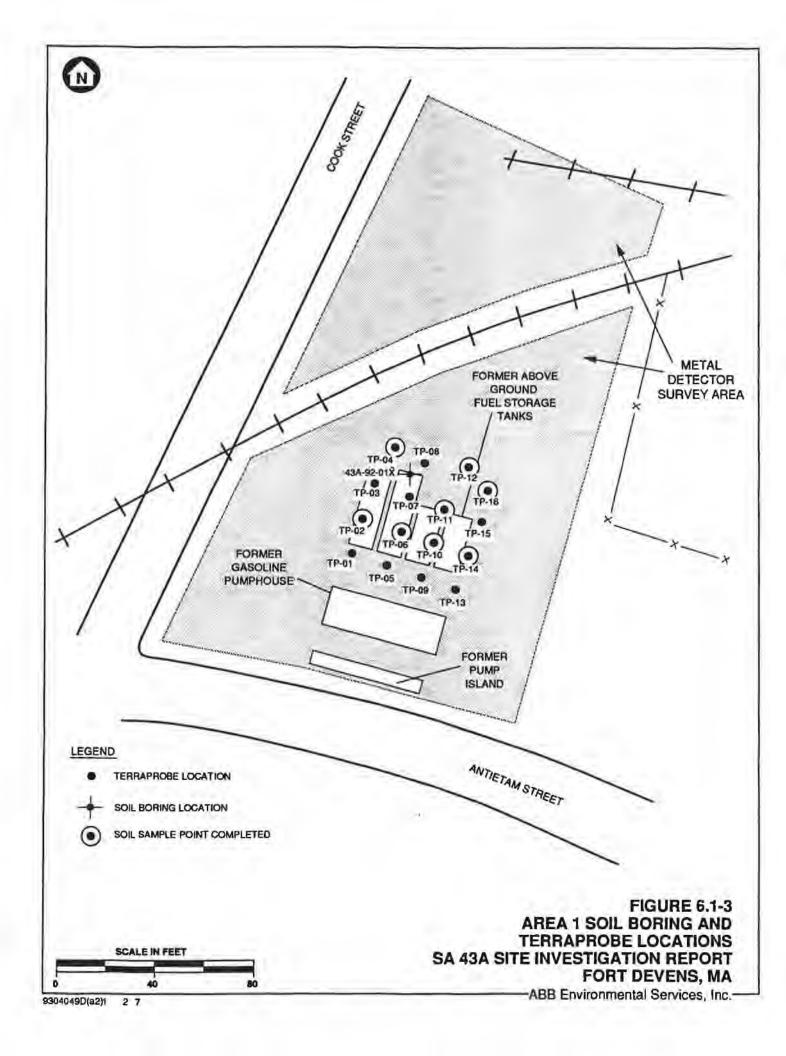
ANALYTES IN GROUNDWATER GROUP IA RESULTS NEAR HISTORIC GAS STATIONS - SA 43A

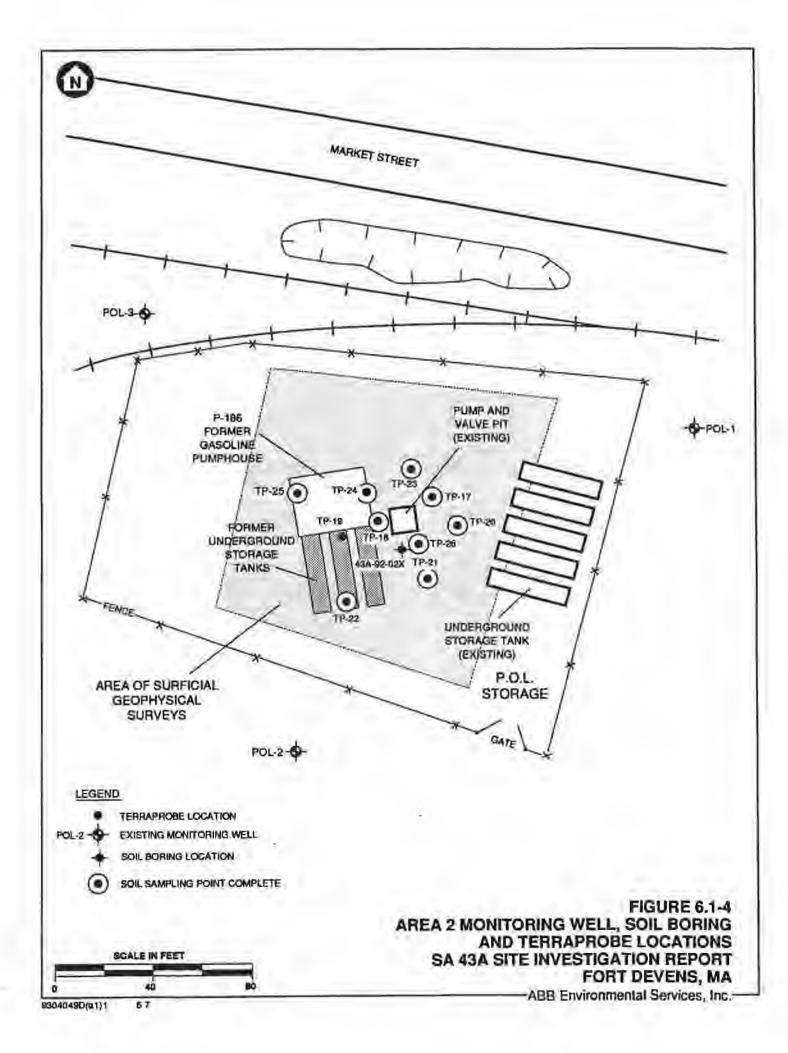
ANALYTE	BACK- GROUND	POL-1	POL-2	POL-3	POL-3 FILTERED
ORGANICS (ug/L)					
CHLOROFORM		< 0.5	< 0.5	0.73	< 0.5
DI-N-BUTYL PHTHALATE		4.0	< 3.7	< 3.7	< 3.7
TRICHLOROETHENE		0.73	< 0.5	19.0	< 0.5
XYLENES		< 0.84	1.3	< 0.84	< 0.84
INORGANICS (ug/L)					
ALUMINUM	6870,0	76900.0	NA	116000.0	< 141.0
ARSENIC	10.5	550.0	NA	68.4	< 2.54
BARIUM	39.6	256.0	NA	623.0	15.6
CALCIUM	14700.0	25700.0	NA	45900.0	22200.0
COBALT	25.0	44.5	NA	81.8	< 25.0
CHROMIUM	34.7	114.0	NA	169.0	< 6.02
COPPER	8.09	107.0	NA	116.0	< 8.09
IRON	9100.0	90200.0	NA	213000.0	< 38.8
POTASSIUM	2370.0	17400.0	NA	37100.0	1840.0
MAGNESIUM	3480.0	17400.0	NA	34300.0	2660.0
MANGANESE	291.0	2430.0	NA	5760.0	3.99
SODIUM	10800.0	10400.0	NA	15100.0	E1700
MICKEL	34.3	111.0	NA	144.0	< 34.3
LEAD	4.25	160,0	NA.	140.0	1.95
VANADIUM	11.0	#5.8	NA	176.0	< 11.0
ZINC	21.1	329.0	NA	735.0	< 11.1
OTHER (ug/L)					
TOTAL HARDNESS		62600.0	NA	113000.0	NA

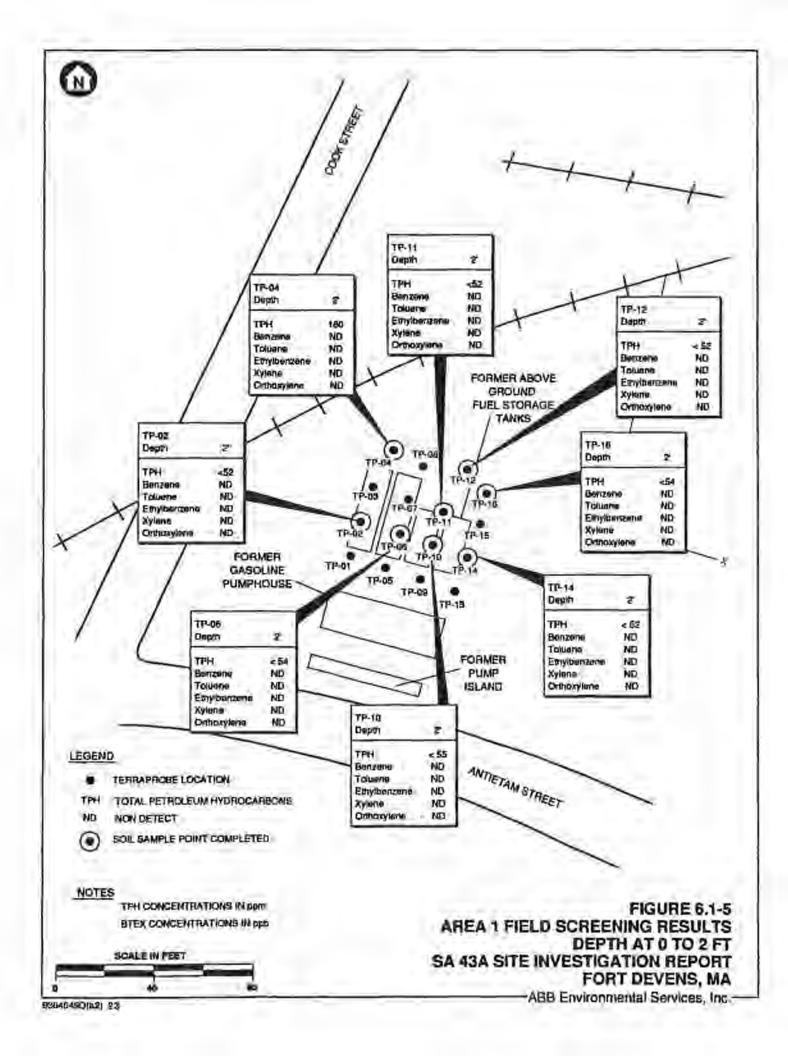
SITE INVESTIGATION REPORT FORT DEVENS, MA

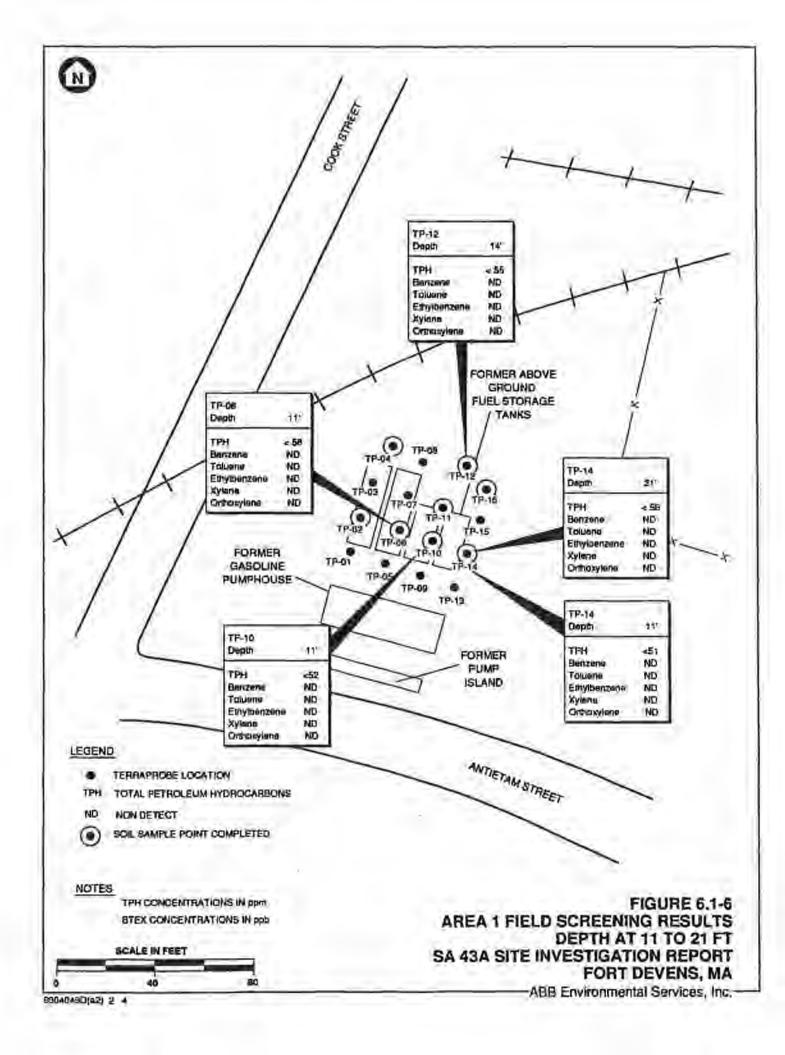

NOTES:

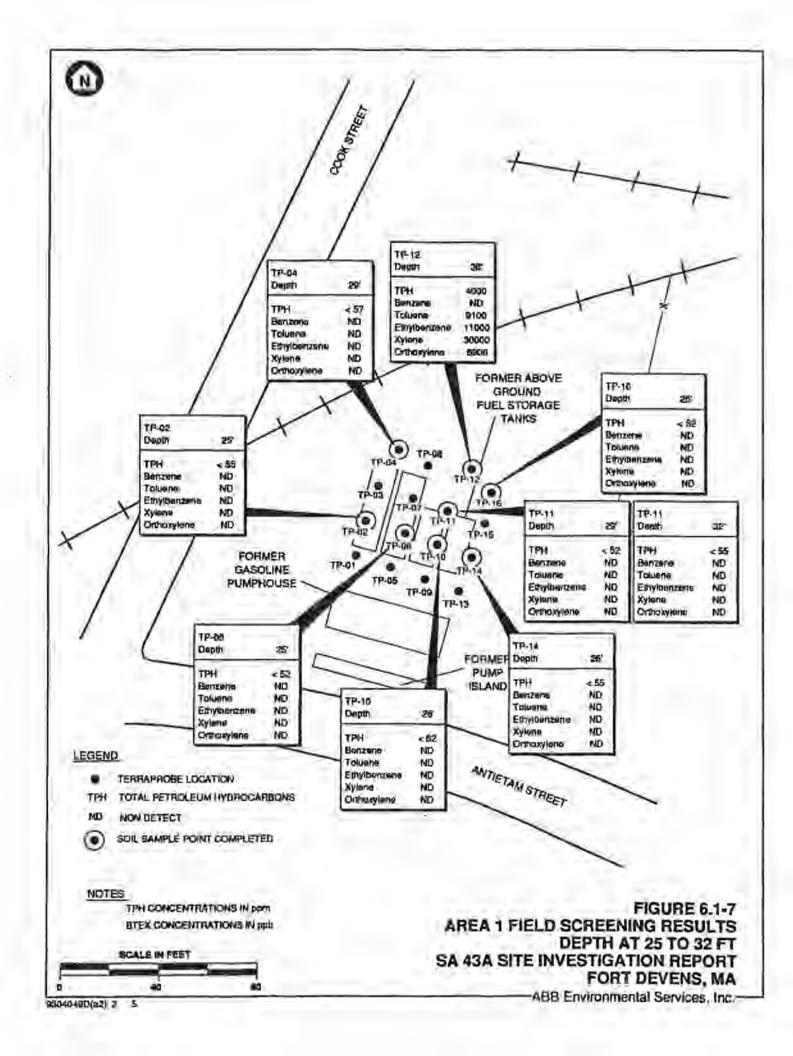

TABLE LISTS DETECTED ANALYTES ONLY - SEE PROJECT ANALYTE LIST FOR SUMMARY

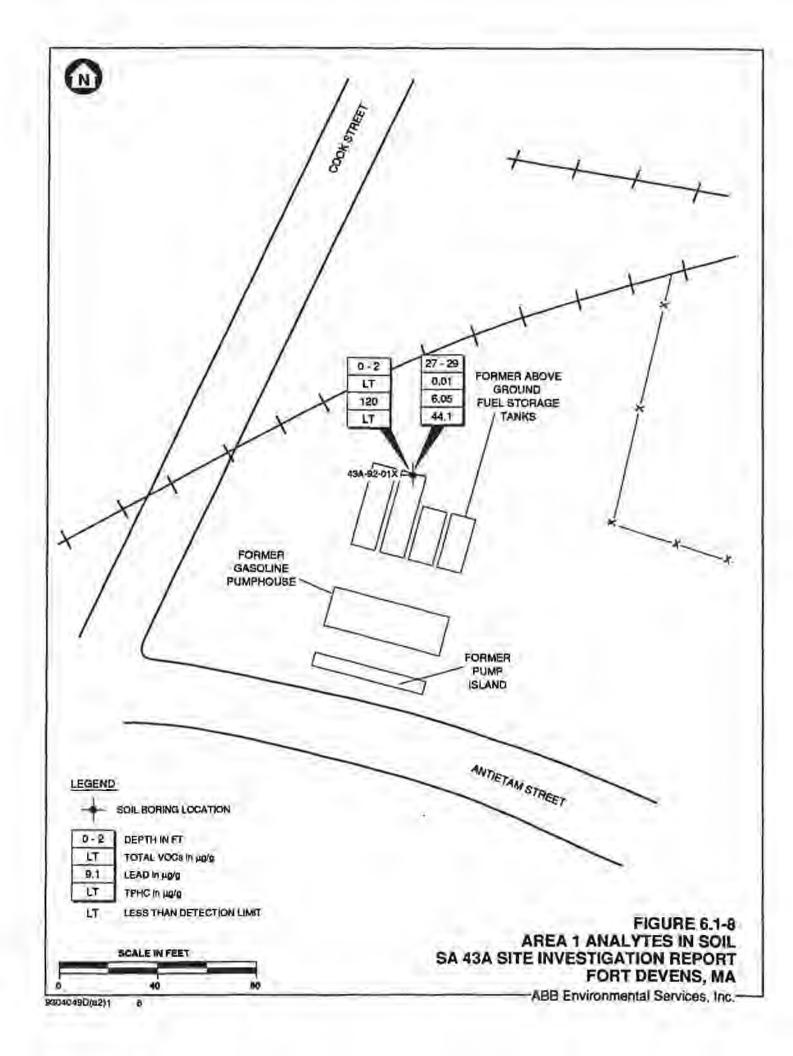

< = LESS THAN DETECTION LIMIT SHOWN

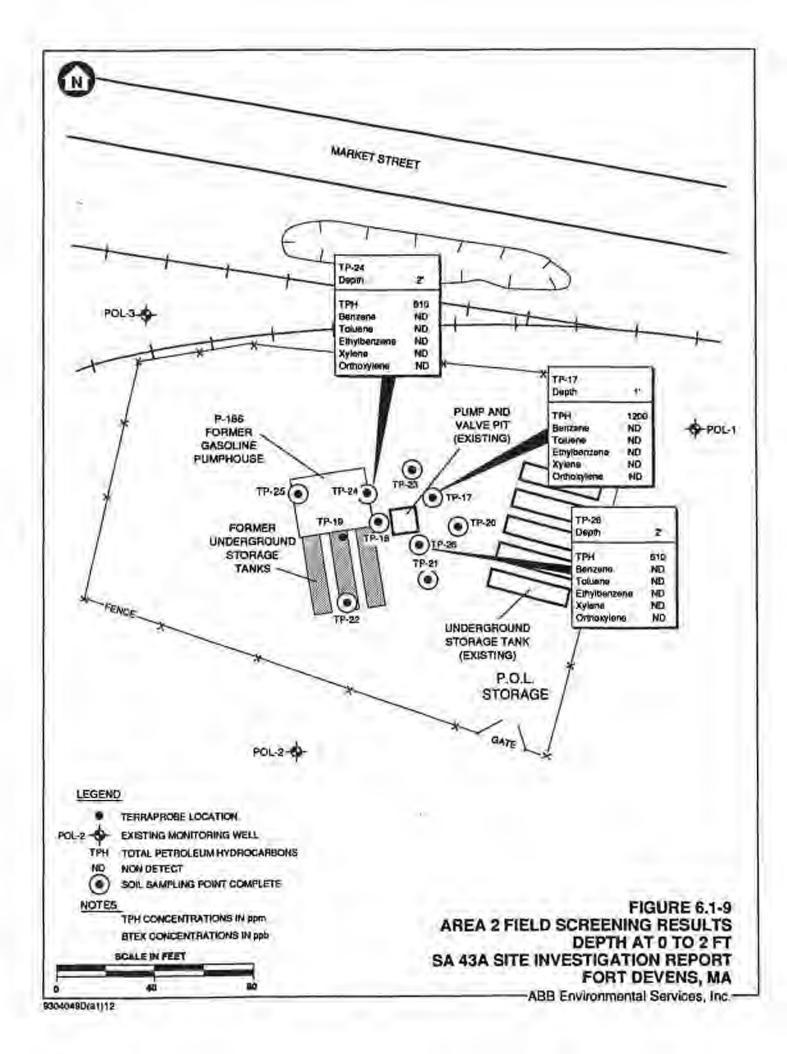

NA = NOT ANALYZED

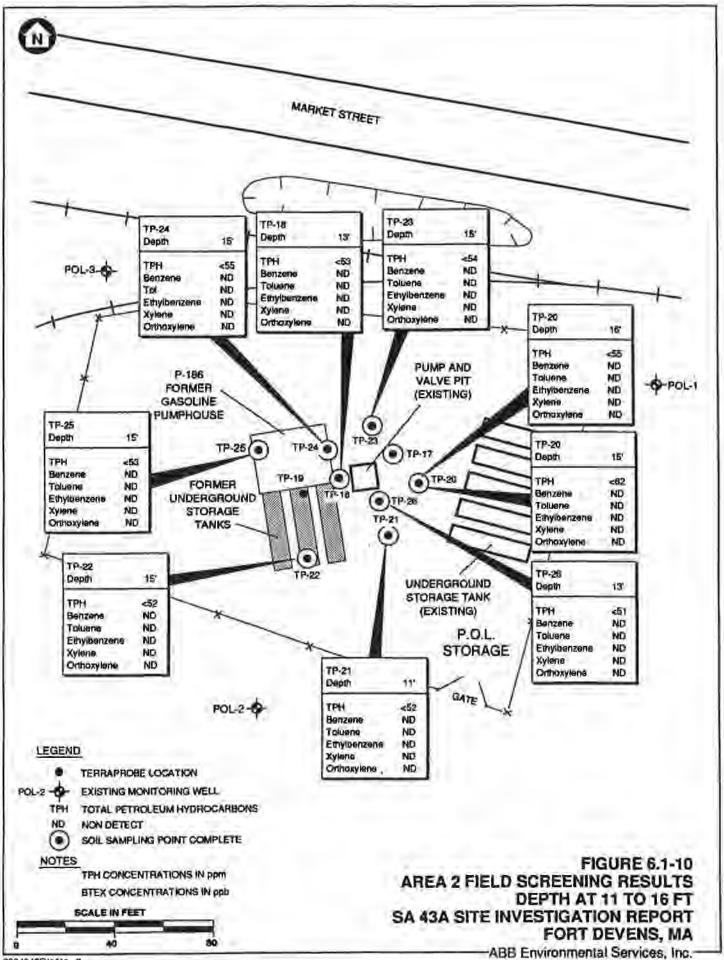

= VALUE ABOVE BACKGROUND LEVEL

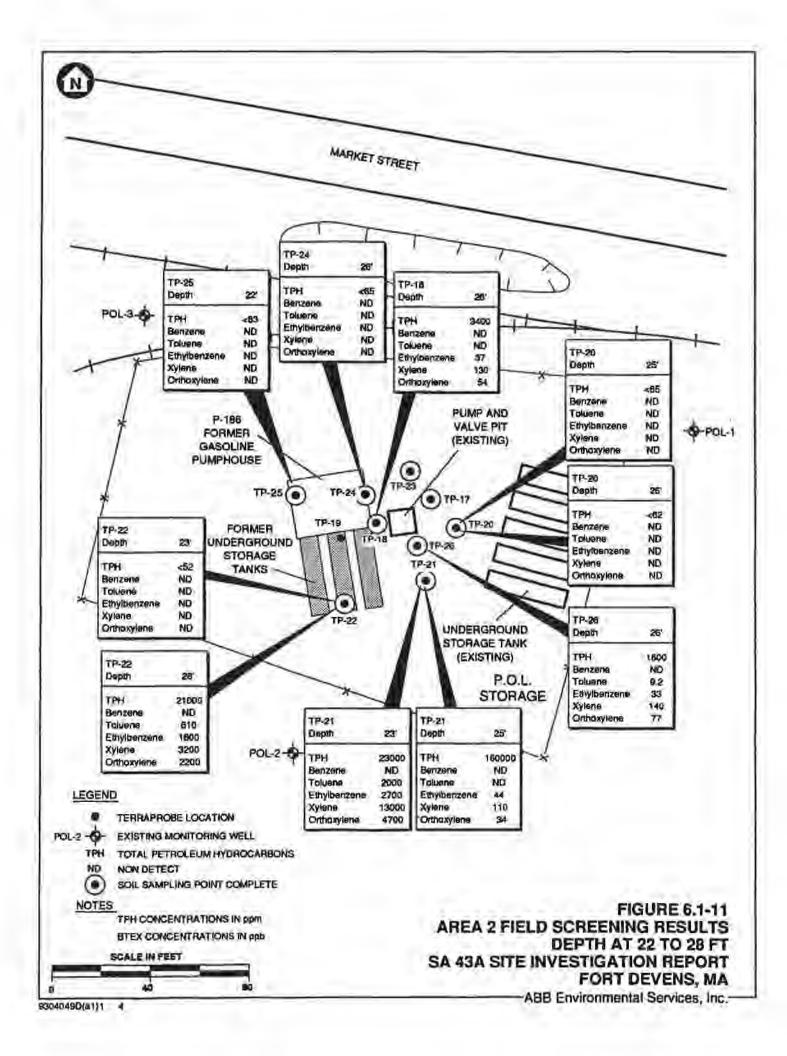


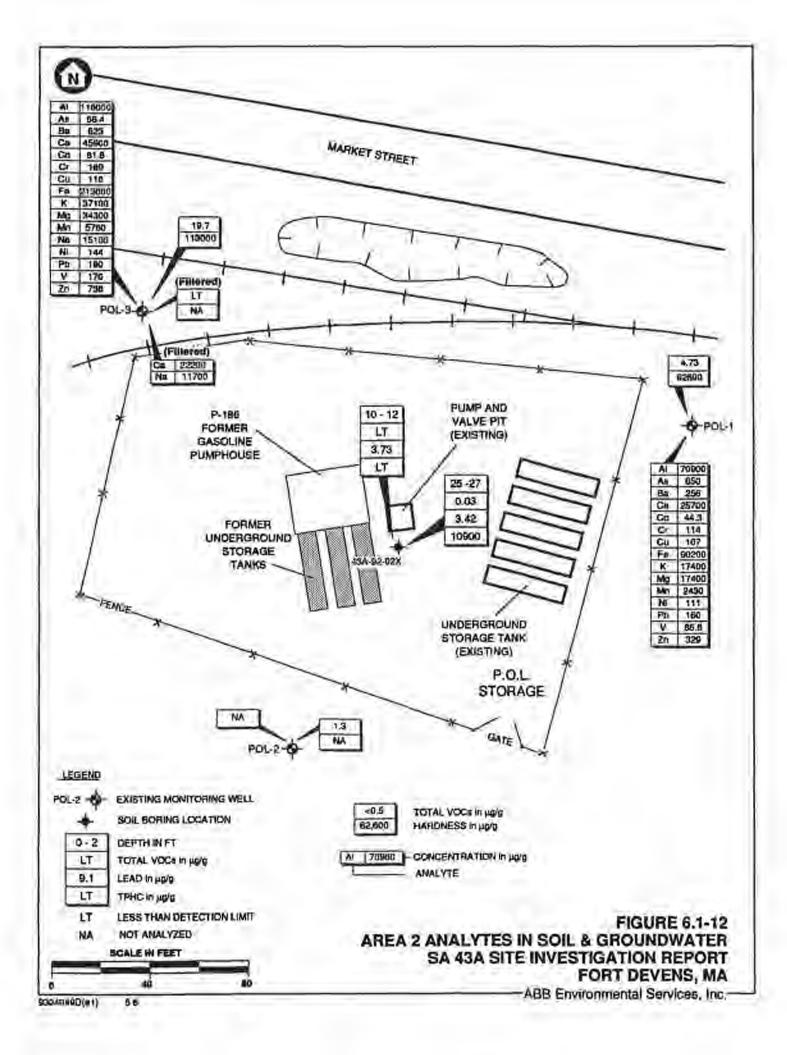












9304049D(81)1 3

6.2 STUDY AREA 43B

6.2.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43B consisted of a pump island and a small gasoline pumphouse. The gas station was a Type A design with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool and therefore, there was no evidence of the exact location of the historic gas station or that the UST had been removed. The reported location of this historic gas station was at the northern end of an access road that presently connects Queenstown Road and the Access Road to Patch Road (Figure 6.2-1). No buildings are presently located at the site and the site is covered with grass.

6.2.2 Site Investigation Program Summary

The SI at SA 43B was performed in accordance with the Final SI Historic Gas Stations Task Order Work Plan (ABB-ES, 1992b) and in conformance to the provisions of the POP (ABB-ES, 1992a). A field investigation was conducted to determine if the UST had been removed and if any residual contamination was still present in the subsurface soil. The program consisted of a surficial geophysical survey to determine if any abandoned USTs were present, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring to collect subsurface soil samples for off-site laboratory analysis. Table 6.2-1 summarizes the activities completed during the SI.

The geophysical investigation at SA 43B consisted of a metal detector survey, a magnetometer survey, and a GPR survey. The investigation covered an area 120 feet by 100 feet (see Figure 6.2-1).

Ten TerraProbe points were completed to investigate the presence or absence of residual soil contamination (see Figure 6.2-1). A total of 24 soil samples were collected for field analysis. Seven soil samples were collected from 5 feet and another seven soil samples were collected from 9 feet bgs. Ten soil samples were

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

collected from the water table at 15 feet. The field analysis performed on these samples consisted of a GC analysis for BTEX, and an IR scan for TPHC.

Two subsurface soil samples were collected for laboratory analysis from one soil boring (43B-92-01X) drilled at SA 43B (see Figure 6.2-1). These samples were analyzed for PAL VOCs, TPHC, and lead.

6.2.3 Supplemental Site Investigation Program Summary

The SSI at SA 43B was performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The following sections describe the field activities completed at SA 43B during the SSI. Table 6.2-1 summarizes the activities completed during the SSI.

The objective of subsurface soil sampling program at SA 43B was to investigate the nature of the contamination detected during the SI. The SSI at SA 43B consisted of drilling one soil boring (XBB-93-02X) adjacent to TP-08, completed during the SI, in which elevated TPHC concentrations were detected (see Figure 6.2-1). Four soil samples were collected from the boring and submitted for laboratory analysis consisting of PAL VOCs, lead, and TPHC. The soil samples were collected 4 feet, 10 feet (plus one duplicate) and 14 feet bgs. These depths were chosen to replicate the depths of the field analytical samples collected during the SI.

6.2.4 Field Investigation Results and Observations

The soil at SA 43B appears to be a well-graded silty sand to the bottom of the boring (16 feet bgs) (Table 6.2-2). The water table was encountered at 15 feet bgs. No monitoring wells were installed at this site during either field program and as a result, aquifer properties and groundwater quality were not determined. Soil boring logs are presented in Appendix B.

The results of the geophysical survey conducted at SA 43B did not indicate the presence of any abandoned UST(s). The geophysical measurements collected in the field are presented in Appendix L.

ABB Environmental Services, Inc.

W0099521.M80

6.2.5 Nature and Distribution of Contamination (Field Screening and Off-Site Laboratory Results)

The objective of the field sampling program at SA 43B was to determine the presence or absence of residual subsurface soil contamination. Soil samples were collected from the water table and analyzed in the field, as well as in the laboratory, in an attempt to determine if the groundwater had been impacted by the historical use of this SA. The primary concern at this SA was that residual fuel contamination, left in the soil after the UST had been removed, may be migrating to the water table and impacting the groundwater quality.

Seven soil samples were collected at a depth of 5 feet bgs from seven TerraProbe points during the SI. Toluene, ethylbenzene, and xylenes were detected in only one sample (TP-08) and TPHC was detected in four soil samples (TP-02, TP-03, TP-07, and TP-08) (see Figure 6.2-2). The detection of TPHC in these four samples from 5 feet is questionable due to the reported presence of asphalt chips in each of the samples. The asphalt was noticed in the samples by the ABB-ES field chemist, after the samples had been analyzed. Based on this finding, it does not appear that the results of the TPHC screening represent actual concentrations of TPHC in the soils at these locations. A total of seven soil samples were also collected at 9 feet bgs from seven TerraProbe points. No BTEX compounds were detected but TPHC was detected in three of the samples. The TPHC results from the soil samples collected from TP-08 at 9 feet (1,500 ppm) is also questionable due to asphalt in the sample, and may not represent actual TPHC concentrations in the soil at this depth. The results from the other two samples (130 ppm at TP-05 and 760 ppm at TP-03) do appear to represent TPHC concentrations at 9 feet (Figure 6.2-3). Ten soil samples were collected from the groundwater table at 15 feet. No BTEX compounds were detected in any of the samples but TPHC was detected at 230 ppm in the one sample collected from TP-02 (Figure 6.2-4). The field analytical results are presented in Table 6.2-3.

Two subsurface soil samples were collected for off-site laboratory analysis from the SI soil boring 43B-92-01X (Figure 6.2-5). Soil samples were collected from 8 feet to 10 feet and 14 feet to 16 feet bgs. No VOCs were detected in either sample. TPHC was detected in the soil sample collected from 8 feet to 10 feet bgs but was not detected in the sample collected from 14 feet to 16 feet bgs. The results of the off-site laboratory analysis appear to indicate that some residual TPHC contamination may be present at approximately 8 feet bgs, but it does not

ABB Environmental Services, Inc.

W0099521.M80

appear that similar contamination is present in the soil at the water table (Table 6.2-4; see Figure 6.2-5).

The results of the off-site laboratory analysis for the SSI soil samples collected from boring XBB-93-02X, indicated the presence of TPHC at 84.2 μ g/g and xylene at 0.004 μ g/g in the 4-foot sample, trichlorofluoromethane at 0.006 μ g/g and TPHC at 85.4 in the 10-foot sample, 393 μ g/g in the duplicate sample collected from the 10-foot sample, and <31.7 μ g/g in the 14-foot sample. The results of the lead analysis showed that concentrations were below the Fort Devens background concentration in each sample. Based on these results it appears that the TPHC concentrations detected in the SI field analytical samples were based on asphalt chips in the sample, as reported, not residual TPHC contamination (see Table 6.2-4; Figure 6.2-5).

6.2.6 Source Evaluation and Migration Potential

The results of the laboratory analysis completed during the SSI indicated the presence of low concentrations of VOCs in the soil sample collected in the duplicate soil sample collected from 10 feet bgs. TPHC results indicated the presence of TPHC in the soil sample collected from 4 feet, 10 feet and the 10-foot duplicate. No VOCs or TPHC were detected in the soil sample collected from the water table. Lead concentrations were below the Fort Devens background concentration in each soil sample. The results of the soil sample collected from the water table indicated the elevated TPHC concentrations detected at TP-08 during the SI were associated with asphalt chips, as reported. These results also show that residual TPHC contamination has not migrated to the water table and does not appear to be impacting groundwater quality at this site.

6.2.7 Preliminary Human Health Risk Evaluation

The subsurface soil data collected during the SSI was not included in this human health PRE because it does not alter the findings of the PRE presented in the Final SI Report.

The summary statistics for the human health PRE are presented in Table 6.2-5. No tank was detected at this location. Field-screening of 24 shallow and intermediate depth TerraProbe soil samples revealed no measurable

ABB Environmental Services, Inc.

W0099521.M80

concentrations of BTEX to a depth of 10 feet, with the exception of TP-8 (5 ft). TPHC was detected above the method detection limit in seven of these 24 samples, ranging from 130 ppm to 2,000 ppm (the highest values are from suspected asphalt chips in the sample). A comparison of these results against the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline indicates that there should be no significant risk to public health from soil contamination at SA 43B.

At a depth below 15 feet, the approximate water table depth, field-screening results from 10 soil samples indicate no BTEX contamination. TPHC was detected above the method detection limit in one of these 10 samples, at 230 ppm.

A confirmatory boring by ABB-ES supports the field-screening results. A soil sample at 8 feet in the boring through the suspected tank location (43B-92-01X) showed residual TPHC contamination at 177 μ g/g, well below the commercial/industrial screening concentration of 1,800 μ g/g. At 14 feet, the TPHC level was below the detection limit. Concentrations of lead did not exceed the established Fort Devens background concentration. These results clearly indicate that little residual contamination exists at SA 43B from petroleum products.

6.2.8 Conclusions and Recommendations

Based on the results of the data collected during the SI and the SSI, NFA is recommended for historic gas station B.

ABB Environmental Services, Inc.

W0099521.M60

TABLE 6.2-1 SUMMARY OF TECHNICAL APPROACH SA 43B - HISTORIC GAS STATION B

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITY	PURPOSE	SITE IDENTIFICATION	RATIONALE FOR SELECTED LOCATIONS
SI PROGRAM			
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-10	* IN AND AROUND FORMER UST
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 COLLECT SOIL SAMPLES FOR OFF-SITE LABORATORY ANALYSIS 	43B-92-01X	 ADJACENT TO HIGHEST FIELD ANALYTICAL RESULT
SSI PROGRAM			
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	COLLECT SOIL SAMPLES FOR OFF-SITE LABORATORY ANALYSIS	XBB-93-02X	* CONFIRM SI FIELD ANALYTICAL RESULTS

TABLE 6.2-2 SUMMARY OF SOIL BORINGS SA 43B - HISTORIC GAS STATION B

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (FEET BOS)	REFERENCE SAMPLE INTERVALS (FEET BGS)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCA BY PLD (PPM)	COMMENTS
43B-92-01X	16	0-2		SW	BKG	
1000	1100	5-7	11. 200 11	SW-5M	BKG	
		8-10	8-10	SW-SM	BKG	
		10-12		SW	BKG	
		12-14		GW-SW	BKG	
	14-16	14-16	GW-SW	BKG		
XBB-93-02X	16	0-2 2-4		SW SW-SM	BKG BKG	
	4~6 6-8	4-6	SW-SM SW-SM	BKG BKG		
	8-10		SW-SM	BKG		
	10-12	10-12	SW	BKG		
		12-14		GW-SW	BKG	
	1	14-16	14-15	GW-SW	BKG	

NOTES:

bgs = below ground surface VOCs = Volatile organic compounds USCS = Unified soil classification system ppm = parts per million phyl = phylice BKG = background levels of Total VOCs were measured with a PID at the work site.

TABLE 6.2-3 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43B - HISTORIC GAS STATIONS

	TP-01 TSB0115F	TF-02 TSB0205F	TP-02 TSB0209F	TP-02 TSB0215F	TP-03 TSB0305F	TP-03 TSB0309F	TF-03 TSB0315F	TP-04 TSR0405F
ANALYTE	15 FT	SFT	9 FT	15 FT	5 FT	9 FT	15 PT	5.FT
ORGANICS								
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
n/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OTHER								
TOTAL PETROLEUM HYDROCARBONS	< 56	530	< 55	230	140	760	< 60	< 60

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

< = Less than detection limit.

TABLE 6.2-3 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43B - HISTORIC GAS STATIONS

	TP-04 TSB0409F	TP-04 TSB0415F	TP-05 TSB0505F	TF-05 TSB0509F	TP-05 TSB0515P	TP-06 TSB0605F	TF-06 TSB0609F	TF-06 TSB0615F
ANALYTE	9 FT	15 FT	SPT	9 FT	15 FT	5 FT	9 FT	15 FT
ORGANICS								
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5
o-XYLENE	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0,1
OTHER								
TOTAL PETROLEUM HYDROCARBONS	<54	< 60	< 60	130	< 59	< 60	< 55	< 60

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes

< = Less than detection limit.

TABLE 6.2-3 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43B - HISTORIC GAS STATIONS

h in the second s	TP-07 TSB0705F	TP-07 TSB0709F	TP-07 TSB0715F	1F-08 TSB0805F	TP-08 TSB0809P	TP-08 TSB0815F	TP-09 TSR0915F	TF-10 TSB1013F
ANALYTE	5 FT	9 FT	15 FT	SFT	9 FT	15 FT	15 FT	15 FT
ORGANICS								
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	9.4	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	6.4	< 0.1	< 0.1	< 0.1	< 0,1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	37	< 0.1	< 0.1	< 0.1	< 0,1
o-XYLENE	< 0.1	< 0.1	< 0.1	19	< 0.1	< 0,1	< 0.1	< 0.1
OTHER								
TOTAL PETROLEUM HYDROCARBONS	1200	< 55	< 60	2000	1500	< 60	< 56	< 56

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

< = Less than detection limit.

TABLE 6.2-4 ANALYTES IN SUBSURFACE SOIL SA 43B - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

1

		SSI							
ANALYTE (ug/g)	XBB-93-02X	XBB-93-02X	XBB-93-02X	XBB-93-02X	43B-92-01X	43B-92-013			
	4FT	10 FT	DUP 10 FT	I4 FT	8 FT	14 FT			
TRICHLOROFLUOROMETHANE	< 0.006	0.006	0,007	< 0.006	< 0.006	< 0.006			
*XYLENES	0.004	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002			
LEAD	13	0.4	10.2	7.49	14	5.42			
OTHER (ug/g)				Sec. And		1			
*TOTAL ORGANIC CARBON	NA	NA	NA	NA	NA	501			
TOTAL PETROLEUM HYDROCARBONS	84.2	85,4	393	< 28.7	177	< 27.9			

Notes:

< = Less than detection limit.

Lossmooda (VN)

TABLE 6.2-5 HUMAN HEALTH PRE EVALUATION OF SUBSURFACE SOIL SA 43B – HISTORIC GAS STATIONS

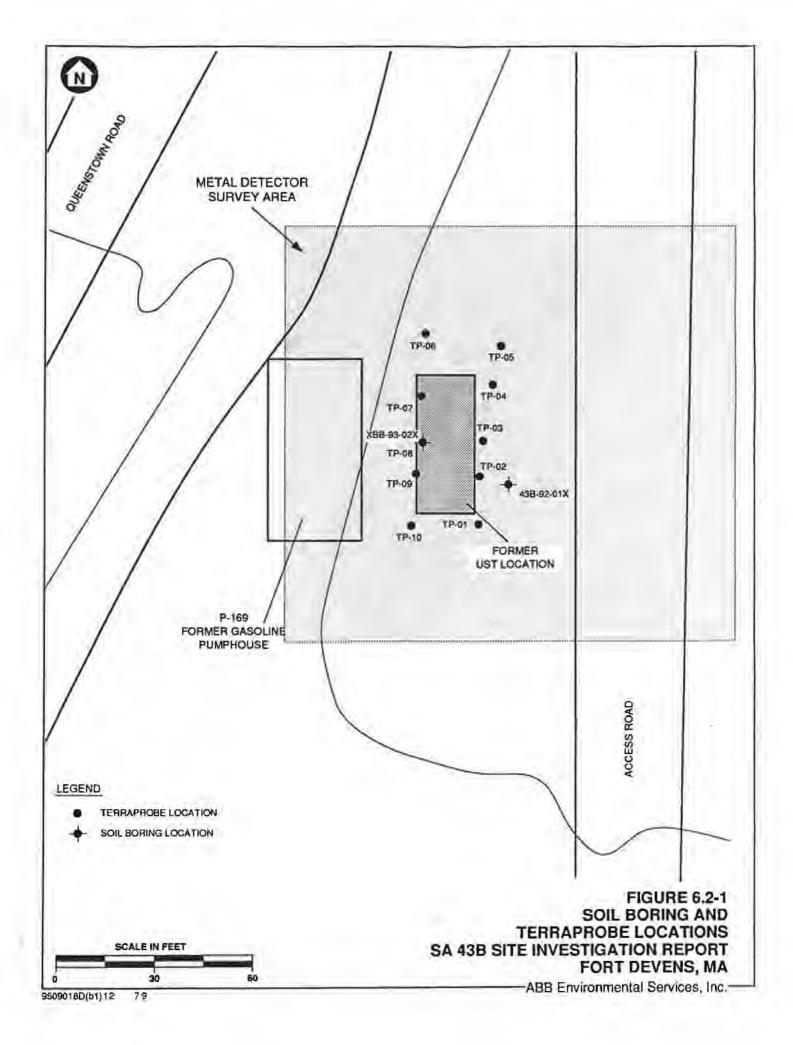
SITE INVESTIGATION REPORT FORT DEVENS, MA

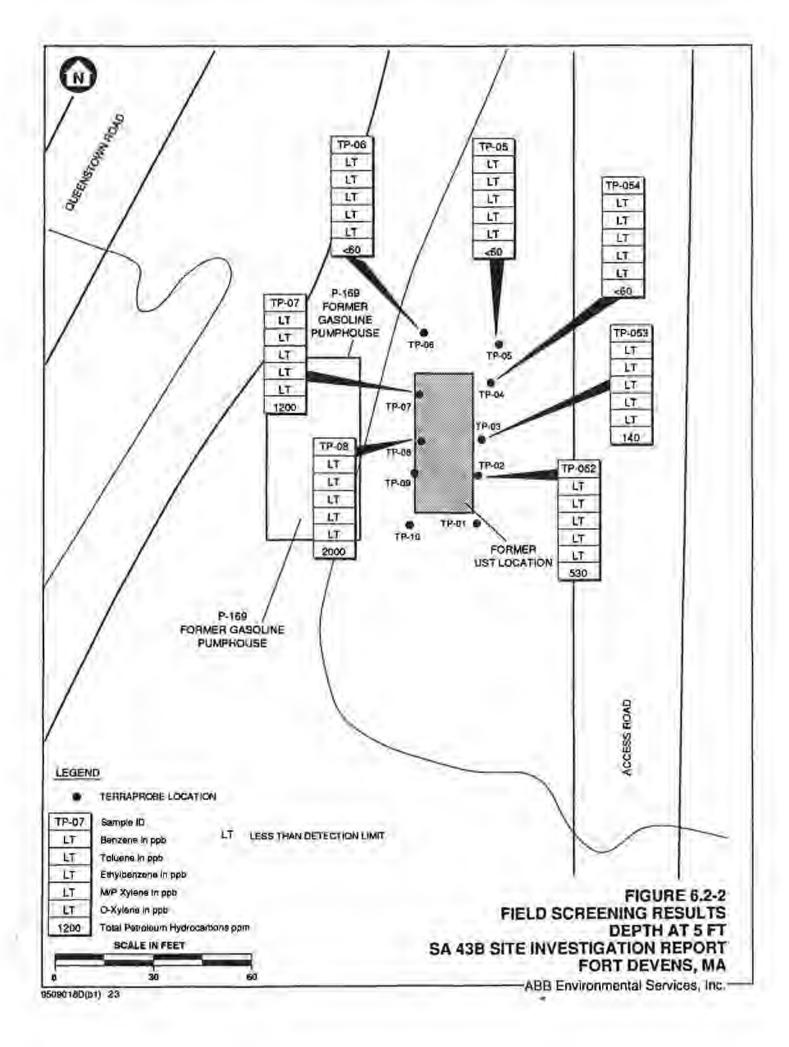
ANALYTE FREQU				SOIL BACKGROUND	MAXIMUM EXCEEDS	REGION III COMMERCIAL/	MCP S-2	MAXIMUM EXCEEDS
	DETECTION	AVERAGE (AB/S)	MAXIMUM (48/6)	CONCENTRATION [5] (48/8)	BACKGROUND 7	INDUSTRIAL CONCENTRATION (AR/R)	(=8/8)	GUIDELINE CONCENTRATION
ORGANICS								
TRICHLOROFLUOROMETHANE	2/6	0.007	0.007	NA		310000	NA	NO
XYLENES	1/6	0.004	0.004	NA	-	1000000	500	NO
INORGANICS								
LEAD	6/6	3.418	14	48.4	NO	500	600	NO
OTHER								
TOTAL PETROLEUM HYDROCARBONS	4/8	184.9	393	NA	2	1650	2500	NO

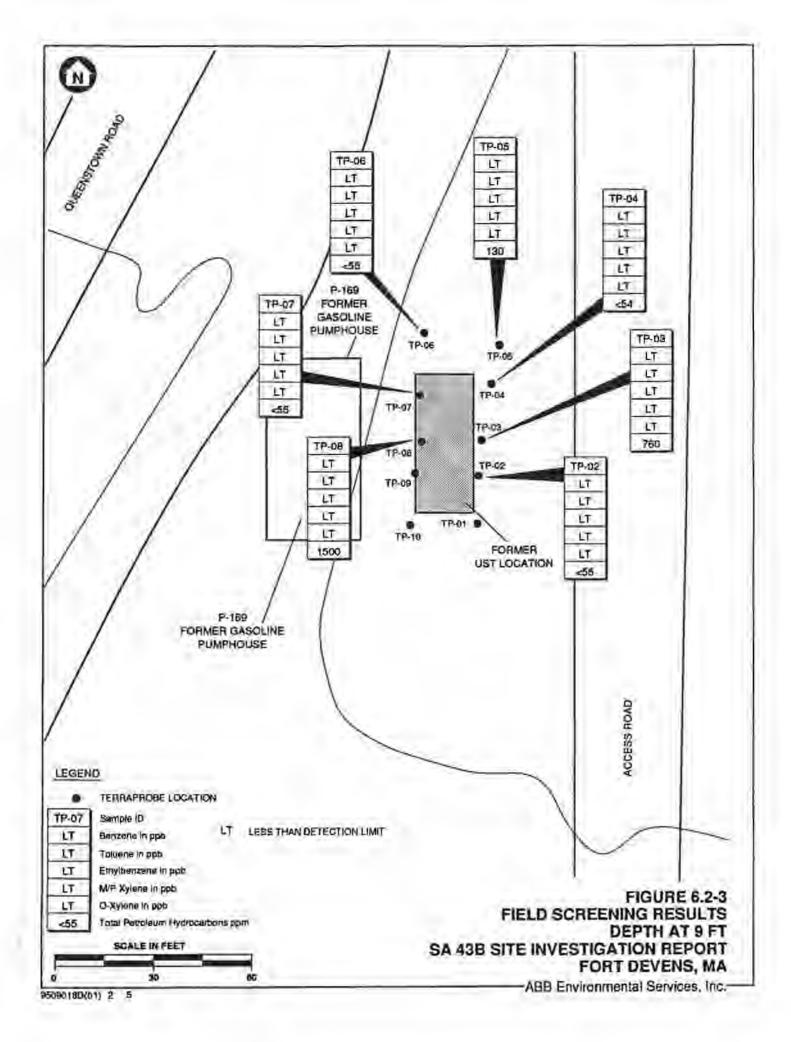
Notes:

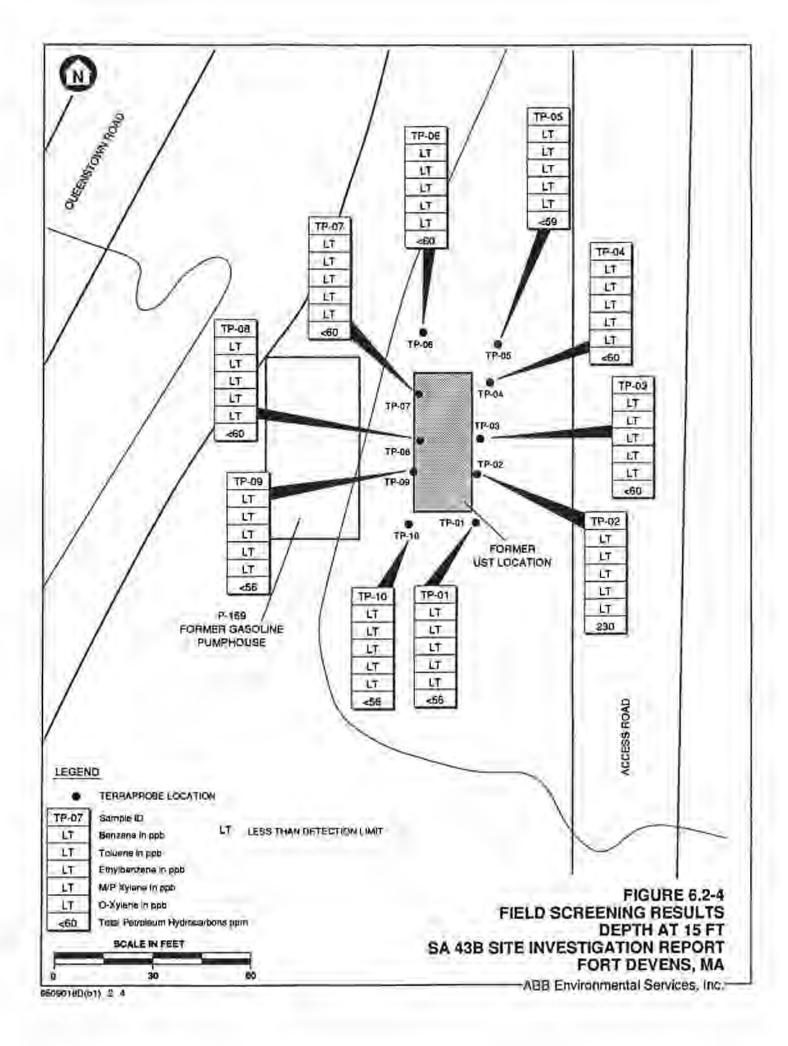
(a) Subsurface soil (3 to 15 feet) from sample locations 438-92-01% (2 depths) and XBB-93-02% (3 depths, 1 duplicate).

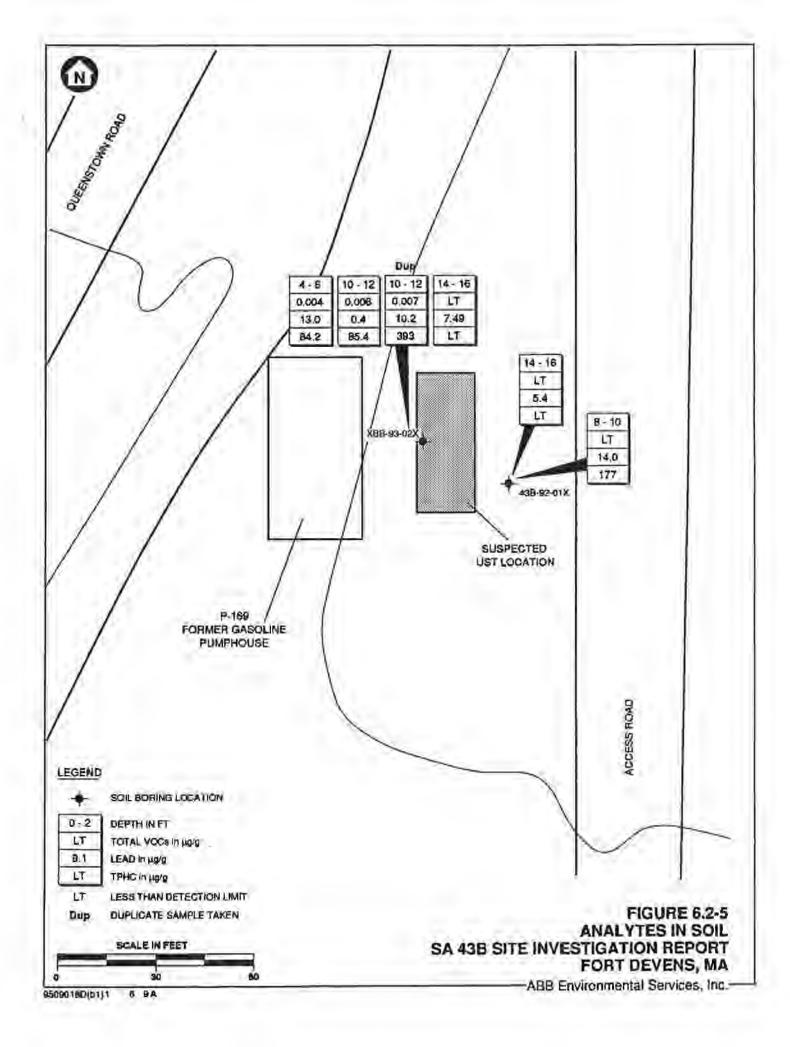
[b] Base-wide background soil inorganics database.


NA = not available


 $\mu g/g = micrograms per gram$


- = not applicable


Shaded compounds exceed standard or guideline.


MCP = Massachusetts Contingency Plan

6.3 STUDY AREA 43C

6.3.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43C consisted of a pump island and a small gasoline pumphouse. Based on historic records, the gas station was a Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool and therefore, there was no evidence that the UST had been removed. The pumphouse (Building 3459) was still present at this SA prior to the SI field investigation. This SA is located approximately 500 feet south of SA 43B and on the same access road (Figure 6.3-1). The pumphouse appeared to be constructed of corrugated steel and some piping was present in the building. The building was secured by a locked metal door. The area around the pumphouse is a gravel parking lot (see Figure 6.3-1).

6.3.2 Study Area Investigation Program Summary

The SI field investigation program consisted of a surficial geophysical program which included a metal detector and GPR survey (Figure 6.3-2).

6.3.3 Field Investigation Results and Observations

The geophysical investigation conducted at SA 43C indicated that one abandoned UST was present on the southern side of the existing pumphouse (see Figure 6.3-1). The metal detector was used first to locate the UST and then the GPR survey identified the ends and the sides of the UST. The geophysical measurements collected in the field are presented in Appendix L.

This UST was added to the installation's UST removal program and on August 27, 1992, a 5,000 gallon UST was removed by ATEC Environmental Consultants (ATEC). Tank contents at the time of removal consisted of fuel and water. Groundwater was observed in the UST excavation at approximately 10 feet bgs. At the time of the tank removal, ATEC performed field screening on eight soil samples (SS-1 through SS-8) collected from the excavation walls at

ABB Environmental Services, Inc.

W0099521,M80

depths of 5 feet to 6 feet bgs (see Figure 6.3-2). The headspace of the soil samples was screened with a PID for total VOCs and a Non-Dispersive Infrared (NDIR) Analyzer was used to screen for TPHC. The PID results ranged from nondetected to 0.2 ppm, and TPHC levels were 20.5 to 287 ppm (ATEC, 1992a) (Table 6.3-1). ATEC also collected one soil and one groundwater sample from the excavation for confirmatory laboratory analysis. The soil sample was analyzed for TPHC and the groundwater sample was analyzed for VOCs and TPHC. These samples were analyzed by a non-AEC certified laboratory and the data does not reside in the IRDMIS. No VOCs were detected in the groundwater sample and TPHC results were below the detection limit of the method (see Table 6.3-1). ABB-ES collected one composite soil sample from the bottom of the excavation. This sample was analyzed for TPHC using USEPA Method 418.1 at ABB-ES' Wakefield, Massachusetts laboratory. TPHC was detected at 78.2 ppm (see Table 6.3-1). Based on ATEC's sampling results, ATEC backfilled the excavation and no further site investigation was conducted (ATEC, 1992a).

6.3.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

Fuel-related soil contamination was not observed or detected in the soil or groundwater after the UST was removed from SA 43C. Based on these results it appears that the contents of the former UST did not adversely impact the soil or groundwater quality at SA 43C.

6.3.5 Preliminary Human Health Risk Evaluation

The UST at SA 43C was discovered by ABB-ES and pulled by ATEC during the SI. Prior to backfilling, ATEC collected 8 soil samples from the excavation walls which were screened for TPHC by the NDIR method. TPHC levels ranged from 20.5 ppm to a maximum value of 287 ppm. The TPHC level in a confirmatory soil sample collected by ABB-ES for TPHC analysis by USEPA Method 418.1 was 78.2 μ g/g. A comparison of these results against the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline indicates that there should be no significant risk to public health from soil contamination at SA 43C.

ADD ENVILUNITEINAI SELVICES, IIIC	ABB	Environmental	Services,	Inc.
-----------------------------------	-----	---------------	-----------	------

W0099521.M80

6.3.6 Conclusions and Recommendations

Fuel-related soil contamination was not observed or detected by ATEC in the soil after the UST was removed from SA 43C. It appears that the contents of the former UST did not adversely impact the soil or groundwater quality at SA 43C. Based on the results of the field investigation and sampling conducted by ABB-ES and by ATEC during a tank removal at SA 43, NFA is recommended for this historic gas station site.

ABB Environmental Services, Inc.

W0099521.M80

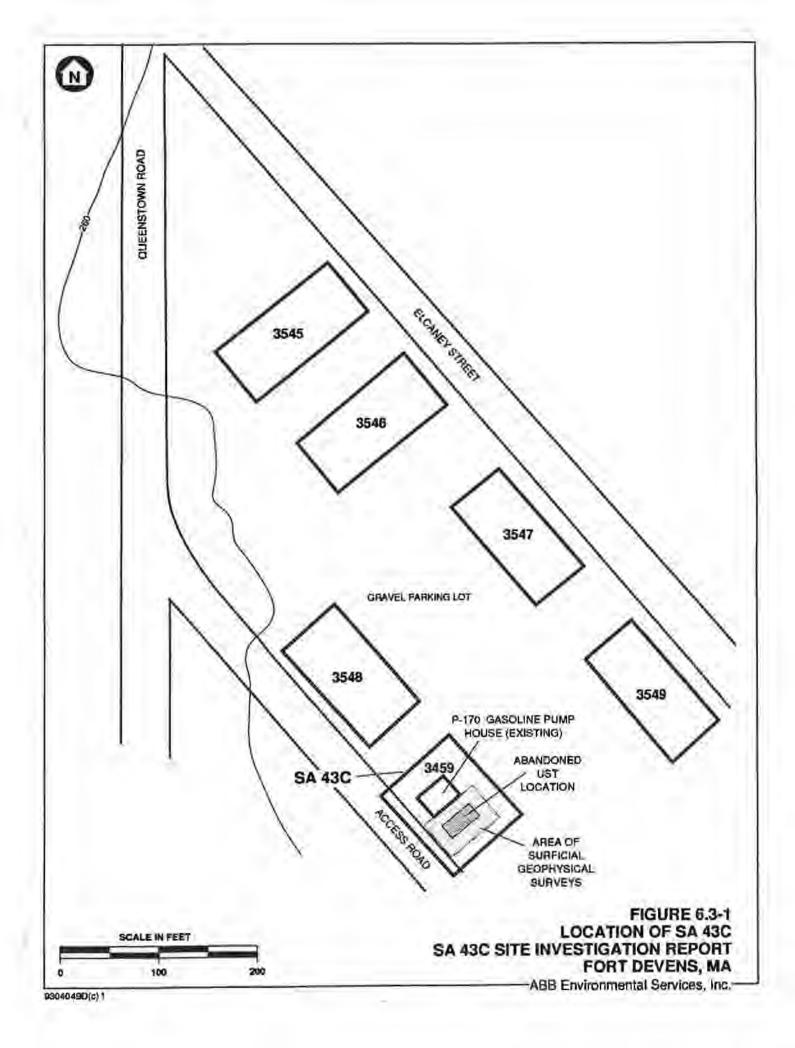
TABLE 6.3-1 ATEC/ABB-ES FIELD SCREENING RESULTS SA 43C - HISTORIC GAS STATIONS

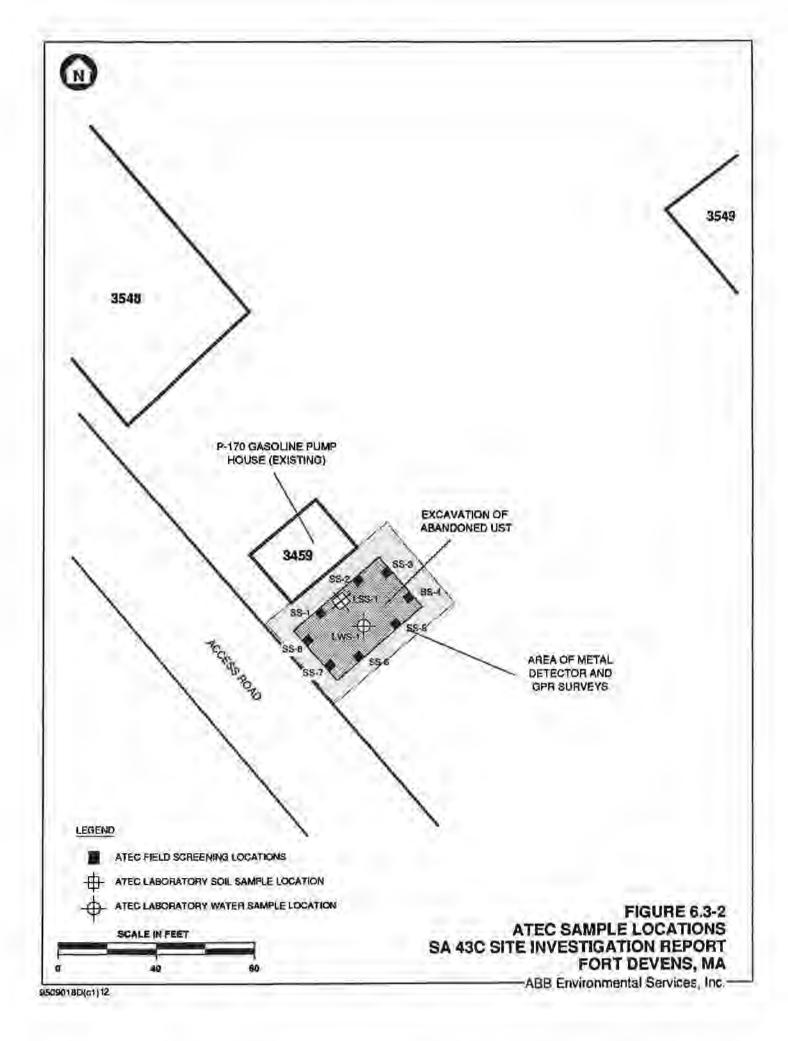
SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE NO.	FIELD SC	REENING	LABORATORY				
	PID (ppm)	NDIR (ppm)	VOC (ppm)	TPHC (ppm)			
SS-1	0.2	232	N/A	N/A			
5S-2	ND	20.5	N/A	N/A			
SS-3	ND	29.3	N/A	N/A			
SS-4	ND	99.2	N/A	N/A			
SS-5	ND	287	N/A	N/A			
SS-6	ND	96.7	N/A	N/A			
SS-7	0.2	72.5	N/A	N/A			
SS-8	ND	42.1	N/A	N/A			
LSS-1	N/A	N/A	N/A	0.0			
LWS-1	N/A	N/A	ND	0.0			
XCE-92-01X	N/A.	N/A	N/A	78.2			

NOTES:

SS = ATEC field screening soil sample


LSS = ATEC laboratory soil sample


LWS = ATEC laboratory water sample

XCE-92-01X = ABB-ES laboratory composite soil sample

ND = Non detect

N/A = Not analyzed

6.4 STUDY AREA 43D

6.4.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43D consisted of a pump island and a small gasoline pumphouse. This was described as a Type B station with two USTs (5,000 gallon or 5,140 gallon, apiece), located on each side of the pump island and oriented parallel to it. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool and therefore, there was no evidence that the USTs had been removed. Neither the pumphouse nor pump island were present at this SA prior to the SI field investigation. This SA was reportedly located approximately 200 feet southwest of SA 43C and approximately 600 feet south of SA 43B. The area around SA 43D is presently being used as an equipment storage yard for a U.S. Army medical unit. The entire yard is paved and surrounded by a fence with a locked gate. The gate to the yard is located on the eastern side of the yard and opens onto the same access road on which SA 43B and 43C are located (Figure 6.4-1).

6.4.2 Site Investigation Program Summary

The SI at SA 43D was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992b) and in conformance to the provisions of the POP (ABB-ES, 1992a). A field investigation was conducted at SA 43D to determine if any abandoned USTs were present at the site, and if any residual contamination was present in the subsurface soil and/or groundwater. The program consisted of a surficial geophysical survey, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring to collect subsurface soil samples for laboratory analysis. Table 6.4-1 summarizes the activities completed during the SI.

The geophysical investigation at SA 43D consisted of a metal detector survey and a GPR survey. The investigation was centered on the location identified in the MEP and covered an area 50 feet wide and 75 feet long (see Figure 6.4-1).

Ten TerraProbe points were completed at SA 43D to investigate the presence or absence of residual soil contamination away from the UST excavation. One soil

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

sample was collected from the water table at each TerraProbe point for field analysis. The field analysis performed on these samples consisted of a GC analysis for BTEX, and an IR scan for TPHC (Figure 6.4-2).

Two subsurface soil samples were collected for laboratory analysis from one soil boring (43D-92-01X) drilled at SA 43D. Both of the soil samples were analyzed for PAL VOCs, TPHC, and lead. Table 6.4-1 summarizes the activities completed during the SL.

6.4.3 Supplemental Site Investigation Program Summary

The SSI at SA 43D was performed in accordance with the Task Order Work Plan (ABB-ES, 1993b) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992a). The following sections describe the field activities completed at this historic gas station during the SSI. Table 6.4-1 summarizes the activities completed during the SSI.

A total of 19 SSI TerraProbe points were advanced east of the TerraProbe point locations completed during the SI (see Figure 6.4-2). These points were designed to further define the horizontal and vertical distribution of contaminants detected during the SI. Up to two soil samples were collected from each TerraProbe point (one from the water table and one from the capillary zone above the water table). The samples were analyzed in the field for BTEX and TPHC. Each TerraProbe point location was surveyed.

Based on the results of the TerraProbe survey, four groundwater monitoring wells were installed to monitor npgradient and downgradient groundwater quality (see Figure 6.4-1). Soil samples were collected from the water table in each of the monitoring well borings to determine if site-related contaminants had migrated with the groundwater and impacted soil quality. These samples were submitted for laboratory analysis consisting of PAL VOCs, SVOCs, lead, TPHC, and TOC. The screen of each monitoring well was placed so that it intersected the water table to monitor for free product and allow for seasonal groundwater fluctuations. Each monitoring well location was surveyed. Table 6.4-2 summarizes the monitoring well construction at SA 43D.

Two rounds (Round Three and Four) of groundwater samples were collected from the monitoring wells installed during the SSI. Round Three groundwater

ABB Environmental Services, Inc.

W0099521.M80

samples were collected from October 1993 and Round Four was collected in January 1994. The samples from each round were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, lead (both filtered and unfiltered), TPHC, and TSS.

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test. Each exploration was surveyed after completion.

6.4.4 Field Investigation Results and Observations

The results of the SI geophysical surveys at SA 43D indicated the presence of two abandoned USTs, located side by side, on the eastern side of the storage yard (see Figure 6.4-1). These USTs were added to the installation's UST removal program and on September 8, 1992, ATEC removed the two 5,000 gallon USTs. Tank contents at the time of removal consisted of fuel and water (ATEC, 1992b). Both of the USTs were half submerged in groundwater at the time of the removal. Once the soil was removed from the top of the USTs, it was apparent from visual observations, that fuel-related contamination was present in the soil at the water table. ATEC performed field screening (PID headspace and NDIR screening) on eight soil samples (SS-1 through SS-8) collected from the excavation at depth 5 to 6 feet bgs (Figure 6.4-3). Headspace results indicated VOC concentrations ranging from non detect (ND) to 12.0 ppm, and TPHC concentrations ranged from 15.9 to 1132.6 ppm (ATEC, 1992b) (Table 6.4-3). Based on the results of ATEC's sampling and screening, ATEC personnel removed additional soil from the excavation in an attempt to remove the remaining contaminated soil. The lateral distribution of the contamination was not determined using headspace screening, during this cleanup process. Because of this, Fort Devens Environmental Management Office (EMO) personnel decided to stop the cleanup process, line the excavation with polyethylene sheeting, and backfill the excavation with clean soil. ATEC collected five additional soil samples (LRS-1 through LRS-4) and one groundwater sample (LWS-1) after the additional soil had been removed (see Figure 6.4-3). These samples were submitted for laboratory analysis of VOCs, TPHC, and 13 TCLP metals. Results of these analyses indicated that residual TPHC and VOCs were present in the soil and groundwater in the excavation (see Table 6.4-3)

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

The soil encountered at SA 43D included poorly graded to well graded sands with some silty. A peat layer was also encountered at 9.5 to 11.5 feet bgs in XDM-93-01X and XDM-93-02X. The water table was encountered at 4 to 9 feet bgs, and bedrock was not encountered (Table 6.4-4).

No groundwater monitoring wells were installed as part of this SI field program. However, four monitoring wells were installed during the SSI field program. The new monitoring wells have been included in several installation-wide synoptic water-level rounds at Fort Devens. The water levels from the November 8, 1993 water level round have been chosen to represent the groundwater conditions at SA 43D. The results of that water-level round are presented in Table 6.4-5. The inferred groundwater flow appears to be moving to the north-northeast towards Robbins Pond (Figure 6.4-4).

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test. Calculated hydraulic conductivities ranged from $1.5E^{.02}$ centimeters per second (cm/sec.) at XDM-93-03X to $1.6E^{.05}$ cm/sec. at XDM-93-02X. The hydraulic conductivity for each monitoring well is presented in Table 6.4-5.

6.4.5 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.4.5.1 Soil. The objective of the field sampling program at SA 43D was to determine if any abandoned UST(s) were present at the SA and if the historic use of the site as a gas station had adversely impacted the soil and/or groundwater quality. The primary concern at this SA was that the contents of the abandoned USTs had adversely impacted the groundwater quality in this area of the Main Post.

After the UST excavation was backfilled, ABB-ES completed 10 TerraProbe points to the water table and a total of nine soil samples were collected (Figure 6.4-5). Ethylbenzene and xylenes were detected in the sample collected from TP-10, and TPHC levels ranged from 110 ppm at TP-01 to 1,615 ppm at TP-10 (Table 6.4-6; Figure 6.4-5). The highest concentrations of contaminants were detected on the southern and eastern side of the UST excavation.

ABB Environmental Services, Inc.

W0099521.M80

6-21

Nine TerraProbe points were advanced east of the former USTs, to better define the distribution of fuel related contaminants detected during the SL. Subsurface soil samples were collected from 8 and 9 feet bgs. Total concentrations of TEX, ranged from below the detection limit to 3,500 ppb in the 8-foot samples from TP-14, and below the detection limit to 1,900 ppb in the 9-foot samples at TP-12. Benzene was also detected in the 8 and 9-foot soil samples collected from TP-12 at concentrations of 220 and 440 ppb, respectively. TPHC concentrations ranged from 130 to 4,500 ppm in the 8-foot samples at TP-14 and <58 to 750 ppm in the 9-foot samples at TP-12 (see Table 6.4-6; Figures 6.4-5, and 6.4-6).

No VOC or SVOC were detected in the soil samples collected from 43D-92-01X for off-site laboratory analysis. Lead was detected below the Fort Devens background, TPHC was not detected, and the TOC value associated with the 10-foot sample was at 1,040 μ g/g.

The results of the off-site laboratory analysis for the soil samples collected from the monitoring well borings completed during the SSI are presented in Table 6.4-7 and Figure 6.4-7. One subsurface soil sample was collected from 10 feet (water table) in each of the four monitoring well borings (XDM-93-01X through XDM-93-04X). One VOC (Tohuene at $0.012 \ \mu g/g$) was detected in the soil sample collected from XDM-93-01X. Acetone and di-n-butyl phthalate (common laboratory contaminants) were the only other organic compounds detected; however, these compounds are not considered site-related contaminants. TPHC was detected at 50.7 $\mu g/g$ in the soil sample collected from XDM-93-04X. Lead was detected below the Fort Devens background concentration in each sample.

6.4.5.2 Groundwater: The results of the off-site laboratory analysis for Rounds Three and Four groundwater samples are presented in Table 6.4-8 and Figure 6.4-8. No VOCs, SVOCs, or TPHC were detected in any of the samples collected from Round Three. Benzene was detected at 0.88 μ g/L in the Round Four sample collected from XDM-93-01X and bis(2-hexylmethyl)phthalate (a common laboratory contaminant) was detected at 8.2 μ g/L at XDM-93-04X. No other PAL SVOCs nor TPHC was detected in the Round Four samples. Lead concentrations were below the Fort Devens background concentrations in both the filtered and the unfiltered samples in both rounds of sampling except for the Round Four unfiltered duplicate from XDM-93-02X which showed a concentration slightly above background at 5.21 μ g/L.

ABB Environmental Services, Inc.

W0099521_M50

6.4.6 Source Evaluation and Migration Potential

The results of the field analysis indicated that residual VOCs (benzene, toluene, ethylbenzene, and xylenes) as well as TPHC contamination is present in the soil above and at the water table east-northeast of the former historic gas station. It also appears that these contaminants have migrated, via groundwater flow, from the former abandoned USTs to the soils approximately 50 feet north and east of the former USTs. The contaminants detected in the soil above the water table appears to be a result of contaminated groundwater fluctuating up into the soil, and contaminating the soil.

The results of soil samples collected from monitoring well borings drilled upgradient and downgradient of SA 43D, indicate that the contaminants detected in the soil east of the site have not impacted the soil quality downgradient of the site.

The results of the groundwater sampling did not indicate the presence of any SVOC, TPHC, or lead contamination. Benzene was detected in one of the Round Four samples at 0.88 μ g/L. It appears that the contaminants detected during the field analytical program have not impacted the groundwater quality downgradient of SA 43D.

6.4.7 Preliminary Human Health Risk Evaluation

The Final SI Report (ABB-ES, 1993a) evaluated TerraProbe and boring subsurface soil samples collected during the SI. BTEX was detected in one TerraProbe sample. TPHC was detected above the method detection limit in six of nine TerraProbe samples, ranging from 110 ppm to 1,615 ppm. Soil samples from a confirmatory boring showed no evidence of residual TPHC contamination at both 5-feet and 10-feet. These results indicate that little residual contamination exists in the unsaturated zone from petroleum products. A comparison of the results against available risk-based commercial/industrial concentration values indicates no significant risk to public health from soil contamination at SA 43D.

During the SSI, fifteen TerraProbe subsurface soil samples and one soil boring sample were evaluated. The results for individual samples are shown in Tables 6,4-6 and 6.4-7. Table 6,4-9 combines and summarizes the data and compares the analytical results to commercial/industrial and Category S-2 soil

ABB Environmental Services, Inc.

W0099521.M80

guidelines described above. BTEX does not exceed guidelines. TPHC was detected above guideline concentrations in three of the fourteen samples in which it was detected. Lead was analyzed for in the soil boring and detected at 5.04 μ g/g which is below both Region III commercial soil and MCP S-2 soil guideline concentrations (Table 6.4-9). In conclusion, concentrations of TPHC in subsurface soil may pose a potential risk to human health under certain commercial/industrial exposure scenarios.

Benzene was detected in one groundwater sample at a concentration of 0.88 μ g/L below USEPA action level for benzene (see Table 6.4-8). No other organic contaminants were detected in groundwater samples collected from SA 43D. Unfiltered groundwater samples were analyzed for lead, which was detected in three of the four samples. The maximum concentration, 3.25 μ g/L, did not exceed the USEPA action level of 15 μ g/L. Lead was not detected in the filtered samples. Concentrations of lead in groundwater, then, do not pose a potential threat to human health (Table 6.4-10).

6.4.8 Conclusions and Recommendations

The contaminant profile established during the SI and the SSI is consistent with the reported military use and UST removal report for this site. As noted above, the primary concern at SA 43D has been the residual contamination due to releases from the former USTs which have been removed. Sampling and analysis of subsurface soil and groundwater, during the SI and the SSI, found contaminants derived from petroleum hydrocarbons associated with fuels stored at this site. The human health PRE indicated that soil in areas south and east of the former USTs were above the S-2 MCP soil standard. However, the PRE shows that contaminant concentrations in groundwater do not pose an unacceptable risk to public health. Because of the lack of potential exposure of ecological receptors to site-related contaminants, and due to the fact that no wetlands are located at or near this SA, no ecological PRE was completed for SA 43D.

Based on the findings of the PRE, a soil removal action is recommended for SA 43D to remediate the TPHC contamination detected in the subsurface soil.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.4-1 SUMMARY OF TECHNICAL APPROACH SA 43D - HISTORIC GAS STATION D

SITE INVESTIGATION REPORT FORT DEVENS, MA

ΑCΠΥΙΤΥ	PURPOSE	SITE	RATIONALE FOR SELECTED LOCATIONS		
SI PROGRAM		1.100 0.000 0.000			
TERRA PROBE	* COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-10	* IN AND AROUND FORMER USTS		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR OFF-SITE LABORATORY ANALYSIS	XDB-92+01X	 THROUGH FORMER UST GRAVE 		
SSI PROGRAM		S. 1. 1. 1. 1.			
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-11 THRU TP-19	* EAST OF SI POINTS		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	INSTALL MONITORING WELLS CHARACTERIZE SOILS CONTAMINATION	XDM-93-01X XDM-93-02X XDM-93-03X XDM-93-04X	* UPGRADIENT * DOWNGRADIENT		
MONITORING WELL INSTALLATION	 MONITOR GROUNDWATER LEVELS 	XDM-93-01X	UPGRADIENT		
AND GROUNDWATER SAMPLING	 MONITOR GROUNDWATER QUALITY DETERMINE AQUIFER CONDUCTIVITIES 	XDM-93-02X XDM-93-03X XDM-93-04X	* DOWNGRADIENT		

TABLE 6.4-2 MONITORING WELL COMPLETION DETAILS SA 43D - HISTORIC GAS STATION D

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL	SOIL DRILLING METHOD	BEDROCK DRILLING METHOD	MEDIA	WELL SCREEN DEPTH (FEET BGS)	WELL SCREEN ELEVATION (Feet NGVD)	COMPLETION DEPTH (FEET BGS)	CONSTRUCTION MATERIAL
XDM-93-01X	HOLLOW STEM AUGER	NA	SOIL	3.8-13.8	252.7 - 242.7	14.5	4" ID PVC
XDM-93-02X	HOLLOW STEM AUGER	NA	SOIL	3.0-13.0	252.9-242.9	14	4" ID PVC
XDM-93-03X	HOLLOW STEM AUGER	NA	SOIL	5.0-15.0	248.8-238.8	16	4" ID PVC
XDM-93-04X	HOLLOW STEM	NA	SOIL	4.1-14.1	249.9~239.6	15	4" ID PVC

NA=Not Applicable

TABLE 6.4-3 ATEC FIELD SCREENING/LABORATORY RESULTS SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	Field	Screening	Lab	oratory	
Sample No.	PID (ppm)	NDIR (ppm)	VOC (ppm)	TPHC (ppm)	
SS-1	1	46,3	NA	NA	
SS-2	ND	27.3	NA	NA	
85-3	I	24.2	NA	NA	
3S-4	12	15.9	NA	NA	
SS-5	1.5	59.5	NA	NA	
\$5-6	ND	82.8	NA	NA	
SS-7	10	1132.6	NA	NA	
SS-8	ND	18.6	NA	NA	
LRS-1	ND	NA	NA	ND	
LRS-2	0.2	NA	0.005	119	
LRS-3	ND	NA	NA	35	
LRS-4	1.0	NA	NA	ND	
LWS-1	NA	NA	ND	35	

Notes:

SS = ATEC field screen soil sample LRS = ATEC laboratory soil sample LWS = ATEC laboratory water sample NA = Not analyzed ND = Non detect

43DTEC.WK

11-Oci-95

TABLE 6.4-4 SUMMARY OF SOIL BORINGS 5A 43D – HISTORIC GAS STATION D

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXFLORATION	COMPLETION DEPTH (FEET BGS)	REFERENCE SAMPLE INTERVALS (FEET BGS)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCs BY PID (PPM)	COMMENTS
43D-52-01X	10.8	5-7	5-7	SP	BKG	
		10-12	10-12	GW	BKG	
XDM-93-01X	16.5	1-3 45-65 95-115 145-165	95-11.5	SP SP SP-PT SP	BKG BKG BKG BKG	-
XDM-93-02X	14	1-3 45-65 95-115	9.5-11.5	SP SP PT	BKG BKG BKG	
XDM-93-03X	16	0-2 5-7 10-12 14-16	10-12	SP SP SW SP-SM	BKG BKG BKG BKG	
XDM-93-04X	17	0-2 5-7 10-12 15-17	10-12	SP SP SW SW	BKG BKG BKG BKG	

NOTES:

bgs = below ground surface.

VOCs = Volatile organic compounds

USCS = Unified soil classification system

ppm = parts per million

phyl = phylite

BKG = background levels of Total VOCs were measured with a PID at the work site.

TABLE 6.4-5 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 43D - HISTORIC GAS STATION D

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL ID	ELEVATION	DEPTH TO WATER (FEET BGS)	ELEVATION OF WATER (FEET NGVD)	CONDUCTIVITY HVORSLEV ² (CM/SEC)
XDM-93-01X	256.55	1.31	255.24	1.4E-05
XDM-93-02X	255.72	5,35	250.37	1.6E-05
XDM-93-03X	256.39	6,38	241.38	1.5E-02
XDM-93-04X	255,91	6.70	240,24	4.0)6-03
XDM-93-04X	255,91	6.70	240,24	4,0 <u>1</u> <u>E</u> =03

Notes:

bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc

2 = averaged value of two tests

Groundwater elevations from March 30, 1994.

synoptic water level round

TABLE 6.4-6 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	T2-01	TF-02	TP-04	77-95	TF-00	12-07	TP-05	17-09	17-10	17-12	17-11	17-13
ANALYTE	TSDeidep	TSD0209P	T5D0409P	TSD0509P	TSDOMMP	TSD0709F	TSD0809P	TSD0909F	TSD1009F	TSD12080	TSD1209F	TSD1308F
ORGANICS (ppb)	9 FI	9 FT	9 FT	9 FT	9 FT	9 FT	9 FT	9 FT	9 FT	8 FT	9 FT	8 FT
BENZENE	<0.5	<0.9	<0.5	<0.3	<0.3	< 0.5	<0.3	<0.3	<0.3	220	440	< 0.2
TOLUENE	< 0.3	<0.1	<0.3	<0.3	<0.1	<0.5	<0.3	<0.3	<0.3	72	37	< 0.2
ETHYLBENZENE	<0.3	<0.3	<0.5	<0,3	<0,3	<0.3	<0.3	<0.3	19	< 14	150	< 0.2
m/p-XYLENE	<0.3	<0.3	<0.5	<0.5	<0.3	<0.3	<0.3	<0.3	88	240	370	< 0.2
g-XYLENE	<0.5	<0.5	<0.1	<0.5	< 0.3	<0.5	<0,3	<0.3	43	130	440	< 0.2
OTHER (ppm)	-					1.00						
TOTAL PETROLEUM HDYROCARRONS	110	200	<46	<58	160	<54	510	360	1615	2600	750	190

Notes:

< = Less than detection limit.

TABLE 6.4-6 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	37-15	TP-14	TP-14	TP-15	72-15	37-16	3P-10	TP-17	TP-17	TP-18	TP-19	77-19
ANALYTE	TSD1309P	TSD1008F	TSDIWSF	TSD1508F	TSD1509P	TSD1608P	TSD1609F	TSD1708F	TSD1709F	TSD1809P	TSDIS08P	TSD1910F
ORGANICS (ppb)	9 FT	8 PT	74.6	6 PT	PFT	AFT	9 FT	SFT	9 FT	9 FT	SPT	10 PT
BENZENE	<0.3	< 120	< 0,4	< 13	< 0.1	< 11	< 0.1	< 0.4	< 0.1	< 01	< 0.1	< 0.1
TOLUENE	<0.3	< 120	< 0,4	< 13	< 0,1	< 11	0.6	< 0,4	< 9.1	< 0.1	< 0.1	< 0.1
BTHYLBENZENE	<0.3	< 120	< 0.4	120	< 0.1	80	20	< D.4	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	<0.3	2200	< 0,4	680	3.0	1700	130	5.6	< 0.1	< 0.1	< 0.1	< 0.1
0-XYLENE	<0.3	1300	< 0.4	160	0.7	1500	\$7	14	< 9.1	0,7	< 0.1	< 0.1
OTHER (ppa)		_				_	_					
TOTAL PETROLEUM HDYROCARBONS	130	4500	360	4200	74	1.70	410	150	< 58	290	58	130

.

Notes:

< = Less than detection limit.

TABLE 6.4-7 SUMMARY OF ANALYTES IN SUBSURFACE SOIL SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	BACEGROUND		SSI	SI			
		XDM-93-01X	XDM-93-02X	XDM-93-03X	XDM-93-04X	43D-92-01X	43D-92-41X
ORGANICS (ug/g)		10 FT	10 FT	10 FT	10 FT	5 FT	10 FT
ACETONE		0,42	0.2	< 0.017	< 0,017	< 0.017	< 0.017
DI-N-BUTYL PHTHALATE		< 0.061	0.19	0.16	0.085	<0,061	<0.061
TOLUENE		0,012	< 0.004	< 0.001	< 0,001	< 0.001	< 0.001
INORGANICS (ug/g)	5 a 11	1.000 1.11				1.	
LEAD	36,9	6.15	5.04	1.84	6.11	3.49	7.89
OTHER (og/g)					1	1	
TOTAL ORGANIC CARBON		138000	13800	1120	1970	NA	1040
TOTAL PETROLEUM HYDROCARBONS	and the second s	< 28.7	< 28.7	< 28.7	50.7	~ 27.7	< 27.9

Notes.

< = Less than detection limit.

480505054 W31

TABLE 6.4-8 ANALYTES IN GROUNDWATER SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	-	XDM-93-02X								
	BACKGROUND	FILTERED ROUND J	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNPILTERED ROUND 4	FILVERED ROUND 4
ORGANIC (pg/L)										
BENZENE	1	NA	< 0.5	NA	0.8	NA	< 0.5	NA	< 0.5	N
BIS(2-LEXYLMETHY)PHTHALATE		NA	< 0.6	N						
INORGANICS (pg/L)										DUP
LEAD	4.25	< 1.26	2.28	< 1.26	1.52	< 1.26	< 1.26	< 1.26	3.69	< 1.2
OTHER (ng/L)										
TOTAL SUSPENDED SOLIDS	10	NA	80000	NA	40000	NA	11000	NA	13000	N

Notes:

< = Less than detection limit. NA = Not analyzed.

2

TABLE 6.4-8 ANALYTES IN GROUNDWATER SA 43D - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	1	100 A 100 A 100 A		XDM-93-03X	XDM-93-04X					
	BACKGROUND	ENPILIERED ROUND 4	FILTERED ROUND 3	UNFILTERED ROUND 3	FULTERED ROUND 4	KOUND 4	PILTERED ROUND 3	ROUND 3	PILTERED ROUND 4	UNFILTERED BOUND 4
ORGANIC (#g/L)										
BENZENE		< 0.5	NA	< 0,5	NA	< 0,5	NA	< 0.5	NA	< 0.
BIS(2-LEXYLMETHY)PHTHALATE	-	< 0.6	NA	< 0.6	NA	< 0.6	NA	< 0.6	NA	8.1
INORGANICS (µg/L)	and the second se	DUF								
LEAD	4.25	5.21	< 1.26	3.25	< 1.26	L41	< 1.26	2,28	< 1.26	< 1.2
OTHER (pg/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				201			and and I		
TOTAL SUSPENDED SOLIDS		10000	NA	60000	NA	88000	NA	43000	NA	53000

Notes:

< - Less than detection limit. NA = Not analyzed.

TABLE 6.4-9 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SUBSURFACE SOIL SA 43D - HISTORIC GAS STATIONS

	FREQUENCY	the second second second	CTED RATION (4)	REGION III COMMERCIAL/	MCP	MAXIMUM EXCEEDS GUIDELINE CONCENTRATION	
ANALYTE	OF	AVERAGE	MAXIMUM	INDUSTRIAL CONCENTRATION	S-2 STANDARD		
ORGANICS (ug/kg)							
BENZENE	2/16	330	440	99000	10000	NO	
TOLUENE	3/16	43.2	72	20000000	90000	NO	
ETHYLBENZENE	4/16	92.5	150	10000000	80000	NO	
m/p-XYLENE*	8/16	728,5	22.00	1000000000	800000	NO	
O-XYLENE*	9/16	405.8	1500	1000000000	\$00000	NO	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	14/16	1000	4500	1680	2500	YES	

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

[4] Subsurface soil (3 to 15 feet) based on field analytical samples TP-12 to TP-19 and soil boring XDM-93-02X.

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

MCP = Massachusetts Contingency Plan

Shaded compounds exceed standard or guideline.

* = analyte from field screening samples

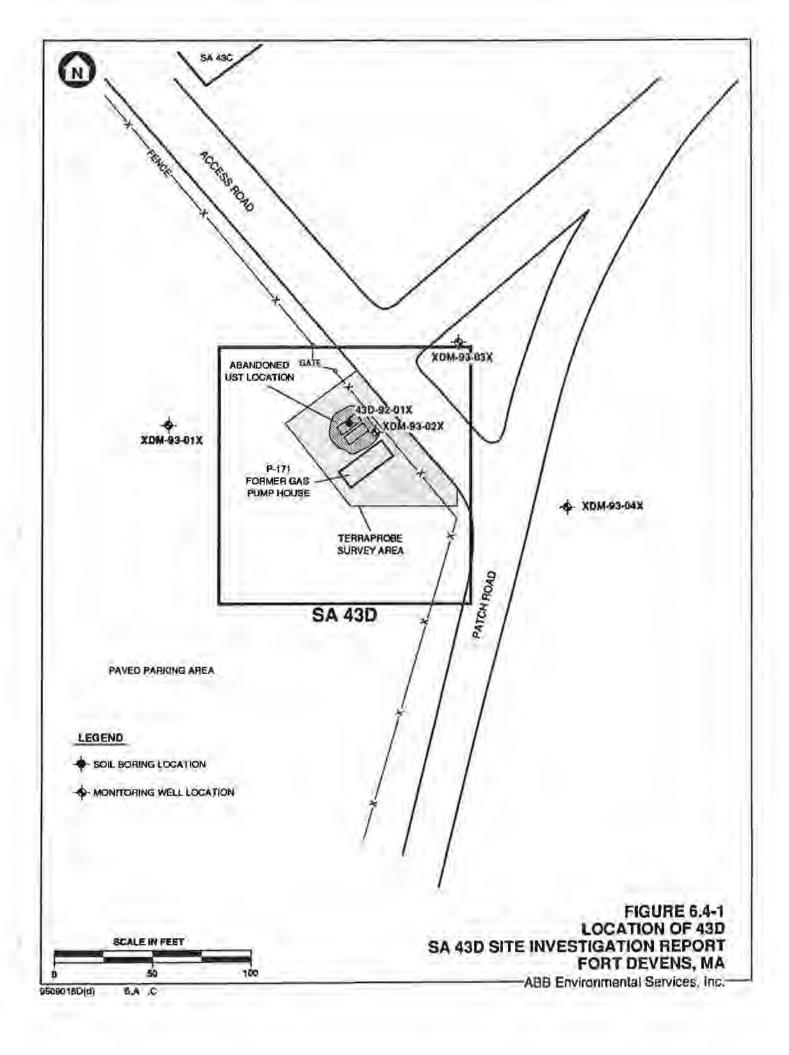
TABLE 6.4-10 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF GROUNDWATER SA 43D - HISTORIC GAS STATIONS

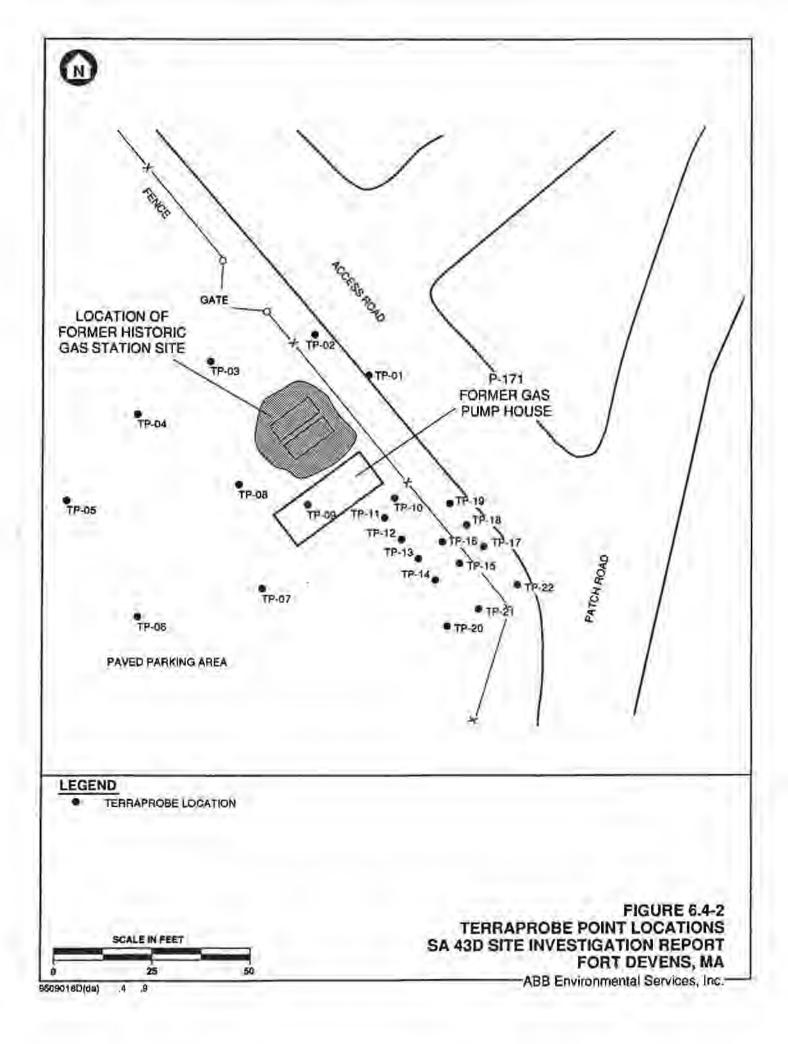
SITE INVESTIGATION REPORT FORT DEVENS, MA

	FREQUENCY	DETECTED CONCENTRATION [a]		GROUNDWATER BACKGROUND	MAXIMUM	DRINDING WATER STANDARD/	MAXIMUM EXCEEDS
ANALYTE	OF DETECTION	AVERAGE (rg/L)	MAXIMUM (pg/L)	CONCENTRATION (sg/L)	EXCEEDS BACKGROUND 7	GUIDELINE [b] (pp/L)	STANDRAD/ GUIDELINE ?
ORGANICS							
BENZENE	1/9	0.88	0.88	4	1 A 1	5	NO
INORGANICS							
LEAD	6/9	3,27	5.21	4.25	YES	15	NO

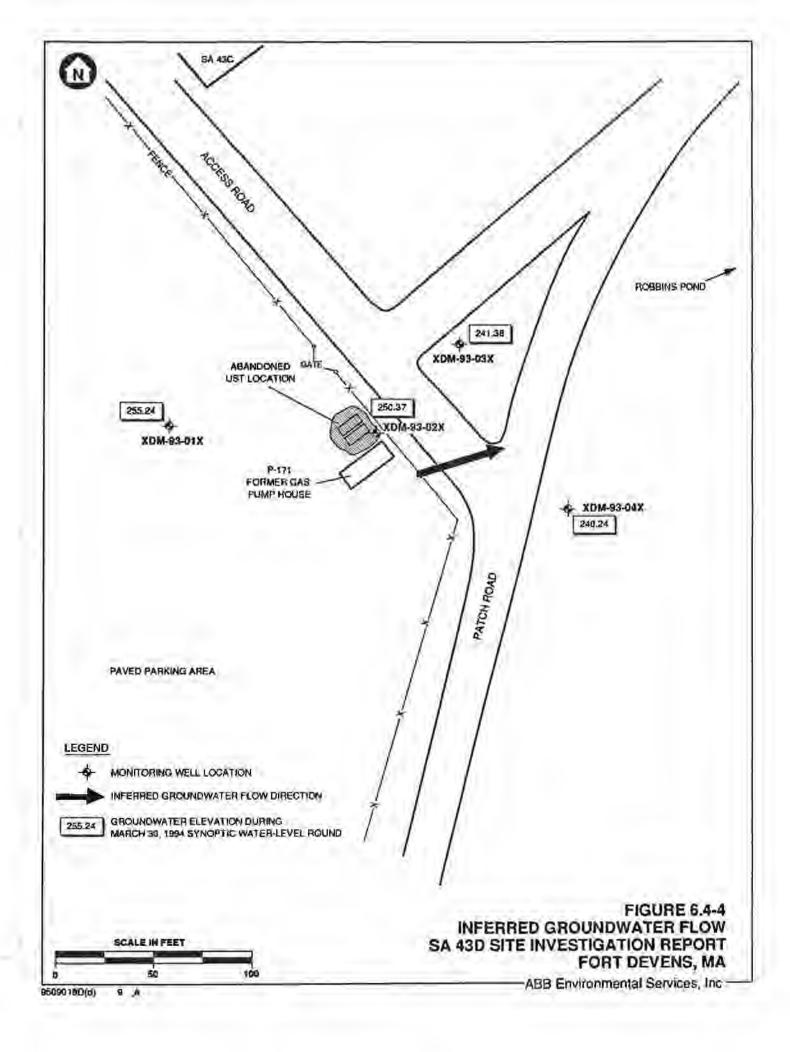
Notes:

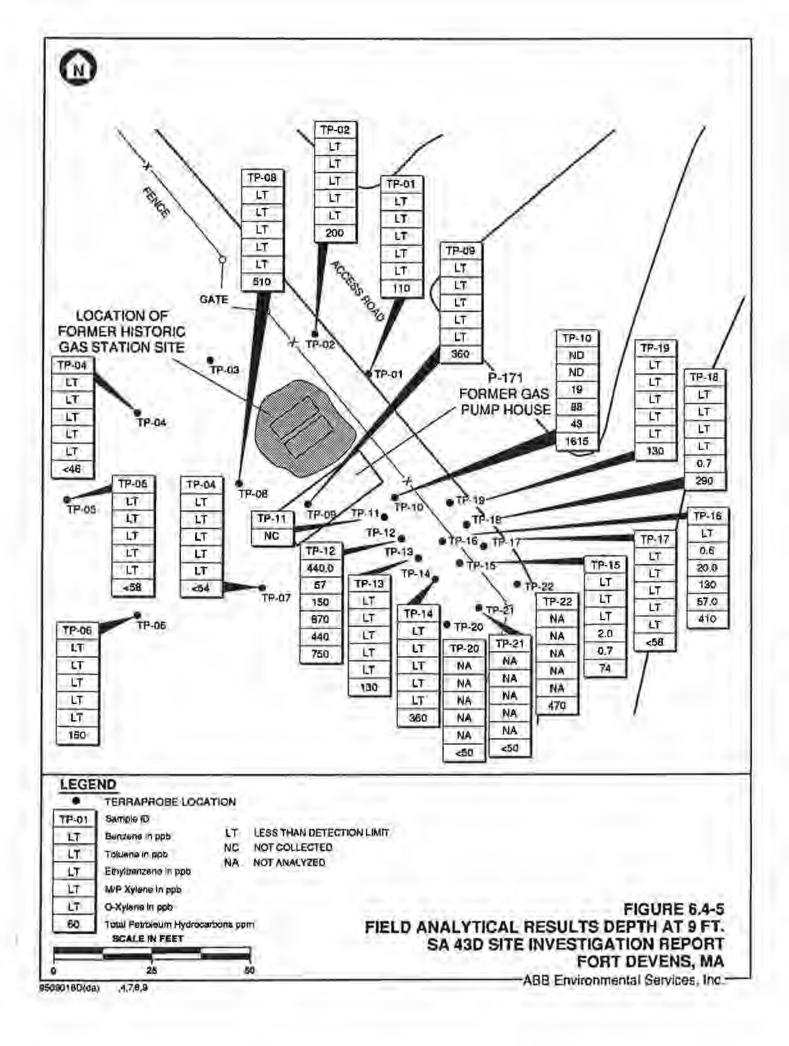
[a] Unfiltered samples from XDM-93-01X to XDM-93-04X.

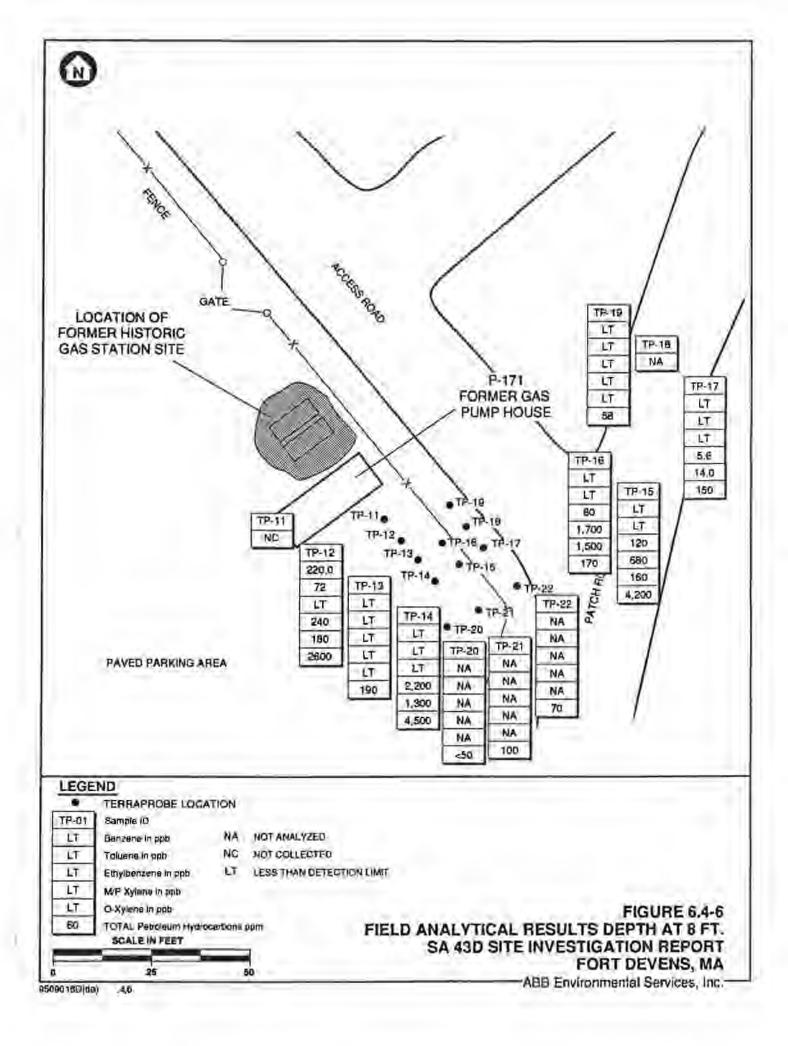

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal standard or guideline is available, the Region III tap water concentration.

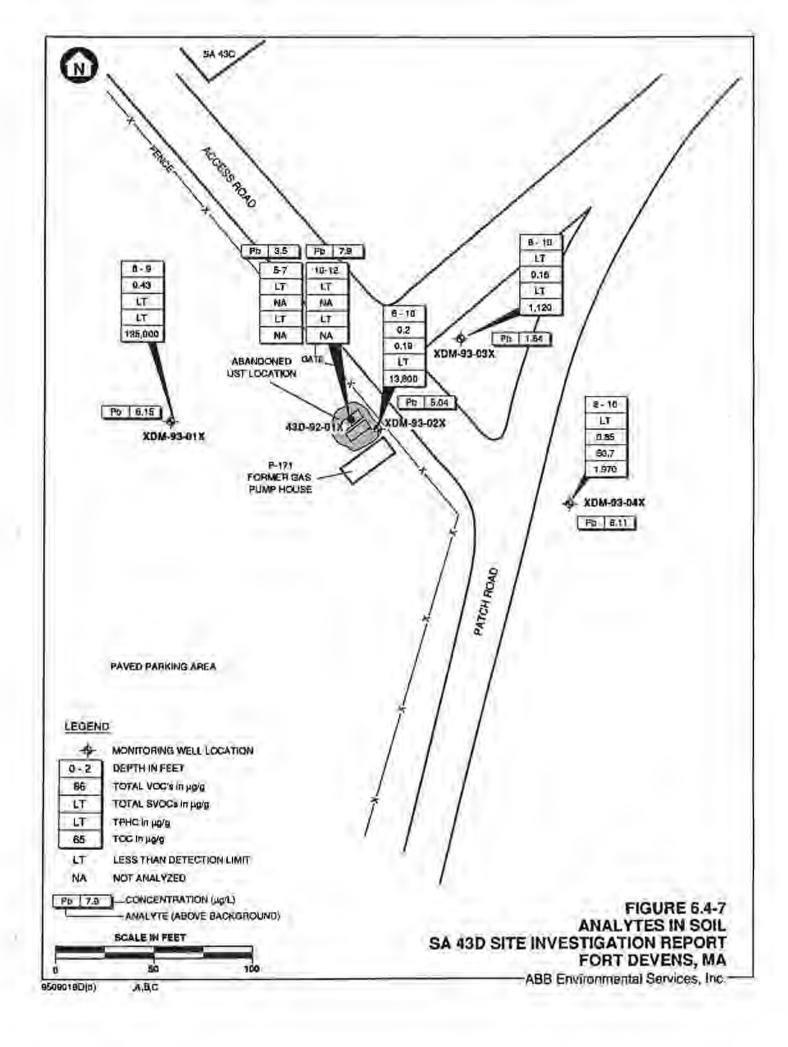

NA = not available

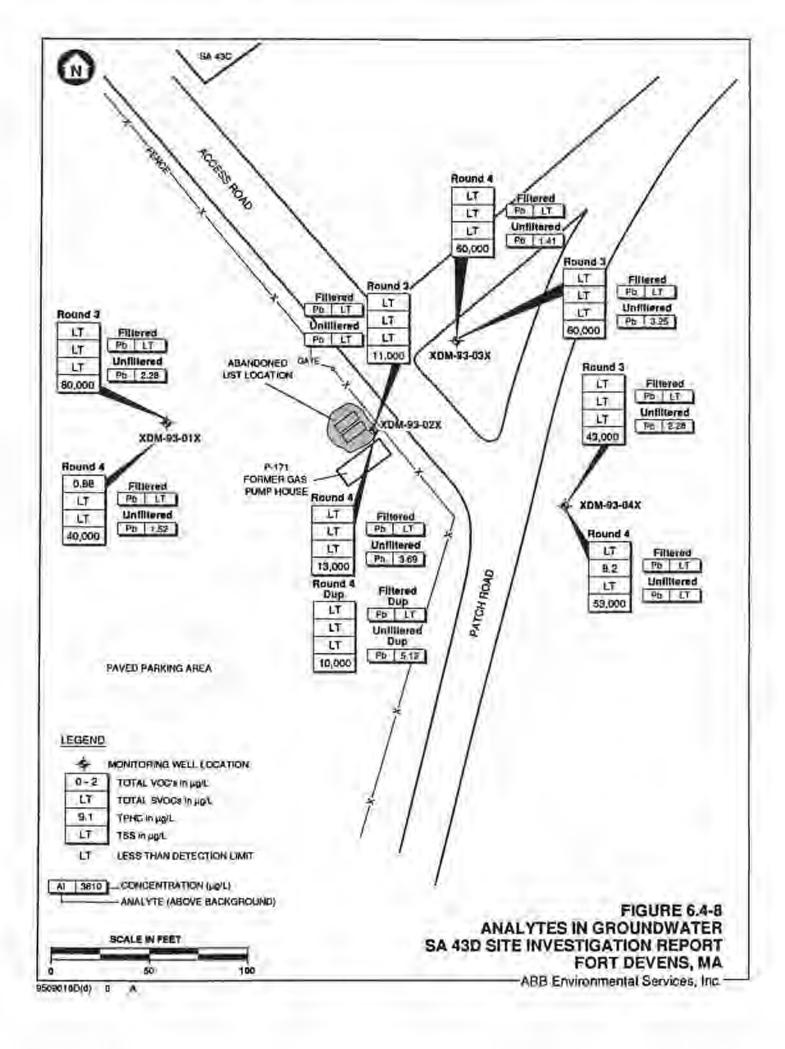
µg/L = micrograms per liter


- = not applicable


2







6.5 STUDY AREA 43E

6.5.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43E consisted of a pump island and a small gasoline pumphouse. Based on historic records the gas stations was a Type A station and appears to have had one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. The area where SA 43E was reportedly located is presently a paved parking lot for Buildings 2000 and 2020 (Shawmut Bank) located in the central portion of the Main Post (Figure 6.5-1).

6.5.2 Study Area Investigation Program Summary

The SI field investigation program was a surficial geophysical program consisting of a metal detector and GPR survey (see Figure 6.5-1).

6.5.3 Field Investigation Results and Observations

The geophysical investigation conducted at SA 43E indicated that one abandoned UST was present on the northern side of the Building 2020 (see Figure 6.5-1). The geophysical measurements collected in the field are presented in Appendix L. The metal detector was used first to locate the UST and then the GPR survey identified the ends and the sides of the UST. This UST was added to the installation's UST removal program and on September 3, 1992 a 5,000 gallon UST was removed by ATEC. Tank contents at the time of removal consisted of only gasoline (ATEC, 1992c). No visually contaminated soil was observed in the excavation, and groundwater was not encountered. At the time of the tank removal ATEC performed field screening on 10 soil samples collected from the excavation walls at depths of 5 to 6 feet (Figure 6.5-2). The headspaces of each soil sample was screened with a PID for total VOCs, and NDIR was used to screen for TPHC. The PID headspace screening showed VOC concentrations ranging from 0.2 ppm to 0.5 ppm. TPHC was detected at concentrations ranging from 4.8 ppm to 43.5 ppm (Table 6.5-1). ABB-ES collected one composite soil sample from the bottom of the excavation. This sample was analyzed at ABB-ES'

ABB Environmental Services, Inc.

W0099521.M80

Wakefield, Massachusetts laboratory for TPHC using USEPA Method 418.1, and the concentration was 85 ppm (see Table 6.5-1). Based on the results of ATEC's sampling and analysis, ATEC backfilled the excavation. Because TPHC levels were less than 100 ppm, no further site investigation was conducted.

6.5.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

Fuel-related soil contamination was not observed in the UST excavation or detected in the soil after the UST was removed from SA 43E. Based on these results it appears that the contents of the former UST did not adversely impact the soil or groundwater quality at SA 43E.

6.5.5 Preliminary Human Health Risk Evaluation

The UST at SA 43E was discovered by ABB-ES and pulled by ATEC during the SI. Prior to backfilling, ATEC collected 8 soil samples from the excavation walls which were screened for TPHC by the NDIR method. TPHC levels ranged from 4.8 ppm to a maximum value of 43.5 ppm in the UST wall samples. The TPHC level in a confirmatory soil sample collected by ABB-ES for TPHC analysis by USEPA Method 418.1 was 85 μ g/g. Based on a comparison of these results against the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline, there should be no significant risk to public health from soil contamination at SA 43E.

6.5.6 Conclusions and Recommendations

Limited field investigation conducted by ABB-ES and sampling conducted by ATEC during the UST removal operation at SA 43E indicated that historical petroleum use and underground storage at this location has not adversely impacted soil or groundwater. Therefore, NFA is recommended for this historic gas station.

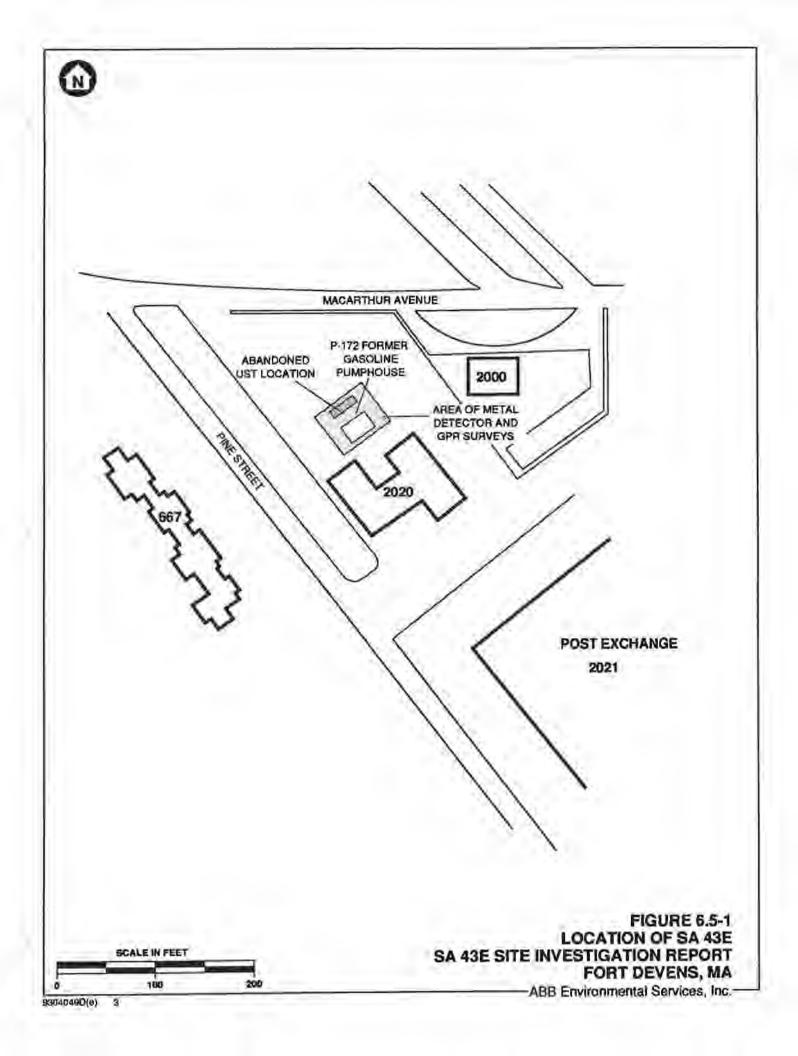
ABB Environmental Services, Inc.

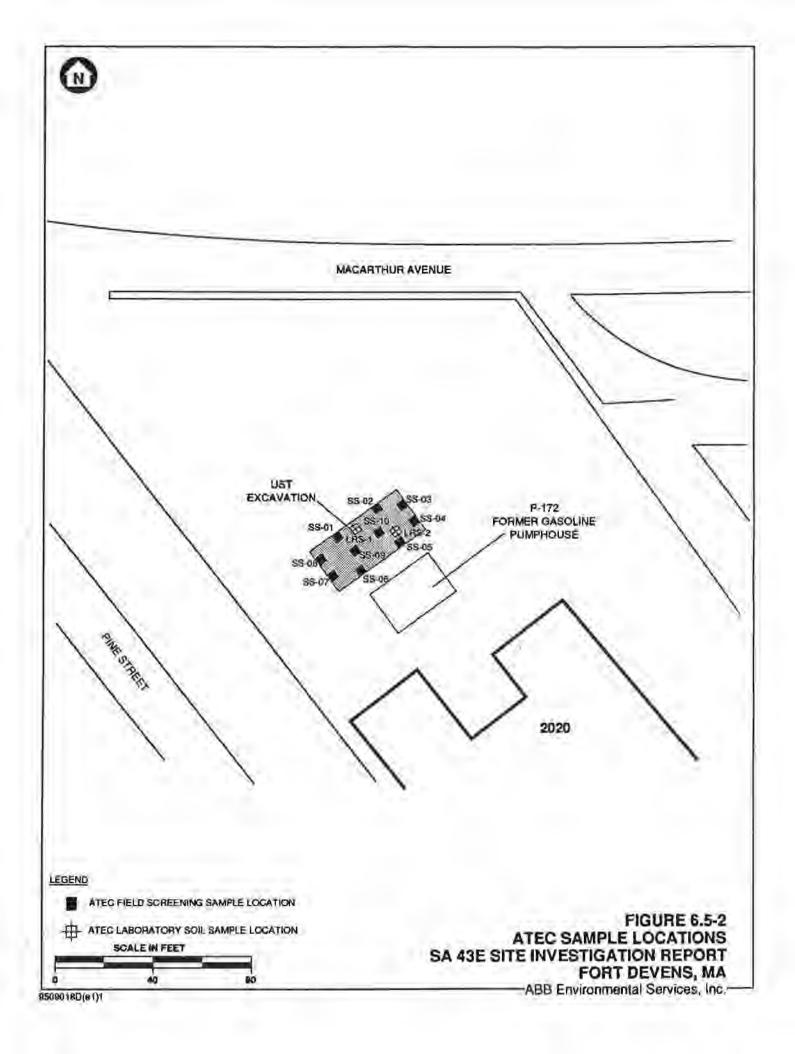
W0099521.M80

TABLE 6.5-1 ATEC FIELD SCREENING RESULTS SA 43E - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE NO.	FIELD SC	REENING	LABOR	ATORY
	PID (ppm)	NDIR (ppm)	VOC (ppm)	(ppm)
SS-1	0.5	16.9	N/A	N/A
SS-2	0.2	43.5	N/A	N/A
SS-3	ND	6.2	N/A	N/A
SS-4	ND	17.7	N/A	N/A
SS-5	ND	22.1	N/A	N/A
SS-6	ND	5.6	N/A	N/A
SS-7	ND	4.8	N/A	N/A
SS-8	ND	7.7	N/A	N/A
SS-9	0,5	24.5	N/A	N/A
SS-10	0.5	12.1	N/A	N/A
LSS-1	N/A	N/A	ND	< 21.0
LSS-2	N/A	N/A	ND	127.0
XEE-92-01X	N/A	N/A	N/A	85.0


NOTES:


SS = ATEC field screening soil sample

LSS = ATEC laboratory soil sample

ND = Non-detect

N/A = Not analyzed

6.6 STUDY AREA 43F

6.6.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43F consisted of a pump island and a small gasoline pumphouse. The gas station was Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. The location of the historic gas station at SA 43F was within the footprint of what is now the Post Exchange (PX) Main Store (Building 2021). The PX is located in the central portion of the Main Post approximately 250 feet south east of SA 43E (Figure 6.6-1). Fort Devens records documents that the gasoline UST and associated fill pipes and concrete collars were removed prior to the construction of the PX (Army and Air Force Exchange Service [AAFES], 1973).

6.6.2 Site Investigation Program Summary

A field investigation was conducted at SA 43F to determine if residual soil contamination was still present in the subsurface soil. The program consisted of collecting subsurface soil samples and soil-gas samples for field analysis.

Surficial geophysical surveys were not conducted at SA 43F due to the fact that the former historic gas station is located under the present PX building.

Nine TerraProbe points were advanced along the three accessible sides of the PX building to seek evidence of possible migration of residual contamination away from the site of the historic gas station (see Figure 6.6-1).

Seven soil samples were collected from 9 feet, three soil samples were collected from 15 feet and one soil sample was collected from 20. Only one soil sample was collected from 20 feet due to subsurface obstructions. All of the soil samples collected from SA 43F were analyzed in the field for BTEX and TPHC. The water table was not reached in any of the soil sampling TerraProbe points. Because of this, soil-gas samples were collected from all nine locations and field screened for BTEX only. No soil borings or monitoring wells were completed at this site.

ABB Environmental Services, Inc.

W0099521.M80

6.6.3 Field Investigation Results and Observations

Seven soil samples were collected from 9 feet to analyze the shallow soil for fuel-related contaminants. BTEX was not detected in any of the samples and TPHC was detected in TP-04 at 87 ppm (Figure 6.6-2). Three soil samples were collected from 15 feet and one soil sample was collected from 20 feet. No BTEX were detected in any of the samples and TPHC was detected in only the sample collected from 15 feet bgs at TP-05 at 250 ppm (Figure 6.6-3). Because the TerraProbe borings met refusal without encountering groundwater, the sampling logic established for SA 43 required that soil-gas samples be collected. Nine soil-gas samples were collected and field screened for BTEX only. BTEX was not detected in any of the soil samples collected from SA 43F (Figure 6.6-4). Table 6.6-1 presents the field analysis results for SA 43F.

6.6.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

The objective of the field investigation at SA 43F was to determine if the former historic gas station activities had adversely impacted the soil or groundwater quality in the area around SA 43F. Based on the results of the subsurface soil sampling program and the field analysis it does not appear that the past activities at SA 43F have impacted the soil quality away from the former UST location.

6.6.5 Preliminary Human Health Risk Evaluation

The tank at this location was removed in approximately 1973. Field-screening of 11 TerraProbe soil samples revealed no measurable concentrations of BTEX to a depth of 20 feet. TPHC was detected above the method detection limit in two of these 11 samples, at 87 ppm and 250 ppm. Nine TerraProbe soil gas sampling stations were established. No measurable concentrations of BTEX were encountered. Comparing the measured TPHC results against the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline indicates that there should be no significant risk to public health from soil contamination at SA 43F.

ABB Environmental Services, Inc.

W0099521.M80

6.6.6 Conclusions and Recommendations

The objective of the field investigation at SA 43F was to determine if the former historic gas station activities had adversely impacted the soil or groundwater quality in the area around SA 43F. Based on the results of the subsurface soil sampling program and the field analysis, it does not appear that the past activities at SA 43F have impacted the soil quality in the vicinity of the former UST location. Therefore, NFA is recommended at this historic gas station.

ABB Environmental Services, Inc.

W0099521.MB0

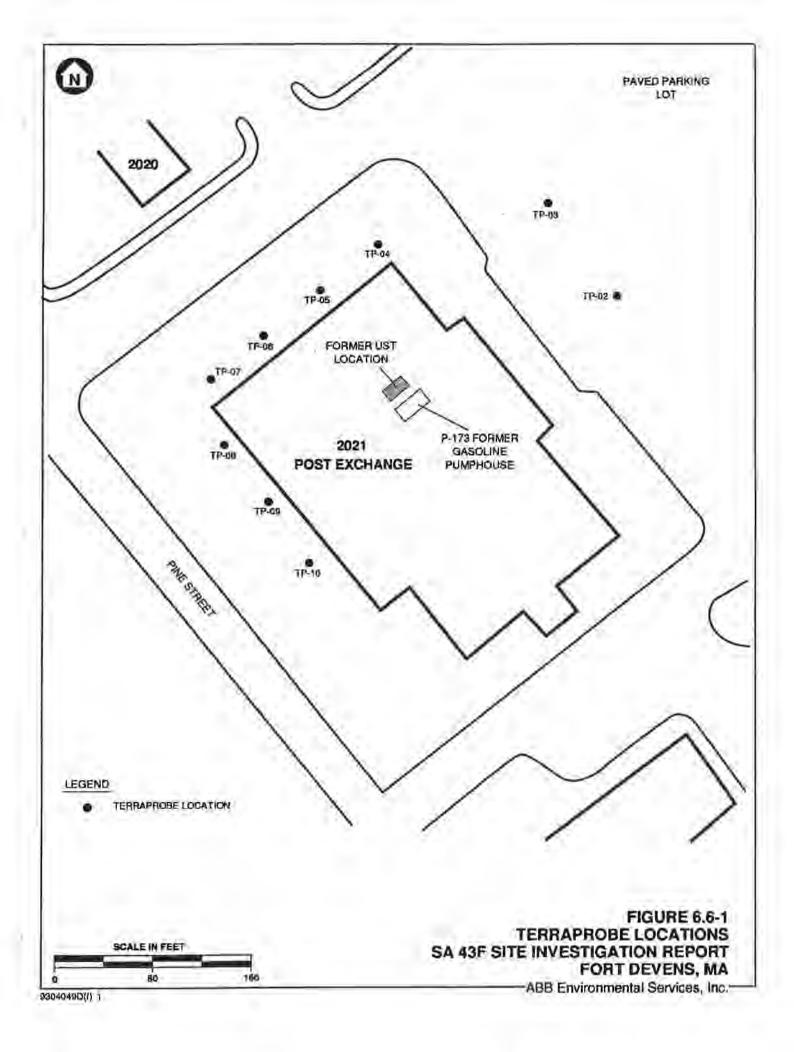
TABLE 6.6-1 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE F

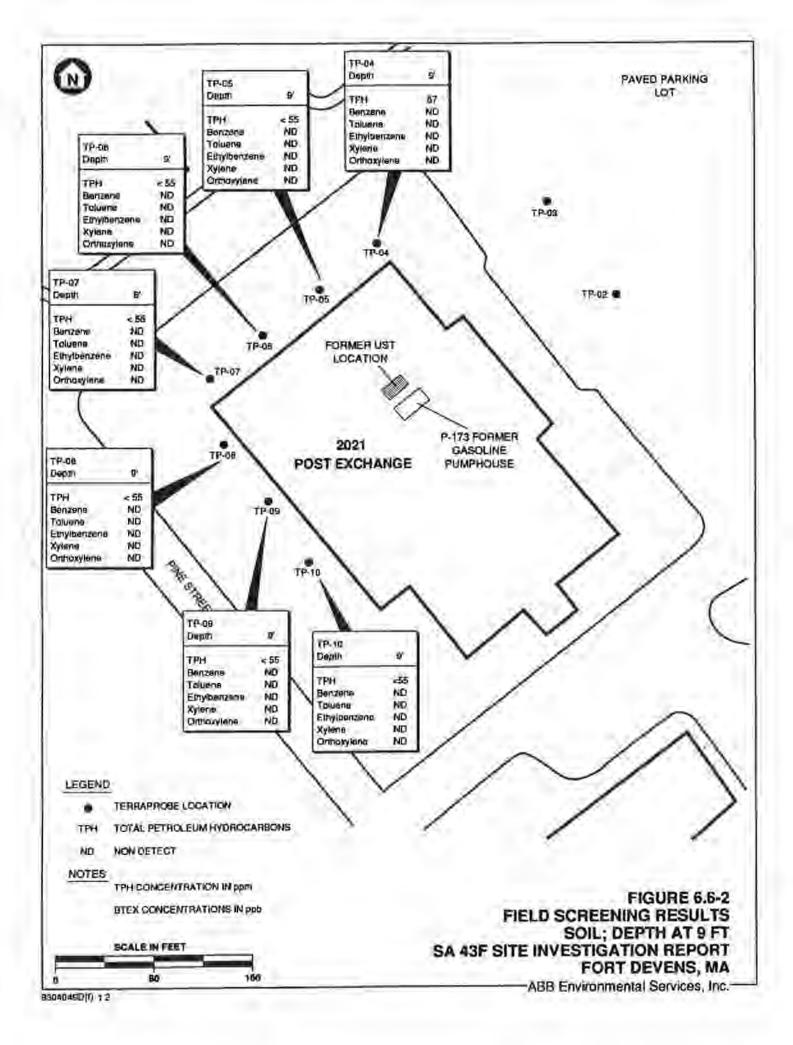
SITE INVESTIGATION REPORT FORT DEVENS, MA

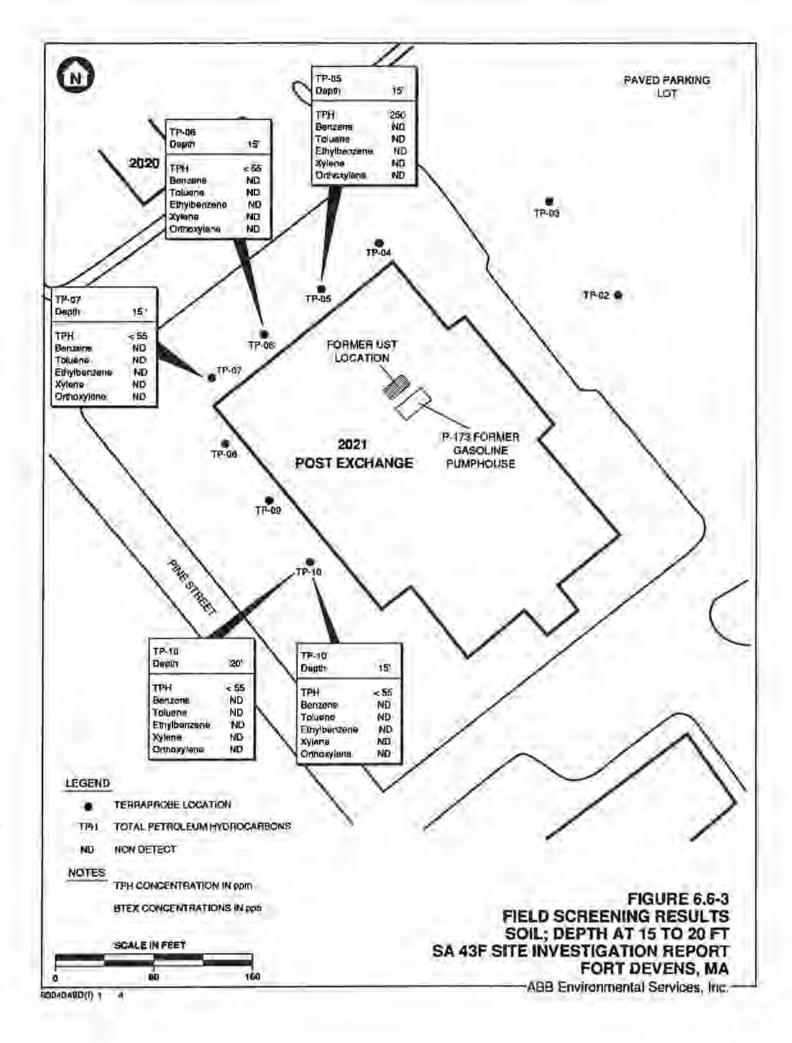
SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	TPH ppm	TOTAL BTEX ppb	BEN*	TOL*	E-BEN*	M/P XYL** ppb	O-XYL*	COMMENTS
43TSF04XX901XF	43F	SOIL	TP-04	9	87	a	ND	ND	ND	ND	ND	
43TSF05XX901XF	43F	SOIL.	119-05	9	< 55	0	ND	ND	ND	ND	ND	
43TSF05X1501XF	43F	SOIL	TP-05	15	250	0	ND	ND	ND	ND	ND	
43TSF06XX901XF	43F	SOIL	TP-06	9	< 55	0	ND	ND	ND	ND	ND	
43TSF06XX901XF	43F	SOIL.	TP-06	15	< 55	0	ND	ND	ND	MD	ND	
43TSF07XX901XF	43F	SOIL	TP-07	9	< 55	0	ND	ND	ND	ND	ND	
43TSF07X1501XF	43F	SOIL	TP-07	15	< 55	0	ND	ND	ND	ND	ND	
43TSF08XX901XF	43F	SOIL.	TP-08	9	< 55	0	ND	ND	ND	ND	ND	
43TSF09XX901XF	43F	SOIL.	TP-09	9	< 55	0	ND	ND	ND	ND	ND	
43TSF10XX901XF	43F	SOIL	TP-10	9	< 55	Ö	ND	ND	ND	ND	ND	
43TSF10X2001XF	43F	SOIL	TP-10	20	< 55	0	ND	ND	ND	ND	ND	
43'TGF@XX801XF	43F	GAS	TP-02	9	NA	0	ND	ND	ND	ND	ND	
43TGF05XX801XF	43F	GAS	1P-03	9	NA	0	ND	ND	ND	ND	ND	
43TGF04XX801XF	43F	GAS	TP-04	9	NA	Q	ND	ND	ND	ND	ND	
43TGF05XX801XF	43F	GAS	TP-05	9	NA	Ū	ND	ND	ND	ND	ND	
43TGF06XX801XF	43F	GAS	1P-06	9	NA	Ŭ	ND	ND	ND	ND	ND	
43TGF07XX801XF	43F	GAS	TP-07	9	NA	Ö	ND	ND	ND	ND	ND	
43TGF08XX801XF	43F	GAS	TP-08	9	NA	Ó	ND	ND	ND	ND	ND	
43TGF09XX801XF	43F	GAS	TP09	9	NA	<u>A</u>	ND	ND	ND	ND	ND	
43TGF10XX801XF	43F	GAS	TP-10	9	NA.	Ő.	ND	ND	ND	ND	ND	

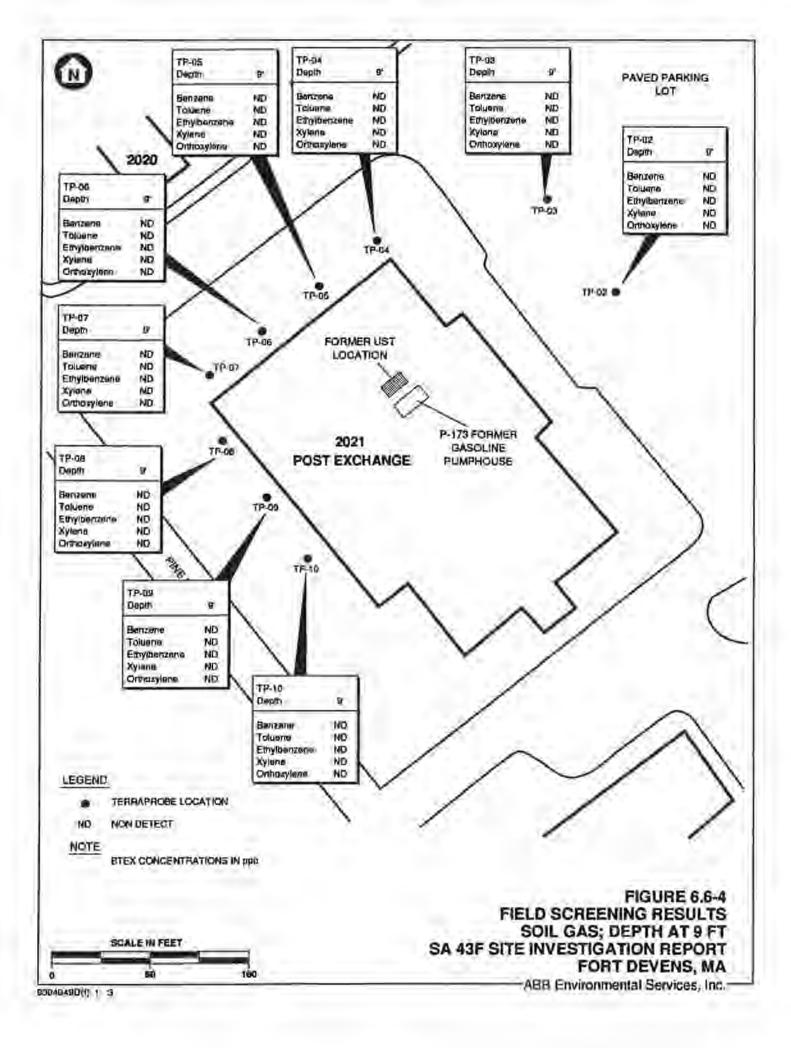
.

NOTES


* = ND denotes a non detect or concentrations below 5 ppb.


** = ND denotes a non detect or concentrations below 10 ppb


= Study area


GAS = Soil gas

NA = Not applicable

6.7 STUDY AREA 43G

6.7.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43G consisted of a pump island and a small gasoline pumphouse. The gas station was reportedly a Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. The area where SA 43G was reportedly located is presently an unpaved area located behind Building 2009 and south of the installation's active gas station in the central portion of the Main Post (Figure 6.7-1).

The AAFES gas station was added to SA 43G after the SI was completed, to further define the distribution of contamination detected during the past gasoline UST removals (completed in 1990), as well as, the contaminants detected during the stations waste oil UST removal completed in 1992. The AAFES gas station is located approximately 200 feet north of SA 43G and is comprised of the service station (Building 2008) three active 10,000 gallon USTs, and associated pump islands (see Figure 6.7-1).

The five former gasoline USTs were removed by a Fort Devens contractor on October 15 through 19, 1990. The removal was overseen and a report of the removal activities was prepared by Nobis Engineering (Nobis). The Nobis report stated that three 9,000 and two 10,000 gallon USTs were removed from the north side of the AAFES gas station. The USTs, and associated piping, were inspected by Nobis personnel upon removal. Some surficial rusting and minor pitting was observed along the sides and bottom of the USTs, but no visual indication of holes or leaks were reported (Nobis, 1990).

Soil samples were collected from the UST excavations by Nobis, and screened in the field with a PID. Up to 10 soil samples were collected from each UST excavation. Concentration of VOCs ranged from ND to 5,290 ppm. Based on these field screening results Nobis collected two soil samples from each of the UST excavations for off-site laboratory analysis consisting of TPHC using USEPA's method 418.1. The results of the off-site laboratory analysis indicated

ABB Environmental Services, Inc.

W0099521.M80

TPHC concentration ranging from 100 to 3,713 mg/kg. These TPHC concentrations exceeded the MADEP soil standards policy #WSC-400-89 for remediation of contaminated soil (Nobis, 1990).

Because of the elevated TPHC concentrations detected during the UST removals, a soil removal, subsurface soil and groundwater investigation was completed at the AAFES gas station on October 24 through December 13, 1990. A report of the findings of these activities was prepared by Nobis. The investigation was divided into three activities; soil borings and soil sampling for field analysis, soil excavation and removal and groundwater monitoring well installation, and sampling (Nobis, 1991).

The first activity was comprised of 15 soil borings, and subsurface soil sampling, for field screening of total VOCs, using a PID. The soil borings were located in and around the former gasoline USTs mentioned above. The results of the field screening indicated total VOCs ranging from ND to 2,817 ppm. The total VOC concentrations reportedly increased with depth. The highest concentrations of total VOCs were detected in soil samples collected from soil borings located on the southeast, or downgradient side of the former gasoline USTs (Nobis, 1991).

The second activity was a contaminated soil excavation and removal. Based on the results of the soil samples collected during the UST removals and the soil boring program, the soil excavation activity began removing soil from the northwest portion of the former UST area. The soil was removed, screened for total VOCs using a PID, and stockpiled on polyethylene sheeting in a vacant parcel of land southeast of Building 2008. Approximately 1,400 tons of soil was excavated from the former UST excavation as well as areas around the initial excavation. The removal excavation was extended vertically downward to approximately 20 feet (the extent of the excavator). The continuous total VOC screening of soil removed from the excavation, showed concentrations ranging from ND to 2,500 ppm. Reportedly, the highest concentrations were in the southwestern and northern portions of the excavation. Upon completion of the soil excavation, Nobis personnel collected 22 soil samples from the walls of the excavation. The soil samples were submitted for laboratory analysis consisting of TPHC using USEPA method 418.1. The results of the soil samples indicated that TPHC concentrations ranged from 39 to 569 mg/kg in the soil left in the excavation. The former UST excavation was backfilled with approximately 1,400 tons of "clean" soil on December 13, 1990. A total of seven soil samples were

ABB Environmental Services, Inc.

W0099521_M80

collected from the stockpiled soils and submitted for laboratory analysis consisting of TPHC and total VOCs. The results reportedly indicated that the stockpiled soil was below 1,800 ppm of TPHC. Based on these results the soil was removed from the site on November 19, 20 and 21, 1990 by Alky Enterprises, Inc. of Greenland, New Hampshire; and transported to Brox Paving Materials, Inc. in Hudson, New Hampshire. The manifests are presented in Appendix E of the Nobis report (Nobis, 1991).

The third phase of the investigation at the AAFES gas station was the installation of seven groundwater monitoring wells (AAFES-1D through AAFES-7). One monitoring well (AAFES-3) was installed in an apparent upgradient location while the remaining six monitoring wells were installed to monitor downgradient groundwater quality. The monitoring wells were sampled by Nobis on December 12, 1990. The samples were analyzed for TPHC only, using USEPA method 418.1. TPHC levels ranged from 1.7 to 5.1 mg/L. The results of the groundwater sampling did not exceed the MADEP action levels for remediation for low environmental impact areas (Nobis, 1991).

On May 27, 1992 ATEC, under contract to Fort Devens, removed a 500 gallon waste oil UST from behind Building 2008. The waste oil UST, and it's associated piping, were in "good condition" upon inspection by ATEC personnel. Groundwater was not encountered in the UST excavation. The soil removed from the side walls and bottom of the UST excavation, was reported as "visibly contaminated" and produced a "strong septic odor". Soil samples were collected from the excavation by ATEC personnel, for field screening consisting of PID headspace and TPHC screening, via IR. The results of the PID field screening showed total VOCs ranging from ND to 48.0 ppm and TPHC concentrations ranging from 6.3 to 28,745.5 ppm. Soil excavated from the waste oil UST removal had similar total VOC and TPHC concentrations (ATEC, 1992).

One soil sample (LSS-1) was collected from the wall of the excavation and another soil sample (LSS-2) was collected from the bottom of the excavation, for laboratory analysis. The samples were analyzed for VOCs, SVOC, Priority Pollntant Metals, and TPHC. The results of the laboratory analyses indicated that chlorinated solvents (tetrachloroethene (152 (LSS-1) and (31 ppb) (LSS-2), and 1,1,1-trichloroethane (11 ppb in LSS-2)) were present in the samples, as well as, xylenes (69 ppb in LSS-2) and methylene chloride (36 and 23 ppb). Bis(2-ethylhexyl)phthalate (2,640 (LSS-1) and 4,170 ppb (LSS-2)) and pyrene

ABB Environmental Services, Inc.

W0099521.MBD

(2,840 (LSS-1) and 2,670 (LSS-2)) were the only two SVOCs detected. TPHC was detected in each sample at 35,100 and 23,200 ppm, respectively. The metals analysis showed that the Priority Pollutant Metals were within the Fort Devens background concentrations (ATEC, 1992).

6.7.2 Site Investigation Program Summary

The SI at SA 43G was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). Table 6.7-1 summarizes the activities completed during the SI.

A field investigation was conducted at SA 43G to determine if the UST had been removed and if any residual contamination was still present in the subsurface soil. The program consisted of a surficial geophysical survey, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring to collect subsurface soil samples for off-site laboratory analysis (Figure 6.7-2).

Eleven TerraProbe points were advanced in and around the former UST location (see Figure 6.7-2). Three soil samples were collected from 9 feet to analyze the soil at or near the estimated bottom of the former UST. Four soil samples were collected from 11 feet and 12 feet, which was the depth of TerraProbe refusal at this site. All of the subsurface soil samples collected with the TerraProbe unit were analyzed in the field for BTEX and TPHC. The water table was not encountered in any of the TerraProbe points prior to probe refusal. Because groundwater was not reached, ten soil-gas samples were collected from 8 feet (just above the estimated bottom of the tank excavation). The soil-gas samples were analyzed for BTEX only.

One soil boring (43G-92-01X) was drilled to the water table, so that subsurface soil samples could be collected for laboratory analysis. The samples were analyzed in the laboratory for VOCs, TPHC, and lead (see Figure 6.7-2). All SI explorations were surveyed.

ABB Environmental Services, Inc.

W0099521.MS0

6.7.3 Supplemental Site Investigation Program Summary

The SSI at SA 43G was performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The following sections describe the field activities completed at this historic gas station during the SSI. Table 6.7-1 summarizes the activities completed during the SSI.

The SSI at SA 43G was conducted at the historic gas station G as well as at the AAFES gas station. To better define the distribution of contamination at SA 43G, the site was subdivided in three areas. Area 1 was comprised of historic gas station G. Area 2 included the areas around the active gasoline USTs, and Area 3 included the area in and around the former waste oil UST (see Figure 6.7-1).

Area 1. A total of five TerraProbe points were advanced west of the TerraProbe points completed at the historic gas station G during the SI. These points were located to further define the horizontal distribution of contaminants detected during the SI (see Figure 6.7-2). Up to two soil samples were collected from each TerraProbe point. The samples were analyzed in the field for BTEX and TPHC.

Based on the results of the supplemental TerraProbe survey at historic gas station G, one soil boring (XGB-93-09X) was advanced adjacent to the TerraProbe point with the highest concentration of contamination. A total of three soil samples were collected from this soil boring. The soil samples from this boring were analyzed for PAL VOCs, SVOCs, inorganics, TPHC, and TOC (see Figure 6.7-2).

Area 2. A total of 23 TerraProbe points were completed in the Area 2 gas station. These points were concentrated around the active gasoline USTs to determine if residual soil contamination was present (Figure 6.7-3). Up to two soil samples were collected from each point and analyzed in the field for BTEX and TPHC.

The results of the TerraProbe survey at Area 2 were, used to locate three soil borings (XGB-93-05X through XGB-93-07X) at "hot spots" in Area 2 (see Figure 6.7-3). Up to three soil samples were collected from each soil boring for

ABB Environmental Services, Inc.

W0099521.M80

laboratory analysis. The soil samples from these borings were analyzed for PAL VOCs, SVOCs, inorganics, TPHC, and TOC.

Area 3. A total of 10 TerraProbe points were completed Area 1 at the AAFES gas station. These points were concentrated in and around the former waste oil UST (see Figure 6.7-3). Up to two soil samples were collected from each point and analyzed in the field for BTEX and TPHC.

The results of the TerraProbe survey at the Area 1 were used to locate two soil borings (XGB-93-03X and XGB-93-04X) at "hot spots" in Area 1 (see Figure 6.7-3). Up to three soil samples were collected from each soil boring for laboratory analysis. The soil samples from these borings were analyzed for PAL VOCs, SVOCs, inorganics, TPHC, and TOC.

Two groundwater monitoring wells (XGM-93-01X and XGM-93-02X) were installed around Areas 2 and 3 to supplement the existing groundwater monitoring. well network. These new monitoring wells were installed to monitor upgradient (XGM-93-01X) and downgradient (XGM-93-02X) groundwater quality (see Figure 6.7-1). Monitoring well XGM-93-02X was also installed to replace the existing monitoring well AAFES-4 which had been dry historically. The screen of both monitoring wells was placed below the top of bedrock so that it would intercepted the water table to monitor for free product and allow for seasonal groundwater fluctuations. Due to the location of the water table in this portion of the installation, the newly installed and the existing monitoring wells were installed across the bedrock/soil interface. Elevated PID measurements were recorded on the drilling water and development water from XGM-93-02X, and from the development water from AAFES-1D, AAFES-2, and AAFES-6 (see Figure 6.7-1). Table 6.7-2 summarizes the construction of the SI monitoring wells at SA 43G and monitoring well installation diagrams are presented in Appendix C.

Two rounds (Round Three and Four) were collected from each of the AAFES monitoring wells, except for AAFES-4 which was dry during both round, and the two newly installed SSI monitoring wells. Round Three groundwater samples were collected in October 1993 and Round Four was collected in January 1994. These samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics (both filtered and unfiltered), TPHC, and TSS.

ABB	Envi	ronmental	Services.	Inc.
-----	------	-----------	-----------	------

W0099521.M80

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test. All SSI exploration locations were surveyed.

One sediment sample was collected from below a storm drain outfall that collects rain water runoff from SA 43G (Figure 6.7-1). The sediment sample was submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics, TPHC, TOC, and grain size.

6.7.4 Field Investigation Results and Observations

The results of the geophysical surveys completed during the SI did not indicate that an abandoned UST was present at SA 43G. The results of the geophysical surveys are presented in Appendix L.

The soil encountered at SA 43G ranged from silty sand (fill) to a sandy silt with fine to medium gravel (glacial till). The depth of bedrock ranged from 20.5 to 34.5 feet bgs. Rock core samples were collected from the monitoring well borings (XGM-93-01X and XGM-93-02X). The bedrock was classified at a meta siltstone or phyllite. The water table was encountered at 27 to 30 feet bgs (Table 6.7-3). The boring logs associated with SA 43G are presented in Appendix B.

Calculated hydraulic conductivities ranged from 1.8E⁻⁰⁵ centimeters per second (cm/sec.) at XGM-93-01X to 5.2E⁻⁰⁶ cm/sec. at XGM-93-02X. The hydraulic conductivity results are presented in Table 6.7-4.

The new monitoring wells were included in the November 8, 1993 synoptic water-level round at Fort Devens. The inferred groundwater flow, based upon this water-level round, appears to be flowing to the east (Figure 6.7-4).

6.7.5 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.7.5.1 Soil. Three subsurface soil samples were collected from 9 feet. This depth was chosen to analyze the soil at or near the estimated bottom of the former UST. BTEX was not detected in any of the 9 foot samples, but TPHC was detected at TP-04 and TP-11 at 830 ppm and 130 ppm, respectively (Figure 6.7-5). Four soil samples were collected from 11 feet to 12 feet. BTEX

ABB Environmental Services, Inc.

W0099521.M80

was not detected in any of the samples, but TPHC was detected in the 11 foot samples collected from TP-10 and TP-11 at concentrations of 130 ppm and 190 ppm, respectively (Figure 6.7-6). Groundwater was not encountered in any of the TerraProbe points advanced at SA 43G. Consequently, ten soil-gas samples were collected from a depth of 8 feet bgs (just above the estimated bottom of the tank excavation). The soil-gas samples were analyzed for BTEX only. BTEX was not detected in any of the soil-gas samples collect from SA 43G (Figure 6.7-7). Table 6.7-5 presents the field analysis data.

The results of the field analysis for soil samples collected from Area 1 during the SSI, indicated that residual TPHC contamination was present in the soil at this site to a depth of 10 feet bgs. The results from the two soil samples collected from TP-39 showed TPHC concentrations at 740 ppm at 10 feet and 2,000 ppm at 11 feet. TPHC was also detected in the 10-foot samples from TP-35, TP-37 and TP-38 at concentrations ranging from 190 to 400 ppm. No BTEX was detected in the soil samples collected from Area 1 (Table 6.7-6; see Figures 6.7-8 and 6.7-9).

Xylene (the only VOC detected) was detected at 6.3 ppb in only one (TP-13 at 10 feet) of the 23 soil sample collected from TerraProbe points located in Area 2. TPHC concentrations ranged from below the detection limit to 5,800 ppm. The concentrations were highest in the soil samples collected from the north and east/downgradient of the active gasoline USTs (i.e., TP-19, TP-31 and TP-32). Concentrations of BTEX contamination appeared to be confined to the area in and around the former waste oil UST and an apparent sand and gas trap in Area 3. Benzene was detected in the 10 to 11-foot soil sample collected from TP-08, only. Total BTEX ranged from below the detection limit to 32,930 ppb. TPHC concentrations ranged from below the detection limit to 8,500 ppm (see Table 6.7-6; Figures 6.7-8 and 6.7-9).

One soil boring was drilled to the water table during the SI adjacent to TP-04, which had the highest concentration of TPHC at 830 ppm, to determine if the TPHC contamination detected during the TerraProbe survey had migrated to the water table. Analytical soil samples were collected from depths of 10 feet to 12 feet and 20 feet to 22 feet bgs. Groundwater was encountered at 18 feet bgs and the boring was advanced to 22 feet bgs. No VOCs or TPHC were detected in either sample, and lead was present in each sample below the background concentration (Table 6.7-7, Figure 6.7-10).

ABB Environmental Services, Inc.	ABB	Enviror	nmental	Serv	ices.	Inc.
----------------------------------	-----	---------	---------	------	-------	------

W0099521_M80

SSI off-site laboratory subsurface soil samples were collected from similar depths as those collected during the SSI TerraProbe survey. No contaminants of concernwere detected in any of the soil samples collected from the soil boring (XGB-93-09X) drilled in Area 1. All TPHC concentrations were below the detection limit in these soil samples (see Table 6.7-7; Figure 6.7-10).

The results of the off-site laboratory analyses for soil samples collected from Area 2 showed low concentrations of VOCs (acetone and/or trichlorofluoromethane, (freon) common laboratory contaminants. SVOCs, consisting of predominantly PAHs were detected in the 8-foot soil sample collected from XGB-93-05X. The remaining SVOCs were bis(2-ethylhexyl)phthalate or di-n-butyl phthalate which are common laboratory contaminants. TPHC was detected at 185 μ g/g in the 8-foot sample from XGB-93-05X and in the 12-foot sample at XGB-93-06X. The results of the laboratory analyses in Area 3 indicated some low concentrations of VOCs from samples collected from soil borings XGB-93-03X and XGB-93-04X. These borings were drilled in or adjacent to the former waste oil UST and the existing sand and gas trap. Bis(2-ethylhexyl)phthalate and di-n-butyl phthalate (common laboratory contaminants) were the only SVOCs detected in Area 3. TPHC concentrations ranged from <52 to 1,020 ppm in the soil samples collected from Area 3. One soil boring (XGB-93-08X) was drilled between the AAFES gas station and historic gas station G to determine if contaminants from either area had impacted the subsurface soil quality at this location. No organic contaminants of concern were detected in any of the subsurface soil samples collected from XGB-93-08X (see Table 6.7-7; Figure 6.7-10).

Inorganic analytes were detected above the Fort Devens background concentration in each of the soil samples collected from SA 43G. The greatest number of analytes and the highest concentrations were detected in XGB-93-04X (12-foot sample), XGB-93-08X (8-foot and 17-foot samples) and XGB-93-09X (12-foot sample) (see Table 6.7-8; Figure 6.7-11).

6.7.5.2 Groundwater. The results of the laboratory analyses for the Round Three and Four groundwater sampling are presented in Table 6.7-9 and Figures 6.7-12 and 6.7-13. The results of the off-site laboratory analysis for each round showed the presence of several VOCs (including acetone, benzene, ethylbenzene, toluene, xylenes, PCE, and 1,2-DCA in the groundwater samples collected from the downgradient and crossgradient monitoring wells (AAFES-1D, AAFES-2,

ABB Environmental Services, Inc.

W0099521.M80

AAFES-5, AAFES-6, AAFES-7 and XGM-93-02X). Total VOCs ranged from 0.86 μ g/L at AAFES-7 to 11,500 μ g/L at AAFES-2 during Round Three. Bis(2-hexylmethyl) phthalate (a common laboratory contaminant) was detected at 6.3 μ g/L in the sample collected from AAFES-7. Total VOCs ranged from 1.6 μ g/L at AAFES-7 to 12,400 μ g/L at AAFES-2 during Round Four. Bis(2-hexylmethyl) phthalate (a common laboratory contaminant) was detected at 6.3 μ g/L in the Round Three sample collected from AAFES-7, and at 5.0 μ g/L in the Round Three sample collected from AAFES-7, and at 5.0 μ g/L in the Round Four sample collected from XGM-93-01X. Several SVOCs (1-methylnaphthalene, naphthalene and phenanthrene) were also detected in the downgradient groundwater samples. Total SVOCs ranged from 2.5 μ g/L at AAFES-6 to 4,080 μ g/L at AAFES-2 in the Round Three samples.

Several SVOCs (1-methylnaphthalene, naphthalene and phenanthrene) were also detected in the downgradient groundwater samples. Total SVOCs ranged from 1.7 μ g/L at AAFES-6 to 4,020 μ g/L at AAFES-2 in the Round Four samples. TPHC was detected in the downgradient groundwater samples and the sample collected from the upgradient monitoring well AAFES-3, at concentrations ranging from 190 to 44,000 μ g/L in Round Three and from 230 to 120,000 μ g/L in Round Four. No VOCs, SVOCs or TPHC were detected in the samples collected from the upgradient monitoring wells (XGM-93-01X) installed during the SSI. Several inorganic analytes were detected above the Fort Devens groundwater background concentrations in both the unfiltered and the filtered samples during both round of sampling (see Table 6.7-9; Figure 6.7-13 and 6.7-14). Approximately 0.10 feet of free product was measured in AAFES-2 prior to the Round Three groundwater sampling. No free product was measured in any of the monitoring wells sampled during Round 4.

6.7.5.3 Sediment. The results of the SSI off-site laboratory analyses are presented in Table 6.7-10 and Figure 6.7-15. One sediment sample was collected from the outfall of the storm drain which drains the paved area at the AAFES gas station. This storm water outfall flows into an open ditch which runs southeast to an unnamed stream, located on the east side of Patch Road, that eventually empties into Robbins Pond. No VOCs or SVOCs were detected in this sample. Several inorganic analytes were detected at notable concentrations. TPHC was detected at 448 μ g/g. A surface water sample was not collected due to insufficient surface water volume during sampling.

ABB Environmental Services, Inc.

W0099521.M80

6.7.6 Source Evaluation and Migration Potential

It appears that past leaks and spills from former USTs have impacted soil and groundwater quality at Areas 2 and 3 and that contaminants detected in the soil are a continuing source of contaminations which are percolating to the groundwater, and moving downgradient with the groundwater flow. The replacement of the active gasoline USTs in 1990 and the subsequent removal of the waste oil UST, does not appear to have stopped the source of contaminants detected in the groundwater. It appears that the soil east of the active USTs, at the former waste oil UST location and the existing sand and gas trap for Building 2008, contains contaminants which continue to adversely impact groundwater quality below the AAFES gas station.

Additional TPHC contamination detected at Area 1 does not appear to have impacted the soil or groundwater quality below historic gas station G.

Elevated TPHC was detected in the sediment sample collected from the outfall which drains the parking/refueling area at the AAFES gas station. The elevated TPHC concentration (448 μ g/g) appears to the caused by runoff of small fuel spills associated with the AAFES gas station activities. Based on the TPHC concentration and lack of any associated VOCs, SVOCs, or elevated lead concentration, it appears that the sediment in this area has been moderately impacted by the AAFES gas station surface water runoff.

6.7.7 Preliminary Human Health Risk Evaluation

SA 43G has been divided into three areas to more accurately characterize contamination: Area 1 is the historic gas station, Area 2 includes the area around the active AAFES gas station USTs, and Area 3 is the former waste oil UST.

Area 1 Subsurface Soil. During the SI, field-screening of TerraProbe soil samples revealed no measurable concentrations of BTEX. Comparing the measured TPHC results against the calculated risk-based commercial/industrial concentration value of 1,800 μ g/g for gasoline indicates no significant risk to public health from soil contamination at SA 43G.

During the SSI, 10 additional TerraProbe samples and three confirmatory soil boring samples were analyzed for Area 1. The results for the individual samples

ABB Environmental Services, Inc.

W0099521,M80

appear in Tables 6.7-5 through 6.7-8. Table 6.7-11 combines and summarizes the field and off-site laboratory analytical data and compares it to Region III commercial and MCP Category S-2 soil guidelines. No BTEX was detected. TPHC was detected in 7 of 12 samples, but only the maximum concentration of 2000 ppm exceeded the calculated guideline for gasoline. All concentrations of TPHC were below the MCP Category S-2 soil guideline. Inorganics detected in the soil boring were below guidelines with the exception of arsenic which was above background and exceeded both Region III and MCP Category S-2 soil guidelines of 1.6 and 30 ppm, respectively. It is unlikely, however, that arsenic was derived from the past practices at Area 1.

Area 2 Subsurface Soil. No samples were taken in Area 2 during the SI. During the SSI, 22 TerraProbe samples and five soil boring samples were analyzed. The results for the individual samples appear in Tables 6.7-5 through 6.7-8. Table 6.7-11 combines and summarizes the field and laboratory analytical data and compares it to Region III commercial and MCP Category S-2 soil guidelines. Toluene and xylene were detected at TP-13 and TP-31 at concentrations below guidelines. TPHC was detected in 15 of 26 samples, but only the maximum concentration of 5,800 ppm in one sample exceeded the calculated guideline for gasoline and the MCP Category S-2 soil guideline for TPHC. All other detected concentrations of TPHC were below these guidelines. All detected concentrations of inorganics are below Region III and MCP S-2 soil guidelines with the exception of beryllium. Beryllium was detected in 4 of 5 samples and all detected concentrations exceeded the Region III guideline of 0.67 ppm and the MCP S-2 guideline of 0.8 ppm. In conclusion, concentrations of TPHC in subsurface soil at one location at Area 2 of SA 43G may pose a potential threat to human health. Although beryllium exceeded both risk-based guidelines, it is unlikely that beryllium was derived from the petroleum releases at Area 2.

Area 3 Subsurface Soil. No samples were taken in Area 3 during the SI. During the SSI, 11 TerraProbe samples and four soil boring samples were analyzed. The results for the individual samples appear in Tables 6.7-5 through 6.7-8. Table 6.7-11 combines and summarizes the field and laboratory analytical data and compares it to Region III commercial and MCP Category S-2 soil guidelines. Benzene, toluene, ethylbenzene, and xylene were detected at concentrations below guidelines. TPHC was detected in 11 of 14 samples. The concentrations of 8,500 ppm detected at TP-02 and 3,300 ppm at TP-08 exceeded the calculated guideline for gasoline and the MCP Category S-2 soil guideline for TPHC. All

ABB Environmental Services, Inc.

W0099521.M80

other detected concentrations of TPHC were below these guidelines. Inorganics detected were below guidelines with the exception of arsenic which was above background and exceeded both Region III and MCP Category S-2 soil guidelines of 1.6 and 30 ppm, respectively, in two samples. In conclusion, concentrations of TPHC in subsurface soil at Area 2 may pose a potential threat to human health. It is unlikely, however, that arsenic was derived from the petroleum releases at Area 3.

Groundwater. Table 6.7-12 presents summary statistics for groundwater associated with SA 43G and drinking water standards/guidelines for comparison. Only data for unfiltered samples is reported.

Several organic compounds were detected in the groundwater associated with Areas 2 and 3: 1,2-DCA, 2-methylnaphthalene, acetone, benzene, bis(2-ethylhexyl)phthalate, ethylbenzene, naphthalene, phenanthrene, PCE, toluene, xylenes, and TPHC. Acetone and bis(2-ethylhexyl)phthalate were each detected in one to two of 16 samples. These two compounds are common laboratory contaminants and are not believed to be site-related. Regardless, the concentration of acetone did not exceed the Massachusetts guideline and bis(2-ethylhexyl)phthalate at 6.3 μ g/L was just above the federal MCL of 6 μ g/L. Toluene, xylene, PCE, and 1.2-DCA were not detected at concentrations that exceeded a standard or guideline. Both benzene and ethylbenzene were detected at concentrations exceeding their respective federal MCL. Although the PAHs do not have federal or state standards or guidelines, naphthalene does have a Region III tap water concentration of 1,500 µg/L. The maximum concentration of naphthalene does exceed this health-protective concentration. Finally, both the average and maximum concentrations of TPHC exceed the MCP GW-1 standard of 1,000 µg/L.

The maximum concentrations of all inorganic analytes detected in groundwater were greater than the Fort Devens background concentrations for groundwater. Nine analytes were detected at concentrations above their respective drinking water standard/guideline. Aluminum, iron, and manganese were detected in 16 of 16 samples and the average concentration of each exceeded its respective USEPA secondary MCL. (Secondary MCLs are set for aesthetic or economic reasons, not health reasons.) The average concentration of sodium exceeds its Massachusetts guideline. Maximum concentrations of antimony, arsenic, chromium and nickel exceed their respective federal MCLs, although the average concentration of

ABB Environmental Services, Inc.

W0099521.M80

antimony and chromium does not. The average concentration of lead is above the USEPA action level. Filtered samples were also collected for inorganic analysis, and TSS analysis was also conducted on an unfiltered groundwater sample, from each monitoring well. The results of the filtered inorganic analysis showed that several inorganic analytes were detected above the Fort Devens background. However, only manganese was detected above the drinking water standard. TSS results also show high concentrations of suspended solids in each sample. The results of these two analyses appear to indicate that the elevated inorganic concentration, detected in the unfiltered samples, was a result of TSS not releases from SA 43G.

Based on this screening-level analysis, the use of this groundwater as a source of drinking water would pose potential human health risks based on concentrations of benzene, ethylbenzene, TPHC, naphthalene, arsenic, antimony, chromium and nickel.

Sediment. No organic compounds were detected in the one sediment sample that was taken (Table 6.7-13). TPHC was detected at 448 μ g/g which is less than the MCP S-1 standard of 500 μ g/g, but exceeds the calculated residential concentration for gasoline.

Of the inorganic analytes detected in the sediment, only arsenic exceeds a guideline. The detected concentration of 7.5 μ g/g is greater than the Region III residential soil concentration but less than the MCP S-1 standard. The use of residential soil standards is a conservative approach taken in the absence of health-based guidelines specifically for sediment. Exposure to contaminants in this ditch sediment would be much less than that in a residential setting. The concentration of arsenic and TPHC associated with SA 43G sediment is not expected to present a risk to public health under present or foreseeable future uses of the SA.

6.7.8 Conclusions and Recommendations

Based on the results of the SI, the SSI and the human health PRE, no further action is recommended for Area 1 (historic gas station G). However, an RI/FS is recommended to further assess the groundwater and soil contamination detected at Areas 2 and 3.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6,7-1 SUMMARY OF TECHNICAL APPROACH SA 43G - HISTORIC GAS STATION G

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITY	PURPOSE	STIE	RATIONALE FOR SELECTED LOCATIONS		
SI PROGRAM					
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-11	* IN AND AROUND FORMER HGS D UST GRAVE		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS	43G-42-mX	LOCATED AT TERRAPROBE SURVEY 'HOT SPOT		
SSI PROGRAM					
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-39	 AROUND ACTIVE GAS UST: AND FORMER WASTE OIL UST WASTE OIL UST 		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 INSTALL MONITORING WELLS CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	XGB-93-03X XGB-93-04X XGB-93-05X XGB-93-05X XGB-93-06X XGB-93-07X	 LOCATED AT TERRAPROBE SURVEY 'HOT SPOTS 		
		XGB-93-08X	* LOCATED BETWEEN AREA LAND AAFES		
		XGB-93-09X	LOCATED AT TERRAPROBE SURVEY 'HOT SPOTS		
MONITORING WELL INSTALLATION	* MONITOR GROUNDWATER LEVELS	XGM-93-01X	UPGRADIENT		
AND GROUNDWATER SAMPLING	* MONITOR GROUNDWATER QUALITY * DETERMINE AQUIPER CONDUCTIVITIES	XGM-93-02X	* DOWNGRADIENT		
SEDIMENT SAMPLING	* COLLECT SAMPLE FOR LABORATORY ANALYSIS	XGD-93-02X	* STORM DRAIN OUTFALL		

TABLE 6.7-2 MONITORING WELL COMPLETION DETAILS SA 43G - HISTORIC GAS STATION G

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL IDENTIFICATION	SOIL DRILLING METHOD	BEDROCK DRILLING MEHTOD	MEDIA	WELL SCREEN DEPTH (Feet bgs)	WELL SCREEN ELEVATION (Feet NGVD)	COMPLETION DEPTH (Feet bgs)	CONSTRUCTION MATERIAL
XGM-93-01X	NA	ROCK CORE	BEDROCK	10-20	234.8 - 224.8	20.5	4 ID PVC
XGM-93-02X	NA	ROCK CORE	BEDROCK	15-25	237.2 - 227.4	26	4 ID PVC

3

5

NA=Not Applicable

¥ ...

TABLE 6.7-3 SUMMARY OF SOIL BORINGS SA 43G - HISTORIC GAS STATION G

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION	COMPLETION DEPTH (Feedlep)	REFERENCE SAMPLE INTERVALS (Feet bgs)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCA BY PID (PPM)	COMMENTS
43G-92401X	22	5-7		SW	BKO	
	10 million	10-12	10-12	SW	BKG	
		13-17		SW	BKG	
		20-22	20-22	SM	BKO	
XGB-93-03X	25	1-3		GP	BKG	
Correction of the	-	5-7	and the second sec	SP .	BKG	
		8-10	E-10	GP	8	
		12-14	12-14	5 9	23.2	
		13-17		SW	BKG	A CONTRACT OF A
		20-22		SM-ML	482	Total VOCs measured in beadspace
	1	25-27		SNI-ML	245.7	Total VOCa measured in headspace
XGB-93-04X	25	15		GP	BKG	and the second sec
		5-7		SP	BKG	
		8-10	8-10 12-14	51P 51P	220.1 BKG	and the second s
		15-17	12-14	ST SW	15.1	Total VOCs measured in headspace
		20-22		aw	154	No Recovery
			23-26	SNEAD	13	Refinal at 26-feet
XGB-93-05X	28	0-2		SW	BKG	
		5-7	1.	5W	BKG	
		\$-10	8-10	SP	BKG	
		12-14	12-14	519	BKG	
		15-17		SW	BKG	
		20-22	20-22	533	BKG	
	· · · · · ·	25-27	25-27	SM	BKG	Refuent at 28-feet
XGB-93-06X	25.5	0-2	1	SP	BKG	A Product of the second s
1		5-7	1000	SP	BKG	the second se
		1-10	8-10	SP	BKG	
		12-14	12-14	SP	BKG	
		15-17	1.64	SW-SM	BKG	Fill material from 0 to 15-fest
		20-21		SW-SM	BKG	
		23-25.5		SW-SM	BKG	Refinal on phylite at 23.3-fort
XGB-93-07X	20.5	14		SP-SM	BKG	
10.00 M	A.117	5-7		SP-SM	BKG	
		8-113	1.00	SW-GW	BKG	Insufficient recovery for analysical
		10+12	10-12	SW-GW	RKG	
		12-14		SW-GW	8.4	Climatic of aspirati catight in spices
		15-17		SW	BKG	
		20-20.5		SM	BKG	Refused at 20.5-feet

TABLE 6.7-3 SUMMARY OF SOIL BORINGS SA 43G - HISTORIC GAS STATION G

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (Feet bgs)	REFERENCE SAMPLE INTERVALS (Fort bet)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCS BY PID (PPM)	COMMENTS
XGB-93-08X	27.5	13		SP	BKG	
and the second se	27	5-7		SW	BKG	
		\$-16	8-10	SW	BKG	
		10-12		SW-SM	BKG	
		12-14	12-14	SW-SM	BKG	
		15-17	111110	SW-SM	BKG	
		17-19	17-19	SW-SM	BKG	
		19-21	19-21	SM	BKG	1.5 m 1.4 m 2.
the second se		25-27		SM	BKG	Refinal at 27.5-feet
X0B-91-09X	29.7	13		SW	BKG	
the second se	1	5-7		SW	BKG	
		\$-10	8-10	SP	BKG	
			12-14	GW-SW	BKG	
		13-17		SP-SM	BKG	
		20-22	20-22	SM	BKG	and the strength of the strength os strength of the strength os strength of the strength os strength o
		25-26-2	1	SM-PUYL	BKG	Refinal at 29.5-fort
XGM-93-01X	34	0-2	1	SP-FILL	BKG	
		46		SW-SM	BKG	
		9-11		3W	BKG	
		14-16	1.0	SM	BKG	
			19-21	ML-PHYL	BKG	
provide the second s		24-26		SM-PHYL	BKG	the second secon
		29-30		ML-PHVL	BKG	Phylite ramed w/ rollerbit to 34-feet
XGM-93-02X	38	0-2		SP	BKG	
and the second of the		46		SP	BKG	
		9-11		sw	BKG	
		14-16		SP-SW	BKG	
		19-21		814	BKG	
			24-26	SM	BKG	
		29-31	10.00	SM	BKG	PID = 8 ppm at mouth of benchois
		34-34.5		SM-PHYL	82	Phylite bedrock at 34.5-feet

NOTES:

bga = below ground surface VOCa = Volatile organic compounds USCS = Unified soit classification system

ppm = parts per million

ptryl = phylite

BKG = background levels of Total VOCs were measured with a PID at the work site

TABLE 6.7-4 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 43G - HISTORIC GAS STATION G

SITE INVESTIGATION REPORT FORT DEVENS, MA

ELEVATION ¹	DEPTH TO	ELEVATION OF	CONDUCTIVITY
	WATER	WATER	HVORSLEV ²
	(Feet bgs)	(Feet NGVD)	(cm/sec)
27.69	27.69	285,93	1,8E-05
30.50	30.51	279,40	5.2E-06
	27.69	ELEVATION ¹ (Feet bgs) 27,69 27,69	WATER ELEVATION ¹ WATER (Feet bgs) WATER (Feet NGVD) 27.69 27.69 285.93

Notes:

bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc.

2 = averaged value of two tests.

Groundwater elevations from November 8, 1993

Synoptic water level round.

TABLE 6.7-5 SI FIELD ANALYTICAL RESULTS SUBSURFACE SOIL/SOIL GAS SAMPLES SA 43G - HISTORIC GAS STATIONS G

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE - SOIL (ppb)	TP-04	TF-04	TP-09	TP-09	TP-10	TP-11	TP-11
DEPTH	9 FT	12 FT	10 FT	11 FT	11 FT	9 FT	10 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1
TOLUENE	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1
0-XYLENE	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1
OTHER (ppm)							
TOTAL PETROLEUM HYDROCANBONS	830	< 54	< 54	< 54	130	-130	190

ARALYTE - SOIL GAS (ppb)	TP-01	TP-02	TF-03	TP-04	TP-05	7P-06	TP-07	TF-08	12-05	TP-10
DEPTH	8 FT	a Fr	SFT	8 FT						
BENZENG	< 0,1	< 0.1	< 0,1	< 0,1	< 0,1	< 0.1	< 0,1	< 0,1	< 0.1	< 0,1
TOLUENE	< 0.1	< 0,1	< 0,1	< 0,1	< 0,1	< 0.1	< 0.1	< 0,1	< 0.1	< 0,1
ETBYLBENZENE	< 0,1	≈ 0,1	< 0,1	< 0/1	<0,1	< 0.1	< 0,1	< 0.1	< 0,1	< 0.1
m/p-NYLENE	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
o-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	<04	<0.1	< 0.1	< 0.1	< 0.1	< 0.1

Notes:

< = Less than detention limit.

	TP-01	TP-02	TP-02	TP-02	TP-03	TP-03	37-04	TP-05	TP-07
ANALYTE	TSG0110F	TSG0209F	TSG0210F	TSG0211F	TSG0309F	TSG0310F	TSG0410F	TSG0510F	TSG0710F
ORGANICS	10 FT	9 FT	10 FT	11 FT	9 FT	10 FT	10 PT	10 FT	10 FT
BENZENE	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	1.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	4.9	< 0.1
ETHYLBENZENE	< 0,1	4.4	< 0.1	< 0.1	< 0.1	< 0.1	13	13	< 0.1
n/p-XYLENE	< 0.1	8.8	0.3	< 0.1	< 0.1	< 0.1	3.4	120	< 0.1
0-XYLENE	< 0.1	12	< 0.1	< 0.1	< 0.1	0.8	2.4	58	< 0.1
OTHER							-		
TOTAL PETROLEUM HYDROCARBONS	< 52	8500	210	120	960	NA	110	110	< 51

and the second second	TF-08	TP-10	TP-I3	17-14	TP-18	TP-19	TP-19	TP-20	TP-20
ANALYTE	TSGOBLUF	TSG1010F	TSGIDIOF	TSG1410F	TSO109F	TSG1909F	TSG1910F	TSG2009F	T\$G2011F
ORGANICS	10 FT	10 FT	10 FT	10 PT	9 FT	9 FT	10 FT	9 FT	II FT
BENZENE	140	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1
TOLUENE	290	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	14000	< 0.1	< 0.1	<0.)	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1
n/p-XYLENE	13000	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
o-XYLENE	5500	< 0.1	6.3	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
OTHER									
TOTAL PETROLEUM HYDROCARBONS	3300	< 54	74	\$00	140	200	2300	< 52	560

	TP-21	TF-22	TP-23	TP-24	TP-25	TP-26	TP-26	TP-28	TP-29
ANALYTE	TSG2109F	TSG2213F	T5G2109F	TSG2409F	TSG2509P	TSG2509F	TSG2611F	TSG2811F	TSG2909F
ORGANICS	9 FT	13 FT	9 FT	9 FT	9 FT	9 FT	ti FT	11 FT	9 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
o-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OTHER									
TOTAL PETROLEUM HYDROCARBONS	NA	160	64	130	< 53	< 53	< 53	< 53	950

	TP-30	TP-10	TP-31	TF-32	TP-33	17-34	TP-35	TF-35	IP-36
ANALYTE	TSG3009F	TSG3010F	TSG3109F	TSG3209F	TSG3309F	TSG3409F	TSG3510F	TSG3511F	TSG3610F
ORGANICS	9 FT	10 FT	9 FT	9 FT	9 FT	9 FT	10 FT	11 FT	10 FT
BENZENE	< 6.1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	13	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0,1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	0,9	< 0,1	< 0,1	< 0.1	< 0.1	<0.1	< 0,1
o-XYLENE	< 0.1	<0.1	1.0	< 0,1	< 0,1	< 0,1	< 0.1	< 0,1	< 0.1
OTHER									
TOTAL PETROLEUM HYDROCARBONS	460	120	5800	230	< 54	< 54	400	<55	< 52

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-36	TP-37	TP-37	TP-38	TP-38	TP-39	TF-39
ANALYTE	T\$G3611F	TSG3710F	TSG3711F	T\$G3810F	TSG3811F	TSG3910F	TSG3911F
ORGANICS	11 FT	10 FT	11 FT	10 FT	11 FT	10 FT	11 FT
BENZENE	< 0.1	< 0.1	< 0,1	< 0.1	< 0,1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
o-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1
OTHER							
TOTAL PETROLEUM BYDROCARBONS	< 52	270	54	190	52	740	2000

Notes:

< = Less than detection limit.

TABLE 6.7-7 ORGANIC ANALY TES IN SUBSURFACE SOIL SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

				SSI			
ANALYTE	XGB-93-03X	XGB-93-03X	XGB-93-03X	XG8-93-04X	XGB-93-04X	XGB-93-04X	XGB-93-05X
ORGANICS (ug/g)	8 FT	12 FT	20 FT	8 FT	12 FT	25 FT	8 FT
ACETONE	< 0.017	< 0.017	< 0,017	< 0.05	< 0.017	0,024	0.047
ETHYLBENZENE	< 0,002	< 0.002	0,002	0.03	< 0,002	< 0.002	< 10.000
TOLUENE	< 0.001	< 0.001	< 0,001	0.02	< 0.001	< 0.001	< 0.00.
TRICHLOROFLUOROMETHANE	< 0.005	< 0.006	0.006	0,05	< 0,005	< 0.006	0.0)
XVLENES	0.008	< 0.002	0.019	0.5	< 0.002	< 11.002	< 0.002
2-METHYLNAPHTHALENE	s 0.5	< 0.049	0.17	0.72	< 0.049	< 0.049	< 11.5
ACENAPHTHYLENE	< 0.3	< 0.033	< 0.073	< 0.3	< 0.033	< 0.033	
ANTHRACENE	< 0.3	< 0.033	< 0.031	< 0.3	< 0.033	< 0.033	-4
BENZO (A) ANTHRACENE	< 2	< 0,17	< 11.17	< 2	≈ 0.17	< 0.17	3
BENZO (A) PYRENE	< 2	< 0.25	< 0.25	< 2	\$ 0.25	< 0.25	10
BENZO [B] FLUORANTHENE	< 2	< 0.21	< 0.21	< 2	< 0.21	< 0.21	30
BENZO [G.H.I] PERYLENE	< 2	< 0.25	< 0.25	< 2	< 0.25	< 0.25	1
BENZO [K] FLUORANTHENE	< 0.7	< 0.066	< 0.066	< 0.7.	< 0.065	< 0.055	
BIS (2 - ETHYLHEXYL) PHTHALATE	< 6	< 0,62	0.96	< 5	< 0.62	< 0.82	< 1
CHRYSENE	~ L	< 0.17	< 0.12	< 1	< 0.12	< 0.12	10
DI-N-BUTYL PHTHALATE	< 0.0	0;45	0,76	< 0.061	0.45	0.35	< 10
FLUORANTHENE	< 0.7	< 0.068	< 0.068	< 0.7	< 0.068	< 0,068	21
FLUORENE	< 0.3	< 0.033	< 0.035	< 0.033	< 0.033	< 0.033	1
INDENO [1,2,3-C.D] PYRENE	20	< 0.29	< 0.29	< 3	< 0.29	< 0,29	
NAPHTHALENE	< 0.4	< 0.037	< 0.037	0.45	< 0.037	< 0,637	- 10.3
PHENANTHRENE	< 0.7	< 0,033	< 0.013	< 0.3	< 10.033	< 0.053	1
PYRENE	< 0.3	< 0.033	< 0.035	≈ 0.5	< 0.033	< 0.033	_1
OTHER (ug/g)	2 I I				2		
TOTAL ORGANIC CARBON	NA	NA	L990	NA	NA	845	2740
TOTAL PETROLEUM HYDROCARBONS	359	59,2	42.6	1020	213	40.8	18

Notes

< = Less than detection limit.

TABLE 6.7-7 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	1			SSI	A		-
ANALYTE	XGB-93-05X	XGB-93-05X	XGB-93-06X	XGB-93-06X	XGB-93-07X	XGB-93-08X	XGB-93-08X
ORGANICS (wg/g)	12 FT	25 FT	8 FT	12 FT	10 FT	8 FT	12 FT
ACEIONE	< 0.017	< 0.017	< 0.017	< 0.017	< 0.017	< 0.017	< 0.0177
ETHYLBENZENE	< 0.002	< 0,002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
TOLLIENE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TRICHLOROFLUOROMETHANE	< 0.005	< 0.006	< 0.006	0.006	0.007	0.009	0.01
XYLENES	< 0.602	< 0.002	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002
1-METHVLNAPHTHALENE	< 0.049	< 0.049	< 0.049	< 0.2	< 0.049	< 0.049	< 0.049
ACENAPHTHYLENE	< 0.033	< 0.033	< 0.033	< 0.2	< 0.033	< 0.033	< 0.033
ANTHRACENE	< 0.033	< 0.003	< 0,033	< 0.2	< 0.003	< 0.033	< 0.033
BENZO JAJ ANTHRACENE	< 0.17	< 0.17	< 0.17	< 0.9	< 0.17	< 0.17	< 0.17
BENZO JAJ PYRENE	< 0.25	< 0.25	< 0.25	< 1	< 0.15	< 0.25	< 0.25
BENZO (B) FLUORANTHENE	~ 0.23	< 0.21	< 0.21	< 1	< 0.21	< 0.21	< 0.23
BENZO [G,HJ] PERVLENE	< 0.25	< 0.25	< 0.25	1	< 0.25	< 0.25	< 0.25
BENZO [K] FLUORANTHENE	< 0,066	< 0.066	< 0,066	< 0,8	< 0.066	< 0.068	< 0.066
BIS (2-ETHYLHEXYL) PHTHALATE	< 0.52	< 0.6I	< 0.67	< 1	< 0.62	< 0.62	< 0.02
CHRYSENE	< 0.12	< 0.12	< 0.12	< 0,5	< 0.22	< D/12	< 0.12
DI-N-BUTYL PHTHALATE	0.43	0.56	0.52	0.6	< 0.061	0.25	0.15
FLUORANTHENE	< 0.065	< 11.065	< 0,068	< 0,3	< 0.068	< 0.068	< 0.068
FLUORENE	< 0.033	< 0.053	< 0.033	< 0.2	< 0.033	< 0.033	< 0.033
INDENO (1.2,3-C.D) PYRENE	< 0.29	< 0.29	< 0.29	0 I	< 0.29	< 0.29	< 0.29
NAPHTHALENE	< 0.037	< 0.017	< 0.037	< 0,2	< 0.037	< 0.037	< 0.037
PHENANTHRENE	< 0.033	< 0.073	< 0.033	< 0.2	< 0.033	< 0.033	< (1.053
PYRENE	< 0.033	< 0,033	< 0.033	< 0,2	< 0.035	< 0.033	< 0.033
OTHER (ug/g)							
TOTAL ORGANIC CARBON	NA						
TOTAL PETROLEUM HYDROCARBONS	< 28.7	< 26.7	\$ 28.5	158	< 25.8	< 28.7	< 28.8

Nales

< = Lass than detection limit.

TABLE 6.7-7 DRGANIC ANALYTES IN SUBSURFACE SOIL SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	1		SSI				SL	
ANALTTE	XGB-93-08X	XGB-93-09K	XGB-93-09X	AGB-93-09X	XGM-93-01X	XOM-93-02X	430-92-01%	43G-92-01X
ORGANICS (ug/g)	17 FT	8 PT	12 FT	20 FT	19 FT	24 FT	10 FT	20 FT
ACETONE	< 0.007	< 0,017	< 0017	< 0.017	< 0.017	< 0.017	< 0,017	< 0,03
ETHYLBENZENE	< 0.002	< 0.002	< 0.002	< 0.002	< 0,002	< 0.002	< 0,002	< 0.00
TOLUENE	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
TRICULOROFLUOROMETHANE	< 0.006	0.006	0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.00
XYLENES	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.005
2-METHYLNAPHTHALENE	< 0.049	< 0.049	< 0,049	< 0.049	< 0,049	< 0.049	< 0.5	< 0.
ACENAPHTHYLENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.3	< 0.3
ANTHRACENE	< 0.033	< 0,033	< 0,033	< 0.033	< 0.033	< 0,033	< 0,3	< 0,3
BENZO (A) ANTHRACENE	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.17	< 0.1
BENZO JAJ PYRENE	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 02
BENZO [B] FLUORANTHENE	< 0.21	< 0.21	< 0.21	€ 0.21	< 0.21	< 0.21	< 0.21	€ 0.2
BENZO [G,HJ] PERYLENE	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.2
BENZO (K) FLUORANTHENE	< 0.065	< 0,000	< 0.056	< 0.065	< 0.005	< 0,066	< 0.066	< 0.06
BIS (2-EINYLREXYL) PHTHALATE	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.6
CHRYSENE	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.1
DI-N-BUTYL PHTHALATE	81.0	0.27	0.27	0.49	0.88	< 0.051	< 0.061	< 0.06
FLUORANTHENE	< 0.068	< 0,068	< 0.068	< 0.068	< 0.068	< 0.068	< 0,068	< 0.064
FLUORENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.03
INDENO (123-C,D) PYRENE	< 0.29	< 0.29	< 0,29	€ 0,29	₹ 6.29	< 0.29	< 0.29	< 0.2
NAPHTHALENE	< 0.037	< 0.037	< 0.057	< 0.037	< 0.037	< 0.037	< 0.037	< 0.03
PHENANTHRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 11,035	< 0.035	< 0.033	< 0.03
PYRENE	< 0,033	< 0.033	< 0.033	< 0.033	< 0.033	< 0,033	< 0.033	< 0.03
O'THER (ag/g)				1				
TOTAL ORGANIC CARBON	1250	NA	NA	687	2490	576	NÁ	43
TOTAL PETROLEUM HYDROCARBONS	< 98.7	< 28,7	< 28.7	< 28.7	< 28.8	< 28.8	< 27.7	< 27.

Notes

< = Less than detection limit.

TABLE 6.7–8 INORGANIC ANALYTES IN SUBSURFACE SOIL 5A 43G – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		and the second second		SSI					SSI		1.00
ANALYTE	BACKGROUND	XGB-93-05X	XGB-93-05X	XG8-91-03X	XGB-93-84X	XGB-93-84X	XGB-93-04X	XGB-93-45X	XI88-93-05K	XGE-91-05X	XG8-91-06X
INORGANIC (w/s)	1	\$.FT	12 FT	20 FT	8.PT	12 FT	TEFT	8 PT	12 PT	25 PT	8 PT
ALUMINUM	15000.0	11200	3100	7120	30000	9046	9270	3345	12200	\$550	3770
ANTIMONY		R. 1.05	< 1.09	< 1.09	< 1.09	< 1.09	< 1.09	< 1.09	C LIG	< 1.69	× 1.09
ARSENIC	21.0	17	31	10	51	38	14	16	27	8.53	8.21
BARIUM	42.5	23.5	14.6	23.3	53.3	29.2	25	22.9	£.67.	.20	21.5
BERYLLIUM	0.347	< 0,5	< 0.5	< 0.5	< 05	~ 0.1	× 0.5	0.964	1.38	1.25	0.590
CADMIUM	2.0	< 9.7	< 9.7	< 0.7	2.61	< 6.7	< 0.7	< 9.7	< 9.7	~ 07	< 0.7
CALCIUM	1400.0	1130	405	554	1570	1005	1930	1190	364	614	651
CHROMIUM	31.0	31,2	37.4	19.2	46	56.8	23.1	32	37.4	34.7	3.69
COBALT	NA.	1.25	6,99	It	3.56	9.91	7.03	0,50	501	Lō.	107
COPPER	8,39	10.2	9.09	27.1	1.56	121	15.5	IA.A.	11.5	9.06	6.54
IRON	15000.0	11390	9660	21700	10400	(930)	17600	10700	1,5334	12400	Statist?
LEAD	36.9	14	3.12	8.0	13	57	8.5	30	100	5.29	3.8
MACINESIUM	5600 D	2250	2550	3370	11/10	00/0	3910	28%0	2970	1 5633	190
MANGANESE	\$90.0	229	239	501	16.6	267	194	130	32.9	280	81.7
NICKEL	14.0	19.5	22.4	30.8	20.4	38.3	24.1	20.3	5.6.0	21.2	3,02
POTASSIUM	1760	568	774	005	1380	1140	1110	7072	584.9	760	1440
SODIUM	131.0	295	287	254	142	419	373	28.8	7.67	265	304
VANADIUM	28.7	151	8.24	8.18	18.5	19.9	12.8	143	35.3	8,73	11.0
ZINC	35.3	24.1	21.3	31.8	67.6	16.6	31.6	205	33.0	24.1	78.7

Notes:

< = Less than detection limit.

Shaded values exceed background limit.

TABLE 6.7-8 INORGANIC ANALYTES IN SUBSURFACE SOU. SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI					SSI					SI	
ANALYTE	BACKGROUND	XOB-93-660 2	×63 -05-075	XGB-93-088	XCB-93-080	XOB-#5-80	XGB-05-040	XGB-93-090	XGB-95-090	XGM-93-01	XGM-93-02	43G-92-BIX	43G-92-01X	
INORGANIC (HE/K)		12.PT	ID FT.	8 FT	12 FT	17.FT	8 PT	12 PT	20 PT	19 PT	24 97	TO PT	29.PT	
ALUMINUM	15000.0	4229	3410	12090	2440	11000	8010	25600	8700	1380	7870	NA	SA.	
ANTEMONY		4 1.00	< 1.99	< 1.09	< 1.09	< 1.09	≤ 1.09	4.01	1.51	< 1.09	~ 1.09	NA	NA	
ARSENIC	21.0	7.15	8.07	52	49	45	37	41	32	34	13	NA	NA	
BARIUM	42.5	22.5	66.5	34.4	7.16	42.6	10.2	59.3	28.1	22.6	38.2	NA.	na.	
BERYLLIUM	0.347	£.05	~ 05	< 0.5	< 0.5	< 0.5	< 03	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	
CADMIUM	2.0	< 0.7	~ 67	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	NA	NA	
CALCIUM	1400.0	867	2000	895	304	1330	4.50	21,90	1030	3 3000	603	NA	N.A	
CHROMIUM	31.0	12.8	28	155	9.80	-50.2	23	97.7	21.2	9.6.1	19.3	NA.	NA	
COBALT	NA	< 1.42	7,71	13.2	3.9	12.0	9.43	18.2	16.6	11.2	6.75	NDA .	Net	
COPPER	8.39	7.98	10.8	20.7	4.16	31.8	8.76	37.5	27.9	17.8	11.1	NA	14	
INON	1,5000.0	11400	14003	21200	5250	22200	7930	34000	30340	25900	163300	NA	NA	
LEAD	36.9	\$.44	3.58	20	12	.12	5.75	14	15	12	6.26	8.8	\$ 39	
MAGNESIUM	5600.0	(750	3670	8870	1840	8960	2470	13700	3860	2.78.0	1280	NA	NA	
MANGANESE	300.0	\$9.5	264	372	121	-487	133	632	611	882	131	NA	NA	
NICKEL	14.0	6.25	21.2	51.9	12.7	35.7	18.9	87	10.6	10.5	263	NA	NA	
POTASSILIM	1700	1429	42405	2470	\$76	9060	631	6370	1100	612	1.540	NA	N/A	
SODIUM	131.0	292	390	290	489	291	285	1280	345	512 516	(12)	NA	RVA.	
VANADIUM	28.7	14	24.1	-05.1	5,49	12,6	5.86	31	118	9.78	11-3	NA	NA	
ZINC	35.3	21.5	33.7	43.6	(2.1		17.4	68	62.5	516	34	NA	.84	

Notes:

< = Less than detection fimit.

Shaded values exceed background limit

TABLE 6.7-9 ANALYTES IN GROUNDWATER 54 OG - RISTORIC GAS STATION G / AAFES GAS STATION

SITE INVESTIGATION REPORT FORT DEVENS, MA

			LOUND 3		CMUND 4		ROUND 5 BOUND 4							ROUND
AVALITY	FORT DEVESS AACTORING CONCENTRATIONS	AUTS-ID III/25.95 16 ADATHCTI	HUTS-00 HUTHO 34 HUAPICO	ANTS-D III.757H 34 MCA.7HUD	44775-00 8105594 36	AAJTE-3 (MOA73 33 MCOLFECT	107923 31	AATTS-1 1072594 25 10007407	PU254		MUNICAPITI	ANTENS SALANCE	#1# 1	775-3 80/94 24 379382
PAL CATIONS/ANDING (MELL)	0.000	1.00						1		100	1.00		1000	
Chiorida		NA I	NA.	NA I	NA	KA	NA	MA	1 NA	-	NA	MA		NA
Propieta		NA	NA.	NA.	NA	34	NA	NA	NA		NA	AM		NA
Seithe	4	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	<u>N</u>	NA
PAL NETALS (m1)						1							-	
Adminent Automotive	6570	\$270		3710					550% 84X	- 31	434	6 141	TK K	141
Amerik	3,03	C 3.03	3.03 7	< 1.03	9.29	1.03	153		79× 1.09	- 41	210	1.09	R.	1,03
	39.6	45.3	103 7	50	15.7	154	15.4		181 -44.5	- St.	100	444	1	
Butan Celtan	14700	100	and any it	30400	76300 3	79400	125		100 65000	- 21	77100	64400	1	-
Diverse							125				210	6.02	-	6.02
Cited.	19.7	TLE	6.02 E	< 14.3		77.2			21 × 402 22 × 23	- 51	1.60	23	-	23
		- 25	< 13 T		15 1 Mor	41.0	1.00		2.72 1.01	- 21	130	8.09		8.09
	4.00	141		18.9	1980	HEATO	21900			- 54	I minor	14.5	SC	230
10	9100	21400	100 C	23700	1.50	30.8	11		200 000a		10000	129	-	126
	420	11.4	3400	25000	and the second se	34000	11100		14254	- 10	Attent	8544	1	64.20
	291	37790		346		1000	30000		14240	1	1421	71		26.8
	0,245	11250	< 341 P	c 330	1 1 2 3	c 0.545	345		343		0.243	243	1	0.243
Normery Normal	943	< 0,348 #1,7			Ma 1	114	545		103 - 343		378		32	34.5
Nom	2170	1100	1910 J	inite in	- 1079	67903	000		20 1250	- 51	9935	2270	11	3810
	10000		11300 3	33309	10.000	00100	#1300		nede		210000	167099	1 A	10400
	14.0	57340		× 11		2 22.2			11 11	1	39.3	c 11		11
	214	42.4			214 1	111			ANK 21.1		107	21.1	10	- 20
	213	444	sta r	1	41.1	- AND			- 21A		- MIT	41.3	11	
PAL RENEVOLATILE ORGANICS (NOT)	1				-	6						-	1	
Sontyinghtulas	1	<	NA	17	NA	5000	NA		000 N.A.	*	1.7	NA	K	13
Dis (3-stylenzy) Philaka		c 4,8	NA	K 48	NA	C 4000	NA		30 NA	*	4.0	MA	*	- 41
Number		90	NA	30	NA	4004	NA	1 3	A/ 000	1	0.5	MA	۴	0.3
Messbras		c	NA	k <u>03</u>	NA		NA	-	10 NA	K	6.0	NA	N	0.1
PAL VOLATELE DEGANCE MAL		Lee				1.000	-			-				
Typhane .	-	2000	MA	900	NA	59900	NA		AM DOG	×	0.84	NA	K	9.94
1.3-Stile-stee	1	e in	NA	× 3	NA	s 20	NA	× .	30 NA	1	0.5	NA	r	0,5 13
Automation .		k 300	NA	700	NA	< 680	NA		000 HA	×	13	NA	1	13
Decame -		1000	NA	600	NA	2400	NA	1 2	AM 000	10	0.5	84	R.	10
Cwied Dauble		e 10.	NA	S 2	264	r 20	NA	*	50 NA	1	9.5	NA	K.	
Chinelogs		e 10	NA	× 3	MA.	c 10	NA	× .	30 N.S.	*	0.5	NA	100	0.56
The Decision		300	NA	200	NA.	1.000	NA		244	1	03	764	r	0.5
Participan Chintain		× 60	214	× 20	501	< 100	216		200 M.A.	5	23	NA	N.	- 23
Silacityi ketkerji Latous Segaropyisma mu		1 80	NA	4 39	NA	4 200	NA		MA NA	1		NA	×	1.1
Totalionation / Total Academ		e 40	MA	1 20	RA.	* 90	NA		200 NA	1.1	.8.0	XA	E .	14
Tolong		70	NA	40	DAL.	300	NA		400 NA	1	0,7	NA	r.	6.3
Traffic and a finite section		10	NA	E	NA	t 50	NA	10	50 NA	Ľ	6.0	NA	F	0.3
Trachioret Investoriant		e 99	10	K 10	144	× 70	844		100 100	- 12	141	nin	-	
PAL WATER OUALITY PARAMETERS 45/L					-	1		1	1	-	-	344	1 1	
Aballaiy		NA	NA	NA.	NA.	NA.	NA	MA	NA.	- 1	NA	NA		NA NA
Marine Narmo and Specific		NA	NA	NA	PLA.	NA	NA	NA	NA		NA	NA		NA NA
Companity Kathal Maded		NA	NA	NA	NA	NA	BZA	NA						NA
Sonal Disastred Solida		NA	NA	AND NA	NA	NA	NA	NA.		- II.	NA	NA		na Na
Total Fardam		NA	HA		NA	NA	NA		RA	- LI	3210000	NA		and the second se
Tinai Sugested Solia		1320000	NA	2000/00	NA	1570006	NA	2900	000 NA	-	32100001	NA	-	19900
OTHER (m/L)														
Tani Persioan Metrostera				1 1700	NA.	64000)	NA	120	000 NA		51701	NA.		1.97

100

TABLE 6.7-9 ANALYTES IN GROUNDWATER SA 40G - HISTORIC GAS STATION G / AAFES GAS STATION

SITE INVESTIGATION REPORT FORT DEVENS, MA

		ROUND 4				RIND4	ROLI			AGUND 4	EGGIOR	
	PORT DEVENS AAC'S ORIGING CONCEPTIBLE HORE	147254 124254 12 14	AU3753-5 91239/03 35 36CU398033	HEAPERS	HIDSIN 33 NELOTION	AATSA ELISA EL HELAPHED	MATTS-4 463610 32 MEAPMET	HOURS	HICESHI 33 HEAPHOD	HANTES-4 HARSA	HOUT	44716-1 913613 13
CALICATIONS/AMONIS		1										
Sherida		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8A
Poorylate		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Skillete		NA	NA	AC	NA	NA	NA	NA	NA	TA	NA.	NA
PAL ADTOLLE (my/L)	244 L								and the second			
0	6870	¢ 141 J	11 100	< 141 F	67496	< 141	F 53900	241 7	27990	141	F 85600	141
Automaty .	3,01	K 3.03 P	2.85	< 103 f	4.94	c 1.05	P 3.99	1.03	1 1	5 3.03	PC 3.08	5.05
Acremale.	10.5	K 254 7	92.5	1. 1.9 1	113	2.54	1 34	163 1	148	367	31.7	2340
Service	29.6	¢ 3 P	234	184 7	167	194	F 140	44.6 3	142	11.8	1 61.2	a
Cinichens	14700	37500 7	56800	46000 2	50207	\$7102	F 72700	56300 /	14800	S (mail) -	2 14300	11800
Continue	14.7	K 8.02 P	196	< 8.02 F	263	4.05	106	6.02 1	But	- A01	42.9-	6.02
Collect	25.0	× 25 F	in	e 25 F	194	c 25	V 62.6 ×	25 1	1	25	FK 23 K	25
	tov	1 1.00 7	174	c 100 F	24	C BUY	# his	1.09	61.9	- 164	1 34.0	8.09
Capyel Ivan	9200		406000		31000	-0.1	pri voletakon	6060 1	040	31116	15800	6
	4.15	K 126 J		K 1.26 P	170	c 1.90	7 31.9	1.20	27.4	0 128	10 1	1.26
and the second se	300	3499 8	29902		25006	MON	1 11/20	Post J	23000	7486	17.3	1860
	191	8.36 7	100	24 1		162	1 8400	3970 9	6099			\$74
					EN ADS		P 0.454 -	243 1	8.4m	30.	1 1940	
Period.	830	< 30 Y	9,90	c 20 P		c 70						
Nidal	54.3	< HJ 1	1140	- HI P	1991		1 337	611 7	100	c day	864	543
	2370	100 0	32100	2042 1	3458		P 25%	2590	210	3457	\$130	\$150
Sodem	10000	#1108 P	88405.	101007 F	File.	12 204	T #\$200.	#6/40 V	10400	39960	2 15400	14404
Vandant	15.0	c 11 /	110.	s 31 7	3)2	c 11	F 19.2	- H - I	12.5	c 31	7 313	с <u>н</u>
Zinc	21.1	< 211 Y	944	c 11.1 F	123	< 11.1	F the	21.1	101	C 264	72.3	21.1
PAL SEMIVOLATELE ORGANICE SU/LA							2					
2-mellykapitheise	- Q - 1	NA	K 1.7	NA	< LI	Mà	6.1	NA	× 1.7	NA	* 17	MA
Ris (2-storiocovi) Polisica		364	c 4.2	NA	K 48	NA	K 43	NA	× 44	NA	4.3	MA
Name of Street o		NA	< 0.5	NA	K 13	NA	2.5	NA	1.7	NA	× 63	344
Preseditor		NA	6 65	NA	× 15	NA	K 8.5	NA	× 0.5	NA	K 63	NA
PAL VOLATELE ORGANICS MAL		· · · · · · · · · · · · · · · · · · ·										
	1	NA	K N	NA	C	NA	24	NA	k il	NA	0.86	NA
1.3-Bakmetter	the second	NA	K 3	NA	c 45	MA	26	NA	k	NA	× 0.3	MA
Actions		NA	13	NA	× 11	3KA	51	NA	e 100	NA	4 11	NA
Sector		NA	k 5	NA	< N	NA	11	NA	70	BIA.	e 0.5	MA
Cathon Disublish		Na	6 3	NA		NA	8 83	NA	k 11	NA	10 0.0	NA
Chierafona		NA		NA		764	E 33	NA	0 3	NA.	e 0.9	NA
Digitarations Digitaration				NA			34	NA	90	NA	× 03	NA
		NA	-		* <u>*</u>	NA						NA
Nutrie Chrile		XA	× 23	NLA	* 13	MA	0 23	NA	K 20	BLA.	× 11	
edelige inclusive last market property functions		NA	5 J	NA	e	364	F	NA	K 30	NA		NA
Tenderodyles (Tendlowitten		Na	3.3	NA	1 7	RA	< 1.6	NA	< 20	NA	< 1.6	NA
Tolmon.		NA	e 3	NA	e 0.5	NA	0,63	MA	K 1	TRA	× 0.5	NA
Tridisrostylese / Indianation		204	* 3	NA	8,52	NA	× 0.5	NA	× 3	NA	e 0.5	NA
Trisidorafices constitute		NA	K 14	NA	R 14	NA	k 14	NA	k 10	MA	S 14	NA
PAL WATER OUALITY PARAMETERS (1)		1		1	100 A 111							
Alkelanty		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	744
Finite Mentiones Specific		BIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Worgan By Kjeichel Minteel		NA	NA	BIA	NA.	NA	NA	MA	NA	NA	SA.	NA
Lond Dissolved Initia		NA	NA	NA.	130000	RA	NA	AM.	310000	14	NA	764
Treal Hardown		NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA
Four Stauended Solids		NA	6620000	NA	7400006	NA.	2240000	NA	2000000	MA	\$38800	RA.
the second s												
Contractor ang /12		NA .	k 110	N/4	1000	Na	274		1 6001	104	10 100	10
	A REAL PROPERTY AND A REAL											

x

TABLE 6.7-9 ANALYTES IN GROUNDWATER SA 43G - HISTORIC GAS STATION G / AAFES GAS STATION

SITE INVESTIGATION REPORT FORT DEVENS, MA.

		BOUND 4					EXEND A		toring 1		ROOND 4		
ANTLE .	SORT DEVISE BACKGROUPD CONCENTRATIONS	AMPEST SEMIOR ES	SATIST STREPS SI MEASURE	5036-91-403 1935-93 23 50000-001	20143-201 7642-0 11 11 10 10 10 10 10 10 10 10 10 10 10	TIN-LOCALIN HOLDER III III III III III III III III III I	HIGHLAN HE	SCARS-SIT SALING JJ MEDIART	100495400 19(349) 25 10000000	2024.014 6.0154 35 1077000	1 Beller 33	AVERAGE	AVELAGE
PAL CATRONOVAMONTS (48-12		-										-	
Calarium		NA.	NA	NA	Na	NA	264	NA	2NA	NA	KA.		
Shorpittle		NA.	NA.	NA NA	NA	NA	254	NA	NA	NA	198		
Sulface		NA	NA	DiA .	164	NA J	NA	NA	NA	NA.	16A	-	
PAL NETALS (mg/L)			Calls.	-	-							-	
Antigenet	5870	143	2.86	2299 K 3.03	< 10 25	F 9830	< 14) KSW	F 100		1	1200 - J41 8.45 - 3.03	F 23411.94	14032
Alvenit	19.3	24.5		F 5.05	< 1.9	F 12.8		511	A.05		341 84	1 34.84	10
Batims	39.6	341	113	10	11.9	1 515	7,34 3	1 114	RU .	÷1	154 31.1	149.82	1.3
Chicken	14700	2460)	24300	22100	#449m	T ISUNO	19993	ra todo	62.20	1 1	evred derve	F 63206.23	4075.30
Chronickum	14.7	23.5 8	6.02	1.62	6.00	1 22.8	C 1.02 1	51.4	< 5.90	1	M.4× 6.02	F \$7.15	3.40
Collecti	25.0	c 25 K	25	Pic (15	< 25	16 19	¢ 10 1	r #1	< 15		M2K 25	F 70.80	4.9
Cupper	8.09	367	8.05	RIG 808	8.05	T 242	8,09	r) - 61.6	< 8.00	1	M3K 8.00	F 84.30	52
tran	9100	12000	47.1	r tank	< 311 .	2 26309	64.3	40000	\$750	1 16	0079,0 0000	102139.75	6383.7
Lend	4.25	7.16	1.24	F 8.18	< 1.26	1 9	< 1.78 I	18.0	1.90	7	564 4 1.34	F 43.34	2.0
Augustan	3490	2210	2000	20100	11300	12001	364600 3	55900	21509		1400 29680	21931.00	1570.7
Marganeter	193	:2240	6.3	137	46.8	r), 426	0.4 3	LZ100	16130	£	2300 000	97253.08	578.4
Montary	0.243	0.243 4	243	Pic Halla	30	1 6343	s 243 3	r = 0.24%	< 240	1K	1345 541	E 0.50	P.02
Net	34.5	• 3410	141	PC 113	C 30	T 35	e bj	214	e sia	1	116 011	307.81	19.3
Patantum	2170	5070	2000	P	5459	5150	EM60	19200	(CD-4)		8200 T(10)	6093.00	380.9
Sota	10000	BUTSO	11200	990		9 13400	91906 1	74300	12994	2	19269 11	62581.25	5911.5
Vinsting	11.0	+ 11+	11	F	- 11 - 11	F 11.9		150		-	1978 × 11 413 × 21.1	F 34,31 245,79	15.3
	1.1	28.4	314	1 311	e net	K) 99/7	C 20.1	1 50	p 40.1	11	4131 411	1 102.001	
PAL MONTOLATILE ORGANICS (1)		1 100		F				T	-	1	10	- June and	140
C entity heplificitus	1 1	4 L7	NA	× 1.7	NA	× 1.7	MA	100	NA		40 NA	450.54	28.1
Db (C-dylany) Prints		4.4	NA	4.8 K 0.3	NA		NA	4.8	344	F.	200 NA	414.26	16.0
Poster	1	0.5	764	6 01		C 0.5	NA	at 0.1	NA		8.3 NA	6.59	
PAL VOLATELE ORGANICS (m/1)				15 IS	180	15 1001			-	15			
Soluce	1	0.04	NA	C 0.84	NA	E 0.04	NA	6000	NA	1	1000 NJR	1744.79	109.0
1.2-sichbraitinn	1 1	4.5	NA	e 05	NA	× 93	NA	< 100	NA	*	20 NA	15.51	
Antone	1 1	25	NA		NA	× 13	NA	5000	NA	×	600 NA	365.13	11.5
Processory .		C 0.5	NA	× 03	NA	< 0.5	NA	2000	NA		500 NA	436.66	\$7.3
Carton Dimittle	1 1	6.9	NA.	N 63	RA	< 0.3	MA	× 100	NA	× .	20 NA	13.5#	0.0
Chilorations		6.5	NA	× 05	NA.	5 0.5	NA	c 100	NA		20 NA	33,36	0.0
Conference .		9.5	254	× 0.5	MA	< 0.5	NA	× 100	NA	(Inc	100 NA	170,47	6.0 9.0 70.0 4.7 3.7 2.0 7.2 6 0 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 9.0 1 1 9.0 1 1 9.0 1 1 9.0 1 1 9.0 1 1 9.0 1 1 9.0 1 1 1 9.0 1 1 1 9.0 1 1 1 9.0 1 1 1 9.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
And Station Charles	1 1	< 15	NA	e 23	NA	2.8	NA	< 500	NA		100 NA	76.19	4.7
Adding to the state of the second state of the	1 1	< . J	RA	N 3	ala.	K 3	NA	C 600	NA	× .	200 NA	91.50	3.7.
Textileration Tenchination		1.14	NA	H	BEA	N 1.6	NA	< 300	NA	R	BO NA	47,39	19
(Libertor		c 0,5	NA	e 0.5	THA.	K 03	NA	800	Na	1.1	40 NA 20 NA	116.20	7.3
Tricking System / Tricking Street	· · · · · · · · · · · · · · · · · · ·	• • • • • •	NA	2 0.5	NA	K 65	NA	× 100		C.	20 NA 70 NA	11.10	
	1	145	504	P 14		C 14		F 100	- NA		111 M		
PAL WATER QUALITY PARAMETERS (1)	1	NA	NA	NA.	NA	1 No. 1	NA	NA	304	NA.	88	-	-
Virtie Minu-on Sectio		NA	NA	SA	NA	NA	NA	NA	NA	NA	NA NA		· · · · · · · ·
Colleges for Kathad Lines.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.1.1.1.1	1.1.1.1.1
Trant Dimolwed Bolids		NA	NA	NA	744	270000	NA	NA	HA	NA	BEA	116875.00	7304.4
Total Hardson		NA	NA	NA	344	NA	NA	NA	NA	NA.	NA	1100 1000	
Total Superded Solids		450000	NA	149000	NA	\$80000	NA	2180000	NA		AN 00000	2046000.00	127875 0
OTHER 44/L			-										
Treat Program I by branching	r	7501	NA.	k IM	144	k	94	1 2750	NA NA	St	23001 200	LILLA gol	1 100.5

4

TABLE 6.7-10 ANALYTES IN SEDIMENT SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALTYE S	ITE ID: XGD-93-02X
INORGANICS (ug/g)	
ALUMINUM	3710
ARSENIC	7.5
BARIUM	17.2
CALCIUM	1510
CHROMIUM	13.3
COBALT	2.63
COPPER	153
IRON	11400
LEAD	24
MAGNESIUM	1840
MANGANESE	119
NICKEL	9.87
POTASSIUM	697
SODIUM	298
VANADIUM	9.84
ZINC	70.7
OTHER (ug/g)	
TOTAL ORGANIC CARBON	8970
TOTAL PETROLEUM HYDROCARI	BONS 448

43GSESTIM, WKI

PAGELUP

05-Det-95

TABLE 6.7-11 HUMAN HEALTH FRELIMINARY RISK EVALUATION OF SUBSURFACE SOIL SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	FREQUENCY		ected Tration	REGION III COMMERCIAL	MCF	MAXIMUM EXCEEDS	
ANALYTE	OF DETECTION	AVARAGE MAXIMUM		INDUSTRIAL CONCENTRATION	S-1 STANDARD	GUIDELINE	
Arca 1 [a]				Constraint Sector Sector		1	
OTHER (mg/kg)							
TOTAL PETROLEUM INVDROCARBONS	7/12	\$29.X	2000	1680	2500	REGION III	
Area 2 [b]							
ORGANICS (ug/kg)							
TOLUENE	1/27	-	13	20000000	90000	NO	
m/p-XYLENE*	1/22		0.9	100000000	800000	NO	
a-XYLENE*	2,22	3.7	63	1000000000	800000	NO	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS.	35/26	738.7	5800	1680	2500	YES	
Area 3 [c]							
ORGANICS (ug/lug)							
BENZENE	1/15	2	140	99000	10000	NO	
TOLUENE	4(1=	74.1	290	200000000	90000	NO	
ETHYLBENZENE	4/15	3504.7	14000	100000000	50000	NO	
m/p-XYLENE*	5/13	2625.5	13000	1000000000	800000	590	
a-XVLENE"	5/13	1114.6	5508	DREOORD	200000	NO	
XYLENES TOTAL **	2/4	0.3	0.6	1000000000	896000	NO	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	11/14	1360	\$500	1680	2500	YES	

Notes.

[a] Subsurface soil (3 to 15 feet) for Area 1 based on Beld analytical samples TP-45 through TP-39 and soil boring XGB-93-09X.

(b) Substatiate soil (3 to 15 feet) for Area 2 based on field analytical semples TP-12 duringly TP-34 and soil boring XGB-93-05X.

[a] Subsurface soil (3 to 15 feet) for Area 3 based on field analytical samples TP-01 through TP-11 and soil borings X(7B-91-03X and X(3D-91-04X)

ug/kg = micrograms per kilogram

mgikg = millograms per kilogram

- = not applicable

MCP = Massachusetts Contingency Plan

Shaded compounds exceed standard or puideline,

² = analytes from field screening samples.

** = analyte from laboratory analytical samples.

TABLE 6.7-12 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF GROUNDWATER SA 43G - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		DETE	the second second second	GROUNDWATER	for the state of the	DRINDING WATER	MAXIMUM EXCEEDS	
	FREQUENCY	subscript House and some the subscript	RATION [a]	BACKGROUND	MAXIMUM	STANDARD/		
(investigent	OF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCENTRATION	EXCEEDS	GUIDELINE [b]	STANDARD/	
ORGANICS	DETECTION	(HE/L)	(us/L)	(ug/L)	BACKGROOUND7	(ag/L)	GUIDELINE?	
and the second sec	2003			100			2021	
12-DICHLOROETILANE	1/15	2,6	2.6	NA	~	5	NO	
2-METHYLNAPHTHALENE	5/16	1429.3	5000	NA	-	NA	100	
ACETONE	2/16	75.5	100	NA	-	3000	NO	
BENZENE	8/16	872.8	2000	NA	-	\$	YES	
BIS (2-ETHYLHEXYL) PHTHALATE	1/16	Eø	6.3	NA	-	, û	YES	
ETHYLBENZENE	6/16	420	1000	NA	-	700	YES	
NAPHTHALENE	8/10	8,28,03	4000	NA	-	1588	YES	
PHENANTHRENE	2/10	- 50	80	NA	-	NA		
TETRACHLOROETHYLENE	2/16	54	7.0	NA	· · · ·	5	NO	
TOLUENE	7/16	264,4	808	NA	-	1600	NO	
XYLENES	-8/10	3457.9	9000	NA		10000	NO	
INORGANICS								
ALUMINUM	16/16	23403	71700	6670	YES	50-200	YES	
ANTIMONY	8/16	5.5	79	3.03	YES	6	VES	
ARSENIC	15/16	58.8	210	10.5	YES	30	YES	
BARAM	15/16	159.5	538	39.6	YES	2000	NO	
CALCIUM	16/16	65206	107000	14700	YES	NA	-	
CHROMIUM	15/16	92.5	296	14.7	YES	100	YES.	
COBALT	9/16	122.5	222	25	YES	NA		
COPPER	14/16	95,4	376	8.09	YES	1300	NO	
IRON	16/16	102139	406000	9100	YES	300	YES	
LEAD	15/16	48.3	170	4.25	YES	15	YES.	
MAGNESIUM	15/16	21931.8	37400	3480	YES	NA.	-	
MANGANESE	16/16	9255	24400	291	YES	50	YES.	
MERCURY	6/16	0.396	0.692	0.243	YES	2	NO	
NICKEL	15/10	321.4	1140	34.3	YES	100	YES	
POTASSIUM	16/16	809.5	21500	2370	YES	NA	-	
SODIUM	16/16	62581.2	110000	12.8 S	YES	28000	YES	
VANADIUM	20/16	49.61	119	11	YES	260	NO	
ZINC	15/16	251.4	944		TES	5000	NO	
OTHER								
TOTAL PETROLEUM HYDROCARBONS	11/16	11453.1	44000	NA	-	1000	YES	

Mittee:

a) Groundwater based on unfiltered samples from AAFES-1D, AAFES-2, AAFES-3, AAFES-5 to AAFES-7, XGM-93-01X and XGM-93-02X. b) Includes the lowest of other the EPA or MA drinking water standards, or it no inderal standard or guideline is available, the Region III tap water concentration. NA = not available

 $\mu g/L = micrograms per liter$ - = not applicable Shaded compounds exceed standard or guideline.

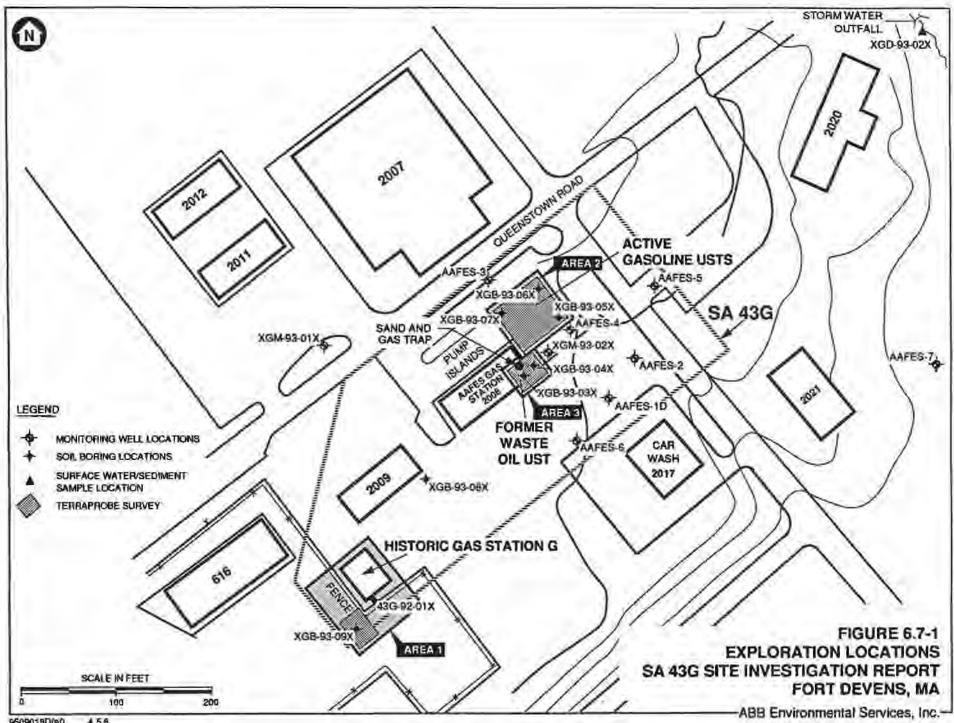
TABLE 6.7-13 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SEDIMENT SA 43G - HISTORIC GAS STATIONS

	FREQUENCY	DETE	and the second s	REGION III RESIDENTIAL	MCP 5~1	MAXIMUM	
ANALYTE	OF	AVERAGE (WR/R)	MAXIMUM (98/8)	SOIL CONCENTRATION	STANDARD	EXCEEDS GUIDELINES	
INORGANICS		1-8 6/ 1		COB	L-DEL		
ALUMINUM	1/1	3710	3710	230000	NA	NO	
ARSENIC	1/1	75	75	0.36	34)	REGION III	
BARIUM	1/1	17.2	17.2	5500	NA	NO	
CALCIUM	1/1	1610	1610	NA	NA	- 18 I I	
CHROMIUM	1/1	13.3	13.3	390	200	NO	
COBALT	1/1	2.63	2.63	NA	NA	-	
COPPER	1/1	15.3	153	2900	NA	NO	
IRON	1/1	11400	11400	NA	NA	-	
LEAD	1/1	24	24	500	300	NO	
MAGNESIUM	1/1	1840	1840	NA	NA	-	
MANGANESE	1/1	119	119	390	NA	NO	
NICKEL	1/1	9.87	9.87	1600	300	NO	
POTASSIUM	1/1	697	697	NA	NA	(H)	
SODIUM	1/1	298	298	NA	NA		
VANADIUM	1/1	9,84	9.84	550	NA	NO	
ZINC	1/1	70.7	70.7	23000	2500	NO	
OTHER							
TOTAL PETROLEUM HYDROCARBONS	1/1	448	448	375	500	REGION III	

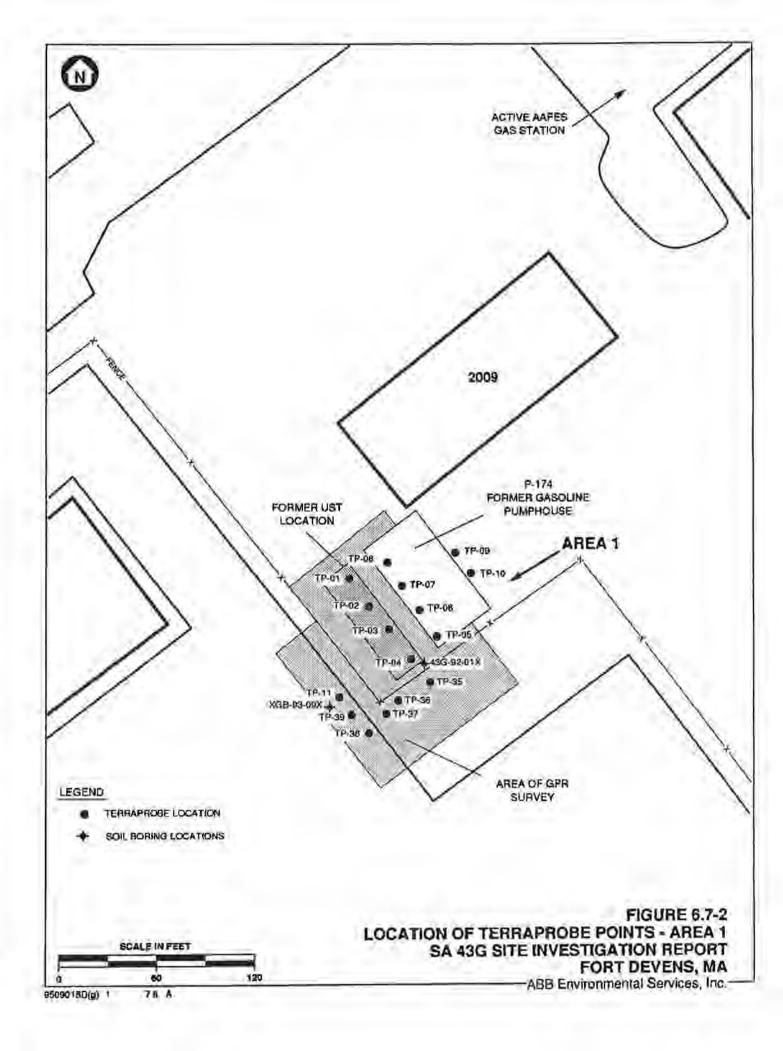
SITE INVESTIGATION REPORT FORT DEVENS, MA

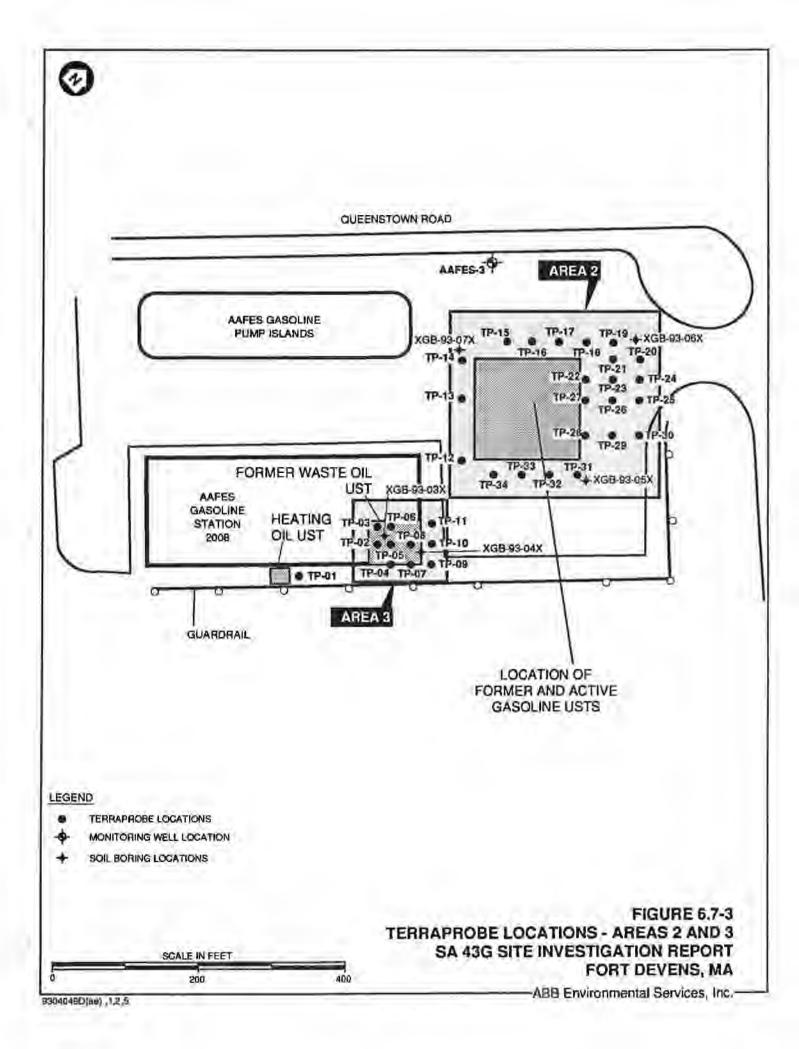
Notes:

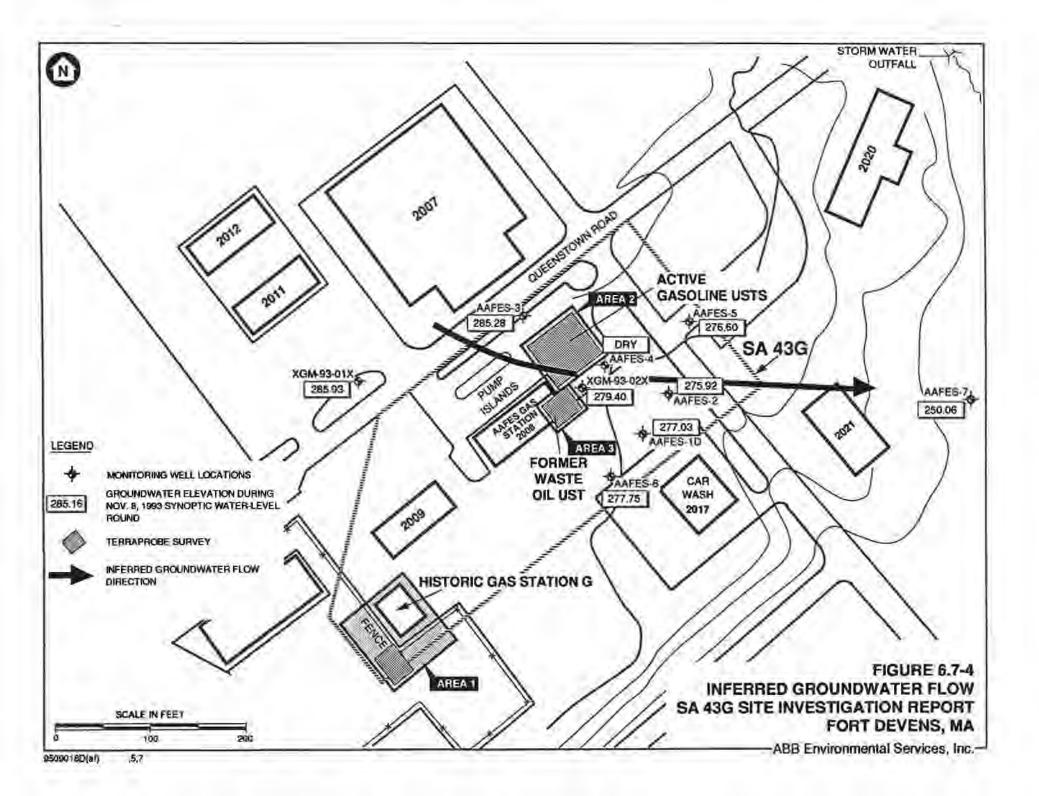
[a] = Sediment from sampling location XGD-93-02X.

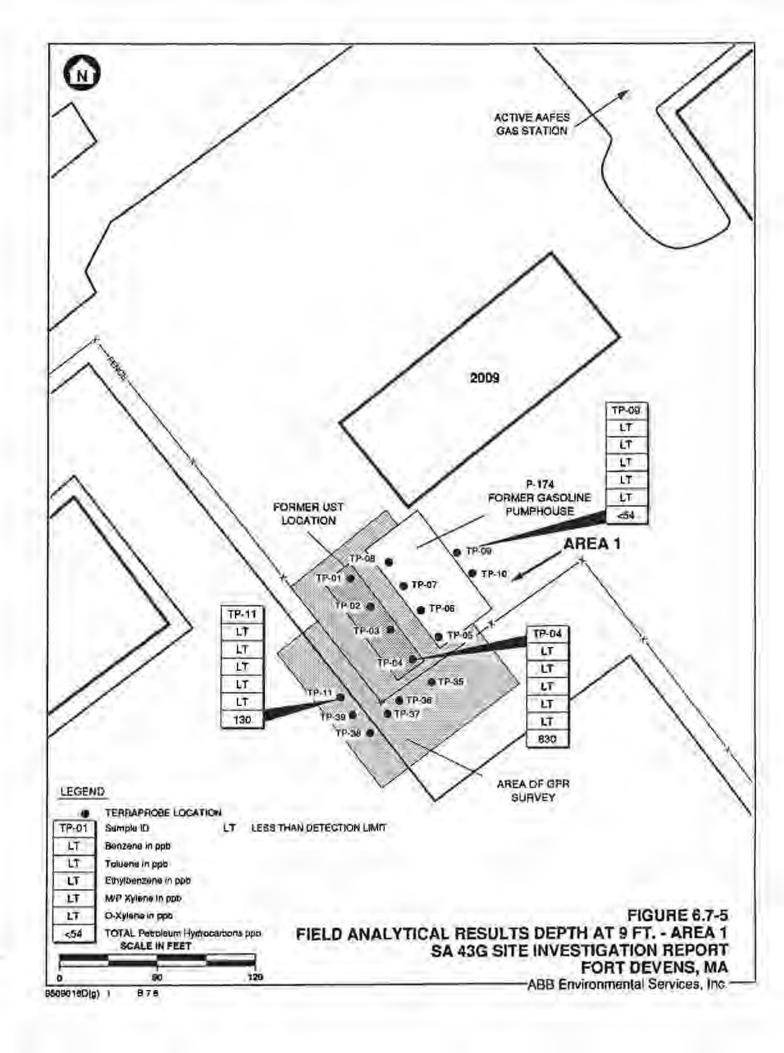

NA = not available

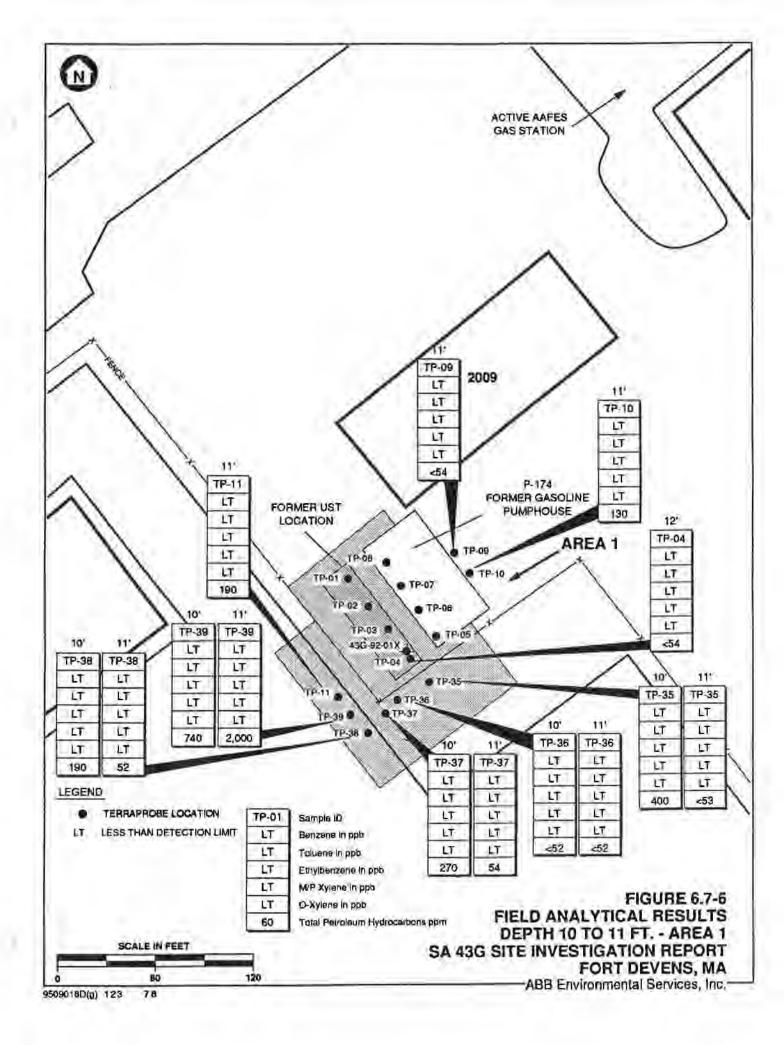
- = not applicable

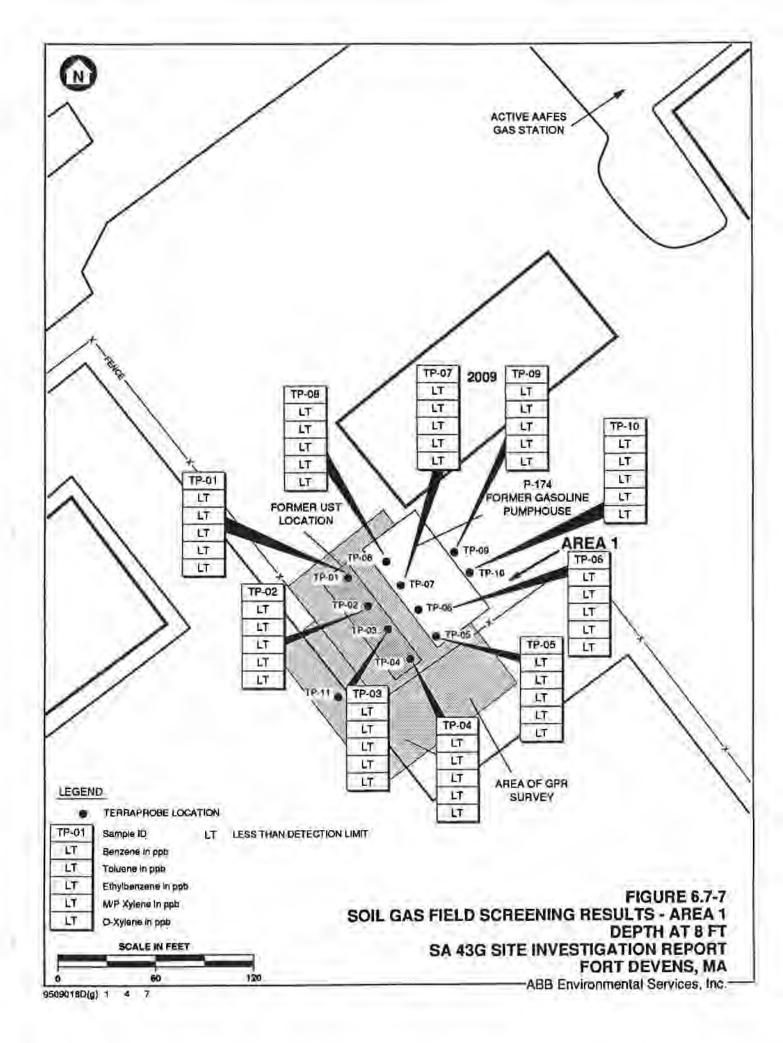

ug/g = micrograms per gram

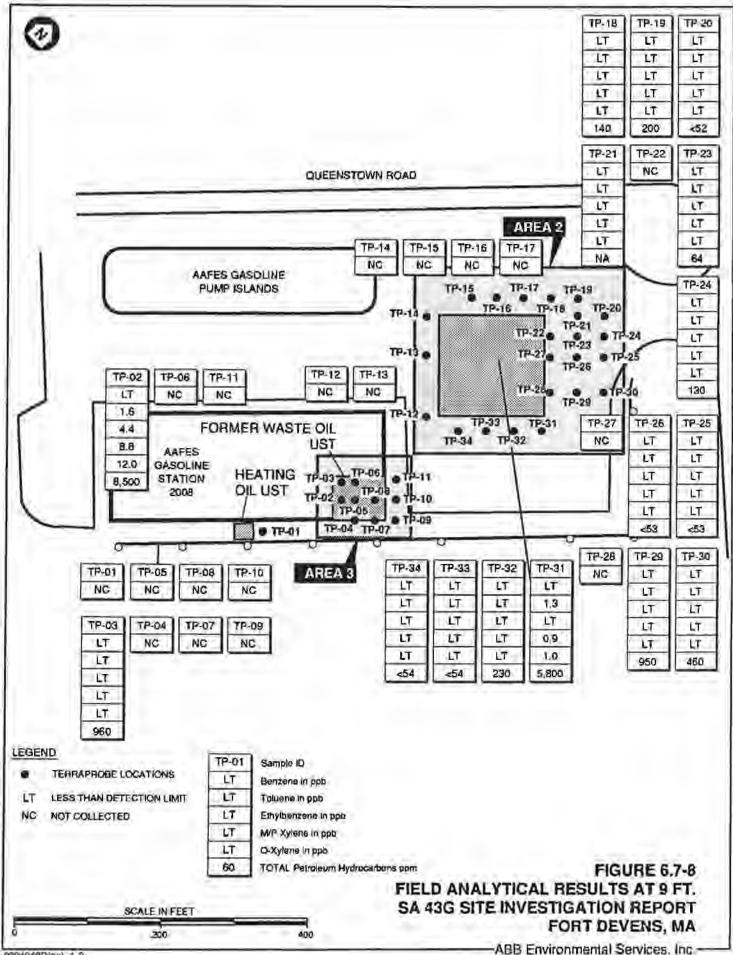

MCP = Massachusetts Contingency Plan

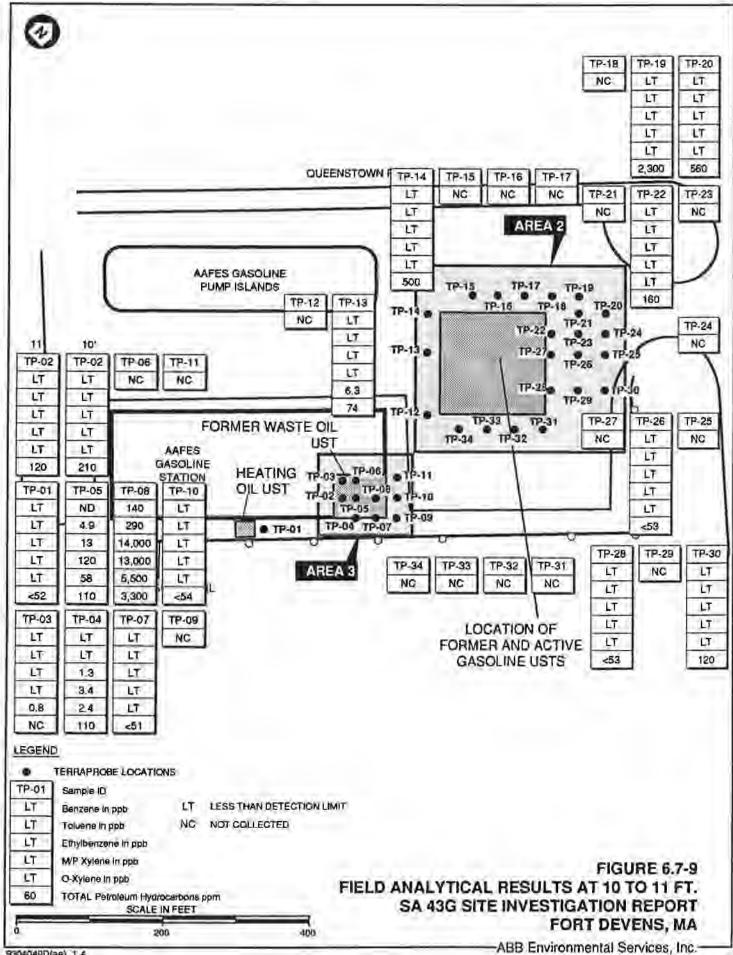

Shaded compounds exceed standard or guideline,

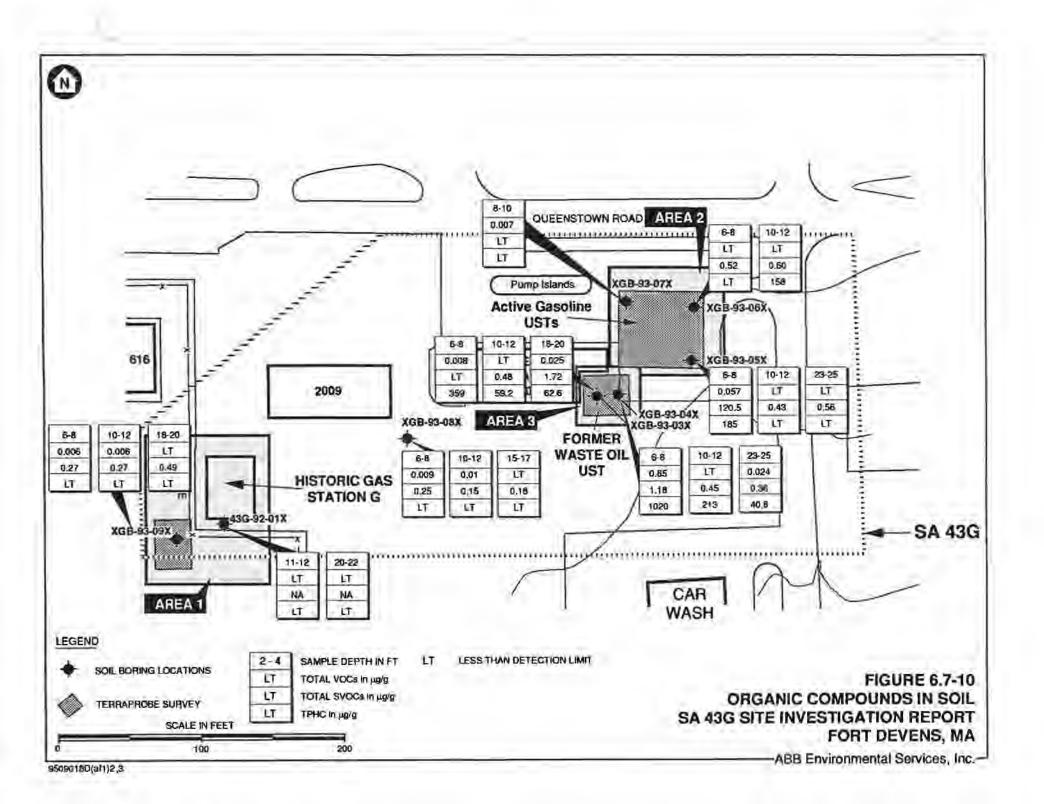


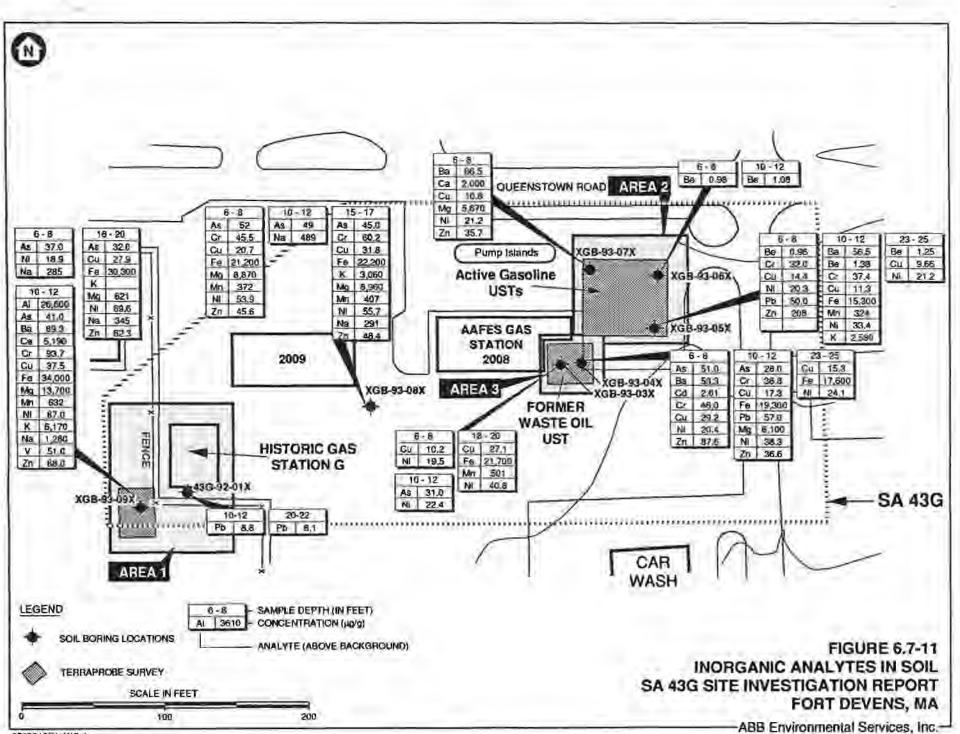

⁹⁵⁰⁹⁰¹⁸D(al) 4,5,6

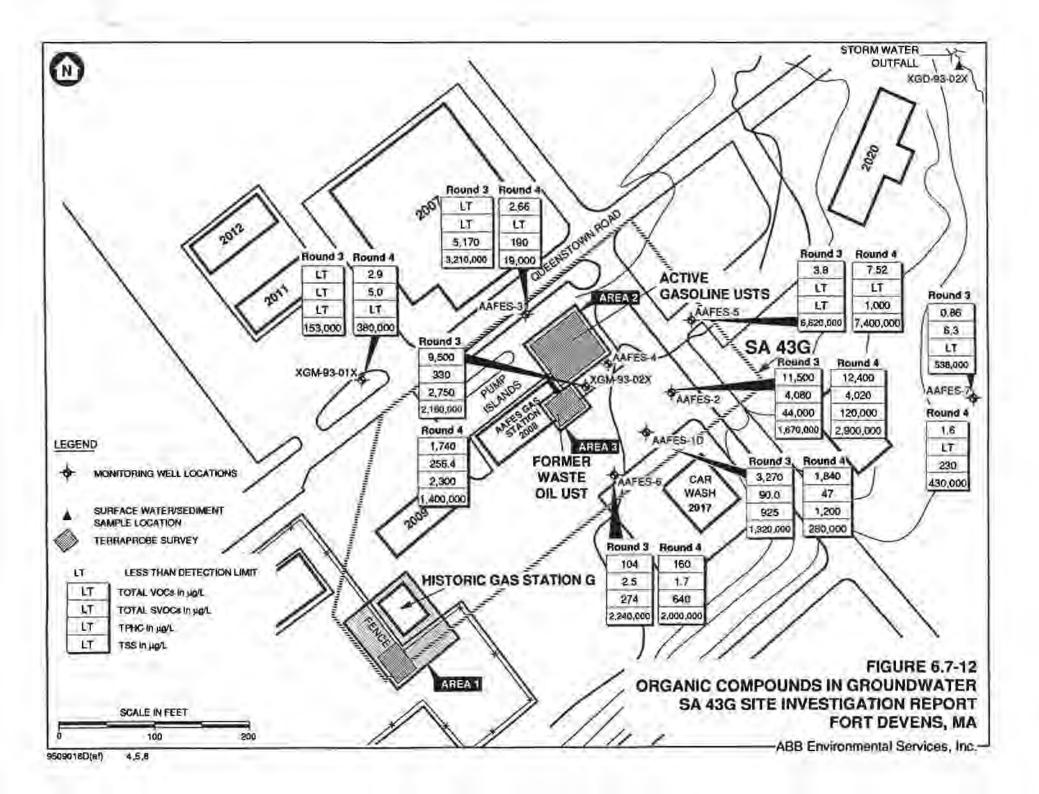


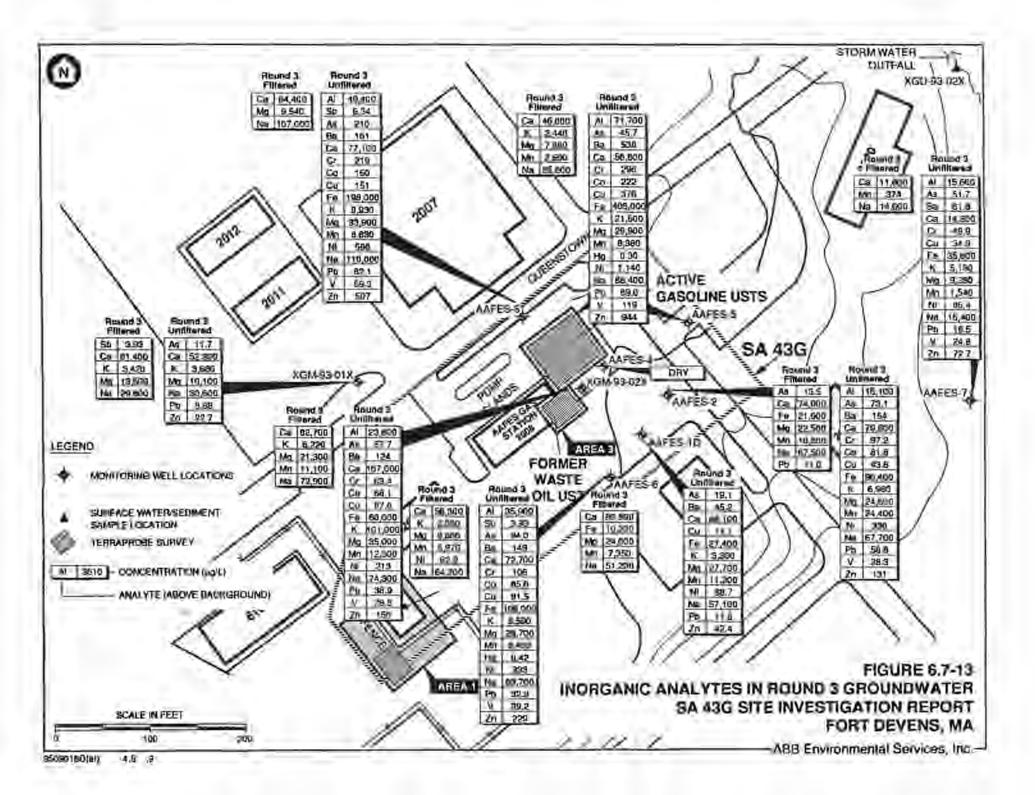


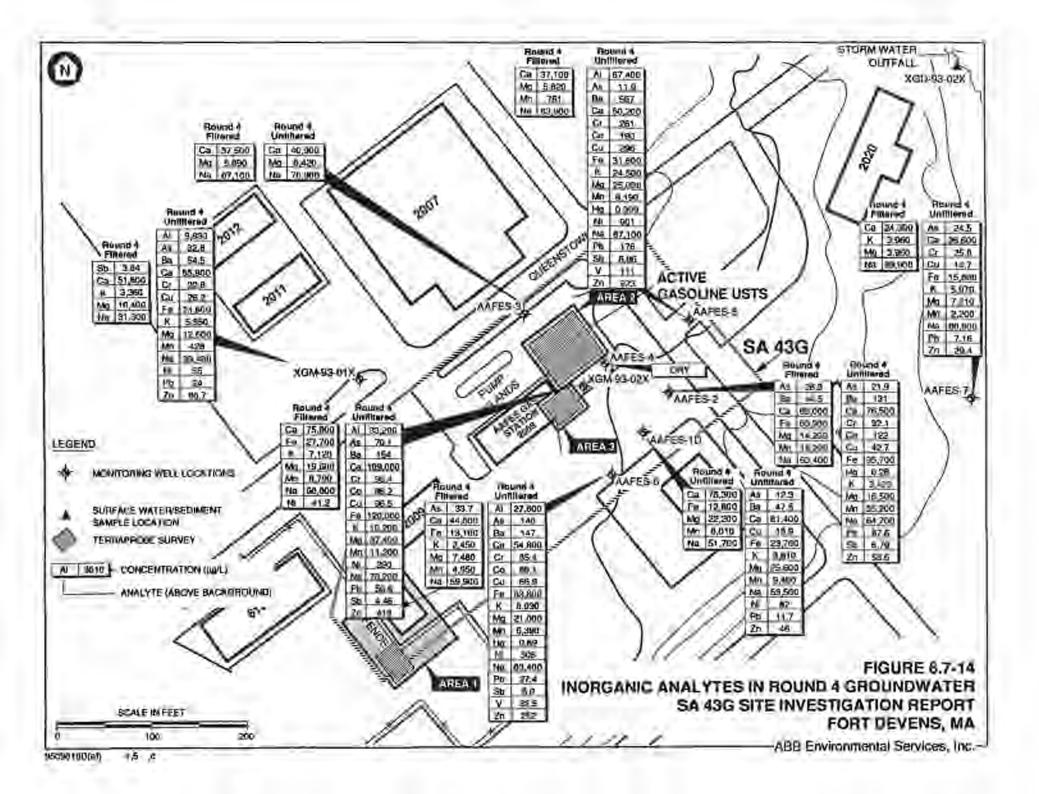


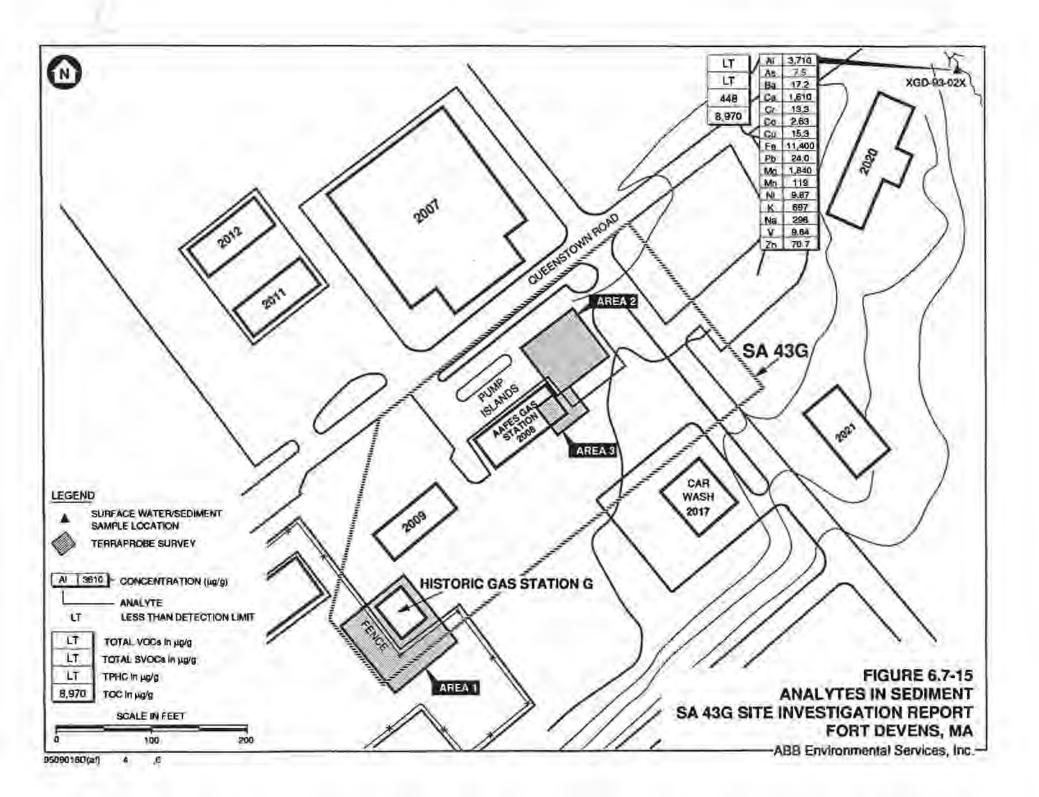












⁹⁵⁰⁹⁰¹⁸D(att)2,4

6.8 STUDY AREAS 43H AND 43I

6.8.1 Study Area Background and Conditions

Historic gas station 43H was located approximately 500 feet northwest of 43I along Queenstown Road in the central portion of the Main Post (Figure 6.8-1). Due to the fact that these historic gas stations are located so close to each other and are within the same existing motor pool/maintenance area, they will be presented together in this report. The structures at each historic gas station consisted of a pump island and a small gasoline pumphouse. Both of the gas stations were Type A station-designs with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. Reportedly, a second UST was added to the station at SA 43I. This second UST came from historic gas station 43P when that station was decommissioned in 1945. The stations were used during World War II as vehicle motor pools to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of these motor pools or the removal of the associated USTs.

The area along Queenstown Road where SA 43H and 43I were located, is presently a large paved area (approximately 10 acres) used for the storage and maintenance of military vehicles. The area is surrounded by a chain-link fence with locked gates on the northwestern side of the yard. SA 43H was reportedly located between Queenstown Road and Building 602 which is presently a vehicle maintenance building. SA 43I was reportedly located approximately 60 feet north of Building 603 which is also presently used as a vehicle maintenance building (see Figure 6.8-1).

In April and May 1992, three diesel-fuel USTs (one 5,000 gallon and two 10,000 gallon) were removed by ATEC from the 43H motor pool yard, approximately 150 feet southwest of the historic gas station (Area 2 on Figure 6.8-1). After the removal of visibly contaminated soil, ATEC collected confirmatory soil samples from the excavations. VOCs measured by ATEC in soil headspace by PID ranged from ND to 18.6 ppm, and TPHC levels were ND to 6,198 ppm (ATEC, 1992e, 1992f, and 1992g).

In May 1992, one 5,000 gallon diesel-fuel UST was removed by installation personnel from the motor pool yard around SA 43I, approximately 500 feet

ABB Environmental Services, Inc.

W0099521.M80

7053-15

SECTION 6

northeast of the historic gas station (Area 2 on Figure 6.8-1). After the removal of visibly contaminated soil, confirmatory soil samples were collected from the excavation, and VOCs measured in soil headspace by PID ranged from ND to 3.7 ppm, and TPHC levels were ND to 73.8 ppm (ATEC, 1992g).

In October 1992, an estimated 10 to 25 gallons of diesel fuel leaked from a tracked vehicle onto unpaved ground approximately 400 feet southeast of SA 43H (Miller, 1992). The area is within the fenced motor pool yard in which SA 43H is located. The leak was stopped, and contaminated soil was excavated to a depth of 6 feet. Total VOCs measured by PID ranged from 6 to 240 ppm at that depth, and installation personnel have concluded that those levels indicate contamination from sources other than the subject diesel fuel leak (Miller, 1992).

6.8.2 Site Investigation Program Summary

The SI at SA 43H and I was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The field investigation programs at SA 43H and SA 43I were designed to determine if any abandoned UST(s) were present at either site and determine if residual soil contamination was present. The programs consisted of surficial geophysical surveys, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and soil borings to collect subsurface soil samples for off-site laboratory analysis. Table 6.8-1 summarizes the activities completed during the SI.

Surficial geophysical surveys were conducted at both SA 43H and 43I to determine if any abandoned UST(s) were present. The geophysical surveys consisted of a metal detector and GPR survey. The surficial geophysical surveys conducted at SA 43H covered an area 50 feet wide and 150 feet long on the northern side of Building 602 (Figure 6.8-2). The surficial geophysical surveys at SA 43I covered an area approximately 50 feet wide and 75 feet long north of Building 603 (Figure 6.8-3).

A total of six subsurface soil samples were collected from three TerraProbe points at SA 43H, to determine if fuel-related contaminants were present at the site (see Figure 6.8-2). Three soil samples were collected from 8 feet to 9 feet, the approximate depth of the former UST; two soil samples were collected from

ABB Environmental Services, Inc.

W0099521.M80

7053-15

11 feet to 12 feet, and one from 25 feet in TP-01. The soil samples from 11 feet and 25 feet in TP-01 were collected in an attempt to reach the water table below this site. However, groundwater was not encountered. Consequently, seven soil-gas samples were collected to further investigate the nature and distribution of potential contamination. The soil samples were analyzed in the field for BTEX and TPHC, while the soil-gas samples were analyzed in the field for BTEX only.

One soil boring (43H-92-01X) was drilled to collect subsurface soil samples for laboratory analysis. The water table was not reached prior to encountering bedrock in this soil boring, so a soil sample from the water table could not be collected. One soil sample was collected from 9 feet (below the estimated depth of the former UST) for laboratory analysis for PAL VOCs, TPHC, and lead (see Figure 6.8-2). The surficial geophysical surveys conducted at SA 43I covered an area 50 feet wide and 75 feet long at the northern corner of Building 603 (see Figure 6.8-2).

Ten TerraProbe points were advanced at SA 43I to determine if residual fuel-related contaminants were present at the site (see Figure 6.8-3). A total of 16 soil samples were collected. Nine soil samples were collected from 9 feet to 11 feet to analyze the soil at or near the estimated bottom of the UST. Seven soil samples were collected from 20 feet to 32 feet in an attempt to reach the water table and determine if contaminants had migrated to the water table. Groundwater was not encountered in any of the TerraProbe points advanced at SA 43I. Because groundwater was not reached, four soil-gas samples were collected. Soil samples were analyzed for BTEX and TPHC, while soil-gas samples were analyzed for BTEX only.

One soil boring (43I-92-01X) was drilled to the water table, and two subsurface soil samples were collected for laboratory analysis of PAL VOCs, TPHC, and lead (see Figure 6.8-3).

6.8.3 Supplemental Site Investigation Program Summary

The SSI at SA 43H and I was performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b).

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

The objective of subsurface soil sampling program at SA 43H and I was to investigate the presence or absence of fuel-related contamination generated by the activities at the motor pools. The program was designed to assess the vertical and horizontal distribution of contamination at the potential source areas with TerraProbe points, soil borings, groundwater monitoring wells, and surface water and sediment sampling. The primary concern at this site was that a potential release of contaminants associated with past and present activities had potentially impacted the subsurface soils, the groundwater, surface water, and sediment quality at this site. Possible contaminant types include petroleum hydrocarbons associated with diesel fuel and/or fuel oil, and waste oil. A field GC was used to analyze the samples collected from the TerraProbe points for the VOCs BTEX. An IR was used to analyze for TPHC. Table 6.8-1 summarizes the activities completed during the SS1.

A record search of Fort Devens design drawing for the motor pools at SA 43H and I was conducted prior to the initiation of the SSI field activities. This search indicated that several areas of potential contamination existed at each motor pool. These areas included the sand and gas traps located outside of Buildings 601, 602, 603, and 604, existing heating oil USTs at buildings 602 and 603, former waste oil UST excavations at each motor pool, and the diesel-fuel dispensing islands (see Figure 6.8-1).

The sand and gas traps are underground structures used to collect the waste fuel. oil and spills generated in the repair bays in each of the above mentioned buildings. The sand and gas traps are constructed of concrete sides and bottom and are approximately 5 feet in diameter and 9.5 feet deep. The sand and gas traps at each building were installed flush to the ground and they are accessed by a manhole. A 2-inch overflow pipe connects the sand and gas traps for Buildings 601 and 602 as well as Building 603 and 604. These pipes are located approximately 2 feet from the top of each sand and gas trap and appear to have been used for overflows, only. The floor drains in each of the building is tied to a discharge pipe which leads outside of the building to the sand and gas traps. The waste fuel and oil flow into the traps where they are stored for collection. The sand and gas traps outside of Building 601 and 602 are presently tied together with a 2-inch underground pipe leading from the sand and gas trap at 602 to the sand and gas trap for 601, and then into a sanitary sewer west of Building 601. The design drawing for this system showed that previously these sand and gas traps overflows were tied to the storm sewer system located east of Building 601

ABB Environmental Services, Inc.

W0099521.M80

(Figure 6.8-4). This storm sewer was sampled under the AREE 70 program and the results of that sampling can be found in the Final Storm Sewer Evaluation (AREE 70) Report (Arthur D. Little (ADL), 1995). The sand and gas traps in front of Buildings 603 and 604 are presently tied into the sanitary sewer, however, the design drawings showed that previously these sand and gas traps had an overflow pipe which drained to an overflow outfall east of Building 604 (Figure 6.8-5). The outfall is still in existence, however, the overflow pipes to the outfall have been sealed off at the sand and gas traps.

To present the data from each potential source area more clearly, the site was subdivided into 4 areas. Area 1 was comprised of Buildings 603 and 604, Area 2 was made-up of the former diesel fuel dispensing islands and USTs, Area 3 included Buildings 601 and 602, and Area 4 was the diesel fuel spill site (see Figure 6.8-1). Areas 1 and 3 were subdivided into smaller units to facilitate the investigation and allow for disposition of smaller units within the areas. Within Area 1, the heating oil UST will be referred to as Area 1a, the former waste oil UST will be referred to as Area 1b and the sand and gas traps will be Area 1c (see Figure 6.8-5). The same subdivision was followed in Area 3 (see Figure 6.8-4).

A GPR survey was conducted at each the potential source areas identified in the record search. The GPR survey enabled accurate and safe location of the TerraProbe locations at each location, and gave accurate location of the underground features at each potential source area.

A total of 89 TerraProbe points were completed between the four areas at SA 43H and I. The following section summarizes the field activities completed in each area. To focus the investigation at each source area, the motor pools were divided into four areas.

Area I. The field analytical investigation at Area 1 was comprised of 18 TerraProbe points located around the sand and gas traps, the heating oil UST and in and around the excavation for the former waste oil UST (see Figure 6.8-5). Three TerraProbe points (TP-17, TP-18 and TP-19) were completed in Area 1a. A total of 11 TerraProbe points (TP-04 through TP-13) were completed in and around the former waste oil UST in Area 1b. Six points (TP-01 through TP-03 and TP-15 through TP-16) were completed around the sand and gas traps in Area 1c. Up to two subsurface soil samples were collected from each of the

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

TerraProbe points. Soil samples were collected from below the bottom of the sand and gas traps (approximately 8 to 10 feet bgs), and from below the suspected bottom of the former waste oil and heating oil USTs (approximately 8 feet).

Area 2. The field analytical investigation at Area 2 consisted of 32 Terraprobe points (TP-19 through TP-37 and TP-78 through TP-90) in and around the former diesel fuel dispensing islands and associated USTs (Figure 6.8-6). At the time of the investigation two of the five USTs (located east of Building 606) were still in place. Because of this the TerraProbe points were placed around the dispensing island and the USTs. Soil samples were collected from below the suspected depth of the former and existing USTs (approximately 8 feet bgs).

Area 3. The field analytical investigation at Area 3 was comprised of 36 TerraProbe points located around the sand and gas traps, the heating oil UST and in and around the excavation for the former waste oil UST (see Figure 6.8-4). Five TerraProbe points (TP-42 through TP-46) were completed in Area 3a. A total of 24 TerraProbe points (TP-50 through TP-74) were completed in and around the former waste oil UST in Area 3b. Six points (TP-47 through TP-49 and TP-75 through TP-77) were completed around the sand and gas traps in Area 3c. Up to two subsurface soil samples were collected from each of the TerraProbe points. Soil samples were collected from below the bottom of the sand and gas traps (approximately 8 to 10 feet bgs), and from below the suspected bottom of the waste oil and heating oil USTs (approximately 8 feet).

Area 4. The field analytical investigation at Area 4 consisted of five TerraProbe points (TP-91 through TP-94) located around the reported diesel-fuel spill location (Figure 6.8-7). Soil samples were collected from only 5 feet bgs due to gravel and cobbles encountered in the soil at this area.

After the TerraProbe survey in each area was completed, a total of 10 soil borings (XHB-93-02X through XHB-93-11X) were completed. The location of each soil boring was based on the field analytical results obtained from the TerraProbe survey in each area (see Figures 6.8-4 through 6.8-7). Up to three subsurface soil samples were collected from each boring. The shallow soil samples collected from each boring were collected from depths similar to those used during the TerraProbe survey, so that confirmatory laboratory analysis results might be obtained. Where possible, soil samples were also obtained from the water table and/or the top of bedrock to determine the concentration of potential

ABB Environmental Services, Inc.

W0099521,M80

contaminants at or near the water table. Subsurface soil samples were also collected from the five monitoring well borings. One soil sample was collected from the screened interval from four of the monitoring well borings (XIM-93-01X, XIM-93-04X through XIM-93-06X), while three subsurface soil samples were collected from XIM-93-02X located downgradient of the former diesel fuel dispensing islands and associated USTs. Each of the subsurface soil samples were submitted for laboratory analysis consisting of PAL VOCs, SVOCs, inorganics, TPHC, and TOC.

A total of five groundwater monitoring wells (XIM-93-01X, XIM-93-02X, XIM-93-04x through XIM-93-06X) were installed at SA 43H and I (see Figure 6.8-1). Monitoring well XIM-93-01X was installed in an apparent upgradient location while XIM-93-04X through XIM-93-06X were installed at what appeared to be downgradient locations. Monitoring well XIM-93-02X was installed east/downgradient of the former diesel fuel dispensing islands (Area 2) to determine if contaminants detected in this area, during the TerraProbe survey, had impacted the groundwater quality. The well screen in each monitoring well was placed so that it intersected the water table to allow for the monitoring of free product and seasonal groundwater level fluctuations. Two monitoring wells (XIM-93-01X and XIM-93-06X) were installed in the bedrock, while the remaining three monitoring wells (XIM-93-02X, XIM-93-04X and XIM-93-05X) were installed in overburden soils. The monitoring well construction at SA 43H and I are summarized in Table 6.8-2 and the well installation diagrams are presented in Appendix C.

Two rounds (Round Three and Four) of groundwater samples were collected during the SSI. Round Three groundwater samples were collected in September 1993 and Round Four samples were collected in January 1994. Both rounds of samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics (both filtered and unfiltered), TPHC, and TSS.

Two surface water samples (XHD-93-02X and XHD-93-03X) were collected from the storm water outfalls located southeast of the motor pools (see Figure 6.8-1). No surface water sample was collected from sample location XHD-93-01X due to a lack of surface water at this location during the sampling event. The surface water samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics.

ABB Environmental Services, Inc.

W0099521.M80

Three sediment samples (XHD-93-01X through XHD-93-03X) were collected from the storm water outfalls located southeast of the motor pools (see Figure 6.8-1). Sediment sample were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics, TPHC, and TOC. Surface water and sediment samples were collected from similar locations during the AREE 70 program. The results from that program will not be repeated here but can be found in the Final Storm Sewer Evaluation (AREE 70) Report (ADL, 1995).

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test. All SSI exploration locations were surveyed.

6.8.4 Field Investigation Results and Observations

The soil below SA 43I appears to be comprised of a poorly sorted sand with medium gravel and silt. Bedrock was encountered at depths ranging from 27 to 41 feet bgs. The bedrock encountered was classified as a metasiltstone or phyllite. Table 6.8-3 summarizes the field observation and the soil type encountered at each soil boring location. The soil boring was advanced to 35.5 feet bgs. Refusal, apparently bedrock, was encountered at 34.5 feet bgs and groundwater was encountered at 34.1 feet bgs. The soil borings for SA 43H and SA 43I are provided in Appendix B.

The results of the geophysical surveys conducted during the SI did not indicate that an abandoned UST was present at either SA 43H or 431. The results of the geophysical surveys are presented in Appendix L.

Calculated hydraulic conductivities in the bedrock monitoring wells ranged from 2.1E⁴² cm/sec. at XIM-93-01X to 6.5E⁴⁹ cm/sec. at XIM-93-06X. The hydraulic conductivities in the monitoring wells installed in overburden soils ranged from 3.0E⁴⁰ cm/sec at XIM-93-04X to 3.9E⁴⁰ cm/sec at XIM-93-05X. The results of the hydraulic conductivity tests are presented in Table 6.8-4 and summarized in Appendix A.

The monitoring wells at SA 43H and I have been included in several installation-wide water-level rounds. For the purposes of this report the November 8, 1993 synoptic water-level round was chosen to represent the water table conditions at these SA. The results of that round are presented in

ABB Environmental Services, Inc.

W0099521.M80

Table 6.8-4. The inferred groundwater flow appears to be moving to the east-southeast (Figure 6.8-8).

6.8.5 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.8.5.1 Soil. BTEX was not detected in the subsurface soil samples collected from historic gas station H during the SI. However, TPHC was detected in the 9 foot sample collected from TP-05 at a concentration of 1,400 ppm and in the 12 foot sample from TP-10 at a concentration of 91 ppm (Figure 6.8-9). BTEX was not detected in the soil-gas samples collected (Figure 6.8-10). Table 6.8-5 presents the results of the field analysis.

BTEX was not detected in the nine subsurface soil samples collected from 9 feet to 11 feet bgs at historic gas station I during the SI. TPHC was detected in four of the soil samples ranging from 85 ppm at 11 feet in TP-06 to 300 ppm at 11 feet in TP-03 (Figure 6.8-11). BTEX nor TPHC were detected in the six subsurface soil samples collected from 20 feet to 32 feet bgs (Figure 6.8-12). BTEX was not detected in the four soil-gas samples collected from SA 43I (Figure 6.8-13). Table 6.8-5 presents the field analysis data for SA 43I.

The results of the SSI field analysis are presented in Table 6.8-5 and Figures 6.8-14 through 6.8-20. The following subsection present the results of the field analysis conducted on soil samples collected each area.

Area 1. TerraProbe points completed in Area 1a indicated that TPHC contamination was not present in the samples collected from 8 feet bgs, while TPHC was present in the soil below the heating oil UST at concentrations ranging from 230 to 600 ppm in the 9 to 10 foot samples (see Figures 6.8-14 and 6.8-15). The results of the field analysis in Area 1b showed that residual TPHC contamination was present at 9 to 10 feet and 10 to 11 feet bgs in the center of the former waste oil UST excavation. Concentrations of TPHC ranged from <53 to 3,100 ppm (see Figure 6.8-15). The results of soil samples collected around and below the sand and gas traps at 8 feet and 9 to 10 feet bgs indicated that TPHC was present at concentrations ranging from <53 to 16,000 ppm at the sand and gas trap in front of Building 603, and at concentrations ranging from <53 to 1,200 ppm at the sand and gas trap in front of Building 604 (see Figures 6.8-14 and 6.8-15).

ABB Environmental Services, Inc.

W0099521_M80

Area 2. Thirty-eight TerraProbe points were completed in Area 2 and subsurface soil samples were collected from 8 to 10 feet bgs. The results of the field analysis conducted on the soil samples collected from Area 2 indicated that low concentrations of toluene and xylenes were present along with higher concentration of TPHC, to a depth of 10 feet, at isolated areas in and around the former diesel USTs (see Figures 6.8-16 and 6.8-17).

Area 3. TerraProbe points completed in Area 3a indicated that TPHC contamination was present in the soil below the heating oil UST at concentrations ranging from <52 to 2,500 ppm (Figures 6.8-18 and 6.8-19). The results of the field analysis in Area 3b showed that residual TPHC contamination was present in the center and northern end of the former waste oil UST excavation. Concentrations of TPHC ranged from <53 to 480 ppm. The results of soil samples collected around and below the sand and gas traps at Area 3c, indicated that there was low concentrations (0.4 to 0.6 ppb) of m-p xylene and orthoxylene. TPHC was also detected at concentration ranging from <52 to 1,900 ppm at the sand and gas trap in front of Building 601, and at concentrations ranging from <52 to 1,300 ppm at the sand and gas trap in front of Building 602 (see Figures 6.8-18 and 6.8-19).

Area 4. Four TerraProbe points were completed in this area. Due to probe refusal the points were only advanced to 10 feet bgs. Of the soil samples collected from this depth, one sample (TP-94) had a detectable concentration of orthoxylene at 3.1 ppb and TPHC at 92 ppm. Soil samples could only be collected from around the perimeter of the spill site due to soft soil conditions at the time of the TerraProbe survey (see Figure 6.8-20).

The results of the SSI off-site laboratory analyses for the subsurface soil samples collected from SA 43 are presented in Tables 6.8-6 and 6.8-7 and Figures 6.8-21 through 6.8-24. Based on the results of the TerraProbe survey in each area, a soil boring program, consisting of 10 borings, was designed and completed. Results from SI borings are also included in these sections.

Area 1. Soil boring 43H-92-01X was drilled adjacent to TP-05 to collect confirmatory laboratory analytical samples. This location was chosen because the highest TPHC concentration (1,400 ppm) was detected at this location. One sample was collected from 9 feet bgs. No VOCs were detected, TPHC was detected at a concentration of 154 ppm and lead was detected at a concentration

ABB	Environment	al Si	arvice	s. Inc.	2

W0099521,M80

below the established background (Table 6.8-6; Figure 6.8-21). The soil boring was advanced to 26 feet bgs, but the water table was not encountered prior to refusal. Because of this a soil sample from the water table could not be collected or submitted for analysis.

Three soil borings (XHB-93-02X through XHB-93-04X) were completed in Area 1. One soil boring was advanced adjacent to each of the sand and gas traps in Areas 1c, and the third boring was drilled through the middle of the excavation of the former waste oil UST at Area 1b. The depth of the shallow soil samples collected from each of these borings was based on the results of the TerraProbe survey. Due to the nature of the soils in this portion of the installation, each of the soil borings in Area 1 were terminated, due to auger refusal, prior to reaching the water table or bedrock. The results of the off-site laboratory analyses indicated the presence of several inorganic analytes above the Fort Devens background concentrations as well as VOCs and TPHC contamination. Low concentrations of common laboratory contaminants trichlorofluoromethane and/or di-n-butylphthalate were detected in each of the Area 1 soil samples. Toluene $(0.004 \ \mu g/g)$ and TCE $(0.034 \ \mu g/g)$ were detected in the 8-foot soil samples from XHB-93-04X. Residual TPHC contamination was detected in the 10-foot sample $(234 \,\mu g/g)$ collected from the grave of the former waste oil UST in Area 1b, however a deeper soil sample could not be collected due to auger refusal. TPHC contamination was confirmed around and below the sand and gas trap located outside of Building 603. Soil samples results from XHB-93-02X showed concentrations of TPHC decreasing with depth, ranging from 1,110 µg/g in the 10 to 12-foot sample to 49.2 µg/g in the 33 to 35-foot soil sample. TPHC was also detected at 126.0 μ g/g in the duplicate sample collected from 33 to 35 feet bgs at XHB-93-02X. TPHC contamination detected in the TerraProbe samples collected around the sand and gas trap outside of Building 604, was not confirmed in the soil samples collected from boring XHB-93-04X.

Several inorganic analytes were also detected above their Fort Devens background concentration. TPHC contamination was not confirmed around the sand and gas trap outside of Building 604. The contamination detected in the TerraProbe samples were collected from 11 feet bgs and the deepest soil boring sample was collected from 8 to 10 feet bgs, due to auger refusal (see Table 6.8-6 and 6.8-7; Figure 6.8-21).

ABB Environmental Services, Inc.

W00999521.MB0

Area 2. Two soil borings (XHB-93-05X and XHB-93-06X) were completed in Area 2. These borings were located in the footprint of the former diesel UST grave to confirm the results of the TerraProbe survey, and attempt to determine the vertical distribution of the contamination. Subsurface soil samples were collected from 12 and 20 feet bgs in the XHB-93-05X boring, and from 10, 15 and 22 feet bgs in the XHB-93-06X boring. The results of the laboratory analysis indicated the presence of low concentrations of three PAHs and several inorganic analytes above the Fort Devens background in the samples collected from the XHB-93-05X boring. No VOCs were detected. TPHC concentrations detected in the laboratory samples were two orders of magnitude lower (<28.7 to 74.0 $\mu g/g$) then those detected in the field analytical soil samples. The results of the laboratory soil samples collected from the XHB-93-06X boring were comparable to those detected in the field analytical samples. No VOCs or SVOCs were detected, however, elevated TPHC concentrations were detected in each of the three soil samples. The deepest soil sample (22 feet bgs) had a TPHC concentration of 131 μ g/g. Several inorganic analytes were detected above their Fort Devens background concentration. No soil boring were advanced around the existing diesel USTs because these USTs had not been removed and it was the Army's opinion that soil borings should be completed after the USTs were removed (see Tables 6.8-6 and 6.8-7; Figure 6.8-22).

Area 3. Soil boring 43I-92-01X was drilled to confirm the field analysis results. The boring was drilled adjacent to TP-03, which had the highest TPHC concentration at 300 ppm. Two soil samples, one from 9 feet to 11 feet bgs and one from the water table, 34 feet to 36 feet bgs, were collected for laboratory analysis. No VOCs or TPHC were detected and lead concentrations were below the established background (Table 6.8-5; Figure 6.8-21).

Four soil borings (XHB-93-07X through XHB-93-10X) were completed in Area 3. These borings were located adjacent to the heating oil UST in Area 3a, at the north end of Area 3b and adjacent to each of the sand and gas traps in Area 3c. The depth of the soil samples collected from each of these borings was determined based on the results of the TerraProbe survey. Due to the nature of the soils in this portion of the installation, each of the soil borings in Area 3 were terminated, due to auger refusal, prior to reaching the water table or bedrock. Because of this the soil samples collected from the soil borings did not exactly correspond with those soil samples collected during the TerraProbe survey. The results of the laboratory analyses indicated the presence of TPHC and several

ABB Environmental Services, Inc.

W0099521.M80

inorganic analytes above their Fort Devens background concentrations. TPHC contamination detected in the field analytical soil samples (i.e., TP-48, TP-75, and TP-77) was confirmed with the result from the 6-foot soil samples collected from XHB-93-07X (102 μ g/g), and the 8-foot soil sample result from XHB-93-10X (71.9 μ g/g) (see Tables 6.8-6 and 6.8-7; Figure 6.8-23).

Area 4. Only one soil boring (XHB-93-11X) was completed in Area 4. Only one soil sample (from 5 feet bgs) was collected from this boring due to auger refusal. The only organic compounds detected was di-n-butyl phthalate, a common laboratory contaminant, at 0.3 μ g/g. No site-related contaminants were detected in this sample (see Tables 6.8-6 and 6.8-7; Figure 6.8-24).

6.8.5.2 Groundwater. The results of the SSI off-site laboratory analyses for the Round Three and Four groundwater samples are presented in Table 6.8-8 and Figures 6.8-25 and 6.8-26. Round Three groundwater samples were collected from each of the five newly installed monitoring wells. The results of the Round Three off-site laboratory analysis indicated the presence of TPHC at 270 μ g/L in XIM-93-02X. TPHC was not detected in the Round Four sample from XIM-93-02X nor any of the other Round Four samples. Bis (2-ethylhexyl)phthalate and chloroform were also detected in several samples during both rounds, however, these are common laboratory contaminants and were not considered site-related contaminants. No other organic compound were detected in any of the Round Three or Four samples. Several inorganic analytes were detected above their Fort Devens background concentrations in the unfiltered samples collected during both rounds of sampling. However, only calcium, magnesium, arsenic, sodium, potassium, and antimony were detected above their Fort Devens background concentrations in the filtered samples.

6.8.5.3 Surface Water. The results of the laboratory analyses for the surface water samples collected are presented in Table 6.8-9 and Figure 6.8-27. Two surface water samples (XHD-93-02X and XHD-93-03X) were collected from the storm water outfalls, located east of SA 43 H and I, which drain from Queenstown Road, the parking area and the wash racks located at SA 43H and I. These storm drains empty into drainage ditches that flow east to the unnamed tributary of Robins Pond. Chloroform and bis(2-ethylhexyl)phthalate were the only organic compounds detected, and these are common laboratory contaminants and are not considered site-related. Several inorganic analytes were detected at notable concentrations.

ABB Environmental Services, Inc.

W0099521_M80

6.8.5.4 Sediment. The results of the laboratory analyses for the sediment samples collected are presented in Table 6.8-10 and Figure 6.8-28. Three sediment samples (XHD-93-01X through XHD-93-03X) were collected from the storm water outfalls on the east side of SA 43 H and L Sediment samples XHD-93-02X and XHD-93-03X were collected at the same locations as the surface water samples mentioned above. Sediment sample XHD-93-01X was collected from the overflow outfall of the sand and gas trap connected to Buildings 603 and 604. At the time this sample was collected it appeared that the pipe had not been used in the recent past. Each of the VOCs detected (acetone, chloroform, methylene chloride, and trichlorofluoromethane) are considered common laboratory contaminants and will not be discussed as site-related. No SVOCs were detected in any of the sediment samples collected. TPHC was detected at concentrations ranging from 398 µg/g at XHD-93-03X to 24,100 µg/g at XHD-93-01X. TOC concentrations ranged from 1,410 µg/g at XHD-93-02X to 138,000 µg/g at XHD-93-01X. These high TOC concentrations may explain the elevated TPHC concentrations. Several inorganic analytes were detected at notable concentrations.

6.8.6 Source Evaluation and Contaminant Migration Potential

TPHC was the primary contaminant detected during the TerraProbe survey and field analytical program at each of the suspected contaminant source areas at SA 43H and I. TPHC concentration was detected in soil samples collected around the sand and gas traps and in the excavations of the former waste oil USTs at Areas 1b and 1c and at Areas 3b and 3c. It appears that fuel-related contaminants have leaked from the sand and gas traps in these areas. The off-site laboratory results of subsurface soil samples collected from these areas indicate that the contamination appears to be localized around the bottom of the sand and gas traps, and in the soils at the bottom of the former waste oil UST excavation. It does not appear that contaminants have migrated to the groundwater in Area 1. TPHC contamination was also detected around the existing heating oil UST at Area 3a. Results from field analysis indicated that TPHC contamination was present in the soils in and around the former fuel dispensing islands and associated USTs in Area 2. Off-site laboratory results confirmed the field analysis and showed that TPHC contamination had apparently percolated to the water table below Area 2. TPHC was detected at low concentration in the soils samples collected at the diesel-fuel spill site behind SA 43H and I.

	ABB Environmental Services, Inc.	
099521.M80	6.57	7053-15

The only VOC and SVOC detected in the groundwater samples collected from SA 43H and I were common laboratory contaminants (chloroform, trichlorofluoromethane, and bis(2-ethylhexyl)phthalate). TPHC was detected in Round Three groundwater sample collected from XIM-93-02X (located downgradient of Area 2) at a concentration of 270 μ g/L. TPHC was not detected in the Round Four sample from this monitoring well. However, the results of the groundwater samples collected from the downgradient monitoring wells did not indicate that the TPHC detected in Round Three in XIM-93-02X has adversely impacted groundwater quality downgradient of the site. Several inorganics were detected above their Fort Devens background concentrations in the filtered and unfiltered samples. However, the background exceedances do not appear to be a result of past site activities. Instead they appear to be caused by elevated TSS and site-specific background (see Table 6.8-8; Figure 6.8-25 and 6.8-26).

The results of the surface water and sediment samples collected from the two stormwater outfalls which drain the parking area at SA 43H and I, indicates that the activities in the motor pools, and Queenstown Road, have impacted the sediment/surface soil quality at the storm water outfalls. However, it does not appear that the contaminants detected in the surface water and sediment samples are impacting local wetlands.

6.8.7 Preliminary Human Health Risk Evaluation

Analysis of TerraProbe and confirmatory boring samples collected from the historic gas stations during the SI indicated residual contamination at concentrations which would pose no significant risk to public health. However, during the SSI, the area of investigation was expanded. SA 43H and I was divided into four areas to more accurately characterize contamination. These areas are described fully in Section 6.8.1, above.

Area 1 Subsurface Soil. Area 1 has been divided in 3 areas: Area 1a, the heating oil UST; Area 1b, waste oil UST; and Area 1c, sand and gas traps outside Buildings 603 and 604. Individual field analytical results for TerraProbe samples are presented in Table 6.8-5; and off-site laboratory results for soil borings samples are presented in Table 6.8-6 and 6.8-7. The individual results are summarized on Table 6.8-11 where they are compared to Region III and MCP Category S-2 guidelines. The PRE for each area is discussed below.

ABB Environmental Services, Inc.

W0099521.M80

Area 1a. Six TerraProbe samples were taken at Area 1a (heating oil UST). No BTEX was detected. TPHC was detected in each of the three samples that were analyzed for TPHC. The maximum concentration of TPHC detected, 600 mg/kg, is below guidelines. No soil samples were collected for off-site laboratory analysis from this area.

Area 1b. Data for Area 1b (former waste oil UST excavation) is based on eight TerraProbe and one soil boring soil sample. No BTEX was detected in either the field or off-site analytical samples. TPHC was detected in 6 of 9 samples. The average TPHC concentration (983.2 mg/kg) did not exceed the MCP S-2 soil guideline nor did the maximum concentration exceed the calculated risk-based fuel oil concentration. However, the maximum TPHC concentration (3,100 mg/kg) did exceeded MCP S-2 soil guideline (see Table 6.8-11). Inorganics detected in soil boring samples from Area 1b are detailed in Table 6.8-11. Of the inorganics detected above background concentrations, beryllium (1.76 mg/kg) exceeded the Region III guideline of 0.67 mg/kg and the MCP S-2 soil guideline of 0.8 mg/kg.

Area Ic. Data for Area 1c (the sand and gas traps) comprises nine TerraProbe and four soil boring samples. Xylenes were detected in one TerraProbe sample at concentrations below guidelines and toluene was detected in a soil boring sample at a concentration below guidelines. TPHC was detected in nine of 12 samples. Both the maximum and the average TPHC concentration exceeded guidelines. Inorganics detected in soil boring samples from Area 1c are detailed in Table 6.8-11. Of the inorganics detected above background concentrations, the average and maximum concentrations for beryllium (1.57 and 1.9 mg/kg) exceeded the Region III guideline of 0.67 mg/kg and the MCP S-2 soil guideline of 0.8 mg/kg. The average and maximum concentration of arsenic (41.7 and 89.0 mg/kg) also exceeded the Region III guideline of 1.6 mg/kg and the MCP S-2 soil guideline of 30 mg/kg. However, it is unlikely that beryllium and arsenic concentrations are related to petroleum releases at Area 1c.

In summary for Area 1, subsurface soils TPHC concentrations at Area 1c could pose a potential risk to human health. The maximum TPHC concentration detected above the MCP S-2 soil guideline in Area 1b, do not appear to indicative of the overall residual TPHC concentration in this area. Using the average concentration of TPHC detected in this area (which was below the MCP S-2 soil guideline and appear to be more representative of actual conditions) it does not

ABB Environmental Services, Inc.

W0099521.M80

appear that the TPHC concentrations detected in Area 1b will pose a potential risk to human health under current or proposed future use scenarios.

Area 2 Subsurface Soils. Forty-two TerraProbe and four soil boring samples were taken at Area 2. Individual sample results for TerraProbe samples are displayed in Table 6.8-5 and for soil borings in Table 6.8-6 and 6.8-7. The individual results are summarized on Table 6.8-11 where they are compared to Region III and MCP Category S-2 soil guidelines. Toluene and xylenes were detected in a small number of samples at concentrations well below guidelines. TPHC was detected in 33 of 43 samples, but concentrations did not exceed guidelines. Inorganics detected in soil boring samples from Area 2 are detailed in Table 6.8-10. Of the inorganics detected above background concentrations, the average and maximum concentrations of beryllium (1.5 and 2.1 mg/kg) exceeded the Region III guideline of 0.67 mg/kg and the MCP S-2 soil guideline of 0.8 mg/kg. The average and maximum concentrations of arsenic (33.5 and 42.0 mg/kg) exceed the Region III guideline of 1.6 mg/kg and the MCP S-2 soil guideline of 30 mg/kg. However, it is unlikely that arsenic and beryllium concentrations are related to petroleum release at Area 2. In summary, it does not appear that unacceptable risks to public health exist at Area 2.

Area 3 Subsurface Soils. Area 3 has been divided in 3 subareas: Area 3a, the heating oil UST; Area 3b, waste oil UST; and Area 3c, sand and gas traps. Individual sample results for TerraProbe samples are displayed in Table 6.8-5 and for soil borings in Table 6.8-6 and 6.8-7. The individual results are summarized on Table 6.8-11 where they are compared to Region III and MCP Category S-2 guidelines. The PRE for each area is discussed below.

Area 3a. Area 3a (heating oil UST) is represented by ten TerraProbe and two soil boring samples. BTEX was not detected in these samples. TPHC was detected in six of ten samples. The concentration of TPHC in one sample exceeded the MCP S-2 soil guideline. Inorganics detected in soil boring samples from Area 3a are detailed in Table 6.8-10. Of the inorganics detected above background concentrations, the average and maximum concentrations of beryllium (0.75 and 0.8 mg/kg) exceeds the Region III guideline of 0.67 mg/kg. The maximum concentration of beryllium was equal to the MCP S-2 soil guideline of 0.8 ppm. The maximum and average concentration of arsenic (36.8 and 42.0 mg/kg) exceeded the Region III guideline of 1.6 mg/kg and the MCP S-2 soil

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

guideline of 30 mg/kg. However, it is unlikely that arsenic and beryllium concentrations are related to petroleum releases at Area 3a.

Area 3b. Area 3b (former waste oil UST excavation) is represented by 24 TerraProbe and two soil boring samples. Xylene is detected in one TerraProbe sample at a concentration well below guidelines. TPHC is detected in seven of 26 samples, but none exceed the guideline concentrations. Inorganics detected in soil boring samples from Area 3b are detailed in Table 6.8-7. Of the inorganics detected above background concentrations, the average and maximum arsenic concentrations (32.5 and 33 mg/kg) exceeded the Region III guideline of 1.6 mg/kg and the MCP S-2 soil guideline of 30 mg/kg. However, the concentrations of arsenic detected at Area 3b do not appear related to petroleum releases at this area (see Table 6.8-11).

Area 3c. Area 3c (sand and gas traps) is represented by seven TerraProbe and three soil boring samples. Xylenes are detected at concentrations well below guidelines. TPHC is detected in six of ten samples, but none exceed the guideline concentrations. Inorganics detected in soil boring samples from Area 3c are detailed in Table 6.8-7. Of the inorganics detected above background concentrations, the average and maximum concentrations of arsenic (31 an 32 mg/kg) exceed the Region III guideline of 1.6 mg/kg and the MCP S-2 soil guideline of 30 mg/kg. However, it is unlikely that these concentrations are related to the activities at Area 3c (see Table 6.8-11).

In summary for Area 3, potential risk to human health from contact with subsurface soil is possible as a result of concentrations of TPHC at Area 3a.

Area 4 Subsurface Soil. Five TerraProbe and one soil boring sample represent Area 4. Xylene and TPHC were detected in one TerraProbe sample (TP-94) at concentrations well below their respective guidelines. Inorganics detected in soil boring samples from Area 4 are detailed in Table 6.8-7. None exceed guideline concentrations. In summary, it appears that contact with subsurface soil at Area 4 does not pose any potential human health risk (see Table 6.8-11).

Table 6.8-12 presents summary data based on five unfiltered groundwater samples from SA 43H and I along with drinking water standards/guidelines for comparison. The organics detected were bis(2-ethylhexyl)phthalate, chloroform, trichlorofluoromethane, and TPHC. Bis(2-ethylhexyl)phthalate was detected in

ABB Environmental Services, Inc.

W0099521.M80

one of five samples at 6.7 μ g/L, slightly exceeding its federal MCL of 6 μ g/L. However, bis(2-ethylhexyl)phthalate is a common laboratory contaminant and is not believed to be site-specific. Chloroform did trichlorofluoromethane did not exceed the federal/Region III MCL. The single detection of TPHC did not exceed the MCP GW-1 standard.

All of the inorganics detected in groundwater exceeded established base-wide background concentrations. Average concentrations of aluminum, iron and manganese exceed their respective secondary MCLs, which are based on aesthetic or economic considerations rather than health. The maximum concentration of sodium (28,600 μ g/L) slightly exceeds the Massachusetts guideline of 28,000 μ g/L. In filtered groundwater samples, fewer inorganics were detected, concentrations were generally lower than in unfiltered samples, and no concentrations exceeded guidelines.

Based on this screening, it does not appear that groundwater poses a potential risk to human health.

Tables 6.8-13 and 6.8-14 present summary statistics for surface water and sediment associated with SA 43H and L

The organic compounds bis(2-ethylhexyl)phthalate and chloroform were detected in surface water. These are common laboratory contaminants and are not believed to be site-related contaminants. In any case, the detected concentrations of these two compounds do not exceed their respective drinking water standard or guideline.

Concentrations of aluminum, iron, and manganese detected in surface water exceed their respective USEPA secondary MCLs. (Secondary MCLs are based on aesthetic or economic conditions and are not health-based.) Sodium concentrations exceed the Massachusetts guideline. The maximum concentration of lead exceeds the USEPA action level. The use of drinking water guidelines for comparison to surface water concentrations in a drainage outfall is a conservative approach and is used due to a lack of available health-based guidelines for exposure to surface water. The magnitude and frequency of exposure to surface water associated with SA 43H and I would be expected to be much less than that upon which drinking water guidelines are based. As a result, it is not likely that

ABB Environmental Services, Inc.

W0099521.M80

an individual would encounter inorganic analyte concentrations that would pose a threat to public health.

Acetone, chloroform, methylene chloride, and trichlorofluoromethane were detected in the sediment at SA 43H and I. The detected concentrations did not exceed Region III residential soil concentrations or MCP S-1 soil standards. In any case, these compounds are common laboratory contaminants and are not believed to be site-related contaminants. The maximum concentration of TPHC of 23,800 μ g/g detected at XHD-93-01X exceeds the MCP S-1 TPH standard and the calculated concentration for gasoline. Concentrations in the other two sediment samples, 430 μ g/g and 398 μ g/g are below these guidelines.

Of the inorganic analytes detected in the sediment, arsenic, beryllium, lead and manganese exceed Region III residential soil concentrations and MCP S-1 soil standards. Antimony and chromium are detected at concentrations in excess of the MCP S-1 soil standard. The use of residential soil standards is a conservative approach taken in the absence of health-based guidelines specifically for sediment. Exposure to contaminants in this sediment would be much less than that in a residential setting. The residential soil concentrations assume exposure occurs 350 days per year for 30 years. The concentrations of analytes associated with SA 43H and I sediment are not expected to present a risk to public health under present or foreseeable future uses of the SA.

6.8.8 Conclusions and Recommendations

Based on the results of the SSI data and the findings of the human health PRE, a removal action is recommended at sand and gas traps at Areas 1c (including the sand and gas trap outfall), and the heating oil UST in Area 3a. NFA is recommended for historic gas station H, I, Areas 1a, 1b, 2, 3b, 3c, and 4.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.8-1 SUMMARY OF TECHNICAL APPROACH SA 43H AND I - HISTORIC GAS STATIONS II AND I

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITY	PURPOSE	SITE	RATIONALE FOR SELECTED LOCATIONS
SI PROGRAM TERRA PROBE	 COLLECT SOIL AND SOIL GAS SAMPLES FOR FIELD ANALYSIS AT BOTH 43H AND 1 	TP-01 THRU TP-10	* IN AND AROUND LOCATION OF FORMER HISTORIC GAS STATIONS AT BOTH 49H AND I
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR OFF-SITE LABORATORY ANALYSIS	43H - 92 - 01X - 43I - 92 - 01X	LOCATED AT TERRAPROBE SURVEY 'HOT SPOTS'
SSI PROGRAM	· COLLECT SOIL SAMPLES FOR FIELD ANALYSIS		
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TF-01 THRU TF-94	 AROUND SUSPECTED CONTAMINANT SOURCE AREAS
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 INSTALL MONITORING WELLS CHARACIERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	XHB-93-02X XHB-93-03X XHB-93-04X XHB-93-05X XHB-93-06X XHB-93-07X XHB-93-08X XHB-93-09X XHB-93-10X XHB-93-11X	LOCATED AT TERRAPROBE SURVEY THOT SPOTS
MONTFORING WELL INSTALLATION AND GROUNDWATER SAMPLING	MONITOR GROUNDWATER LEVELS MONITOR GROUNDWATER QUALITY DETERMINE AQUIFER CONDUCTIVITIES	XIM-93-01X XIM-93-02X XIM-93-04X XIM-93-05X XIM-93-06X	UPGRADIENT DOWNGRADIENT
SURFACE WATER/SEDIMENT SAMPLING	COLLECT SAMPLE FOR LABORATOR Y ANALYSIS	XHD-93-01X XHD-93-02X XHD-93-03X	* STORM DRAIN OUTFALL

TABLE 6.8-2 MONITORING WELL COMPLETION DETAILS SA 43H AND I – HISTORIC GAS STATIONS H AND I

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL IDENTIFICATION	SOIL DRILLING METHOD	BEDROCK DRILLING METHOD	MEDIA	WELL SCREEN DEPTH (Feet bgs)	WELL SCREEN ELEVATION (Feet NGVD)	COMPLETION DEPTH (Feet bgs)	CONSTRUCTION MATERIAL
XIM9301X	DRIV AND WASH CASING	ROCK CORE	BEDROCK	25,7 - 35,7	297.3 - 287.3	32.2	4 ID PVC
XIM-93-02X	HOLLOW STEM AUGER	NA	SOIL	29.5 - 39.5	293.3 - 283.3	40.5	4 ID PVC
XIM-93-04X	HOLLOW STEM AUGER	NA	SOIL	39.3 - 49.3	289.7 - 279.7	49.5	¢ 113 рус
XIM-93-05X	HOLLOW STEM AUGER	NA.	SOIL	17.5 - 27.5	297.3 - 287.3	30,0	# ID PVC
8IM-93-06X	DRIV AND WASH CASING	ROCK CORE	REDROCK	30.5 - 40.5	2823 - 2723	41.0	€ ID PVC

NA=Not Applicable

TABLE 6.8-3 SUMMARY OF SOIL BORINGS SA 43H AND 1- HISTORIC GAS STATIONS H AND 1

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLOSATION	COMPLETION DEPTH (Feet log)	REFERENCE SAMBLE OVTERVALS (Post bgs)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE	BY PED (PPMD	COMMENTS
4301-92-01X	26	4.6		SW	BKG	- Contractor
		9-11	9-11	SW	BKG	
		14-16	2.11	SP/SM	BKG	
		16-18		SP/SM	BKG	
		18-20		SP/SM	BKG	
		20-22		SP/SM	BKG	
		22-24		SP/SM	BKG	
		24-26		SW	BKG	
43H-92-01X	15	4-6	-	SP	BKG	-
SHOTTOIA	35	9-11	9-11	SP	BKG	
		1416	3-11	SP	BKG	
		19-21 24-26		SF SW	BKG	
		25-28		SW	BKG	
		29-31	Sec.	SW	BKG	
		34-36	34-36	SW	BKG	
XHB-93-02X	37	0.2		SW	BKG	
		57		SW-SM	BKG	A Transition
		8-10		-	-	No Roosvery
		10-12	10.00	SP-SM	7.8	
		12-14	12-14	SP-SM	8,2	
		15-17	15-17	SW-SM	1.2	
		20-22		SF	BKG	
		25-27		SP	BKG	
		30-32		SF	BKG	
and the second	· · · · · · · · · · · · · · · · · · ·	35-37	\$5-37	SM	BKG	
XH01-93-03X	15.5	1-3		SW.	BEG	
		5-7		SP	BKG	
		8-10	Contraction of the	SP	BKG	
		10-12	10-12	SW	9.7	
and a stand		15-15.5				No recovery, refusal at 15.5-feet
XHB-93-04X	17	0-2		SW-SM	BKG	
		5-7	A Contract of the second se	SM	BKG	
		8-10	E-10	SM	BKG	
XHB-93-04X		10-12	10-12	SM	BKG	
	1	15-17	di na	SW	BKG	Refusal al 17-feet
XHB-93-05X	24	0.5-2.5	1	3₩	BKG	
action action in	NY STATE	5-7		SP	BKG	
		10-12		SP	BKG	
		12-14	12-14	GP	BKG	
		15-17		SW-GW	BRG	
		29-72	20-22	SW-OW	BKG	the second se
		24-24.2			-	No recovery, refusal at 24-2-feer

TABLE 6.8-3 SUMMARY OF SOIL BORINGS SA 43H AND I – HISTORIC GAS STATIONS H AND I

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEFTH (Feet box)	REFERENCE SAMPLE DYTERVALS (Feel bo)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE	BY PID	COMMENTS
NHB-93-06X	24	0-2 5-7		59 57	BKG BKG	
		10-12 15-17	10-12 15-17	SP SP	4	
6		20-22 22-24	22-24	SP SP	BKG	Refusal ut 24-loer
XHB-93-07X	33.4	03-23 6~6 10-12	6-8	SW SW GW-OP	8KG 2 1	Total VOCs from headspace Total VOCs from headspace
100		15-17 20-22 23-25	15-17 23-25	SW SW SW	1 BKG BRG	Total VOCs from headspace
an array		10-32 33-33.4	25-25	514	880	No recovery No recovery, refusal at 33.4-feet
XHB-93-08X	20,5	1-3 5-7 8-10 15-17 20-20.5	8+10 15-17	SW-SM SW-SM SW-SM SM PHYL	BKG BKG BKG BKG BKG	Refusal on boilrock at 20.5-feet
XHB-93-09X	n	0-2 6-8 10-12 15-17	10-12 15-17	SW SW-GW GP-SP SW	BKG BKG BKG; BKG	Unable to advance a open gast 15-feet
XHB-95-10X	28.3	1-3 5-7 8-10 15-17 20-22 25-27	A-10 30-22 25-27	3W-SM 3W-SM 5W SP SP 5P	BKG BKG BKG BKG BKG BKG	Limbia in collect reference sample
XHB-93-11X	ņ	0-2 5-7 10-12 13-17	3-7 10-12	SW-SM SW-SM SP SP	BKG BKG BKG BKG	Refusal at 17-feet
XIM-93-01X	36,1	0-2 4-6 5-11 14-16 19-21 24-26 29-50.5	79-30.5	5M-SP SP SP-5M SP-5M SP-5M SP-5M SP SM-SP	BKG BKG BKG BKG BKG ØKG ØKG	Robercome physice 30.5 to 36.1 - feet

TABLE 6.8-3 SUMMARY OF SOIL BORINGS SA 43H AND 1 - HISTORIC GAS STATIONS II AND 1

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (Feel bat)	REFERENCE SAMPLE INTERVALS (Fret bas)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE	TOTAL VOC BY FID (REM)	COMMENTS
XIM-93-02K	40.5	2-3 4-6 9-11 14-16 19-21 24-26		5M-5P 5M-5P 8M 5M 5M 8M	S BKG BKG BKG BKG	No recovery
XIM-93-04X	49.5	29-29.2 1-3 4-6 9-11 14-16 19-21 24-26 29-31 34-36 39-41	34-36	5P 5P 5P 5W~5M 5W~5M 5W 5W 5W 5W	BKG BKG BKG BKG BKG BKG BKG BKG	No recovery Advance 6 - inch casion to 49.5 - feet
XIM-93-05X	31.4	0-2 5-7 10-12 15-17 20-22 25-27 30-31.3	3-7 10-12 25-27	SP SP SP SF SF SF SW	BKG BKG BKG BKG BKG BKG BKG	Spoon refusal at 31.3-feet
XIM-93-06X	45	9-2 5-54 10-12 15-17 20-22 25-27		SM GM SW SW SW	BKG BKG BKG BKG	Na recovery, boxlâse Rollerbix bedrack from 28 to 41 - feat

Notes:

bgs = helow ground surface VOCs = Volatile organic compounds UBCS = Unified soil classification system ppm = parts per million

phyl = phylite

BKG = background levels of Total VOCs were measured with a PID at the work site

TABLE 6.8–4 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 43H AND I – HISTORIC GAS STATION H AND I

WELL ID	ELEVATION	DEPTH TO WATER (Feet bgs)	ELEVATION OF WATER (Feet NGVD)	CONDUCTIVITY HVORSLEV ¹ (cm/sec)
XIM-93-01X	325.37	28,39	296,98	1.1E-02
XIM-93-02X	322.41	26.94	295.47	3.2E-03
XIM-93-04X	331.05	43.91	287.14	3.0E-02
XJM-93-05X	316.81	24.29	292,52	3.9E-04
XIM-93-06X	315.37	29.37	286.00	6.5E-07

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes: bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc.

2 = averaged value of two tests

Groundwater elevations from November 8, 1993

synoptic water level round

SITE INVESTIGATION REPORT FORT DEVENS, MA

	Torret		SA 43H - SC	DIL.				-	SA 4JE -	SOIL GAS	(
	77-44	17-84	17-65	TP-18	17-10	17-10	17-41	77-42	TP-84	17-16	17-10	TF-88	77-85
Analyse	TTHMOSE	Trans12F	Treases.	TELDINTE .	TPHISIS	TPHINAS	TPHOTASE	TYBRINE	TREMOSE	TEBMAK	TPBS764T	TPHONAF	TREMME
ORGANICS (PP)	SFT	12 FT	997	8 FT	UFT	75 FT	671	6FT	6 PT	111	6 FT	481	6PT
BENZENE	< 0.1	< 6.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0,1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	<0.1	<0,1
ETHYLBENZENE.	< 0.1	<0,1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	<0.1	<0.1	< 0.1	<0.L	<0.1	<0.1	<0.1	< 0.1
0-XYLENE	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
OTHER (PP=)						A.C			100 million (100				
TOTAL PETROLEUM HYDROCARBONS	-05	-91	1400	<55	10	ব্য	NA	NA	NA	NA.	NA	NA	NA

Netter

IS NOTED

< = Lans than detection limit.

SITE INVESTIGATION REPORT FORT DEVENS, MA

					8	A 431 - SOI	L.					1	
	77-81	77-81	77-81	13-12	TP-82	17-40	17-33	77-84	TP-45	12-65	TP-44	TP-86	TP-47
Aastyte	TP701117	TPIGLIAF	TPINILLE	1702115	37982297	TRANIF	TP103215	77164097	TPINIIF	TPINSJ2F	TPIDEIIF	1776431F	THEFT
ORGANICS (NIN)	HFT	20 FT	32 FT	0.01	19.01	11 71	21 11	9.FT -	UFT -	77 55	11 FT	JIT	TIT
BENZENE	< 0.1	< 0,1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0,1	< 0.1	< 0.7
TOLUENE	< 0.1	< 0,1	< 0.1	< 0,1	< 0.1	< 0.1	<0,1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	≤0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<01
m/p-XYLENE	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0,1	<0.1	< 0.1	<0.1	< 0.1	< 6.1	< 0.1	< 0.1
0-XYLENE	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
OTHER (Mar)	1						100 100						
TOTAL PETROLEUM HYDROCARBONS	<\$5	<55	<50	<35	<55	300	<55	02	<50	45	85	<55	180

Notes:

< - Less then detection limit.

-March)

SITE INVESTIGATION REPORT FORT DEVENS, MA

100	\$A 431 - SOIL		SA 431 - SOIL GAS											
and the second sec	17-48	TP.M	77-04	TP-66	JP-10	JP-10	17-61	17-11	TP-60	TTU	17-63	17-14	17-18	
Axalyta	TPItestyr	Tenissiti	TPIOSISP	TPORIST	JA110430.	TPHINST	TEOLOF	TENHOUSE	TREATINE	TPHMATE	TREASURE	TEBHORF	TPHUSLIE	
ORGANICS (196)	971	11 11	16 TT	15 FT	901	15 FT	977	SET	. 14 PT.	IFT	JEFT	171	11 FT	
BENZENE	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0,1	< 0.1	< 0.7	<0.1	<0.1	<0.1	<0.1	
TOLUENE	<0.1	< 0,1	< 0.1	< 0.1	< 0.1	<0.1	<d.l< td=""><td><0.1</td><td>< 0.1</td><td><01</td><td><0.1</td><td>< 0.1</td><td><0.1</td></d.l<>	<0.1	< 0.1	<01	<0.1	< 0.1	<0.1	
ETHYLBENZENE	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 9.1	< 0.1	< 0,1	< 8.1	< 0.1	<0.7	
m/p-XYLENE	<0.1	<01	< 0,1	< 0,1	< 0.1	< 0.1	<0.1	< 0.1	3,6	<0.1	< 0.1	< 0.1	<0.)	
0-XYLENE	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	2.0	<0.1	\$0.1	< 0.1	< 0.1	
OTHER (pps)			1000							(
TOTAL PETROLEUM HYDROCARBONS	96	-05	NA	NA	NA	NA NA	720	1790	16000	NA I	2900	1 sta	160	

Notes:

< * Less than detection limit.

SITE INVESTIGATION REPORT FORT DEVENS, MA

. .

	1.00	SA GH AND I - SOIL												
	TP-46	17-87	17-01	79-25	37-36	77-11	TT-12	TPAN	TP-15	TF-14	10-17	17-17	IF-15	
Analyte	1110611#	TTHINNAS	TPERMIT	TPHOTIF	TPHIRUF	TPHILLE	TPHITUF	TYRIADE	TPHISIIF	TPHIAUF	TPEITOT	TTENTINE	TPHIMAT	
ORGANICS (PPb)	1177	191	211	ILFT	II FT	II FT	11.01	II FT	11.17	ILIT	17	INT	1 PT	
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	
TOLUENE	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
m/p-XYLENE	< 0.1	< 0.1	<01	< 0,1	< 0.1	1.0>	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	
D-XIVLENE	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	
OTHER (ppm)	-									1 mm - 1 mm			100 million (1990)	
TOTAL PETROLEUM HYDROCARBONS	.55	450	3100	1900	< 55	<55	< 54	016	1200	< \$3	NA	230	NA	

Notes:

< - Less then detection limit.

SITE INVESTIGATION REPORT FORT DEVENS, MA

	SA GE AND 1-SOIL													
1 A 1 A 1	17-11	17-19	17-15	77-28	17-11	17-22	TIM	TP-24	17-25	17-34	11-27	17-24	11-31	
Assilyte	TPBIRINE	TTELINE	TPEITOR	TPERMIT	TPHINT	TPHILIP	TPHENINF	TERI410F	TPH2.LLW	JPH2518F	TREPART	TPH2919F	TPHONE	
DRGANICS (99b)	1971	101	10 FT	10 FT	1977	10 FT	10.01	1 10 81	1621	10 FT	14 FT	10 FT	1077	
BENZENE	< 0,1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.2	< 0,1	< 0.1	< 0.1	< 0,1	< 0.1	<0.1	< 0,1	
TOLUENE	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.2	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	
ETHYLBENZENE	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 8.2	< 0.1	< 0.1	<0.1	< 0,1	< 9.1	< 0.1	< 0.1	
m/p-XYLENE	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.3	< 0.1	<0.1	< 0.1	<0.1	
P-XYLENE	-< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	<01	< 0,1	<0.1	< 0.1	
OTHER (WW)								1						
TOTAL PETROLEUM HYDROCARBONS	240	NA	\$00	640	540	1100	<54	<55	< 53	1300	< 57	550	110	

8

Notes:

ASERESS,

<- Les that detection limit.

10004/93

SITE INVESTIGATION REPORT FORT DEVENS, MA

1.0.1

	7	SA 43H AND I - SOIL													
	TP-S#	17-51	17-52	17-33	TPOI	TP-34	17-34	TP-35	TP-36	119.97	17-38	17.39	37-00		
Assityte	TERIOLOF	TPHUITAF	TPHUTION	TRASIN	TEBJHONT	TPRIANE	TRESAULT	TPENS124	7710414E	Trainer	Trester	THESHOP	TEBALAT		
ORIGANICS (pph)	18 FT	11.57	10 FT	30 FT	3 17	18.7T	11 17	12 FT	20 FT	10 ST	TIOF	10 PT	10 FT		
BENZENE	< 0.1	< 0.1	<0.1	40.1	< 0.1	< 0.1	< 0.1	<0,1	<.0.1	< D.1	< 0.1	< 0.1	< 0.1		
TOLUENE	\$0.1	< 0.1	< 0.1	< 0.1	0.9	0.7	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1		
ETHYLBENZENE	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1		
m/p-XY/LENE	1.5	≈0.1	0.6	<0.1	< 0,1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1		
•XYLENE	14	1.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1		
(THER (ppm)							-								
TOTAL PETROLEUM HYDROCARBONS	700	1 220	550	710	500	280	1 NA	< 52	120	<55	6.55	3.50	< 56		

ŝ

i John

1.5112753.

<= Less than detection limit.

SITE INVESTIGATION REPORT FORT DEVENS, MA

190		SA 43H AND I - SOIL													
	TT-41	TP-02	11-0	17-41	17-41	17-44	17-44	379-45	17-15	77-66	377-46	77-47	17-41		
Assiyte	TPBALLAF	TEBOTT	TTBOM	TTBOM	TPEQUEF	TPB4472	STRANES	TEBANTE	TPB4568E	TPB46GT	TPEASER	TPE4707F	TYBARDE		
ORGANICS (ppk)	10 71	7 77	IT	201	101	777	145	7.51	# FT	7.67	AFT	7.51	JFT		
BENZENE	<0.1	1.0>	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	1.0>	<0,1	< 0.1		
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1		
STHYLBENZENE	×0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0,1	< 0.1	<0.1	< 0.1	<0.1		
avp-XYLENE	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<01	< 0.1	< 0.1	1.0>	< 0.1	< 0,1		
0-XYLENE	<0.1	-40.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1		
OTRER (ppm)						-		-							
TOTAL PETROLEUM HYDROCARBONS	290	NA	110	66	NA	480	34	< 52	<53	760	2500	< 35	330		

Note:

ADDRESS

< - Less than detection limit.

1.91

SITE INVESTIGATION REPORT FORT DEVENS, MA

	1	SA (3H AND 1- SOIL													
	17-0	17-49	TP-59	17-51	TT-54	11-55	TP-64	TP-57	17-51	77-37	17-57	TP-60	77-0		
Analytie	Tritemit'	TP34907F	TPHSPORF	TTRESAUTE	TTHSHOTF	TPHSSORF	TPBSeaur	TERSTORE	TPHStar	TPRSPORT	175159001	TPRIMON	TPEALOUP		
ORGANICS (PP)	7.07	717	8 57	7.77	FFT	SFT	1 11	107	\$FT	617	8 PT	977	117		
BENZENE	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1		
TOLUENE	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0,1	<0,1	<0.1	< 0.1	< 0.1		
ETHYLBENZENE	<0.1	<0,1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<01	<0.1		
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	<0.1	< 0,1	< 0.1	< 0.1		
0-XYLENE	<0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	<0,1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1		
OTHER (ppm)	a state and		Second Second Second		1										
TOTAL PETROLEUM HYDROCARBONS	1300	< 52	< 53	210	< 53	<34	< 54	<54	<53	160	<53	< 55	< 55		

181

Notes:

199742

< - Lass than detection livel.

2

.

SITE INVESTIGATION REPORT FORT DEVENS, MA

÷

		SA 43H AND I * SOIL													
	17-61	77.42	77-63	37-64	77-65	77-56	17-52	77-62	72-61	77.78	18-31	17-72	77-73		
Analyte	TERIOF	TPBALAT	TPHEMOF	TTBHOSE	TPHALOPE	TRESOF	TPH6700T	TPHARON	TTUM	TTETMAT	TPETIONE	THE TONF	3781MIF		
ORGAMICS (pph)	111	781	YFT	PTT	271	TTE	191	9.FT	671	571	IFT	SPT	STI		
BENZENE	< 0,1	< 0.1	<0,1	<0,1	<0,1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.)	50,1		
TOLUENE	< 0.1	<0,1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0,1	< 0.1	<0.1	<0.1	<0.1		
ETHVLBENZENE	< 0.1	<0.1	<0.1	×01	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 6.1		
MP-XILENE	< 0,1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0, 1	< 0.1	< 0.1	2.0		
D-XYLENE	< 0.1	< 0.1	× a.i	< 0.1	<0.1	×0,1	< 0.1	< 0,1	< 0.1	< 0,1	<61	< 0.1	×0.1		
OTHER (ppm)	1.000		-				· · · · · · · · · · · · · · · · · · ·		1	2					
TOTAL PETROLEUM HYDROCARBONS	< 54	430	< 52	< 52	210	110	52	< 52	< 52	<\$3	< 52	<31	480		

÷

Notes:

A REPORTED.

<= Loss then detection limit.

SITE INVESTIGATION REPORT FORT DEVENS, MA

· · · · · · · · · · · · · · · · · · ·	i la com	5A 43H AND I - SOIL													
a the second sec	TP-74 .	TP-T	TP-36	11:-77	TP-78.	17-78	37-78	319-79	12-40	TP-00	11-41	11-01	77-82		
Austyte	TRITERE	TRITTONE	TPH760EF	TPHT7MST	TTH THESE	TEE7NHF	TRUTH	17179055	TEBBONE	TEBMOS	TTHATWAT	TPETION	TPERMIT		
ORGANICS (mak)	671	87T	SPT.	101	17T	111	OFT	281	177	3 IT	2.97	9 FT	IT		
BENZENE	< 0,1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<01	< 0.1	<0.)		
TOLUENE	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1		
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<01	<0.1	< 9.1	< 0.1	< 0.1		
m/p-XYLENE	< 0.1	0.4	0.4	0.6	1.0	0.5	<0.1	< 0.1	< 0,1	< 0.1	< 0.1	0.6	< 0.1		
0-XYLENE	< 0.1	<0.1	< 0.1	0.6	< 0.1	0.4	<0.1	< 0.1	<0.1	<0.1	<0,1	0.7	<0.1		
OTHER (ppm)				1	And State Street					the second second		A	- 10		
TOTAL PETROLEUM HYDROCARBONS	52	80	< 52	1908	66	940	330	NA	(10	100	1100	530	450		

Notes:

< = Less than detection famil:

1.1

Ξ

SITE INVESTIGATION REPORT FORT DEVENS, MA

		SA 43H AND 1 - SOIL													
	TP-82	77-80	17-83	TP-64	17-84	17-36	79-86	77-67	17-41	17-01	17-23	77-54	77-00		
Assiyis	TPREME	TRENET	TPHENOF	TEBMOSE	TERMOF	Trummer	THISSOF	TRATE	TERMON	TTSIME	TPHINGS	STUSSET	TPERmont		
ORGANTICS (090)	977	171	9 FT	171	171	1 17	9PT	857	111	1 FT	yFT	TT	977		
BENZENE	< 0.1	< 0,1	< 0.1	< 0.1	< 0,1	< 6,1	<0,1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1		
TOLUENE	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1		
ETHYLBENZENE	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	~0.1	< 0.1	< 0.1	<0.1	<0.1		
m/p-XYLENE	< 0.1	< 0,1	<0.1	<0.1	<0.1	< 0.1	50,1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1		
O-XYLENE	< 0.1	<01	< 0.1	<0.1	< 0.1	< 0.)	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	501		
OTHER (ppm)	the second second					Y						_	100		
TUTAL PETROLEUM HYDROCARBONS	400	NA	270	770	150	<53	<55	<54	580	2400	65	<54	\$730		

ź

Notes

43780-60

<= Lass then detection limit.

2

SITE INVESTIGATION REPORT FORT DEVENS, MA

	The second	SA 43H AND I	SOIL	· · ·	
	17-52	TP-91	TP-93	TF-44	TP-54
Assiyte	TPH9264F	TPH9205F	TPH9304T	TPHNINT	TERMOSE
ORGANICS (194)	417	5 FT	471	487	4FT
BENZENE	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	<0.1	<0.1	< 0.1	< 0.1
m/p-XYLENE	7.0>	< 0.1	<0.1	<0.1	< 0.1
0-XYLENE	<0.1	< 0.1	<0,1	3.3	< 0.1
OTHER (ppm)					
TOTAL PETROLEUM HYDROCARBONS	<53	< 52	< 50	\$2	< 54

Noes

2

<= Loss than detection limit.

TABLE 6.8-6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI			
	XHB-93-02X X	HE-93-02X X	HB-93-02X 3	(HB-93-02X)	XHB-93-03X X	(HB-93-04X
ANALYTE	DUP 35 FT	12 FT	15 FT	35 FT	10 FT	8 PT
ORGANICS (#8/R)						
TOLUENE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004
TRICHLOROETHYLENE	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.034
TRICHLOROFLUOROMETHANE	0.007	0.008	0.006	0.008	0.013	< 0.000
DI-N-BUTYL PHTHALATE	0.32	0.53	0.52	0.77	< 2	0.6)
FLUORANTHENE	< 0.068	< 0.068	< 0.068	< 0.068	< 2	< 0.068
PHENANTHRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.8	< 0.03
PYRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.8	< 0.033
OTHER (ug/g)						
TOTAL ORGANIC CARBON	NA	NA	NA	NA	NA	NA
TOTAL PETROLEUM HYDROCARBONS	126	1110	242	49.2	234	< 28.7

Notes:

< = Less than detection limit.

TABLE 6.8-6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI			
	XHB-93-04X	XHB-93-05X	XHB-93-05X X	UB-93-05X X	(HB-93-05X X	HB-93-06X
ANALYTE	10 FT	DUP 12 FT	12 FT	20 FT	10 FT	15 FT
ORGANICS (FS/2)						
TOLUENE	< 0.001	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001
TRICHLOROETHYLENE	< 0.003	< 0.003	< 0.003	< 0,003	< 0.003	< 0.003
TRICHLOROFLUOROMETHANE	< 0,006	< 0,006	< 0,006	< 0.006	< 0.005	< 0.005
DI-N-HUTYL PHTHALATE	0.41	0.28	< 0.3	0.33	< 0.3	< 0.3
FLUORANTHENE	< 0.068	0.17	1	< 0.068	< 0.3	< 0.3
PHENANTHRENE	< 0.033	0.11	0.6	< 0.033	< 0.2	< 0.2
FYRENE	< 0.033	0.1	0.6	< 0.033	< 0.2	< 0.2
OTHER (ug/g)	3					and the second second
TOTAL ORGANIC CARBON	NA	NA	NA	RA	NA	NA
TOTAL PETROLEUM HYDROCARBONS	< 28.7	53.6	.74	< 28.7	365	45.3

Notes:

< = Less than detection limit.

TABLE 6.8–6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

and the second s			SSI			
	XHB-93-06X X	HB-93-07X X	HB-93-07X X	HB-93-07% X	HB-93-08X X	HB-93-08X
ANALYTE	22 FT	6 FT	15 FT	23 FT	8 FT	ISFT
ORGANICS (ug/g)			-			
TOLUENE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TRICHLOROETHYLENE	< 0.003	< 0.003	< 0.003	< 0.003	< 0,003	< 0,003
TRICHLOROFLUOROMETHANE	< 0.006	< 0.005	< 0.006	< 0.006	0.007	0.007
DI-N-BUTYL PHTHALATE	0.18	< 0.3	< 0.061	0.091	0.23	0.16
FLUORANTHENE	< 0.068	< 0.3	< 0.068	< 0.068	< 0.068	< 0.068
PHENANTHRENE	< 0.033	< 0.2	< 0.033	< 0.033	< 0.033	< 0.033
FYRENE	< 0.033	< 0.2	< 0.033	< 0.033	< 0.033	< 0.033
OTHER (pg/g)						
TOTAL ORGANIC CARBON	NA	NA	NA	NA	NA	NA
TOTAL PETROLEUM HYDROCARBONS	130	102	< 28.7	35.2	< 28.7	< 28.8

Notes:

< = Loss than detection limit.

TABLE 6.8-6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI			
	XHB-93-09X X	HB-93-09X X	HB-93-10X X	HB-93-10X X	HB-93-10X	XHB-93-10X
ANALYTE	6 FT	15 FT	20 FT	s Fr	25 FT	DUP 25 FT
ORGANICS (µg/g)						
TOLUENE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TRICHLOROETHYLENE	< 0.005	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
TRICHLOROFLUOROMETHANE	< 0.006	< 0.006	0.007	< 0.006	0.006	< 0.006
DI-N-BUTYL PHTHALATE	0.23	0.42	< 0.061	0.15	0.23	0.29
FLUORANTHENE	< 0,068	< 0,068	< 0.068	< 0.068	< 0.068	< 0.068
PHENANTHRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
PYRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
OTHER (#g/g)	41					
TOTAL ORGANIC CARBON	NA	NA	NA	NA	NA	NA
TOTAL PETROLEUM HYDROCARBONS	< 28.7	< 28.5	33.8	71.9	< 28.5	< 28.8

Notes:

< = Less than detection limit.

TABLE 6.8–6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		SSI				SI	(E. 200)
	XHB-93-11K	XIM-93-02X	XIM-93-04X	XIM-93-05X	43H-92-01X	431-92-01X	431-92-01X
ANALYTE	5 FT	24 FT	34 FT	25 FT	9 FT	9 FT	34 FT
ORGANICS (AB'S)					1		
TOLUENE	< 0.001	< 0.001	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001
TRICHLOROETHYLENE	< 0.003	< 0.003	< 0.003	< 0.003	< 0,003	< 0.003	< 0,003
TRICHLOROFLUOROMETHANE	< 0,006	< 0.006	< 0,006	< 0.006	< 0.006	< 0.006	< 0.006
DI-N-BUTYL PHTHALATE	0.3	0.31	< 0.061	0.4	(CC++)	1. 0	
FLUORANTHENE	< 0.068	< 0.068	< 0.068	< 0.068	< 0.068	< 0.068	< 0.068
PHENANTHRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0,033	< 0.033	< 0.033
PYRENE	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033	< 0.033
OTHER (µg/g)	1						
TOTAL ORGANIC CARBON	NA	NA	2890	1880	NA	RA	934
TOTAL PETROLEUM ITYDROCARBONS	< 28.5	< 28.7	38.6	< 28.5	154	< 27.9	< 27.3

Notes:

< = Less than detection limit.

Page 5 of 5

TABLE 6.8-7 INORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & 1 - HISTORIC GAS STATIONS

SITE	INVESTIGATION REPORT
	FORT DEVENS, MA

1 St. 17				SSI	A			SSI					
ANALYTE	BACKGROU	XHB-93-02X	XHB-93-92X	33HB-93-02X	XHB-93-02X	XHB- 93-03X	XHB-93-04X	XHB-93-04X	XHB-93-05X	XHB-93-85X	3HB-93-05X		
INORGANICS (upp)	1.222.201	DUP 35 PT	12PT	ISFT	35 PT	INFT	8 FT	10 PT	DUP 12 PT	12FT	20 PT		
ALUMINUM	15000.0	3050	6450	78:30	1740	7890	10300	9230	6170	9100	7660		
ARSENIC	23.0	23	89		22	22	16	18	36	23	- 41		
BARIUM	42.5	9.25	21.7	22.6	18.4	25.5	33.2	\$2.9	19.6	24.6	24.7		
BERYLLIUM	0.347	< 0.5	1.79	1.2	\$ 102	1,76	1.65	1.52	0,745	2,14	1,89		
CADMIUM	2.0	< 07	< 0.7	< 0.7	< 0.7	< 87	~ 0.7	< 0,7	< 0.7	< 0,7	< 0.5		
CALCIUM	1400.6	1090	1980	918	1250	850	683	687	741	1820	1700		
CHROMIUM	31.0	6,43	29.4	29,4	10.6	25	22.3	22,4	10.0	35.8	51.3		
COBALT	NA	3.0	12.2	9.96	4.74	9.38	8,43	6.57	103	12.4	LKS		
COPPER	8,39	6.22	25.3	19.8	8.21	19	14.4	12.4	17.1	22.9	29.6		
IRON	15000.0	5290	23400	20200	858B	18900	17900	15200	74900	39700	23100		
LEAD	36.9	3.3	23	9.6	3.05	8.2	17	6.39	17	22	U		
MAGNESIUM	5600.0	0100	5400	5850	1830	4740	3100	2450	2630	4240	-ši (
MANGANESE	300.0	147	279	511	105	322	665	.782	635	600	635		
NICKEL	14.0	115	53.5	44.2	164	38.9	37.3	37.8	37.3	48,0	64.3		
POTASSIUM	1700.0	384	912	1170	556	736	314	270	633	694	100		
SODIUM	131.0	268	332	278	392	275	323	329	261	304	250		
VANADIUM	28.7	4.95	14.4	16.2	7.66	14.0	(3.5	13.2	10.5	17	17.3		
ZINC	333	31.5	57.4	30.0	17.5	80.4	35.6	29.9	28.5	42.4	40.3		

Notes:

< = Less than detection limit.

Shaded values exceed background limit.

Tapill M.S.

1

TABLE 6.8-7 INORGANIC ANALYTES IN SURSURFACE SOIL SA 43H & I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

and the second se	Contract of			La constante de		S	SI			S	SI
ANALYTE	BACKGROUI	XHB-93-06X	XHB-93-06X	XHB-93-06X	XHB-93-07X	XHB-91-07X	2018-93-07%	XHU-93-06%	XHB-93-08X	XHB-93-09X	XIII - 03-09X
INORGANICS (eg/g)	1	10FT	15FT	22 FT	6 FT	ISFT	23 FT	8 PT	BFT	6 PT	ISPT
ALUMINUM	15000.0	4770	3620	7760	5740	5960	10100	5090	12000	6650	5480
ARSENIC	21.0	38	42	39	32	30	34	8.7	65	32	33
BARIUM	12.5	12.6	21.4	17,6	16.7	24.8	42.4	17.9	41.9	38.3	22.4
BERYLLIUM	0.367	1.45	< 0.5	0.59	0.55	< 0.5	< 0.5	0.66	0.84	< 0.5	× 03
CADMUN	2.0	< 0.7	< 0.7	< 0.7	0.831	< 0.7	< 6.7	< 0.7	< 6.7	< 0.7	< 0.5
CALCIUM	1400.0	523	1620	1260	1050	12200	5850	1480	2910	9160	70.6
CHROMUM	31.0	17.4	45.5	26	18.8	32.1	58.7	20.7	71.9	31.9	20.0
COBALT	NA	7.9	125	10.5	31.6	8.55	11.6	15	13.3	9.55	104
COPPER	8.39	1.83	22	23.3	15.8	15.8	21.7	27.8	14.2	17.5	187
IRON	15000.0	12900	22500	22000	13500	14100	20500	21000	22800	15900	1720
LEAD	36.9	18	33	20	16	5.88	-9.8	3,9	8.46	11	1.5
MAGNESIUM	\$600.0	2580	6990	5640	2920	5100	8350	3620	9800	5320	3910
MANGANESE	300.0	179	664	461	444	321	607	6.22	556	354	20
NICKEL	14.0	37.4	54.3	48,8	37.6	58	52.7	69,1	\$8.6	.38.0	20.5
POTASSIUM	1700.0	362	1320	617	756	1650	3540	540	3020	1960	1520
SODILIM	131.0	257	319	276	320	307	296	232	286	291	286
VANADIUM	28.7	8.45	15.8	15.2	11.1	15.4	24.8	8.02	27.4	18.4	134
ZINC	353	27.4	40.1	46.5	46	32.9	30.4	40.8	49	39.5	32.0

Noter:

< = Less than detection limit.

Shaded values esceed background limit.

TABLE 6.8-7 INORGANIC ANALYTES IN SUBSURFACE SOIL SA 43H & I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

and the second sec	the second of		1	SSL			SS		10000		SL	
ANALYTE	BACKOROU	XHB-91-10X	XHB-93-10X	XHB-93-10X	XHB-93-10X	XHB-95-11X	XIM-43-02X	XIM-93-04X	XUM-83-05%	45H-92-01X	431-92-01X	431-92-01X
INORGANICS (ag/g)		8 FT	20 FT	25 FT	DUP 25 FT	SFT	24 FT	34 FT	25 FI	9 FT	9 FT	34FT
ALUMINUM	15000.0	5770	4280	1790	1,550	4410	14200	6900	6810	NA	NA	NA
ARSENIC	21.0	31	12	10	13	.25	37	43	31	NA	NA	NA
BARIUM	41.5	19	13.9	6.81	LAS	21.8	354	24.8	29.6	NA	NA	NA
BERYLLIUM	0.347	0.62	0.65	\$ 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA
CADMIUM	2.0	< 0.7	~ 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	NA	NA.	NA
CALCIUM	1400.0	5630	14400	828	966	8810	\$220	4470	1360	NA	NA	NA
CHROMIUM	31.0	23.6	23.6	6.34	6.92	18	50.4	23,0	81.9	NA	NA	NA
COBALT	NA	9,06	8.79	2.52	3.14	7.47	[3:8	11.2	11.8	NA	NA	NA
COPPER	\$,39	10.8	20.3	6.31	7.55	26.1	29,2	23	25,1	NA	NA	N/A
IRON	15000.0	15700	15200	5470	5780	13400	23800	19200	20700	NA	NA	68A
LEAD	36,9	7,5	6,4	2,18	2.02	5,9	1.5	17	11.5	13	3.65	7.0
MAGNESIUM	5600.0	1150	4/40	1150	985	3190	9600	3900	4550	NA.	NA	N/
MANGANESE	309.0	192	378	ល	1.53	353	545	426	1490	NA	NA	N2
NICKEL	14.0	38.4	38	11.5	12.9	30.7	54.1	45.Z	53.9	NA	NA	NA
POTASSIUM	1700.0	1960	869	281	372	1120	3690	1370	1030	NÁ	NA	-382
SODIUM	331.0	258	276		321	251	505	347	335	NÁ	NA	NA
VANADIUM	28.7	13.7	\$.36	< 3,39	× 3.39	11.8	32.3	12.8	13,6	NA	NA	NA
ZINC	35.3	59.7	30.4	11.6	13.1	28.1	43,2	41.6	36,7	NA	NA	NA

Notes:

< = Less than detection limit.

Shaded values exceed background limit.

0.011

TABLE 6.8-8 ANALYTES IN GROUNDWATER SA 43 H&I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			XIM-9	3-018			XIM-9	3-02X	
ANALYTE	BACKGROUND	CONTRACTOR E CINDOR	CONFECTORED S	POLTERIO ROUND 4	ENVILABLE ROOND 4	MULTERED EXHIBIT	EMPELTERED ROUND 2	FILTERED ROUND 4	UNFILTERED ROUND 4
ORGANICS (µg/L)									
BIS (2-ETHYLHEXYL) PHTHALATE		NA	< 4.8	NA	32	NA	< 4.8	NA	< 4.8
CHLOROFORM		NA	3.7	NA	1.3	NA	3.5	NA	1.5
TRICHLOROFLUOROMETHANE	the second	NA	< 1.4	NA	2.7	NA	< 1.4	NA	1.5
INORGANICS (#g/L)									
ALUMINUM	6870	< 141	177	< 141	11700	< 141	2670	< 141	 1210.
ANTIMONY	3.03	< 3.03	< 3.03	< 3.03	< 3.03	3.66	< 3.03	2.04	-0.10
ARSENIC	10.5	< 2.54	< 2.54	< 2.54	37.6	< 2.54	3.73	< 2.54	33.3
BARIUM	39.6	5.18	31.1	< 2.54	68.1	6.41	17.7	4.97	44.7
CALCIUM	14700	24200	25900	26800	30500	24800	30600	27800	30200
CHROMIUM	14.7	< 6.02	< 6.02	< 6.02	59.1	< 6.02	9,04	< 6.02	39.9
COPPER	8,09	< 8.09	< 8.09	< 8.09	38.9	< 8.09	< 8.09	< 8:09	31
IRON	9100	< 38.8	437	< 38,8	29500	48.7	5040	599	27200
LEAD	4.25	2.28	2.82	< 1.2	10,6	< 1.26	4.23	< 1.26	20,9
MAGNESIUM	3480	4010	4050	4320	9080	3940	5270	4530	18300
MANGANESE	291	6.2	9.08	< 2.75	387	9.77	107	5.56	578
POTASSIUM	2370	1110	2180	1570	5050	1760	1880	2290	4210
SODIUM	10800	24800	25400	21900	23400	26100	26500	252/0	2440
VANADIUM	11.0	< 11	< 11	< 11	16.9	< 11		< 11	11.1
ZINC	21.1	< 21.1	< 21.1	< 21.1	215	< 21.1	34	< 21.1	617
OTHER (µg/L)									
TOTAL SUSPENDED SOLIDS		NA	17000	NA	660000	NA	264000	NA	290000
TOTAL PETROLEUM HYDROCARBONS		NA	< 201	NA	< 201	NA	270	NA	< 190

Notes

< = Less than detection limit.

Shaded values exceed background limit.

TABLE 6.8-8 ANALYTES IN GROUNDWATER SA 43 H&L - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			XIM-	-93-04X			XIM-	-93-05X	
ANALYTE	BACKGROUND	PILTERED BOUND 5	UNIPILITERED ROUND S	PILITERED ROUND 4	UNIPOLITEZERI ACIUND 4	PERTENDED	ONFILTERED ROUND 5	ROUND 4	UNIPEL TERCED ROUND 4
ORGANICS (#g/L)									
BIS (2-ETHYLHEXYL) PHTHALATE		NA	6.7	NA	< 4.8	NA	< 4.8	NA	< 4.
CHLOROFORM	1	NA	1	NA	< 0.5	NA	2.1	NA	42
TRICHLOROFLUOROMETHANE		NA	< 1.4	NA	< 1.4	NA	< 1.4	NA	< 1.
INORGANICS (#g/L)									
ALUMINUM	6870	< 141	6980	< 141	3340		70.0	< 141	L580
ANTIMONY	3.03	< 3.03	< 3.03	< 3.03	< 3.03	< 1.05	0.302	< 3.03	< 3.0
ARSENIC	10.5	< 2.54	26.2	< 2.54	11.7	10115	11	< 2.54	41.
BARIUM	39.6	5.49	37.3	5.11	34.4	171	1.1	6.39	2 59
CALCIUM	14700	264(1)	28507	25300	34100	29900	31900	23601	2600
CHROMIUM	14.7	< 6.02	30.2	< 6.02	13	< 6.02	26.9	< 6.02	\$1)
COPPER	8.09	< 8.09	20.6	< 8.09	< 8.09	< 8.09	15.7	< 8.09	31.
IRON	9100	< 38.8	1 15200	< 38.8	6620	< 38.8	12500	< 38,8	2830
LEAD	4.25	< 1.26	9.33	< 1.26	5.53	< 1.26	7.81	< 1.26	19.
MAGNESIUM	3480	4200	7270	4000	5280	4470	8820	3890	1260
MANGANESE	291	2.86	281	3.29	134	135	415	7.48	90
POTASSIUM	2370	1620	3530	1330	2570	2860	\$250	1860	478
SODIUM	10800	25500	26700	23700	24200	25500	28100	24601	2490
VANADIUM	11.0	< 11	19.5	< 11	< 11	< 11	n n	< 11	28.
ZINC	21.1	< 21.1	38.1	< 21,1	< 21.1	< 21.1	30.1	< 21.1	59.
OTHER (pg/L)									
TOTAL SUSPENDED SOLIDS		NA	287000	NA	7800	NA	244000	NA	56000
TOTAL PETROLEUM HYDROCARBONS		NA	< 190	NA	< 190	NA	< 192	NA	< 18

Notes: < = Less than detection limit. Shaded values exceed background limit.

TABLE 6.8-8

ANALYTES IN GROUNDWATER SA 43 HAL - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			XIM-93-	-06X	
ANALYTE	BACKGROUND	PEARED ROUND 1	ROUND S	FULTERED BOUND 4	UNPLETERIES ROUTER 4
ORGANICS (#g/L)					
BIS (2-ETHYLHEXYL) PHTHALATE	1	NA	< 4.8	NA	< 12
CHLOROFORM	1 1	NA	< 0.5	NA	< 0.4
TRICHLOROFLUOROMETHANE		NA	< 1.4	NA	< 14
INORGANICS (4g/L)					1.1
ALUMINUM	6870	< 141	< 141	< 141	275
ANTIMONY	3.03	5,09	< 3.03	8,3	5.1
ARSENIC	10.5	16.3	17.3	26.5	247
BARIUM	39.6	21.1	19.4	13.3	14,
CALCIUM	14700	45100	38500	3,5600	3620
CHROMIUM	14.7	× 6.112	214.20	< 6.02	< 8.0
COPPER	8.09	< 8.05	15.1	< 8.09	< 8.0
IRON	9100	#2.0	0.99	128	55
LEAD	4.25	< 1.26	4.45	< 1.26	10
MAGNESIUM	3480	15900	12200	10900	1030
MANGANESE.	291	79.5	55.5	52.9	75.
POTASSIUM	2370	4520	5240	4050	406
SODIUM	10800	27200	25300	28300	2860
VANADIUM	11.0	< 1)	< 11	< 11	< 1
ZINC	21.1	< 21.1	643	< 21.1	< 21.
OTHER (mg/L)					
TOTAL SUSPENDED SOLIDS		NA	< 4000	NA	3000
TOTAL PETROLEUM HYDROCARBONS		NA	< 194	NA	< 18

Notes: < = Less than detection limit. Shaded values exceed background limit.

TABLE 6.8-9 ANALYTES IN SURFACE WATER SA 43 H&I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	SITE ID:	XHD-93-02X	XHD-93-03X
ORGANICS (ug/g)			
BIS (2-ETHYLHEXYL)	PHTHALATE	< 4.8	4.7
CHLOROFORM		1	< 0.
INORGANICS (ug	/g)		
ALUMINUM		284	340
ARSENIC		6.5	4.05
BARIUM		8.51	16.9
CALCIUM		26200	15200
CHROMIUM		< 6.02	8.14
COPPER		26.5	141
IRON		414	2710
LEAD		11.3	87
MAGNESIUM		2930	1660
MANGANESE		17.2	62.7
POTASSIUM		3300	2410
SODIUM		99300	5900
VANADIUM		17.2	14.4
ZINC		< 21.1	\$1.7

Notes:

< = Less than detection limit.

GHSWSUM.wkl

10/05/95

TABLE 6.8-10 ANALYTES IN SEDIMENT SA43 H&I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE SITE ID	XHD-93-01X	XHD-93-02X	XHD-93-03X	
ORGANICS (ug/g)				
ACETONE	< 0.017	< 0.017	0.04	
CHLOROFORM	0.002	< 0.001	< 0.001	
METHYLENE CHLORIDE	0.023	< 0.012	< 0.012	
TRICHLOROFLUOROMETHANE	0.041	< 0.006	0.009	
INORGANICS (ng/g)				
ALUMINUM	2980	8500	\$610	
ANTIMONY	23.4	< 1.09	< 1.09	
ARSENIC	71	9.21	6.29	
BARIUM	13.1	341	26.1	
BERYLLIUM	< 0.5	0,635	< 0.5	
CADMIUM	< 0.7	27,7	< 0.7	
CALCIUM	967	11500	1650	
CHROMIUM	48.7	251	39.2	
COBALT	2.95	24	3.33	
COPPER	28	245	65	
IRON	7070	31000	11700	
LEAD	1900	38	90	
MAGNESIUM	1670	4050	2670	
MANGANESE	86	472	137	
MERCURY	0.679	< 0.05	< 0.05	
NICKEL	11.7	28.3	15.6	
POTASSIUM	637	1590	631	
SODIUM	404	1130	482	
VANADIUM	9,43	28	14.3	
ZINC	62.7	686	84.6	
OTHER (ug/g)				
TOTAL ORGANIC CARBON	138000	1410	1950	
TOTAL PETROLEUM HYDROCARBONS	23600	430	398	

Nates:

< = Less than detection limit.

41HIESUM

Page Lofi

TABLE 6.8–11 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SUBSURFACE SOIL SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	FREQUENCY	DETECTED Y CONCENTRATION		REGION III COMMERCIAL/	MCP	MAXIMUM EXCEEDS	
ANALYTE	OF DETECTION	AVERAGE MAXIMUM		INDUSTRIAL CONCENTRATION	S-2 STANDARD	GUIDELINE CONCENTRATION 7	
Area la [a]					- 18 C - 19		
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	3/3	356,7	600	8180	2500	NO	
Area 1b [b]							
INORGANICS (ug/kg)							
BERYLLIUM	1/1	1.76	1.76	0.67	0.5	YES	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	6/9	983.2	3100	8180	2500	MCP	
Area 1c [c]							
ORGANICS (ug/kg)							
TOLUENE	1/13	1	0.000004	20000000	90000	NO	
m/p-XYLENE*	1/9	1 ÷1	3.5	1000000000	800000	NO	
o-XYLENE*	1/9		2.0	100000000	800000	NO	
INORGANICS (ug/kg)							
BERYLLIUM	3/4	1.57	1.9	0.67	0.8	YES	
ARSENIC	4/4	41.7	89.0	1.6	30	YES	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	9/12	2672.2	16000	8180	2500	YES	
Area 2 [d]							
ORGANICS (ug/kg)							
TOLUENE	2/46	0.8	0.9	20000000	90000	NO	
m/p-XYLENE*	5/42	0.84	1.5	100000000	800000	NO	
o-XYLENE*	4/42	0.9	1.4	100000000	800000	NÖ	
INORGANICS (ug/kg)							
BERYLLIUM	3/4	15	21	0.67	0,8	YES	
ARSENIC	4/4	33.5	42.0	1,5	-30	YES	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	33/43	516	2400	8130	2500	NO	

TABLE 6.8–11 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SUBSURFACE SOIL SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

-	FREQUENCY		TRATION	REGION III COMMERCIAL/	MCP	MAXIMUM EXCEEDS	
ANALYTE	OF DETECTION	AVERAGE	MAXIMUM	INDUSTRIAL CONCENTRATION	S-2 STANDARD	GUIDELINE CONCENTRATION 7	
Area 3a [c]							
INORGANICS (ug/kg)							
BERYLLIUM	2/2	0,75	0.8	0.67	0.8	YES	
ARSENIC	2/2	35.8	65.0	Lő	30	YES	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	6/10	661.7	2500	8180	2500	MCP	
Area 3b [f]							
ORGANICS (ug/kg)							
m/p-XYLENE•	1/24		0.4	100000000	800000	NO	
INORGANICS (ug/kg)							
ARSENIC	2/2	32.5	33.0	1.6	30	YES	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	7/26	235	480	8180	2500	NO	
Area 3c [g]							
ORGANICS (ug/kg)							
m/p-XYLENE*	3/10	0.47	0.6	100000000	800000	NO	
o-XYLENE*	1/10	1.2.	0.6	1000000000	800000	NO	
INORGANICS (ug/kg)							
ARSENIC	3/3	31.0	32.0	1.6	30	YES	

TABLE 6.8-11 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SUBSURFACE SOIL SA 43H & 1 - HISTORIC GAS STATIONS

ANALYTE	and the second second		TRATION	REGION III COMMERCIAL/	MCP	MAXIMUM EXCEEDS
	OF DETECTION	AVERAGE	MAXIMUM	INDUSTRIAL CONCENTRATION	S-2 STANDARD	GUIDELINE CONCENTRATION 7
OTHER (mg/kg)						
TOTAL PETROLEUM HYDROCARBONS	6/10	630.7	1900	8180	2500	NO
Area 4 [h]		1.0				_
ORGANICS (ug/kg)						
o-XYLENE*	1/6		3.1	100000000	800007	NO
INORGANICS (ag/kg)						
ARSENIC	1/1	25.0	25.0	1.6	30	REGION III
OTHER (mg/kg)						
TOTAL PETROLEUM HYDROCARBONS	1/6	1.5.80	92	\$180	2500	NO

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

[a] Subsurface soil (3 to 15 feet) for Area 1A based on field analytical samples TP-17 through TP-19.

[b] Subsurface soil (3 to 15 feet) for Area IB based on field analytical samples TP-05 through TP-13 and boring HXB-93-03X.

[c] Subsurface soil (3 to 15 feet) for Area 1C based on field analytical samples TP-01 through TP-03, TP-14 through TP-16, and borings HXB-93-02X and HXB-93-04X.

(d) Subsurface soil (3 to 15 feet) for Area 2 based on field analytical samples TP-19 through TP-37, TP-78 through TP-90, and soil boring XHB-93-05X and XHB-06X.

(e) Subsurface soil (3 to 15 feet) for Area 3A based on field analytical samples TV-42 through TP-46 and soil boring XHB-93-08X.

[I] Subsurface soil (3 to 15 feet) for Area 3B based on field analytical samples TP-50 through TP-73 and soil boring XHH-93-09X.

[g] Subsurface soil (3 to 15 feet) for Area 3C based on field analytical samples TP-47 through TP-49, TP-75 through TP-77 and soil borings XHB-93-07X and XHB-93-10X. [h] Subsurface soil (3 to 15 feet) for Area 4 based on field analytical samples TP-91 through TP-94 and soil boring XHM-93-11X.

* = analyte from field analytical samples

ug/g = micrograms per gram

mg/kg = milligrams per kilogram

- = not applicable

MCP = Massachusetts Contingency Plan

TABLE 6.8-12 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF GROUNDWATER SA 43H & I - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

analyte	FREQUENCY	DETECTED CONCENTRATION [a]		GROUNDWATER BACKGROUND	MAXIMUM EXCEEDS	DRINKING WATER STANDARD/	MAXIMUM EXCEEDS
	DETECTION	AVERAGE (ug/L)	MAXIMUM (ng/L)	CONCENTRATION (ug/L)	BACKGROUND ?	GUIDELINE [b] (ug/L)	STANDARD/ GUIDELINE 1
ORGANICS							
BIS (2-ETHYLHEXYL) PHTHALATE	1/5	6.7	6.7	NA	-	6	YES
CHLOROFORM	4/5	2.575	3.7	NA	-(+)	5	NO
INORGANICS			1.1.1				
ALUMINUM	4/5	4331.75	7500	6870	YES	\$0-200	YES
ARSENIC	4/5	17.308	26.2	10.5	YES	50	NO
BARIUM	5/5	28.18	37.3	39.6	NO	2000	NO
CALCIUM	5/5	31140	38500	14700	YES	NA	-
CHROMIUM	3/5	22.047	30.2	14.7	YES	100	NO
COPPER	3/5	23.8	35.1	8.09	YES	1300	NO
IRON	5/5	6701.4	15200	9100	YES	300	YES
LEAD	5/5	5,728	9.33	4.25	YES	15	NO
MAGNESIUM	5/5	7522	12200	3480	YES	NA	
MANGANESE	5/5	173.536	415	291	YES	.50	YES
POTASSIUM	5/5	3416	5240	2370	YES	NA.	
SODRIM	5/3	26400	28100	10800	YES	28000	YES
VANADIUM	2/5	20.75	22	11	YES	260	NO
ZINC	4/5	41.625	64,3	21.1	YES	5000	NO
OTHER							
TOTAL PETROLEUM HYDROCARBONS	1/5	270	270	NA		1000	NO

Notes:

[a] Groundwater based on unfiltered samples from XIM-93-01X to XIM-93-06X.

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal standard or guideline is available, the Region III tap water concentration.

NA = not available

ug/L = micrograms per liter

-= not applicable

TABLE 6.8–13 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SURFACE WATER SA 43H & I – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	FREQUENCY	REQUENCY CONCENTRATION [4]		DRINKING WATER	MAXIMUM EXCEEDS	
ANALYTE	OF DETECTION	AVERAGE (ug/L)	MAXIMUM (ug/L)	STANDARD/GUIDELINE [b] (vg/L)	DRINKING WATER STANDARD/GUIDELINE	
ORGANICS						
BIS (2-ETHYLHEXYL) FHTHALATE	1/2	4.7	1.7	6	NO	
CHLOROFORM	1/2	1	1	5	NO	
INORGANICS						
ALUMINUM	2/2	647	1410	50-200	YES	
ARSENIC	2/7.	5.275	8.5	50	NO	
BARIUM	2/2	(2-705	15.9	2000	NO	
CALCIUM	2/2	205700	35200	NA	, A	
CHROMIUM	1/2	8.14	8.14	100	NO	
COPPER	2/2	83.75	141	1300	NO	
IRON	2/2	1562	2710	.300	YES	
LEAD	2/2	49.15	87	B	YES	
MAGNESIUM	2/2	2205	2930	NA		
MANGANESE	2/2	39,95	92.7	543	YES	
POTASSIUM	2/2	28.95	33(X)	NA	-	
SODIUM	2/2	12000	99300	ZHOAN	YES	
VANADIUM	22	1.5.8	17.2	260	NO	
ZINC	1/2	-81.7	81.7	5000	NO	

Notes:

[a] Surface water from sampling locations XHD-93-02X and XHD-93-03X.

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal or state standard or guideline is available, the Region III tap water concentration.

NA = not available

ug/L = micrograms per Liter

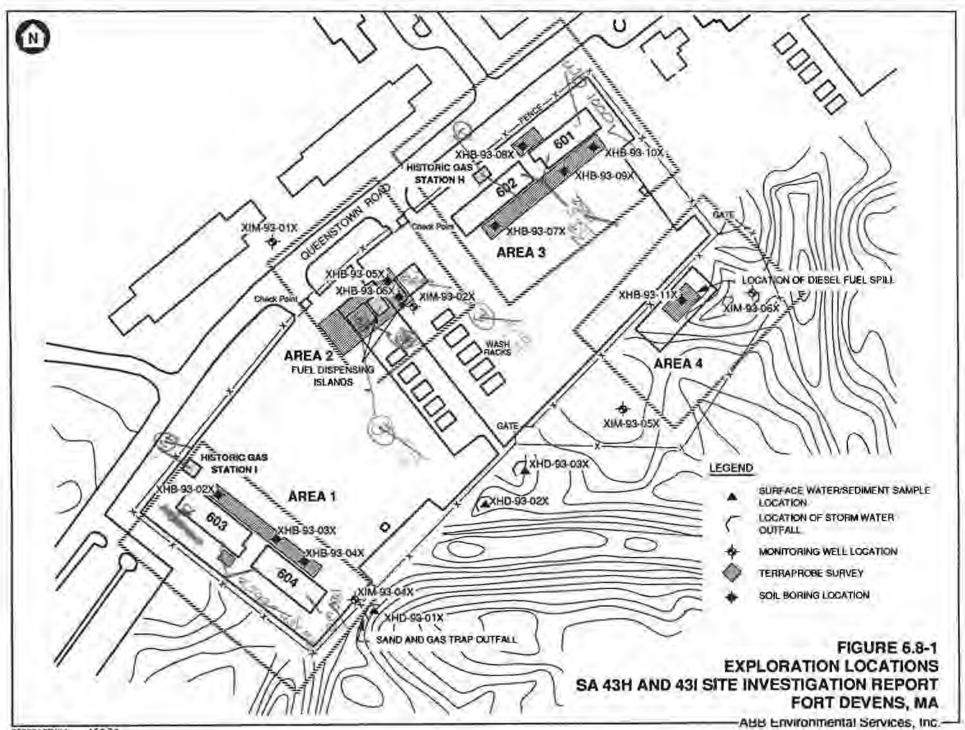
- = not applicable

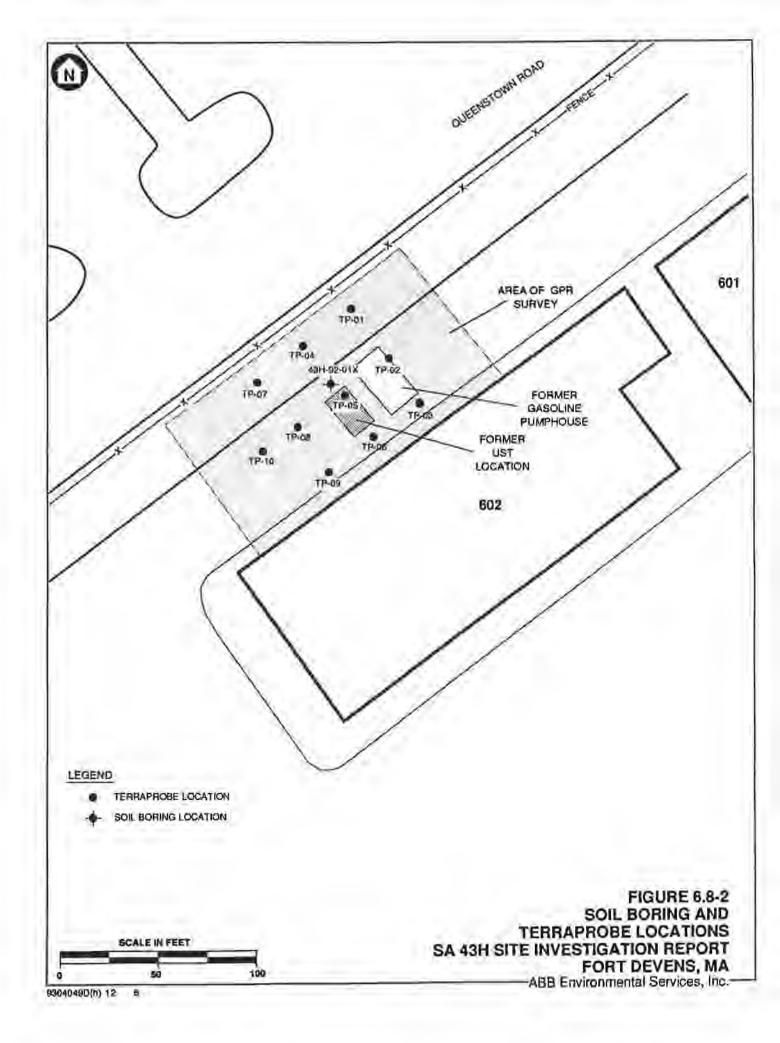
TABLE 6.8-14 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF SEDIMENT SA 43H&I - HISTORIC GAS STATIONS

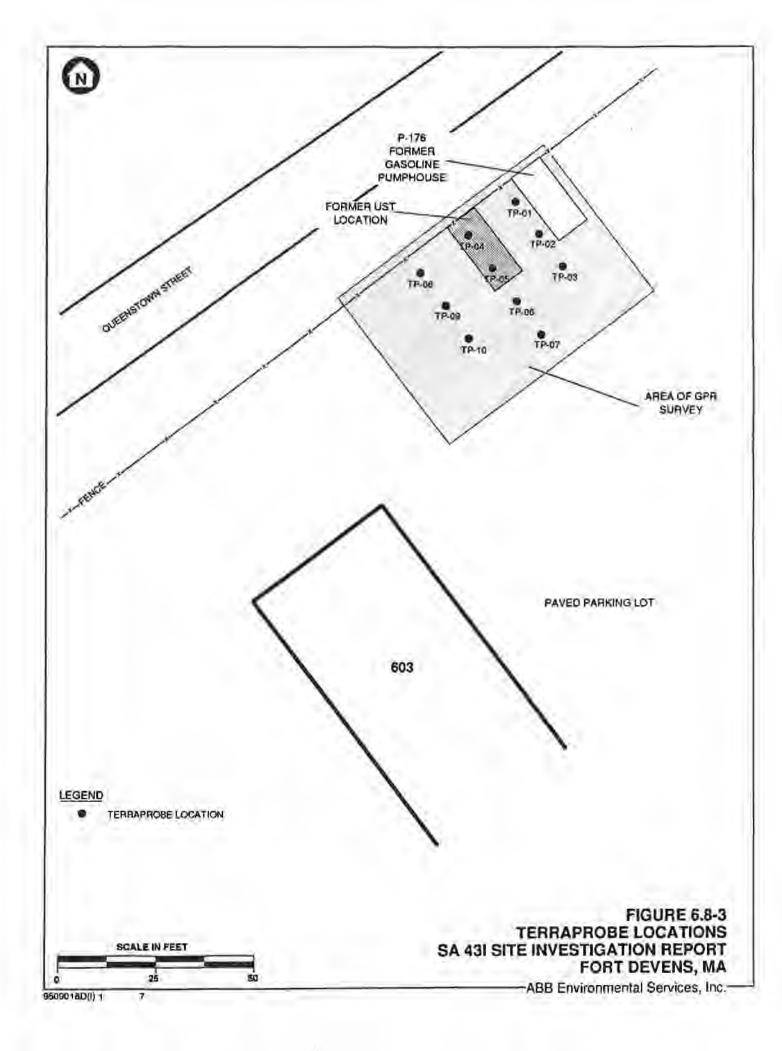
	FREQUENCY	DETE	- Contraction of the second	REGION III RESIDENTIAL	MCP S-1	MAXIMUM
ANALYTE	OF	AVERAGE (##/g)	MAXIMUM (##/8)	SOIL CONCENTRATION	A loss have been been been and	EXCEEDS GUIDELINES
ORGANICS		W RAL	9.000		N. 10 MC	
ACETONE	1/3	0.04	0.04	7800	3	NO
CHLOROFORM	1/3	0.002	0.002	100	0.1	NO
METHYLENE CHLORIDE	1/3	0.023	0.023	85	0.1	NO
TRICHLOROFLUOROMETHANE	2/3	0.025	0.041	23000	NA	NO
INORGANICS						
ALUMINUM	3/3	5696.667	8500	230000	NA	NO
ANTIMONY	1/3	23,4	23,4	31	10	MCP
ARSENIC	3/3	28.833	71	0.36	30	YES
BARIUM	3/3	126.733	341	5500	NA	NO
BERYLLIUM	1/3	0.635	0.635	0.15	0.4	YES
CADMIUM	1/3	27.7	27.7	39	30	NO
CALCIUM	3/3	4705.667	11500	NA	NA	· · · ·
CHROMIUM	3/3	112.967	251	390	200	MCP
COBALT	3/3	10.093	24	NA	NA	
COPPER	3/3	112.667	245	2900	NA	NO
IRON	3/3	16590	31000	NA	NA	
LEAD	3/3	675	1900	500	300	YES
MAGNESIUM	3/3	2796.667	4050	NA	NA	-
MANGANESE	3/3	231.667	472	. 390	NA	YES
MERCURY	1/3	0.679	0.679	23	10	
NICKEL	3/3	18.533	28.3	1600	300	NO
POTASSIUM	3/3	952.667	1590	NA	NA	
SODIUM	3/3	672	1130	NA	NA	
VANADIUM	3/3	17.243	.28	550	NA	NO
ZINC	3/3	277,767	686	23000	2500	NO
OTHER				and the second s		
TOTAL PETROLEUM HYDROCARBONS	5 3/3	\$209.333	23800	1 375	500	YES

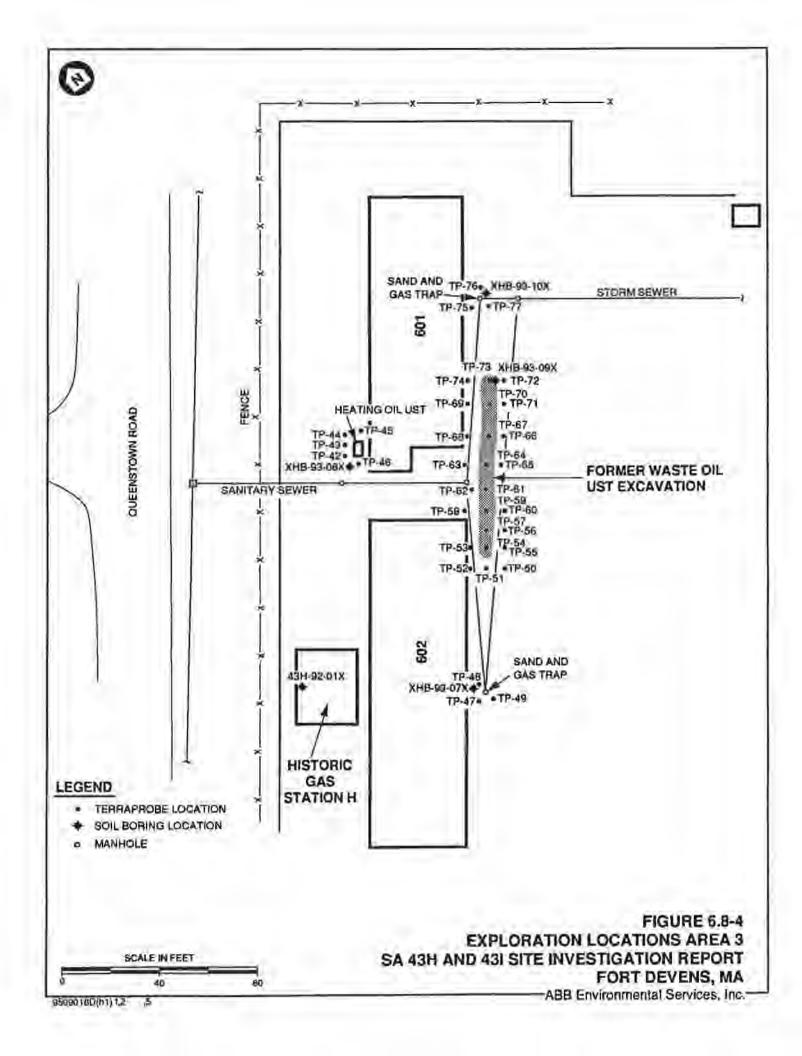
SITE INVESTIGATION REPORT FORT DEVENS, MA

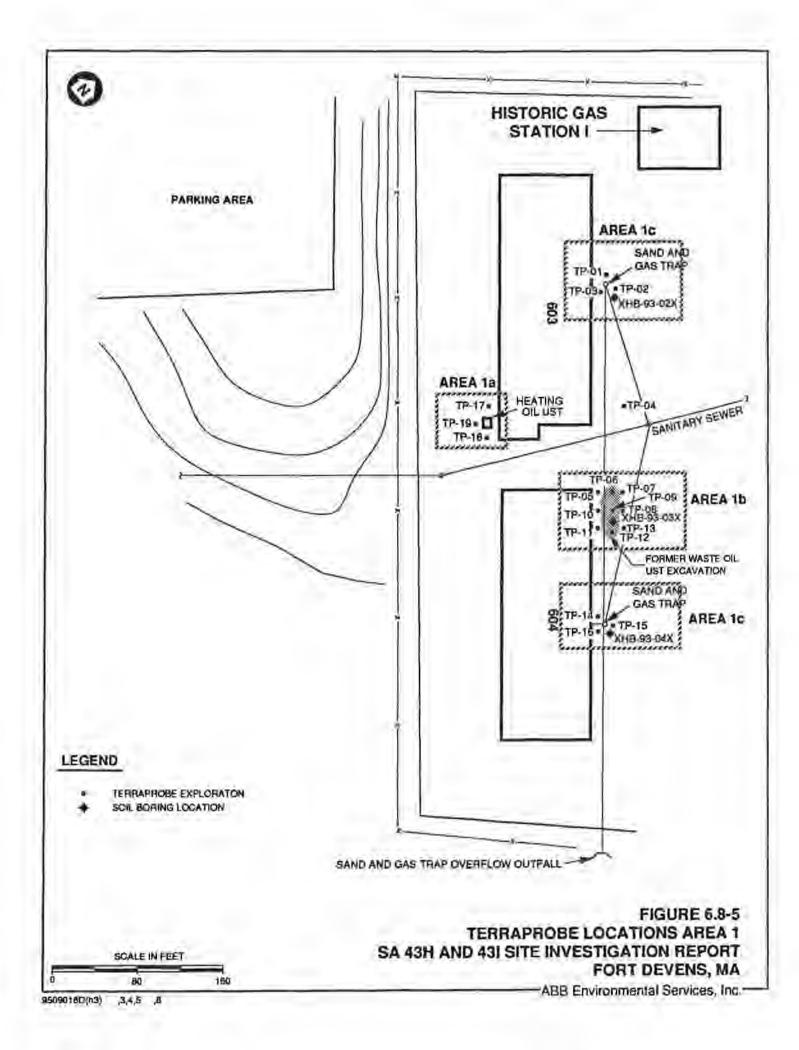
Notes

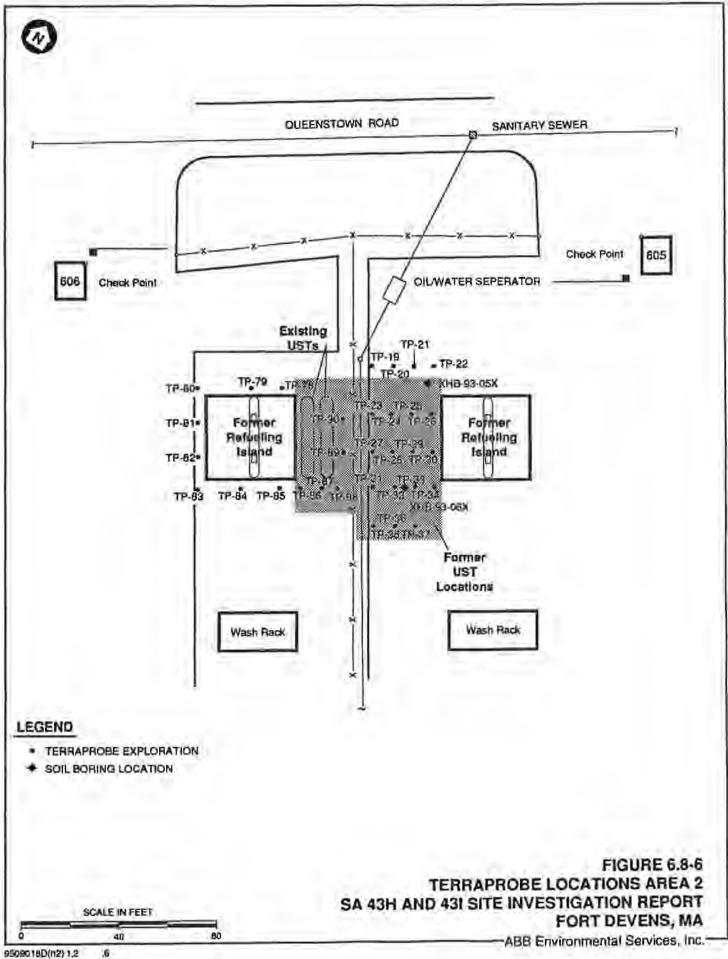

[a] = Sediment from sampling locations XHD-93-01X to XHD-93-03X.

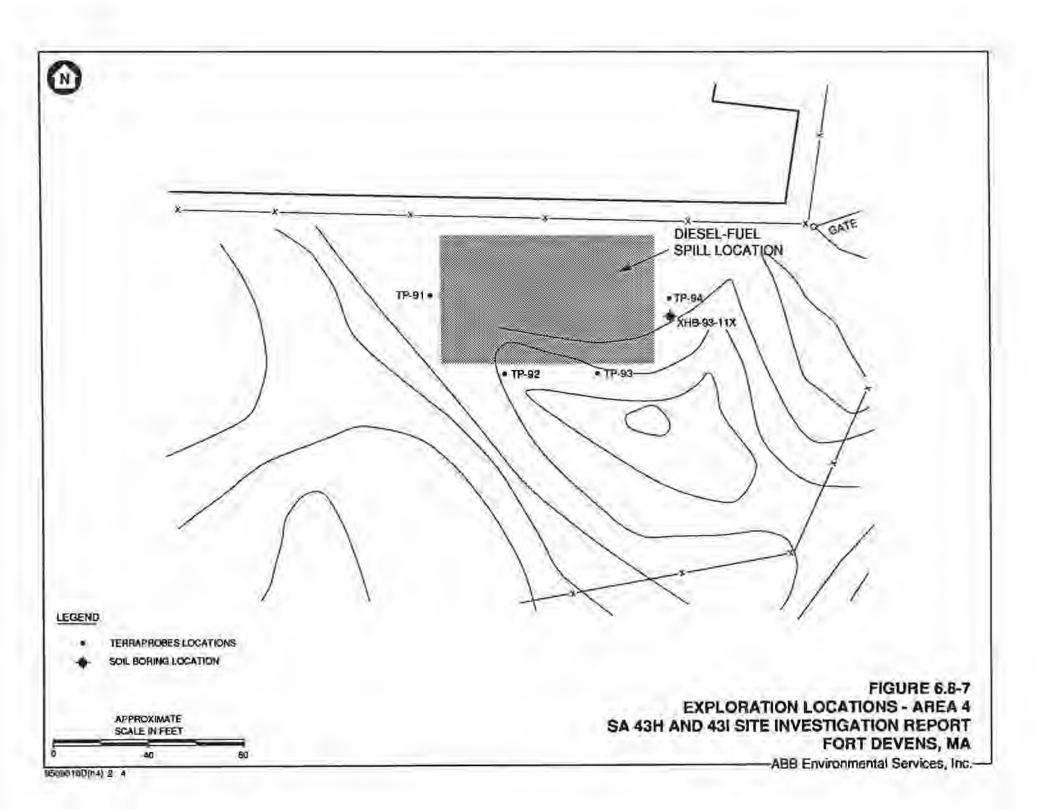

NA = not available

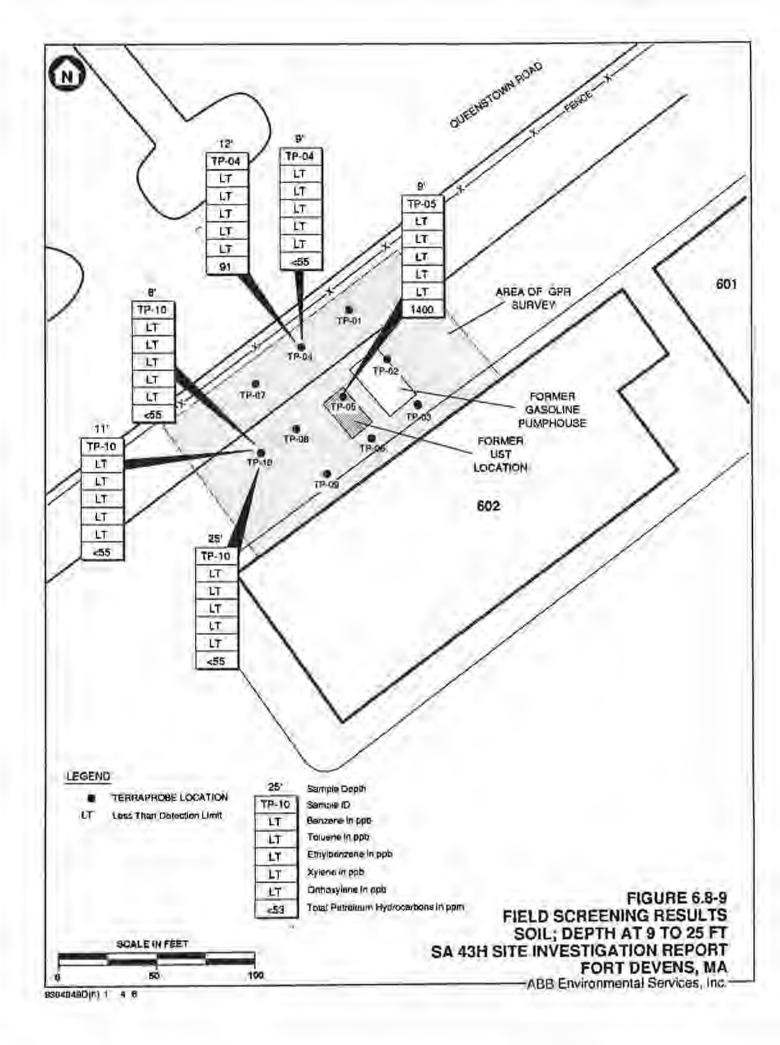

- = not applicable

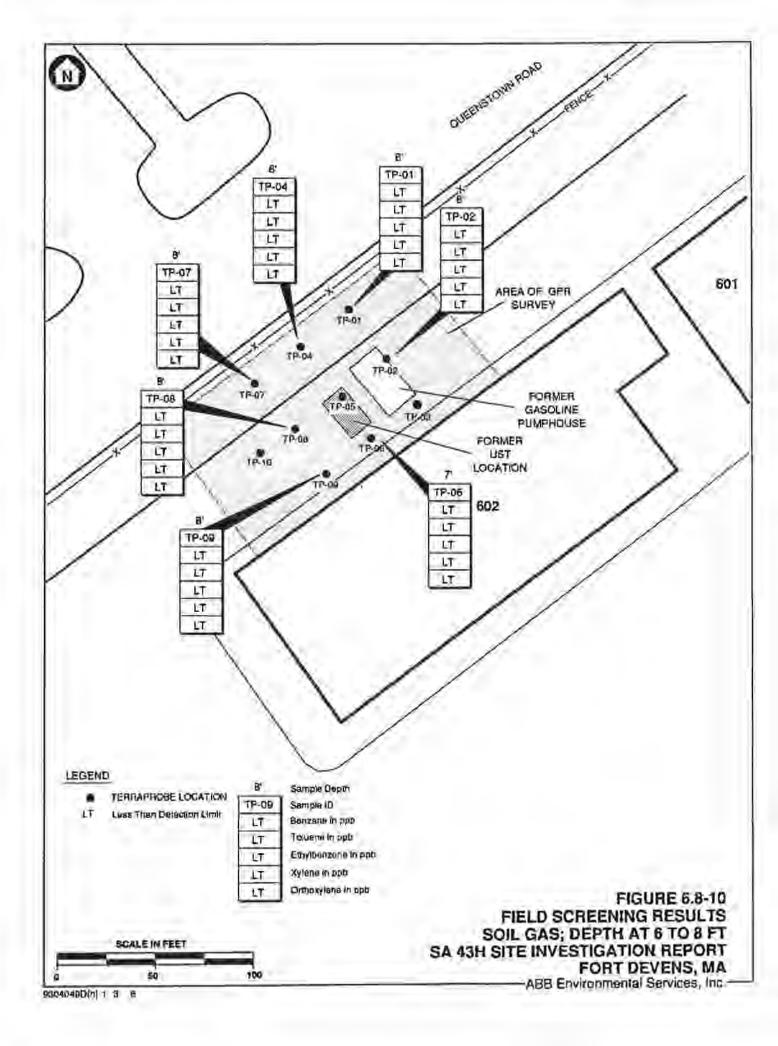

 $\mu g/g = micrograms per gram$

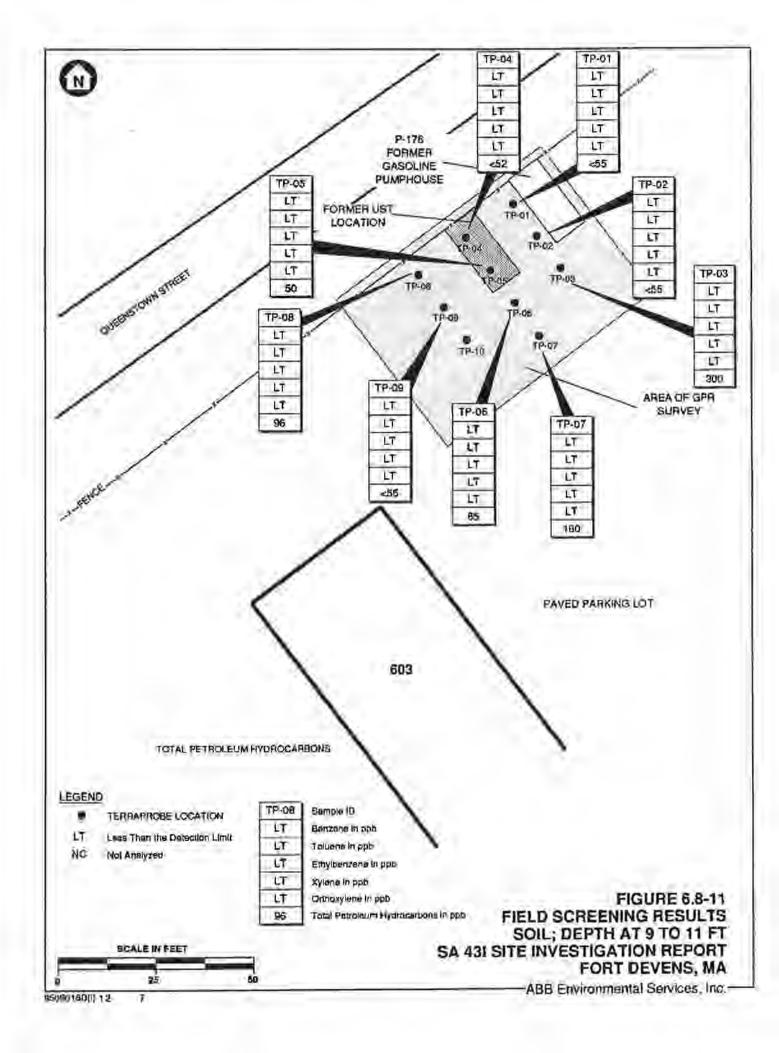

MCP = Massachusetts Contingency Plan

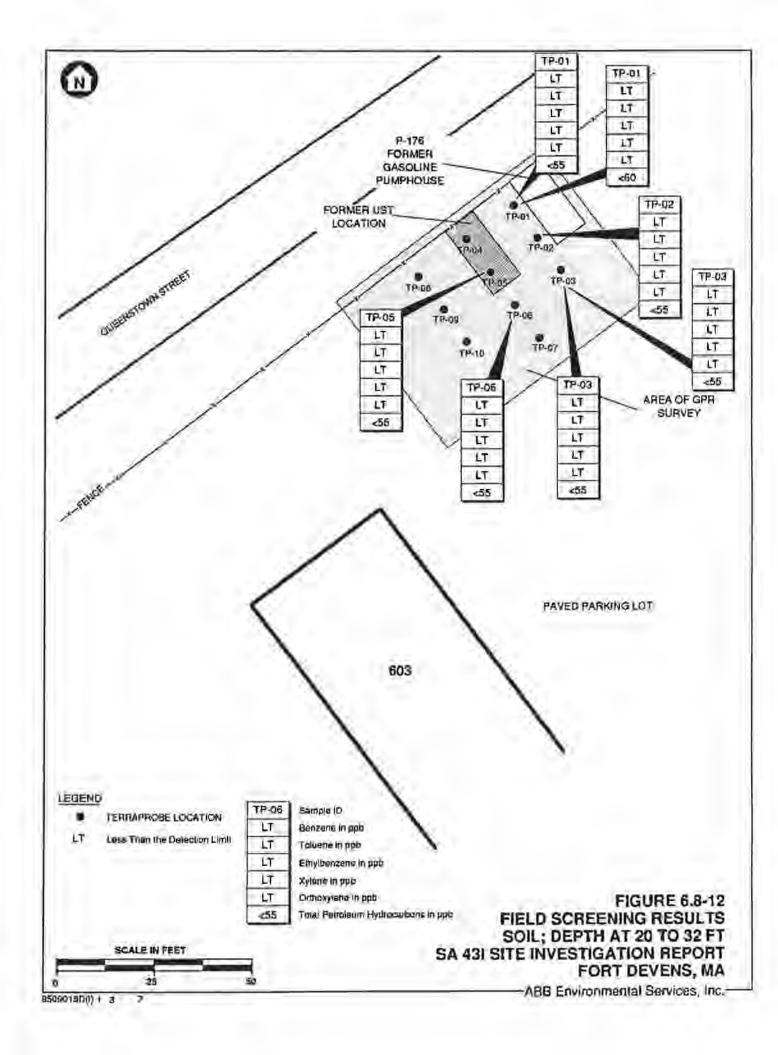


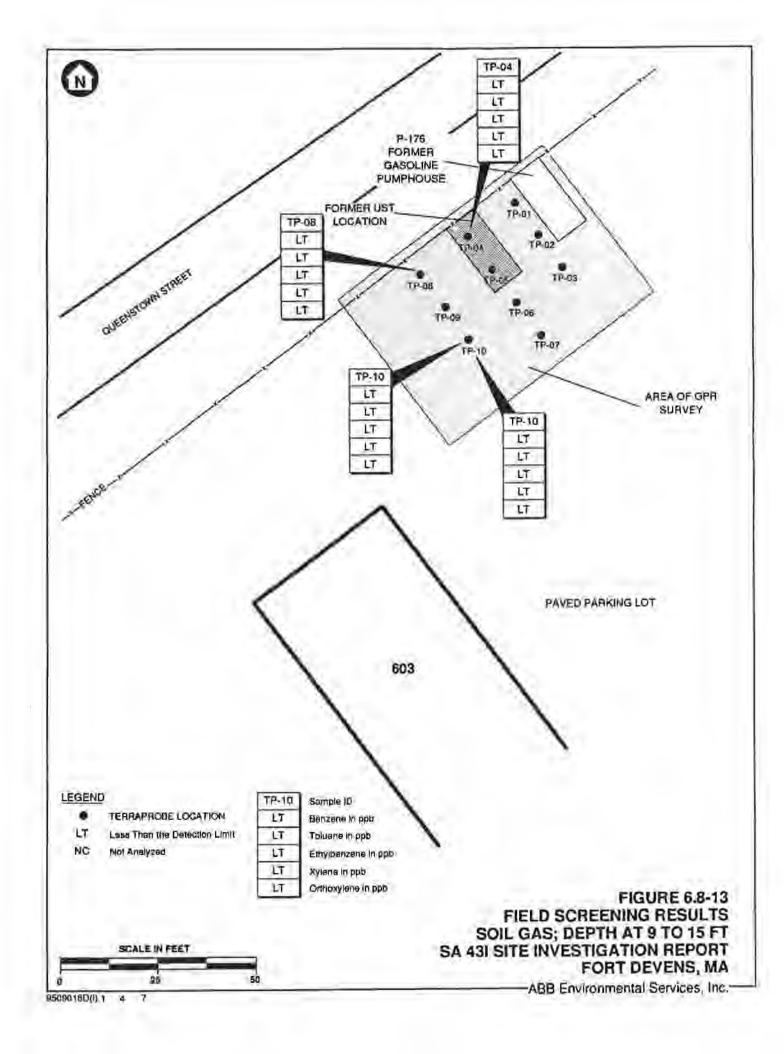


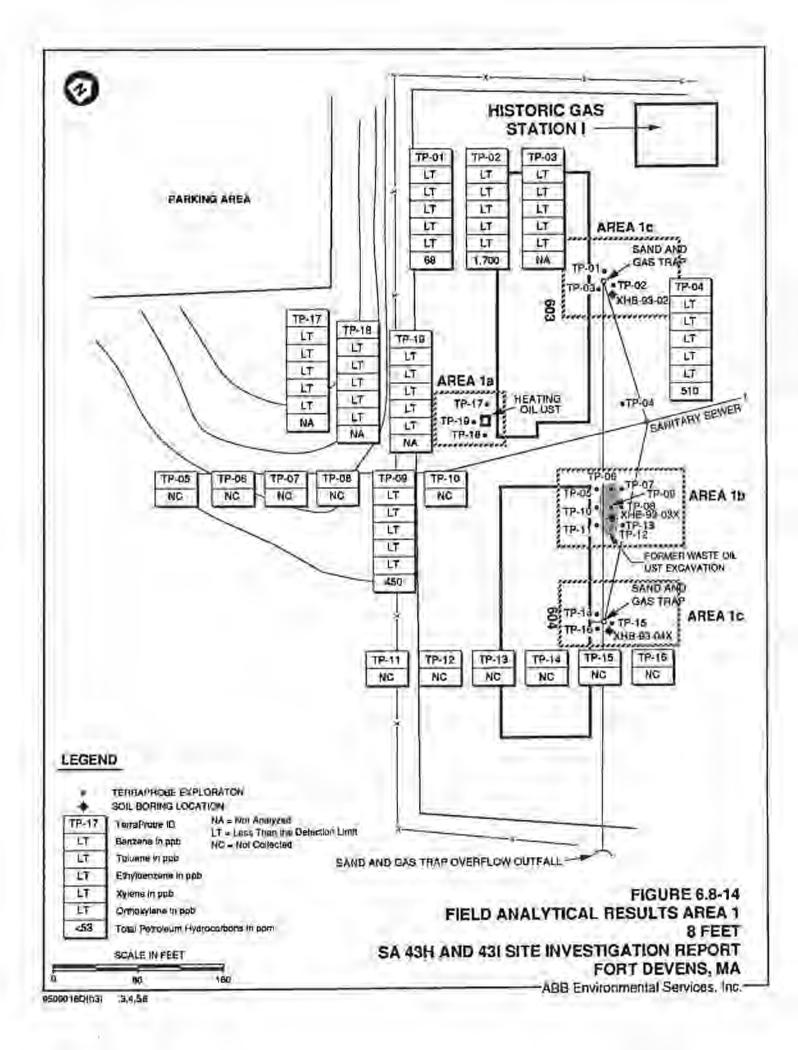


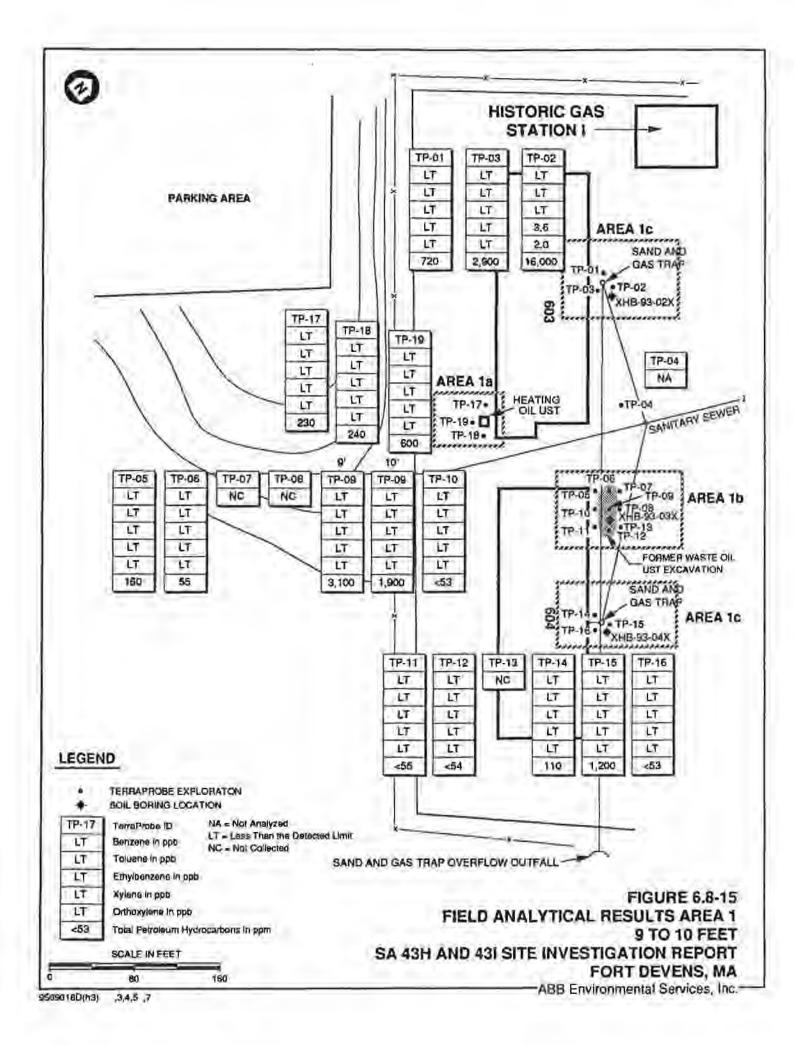


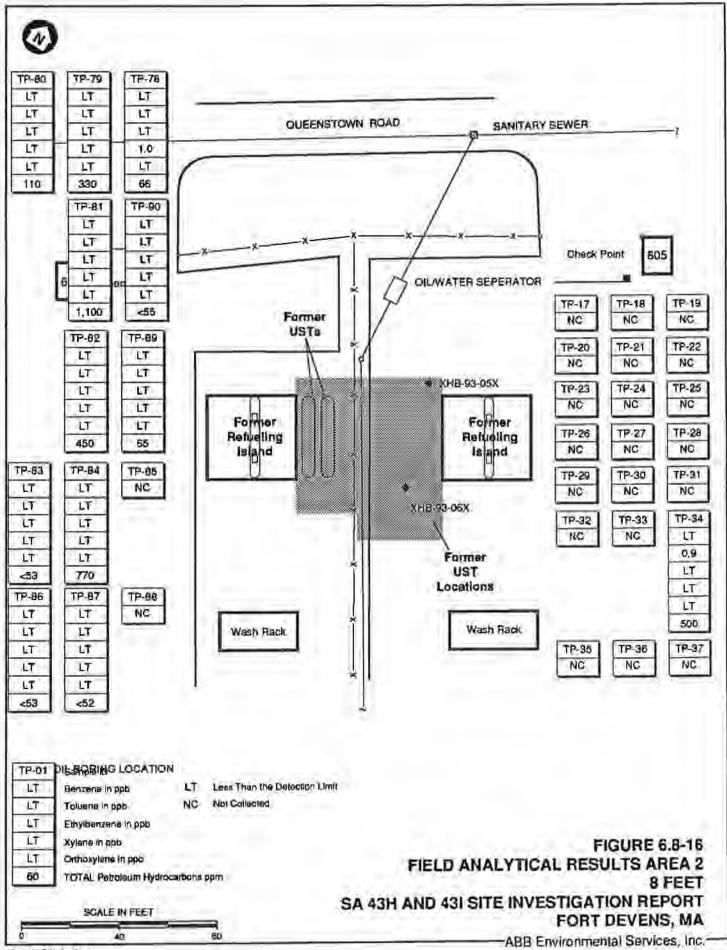

9509018D(n2) 1,2

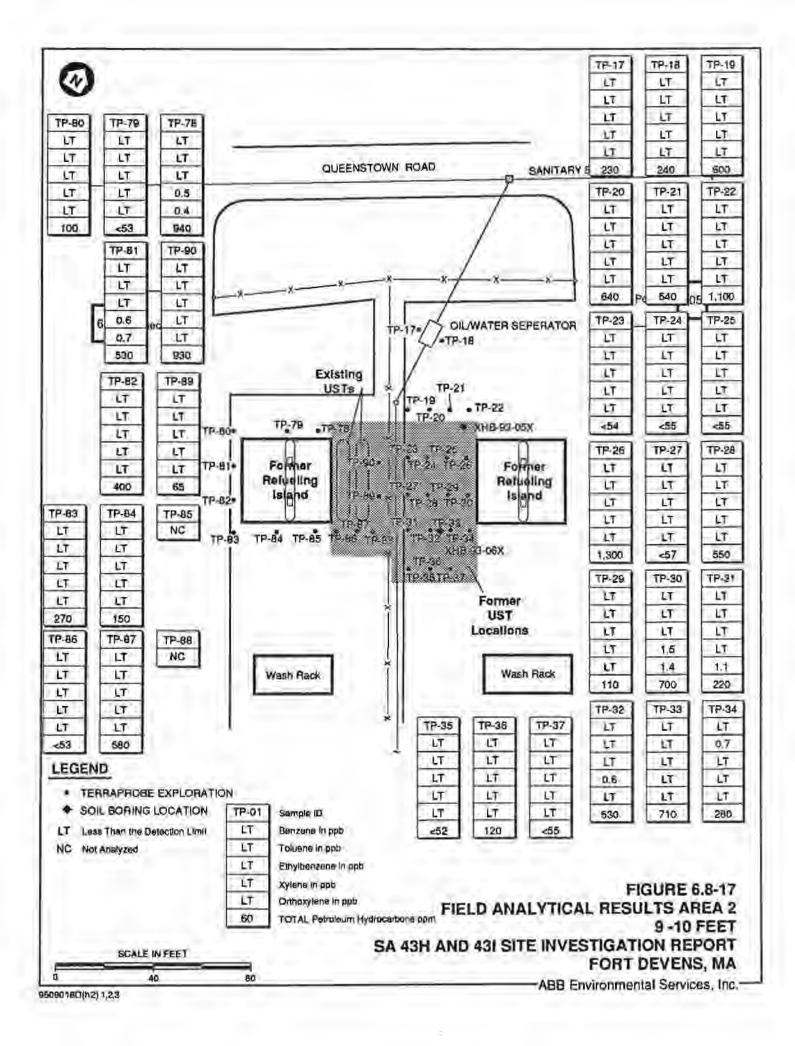


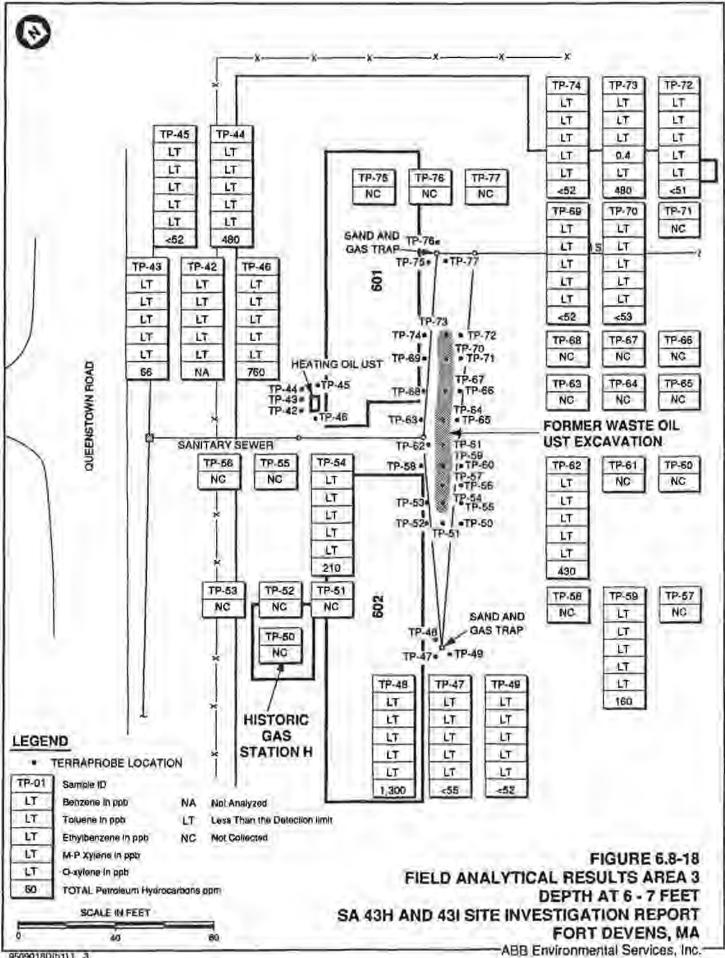


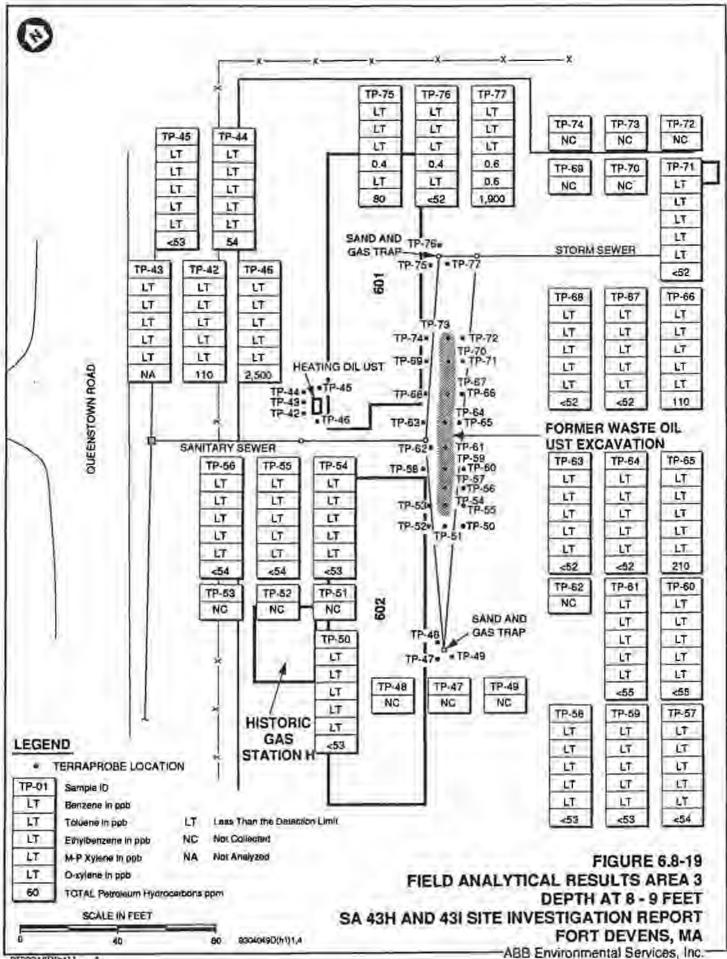


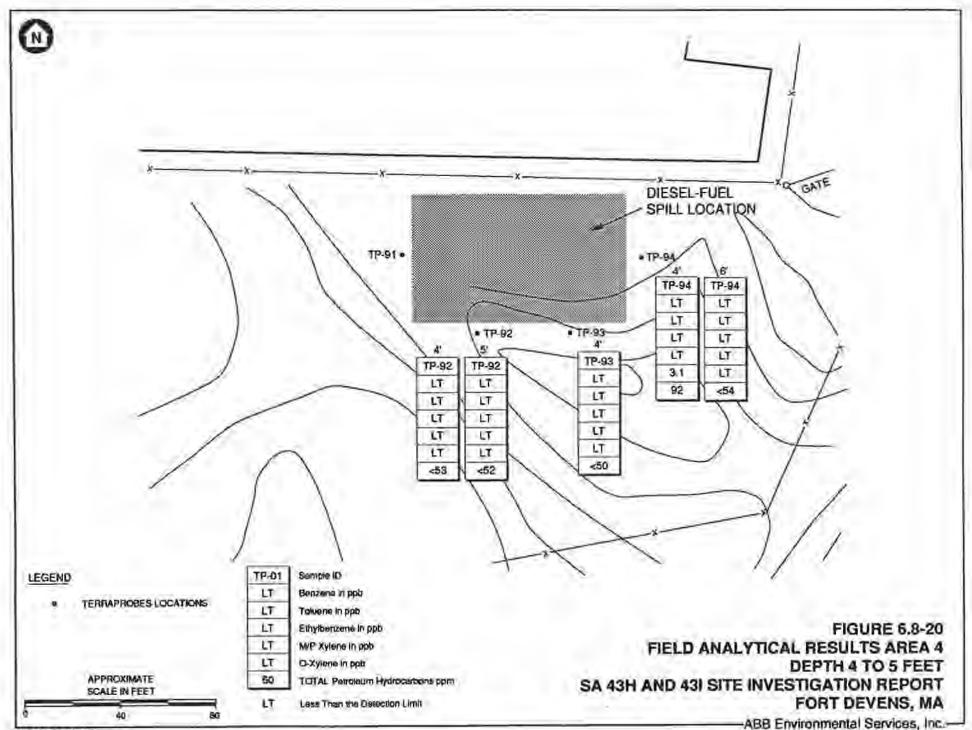


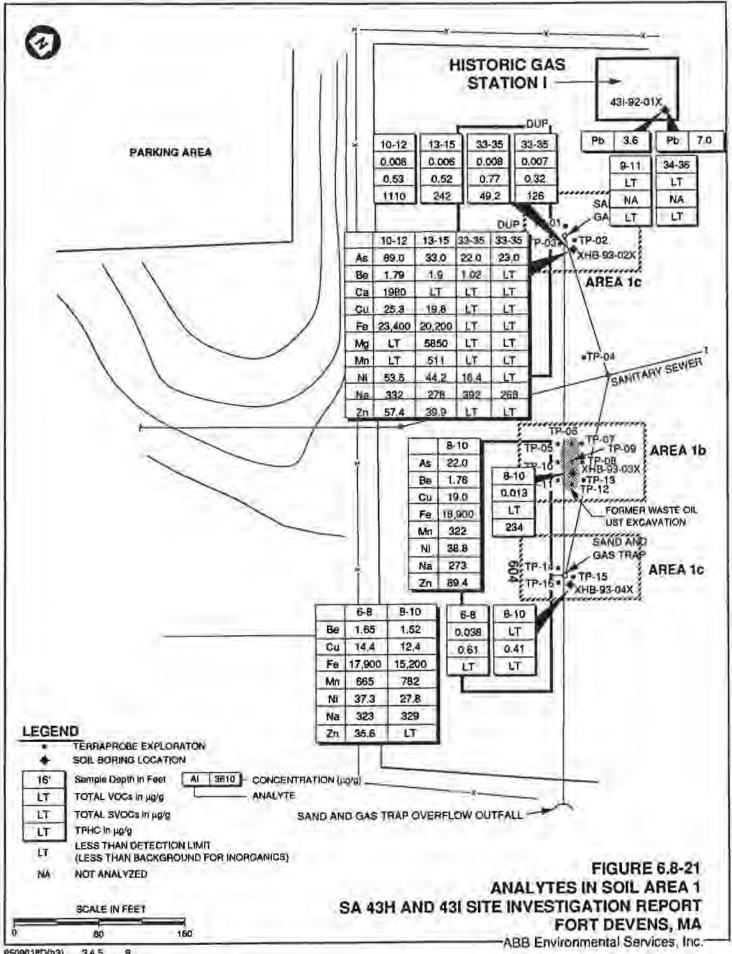


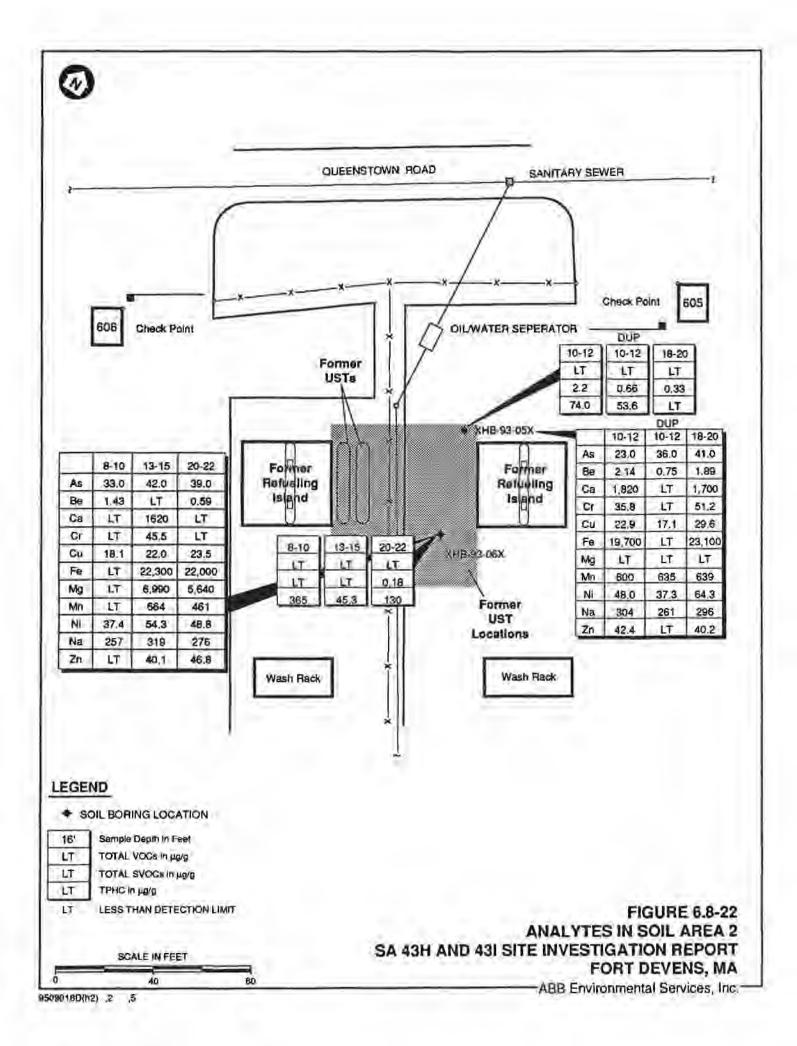


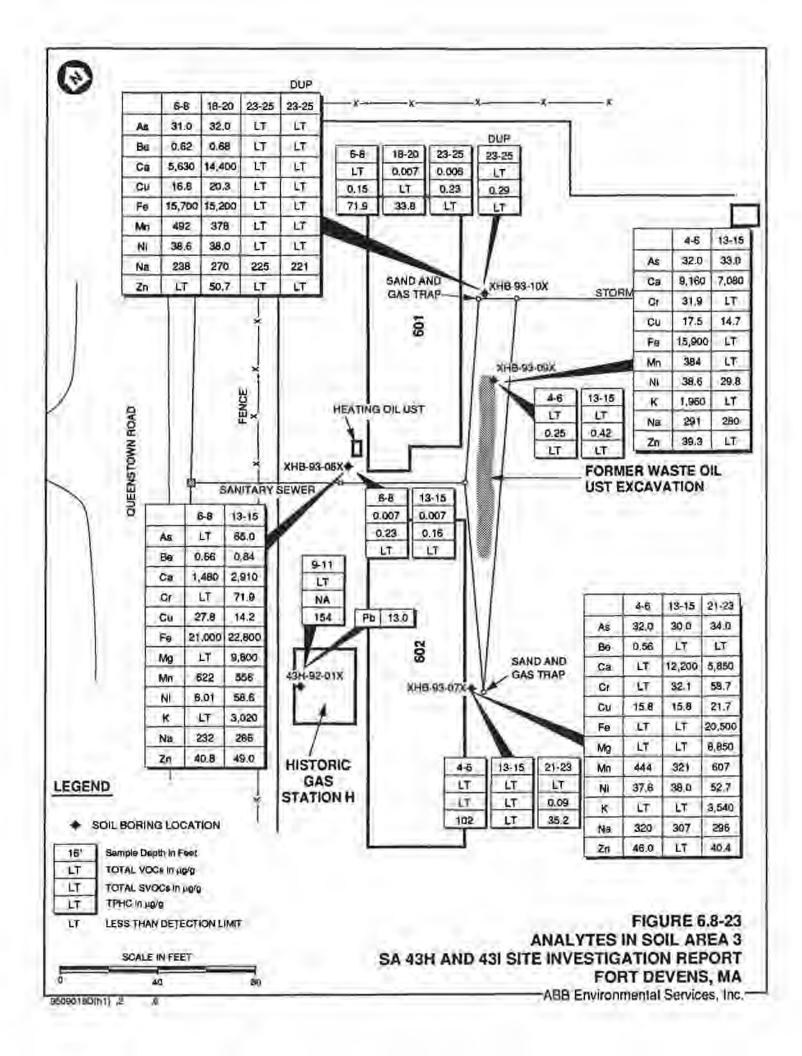


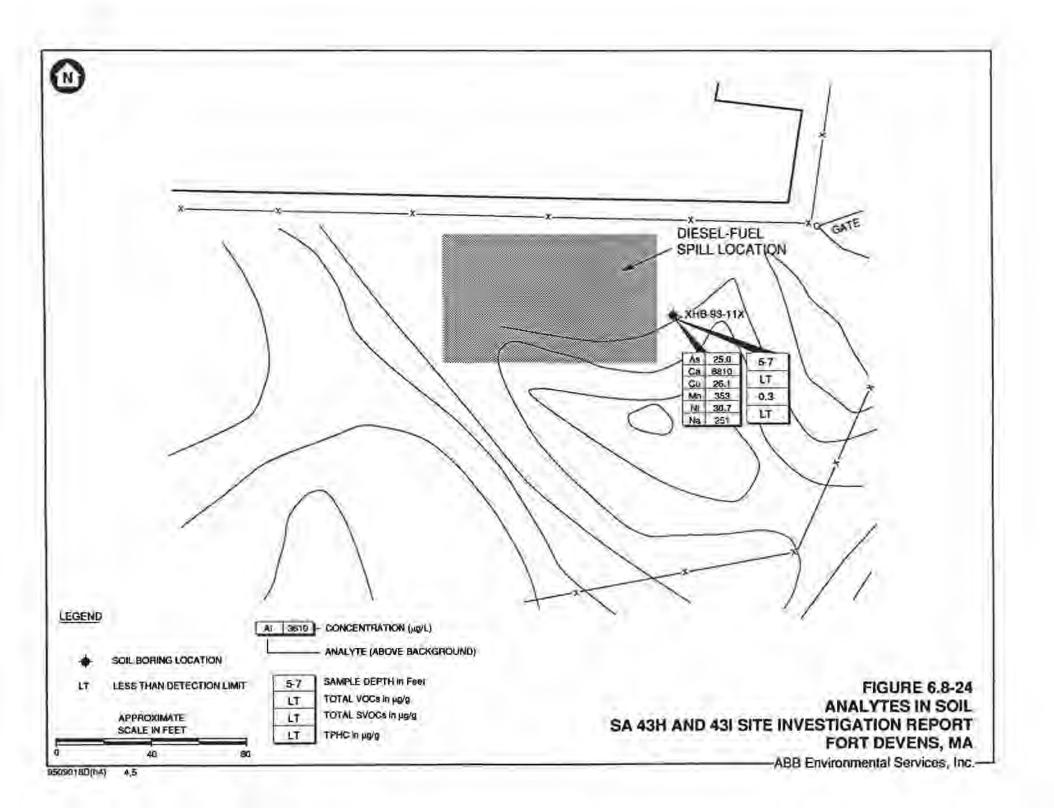


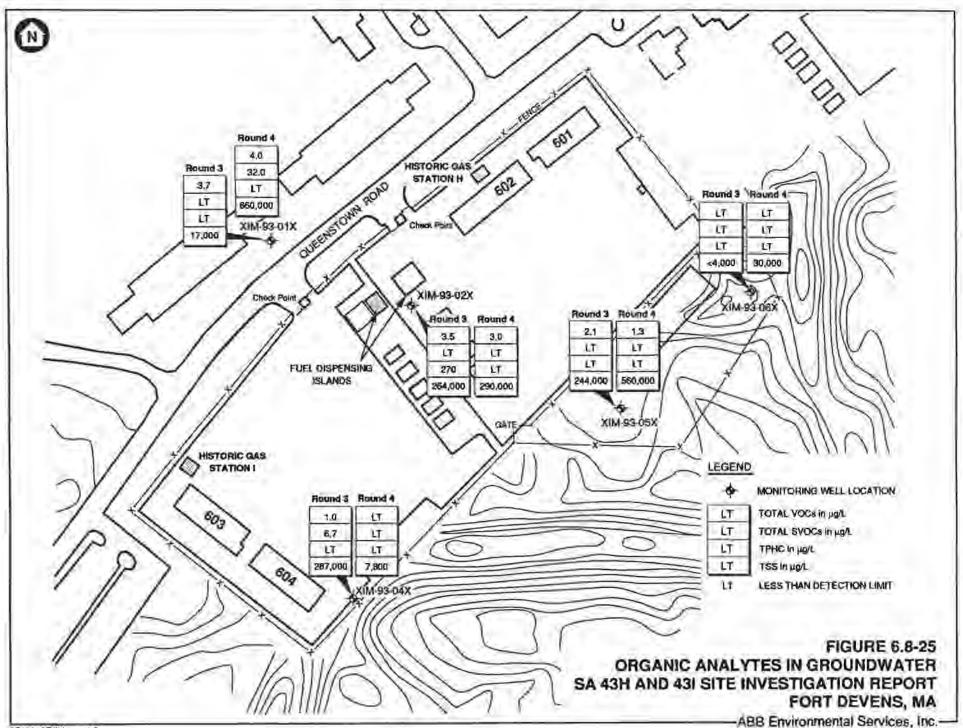


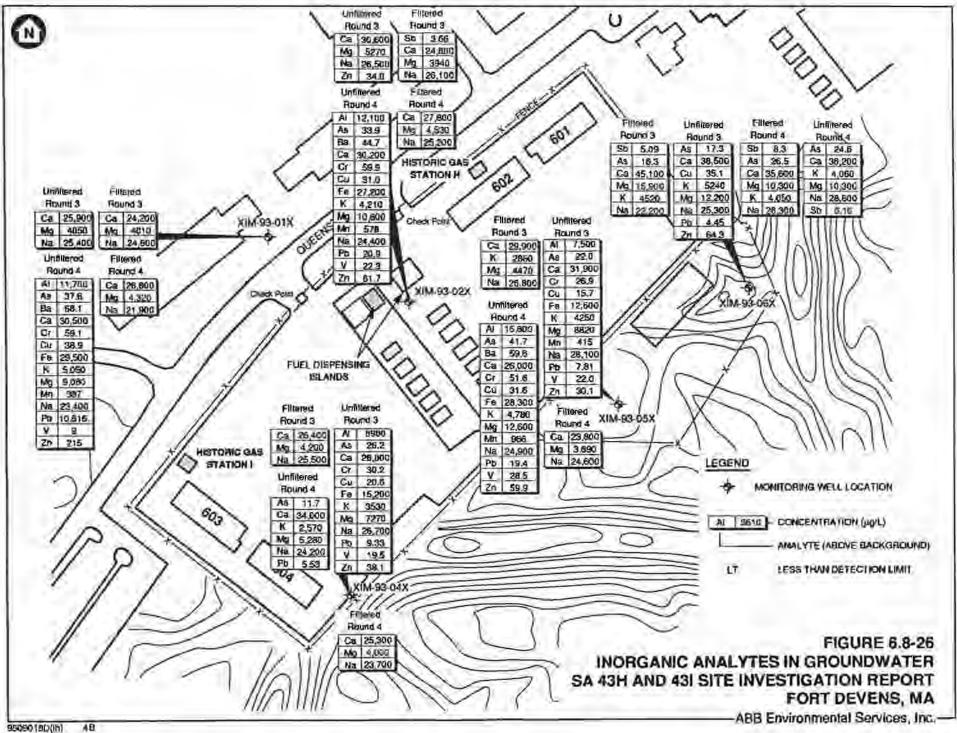

9509018D(h2) 2 .4

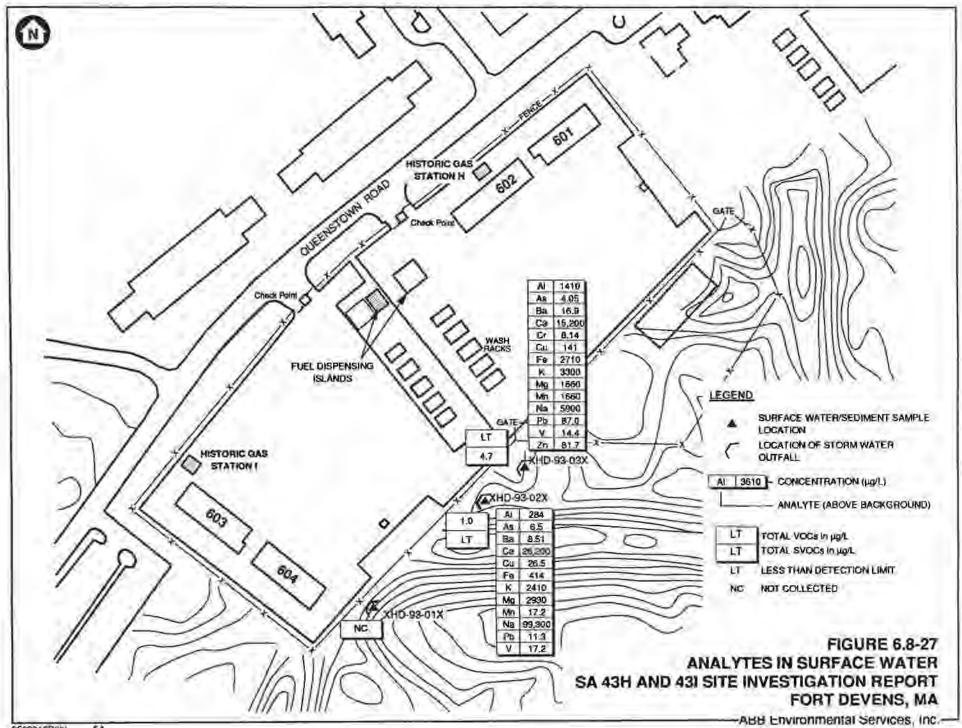


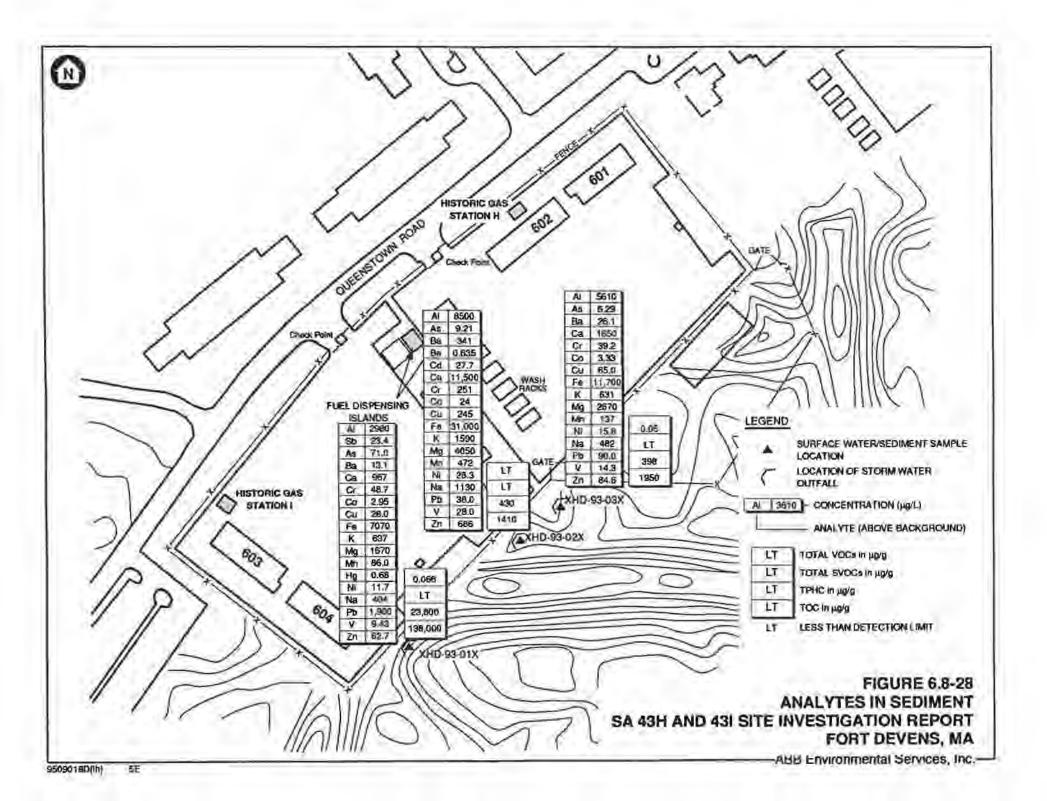







9509018D(h3) ,3,4,5 ,9





95090 (BD (Ih)

9509018D(in) 54

6.9 STUDY AREA 43J

6.9.1 Study Area Background and Conditions

The structure of the historic gas station at SA 43J consisted of a pump island and a small gasoline pumphouse. This gas station was reported to be a Type A station which had one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. SA 43J is located on an access road in the central portion of the Main Post, that connects Patton Road and Queenstown Road. The area around the location of SA 43J, is presently a vehicle storage yard and maintenance facility (Building T-2446) for a Special Forces Unit of the U.S. Army. The yard and maintenance facility is paved and surrounded by a chain-linked fence with a locked gate located at the northern side of the yard (Figure 6.9-1).

6.9.2 Site Investigation Program Summary

The SI at SA 43J were performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). A field investigation was conducted at SA 43J to determine if any abandoned UST(s) were present at the site, and if any residual contamination was present in the subsurface soil around the historic gas station. The program consisted of a surficial geophysical survey, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring from which subsurface soil samples were collected for off-site laboratory analysis. Table 6.9-1 summarizes the activities completed during the SI.

The geophysical survey at SA 43J consisted of a metal detector and GPR survey.

Due to subsurface obstructions, only nine subsurface soil samples were collected from eight TerraProbe points. Five soil samples were collected from 4 feet to 5 feet bgs, and four soil samples were collected from 9 feet bgs (Figure 6.9-2). All of the soil samples were analyzed in the field for BTEX and TPHC.

ABB Environmental Services, Inc.

W0099521.MB0

One soil boring (43J-92-01X) was drilled to collect subsurface soil samples for offsite laboratory analysis. Due to subsurface obstructions, only one soil sample was collected from 5 feet in this boring. This soil samples was analyzed for VOCs, TPHC, and lead (see Figure 6.9-2).

6.9.3 Supplemental Site Investigation Program Summary

The SSI at SA 43J were performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The following sections describe the field activities completed at this historic gas station during the SSI. Table 6.9-1 summarizes the activities completed during the SSI.

The SSI at SA 43J was conducted during August, 1993. The investigation focuses in and around the former waste oil UST located south of Building 2446 (see Figure 6.9-2). The TerraProbe points were advanced northeast of the TerraProbe points completed at the historic gas station J during the SI. These points were located in and around the excavation of the former waste oil UST removed in 1992. The results of these samples were used to further define the horizontal distribution of contaminants detected during the SI. Up to two soil samples were collected from each TerraProbe point. The samples were analyzed in the field for BTEX and TPHC.

Four groundwater monitoring wells were installed to monitor upgradient and downgradient groundwater quality (see Figure 6.9-1). Soil samples were collected from the water table or the bedrock surface from three of the four monitoring well borings. No soil sample was collected from XJM-93-04X due to the fact that bedrock was encountered only 0.7 feet bgs. The soil samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs inorganics, TPHC, and TOC. The soil sample from XJM-93-01X was collected from the top of bedrock, while the soil samples from XJM-93-02X and XJM-93-03X were collected from the water table in the overburden soils. The screen of each monitoring well was placed so that it intersected the water table to monitor for free product and allow for seasonal groundwater fluctuations. The well screen in the monitoring wells installed at XJM-93-01X and XJM-93-04X was installed in the bedrock. The well screens in the monitoring wells at XJM-93-03X were installed in overburden soils. Each of the existing monitoring

ABB Environmental Services, Inc.

W0099521.M80

wells (2446-01 through 2446-04) were installed in the bedrock. Table 6.9-2 summarizes the monitoring well construction at SA 43J.

Two rounds (Round Three and Four) of groundwater were collected from two of the ATEC monitoring well and the SS1 monitoring wells. Round Three groundwater samples were collected in October 1993 and Round Four was collected in January 1994. Groundwater samples were not collected from the existing upgradient monitoring well 2446-01 due the fact that its flush-mounted well protector had been damaged and the integrity of the well had been compromised. These samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, inorganics (both filtered and unfiltered), TPHC, and TSS.

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. Hydraulic conductivity tests were not performed at XJM-93-02X because only 2 feet of water was present in the monitoring well at the time of the testing. The tests consisted of a rising and falling head test.

6.9.4 Field Investigation Results and Observations

The results of the geophysical survey at SA 43J indicated that one abandoned UST was present at the site. The results of the geophysical surveys is presented in Appendix L.

The UST discovered at SA 43J was added to the installation's UST removal program and on August 26, 1992 ATEC removed a 5,000 gallon UST. At the time of the removal, tank content consisted of gasoline. Visually contaminated soil and strong fuel odor were present in the excavation (ATEC, 1992h). ATEC performed headspace screening for total VOCs and NDIR for TPHC, on eight soil samples collected from the sides and bottom of the UST excavation (Figure 6.9-3). VOC concentrations ranged from 100 to 400 ppm in the sample headspace, and TPHC concentrations ranged from 43.9 to 3,534.8 ppm (ATEC, 1992h) (Table 6.9-3).

Based on the results of the field screening, additional soil was removed from this excavation. Groundwater was encountered in the southeastern corner of the excavation and bedrock was reached at approximately 7 feet. Based on the

ABB Environmental Services, Inc.

W0099521.M80

observations made in the UST excavation, it appeared that the water table was below the bedrock surface. The lateral distribution of the contamination was not determined during this cleanup process due to physical restriction (e.g., driveways, buildings, stockpiled soil). ATEC collected five soil and one water sample from the UST excavation, after the additional soil was removed, for off-site laboratory analysis. These samples were analyzed by a non-approved USAEC laboratory for VOCs and TPHC. VOC concentrations ranged from 0.13 ppm to 2.2 ppm (total VOCs). TPHC concentrations detected in these samples ranged from 38 ppm to 2,170 ppm (see Table 6.9-3). Because of these results, the installation's decided to stop the cleanup process, line the excavation with polyethylene sheeting, and backfill the excavation. An inspection of the UST was completed by the installation's on-site representative and a representative of the MADEP. This inspection did not find any obvious holes or breaks in the walls of the UST. An Underwriters Laboratory (UL) tag found on the UST appeared to indicate that this UST was of a younger age than the reported age of the historic gas station at SA 43J. The conclusion reached by Fort Devens and MADEP personnel was that the original UST had been replaced by the UST that was removed during this removal program, and that the contamination detected, in the excavation, appeared to be caused by the original UST, not the UST found at SA 43J.

Before the 5,000 gallon historic gas station UST was removed, ATEC (1992i) had excavated a 1,000 gallon waste oil UST approximately 50 feet east of the abandoned UST at SA 43J (see Figure 6.9-3). This UST was used by the existing Special Forces unit for the storage of waste oil generated from the maintenance operation at this vehicle maintenance facility. Not all of the contaminated soil was removed; confirmatory samples from the excavation had TPHC levels of 74 and 918 ppm. It is likely that some of the contaminated the soil around both of the former USTs. ATEC installed four monitoring wells (2446-01 through 2446-04) around the area of the former 1,000 gallon waste oil UST (see Figure 6.9-1). These monitoring wells were designed to determine the groundwater quality in this area.

One round of groundwater sampling was conducted by ATEC in November 1992. The samples were analyzed by a non-approved USAEC laboratory for TPHC, only. USEPA Method 418.1 was used to analyze the sample.

ABB Environmental Services, Inc.

W0099521.Mb0

The soil encountered during the SI and SSI at SA 43J consisted of a poorly graded silty sand (which appeared to be fill material) underlain by a fine sandy silt with fine gravel (glacial till). Bedrock was encountered at SA 43J at a depth of 0.7 and 13.5 feet bgs. The bedrock at this site was classified as meta siltstone or phyllite (Table 6.9-4).

The calculated hydraulic conductivities in the bedrock monitoring wells ranged from 5.8E⁻⁶⁶ cm/sec. at XJM-93-01X to 8.5E⁻⁶⁶ cm/sec. at XJM-93-04X. The hydraulic conductivity of the overburden soils at XJM-93-03X was 2.2E⁻⁰⁵ cm/sec. The hydraulic conductivity for each monitoring well is presented in Table 6.9-5.

The SSI and ATEC monitoring wells have been included in several installation-wide synoptic water-level rounds completed at Fort Devens. The water-levels from the November 8, 1993 round was chosen to represent the water table conditions at the site after the SSI. The inferred groundwater flow based on these elevations appears to be moving to the east-northeast (Figure 6.9-4). All SSI explorations were surveyed.

6.9.5 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.9.5.1 Soil. Because contaminated soil was encountered in the historic gas station UST excavation, ABB-ES advanced 10 TerraProbe points at SA 43J during the SI (see Figure 6.9-2). BTEX and TPHC were detected in six of the nine soil samples collected. Total BTEX concentrations ranged from 3,600 ppb in the 9 foot sample collected from TP-01 to 81,000 ppb in the 9 foot sample collected from TP-03 to 940 ppm in the 9 foot sample collected from TP-05 to 940 ppm in the 9 foot sample collected from TP-03. All of the TerraProbe points encountered refusal prior to reaching the water table (Table 6.9-6; Figures 6.9-5 and 6.9-6).

A total of 15 TerraProbe points were completed and soil samples were collected from 9 to 10 feet bgs (the top of the bedrock), and analyzed for BTEX and TPHC. The TerraProbe points were concentrated in and around the former waste oil UST grave in front of Building 2446. The results of the field analyses indicate the presence of concentrations of TEX in and around the former waste oil UST excavation. The total TEX concentrations range from below the detection limit (at apparent upgradient locations) to 12,100 ppb at the northeast

ABB Environmental Services, Inc.

W0099521.M80

(TP-25) side of the excavation. TPHC was detected less frequently then TEX and ranged from below the detection limit to 3,100 ppm. The distribution of the contamination has been roughly defined on the northwest and west sides of the excavation, however the northeast, east and southern sides have not been fully defined (see Table 6.9-6; Figure 6.9-7).

Based on the field analysis results and the observation from the UST excavation, one soil boring (43J-92-01X) was drilled to the top of bedrock to confirm the field analytical results. One subsurface soil sample was collected at the bedrock surface at 6.2 feet bgs. Xylenes (0.02 μ g/g) and TPHC (1770 μ g/g) were detected in this soil sample (Table 6.9-7; Figure 6.9-8).

Subsurface soil samples were collected from three of the four SS1 monitoring well borings (XJM-93-01X through XJM-93-03X) completed at SA 43J. A subsurface soil sample was not collected from XJM-93-04X due to the very shallow depth to bedrock (0.7 feet bgs). The only organic compounds detected in the SSI subsurface soil samples were common laboratory contaminants (acetone, di-n-butylphthalate, and trichlorofluoromethane). TPHC was detected in the 5-foot sample collected from XJM-93-02X at 220 μ g/g. TPHC was not detected in the other samples collected (see Table 6.9-7; Figure 6.9-8). The results of the off-site laboratory analyses did indicate the presence of several inorganic analytes above their Fort Devens background concentrations. A majority of these analytes were detected in the 5-foot sample from XJM-93-02X (see Table 6.9-8; Figure 6.9-8).

6.9.5.2 Groundwater. The results indicated in ATEC's 10-day report showed detectable concentrations of TPHC ranging from 3 mg/L in MW-4 to 140 mg/L in MW-3. No TPHC was detected in MW-1 (Figure 6.9-9). Neither the final reports nor the QA/QC documentation had been received by Fort Devens at the time of this report. The results of the Round Three and Four groundwater sampling indicated that several VOCs were present in three of the newly installed monitoring wells (XJM-93-02X through XJM-93-04X) and in each of the existing monitoring wells. Total VOCs ranged from 8.9 at XJM-93-02 to 18,200 μ g/L at 2446-02 in the Round Three samples. Total VOC concentrations for the Round Four sampling ranged from 240 μ g/L at XJM-93-02X to 21, 200 μ g/L at 2446-02. Several SVOCs (2-methylnaphthalene, naphthalene and phenanthrene) and TPHC were also detected in these same monitoring wells during Rounds Three and Four.

ABB Environmental Services, Inc.

W0099521.M80

Total SVOCs for Round Three ranged from 26.6 μ g/L at XJM-93-04 to 502.2 μ g/L at 2446-03, while total SVOCs for Round Four ranged from 23.6 μ g/L at XJM-93-02X to 358.2 μ g/L at 2446-02. Round Three TPHC concentrations ranged from <180 μ g/L to 34,500 μ g/L at 2446-03, and Round Four concentrations ranged from <190 μ g/L to 9,000 μ g/L at 2446-02 (Table 6.9-9; Figure 6.9-9).

Several inorganics were detected above their Fort Devens background concentrations in the unfiltered and filtered samples (see Table 6.9-9; Figure 6.9-10).

6.9.6 Source Evaluation and Migration Potential

The results of the TerraProbe survey and field analytical program indicate that VOCs (toluene, ethylbenzene, and xylenes) and TPHC are present in the soil at the top of bedrock in and around the excavation of the former waste oil UST. The distribution of the contamination is consistent with the UST removal report which indicated that residual soil contamination was present in the excavation at the time that the excavation was backfilled. The contamination appears to be on the southern, western and eastern sides of the former excavation. The contaminants appear to merge with contamination detected in the soil around the UST located at historic gas station J (approximately 25 feet northwest of the former waste oil UST). The distribution of the soil contamination has not been fully defined.

Soil samples were collected from the monitoring well borings located upgradient and downgradient of both of the former USTs. These soil samples were collected to determine if contaminants detected at SA 43J, and the former waste oil UST, had migrated with the groundwater flow and contaminated the soil away from the site. The only VOCs and SVOCs detected were laboratory contaminants. Several inorganic analytes were detected above their Fort Devens background concentration. The soil samples from 5 feet and 10 feet at XJM-93-02X had the largest number of inorganic analytes above the Fort Devens background and the highest concentrations of those analytes. The 15-foot soil sample from XJM-93-03X also had similar analytes and concentrations as those detected in the 10-foot soil sample collected from XJM-93-02X. It appears that the contaminants detected at the SA 43J have not impacted downgradient soil quality.

	ABB Environmental Services, Inc.	
W0099521.M80	6-70	7053-15

SECTION 6

VOCs (benzene, athylbenzene, tolaene, and xylenes), SVOCs (2-methylnaphthalene, naphthalene, and phenanthrene), and TPHC were detected in groundwater samples collected from the downgradient monitoring wells at SA 43J. It appears that fuel-related contaminants have migrated from the contaminated soil detected around both former USTs to the groundwater; and appear to be adversely impacting the groundwater quality at the site as well as downgradient of the site. The distribution of the groundwater contamination has not been fully defineated.

6.9.7 Preliminary Human Health Risk Evaluation

Nine TerraProbe soil samples and one confirmatory soil boring were collected and analyzed in the field during the SI. The locations and results for these samples are discussed in Subsection 6.9.4.1. During the SSI, sixteen additional TerraProbe samples from the area of the removed waste oil UST were collected and analyzed. Table 6.9-10 combines and summarizes the additional SSI field analytical data with the SI field analytical data and the SI confirmatory boring off-site laboratory data. The analytical results for all field and off-site analytical samples form both the Historic gas station and the former waste oil UST, are compared to Region III commercial and MCP Category S-2 soil guidelines. Concentrations of toluene, ethylbenzene, and wlenes detected in the SSI samples, collected around the former waste oil UST, were at least an order of magnitude greater than concentrations detected in the SI samples collected at the historic gas station, but no concentrations exceeded guidelines. TPHC was detected in twelve of 25 samples, but only the maximum detected concentration of TPHC exceeds the MCP Category S-2 soil guideline. The confirmatory boring drilled during the SI was analyzed for lead, which was detected at a concentration of 10.9, which is below the Region III and MCP Category S-2 soil guidelines. In summary, concentrations of TPHC in subsurface soil at SA 43J may present a risk to human health.

Table 6.9-11 presents summary statistics for groundwater associated with SA 431 and drinking water standards/guidelines for comparison. Only data for unfiltered samples is reported.

Several organic compounds were detected in the groundwater associated with SA 43J: 1,2-dichlorobenzene, 2-methylnaphthalene, benzene, chloroform, ethylbenzene, naphthalene, phenanthrene, toluene, xylenes, and TPHC. Chloroform was detected in two of 18 samples. Although the concentration of

ABB Environmental Services, Inc.

W00999521.MRD

WELLS.

chloroform exceeded the federal MCL, this compound is a common laboratory contaminant and is not believed to be site-related. Xylene and 1,2-dichlorobenzene were detected at concentrations that did not exceed a standard or guideline. Benzene, ethylbenzene, and toluene were detected at concentrations exceeding their respective federal MCLs. Although the PAHs do not have federal or state standards or guidelines, naphthalene does have a Region III tap water concentration of 1,500 μ g/L. The maximum concentration of naphthalene does not exceed this health-protective concentration. Finally, both the average and maximum concentrations of TPHC exceed the MCP GW-1 standard of 1,000 μ g/L.

The maximum concentrations of all inorganic analytes detected in unfiltered groundwater were greater than established base-wide background concentrations for groundwater. Six analytes were detected at concentrations above their respective drinking water standard/guideline. The average concentrations of aluminum, iron, and manganese each exceeded their respective USEPA secondary MCL. (Secondary MCLs are set for aesthetic or economic reasons, not health reasons.) The average concentration of sodium exceeds its Massachusetts guideline. Four of the 18 detections of arsenic exceed its federal MCL, although the average concentration does not. Three of 18 detections of lead as well as the average concentration is above the USEPA action level. In the filtered groundwater samples, three detections of arsenic exceed its federal MCL. None of the detected concentrations of lead in filtered groundwater are above the USEPA action level.

Based on this screening-level analysis, the use of this groundwater as a source of drinking water would pose potential human health risks.

6.9.8 Conclusions and Recommendations

An RI/FS is recommended SA 43J to further assess the soil and groundwater contamination detected during the SI and SSI.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.9-1 SUMMARY OF TECHNICAL APPROACH SA 43J - HISTORIC GAS STATION J

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITIY	PURPOSE	SITE	RATIONALE FOR SELECTED LOCATION
SI PROGRAM			
TERRA PROBE	* COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-10	* IN AND AROUND FORMER HGS USF
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	437-92-01%	* ADJACENT TO TERRAPROBE THOT SPOT
SSI PROGRAM	A THE A THE PERMIT COMMON AND	All and the second second	The Revenue of the second state
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-11 THRU TP-27	* IN AND AROUND FORMER WASTE OIL UST
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 INSTALL MONITORING WELLS CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	XJM-93-01X XJM-93-02X XJM-93-03X XJM-93-04X	* UPGRADIENT * DOWNGRADIENT
MONTORING WELL INSTALLATION AND GROUNDWATER SAMPLING	MONITOR GROUNDWATER LEVELS MONITOR GROUNDWATER OUALITY DETERMINE AQUIFER CONDUCTIVITIES	XIM-93-01X XIM-93-02X XIM-93-03X XIM-93-04X	 UPGRADIENT DOWNGRADIENT

TABLE 6.9-2 MONITORING WELL COMPLETION DETAILS SA 43J – HISTORIC GAS STATION J

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL IDENTIFICATION	SOIL DRILLING METHOD	BEDROCK DRILLING METHOD	MEDIA SCREENED	WELL SCREEN DEPTH (FEET bgs)	WELL SCREEN ELELVATION (FEET NGVD)	COMPLETION DEPTH (FEET bgs)	CONSTRUCTION MATERIAL
XJM-93-01X	DRIVE AND WASH CASING	ROCK CORE	BEDROCK	6.5-16.5	3627-3527	10.5	4" ID PVC
XJM-93-02X	HOLLOW STEM AUGER	NA	SOIL	59-159	365.2-3553	15,9	4" ID PVC
XIM-93⊷03X	HOLLOW STEM AUGER	NA	SOIL	6.616.6	361.9-351.7	16,5	4" ID PVC
XIM-93-04X	DRIVE AND WASH CASING	ROCK CORE	REDROCK	42-142	364.5-354.6	15.2	4" (D.PVC

NA=Mot Applicable

HUTARE WRI

TABLE 6.9-3 ATEC FIELD SCREENING/LABORATORY RESULTS SA 43J - HISTORIC GAS STATIONS

SAMPLE NO.	FIELD SC	REENING	LABOR	ATORY		
	PID (ppm)	NDIR (ppm)	VOC (ppm)	TPII (ppm)		
SS-1	350	759.9	N/A	N/A		
SS-2	400	315,6	N/A	N/A		
\$\$-3	200	43.9	N/A	N/A		
SS-4	150	189.5	N/A	N/A		
SS-5			N/A	N/A		
SS-6	100	3534.8	N/A	N/A		
SS-7	300	469.2	N/A	N/A		
SS8	290	659.8	N/A	N/A		
LRS-1	6.0	N/A	N/A	38		
LRS-2	7.0	N/A	N/A	ND		
LRS-3	170.0	N/A	2.2*	N/A		
LRS-4	180,0	N/A	N/A	2170		
LSS-1			0.572	1660		
LWS-I	N/A	N/A	0.032	114		

SITE INVESTIGATION REPORT FORT DEVENS, MA

NOTES:

* = total VOCs detected

SS = ATEC Field Screening Sample

LRS = ATEC Laboratory Remedial Soil Sample LSS = ATEC Laboratory Soil Sample

LWS = ATEC Laboratory Water Sample (Water Sample from the Excavation)

Stock = Soil Stock Pile Sample

ND = Non-detect

N/A = Not applicable

TABLE 6.9-4 SUMMARY OF SOIL BORINGS 5A 43J - HISTORIC GAS STATION J

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (FEET bgs)	REFERENCE SAMPLE INTERVALS (FEET 5gs)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOC: BY FID (PPM)	COMMENTS
431-92-01X	6	5-6	5-6	SM	BKG	
XJM-93-01X	17	0-2	11 10 10 10 10	SP-SM	BKG	
Contract 1		10-12	10-12	SM-ML	BKG	A CONTRACTOR OF A CONTRACTOR O
	1	13-13.1		SM-SP	BKG	Rollerbit bedrock from 13.1 to 17-feet
XJM-93-02X	17.5	0-2		SP	BKG	The second second second
		5-7	1.100	SM	BKG	
		10-12	10-12	SM	BKG	
		14-16		SM	BKG	
XJM-93-03X	18	.1-3		SW	BKG	
		5.7	1	SM	BKG	
		10-12		SM	BKG	
		15-16.4	15-16.4	SM	BKG	
XJM-93-04X	15.2			I CONTRACTOR OF		No spoons collected Phylite cored from 3.5 to 15.2-feet

NOTES:

bgs - below ground surface

VOCs = Volatile organic compounds

USCS = Unified soil classification system

ppm = paris per million

phyl = phylite

BKG = background levels of Total VOCs were measured with a PID at the work site.

TABLE 6.9-5 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 43J - HISTORIC GAS STATION J

WELL ID	ELEVATION ¹	DEPTH TO WATER (FEET bgs)	ELEVATION OF WATER (FEET NGVD)	CONDUCTIVITY HVORSLEV ² (cm/sec)
XJM-93-01X	371.20	7.26	363,94	5.8E-06
XJM-93-02X	370.44	11.76	358.68	NA
XJM-93-03X	367.88	8.18	359.70	2.2E-05
XJM-93-04X	370.97	7.49	363.48	8.5E-06

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc

2 = averaged value of two tests

Groundwater elevations from November 8, 1993,

synoptic water level round

TABLE 6.9-6 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43J - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-61	TP-01	TP-03	TP-05	17-00	TP-07	TF-08	17-09	TP-10	TT-11	TP-12	TP-13	TP-14
ANALYTE	TSJOIOSP	TSI0109F	TSJ0309F	TS/0504F	TSJ0509F	TSI0764P	1\$J0609.P	TSJ0904F	TSJ 1004P	TSILIMP	TSJ 1209P	TSI1300P	TSIL409P
ORGANICS	SEL	9 FT	9 PT	4 FT	9 FT	4 FT	9 FT	4 77	APT	9 FT	9 FT	9 PT	5 FT
BENZENE	< 9.1	< 0.1	< 0.1	< 0.1	< 0.1	-< 0.1	< 0.1	< 0.1	< 9.1	< 0.1	< 0.1	< 0.1	< 60
TOLUENE	710	770	17000	< 0.1	3400	< 0.1	< 0.1	< 0.1	< 0.1	4.1	< 0.1	< 0.1	1900
ETHYLBENZENE	3300	570	16000	< 0.1	15000	< 0.1	5400	< 0.1	< 0.1	8.7	< 0.1	< 0.1	1800
m'p-XYLENE	20000	2000	36000	< 0.1	29000	5300	13000	~0.1	< 0.1	15	< 0.1	< 0.1	3200
0-XYLENE	10000	260	18000	< 0.1	11000	< 0.1	11000	< 0,1	< 0.1	5.6	< 0.1	< 0.7	520
OTHER													
TOTAL PETROLEUM HYDROCARBONS	NA	270	940	130	690	370	540	<55	<55	290	< 56	< 54	010

Notes:

< = Less than detection limit.

NA = Not analyzed

TABLE 6.9-6 FIELD ANALYTICAL SUBSURFACE SOIL SAMPLES SA 43J - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-16	77-17	1P-17	TF-13	TP-19	TP-20	TP-22	TP-23	TF-24	TP-25	TP-26	TP-27
ANALYTE	TS11609P	TSJ17D9P	TSI1710F	TSILMOP	TSJISOF	T5J20091	TSI 2209P	TSJ 2309F	TSJ2409E	TSJ2509F	15J2609F	T5J2709F
ORGANICS	9171	9 FT	10 FT	9 FT	9 PT	9 FT	9 FT	9 FT	9 FT	9 PT	9 FT	9 FT
BENZENE	< 0.5	< 0.1	< 0.2	< 0.1	< 0.1	< 0.3	< 68	< 14	< 0.1	< 130	< 55	< 0.6
TOLUENE	< 0.5	< 0.1	31	< 0.1	< 0.1	72	< 68	< 14	< 0,1	< 130	< 55	7.2
ETHYLBENZENE	< 0.5	< 0.1	83	< 0,1	< 0.1	390	< 68	360	< 0.1	2400	450	< 0.6
m/p-XYLENE	10	1.0	110	0.9	< 0.1	970	1760	310	< 0.1	0400	820	73
0-XYLENE	13	às.	43	<0.1	< 9.1	190	650	460	< 0.1	3300	< 55	24
OTHER	-											
TOTAL PETROLEUM HYDROCARBONS	< 55	< 53	< 54	< 15	< 54.	< 55	110	280	< 54	3100	< 54	< 53

Notes:

< = Less than detection limit.

NA = Not analyzed

TABLE 6.9–7 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43J – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI			SI
ANALYTE	XJM-93-01X	XJM-93-02X	XJM-93-02X	XJM-93-02X	XJM-93-03X	431-92-01X
ORGANICS (ug/g)	10 FT	DUP 10 FT	5 FT	10 FT	15 FT	5 FT
ACETONE	< 0.017	< 0.017	0.062	< 0.017	< 0.017	< 0.017
DI-N-BUTYL PHTHALATE	0.14	0.13	< 0.1	0.12	< 0.061	< 0.1
TRICHLOROFLUOROMETHANE	< 0.006	< 0.006	0.008	< 0.006	< 0.006	< 0.006
XYLENES	< 0.002	< 0.002	< 0.062	< 0.002	< 0.002	D.022
OTHER (08/g)	A contraction of the	2		1	1	
TOTAL ORGANIC CARBON	495	649	1050	< 360	3370	NA
TOTAL PETROLEUM HYDROCARBONS	< 28,5	< 28.8	220	< 28.5	< 28.5	1770

Notes:

< = Less than detection limit.

437SOSEDA WELL

TABLE 6.9-8 INORGANIC ANALYTES IN SUBSURFACE SOIL SA 43J – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

1		1000	1.1.1.1.1	SSI			SI
ANALYTE	BACKGROUND	XJM-93-01X	XIM-93-02X	XJM-93-02X	XJM-93-02X	XJM-93-03X	431-92-01X
INORGANICS (ng/g)		LO FT	DUP 10 FT	5 FT	10 FT	15 FT	SET
ALUMINUM	15000.0	9680	6060	13900	5180	9220	NA.
ARSENIC	21,0	15	15	28	13	17	NA
BARIUM	42.5	34	153	49	16.3	32,4	NA
CADMIUM	2,0	< 0.7	L.T	× 0.7	< 0.7	< 0.7	bia.
CALCIUM	1400.0	1330	1350	1020	948	8940	NA
CHROMIUM	91.0	18.3	21.6	.15.4	19.6	19.8	NA
COBALT	NA	5.67	1.73	12	8.08	8.68	NA
COPPER	8.39	12.3	16.8	20.6	14.2	13.3	NA
JRON	15000.0	15300	18300	25700	16700	\$7400	NA
LEAD	36.9	6.9	12	- 11	9.8	6.5	10.9
MAGNESIUM	5600.0	3400	3480	8220	2750	4590	NA
MANGANESE	300.0	276	454	425	532	322	NA
NICKEL	.14.0	22.5	30	43	27.7	29.7	NA
POTASSIUM	1700.0	1460	481	2940	506	1410	NA
SODIUM	131.0	362	354	422	311	431	NA
VANADIUM	28,7	13,5	8.36	31.4	7,90	13.7	NA
ZINC	35.3	37	38.9	52.3	.30	42	NA

Notes:

< = Less than detection limit.

Shaded values exceed background limit.

TABLE 5-9 ANALYTIS IN GROUNDWATER SA 43 J - IESTORIC GAS STATION J

SITE INVESTIGATION REPORT FORT DEVENS, MA

	Fort Denne Bastigrated Chares institute	3546-415 74A 14A	NA	TANK-AU	2416-84	1444-82 1496/93 18	14444		1412-02	HANNA HANNA		1446-05	1496(9)	1444-0	1	7444-80	
AL CATIONS/ANIONS (Jegf.) Distrite Tropples Suites AL NETALS (Jegf.) Abstimus		7KA MA	NA	1446-85	2416-84		and the second s	10.00	10	- Being		11	U	U	1	13	
Dåride Doglase Salide AL NETALS (ag/L) Alarizius		NA.				SCRAMEST	AUXAMENTS.	-	MTANEXS	MERANKING		MOLINES TO	SUMMAT	MIXIMOXI	8	MINHUSI	-
Florgilaer Sulfate PAL NIETALS (Jug/L) Allerijnias		NA.			-			-								_	
Sulfate PAL METALS (ag/L) (Jaribius				XIA	NA	NA	NA		NA	218		MA	NA	NA		NA	100
(Aurinius	ermi		NA NA	MA	HA NA	MA	NA. NA		HA HA	NA NA	c	NA NA	NA NA	NA NA		NA	
	#10000 L																
SAEwawy .	0870	NA	50.0	NA	716	74600 }	- 141	()	A4450 <	344	F	23309	39200 D <	140	1.0	14	19
	3.03	146	NA.	NA	716	< 10	5.05	7	ASK	8.03	FS	3.03 <	3.03 D<		1	2 A.D. //	UV.
Arenac	70.5	26	NA	NA	MA	77.9	9.7	F	32.4	345	.IF	(10)	910	56.7	17	60.8	DF
Barton	39.6	NA	NA	MA	NA	14	74.7		269.	16.1	i i	163	19) D	26.4	F	36.2	DV
Calcium	14700	NA	NA	NA	NA.	57110	11110		31600	\$1000	5	12900	62160 D	(Since	F	51:000	DF
Chronian	34.7	NA	NA	NA	NA	44.5	0.01	F	70.4 <	6.02	FC	49.5	543 0 4	6 02	114	6.03	108
Cetatr	25	NA	NA	NA	NA	38.5	25	- F	123 <	25	F< F<	25 1	25 D <	25	Ele.	25	400
Copper	8.09	8IA	NA	NA	NA	48.5	E 8.09	1	VZA -	0.07	50	.83	1150-	6.09	Pro.	2.19	10F
from the second s	9100	NA	NA	NA	NA	5000	1580	÷	(page)	1700	5	32,00	567(0 D)	8730	ήľ.	1.00	522555555
Cani	4.23	NA	NA	NA	NA	44.5	8.07		33.0	477	5	30.6	ald D	3.23	10	281	Dŧ
Magazina	3860	NA	RA	MA	NA	EMMO.	9650	÷	23900	4270	1	10701	Dian Di	100	1	ALC: N	DF.
	391	NA	NA	RA	NA	77250	13300	÷	28300	avito	1	6470	20/0 D	3125	÷.	-11-	100
Magazani Mining	343	NA				20.2	- 343	400	JUL	343	15	27	773 0-	343	Fre	54.8	2174
			NA.	NA	NA							100		343	40	200	122
(cleaner)	2398	NA	NA	NA	NA	1040	200	田川	2000	1948	F	MAT	INCHE D		-51		1.50
Skeen	10000	NA	14	NA	NA	(0116)	14300	5	322:00	E24 D	1	SHD7	50-800 D	0,00	1	1000	DV
VanaSiaw	- 11	NA .	NA.	NA	NA	20.7	o (1)	7	20.4 0	31	18	19.4	ALL DIS		Pic .	11	DF
Tine	21.1	NA !	NA.	NA.	NA.	378	40.4	10.00	174 -	21.1	FC	5141	115 0	- 32 -		- 992-	- 17
FAL TEMINOLATILE ORGANICS (MAL)				and a little state											_		
17-defloritenme		.894.	NA	NA-	NA	K 17	NA	15	11	394	<	17 4	-40 D	246	_	218	_
1.4-Setlenbergene		NA .	NA .	NA	NA	× 1.7	MA	10	3.7	NA	<	1.7 -	AR D	NA		218	
2.4-Janisto/plania		NA	NA.	NA .	NA	< 5.8	NA	1.1	9.5	NN	<	3.8 <	100 0	HA		- MA	- 14
2-claim tacktaken		NA	NA	AK.	NA	10	NA		-40	NA .	1.1	100	20 D	HA		MA	- 14
i canito themel / I samel		NA .	NA	NA	NA.	< 1.9	NA		3.7	NA		35 4	100 D	SA.		NA	
4 methylateral / 4-meet		NA.	NA	NA	NA	< 0.32	NA		15	NA		0.52	ID D	SA.		MA	
Bis (2-chylamy)) Philadete		NA	NA	NA	MA	s 300	NA		90	NA		100 -	100 D	NA.		JIA .	
Natilialent		19A	NA	NA	BA	290	NA		200	NA		400	20.04	16A		NA	
Pactantree		TRA .	NA	NA.	NA	< 03	NA	100	0.5	NA		2.2 -	10 0	HA	1.0	HA	
PAL FOLATULE ORGANICS (MEL)		1000	1 190	1 00	1 100	12		1		-11-5			10.01		_	-00	-
1,2-factoryothylena (cia And Trum bersen)		NA	NA	I NA	NA	< 30	NA	le.	30	MA	12	50 kc	30.0	NA	-	NA	-
a) jumas		NA	NA	NA	NA	5000	NA	1	9000	NA		1000	4000 01	NA		TA.	
						< 50		6	50	NA		50 14	30.0			NA	
1,2-bdlarostinie		ALK	MA	RA	NA		NA	E.	1000		4			HA			
Agethes		NA	NA	NA	NA	< 50	NA	- E I		NA.	-	1000+=	1000 D	MA		HA.	
Benzesia		NA	NA	NA	NA	280	NA.	1.1	200	NA.	1.1	70	70 D	NA		144	
Cietos Tetasdáriós		NA	NA	NA.	NA	× 60	NA.	1	60	NA	1	00 4	(0.0)	MA		164.	
Chlerofies		NA.	NA	NA	NA	< 50	NA.	5	50	FLA.		50 6	30 D	WA.		HA	
Edybernez		NA	Se.	NA.	NA	5000	HA	1.0	4080	NA		3092	JANKE D	NA		NA	
Melayless Charide		NA	MA	NA.	NA	< 200	HA	5	200	RA	1	200 <	200 0	MA		NA	
Teleste		NA	NA	No	NA	2000	NA.	1.1	8600	NA	1	900	900 D	NA		NA.	-
PAL WATER QUALITY FARAMETERS (MIL)				0.1		·							- Marine Mary		-		
All million		NA	1 1KA	NAC	NA.	NA NA	NA	T	94	NA	1	NA	SA	50		TA	
Victor, Victor-over Desiller		NA	3CA	NA	MA	746	KA		SA.	714	× .	1946	MA	56		NA	
Name Ily Ruddald Method		114	344	MA	MA	NA	764		MA	MA		246	MA	NA		NA.	
Train Dissolved Spirits		744	NA	NA	NA	10	754		170007	MA		NA	HA	NA.		DIA	
Timi Ille bee		21A	NA	244	NA	NA	NA		NA	NA		NA	KA	MA.		144	
Time Depended Solite		ALK	HA	HA	MA	1700001	MA		10/0100	NA		100000	doxene pe	194	1.1	12.6	
		- 00			1 200	Linese L			and the second	1945		(and the local data					_
COURT (art)		1 MP	71	140	1 3	1 1270	MA.		.000m i	NA.		34901	31000 07	NA	1	NA	-

TABLE 69-9 ANALYTES IN GROUNDWATER SA O J - BISTORIC GAS STATION J

REMEDIAL INVESTIGATION REPORT FORT DEVENS, MA

			ROUND 4		COUND 3			CUND 4			BOU	
Stan (D) Sampin Onic: Dyrits: Firid Sacrain Vanders	Yest Dresse Bothground Consentrations	1444-01 84,07/84 13 N3 664170	2449-82 84/27/04 82 81/27/04	2446-89 288480 65 MCC446421	2445-94 10/94290 13 15	81.07/94 12 12	TANLAN BUTTON LO MICHANIZE	2446-84 81,07/94 15 3004468000	740-04 9107/34 25 910444027		LOF-RI-41X INGRAZ ZLS HOCCNEXI	CORVERS CORVERS CLASS
PAL CATIONSANIONS (NEL)			Conta Conta	1 Contracte	Contraction of the local division of the loc	L BOURD J	- Contraction		L-contrastes	_	Construction of the	Contra Province
Climite		ALE	NA	HA	NA	BA 1	10.	94	NA		146	NA
Fborghesi Saliai		NA	NIA NA	26A	NA	HA. HA	MA	NA NA	37A 34A		NA NA	NA HA
FAL METALS (HEL)					· · · · · · · · · · · · · · · · · · ·			-				-
Aturnésora	68.70	BAIR -		7) \$1/300 ×		63001	15 200 E1 4		F MI	DF	11001	73873
Anthrony	3.85	3.00	100	V 313 ×	3 63	3.91	3.54 D	3.84	P 245	DF	303 0	3,05 5
Analois	10.5	A1/7	101	 A.27 (A), 423 	15.7	F 26.V	348.0	17.1	F CAR	DF	12.9	8.95.2
Harnon	3.93	5		719	57.9	7 102	17.4 D	37.3	r = 0	100	10.2	41.4.3
Calizzan	14700	54)02	3,850	1	9110	H 177902	#7900 D	51400	F PAR	1.05	- 27100	84500 1
Chronizion	147	12.2	E 1007	T - 854 -	5.62	P 1/8	TTI D		F = 6.00	107	-13.1	46.1
Cobwli	20 1	21	- <u>- 1</u>	Fe 19	- 25	F 60 X	to De		F = 15	DEK	24	25 1
Coppet	K Ge	10.1	C 108	T 11	8.09	F 107-	146 D-		T . 2.09	105	122	Jbg i
Inve	\$100	31668		C 30mm		E 134000	199990 D	4280	F 4820	DF	10000	10200 1
Lesd	4.25	133	2.01	F 124 K	5.26	F 13.8	53.7 Dec	1.26	E< 120	DF	12.4	7.42 1
Magnetalians	3490	13(93)	110-	D Down	14540	Children Children	577W D	14901	P 17980	D#	15100	13000 3
Mangacoost	291	0000	Lat.	1 1707	1340	r tóti	7587 D	4960	E 6/81	DF	12.1.21	233.1
Nichel	343 -	- M3	C. 193. 1	10 100		700	304 D <	- 343	FK 943	DE <	34.5 0	363 1
Fotositum	2370	5030	1.00	10 7274	100	13400	58400 (5	2560	P 1040	20	17201	5440 5
Solium	1 Million	ASEIG	2.0	1 200	100	ACTIONS	62507 D	42996	F 596502	DF	27866	20807-1
Vandiran	U e		c 11	P 311		F. M.I	Die Die		F< 31	DF	1911	203 3
liai	21.1	017	c 31.1	F1	LL I	F)	375-0 <	211	FK 21.1	DIF		78.3 1
PALIEMIVOLATILE ORGANICS (MCL)	1							and the second second		_		
1.2-disblowbecause	1	17	NA	11	NA	23	3.6 D	NA	NA	*	17 4	171
L4-dicklombenzese		1.7	MA	× 1.7	MA	C 13	1.7 0	NA	NA	1	17 6	1.7 3
2.4-dimenticyly/semid.	-	5.8	11.0	< 3.8	316	C 58	< 5.0 D	NA	NA	K	38 4	5.63
2-contry/pagit/minist		44	FIA	0	NA		22 D	NA.	NA	<	1.7 -	1.7 1
2-metry to based / 2-moved		1.9	NA	- 3.9	264	< 3.9	- 3.9 D	84	NA	*	39 1	3,9 1
4-coefficytophenol / 4-coveral		1.7	WX.	× 3.9 × 0.51	NA.	< 0.52	5 0.52 D	NA	NA	14	0.02 -=	0.32 1
Bis (2-sthylescoft) Fathalicle		6.9	NA	100	NA	C 41	4.80	KA	SIA	×.	44 -	
Nucleanation		100	NA	60	NA.	70	109 D	NA.	NA	14	03 15	651
Theastrene		. 0.5	NA	< U.S	NA.	< 0.5	c 0.5 D	NA	NA	×.	95-0	0.5 1
PAL VOLATELE ORCANICS (MEL)												
1,7-debiororithylenes (de Aud Treus Marsach)	-	10)	NA.	10 X	NA	K 10	20 D	NA.	1 PA	15	0.3 fc.0	0.51
sylantia		2000	NA	500	NA	1960	900 D	NA.	NA	- K.	0.54 +	0.04 1
1.3-deliversathene		300	NA.	18 2	NA.	< 30	4 5 12	NA.	74A	1.46	0.5 %	63 1
Acelona		30	NA.	< 60	NA.	< 300	< 300 D	NA.	NA	1.1.1.1.1	DA -C	01
Beumtó		.90	NA.	50	HA.	70	60 D	NA.	NA	1	93.0	0.5 1
Carbon Tetrachloride		10	NA.	× 3	265	< 10	60	NA.	RA	5	6.58	0.581
Thereform		10	NA	× 2	NA.	< 10	¥ 0	NA:	NA		0.5 <	0.5 1
Ethylbeateas		2010	NA	300	NA.	2000	1000 D	NA	NA	K.	0.3 4	1.5
Metrolean Cluside		ot .	NA	10	NA	c 60	£ 25 D	NA	NA	1	23 4	23 3
Tokume		1000	NA	200	NA	500	400 D	NA	NA	- k	3.5 0	0.1
PAL WATER QUALITY PARAMETERS (MEL	1											
Alloufinity	1	NA	N/s	NA T	NA	NA.	NA	NA	T NA		NA T	WA .
Visities, Nitemie-non Specific	1.0.0.0.0	NA	NA	NA	NA	NA	NA	NA	NA		MA	MA
Nanogeo By Kyeklahi Method		NA	NA	NA	NA	NA	NA	NA	NA		STA.	RA:
Total Disached Solida		340000	NA	NA	154	450000	440000 D	NA	NA		750	7/6
Total Hathers		NA	NA	NA	NA	NA	NA	NA	NA		396	NIA.
Total Supremited Solida		700007	NA.	1080000	NA.	14000000	12000000 0	NĂ	NA		658001	411000 1
OTHER (agL)				(
STUDE DEL							the second se	and the second sec				

TABLE 4.3-4 ANALYTES IN GROUNDWATER \$4-43 J - BISTORIE GAS STATION J

REMEDIAL INVESTIGATION REPORT TORT DEVENS, MA

			LOND			KOUND 4			1	LOUXD #			ROUND 4
Siles (Dr. Saragele Dation Person Field Seargie Swamper	Fort Deves	104400 144400 LLA MOCUNED	10%-35%) 10%670 11.5		11.5 1433,141X 11.5 1433,11137	ACTALIAS-43.5 ACAULAH 11.7 MOCCANING		1643273 16.9 19.9	AUX MUX MUX	Littletone IMPRU H/J	1206.05.01X 12/03/94 10.0 10.0	KJAK-SL-HIS BLG.5% 10.5 MIXT.MIXT	LON-73- GLOSP (A.9 MODESN
FAL CATIONS ANIONS (MPL)			1				-	Propagation 1			1. Humanian	L Doction	T- Water
Calovide	1	NA	2/10	1	NA	TA	-1-	NA		FA.	714	96	54
Thorphote	1.	HA.	NA.	- H.	NA	MA	1.1	tin.	121 0	NA	MA	HA	345
Sulfale	h	HA.	NA.		.HA	HA.		56A -	L0000 D	NA	NA	346	NA
PAL METALS (MEL)	C						1.0	and interaction of the			A		
Nuciónam	EETD		FS 39	DF	2008		F	3910	ALL D	F 90	T 375 D	S 141	F)
Additionary	3.03		F< 1.33	DP	2.00 %		F	1.08	200 D				P/<
Americ	10.5		7< 2.54	ш	-115	7.54	r	31.0	122.0	415	F 405 D	2.1	1
Serium	39.6		F 19.4	DF	011.5	4.85	T	\$7.7	382 D	141	Y 8,72 D		Ð
Chleium	14700	13.800	5 1000 5 0,00 5 25 5	DF	52868	36300	F	3440	31300 D	33400	F 5 0 6		6)
Clavanium	LLT S	20.0	7 0,0T	DF	1475	0.07	F	11.7	13.5 D			s dat	1
Collean	25	25	FK 2	DFS	25 ×	25	TK.	25	10		P 17 11		je –
Copper	6.09	811.6	F - 846	DF	E1K		3	8.05	109 54		e 61 u		5
brane .	03107-0	SA A	FC THA	DF	100		3	2602	10000 13	IWINC	F 1250 E		5
Land	4.25 4	1000	1.12	77	-500 R	1,24	3	3.1	51.0		For Law D		3
Magamenter	1480		F LITTO	DF	31000	11000	5	7655	0740.00	88.40	F 5800 10		3
Harginane	501		F 521	DF	EW.	81	14	2910	14000.05	1200			
	34.5 4	and the second sec		101	0.83		51	943	MID	145	A		1
Possessing:	2370	5125	r 3720	DE	THAL .	1710	2	2440	1250 12	1710	A 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2
Sudue.	15806		F 22700	DE	11 berty		2	12.2	1/990 /1				8
Transaction of the second s	11 e		F : 82.4	DF	14.7 4		- Cl	24	11 11	in .		< 11 < 211	
Zito	33.5 4	48.5	P/c' 31.1	UFL			1		24.04		115 21.1 10	r 44	-
FALL SEMITVOLATILE ORGANICS (MOL)			-									1 - 200	
1,2-Schloro/wazamie		144	.AP.	4	17	NA	12	2.6	8.1 13	NA	MA	84	1
1,4-BdAwritenianie		AFC	?(A.	×	1.7	MA	1	148		MA	HA	NA	ř.
24-Email: http://www.i		784	214	9	5.0	NA	1	58		MA	MA	HA:	r
-cettymephtules		MA	264	5	1.7	NA		2.7	110	NA	200	NK NA	10.0
2 contry general / 2-cread		114	NA	5	3.9	NA	e.	3.9	3.9 D	NA	NA NA	SA	C .
Learthe faile and / Learney)		NA.	NA NA	4	4.5	HA	e c	0.52	8.4 D	344	THA.	NA NA	Ê.
tin (2-mbylowyl) Plataters		HA	HA	1		MA	2	43		TAA.	HA	SA.	ĩ
/ laghthatene Phonestaria		NA	Na	C	0.5	NA	E	254	4.4 D 0.5 D	NA	10	NA	L
		190	30	- 14		190	-Ar	CAP.	10.0 10	164	1 0%		~
PAL VOLATILE ORGANICH (Mg(L)		MA	NA	- 12	03	KA	P	85 4	0.5 01	TAA.	I NA	1 364	k
1.2-dictioned gives (se And Tree Januars)		HA	NA	×	6.54	NA	E.	SM.	# D	RA	NA	NA.	r i
1,2-distancement		TIA	HA	XX	0.5	NA.	6	15	0.5 1	PA	THA.	FA.	4
Autocal		NA	NA	F	13	NA	2	13		NA	NA	KA	6
Baturat		NA.	7/4	E.	0.5	NA		53	13 13	29.6	11A	84	-
Caforn Fermilande		HA	NA	G.	0.36	MA	c	0.3	0.08 0	MA	1KA	KA	-
Chinestores		HA	NA	e.	0.0	MA	i a	0.3	050	NA	NA	5A	C
Edyterne		NA	11A	0	85	HA		83	0.5 0	TA.	NA	24	r .
Ainthylene Chimile		lin	NA	R	23	NA	E.	23		NA	746	NA	6
Talan		NA	NA	E.	0.5	264	e	0.3	53 D	NA	NA	16A	-
FAL WATER QUALITY PARAMETERS (sel		0.0	1 100		4.61		1.	Post A		Terr	1 100	1	-
Altaber	1	NA	THA .	- 10	NA I	MA	1	MA T	\$05000 DI	724	NA	RA	TNA.
Harme, Harme con Specific		NA	744		NA	NA		NA	63/ D	RA	blé	NA	HA
Viccem By Kinishihi Medahi		MA	77.6	1.1	04	NA		NA	679 D	NA	NA	NA	305
Fotal Disectivet Solida		1/6	154		MA	NA		214	NA PAR	NA	NA	765	3
Tele) Hardman		HA	364		NA	NA		NA	192000 D	KA	NA	HA	NA
Trail Depended Seage		MA	BA.		770000	HA		73000	110000 D	NA	NA	NA	
OTHER (MAL)			1.46		110-3441	190	-	arrent.	Court St				
C I MAR DE CA			and the second se				_						

TABLE 6.9-9 ANALYTES IN GROUNDWATER SA 49 J - HISTORIC GAS STATION J

REMEDIAL INVESTIGATION REPORT FORT DEVENS, MA

		ROL	IND 3	ROU	ND-4	ROL	IND 3	ROL	ND 4		
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Peri Derpan Beckgrunad Concentrations	3034-80-80X 1997/73 11.5 16302/80X1	7.176-93-835 19497/93 21.5 M2X285X1	XIAL-10-05X 91/23/94 11.5 MCCURICO	11.5 MCCU4032	2.1M-33-562 18/87/03 92 16/02/14/03	3007/05 3007/05 32 4033.0431	SUMAD-60X BLADH NJ MODCHOD	1004-03-84X 102020-4 82 200520-403	AVERAGE UNFILTERED SAMPLES	DIVIDED BY # OF SAMPLES
PAL CATIONS (ANIONS (mg/L)	Allering a	CARGE MARK	Parateriorise	1 HERITAR L		1. Transfer trat.		1 11052 11 1004			Sector Land
Chloride		NA	NA	NA	NA	NA	NA	NA	NA	1	
Phosphala	A	NA	NA	746	NA	NA	NA	NA	NA		
Sulfino	. A	NA	NA	NA	NA	NA	NA	NA	NA		
PAL METALS (met.)											
Akaronan	6570	764	< 141	F1 5260	C 1/1	P/< 41	< 111	F] 150	< 141	F 20464.17	1136.90
Antimony	3.03	< 3.03		F < 3.03		< 1.03	< 3.05	F< 3.03	4.55	F 3.41	0.19
Astenic	10.5	9.81		F 3	7.8%	F 354	362	P 111		F 35.71	1.98
Bariver	39.6	25.1		F	912	F AKI	25.8	F 541	196.	F 146.59	B.14
Calcium	14700	The second se		F Signa	10000	-44200	347,000	F 50900	0.000	59288.89	3293.83
Chromisen	24.7	< 5,02		F 13.5	5 B.UZ	< 6.02	< 8.02	P< 6.02	< 0.00	#0.83	2.27
Cobalt	25	c 25	e 23	FIC 23		FIC 25	< 25	F 25	c 25	F 33.83	1.88
Copper	8.09	< 8.09		F 113	2.00	K 8.09	< 8.09	F 8.43	< 8.09	F 35.50	1.97
hun	\$100	1360	49.6	F 10900	414	4690	5370	F 4660	3930	F 44217.22	2456.51
Lind	4.23	2.39	412		1 220	1.84		5 3.36	< 1.76	21.55	1.20
Magnetium	3.680	18000	25105	F 3.97		ELOCAL	LOW	- 25200	25600	F 2040.89	1135.77
Mangamani	291	5 0		7 2750		E 1000		T \$450	2140	6968.77	357.12
Netel	38.3	< 43	< 313	F 343	14.1	PC 04	1.14	424	10.0	76,19	4.23
Potaminm	2370	3450		F 4500		1 Minut	8-01	4070	4250	7064.44	394 14
Sodium	10500	76500		64600	1000	P JATO		179000	INCOM	51572.22	2865.12
Vanis	.11		< 11	F 4 11		F U	.0	× U	< U	F 31.58	1.78
Zas	21.1	263		F	21.1	F< 211		F		F 112.22	6.23
PAL SEMINULATILE ORGANICS (NOL)		-	- and			0	710			1	
1,2-6ddeptemene		< 1.7	NA	2 1.7	NA	C 1.7	NA	fe 8,7	NA	4.78	0.27
1.4-Giblorobassa	a second s	< 1.7	NA	* 1.7	NA	× 17	NA	K 13	NA	1.83	0.21
Z.A-dimentin/Apitemicit		33	NA	2 38	NA	< 3.8	NA	k 3.0	NA	11.24	0.62
2-methylmetholiskene		s 1.7	NA	45	NA	13	NA	5.4	NA	2.0	1.23
2-monthytesteel / 2-erranol	1 1 1 1 1	e 3.9	NA	< 3.5	NA	< 3.9	NA	< 3.9	NA	9.54	0.52
		0.52	NA	< 0.52	NA	< 0.52	NA	1.2	NA	1.82	0.10
4-methylphanol / 4-oresol Sie (1-ethylbanyl) Phthalate		< 1.8	NA	4.9	NA	c 4.8	NA	< 13	NA	31.01	1.72
		1.		30	NA	4.8	NA	20	NA	\$7.09	4.30
Nephthalean		< 0.5 < 0.5	NA.	< B3	NA	< 05	NA	÷ 0.5	NA	1.12	.0.06
		0.3	NA	N 031	1940	14 031	19/4	P~ 0.3	INA	174	.0.00
PAL VOLATILE ORGANICS (10/L)		1. ·		E 21	414	K 10	bra.	le il	NA	14.92	0.83
1.Z-dichloroethylenes (cis And Trans Lorours)		< 5	NA	17	NA		NA	× 3		1763.41	97.97
tylates		800	NA.	40	NA	1000	NA	400	NA	30.31	
1,2-sichleyoethane		< 5 × 100	NA	100	NA	< 10 < 300	NA	200	NA NA	241.39	1.88
Acitone								200			
Benzene		200	NA	100	NA	< 18	NA	6 3	NA	66,99	3,72
Carten Terredilorida		< 6	NA	e	NA	< 10	NA	c 4	NA.	16.65	0.95
Chloroform		20	NA	< 140	NA		NA				57,43
Emyforgame		500	NA	100	NA	500	NA	100	NA	1033,47	
Mourylene Chioride		< 20	NA	< 10	NA	< 60	NA	50	NA	61.75	5,43
Tohame		600	MA	100	NA	200	NA	100	NA	1000,74	38.37
PAL WATER QUALITY PARAMETERS (Mg/L	2	-	1	1 10 1	1		1.87	T 30	-	11000 001	202.23
AScainity		NA	NA	NA	NA	NA	NA	NA	NA	11277.78	626.54
Nitrite, Nitrate-non Specific		NA	NA	14.	NA	NA	NA	MA	NA.	35,00	1,94
Narogen By Kjeldski Method		NA	NA	NA	NA	NA.	NA	NA	NA	34.94	1.94
Total Dissolved Solids		NA	NA	430000	NA	NA	NA	NA	NA.	123333.33	0831.83
Total Hardpess		NA	NA	NA	NA	NA.	NA	NA	NA.	10666.67	592.59
Total Surpended Solub	1	42000	NA	340000	NA	9000	NA	21000	NA	2106888.89	117049.38
OTHER (MEL)			NA							1	
Treal Reactions Hydrosectores		1030	NA NA	K 210	NA	3350	NA	1700	NA	1384.61	354.70

TABLE 6.9-10 HUMAN HEALTH PRE EVALUATION OF SUBSURFACE SOIL SA 431 - HISTORIC GAS STATIONS

	FREQUENCY	DETE	CTED	REGION III COMMERCIAL/	MCP	MAXIMUM EXCEEDS GUIDELINE CONCENTRATION 1	
ANALYTE	OF DETECTION	AVERAGE	MAXIMUM	UNDUSTRIAL CONCENTRATION	S-2 STANDARD		
ORGANICS (ug/kg)							
TOLUENE	9726	2655.5	17000	20000000	90000	80	
ETHYLBENZENE	12/26	3821.8	16000	100000000	80000	NO	
m/p-XYLENE*	18/2.5	6269.1	30000	1000000000	800000	NO	
o-XYLENE*	15/25	3696.6	18000	1000000000	800006	NO	
XYLENE (TOTAL)**	in	-	0.022	1000000000	800000	NO	
OTHER (mg/kg)							
TOTAL PETROLEUM HYDROCARBONS	12/25	758.3	3100	1660	2500	YES	

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

[a] Subsurface soil (3 to 15 feet) based on field analytical samples TP-01 (arough TP-11) from 1992, TP-11 through TP-18 from 1993, and soil boting 431-52-01X.

ï

ug/kg = micrograms per hilogram

mg/kg = milligrams per kilogram

- = not applicable

MCF = Massachusetts Contingency Plan

Shaded compounds exceed standard or guideline.

* = analyte from field screening samples.

** = analyte from laboratory analytical samples.

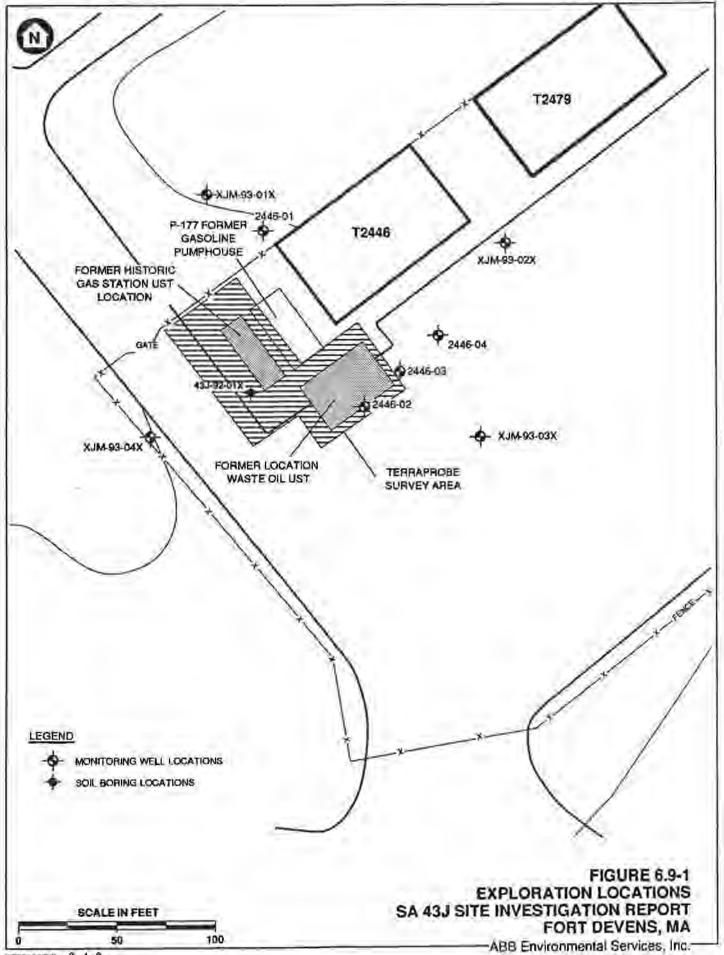
TABLE 6.9-11 HUMAN HEALTH PRE EVALUATION OF GROUNDWATER SA 43J - HISTORIC GAS STATIONS

	Frequency	Dete	ration (s)	Groundwater Background	Maximum Exceeds Background 7	Drinking Water Standard/ Guideline [b] (pg/L)	Maximum Encode Standard/ Guideline 7
Analyte	Of Detection	Average (ag/L)	Mastinan (#g/L)	Concentration (#g/L)			
ORGANICS							
1.2-DICHLOROBENZENE	6/18	4.55	8.1	NA	34	600	NO
2-METHYINAPHTHALENE	12/18	32.31	100	NA	-	NA	2
BENZENF	14/38	35.66	200	NA	-	5	YES
CHLOROFORM	2/18	14	20	NA	~	5	YES
ETHYLBENZENE	13/18	1430,7	4000	NA	-	700	YES
NAPHTHALENE	13/15	152.1	400	NA	~	1.500	NO
PHENANTHRENE	1/38	3.2	2.2	NA.	~	NA	
TOLUENE	14/18	1373.9	8000	NA	6	1000	YES
XYLENES	14/15	2267	9000	NA	-	10000	NO
INORGANICS							
ALUMINUM	15/38	284/8	29200	6870	YES	50-20	YES
ANTIMONY	3/16	53	6.34	3.03	YES	5	YES
ARSENIC	18/18	36,4	8,06	10.5	YES	50	YES
BARIUM	18/18	143	541	39.6	YES.	2000	NO
CALCIUM	18/18	59011	97300	14700	YES	NA	1.20
CHROMIUM	15/18	44.14	54.8	14.7	YES	100	NO
COBALT	5/18	59.48	89	25	YES	NA.	
COPPER	15/18	42.39	140	8.09	YES	1300	NO
DRON	18/18	44333.9	191000	9100	YES	300	YES
LEAD	18/18	22.33	44.6	4.25	YES	15	YES
MAGNESIUM	18/18	20352.7	25900	3480	YES	NA	
MANGANESE	18/13	7542.6	17200	291	YES	50	YES
NICKEL	9/18	122.9	308	34.3	YES	100	NO
POTASSIUM	18/19	6913.3	69600	2370	YES.	NA	-
SODIUM	18/18	50144.4	78500	10800	YES	28000	YES
VANADIUM	13/18	39.5	126	41	YES	260	NO
ZINC	17/18	117.2	375	21/1	YES	5000	NO
OTHER				- 10 W			
TOTAL PETROLEUM HYDROCARBONS	11/18	10325.4	55000	NA.	-	1000	YES

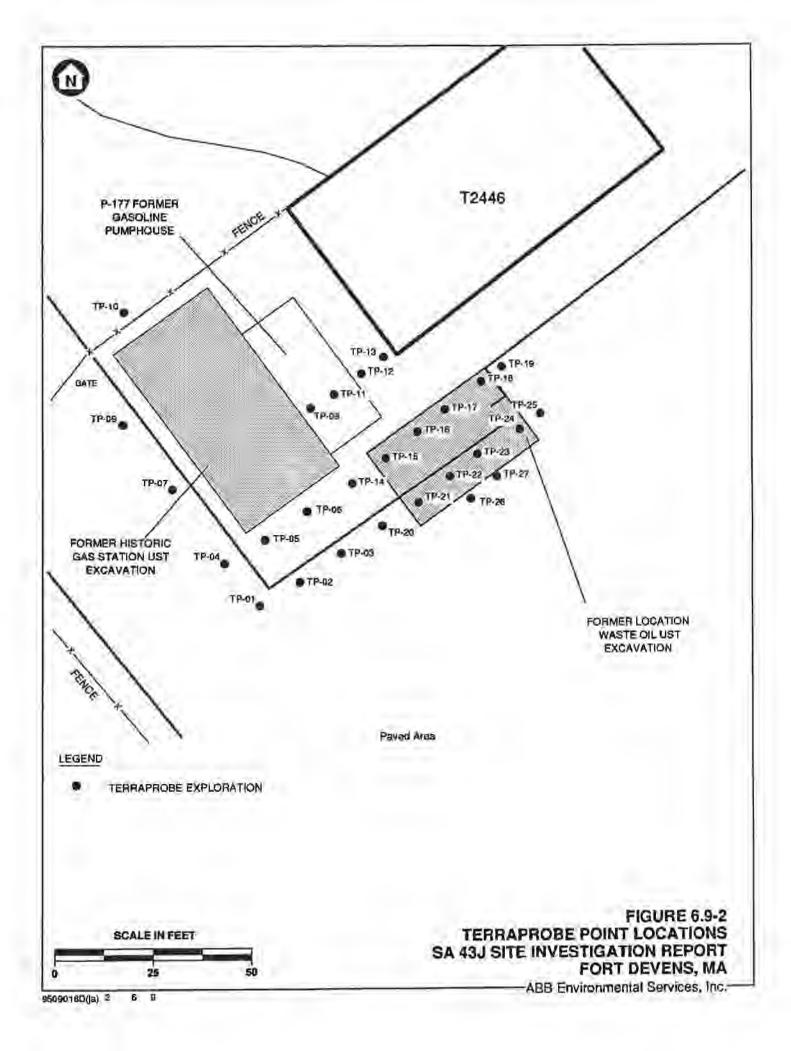
SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

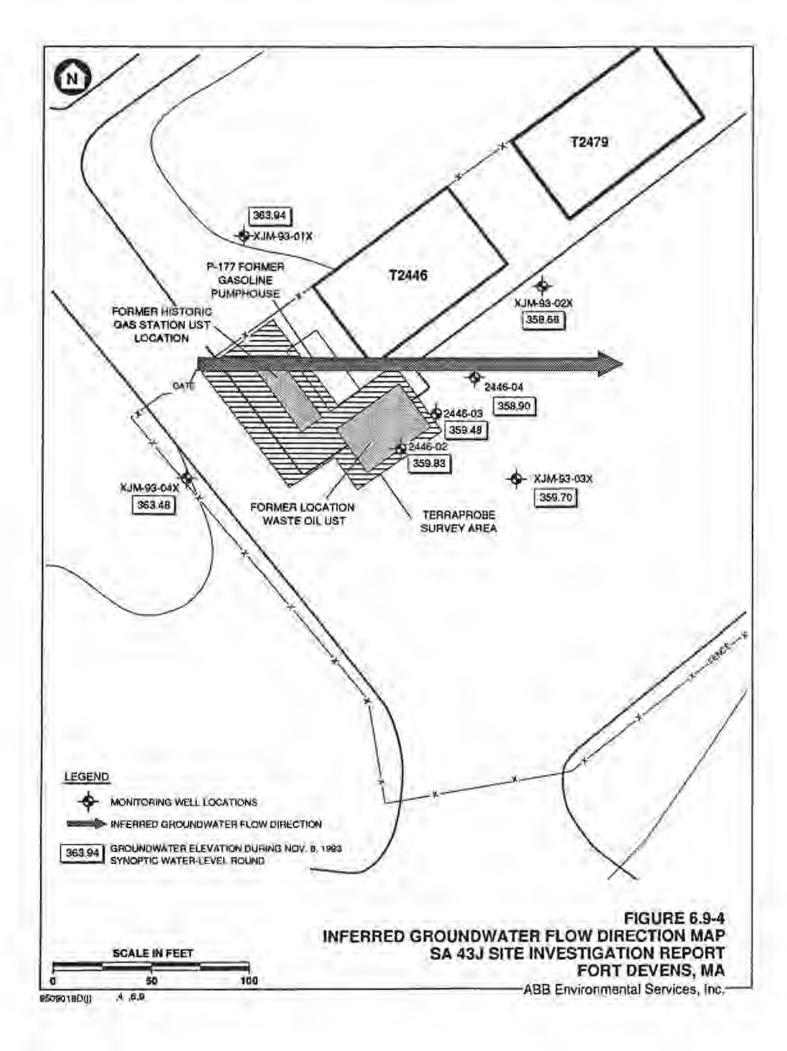
[a] Groundwater based on unfiltered samples from 2446-02 to 2446-04 and XJM-93-01X (1 duplicate) to XJM-93-04X

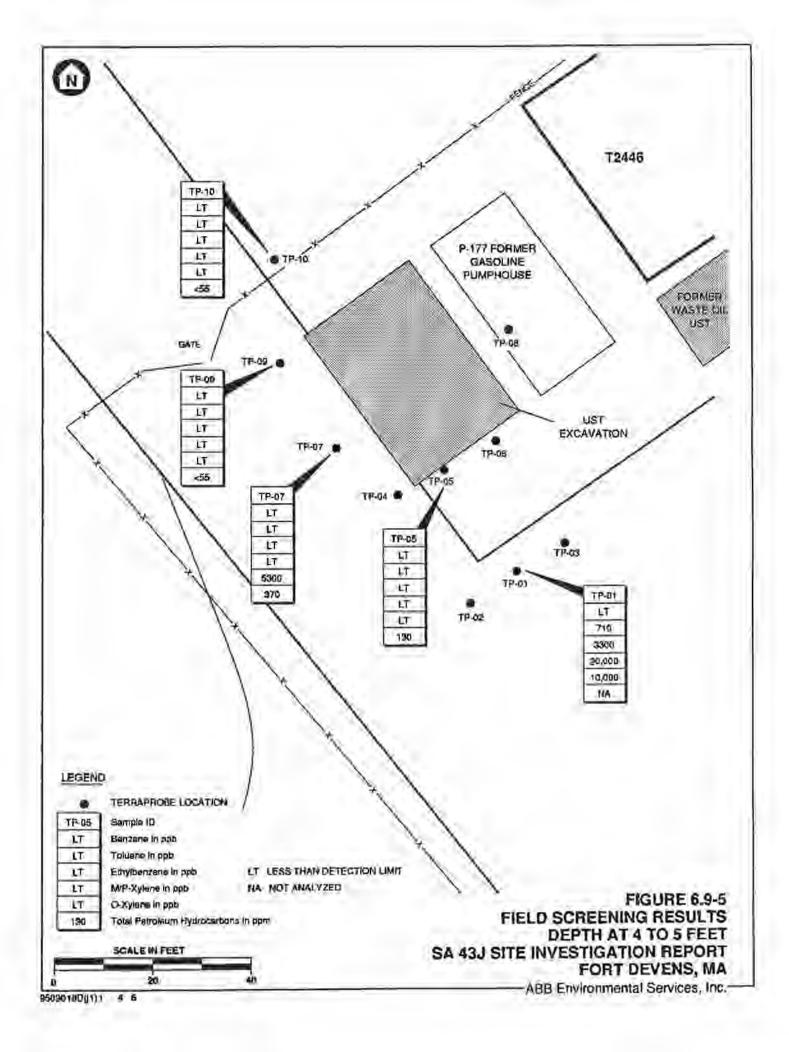

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal standard or guideline is available, the Region III tap water concentration.

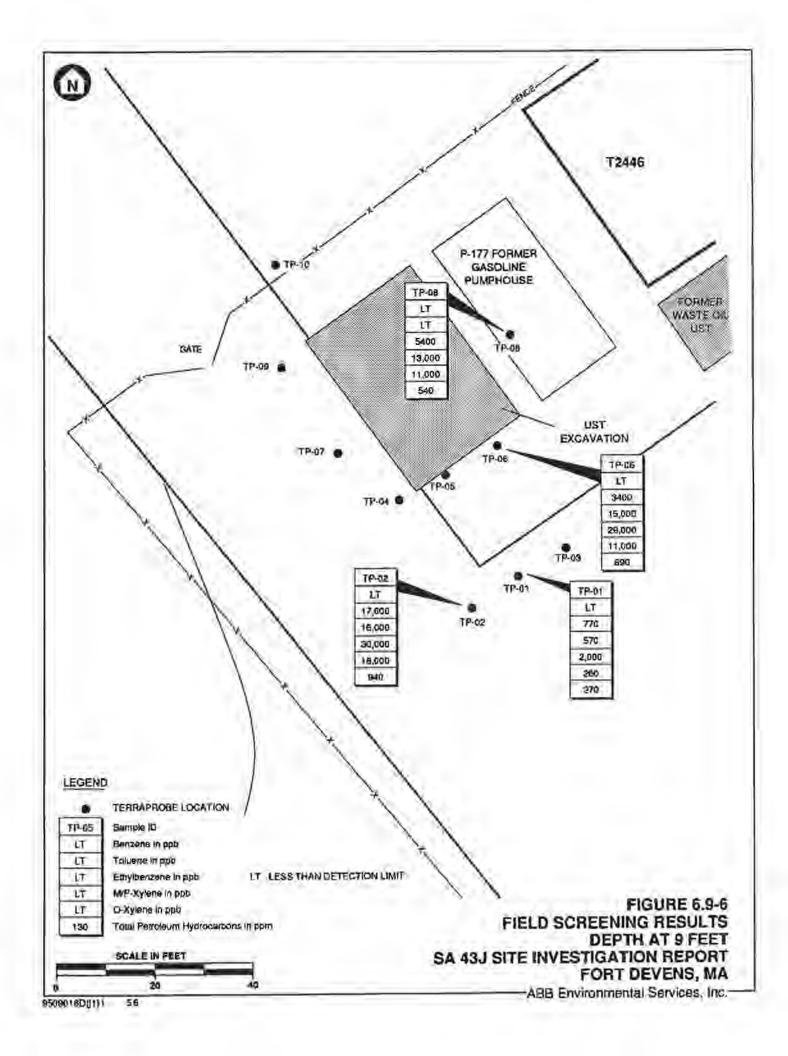
NA = not available

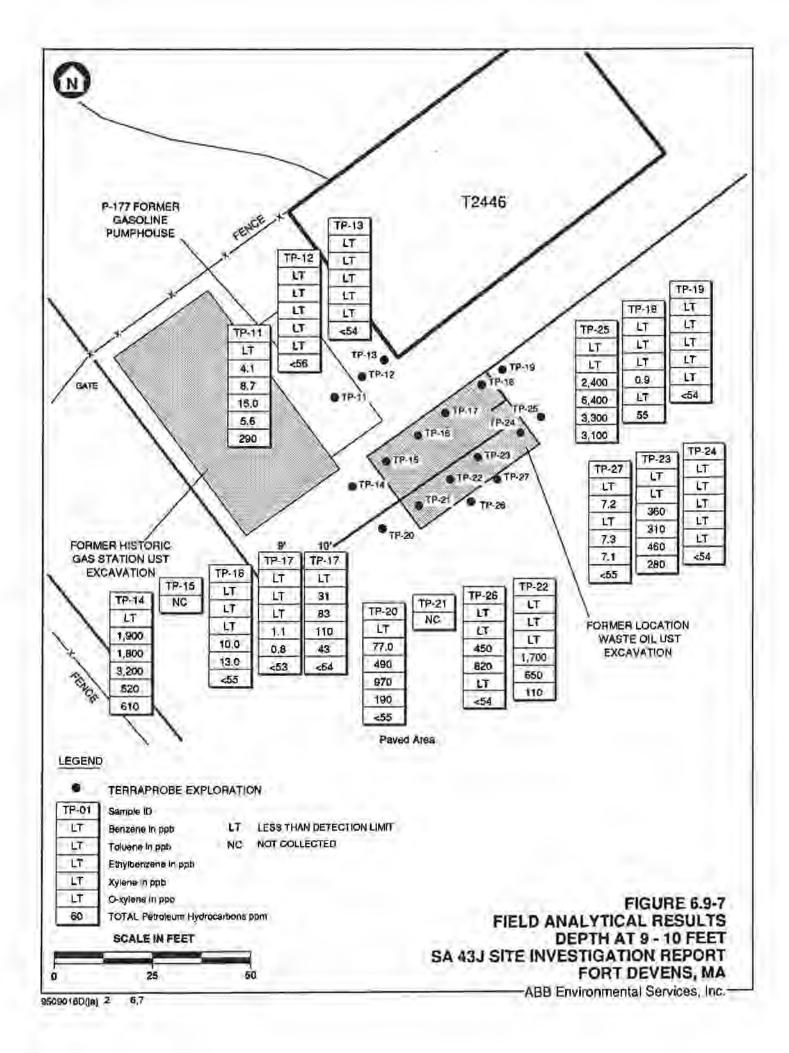

µg/L = micrograms per liter

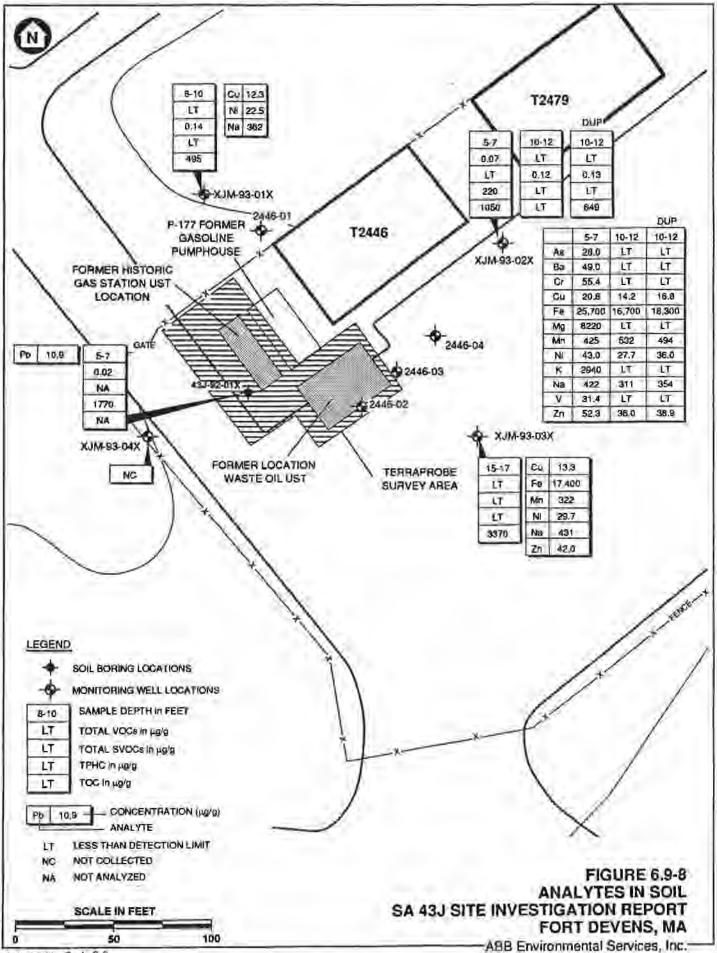
- = not applicable

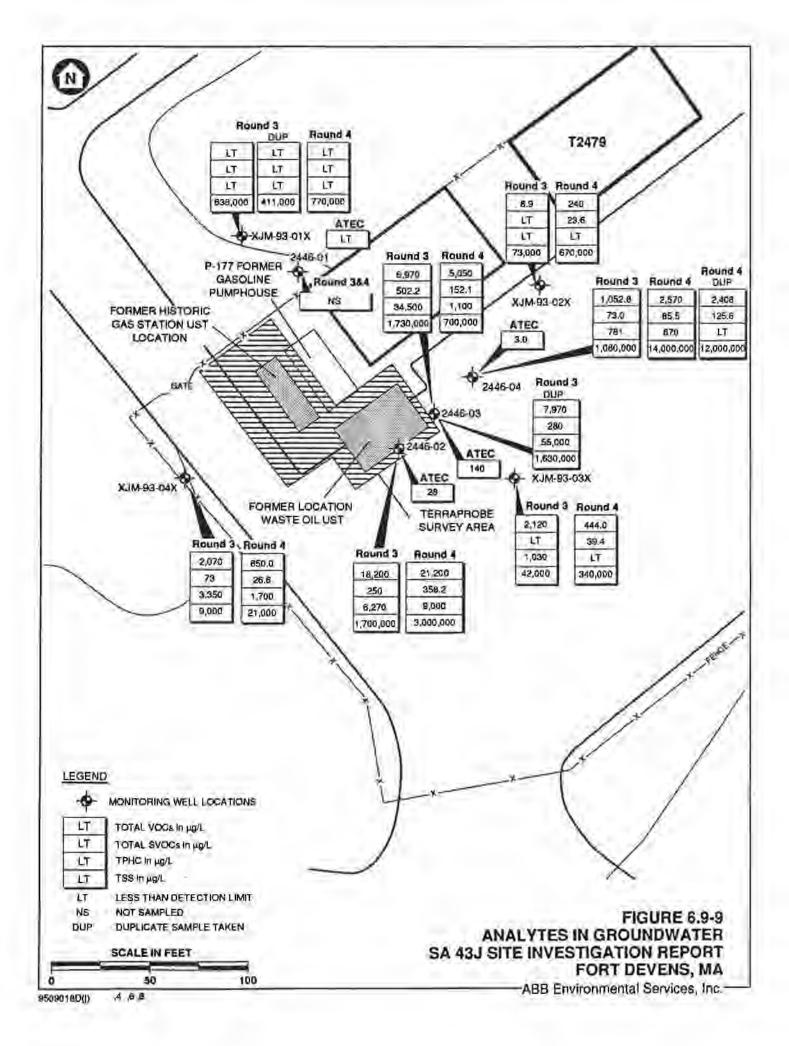

Shaded compounds exceed standard or guideline

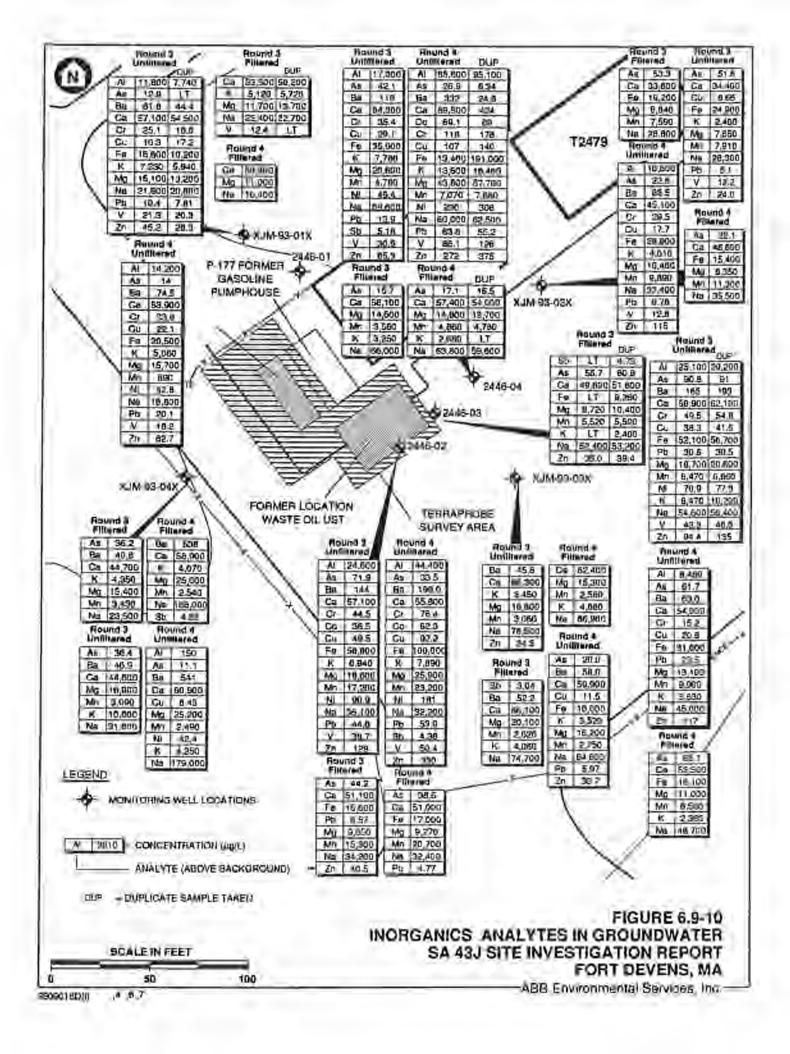



\$509018D(j) 2 ,4 ,8









9509018D(j) 2 ,4 ,6 ,0

6.10 STUDY AREA 43K

6.10.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43K consisted of a pump island and a small gasoline pumphouse. This gas station was a Type A station which had one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. SA 43K is located approximately 1,500 feet west of SA 43J on an access road off Patton Road. The area around the reported location of SA 43K is presently a recreational vehicle storage yard and maintenance facility for Fort Devens Directorate of Logistics. The pumphouse associated with the historic gas station (Building T-2514) appears to still be present at the site. The yard and maintenance facility is paved and surrounded by a chain-linked fence with a locked gate located on the northeast side of the yard (Figure 6.10-1).

6.10.2 Study Area Investigation Program Summary

A field investigation was conducted at SA 43K to determine if any abandoned UST(s) were present at the site, and if any residual contamination was present in the subsurface soil. The program consisted of a surficial geophysical survey, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring to collect subsurface soil samples for laboratory analysis.

The geophysical survey at SA 43K consisted of a metal detector and GPR survey (Figure 6.10-2).

Ten TerraProbe points were advanced to the water table and a single subsurface soil sample was collected from each point. All of the subsurface soil samples collected with the TerraProbe unit were analyzed in the field for BTEX compounds and TPHC (see Figure 6.10-2).

One soil boring (43K-92-01X) was drilled to the water table and a single soil sample was collected to confirm the field screening results. This soil sample was

ABB Environmental Services, Inc.

W0099521-M80

collected from the water table (5 feet) and was analyzed in the laboratory for VOCs, TPHC, and lead (see Figure 6.10-2).

6.10.3 Field Investigation Results and Observations

The soil below SA 43K consists of a sandy silt with gravel. Groundwater was encountered at 5 feet bgs. Bedrock was not encountered in this boring.

The results of the geophysical survey at SA 43K indicated that one abandoned UST was present at the site (see Figure 6.10-2). The results of the geophysical surveys are presented in Appendix L.

The abandoned UST was added to the installation's UST removal program and on September 3, 1992 ATEC removed a 5,000 gallon UST from SA 43K. At the time of the removal, the tank was full of gasoline and water (ATEC, 1992j). The UST was half submerged in the groundwater, which was observed at approximately 5 feet in the excavation. Visually contaminated soil and groundwater were observed at and above the water in the excavation. ATEC performed field screening on eight soil samples (SS-1 through SS-8) collected from the excavation at 5 to 6 feet bgs (Figure 6.10-3). VOC concentrations (measured by PID in soil headspace) ranged from 0.5 to 190 ppm, and TPHC levels, measured on a NDIR, were from 22.1 to 88.7 ppm (ATEC, 1992j). Based on these results, ATEC removed more soil from the excavation and collected four additional soil samples (LRS-1 through LRS-4). VOCs ranged from 1 to 4 ppm in the soil headspace and TPHC concentrations (measured in the laboratory) ranged from 15 ppm to 58 ppm. The 58 ppm of TPHC was found in the southeast corner of the excavation. No VOCs were detected in the one soil sample (LRS-3) analyzed in the laboratory for VOCs. One groundwater sample (LWS-1) was collected from the excavation and analyzed in the laboratory for TPHC only (see Figure 6.10-3). A concentration of 22 mg/L of TPHC was detected in LWS-1 (Table 6.10-1). Due to these results, ATEC lined the southeast corner of the excavation with polyethylene sheeting and backfilled the entire excavation with clean fill. Based on the results of the ATEC field screening, this UST removal was classified as a successful UST removal and no further soil removal or remediation was conducted.

To determine whether contamination had migrated laterally along the water table, soil samples were collected at ten TerraProbe points around the excavation at

ABB Environmental Services, Inc.

W0099521_M80

SA 43K (see Figure 6.10-2). The results of the field analyses indicated that no BTEX or TPHC was present in the subsurface soil samples around the excavation (Table 6.10-2; Figure 6.10-4).

One soil boring (43K-92-01X) was drilled to the water table to confirm the field screening results. No VOCs or TPHC were detected in the sample collected from the water table, and lead was present below established Fort Devens background concentrations (Table 6.10-3; Figure 6.10-5).

6.10.4 Preliminary Human Health Risk Evaluation

A 5,000-gallon UST was discovered by ABB-ES and removed by ATEC during the SI field program. It should be noted that groundwater was encountered at 6 feet bgs. Prior to backfilling, ATEC collected 8 soil samples from the excavation walls which were screened for TPHC by the NDIR method. TPHC levels ranged from 22 ppm to a maximum value of 89 ppm in the tank wall samples. Laboratory results of confirmatory soil samples showed concentrations of TPHC ranging from 15 ppm to 58 ppm. The excavation was backfilled by ATEC and ABB-ES conducted follow-up SI activity.

Field analysis of 11 TerraProbe soil samples immediately below the water table revealed no measurable concentrations of BTEX to a depth of 9-feet. TPHC was not detected above the method detection limit in any of 8 samples analyzed. A soil sample from a confirmatory boring 43K-92-01X showed no evidence of residual TPHC contamination at 5 feet bgs.

These results indicate that little residual contamination exists at SA 43K in the saturated zone from petroleum products. Comparing all the results against available risk-based commercial/industrial concentration values indicates that there should be no significant risk to public health from soil contamination at SA 43K.

6.10.5 Conclusions and Recommendations

Based on the results of the field and laboratory analysis conducted by ATEC and ABB-ES, it appears that the contamination detected during the UST removal at SA 43K was removed by ATEC during the remediation phase of the UST removal. No further action is recommended for this historic gas station.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.10-1 ATEC/ABB-ES FIELD SCREENING RESULTS SA 43K - HISTORIC GAS STATIONS

SAMPLE NO.	FIELD SCI	REENING	LABOR	ATORY
	PID (ppm)	NDIR (ppm)	VOC (ppm)	TPHC (ppm)
SS-1	5.0	88.7	N/A	N/A
SS-2	30,0	36.2	N/A	N/A
SS-3	0.5	44.7	N/A	N/A
SS-4	5.0	22.1	N/A	N/A
SS-5	50.0	26.9	N/A	N/A
SS-6	190.0	32.5	N/A	N/A
SS-7	60.0	43.4	N/A	N/A
SS-8	50.0	22.2	N/A	N/A
LRS-1	1.0	N/A	N/A	ND
LRS-2	1,3	N/A	N/A	58
LRS-3	4.0	N/A	ND	15
LRS-4	1.1	N/A	N/A	18
LWS-1	N/A	N/A	N/A	22

10

SITE INVESTIGATION REPORT FORT DEVENS, MA

NOTES:

SS = ATEC FIELD SCREENING SOIL SAMPLE

LRS = POST-REMEDIATION LABORATORY SOIL SAMPLE

LWS = ATEC LABORATORY WATER SAMPLE (FROM THE EXCAVATION)

ppm = PARTS PER MILLION ND = Non-detect

N/A = Not applicable

TABLE 6.10-2 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE K

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	TPH ppm	TOTAL BTEX ppb	BEN*	TOL*	E-BEN*	M/P XYL** pph	O-XYL* ppb	COMMENTS
43TSEOLXX6DLXF	43K	SOIL	TP-01	6	NR	0	ND	ND	ND	ND	ND	
43TSK02XX901XF	43K	SOIL	TP-02	9.	< 55	0	ND	ND	ND	ND	ND	
43TSK03XX901XF	43K	SOIL	TP-05	9	< 55	Ó	ND	ND	ND	ND	ND	
43TSK04XX901XF	43K	SOIL	TP-04	9	< 55	0	ND	ND	ND	ND	ND	
43TSK05XX601XF	43K	SOIL	TP-05	6	NR	0	ND	ND	ND	ND	ND	
43TSK06XX901XF	43K	SOIL	TP-06	g	< 55	Ø	ND	ND	ND	ND	ND	
43TSR07XX901XF	43K	SOIL.	TP-07	ą	< 55	Ø	ND	ND	ND	ND	ND	
43TSK08XX601XF	43K	SOIL	TP-08	б	NR.	0	ND	ND	ND	ND	ND	
43TSK08XX901XF	43K	SOIL	TP-08	9	< 55	0	ND	ND	ND	ND	ND	
43T5K09XX901XF	43K	SOIL	TP-09	9	< 55	Ó	ND	ND	ND	ND	ND	*** PHC's Detected
43 TSK 10XX901XF	43K	SOIL.	TP-10	9	< 55	D	ND.	ND	ND	ND	ND	

NOTES:

* = ND denotes a non-dotect or concentration below 5 ppb-

** = ND denotes a non detect or concentration below 10 ppb

*** = Detection of Noncalibrated Petroleum Hydrocarbon Peaks

= Study Area

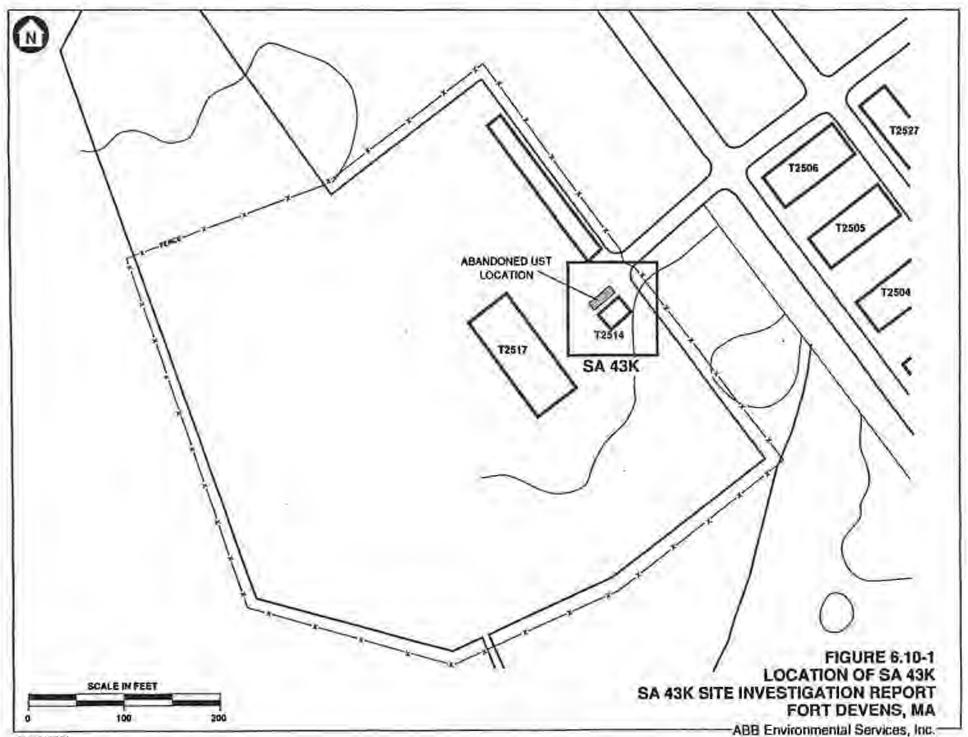
NR = Not requested

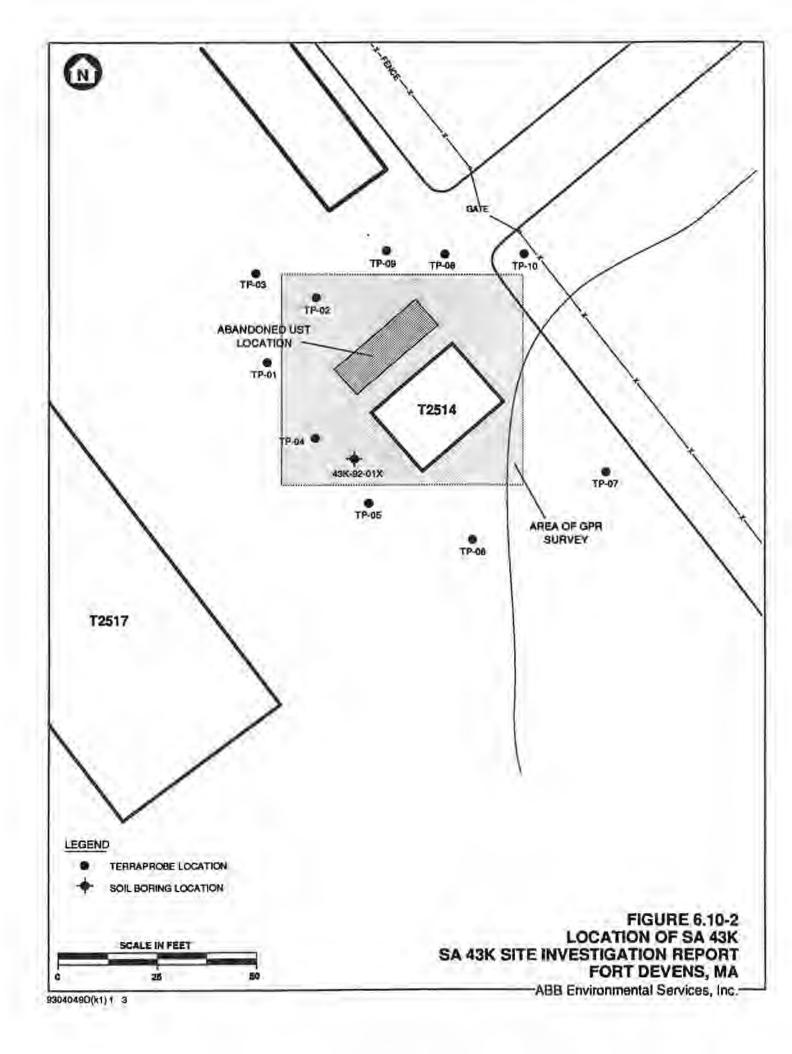
TABLE 6.10-3 INORGANIC AND ORGANIC COMPOUNDS IN SOIL SA 43K - HISTORIC GAS STATIONS

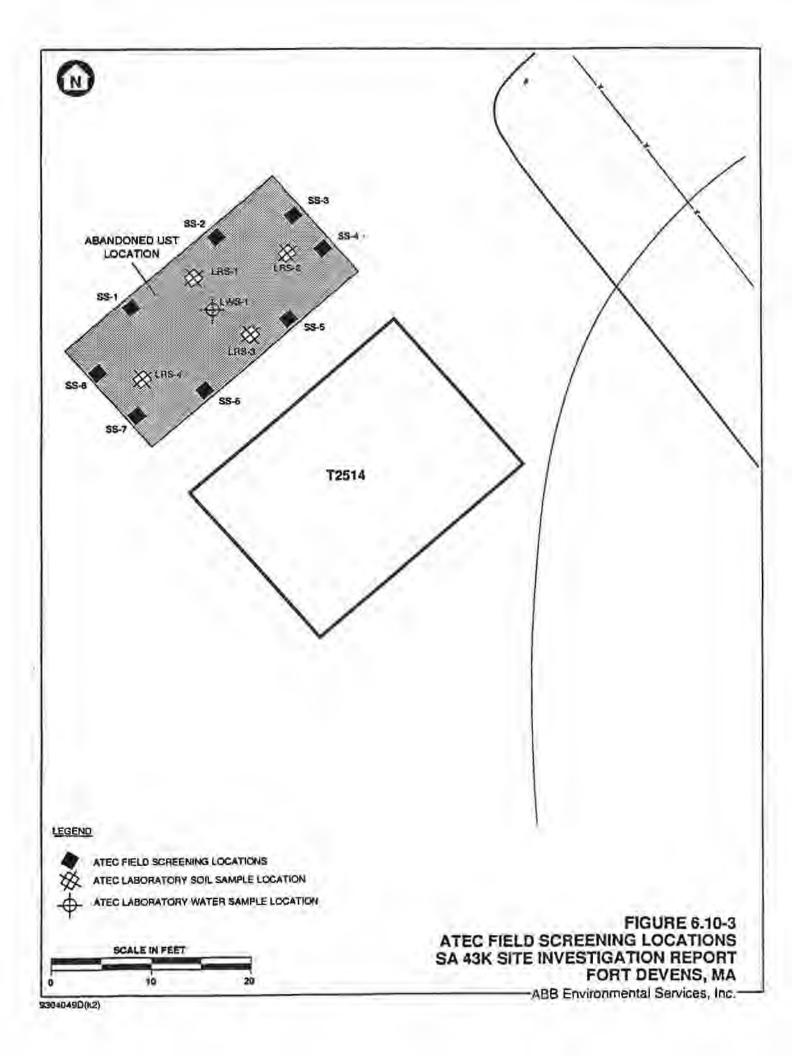
SITE INVESTIGATION REPORT FORT DEVENS, MA

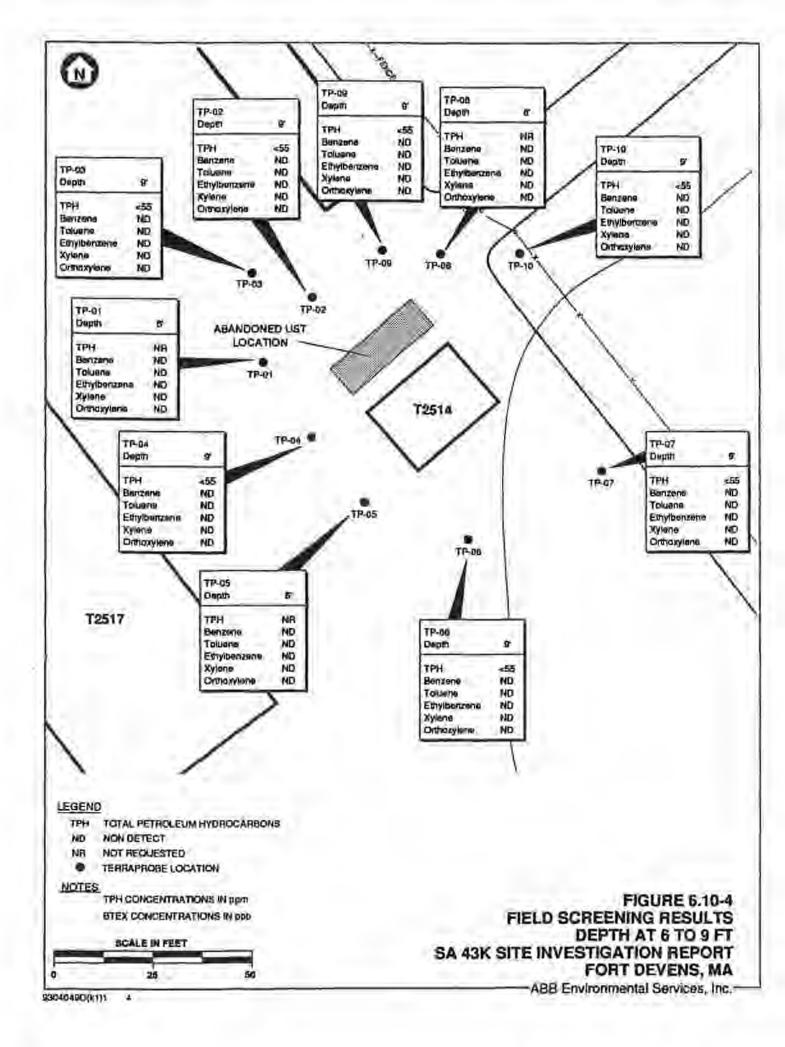
	BACK -	BORING	43K-92-01X	
ANALYTE	GROUND	DEPTH	5	
ORGANICS (ug/g)				
ACEIONE		-	0.031	
INORGANICS (ug/g)				
LEAD	48.4		11.4	
OTHER (ug/g)				
TOTAL ORGANIC CARBON			NA	
TOTAL PETROLEUM HYDROCARBO	NS		< 27.9	

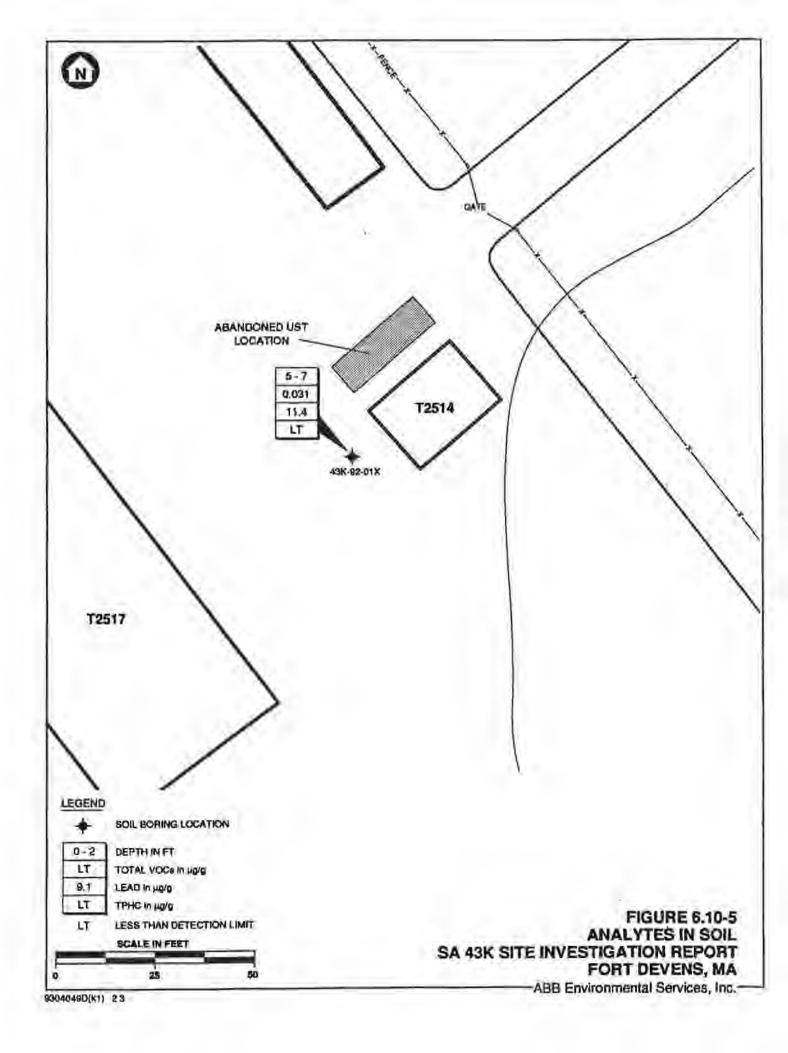
1


NOTES:


TABLE LISTS DETECTED ANALYTES ONLY -


SEE PROJECT ANALYTE LIST FOR SUMMARY


< = LESS THAN DETECTION LIMIT SHOWN


NA = NOT ANALYZED

6.11 STUDY AREA 43L

6.11.1 Study Area Background and Conditions

SA 43L was located on the corner of Lake George Street and Hattonsville Road adjacent to Building T-2601, in the southwestern portion of the Main Post (Figure 6.11-1).

The structures of the historic gas station at SA 43L consisted of a pump island and a small gasoline pumphouse. The station was a Type B stations which had two USTs (5,000 gallon or 5,140 gallon), located on each side of the pump island and oriented parallel to it. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool, however, it did appear that the USTs were not removed. The area around the former location of SA 43L is presently used as a storage yard for military vehicles and Building T-2601 appears to be a maintenance facility for the vehicles stored in the yard. The pumphouse associated with the historic gas station (Building P-179) is still present at the site. The yard and maintenance facility is paved and surrounded by a chain-linked fence with a locked gate located on the northern side of the yard (see Figure 6.11-1).

Kurz Associates (Kurz) conducted an investigation of the subsurface soil at SA 43L as part of a UST removal program at Fort Devens in November and December 1989 (Kurz Associates, 1991). Kurz found that both of the USTs were present at the site during the 1989 field program.

The two historic gas station USTs were removed. These USTs (referred to as tanks #5 and #6 [Kurz Associates, 1991]) were inspected after removal, and observed to be in good condition with no evidence of holes or pitting. The headspace of nine soil samples, from each excavation, were screened for total VOC with a PID. Total VOCs ranged from 0.4 ppm to 6.8 ppm. Four composite soil samples from the excavations were analyzed for TPHC, and concentrations ranged from 57 to 108 ppm.

The USTs at SA 43L were originally used for gasoline storage. During excavation, tanks #5 contained a mixture of water and what appeared to be fuel

ABB Environmental Services, Inc.

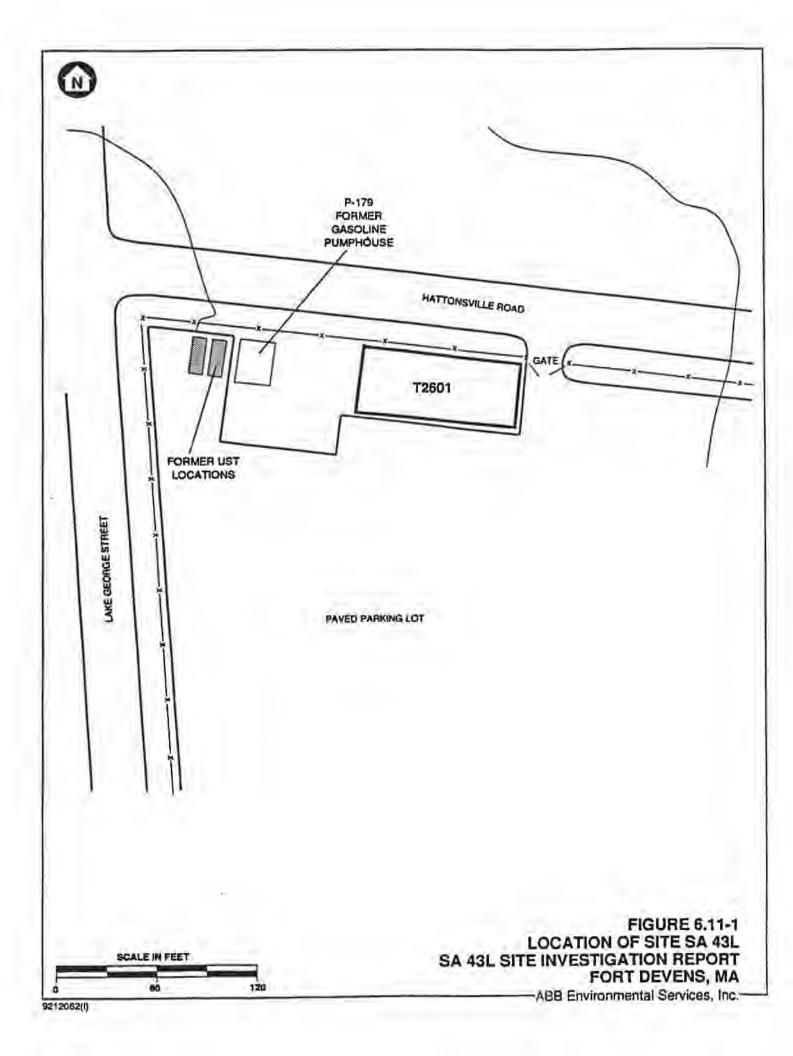
W0099521_M80

oil, and tanks #6 contained a mixture of what appeared to be water and mogas (gasoline) (Kurz Associates, 1991).

After assessing the distribution and migration potential of the contaminants at this site, it was concluded by Fort Devens personnel that groundwater was not being impacted and that site conditions, at the time, posed no significant risk to potential receptors.

Based on this assessment, the excavations were backfilled and no additional investigation was conducted.

6.11.2 Study Area Investigation Program Summary


Based on the recommendations from the Kurz report, ABB-ES did not conduct a site investigation at SA 43L during the 1992 SI field program.

6.11.3 Conclusions and Recommendations

ABB-ES used the results of previous field investigations at SA 43L to determine if the former historic gas station activities had adversely impacted the soil or groundwater quality in the area around the study area. Based on the results of the work by Kurz Associates, it does not appear that the past activities at SA 43L have impacted the soil quality in the vicinity of the former UST location. Therefore, no further action is recommended at this historic gas station.

ABB Environmental Services, Inc.

W0099521.M80

6.12 STUDY AREA 43M

6.12.1 Study Area Background and Conditions

SA 43M is located on the west side of Lake George Street adjacent to Building 2613 (Figure 6.12-1).

The structures of the historic gas station at SA 43M consisted of a pump island and a small gasoline pumphouse. The station was a Type B station which had two USTs (5,000 gallon or 5,140 gallon), located on each side of the pump island and oriented parallel to it. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool, however, it did appear that the USTs were not removed. The area around the reported location of SA 43M is presently used as a storage yard for installation contractors. The pumphouse associated with the historic gas station (Building P-180) is still present at the site. The yard is paved and surrounded by a chain-linked fence with a locked gate located on the eastern side of the yard (see Figure 6,12-1).

Kurz conducted an investigation of the subsurface soil at SA 43M, as part of a UST removal program at Fort Devens in November and December 1989 (Kurz Associates, 1991). Kurz found that both of the USTs were present at the site during the 1989 field program.

The two USTs were removed. These USTs (referred to as tanks #7 and #8 [Kurz Associates, 1991]) were inspected after removal, and were observed to be in good condition with no evidence of holes or pitting. The headspace of nine soil samples from each excavation were screened for total VOCs with a PID, and the total VOC concentrations ranged from 1.0 to 7.4 ppm. Four composite soil samples were collected from the excavations for TPHC analysis. The concentrations ranged from 73 ppm to 101 ppm.

The USTs at SA 43M were originally used for gasoline storage. During excavation, tank #8 contained a mixture of water and what appeared to be fuel oil, and tank #7 contained a mixture of what appeared to be water and mogas (gasoline) (Kurz Associates, 1991).

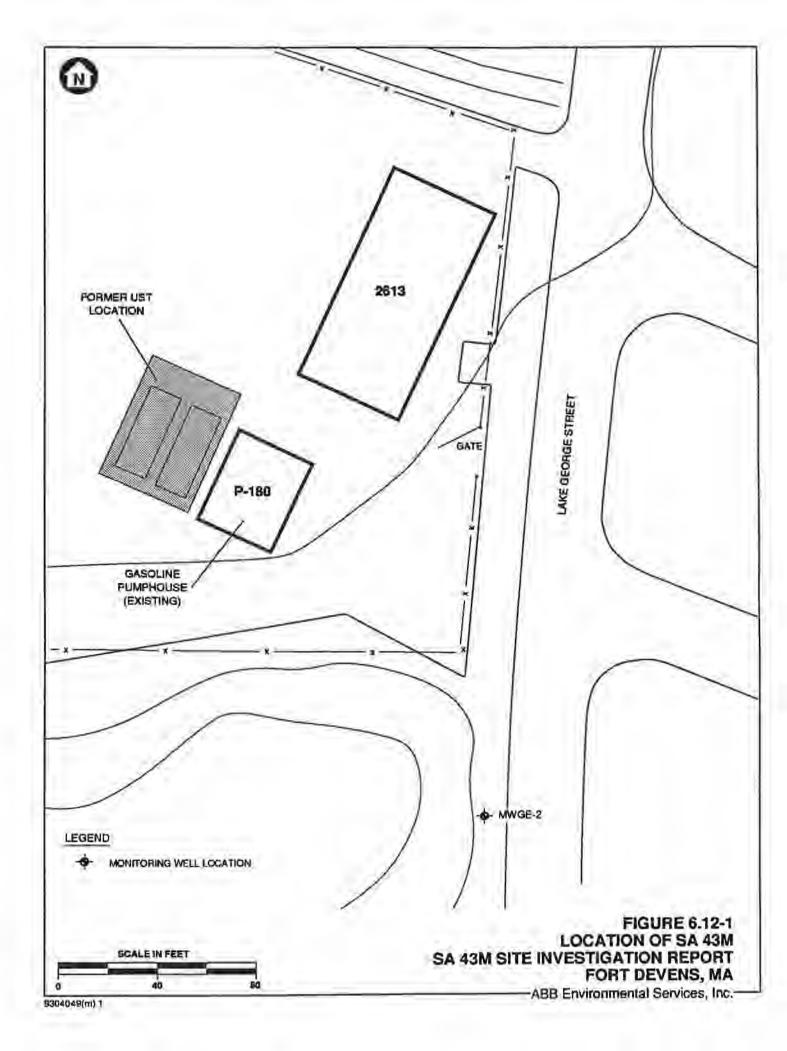
ABB Environmental Services, Inc.

W0099521.M80

After assessing the distribution and migration potential of the contaminants at both stations, it was concluded by Fort Devens personnel that groundwater was not being impacted by the concentration detected and that current site conditions pose no significant risk to potential receptors.

Based on this assessment, the excavations were backfilled and no additional investigation was conducted.

6.12.2 Study Area Investigation Program Summary


Based on the recommendations from the Kurz report, ABB-ES did not conduct a site investigation at SA 43M during the 1992 SI field program.

6.12.3 Conclusions and Recommendations

ABB-ES used the results of previous field investigations at SA 43M to determine if the former historic gas station activities had adversely impacted the soil or groundwater quality in the area around the study area. Based on the results of the work by Kurz Associates, it does not appear that the past activities at SA 43M have impacted the soil quality in the vicinity of the former UST location. Therefore, no further action is recommended at this historic gas station.

ABB Environmental Services, Inc.

W0099521.M80

6.13 STUDY AREA 43N

6.13.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43N consisted of a pump island and a small gasoline pumphouse. The gas station was a Type A station which had one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. This historic gas station was reportedly located on the eastern side of SA 45 which is located on Lake George Street on the western side of the Main Post (Figure 6.13-1). The wash rack associated with SA 45 was built approximately 30 years after this historic gas station was decommissioned. The two sites appear unrelated.

6.13.2 Site Investigation Program Summary

The SI at SA 43N was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). A field investigation was conducted at SA 43N to determine if any abandoned UST(s) were present at the site, and if residual contamination was present in the subsurface soil. The program consisted of a surficial geophysical survey, subsurface soil sampling using ABB-ES' TerraProbe unit, field analysis of the subsurface soil samples, and one soil boring to collect subsurface soil samples for off-site laboratory analysis. Table 6.13-1 summarizes the activities completed during the SI.

A geophysical investigation, consisting of a metal detector and GPR surveys, was conducted at SA 43N to determine the presence or absence of an abandoned UST (Figure 6.13-2).

A total of 10 TerraProbe points were advanced to 9 feet to 12 feet bgs to determine if residual soil contamination was present at this site (see Figure 6.13-2). The subsurface soil samples collected from these TerraProbe points were analyzed in the field for BTEX and TPHC.

ABB Environmental Services, Inc.

W0099521.M80

One soil boring (43N-92-01X) was drilled to the water table to collect subsurface soil samples for laboratory analysis (see Figure 6.13-2). One soil sample was collected from the water table and submitted for off-site laboratory analysis for PAL VOCs, TPHC, and lead.

6.13.2 Supplemental Site Investigation Program Summary

The SSI at SA 43N was performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The following sections describe the field activities completed at this historic gas station during the SSI. Table 6.13-1 summarizes the activities completed during the SS1.

The SSI at SA 43N focuses on determining if the TPHC contamination detected during the SI had impacted the groundwater quality at the site.

Four groundwater monitoring wells were installed to monitor upgradient and downgradient groundwater quality (Figure 6.9-3). Soil samples were collected from the top of bedrock in each of the monitoring well borings because the water table was encountered in the bedrock at this site. The soil samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, lead, TPHC, and TOC. The screen of each monitoring well was placed so that it intercepted the water table to monitor for free product and allow for seasonal groundwater fluctuations. The water table was encountered approximately 2 feet below the top of bedrock in each of the monitoring well borings. The well screen in each of the monitoring wells was placed in the bedrock, and three of the well screens (XNM-93-02X through XNM-93-04X) were placed across the bedrock/soil interface. Table 6.9-2 summarizes the monitoring well construction at SA 43N and monitoring well construction details are presented in Appendix C.

Two rounds (Round Three and Four) of groundwater samples were collected during the SS1. Round Three groundwater samples were collected in October 1993 and Round Four was collected in January 1994. These samples were submitted for laboratory analysis consisting of PAL VOCs, SVOCs, lead (both filtered and unfiltered), TPHC, and TSS.

ABB Environmental Services, Inc.

W0099521.M80

7(153-15

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test.

6.13.3 Field Investigation Results and Observations

The geophysical surveys conducted at this site during the SI determined that one abandoned UST was present. This UST was added to the installation's UST removal program and on June 23 and 24, 1992 one 5,000 gallon UST was removed by ATEC. At the time of removal the tank contained fuel and sludge (ATEC, 1992k). No obviously contaminated soil was observed after the UST was removed, and no groundwater was noted in the excavation. ATEC performed field screening on eight soil samples (SS-1 through SS-8) collected from the excavation at 4 to 6 feet (Table 6.13-3; Figure 6.13-4). VOC concentrations (measured by PID in soil headspace) ranged from 0.8 to 56 ppm, and TPHC concentrations measured in the field on an NDIR unit, ranged from 28.8 to 99.9 ppm (ATEC, 1992k). TPHC concentrations in two confirmatory soil samples collected by ATEC for laboratory analysis (LSS-1 and LSS-2) were 11 ppm and 13 ppm, respectively. ABB-ES collected one composite soil sample (XNE-92-01X) from the bottom of the excavation and submitted it for laboratory analysis. This sample was analyzed at ABB-ES' Wakefield, Massachusetts laboratory for TPHC using USEPA Method 418.1. The TPHC concentration was detected at 136 ppm in this soil sample (see Table 6.13-3). Based on the results of ATEC's sampling and screening. ATEC backfilled the excavation (ATEC, 1992k). However, the results of the sample collected by ABB-ES indicated that TPHC concentrations were above 100 ppm. Because of this, additional explorations were conducted to confirm the nature and distribution of the fuel-related contamination detected.

The soil encountered at SA 43N consisted of a gravelly sand/sandy gravel (fill) underlain by a sandy silt with fine gravel (glacial till). The depth to bedrock was approximately 11 to 13 feet bgs. The bedrock encountered at this site was classified as a metasiltstone or phyllite (Table 6.13-4). Soil boring logs for SI and SS1 borings are presented in Appendix B.

The calculated hydraulic conductivities in the bedrock monitoring wells ranged from 1.0E⁻⁰⁹ cm/sec. at XNM-93-03X to 3.3E⁻⁰⁹ at XNM-93-04X. The results of

ABB Environmental Services, Inc.

W0099521.M80

the hydraulic conductivity test are presented in Table 6.13-5. Hydraulic conductivity results are presented in Appendix A.

The monitoring wells at SA 43N were included in the November 8, 1993 synoptic water-level round at Fort Devens. The results of that round are presented in Table 6.13-5. The inferred groundwater flow appears to be moving to the north-northwest (Figure 6.13-5). A summation of the synoptic water level rounds for SA 43N are presented in Appendix I. All SSI exploration locations were surveyed.

6.13.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.13.4.1 Soil. After the historic gas station UST excavation was backfilled, ABB-ES advanced 10 TerraProbe borings at SA 43N (see Figure 6.13-2), and ten soil samples were collected from 9 feet to 12 feet bgs (below the bottom of the fill). No BTEX compounds were detected in any of the samples collected, but TPHC was detected in TP-01 at 210 ppm, TP-02 at 380 ppm, and TP-03 at 91 ppm (Table 6.13-6; Figure 6.13-6).

Based on these results, soil boring 43N-92-01X was drilled to the water table during the SI, through the backfilled UST excavation to confirm the results of the field analysis and collect subsurface soil samples. One soil sample from 12 feet to 14 feet was collected. No VOCs were detected, but TPHC was present in this sample at 258 ppm. Lead was detected below the Fort Devens background concentration in each sample (Table 6.13-7; Figure 6.13-7).

One subsurface soil sample was collected during the SSI for off-site laboratory analysis from the top of bedrock at three of the four monitoring well boring locations (XNM-93-01X, XNM-93-03X and XNM-93-04X). A subsurface soil was not collected from the top of bedrock at XNM-93-02X because of insufficient soil sample volumes in the split-spoon sampler at the time of drilling. The soil samples were collected from the top of bedrock because the water table was encountered below the bedrock surface. No VOCs were detected and the only SVOC detected was di-n-butyl phthalate (a common laboratory contaminant). Lead concentrations were below the Fort Devens background but highest in XNM-93-04X. TPHC was detected in the soil sample from XNM-93-04X, only, at 215 μ g/g (see Table 6.13-7; Figure 6.13-7).

ABB Environmental Services, Inc.

W0099521.M80

6.13.4.2 Groundwater. Round Three and Four groundwater samples were collected from the four monitoring wells (XNM-93-01X through XNM-93-04X) installed during the SSI. Toluene was detected at 0.84 µg/L in XNM-93-04X in the Round Three sample but not in the Round Four sample. Phenanthrene was detected at 0.59 μ g/L in the Round Three sample and at 1.2 μ g/L in the Round Four sample at XNM-93-03X. No other VOCs or SVOCs were detected in the samples collected. TPHC was not detected in any of the Round Three samples but was detected in the Round Four sample collected from XNM-93-04X at 580 µg/L. Lead was detected above the Fort Devens background concentration in the unfiltered sample collected from one of the four samples collected during Round Three, however, lead was not detected above the detection limit in any of the Round Three filtered samples. Lead was not detected above the Fort Devens background concentration in the filtered samples collected during Round Four. However, lead was detected above the Fort Devens background concentration in the unfiltered groundwater sample collected from XNM-93-01X (Table 6.13-8; Figure 6.13-8).

6.13.5 Source Evaluation and Migration Potential

TPHC was detected in the soil samples collected from the top of bedrock in several field analytical samples collected during the SI and one of the four monitoring well borings (XNM-93-04X) completed during the SSI. Toluene, phenanthrene, and TPHC were also detected in groundwater samples collected during the SSI. Based on the results of the SSI, it appear that the past activities at historic gas station N have impacted the groundwater quality at the site but the concentrations detected are below applicable human health risk guidelines.

6.13.6 Preliminary Human Health Risk Evaluation

During the SI, both TerraProbe samples and a confirmatory soil boring were analyzed. The results are displayed and discussed in the SI Report. Based on a comparison of the results with available risk-based commercial/industrial concentration values, it was concluded that there should be no significant risk to public health from soil contamination at SA 43N. Soil samples collected during the SSI were from the monitoring well borings and are not appropriate to use to characterize the soil at the site because the monitoring wells are not located within the source area.

ABB Environmental Services, Inc.

W0099521.M80

6-84

Table 6.13-8 presents summary data based on unfiltered groundwater samples collected during the SSI from SA 43N along with drinking water standards/guidelines for comparison. The organics detected were phenanthrene and toluene as well as TPHC. The single detection of toluene did not exceed the federal MCL. No federal standard or guideline is available for phenanthrene. The maximum concentration of TPHC did not exceed the MCP GW-1 standard of 1,000 μ g/L (Table 6.13-9).

Lead was the only inorganic analyzed for and was detected in four of eight samples. The maximum concentration of lead did not exceed the USEPA action level.

Based on this screening, it does not appear that groundwater poses a potential risk to human health.

6.13.7 Conclusions and Recommendations

Based on the results of the SI and SSI and the findings of the human health PRE, NFA is recommended for SA 43N.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.13-1 SUMMARY OF TECHNICAL APPROACH SA 43N - HISTORIC GAS STATION N

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITY	PURPOSE	SITE IDENTIFICATION	RATIONALE FOR SELECTED LOCATIONS
SI FROGRAM TERRAPROBE	CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	119-01 THRU 119-10	• IN AND AROUND FORMER HGS UST
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	43N-92-01X	* ADJACENT TO TERRAPROBE "HOT SPOT"
SI PROGRAM SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 INSTALL MONITORING WELLS CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS 	XNM-93-01X XNM-93-02X XNM-93-03X XNM-93-04X	• UPGRADIENT • DOWNGRADIENT
MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING	MONITOR GROUNDWATER LEVELS MONITOR GROUNDWATER QUALITY DETERMINE AQUIFER CONDUCTIVITIES	XNM-93-01X XNM-93-02X XNM-93-03X XNM-93-04X	UPGRADIENT DOWNGRADIENT

TABLE 6.13-2 MONITORING WELL COMPLETION DETAILS SA 43N - HISTORIC GAS STATION N

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL IDENTIFICATION	SOIL DRILLING METHOD	BEDROCK DRILLING MEHTOD	MEDIA SCREENED	WELL SCREEN DEPTH (Feet bgs)	WELL SCREEN ELEVATION (Feet NGVD)	COMPLETION DEPTH (Feet bgs)	CONSTRUCTION
XNM-93-01X	NA	ROCK CORE	BEDROCK	13.2 - 23.2	324.1 - 314.1	23.5	ID PVC
XNM-93-02X	NA	ROCK CORE	BEDROCK	14.5 - 24.5	319.4 - 309.4	24.5	# ID PVC
XNM-93-03X	NA	ROCK CORE	BEDROCK	10.0 - 20,0	3324.4 ~ 314.4	22.5	4" ID PVC
XNM-93-04X	NA	ROCK CORE	BEDROCK	10.5 - 20.5	3224 - 312.4	20.5	4" 1D PVC

NA=Not Applicable

TABLE 6.13-3 ATEC FIELD SCREENING/LABORATORY RESULTS SA 43N

SAMPLE NO.	FIELD SO	LABORATORY	
	PID (ppm)	NDIR (ppm)	TPHC (ppm)
\$S-1	56.0	37.5	N/A
SS-2	7.2	49.7	N/A
SS-3	39.0	61.1	N/A
SS-4	0.8	99.9	N/A
SS-5	2.5	83.2	N/A
SS-6	15.4	55.6	N/A
SS-7	7.8	45.7	N/A
SS8	27	30	N/A
SS-9	3.6	28.8	N/A
SS-10	28.0	29.3	N/A
LSS-1	N/A	N/A	11
LSS-2	N/A	N/A	13
XNE-92-01X	N/A	N/A	136

SITE INVESTIGATION REPORT FORT DEVENS, MA

NOTES:

SS = ATEC Field Screening Soil Sample ISS = ATEC Laboratory Soil Sample XNE-92-01X = ABB-ES Laboratory Composite Soil Sample N/A = Not applicable

TABLE 6.13-4 SUMMARY OF SOIL BORINGS SA 43N - HISTORIC GAS STATION N

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (Feet bgs)	REFERENCE SAMPLE INTERVALS (Feel bgs)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCs BY PID (PPM)	COMMENTS
43N-92-01X	23.5	10-12	Country of the	SP	BKG	
		12-14	12-14	SW	BKG	Apparent bedrock encountered at 13.6 bgs
XNM-93-01X	23.5	0-2		SP	BKG	
		2-4		GP-SP	BRG	
		4-6		SP-GP	BKG	
		6-8		GP-SP	BKG	
		5-10	8-10	GP-SP	BKG	
		10-12		GP-SM	BKG	Ederock cored from 12.5 to 23.5-feet
XNM-93-02X	24	0-2		SW	BKG	and the second sec
A Development of the second	5-7	100 million (1990)	SW	BKG	and the second sec	
		10-11.2	10-11.2	SW	BKG	Rollerbit bedrock from 11.2 to 24-feet
XNM-93-03X	22.5	0-1		SW	BKG	and structure states of
1.1.1.1.1.1.1		2.5-4.5		SW	BKG	
		4,5-6,5		SW	BKG	
		65-85		SW	BKG	
		5.5-10.5		SW	BKG	
		10.5~12.5		GW	BKG	
and the second s		12.5-13.5	12.5-13.5	GW	BKG	Rollerbit phylite from 13.5 to 22.5-feet
XNM-93-04X	20.5	0-2		SW	BKG	
1.1		2.5-4.5		SW	BKG	
		4.5-65		SW	BKG	
		6.5-8.5		SW	BKG	
A		8.5-10.5	1.	GM	BKG	the state of the state
		10.5-12.4	10.5-124	SM	0.5	Rollerbit phylice from 12,4 to 20.5-feet

NOTES:

bgs = below ground surface

VOCs = Volatile organic compounds

USCS = Unified soil classification system

ppin = parts per million

phyl = phylite

HKG = background levels of Total VOCs were measured with a PID at the work site

TABLE 6.13-5 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 43N - HISTORIC GAS STATION N

WELL ID	ELEVATION'	DEPTH TO WATER (Feet bgs)	ELEVATION OF WATER (Feet NGVD)	CONDUCTIVITY HVORSLEV ² (cm/sec)
XNM-93-01X	339.20	13.74	325.46	2.3E-05
XNM-93-02X	336.49	16.67	319.82	8.0E-04
XNM-93-03X	336.60	16.61	319,99	1.0E-03
XNM-93-04X	332.25	10.38	321.87	3.3E-07

SITE INVESTIGATION REPORT FORT DEVENS, MA

Notes:

bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc

2 = averaged value of two tests

Groundwater elevations from November 8, 1993

synoptic water level round

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-01	TP-02	TF-03	TP-04	TP-03	TP-06	TP-07	TP-08	TP-09	TP-10
ANALYTE	TSN0109P	TSN0212F	TSN0309F	TSN0409F	TSM0509F	TSN0609F	TSN0709F	TSN0809F	TSND909F	TSN0109F
ORGANICS (ppb)	9 FT	12 FT	9 FT	9 FT	9 FT	9 FE	9 FT	9 FT	9 FT	9 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	1.0>	< 0.1	< 0,1	< 0,1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0,1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
o-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1
O'HIER (ppm)										
TOTAL PETROLEUM HYDROCARBONS	210	380	91	<52	<52	<52	<53	<53	<54	<53

Notes:

< = Less than detection limit.

NA = Not analyzed

TABLE 6.13-7 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 43N - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		SSI		SI
ANALYTE	XNM-93-01X	XNM-93-03X	XMM-93-04X	43N-92-01X
ORGANICS (og/g)	10 FT	13 FT	12 FT	12 FT
DI-N-BUTYL PHTHALATE	0.12	0.083	0.13	< 0.1
TRICHLOROFLUOROMETHANE	0.007	< 0.006	< 0.006	< 0.006
INORGANICS (ug/g)				
LEAD	5.22	9.0	9.0	9.92
OTHER (ug/g)	1			
TOTAL ORGANIC CARBON	588	2750	1240	2080
TOTAL PETROLEUM HYDROCARBONS	< 28.5	< 28.5	215	258

Notes

TABLE 6.13–8 ANALYTES IN GROUNDWATER SA 43N – HISTORIC GAS STATION N

SITE INVESTIGATION REPORT FORT DEVENS, MA

	1		XNM-9	-01X		XNM-93-02X				
ANALYTE	BACEGROUND	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 3	UNFILTERED ROUND 3	PILTERED ROUND 4	UNFILTERED ROUND 4	
ORGANICS (ug/L)										
TOLUENE		NA	< 0.5							
PHENANTHRENE	A CONTRACTOR OF A	NA	< 0.5							
INORGANICS (ug/L)				22					and second 1	
LEAD	4.25	< 1.26	4.01	< 1.26	8.03	< 1.26	< 1.26	< 1.26	< 1.26	
OTHER (ug/L)										
TOTAL PETROLEUM HYDROCARBONS		NA	< 180							
TOTAL SUSPENDED SOLIDS		NA	102000	NA	250000	NA	13000	NA	15000	

TABLE 6.13-8 ANALYTES IN GROUNDWATER SA 43N – HISTORIC GAS STATION N

SITE INVESTIGATION REPORT FORT DEVENS, MA

			XNM-92	-03X		XN M-93-04X			
ANALYTE	BACKGROUND	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4
ORGANICS (ug/L)									
TOLUENE		NA	< 0.5	NA	< 0.5	NA	0.84	NA	0.5
PHENANTHRENE		NA	0.59	NA	1.2	NA	< 0.5	NA	< 0.5
INORGANICS (ng/L)									
LEAD	4.25	< 1,26	3,15	< 1.26	< 1.26	< 1.26	< 1.26	< 1.26	4.23
OTHER (ug/L)		A CONTRACTOR OF STREET				Contract in the second		1000	
TOTAL PETROLEUM HYDROCARBONS		NA	< 180	NA	< 180	NA	< 180	NA	580
TOTAL SUSPENDED SOLIDS		NA	31000	NA		NA	17000	NA	17000

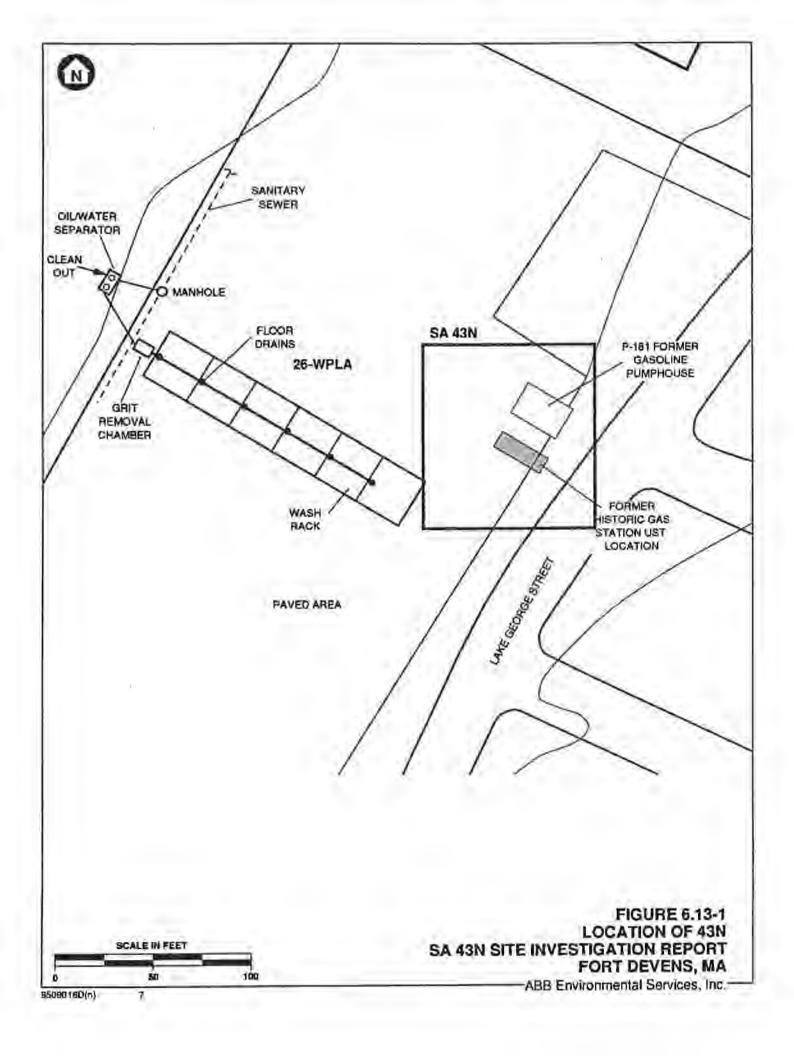
TABLE 6.13-9 HUMAN HEALTH PRELIMINARY RISK EVALUATION OF GROUNDWATER SA 43N - HISTORIC GAS STATIONS

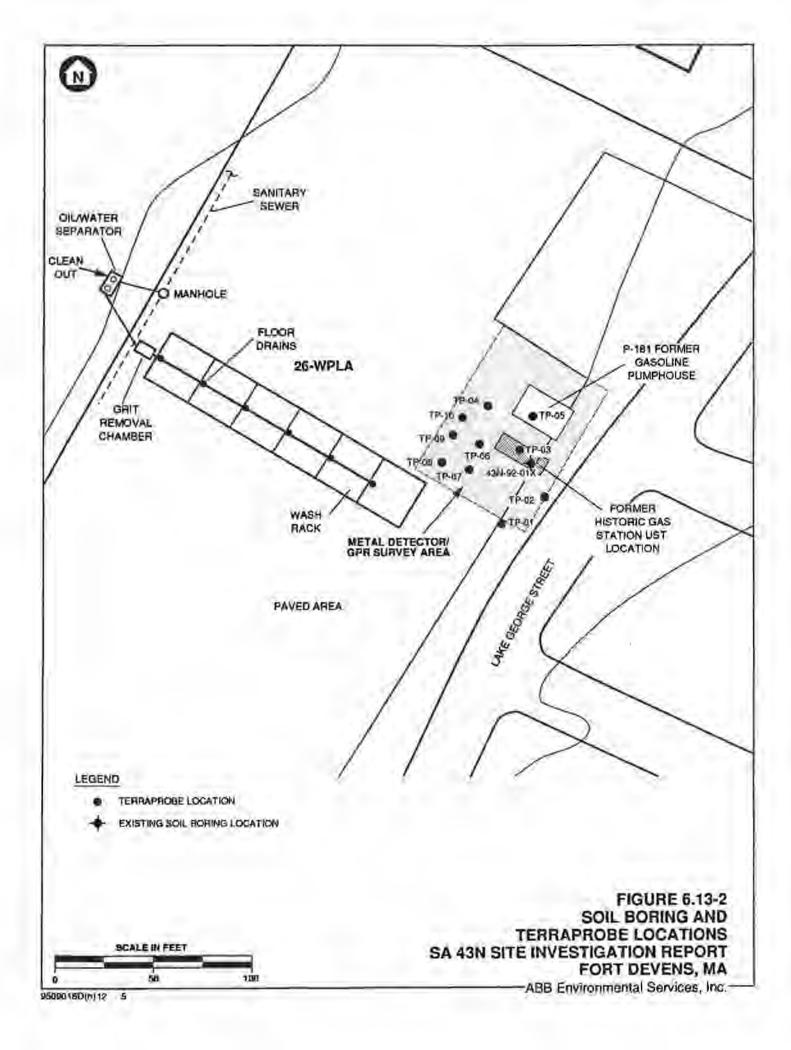
SITE INVESTIGATION REPORT FORT DEVENS, MA

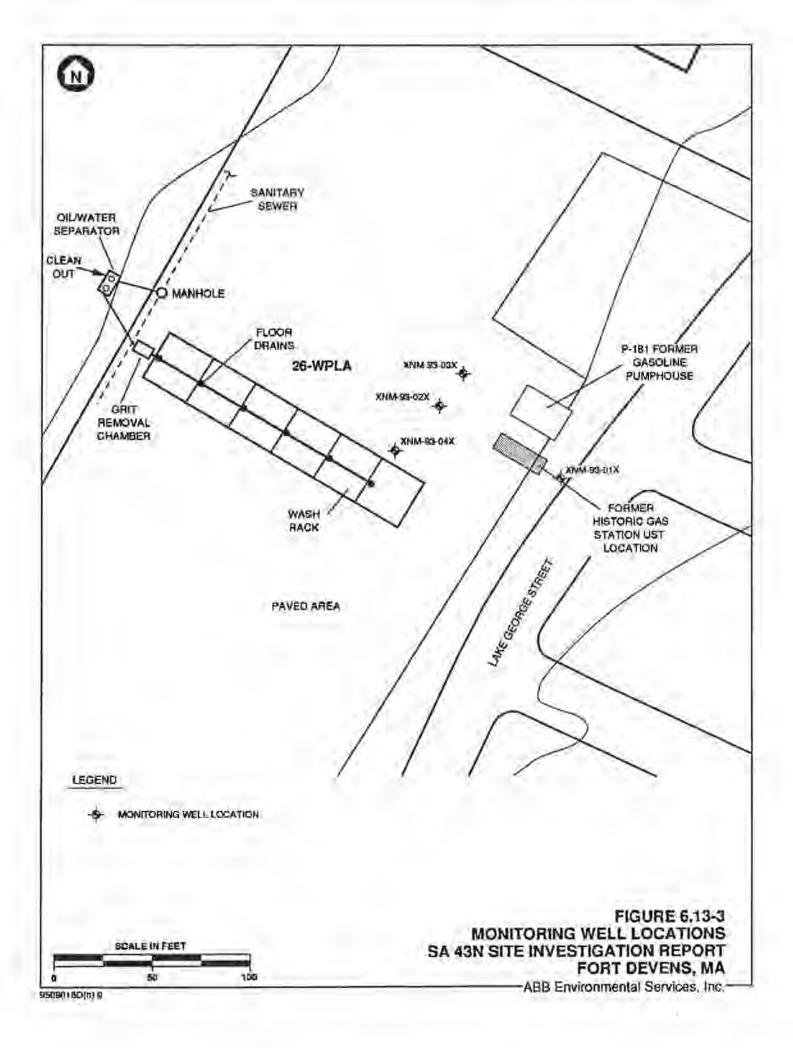
ANALYTE		FREQUENCY			GROUNDWATER BACKGROUND	MAXIMUM	DRINKING WATER STANDARD/	MAXIMUM ENCREDS STANDARD/ GUIDELINE 7
		OF	AVERAGE MAXIMUS (ug/L) (ug/L)		CONCENTRATION (ug/L)	EXCREDS BACEGROUND 7	GUIDELINE [6] (eg/L)	
ORGANICS								
PHENANTHRENE		2/8	0.89	12	NA		NA	100 C
TOLUENE		1/8	0.84	0.84	NA	~	1000	NO
TOTAL PETROLE	UM HYDROCARBON	1/8	580	58	NA		1000	NO
INORGANICS								
LEAD		4/8	4.85	\$.03	4.25	YES	15	NO

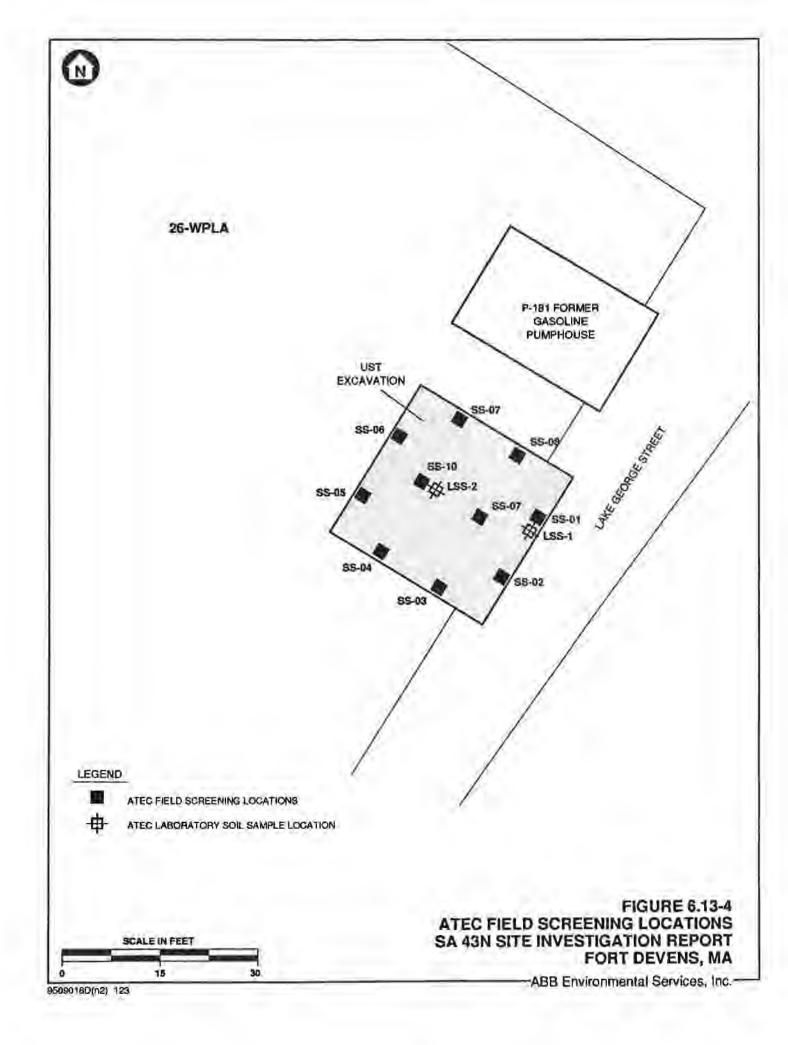
Notes:

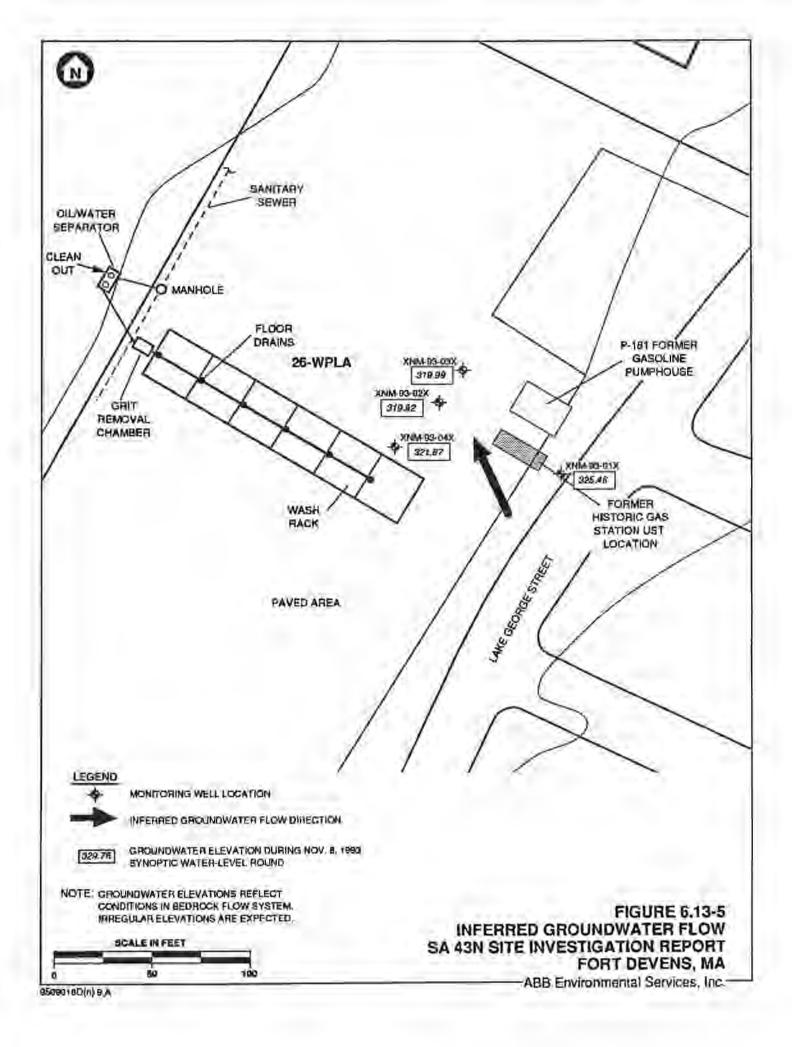
[a] Groundwater based on unfiltered samples from XNM-93-01X to XNM-93-04X.

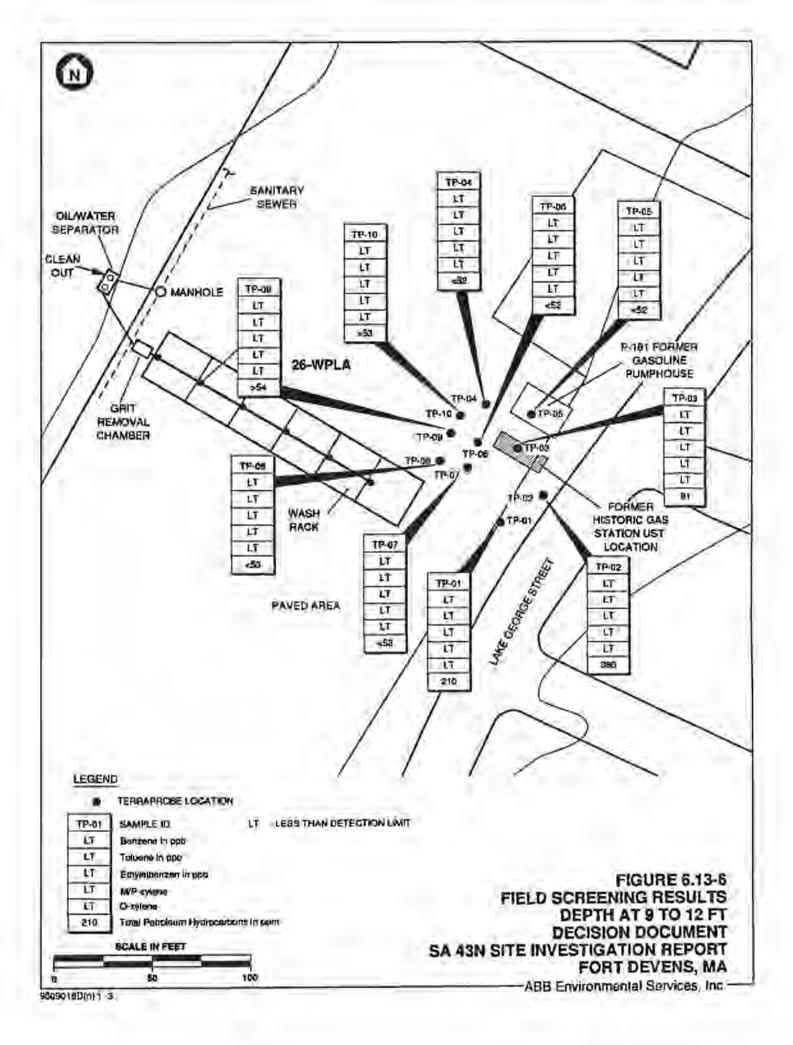

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal standard or guideline is available, the Region III tap water concentration.

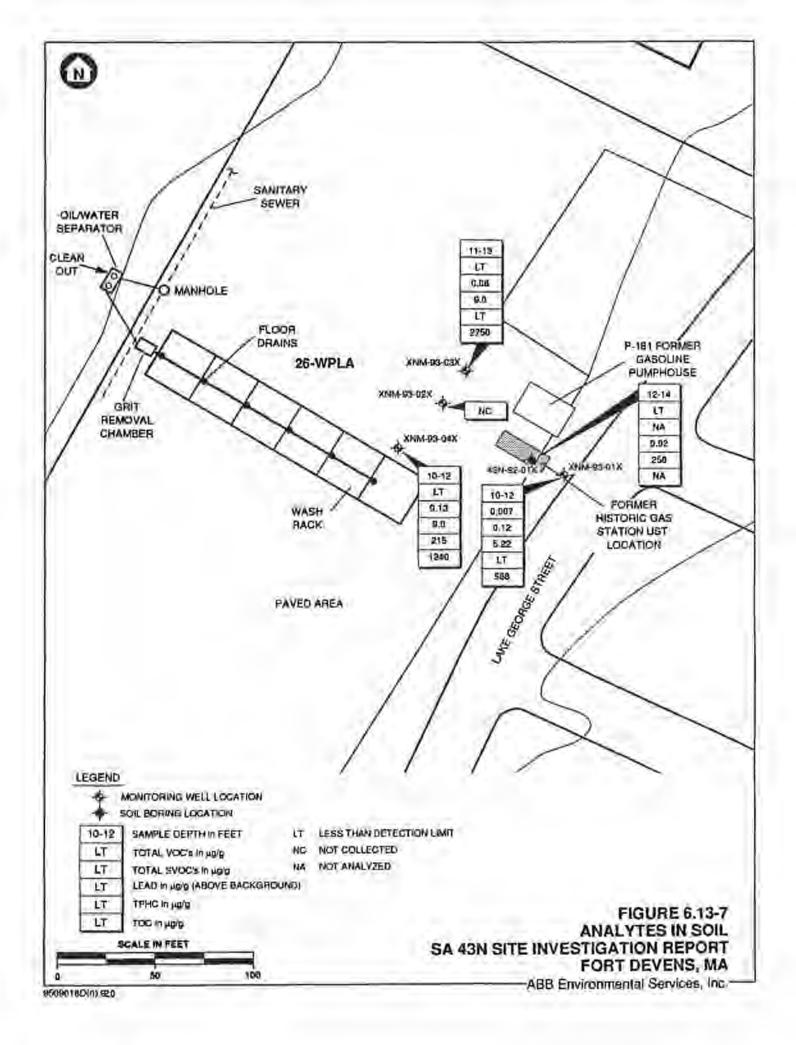

NA = not available


ug/L = micrograms per liter


- = not applicable


Shaded compounds exceed standard or guideline.





6.14 STUDY AREA 430

6.14.1 Study Area Background and Conditions

The structure of the historic gas station located at SA 43O consisted of a pump island and a small gasoline pumphouse. The gas station was a Type B station which had two 5,000 gallon (or possibly 5,140 gallon) USTs located on either side of the gasoline pumphouse and pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available on the decommissioning of this motor pool or the removal of the associated UST. The area around where SA 43O was located is presently used by the Nuclear, Biological, and Chemical (NBC) School for classroom facilities (Building 2680) and parking (Figure 6,14-1).

The two USTs associated with historic gas station N were removed by Kurz in 1989 as part of an installation-wide UST removal program. Residual contamination was observed at the time of removal. Both USTs contained a mixture of water and what appeared to be mogas. Approximately 150 cubic yards of contaminated soil was removed from the excavations. PID measurements indicated that residual soil contamination was still present in the soil around the former USTs. Due to the presumed soil contamination, the excavation was backfilled and additional investigation was conducted. As part of the removal program, three monitoring wells (2680W-01 through 2860W-03) were installed to monitor for free product. The groundwater table was measured by Kurz at 9 feet bgs, and no product was detected (Kurz Associates, 1991).

6.14.2 Site Investigation Program Summary

The SI at SA 430 was performed in accordance with the Final SI Historic Gas Station Task Order Work Plan (ABB-ES, 1992a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The field investigation program at SA 430 consisted of 10 TerraProbe points, one soil boring, and groundwater sampling from the existing monitoring wells. Table 6.14-1 summarized the activities completed during the SI.

ABB Environmental Services, Inc.

W0099521.MED

SECTION 6

The TerraProbe points were advanced to the water table (9 feet bgs) and one subsurface soil sample was collected from each point and analyzed in the field for BTEX and TPHC (see Figure 6.14-1).

One soil boring (43O-92-01X) was advanced to the water table and two subsurface soil samples were collected for laboratory analysis. The samples were analyzed for PAL VOCs, TPHC, and lead (see Figure 6.14-1).

Two of the three existing monitoring wells (2680W-01 and 2680W-02) were developed and sampled. Development and sampling was not conducted on 2680W-03 due to an obstruction in the well which prevented access to the groundwater at this location. These samples were collected during the Round Two of groundwater sampling for the SI. These samples were submitted for offsite laboratory analysis for PAL VOCs and lead. The monitoring well construction details are presented in Appendix C.

6.14.3 Supplemental Site Investigation Program Summary

The SSI at SA 43O was performed in accordance with the Final SSI Task Order Work Plan (ABB-ES, 1993a) and in conformance to the provisions of the Project Operations Plan (ABB-ES, 1992b). The following sections describe the field activities completed at each historic gas station during the SSI. Table 6.14-1 summarizes the activities completed during the SS1.

The SSI at SA 43O was conducted around the excavation of the former UST at Historic Gas Station O south of Building 2680.

The 10 TerraProbe points were advanced on all sides of the TerraProbe points completed at this site during the SI. These points were located in and around the excavation of the former UST removed in 1991 (see Figure 6.14-1). The results of these samples collected during the SSI were used to further define the horizontal distribution of contaminants detected during the SI. Up to two soil samples were collected from each TerraProbe point. The samples were analyzed in the field for BTEX and TPHC.

Three groundwater monitoring wells (XOM-93-01X through XOM-93-03X) were installed to monitor downgradient groundwater quality (see Figure 6.14-1). One soil sample was collected from the water table in each of the monitoring well

ABB Environmental Services, Inc.

W0099521.M80

borings. The soil samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, lead, TPHC, and TOC. The well screen of each monitoring well was placed so that it intersected the water table to monitor for free product and allow for seasonal groundwater fluctuation. Table 6.14-2 summarizes the monitoring well construction at SA 43O.

Round Three groundwater samples were collected from the SA 43N monitoring wells in October 1993 and Round Four samples were collected in January 1994. An additional round of groundwater sampling (Round Five) was collected in April 1994 to assess groundwater contaminant concentrations at high water table conditions. All three rounds of samples were submitted for off-site laboratory analysis consisting of PAL VOCs, SVOCs, lead (both filtered and unfiltered), TPHC, and TSS.

After the newly installed monitoring wells were developed and sampled, hydraulic conductivity tests were preformed. The tests consisted of a rising and falling head test.

6.14.4 Field Investigation Results and Observations

The soil at SA 43O consists of silty fine sand with gravel. Groundwater was encountered at 12 feet in the soil boring and refusal (apparently bedrock) was reached at 12.5 feet bgs (Table 6.14-3).

The calculated hydraulic conductivities in the bedrock monitoring wells ranged from 2.9E⁻⁰⁴ cm/sec. at XNM-93-01X to 5.8E⁻⁰⁵ cm/sec. at XNM-93-03X. The results of the hydraulic conductivity tests are presented in Table 6.14-4. The water levels measured in the existing monitoring wells were measured at an average of 9 feet bgs.

The new monitoring wells were included in the November 8, 1993 synoptic water-level round at Fort Devens. The results of that round are presented in Table 6.14-4. The inferred groundwater flow appears to be moving to the west-northwest (Figure 6.14-2). All SSI exploration locations were surveyed.

ABB Environmental Services, Inc.

W0099521.M80

6.14.5 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

6.14.5.1 Soil. The results of the TerraProbe soil samples indicated that residual soil contamination was present in the soils around the former UST. VOCs were detected in three of the 10 samples (TP-02, TP-03, and TP-08) ranging from 37 ppb in TP-08 to 840 ppb in TP-03. TPHC was detected six of the 10 soil samples collected from SA 430. Concentrations of TPHC ranged from 620 ppm in TP-03 to 92 ppm in TP-04 (Table 6.14-5; see Figure 6.14-3).

A total of eight TerraProbe points were completed during the SSI to further define the distribution of contaminants detected during the SI. Soil samples were collected from 10 to 13 feet and analyzed for BTEX and TPHC. Toluene was detected in the 10 and 12-foot samples collected from TP-11 at 0.5 and 0.4 ppb. Xylenes were detected the four samples collected from TP-11, the 10 and 11-foot samples collected from TP-12, the 11-foot sample collected from TP-14, the 12-foot sample from TP-18, and the 11-foot sample from TP-19. TPHC was detected in upgradient and downgradient of the former UST location ranging from 71 ppm to 420 ppm (see Table 6.14-5; Figure 6.14.-4 and 6.14-5).

Based on the results obtained from the SI field analytical program, soil boring 43O-92-01X was drilled adjacent to TP-03, which had the highest concentrations of BTEX and TPHC. Two subsurface soil samples were collected from 5 feet to 7 feet and 11 feet to 13 feet bgs. Acetone was detected in the 5 foot to 7 foot sample at a concentration of $0.032 \ \mu g/g$. This VOC is a common laboratory contaminant and is not believed to be a site contaminant. Section 3.2.2 of this report discusses this and other common laboratory contaminant detected. No other VOCs were detected in the 5 foot to 7 foot sample nor the 11 foot to 13 foot sample. TPHC was not detected in either of soil samples collected, and lead was present at a concentration below established Fort Devens background in both soil samples (Table 6.14-6; see Figure 6.14-6).

One subsurface soil sample was collected from the water table at each of the three SSI monitoring well borings completed at this site and submitted for off-site laboratory analysis. The only SVOCs detected were found to be a laboratory contaminant (bis(2-hexylmethyl)phthalate) (see Table 6.14-6). One soil sample (10-foot sample from XOM-93-02X) was analyzed for inorganic. Several inorganic analytes (copper, iron, manganese, nickel, sodium, and zinc) were

ABB Environmental Services, Inc.

W0099521_M80

detected slightly above their Fort Devens background. TPHC was detected at $35.1 \ \mu g/g$ in XOM-93-02X and at $44.2 \ \mu g/g$ in XOM-93-03X. TPHC was not detected in the sample collected from XOM-93-01X (see Table 6.14-7; Figure 6.14-6).

6.14.5.2 Groundwater. Only two (2680W-02 and 2680W-03) of the three existing monitoring wells were sampled during Round Two of the SI due to an obstruction in 2680W-03. Chloroform was detected in both groundwater samples at concentrations of 0.62 μ g/L and 1.2 μ g/L, respectively. No other VOCs were detected in either samples. Lead was detected at 106 μ g/L in 2680W-01 and 56.2 μ g/L in 2680-03. These concentrations are above the established Fort Devens background concentration, however, TSS concentrations were detected at 4,190 mg/L and 1,320 mg/L, respectively. The lead concentrations may be attributed to high TSS concentrations (Table 6.14-8; see Figure 6.14-7). Filtered samples were not collected during Round Two to confirm this hypothesis.

Rounds Three, Four, and Five groundwater samples were collected from the three newly installed monitoring wells (XOM-93-01X through XOM-93-03X) and two of the three existing monitoring wells (2680W-01 and 2680W-02). A groundwater sample was not collected from 2680W-03 because of an obstruction in the monitoring well. Several VOCs (TEX) and TCE, one SVOC (naphthalene), and TPHC were detected in the new and existing downgradient monitoring wells and the monitoring well installed within the former UST excavation. Lead was detected above the Fort Devens background concentration in the unfiltered sample from each monitoring well, however, lead was not detected above the detection limit in the filtered samples (see Table 6.14-8; Figure 6.14-7).

The results of the Round Four groundwater sampling indicated the presence of several VOCs (TCE, chloroform, ethylbenzene, and xylenes) in the downgradient monitoring wells (2680W-02, XOM-93-01X, XOM-93-02X, and XOM-93-03X). TCE was detected at 9.3 μ g/L at XOM-93-03X. This was the only VOC detected above its drinking water standard/guideline (5.0 μ g/L). Naphthalene (0.85 μ g/L at XOM-93-01X) was the only SVOC detected in the Round Four samples. TPHC was not detected in any of the Round Four samples. Lead was detected above the Fort Devens background concentration in several of the unfiltered groundwater samples. Concentrations of lead in the unfiltered samples ranged from 9.5 μ g/L at XOM-93-03X to 200 μ g/L at 2680W-02. Lead was not detected above the analytical detection limit (1.26 μ g/L) in any of the filtered groundwater

ABB Environmental Services, Inc.

W0099521.M80

samples collected during Round Four. TSS concentrations ranged from 850,000 μ g/L at 2680W-01 to 65,000 μ g/L at XOM-93-01X (see Table 6.14-8).

The results of the Round Five groundwater sampling indicated the presence of several VOCs (TCE, ethylbenzene and xylenes) in the downgradient monitoring wells (XOM-93-01X, XOM-93-02X, and XOM-93-03X). TCE was the only VOC detected above its drinking water standard/guideline of 5.0 μ g/L. TCE was detected at 6.2 μ g/L in the groundwater samples collected from XOM-93-03X. No SVOCs nor TPHC were detected in the Round Five samples. Lead was detected above the Fort Devens background concentration in several of the unfiltered groundwater samples. Concentrations of lead in the unfiltered samples ranged from below the detection limit (1.26 μ g/L) at 2680W-01 to 17.9 μ g/L at 2680W-02. Lead was not detected above the analytical detection limit of 1.26 μ g/L in any of the filtered groundwater samples collected during Round Five. TSS concentrations ranged from 500,000 μ g/L at 2680W-01 and 2680W-02 to 11,000 μ g/L at XOM-93-01X (see Table 6.14-8).

6.14.6 Source Evaluation and Migration Potential

The results of the field and off-site laboratory analytical programs indicated that residual TPHC was present in the soil at the water table in and around the excavation of the former USTs. TPHC was detected in soil upgradient and downgradient of the former UST excavation. The distribution of the contamination is consistent with the UST removal report which indicated that residual soil contamination was present in the excavation at the time that the excavation was backfilled. The contamination appears to be in the center and western side of the former excavation.

Several VOCs (ethylbenzene, toluene, xylenes, and TCE) were detected in the groundwater samples collected downgradient of the former UST excavation and from the monitoring well installed in the former excavation. The detection of these contaminants in groundwater appears to indicate that residual contamination associated with the historic use of this site, has impacted the groundwater quality at the site, as well as downgradient of the site.

ABB Environmental Services, Inc.

W0099521.M80

However, the groundwater result from the monitoring well with the highest concentrations of TCE showed a noticeable reduction from Round Three to Round Five (see Table 6.14-8).

6.14.7 Preliminary Human Health Risk Evaluation

During the SI, 10 TerraProbe subsurface soil samples and one confirmatory soil samples were collected and analyzed and are discussed in the SI Report. An additional 22 TerraProbe samples and one confirmatory boring sample were taken during the SSI. Tables 6.14-5, 6.14-6, and 6.14-7 give the individual analytical results for the soil samples collected from SA 430. Table 6.14-9 summarizes the combined SI and SSI TerraProbe and confirmatory boring results and compares them to Region III commercial and MCP Category S-2 soil guidelines. Low concentrations of TEX which did not exceed guidelines were detected in both SI and SSI TerraProbe samples. TPHC was detected in 14 of 36 samples at concentrations not exceeding guidelines. The acetone and di-n-butyl phthalate which were detected in the laboratory analytical results for the soil borings are common laboratory contaminants and are not considered site-related. Concentrations of inorganics detected in the soil did not exceed guidelines. In conclusion, it appears that contact with subsurface soil at SA 430 does not pose a potential risk to human health.

Table 6.14-10 presents summary data based on unfiltered groundwater samples from SA 43O along with drinking water standards/guidelines for comparison. The organics detected were chloroform, ethylbenzene, naphthalene, TCE, xylenes, and TPHC. The concentrations of chloroform, ethylbenzene, and xylenes did not exceed their respective federal MCLs. In addition, chloroform is a common laboratory contaminant and is not considered site-related. No standard is available for naphthalene, but the detected concentration does not exceed the Region III tap water concentration. TCE exceeded its federal MCL. TPHC was detected in three of 17 samples and the average concentration which exceeded the MCP GW-1 standard.

Lead was the only inorganic analyzed for and was detected in 13 of the 17 samples. Both the maximum and average concentrations of lead exceeded the USEPA action level. However, the results of the filtered inorganic sample results showed lead below the detection limit. Based on these results and the TSS result,

ABB Environmental Services, Inc.

W0099521.M80

it is unlikely that the lead concentration detected, is a result of petroleum releases at this site.

Based on this screening, it appears that TCE and TPHC in groundwater may pose a potential risk to human health. However, the reduction in TCE from Round Three to Round Five (in XOM-93-03X) indicates that TCE concentrations may continue to decline and eventually be below the MCL reducing the potential risk to human health. In addition, TPHC was not detected in the two rounds of groundwater samples collected from XOM-93-03X, after the maximum concentration of 2,810 μ g/L which was detected in Round Three (see Table 6.14-8).

6.14.8 Conclusions and Recommendations

Based on the results of the human health PRE, an NFA is recommended for SA 43O.

ABB Environmental Services, Inc.

W0099521.M60

TABLE 6.14-1 SUMMARY OF TECHNICAL APPROACH SA 430 - HISTORIC GAS STATION O

SITE INVESTIGATION REPORT FORT DEVENS, MA

ACTIVITY	PURPOSE	SITE	RATIONALE FOR SELECTED LOCATIONS		
SI PROGRAM					
TERRA PROBE	* COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-01 THRU TP-10	* IN AND AROUND FORMER HGS GASOLINE UST		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	 CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATURY ANALYSIS 	430-92-0LX	 ADJACENT TO TERRAPROBE "LIOT SPOT" 		
SSI PROGRAM			And TOTAL TRANSPORT		
TERRA PROBE	COLLECT SOIL SAMPLES FOR FIELD ANALYSIS	TP-11 THRU TP-20	* IN AND AROUND FORMER WASTE OIL UST		
SOIL BORINGS AND SUBSURFACE SOIL SAMPLING	INSTALL MONITORING WELLS CHARACTERIZE SOILS CONTAMINATION COLLECT SOIL SAMPLES FOR LABORATORY ANALYSIS	XOM-93-01X XOM-93-02X XOM-93-03X	* UFGRADIENT * IN FORMER UST GRAVE * DOWNGRADIENT		
MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING	MONITOR GROUNDWATER LEVELS MONITOR GROUNDWATER QUALITY DETERMINE AQUIFER CONDUCTIVITIES	XOM-93-01X XOM-93-02X XOM-93-03X	UPGRADIENT IN FORMER UST GRAVE DOWNGRADIENT		

TABLE 6.14-2 MONITORING WELL COMPLETION DETAILS SA 430 - HISTORIC GAS STATION O

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL IDENTIFICATION	SOIL DRILLING METHOD	BEDROCK DRILLING MEHTOD	MEDIA SCREENED	WELL SCREEN DEPTH (Feet bgs)	WELL SCREEN ELEVATION (Feet NGVD)	COMPLETION DEPTH (Feet bgs)	CONSTRUCTION MATERIAL
XOM-93-01X	HOLLOW STEM AUGER	NA	SOIL	10-20	3229 - 312.9	20.5	4 ID PVC
XOM-93-02X	HOLLOW STEM AUGER	NA	SOIL.	7.5 - 17.5	325.9 - 315.9	18.5	4 ID PVC
XOM-93-03X	HOLLOW STEM AUGER	NA	SOIL	9.0 - 19.0	323.3 - 313.3	19.8	4 ID PVC

NA=Not Applicable

TABLE 6.14-3 SUMMARY OF SOIL BORINGS SA 430 - HISTORIC GAS STATION O

SITE INVESTIGATION REPORT FORT DEVENS, MA

EXPLORATION ID	COMPLETION DEPTH (Feet bgs)	REFERENCE SAMPLE INTERVALS (Feel bgs)	ANALYTICAL SAMPLES COLLECTED	SOIL TYPE (USCS)	TOTAL VOCs BY PID (PPM)	COMMENTS
430-92-01X	12.5	5-7	5-7	SM	22.0	
		7-9		SM	5.0	
		9-11		SM	BKG	
		11-125	11-12.5	SM	BKG	
XOM-93-01X	20.3	0-2		GP-SP	BKG	
		5-7		GP-SP	BKG	
	1 miles - 1 miles - 1	10-12	10-12	SM-SP	BKG	
		14-142		SP-GP	BKG	Rollerbit phylite from 14.2 to 20.3-feet
XOM-93-02X	18.5	0-2		SW-SM	BKG	
		2-4		SM-GP	BKG	
		4-6		SM-GP	BKG	
		6-8		SM-GP	BKG	
		8-10		SM-GP	BKG	
		10-12	10-12	SP	BKG	
		12-14	and the second sec	SP	BKG	
		14-16		SP-GP	BKG	
XOM-93-03X	19.8	0-2		GP-SP	BKG	
		5-7		SM-SP	BKG	
		10-12	10-12	SM-SP	BKG	have a strength of the second
		14.5-14.7		SM-SP	BKG	Rollerbit phylite from 14.5 to 19.8-feet

NOTES:

bgs = below ground surface

VOCs = Volatile organic compounds

USCS = Unified soil classification system

ppm = parts per million

phyl = phylite

BKG = background levels of Total VOCs were measured with a PID at the work site

TABLE 6.14–4 SUMMARY OF WATER LEVELS AND HYDRAULIC CONDUCTIVITIES SA 430 – HISTORIC GAS STATION O

SITE INVESTIGATION REPORT FORT DEVENS, MA

WELL ID	ELEVATION ¹	(Feet bgs)	(Feet NGVD)	HVORSLEV ² (cm/sec)
XOM-93-01X	331.29	10.86	320.43	2.9E-04
XOM-93-02X	332.87	7.11	325,77	7.4H-05
XOM-93-03X	331.87	11.12	320.77	5.8E-05

Notes: bgs = below ground surface

cm/sec = centimeters per second

NGVD = National Geodetic Vertical Datum

1 = elevation of top of pvc

2 = averaged value of two tests

Groundwater elevations from November 8, 1993

synoptic water level round

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-01	'TP-02	TP-03	TP-04	'TP-05	TP-06	TP-07	TP-08
ANALYTE	TSO0109F	TSO0209F	TSO0309F	TSO0409F	TSO0509F	TSO0609F	TSO0709F	TSO0809F
ORGANICS (ppb)	9 FT							
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	100	290	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	63	130	< 0.1	< 0.1	< 0.1	< 0.1	14
m/p-XYLENE	< 0.1	290	320	< 0.1	< 0.1	< 0.1	< 0.1	15
0-XYLENE	< 0.1	86	100	< 0.1	< 0.1	< 0.1	< 0.1	7.5
OTHER (ppm)								
TOTAL PETROLEUM HYDROCARBONS	<56	150	620	92	140	<54	<53	110

Notes:

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-09	TP-10	TP-11	TP-11	TP-11	TP-11	TP-12	TP-12
ANALYTE	TSO0909F	TSO1009F	TSO1110F	TSO1111F	TSO1112F	TSO1113F	TSO1209F	TSO1210F
ORGANICS (ppb)	9 FT	9 FT	10 FT	11 FT	12 FT	13 FT	9 FT	10 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	0.5	< 0.1	0.4	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	0.6	0.5	0.5	< 0.1	0.4	0.4
0-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1,2	< 0,1	< 0.1
OTHER (ppm)								
TOTAL PETROLEUM HYDROCARBONS	93	<55	420	< 57	< 54	86	< 56	< 55

Notes:

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-12	TP-14	TP-14	TP-14	TP-15	TP-15	TP-16	TP-16
ANALYTE	TSO1211F	TSO1409F	TSO1410F	TSO1411F	TSO1509F	TSO1510F	TSO1609F	TSO1610F
ORGANICS (ppb)	11 FT	9 FT	10 FT	11 FT	9 FT	10 FT	9 FT	10 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0,1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	< 0.1	< 0.1	< 0.1	0.4	< 0.1	< 0.1	< 0.1	< 0.1
o-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OTHER (ppm)								
TOTAL PETROLEUM HYDROCARBONS	< 54	< 55	55	90	55	< 54	< 57	< 55

Notes

SITE INVESTIGATION REPORT FORT DEVENS, MA

	TP-17	TP-17	TP-17	TP-18	TP-18	TP-18	TP-19	TP-19
ANALYTE	TSO1709F	TSO1710F	TSO1711F	TSO1810F	TSO1811F	TSO1812F	TSO1911F	TSO1912F
ORGANICS (ppb)	9 FT	10 FT	11 FT	10 FT	11 FT	12 FT	11 FT	12 FT
BENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TOLUENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ETHYLBENZENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m/p-XYLENE	1.0>	< 0.1	< 0.1	< 0.1	< 0.1	1.2	0.4	< 0.1
0-XYLENE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OTHER (ppm)			1					
TOTAL PETROLEUM HYDROCARBONS	< 59	< 57	< 60	< \$4	< 54	71	< 56	92

Notes:

TABLE 6.14-6 ORGANIC ANALYTES IN SUBSURFACE SOIL SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	1200-0-000	SSI	SI				
	XOM-93-01X	XOM-93-01X	XOM-93-02X	XOM-93-03X	430-92-01X	430-92-01X	430-92-01X
ORGANICS (ug/g)	DUP 10 FT	10 FT	10 FT	10 FT	DUP 5 FT	5 FT	11 FT
ACETONE	< 0.017	< 0.017	< 0.017	< 0.017	0.032	< 0.017	< 0.017
DI-N-BUTYL PHTHALATE	0.22	0.54	0.41	0.16	< 0.62	<0.62	<0.62
OTHER (ug/g)							
TOTAL ORGANIC CARBON	936	18600	2720	657	495	NA	517
TOTAL PETROLEUM HYDROCARBONS	55.3	< 28,5	35.1	44.2	< 27.9	< 27.9	< 27.7

Notes:

< = Less than detection limit.

NA = not analyzed.

TABLE 6.14-7 INORGANIC ANALYTES IN SUBSURFACE SOIL SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

			SSI			SI			
ANALYTE	BACKGROUND	XOM-93-01X	XOM-93-01X	XOM-93-02X	XOM-93-03X	43O-92-01X	430-92-01X	430-92-01X	
INORGANICS (ug/g)		DUP 10 FT	10 FT	10 FT	10 FT	DUP 5 FT	5 FT	11 FT	
ALUMINUM	15000.0	NA	NA	6420	NA	NA	NA	NA	
ARSENIC	21.0	ŇĂ	NA	5.79	NA	NA	NA	NA	
BARIUM	42.5	NA	NA	16.6	NA	NA	NA	NA	
CALCIUM	1400.0	NA	NA	1060	NA	NA	NA	NA	
CHROMIUM	31.0	NA	NA	16.1	NA	NA	NA	NA	
COBALT	NA	NA	NA	8.62	NA	NA	NA	NA	
COPPER	8,39	NA	NA	18.3	NA	NA	NA	NA	
IRON	15000.0	NA	NA	15900	NA	NA	NA	NA	
LEAD	36.9	15	13	10.1	12	9.13	9.85	9.7	
MAGNESIUM	5600,0	NA	NA	3690	NA	NA	NA	NA	
MANGANESE	300.0	NA	NA	651	NA	NA	NA	NA	
NICKEL	14.0	NA	NA	31.3	NA	NA	NA	NA	
POTASSIUM	1700.0	NA	NA	408	NA	NA	NA	NA	
SODIUM	131.0	NA	NA	318	NA	NA	NA	NA	
VANADIUM	28.7	NA	NA	7.28	NA	NA	NA	NA	
ZINC	35,3	NA	NA	35.7	NA	NA	NA	NA	

Notes:

NA = not analyzed.

Shaded values exceed background limit.

TABLE 6.14-8 ANALYTES IN GROUNDWATER SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		2680	W-01	2680W-01		2680W-01		2680W-01	
ANALYTE	BACKGROUND	FILTERED ROUND 2	UNFILTERED ROUND 2	FILTERED ROUND 3	UNPILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 5	UNFILTERED ROUND 1
ORGANICS (#g/L)					2.24				
XYLENES		NA	< 0.84						
TOLUENE		NA	< 0.5						
CHLOROFORM		NA	0.62	NA	0.62	NA	< 0.5	NA	< 0.5
ETHYLBENZENE		NA	< 0.5						
NAPHTHALENE		NA	< 0.5	NA	< 0,5	NA	< 0.5	NA	< 0.5
TRICHLOROETHYLENE		NA	< 0.5	NA	< 0.5	NA	< 0,5	NA	< 0.5
INORGANICS (µg/L)						_			
LEAD	4.25	NA	106	< 1.26	106	< 1.26	16.7	< 1.26	< 1.26
OTHER (µg/L)									
TOTAL SUSPENDED SOLIDS		NA	4190000	NA	4010000	NA	850000	NA	500000
TOTAL PETROLEUM HYDROCARBONS		NA	< 120	NA	< 190	NA	< 190	NA	< 190

Notes:

TABLE 6.14–8 ANALYTES IN GROUNDWATER SA 430 – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE		2680	W-02	2680W-02		2680W-02		2680W-02	
	BACKGROUND	FILTERED ROUND 2	UNFILTERED ROUND 2	FILTERED ROUND 3	UNFILTERED ROUND 3	PILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 5	UNFILTERED ROUND 5
ORGANICS (µg/L)									
XYLENES		NA	< 0.84						
TOLUENE		NA	< 0.5	NA	0.74	NA	< 0.5	NA	< 0.5
CHLOROFORM		NA	1.2	NA	< 0.5	NA	1.2	NA	< 0.5
ETHYLBENZENE		NA	< 0.5	NA	0.89	NA	< 0.5	NA	< 0.5
NAPHTHALENE		NA	< 0.5						
TRICHLOROETHYLENE		NA	< 0.5	NA	< 0.5	NA	0,76	NA	< 0.5
INORGANICS (µg/L)									
LEAD	4.25	NA	56.2	< 1.26	10.2	< 1.26	200	< 1.26	17.9
OTHER (µg/L)									
TOTAL SUSPENDED SOLIDS		NA	1320000	NA	195	NA	620000	NA	500000
TOTAL PETROLEUM HYDROCARBONS	1	NA	< 120	NA	959	NA	< 190	NA	< 180

Notes

TABLE 6.14–8 ANALYTES IN GROUNDWATER SA 430 – HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

	1	XOM-9	3-01X	XOM-9	93-01X	XOM-93-01X	
ANALYTE	BACKGROUND	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 5	UNFILTERED ROUND 5
ORGANICS (µg/L)							
XYLENES		NA	0.9	NA	0.94	NA	< 0.84
TOLUENE		NA	< 0.5	NA	< 0.5	NA	< 0.5
CHLOROFORM		NA	0.81	NA	< 0.5	NA	< 0.5
ETHYLBENZENE		NA	5.8	NA	6.4	NA	4
NAPHTHALENE		NA	2.8	NA	0.85	NA	< 0.5
TRICHLOROETHYLENE		NA	1.5	NA	< 0.5	NA	< 0.5
INORGANICS (µg/L)							
LEAD	4.25	< 1.26	8.79	< 1.26	3.1	< 1.26	·他中国中国 5.1
OTHER (µg/L)							
TOTAL SUSPENDED SOLIDS		NA	311000	NA	65000	NA	11000
TOTAL PETROLEUM HYDROCARBONS		NA	229	NA	< 180	NA	< 180

Notes:

TABLE 6.14-8 ANALYTES IN GROUNDWATER SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		XOM-9	3-02X	XOM-9	3-02X	XOM-93-02X	
ANALYTE	BACKGROUND	PILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNPILITERED ROUND 4	FILTERED ROUND 5	UNFILTERED ROUND 5
ORGANICS (µg/L)							
XYLENES		NA	1.9	NA	< 0.84	NA	1.1
TOLUENE		NA	< 0.5	NÁ	< 0.5	NÁ	< 0.5
CHLOROFORM		NA	< 0.5	NA	< 0.5	NA	< 0.5
ETHYLBENZENE		NA	0.49	NA	< 0.5	NA	0.51
NAPHTHALENE		NA	< 0.5	NA	< 0.5	NA	< 0.5
TRICHLOROETHYLENE		NA	1.2	NA	< 0.5	NA	0.53
INORGANICS (µg/L)							
LEAD	4.25	< 1.26	8.68	< 1.26	17	< 1.26	1.84
OTHER (µg/L)							
TOTAL SUSPENDED SOLIDS		NA	392000	NA	460000	NA	62000
TOTAL PETROLEUM HYDROCARBONS		NA	< 190	NA	< 190	NA	< 190

Notes:

TABLE 6.14-8 ANALYTES IN GROUNDWATER SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

		XOM-	93-03X	XOM-9	3-03X	XOM-93-03X		
ANALYTE	BACKGROUND	FILTERED ROUND 3	UNFILTERED ROUND 3	FILTERED ROUND 4	UNFILTERED ROUND 4	FILTERED ROUND 5	UNFILTERED ROUND 5	
ORGANICS (µg/L)								
XYLENES		NA	< 0.84	NA	< 0.84	NA	< 0.84	
TOLUENE		NA	< 0.5	NA	< 0.5	NA	< 0.5	
CHLOROFORM		NA	< 0.5	NA	1	NA	< 0.5	
ETHYLBENZENE		NA.	< 0.5	NA	< 0.5	NA	< 0.5	
NAPHTHALENE	the second secon	NA	< 0.5	NA	< 0.5	NA	< 0.5	
TRICHLOROETHYLENE	100 million - 10	NA	12	NA	9.3	NA	6.2	
INORGANICS (µg/L)					100 C 100 C	100 CA.U		
LEAD	4.25	< 1.26	13.1	< 1.26	95	< 1.26	115	
OTHER (µg/L)				1				
TOTAL SUSPENDED SOLIDS		NA	271000	NA	170000	NA	221000	
TOTAL PETROLEUM HYDROCARBONS		NA	2810	NA	< 190	NA	< 190	

5

Notes:

< = Less than detection limit.

NA = Not analyzed

Shaded values exceed background limit.

TABLE 6.14-9 HUMAN HEALTH PRE EVALUATION OF SUBSURFACE SOIL SA 430 - HISTORIC GAS STATIONS

SITE INVESTIGATION REPORT FORT DEVENS, MA

ANALYTE	FREQUENCY	and the second second second	RATION (A)	REGION III COMMERCIAL/	MCP S-2	MAXIMUM EXCEEDS GUIDELINE CONCENTRATION 7	
	DETECTION	AVERAGE	MAXIMUM	INDUSTRIAL	STANDARD		
ORGANICS (µg/kg)							
ACETONE	1/4	44	0.000032	100000000	3000	NO	
DI-N-BUTYLE PHTHALATE	1/4	S##	0.00041	100000000	NA	NO	
TOLUENE	4/36	97.7	290	20000000	90000	NO	
ETHYLBENZENE	3/36	69	130	100000000	80000	NO	
m/p-XYLENE*	11/32	57.2	320	1000000000	800000	NO	
o-XYLENE*	4/32	48.7	100	1000000000	\$00000	NO	
OTHER (mg/kg)		-4,					
TOTAL PETROLEUM HYDROCARBONS	14/36	151	620	1680	2500	NO	

Notes

[a] Subsurface soil (3 to 15 feet) based on field screening samples TP-01 through TP-10 from 1992, TP-11 through TP-19 from 1993, and soil borings XOM-93-02X and 43O-92-01X.

* = analyte from field screening samples

µg%g = micrograms per kilogram

mg/kg = millograms per kilogram

- = not applicable

MCP = Massachusetts Contingency Plan

NA = not available

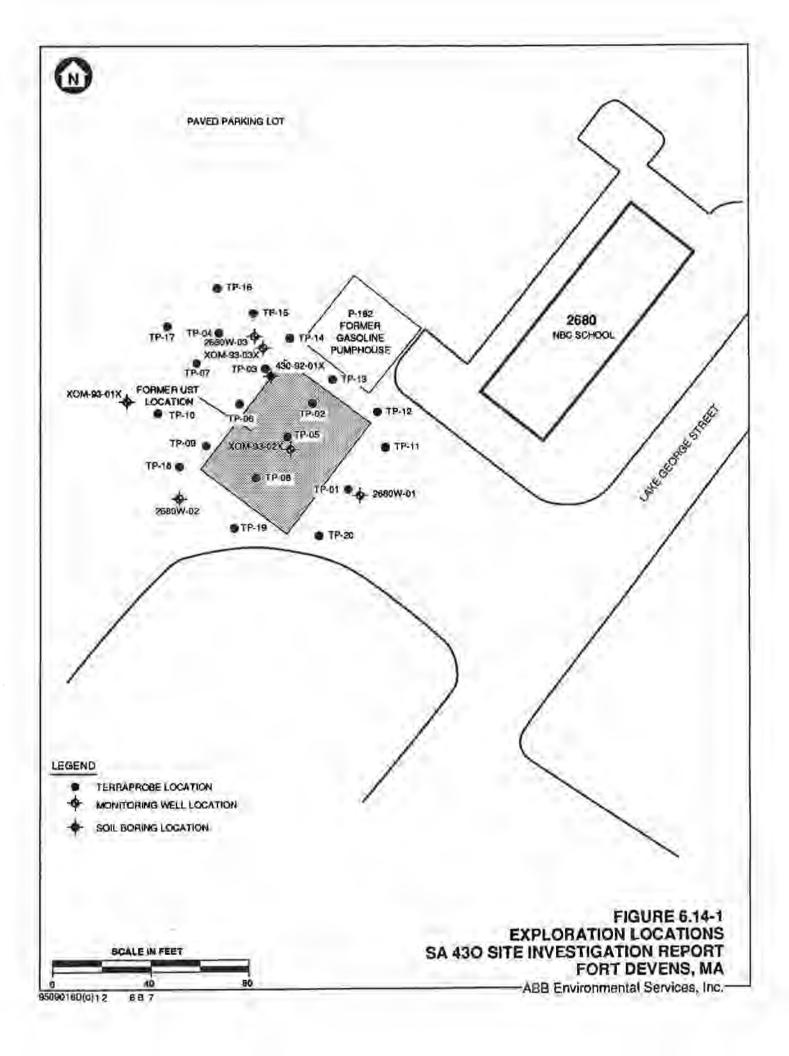
TABLE 6.14–10 HUMAN HEALTH PRE EVALUATION OF GROUNDWATER SA 430 – HISTORIC GAS STATIONS

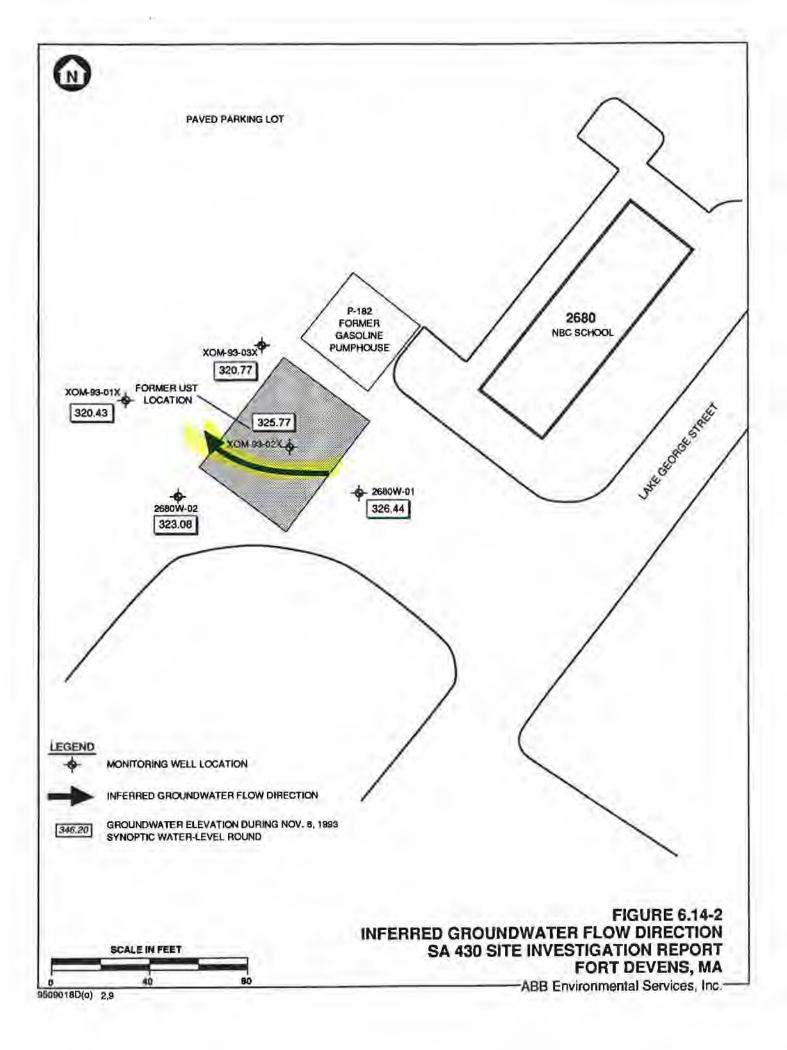
SITE INVESTIGATION REPORT FORT DEVENS, MA

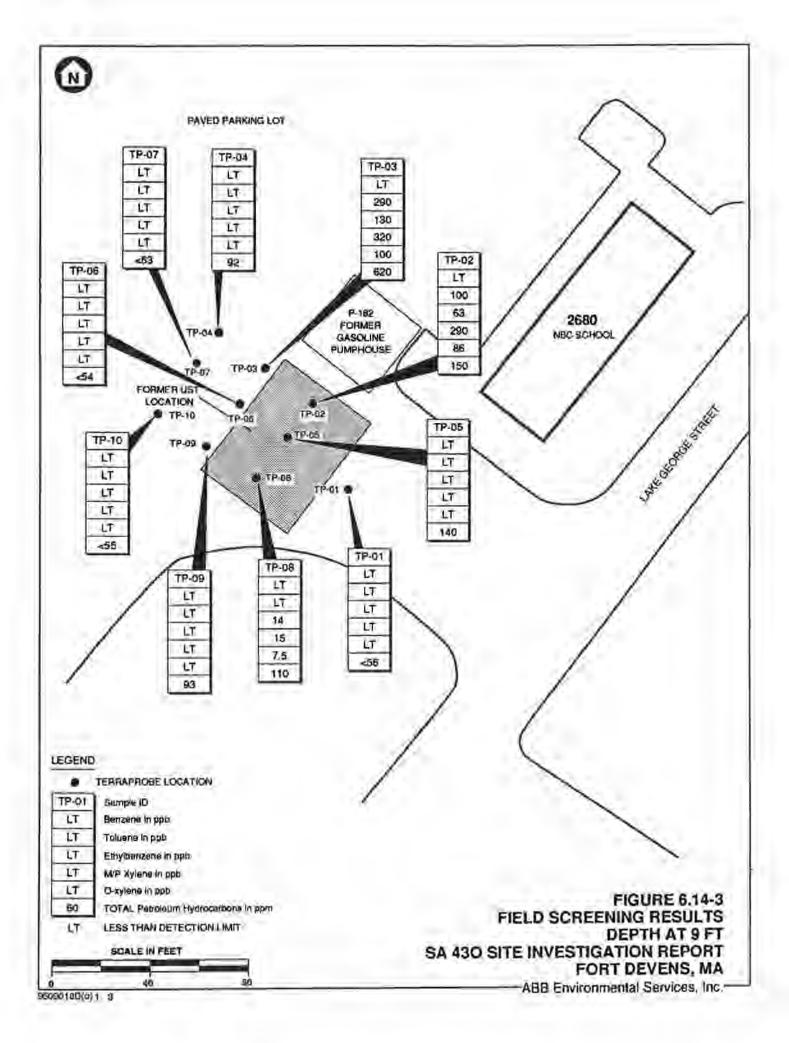
	FREQUENCY	1	CTED RATION [a]	GROUNDWATER BACKGROUND	MAXIMUM EXCEEDS	DRINKING WATER STANDARD/	MAXIMUM	
ANALYTE	DETECTION	AVERAGE (#g/L)	MAXIMUM (#g/L)	CONCENTRATION (#g/L)	BACKGROUND ?	GUIDELINE [b] (µg/L)	STANDARD/ GUIDELINE 7	
ORGANICS								
CHLOROFORM	5/17	0.89	1.2	NA	-	5	NO	
ETHYLBENZENE	6/17	3.0	6.4	NA	- ÷	700	NO	
NAPHTHALENE	2/17	1.8	2.8	NA	-	1500	NO	
TOLUENE	1/17	0.74	0.74	NA	-	1600	NO	
TRICHLOROETHENE	6/17	5.16	12	. NA	-	5	YES	
XYLENES	4/17	1.21	1.9	NA	-	10000	NO	
INORGANICS								
LEAD	2 13/17	44.1	200	4.25	YES	15	YES	
OTHER								
TOTAL PETROLEUM HYDROCARBONS	3/17	1332.2	2810	NA	-	1000	YES	

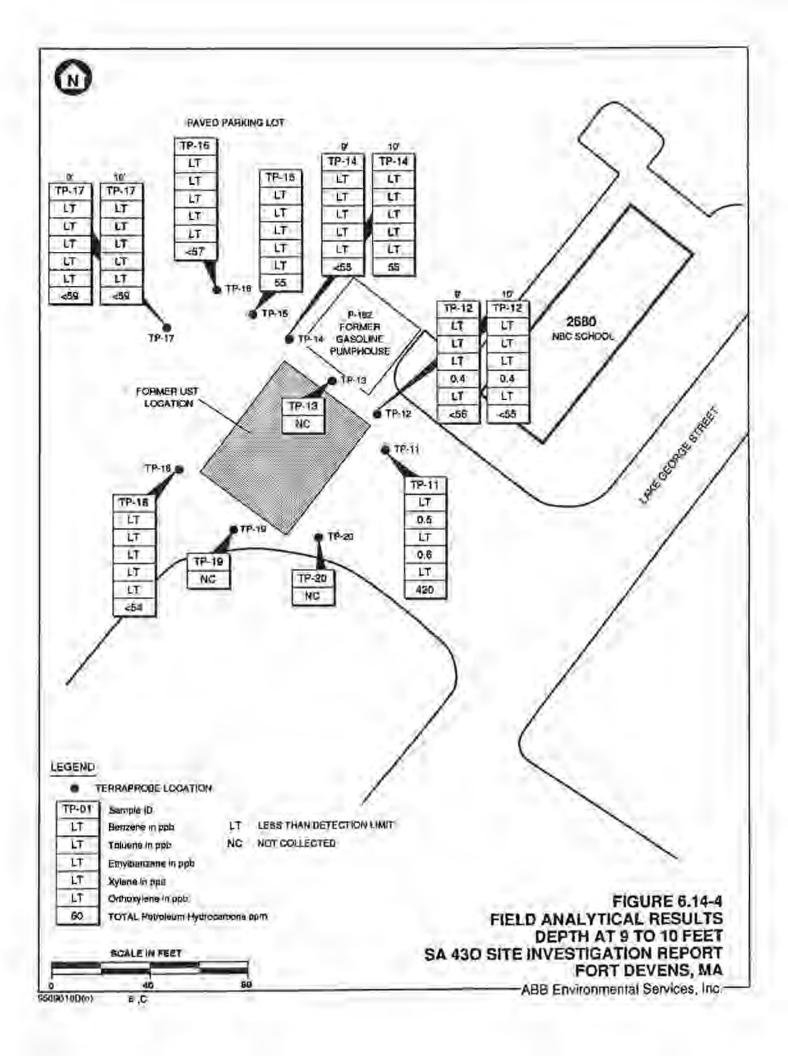
Notes

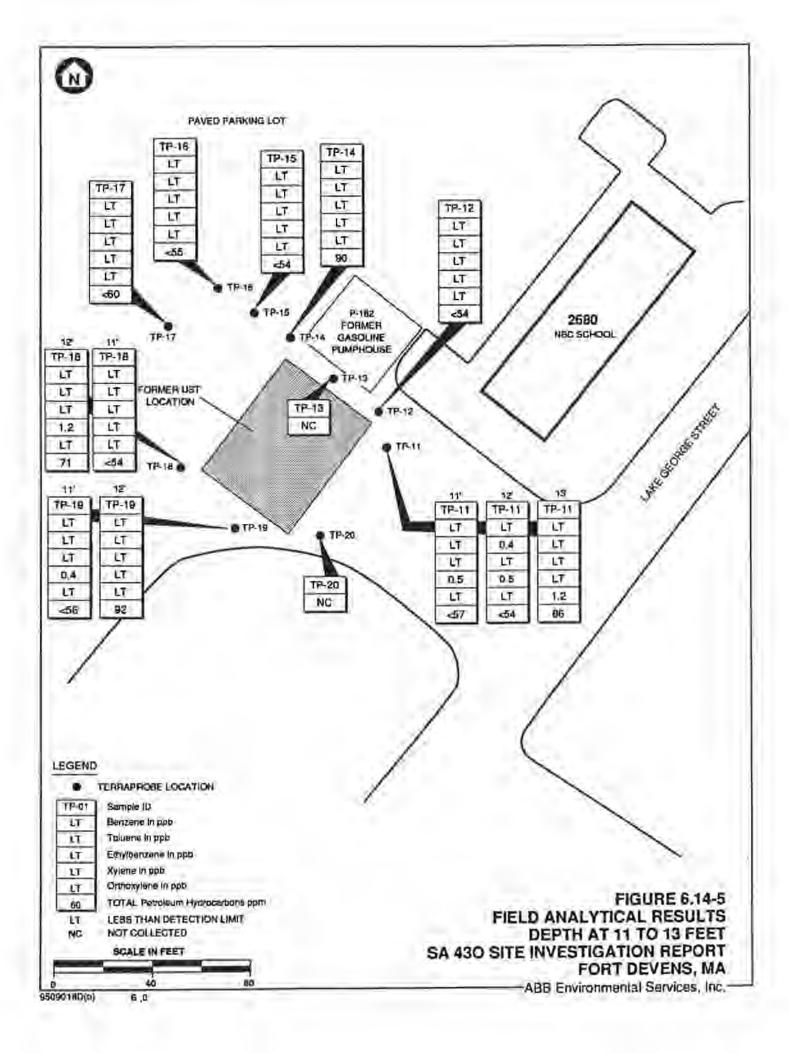
[a] Groundwater based on unfiltered samples from 2680W-01 and 2680W-03 (2 rounds each) and XOM-93-01X to XOM-93-03X (one duplicate).

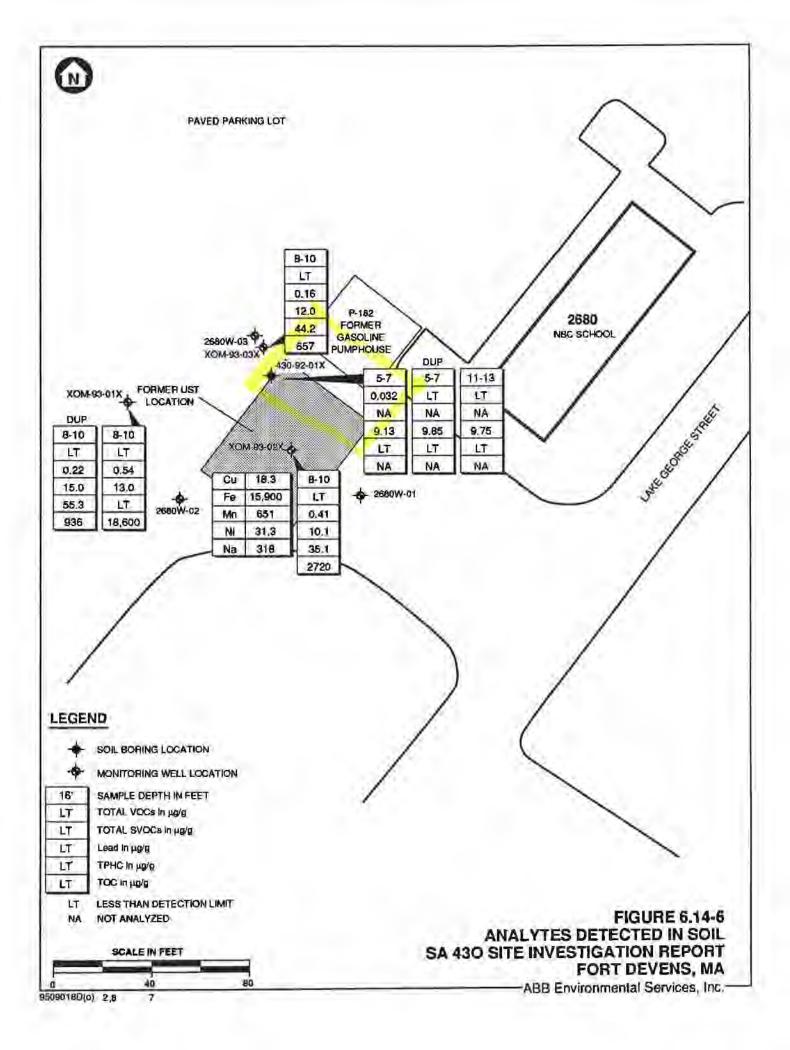

[b] Includes the lowest of either the EPA or MA drinking water standards, or if no federal standard or guideline is available, the Region III tap water concentration.

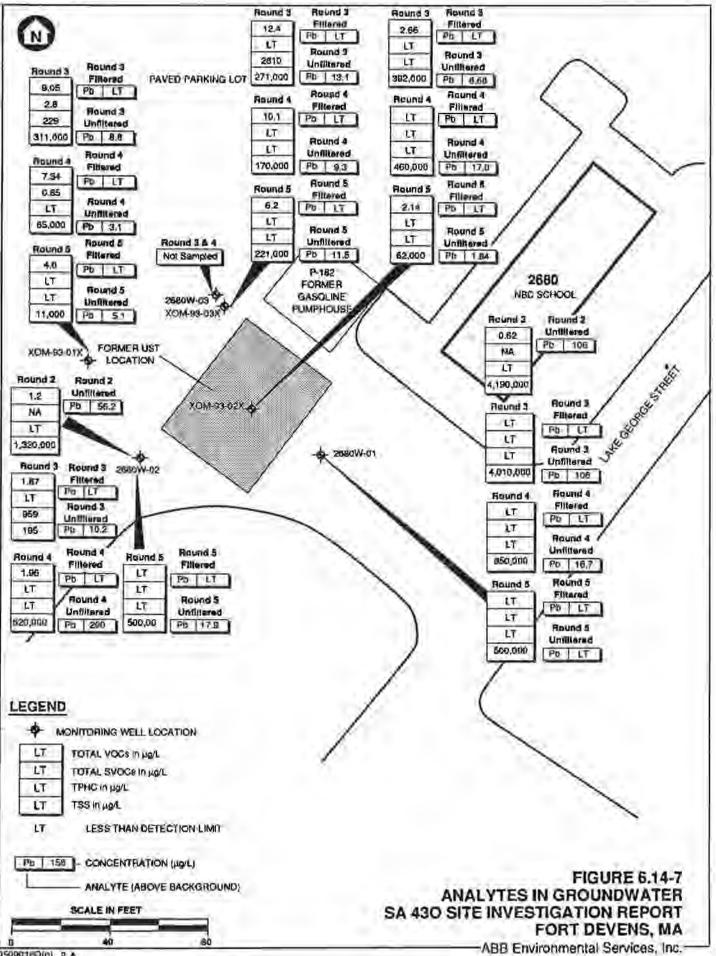

NA = not available


 $\mu g/L = micrograms per liter$


- = not applicable


Shaded compounds exceed standard or guideline.





6.15 STUDY AREA 43P

6.15.1 Study Area Background and Conditions

SA 43P is located on Sherman Avenue, approximately 150 feet northeast of the intersection of Givery Street and Sherman Avenue (Figure 6.15-1). The structure of the historic gas station at SA 43P consisted of a pump island and a small gasoline pumphouse. The gas station at SA 43P was a Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. The gasoline UST at SA 43P was excavated and removed before 1952. Reportedly, this UST was moved to SA 431 and installed there as a second UST at that station. Records on the exact location of the station at SA 43P were not available prior to the commencement of the 1992 field investigation. Presently, the area around the reported location of SA 43P is an open grassy area with Building T-622 and a paved parking lot on the southern portion of the site and bedrock outcrop to the north (see Figure 6.15-1). Building T-622 is apparently an administrative office. A 1,000 gallon heating oil UST is located on the north side of Building T-622 and appears to still be in use (see Figure 6.15-1).

6.15.2 Study Area Investigation Program Summary

The field investigation program at SA 43P consisted of 11 TerraProbe points, collection of subsurface soil samples, field analysis of those soil samples, and one soil boring.

The TerraProbe points were advanced to refusal at each location and as many as three subsurface soil samples per point were collected for field analysis. The samples were analyzed in the field for BTEX and TPHC (Figure 6.15-2).

One soil boring (43P-92-01X) was advanced to refusal, apparently bedrock, and two subsurface soil samples were collected for laboratory analysis. The samples were analyzed for VOCs, TPHC, and lead (see Figure 6.15-2).

ABB Environmental Services, Inc.

W0099521.M80

6.15.3 Field Investigation Results and Observations

The soil encountered at SA 43P consisted of silty well graded sand with gravel. Refusal, apparently bedrock, was reached at 13 feet to 15 feet bgs in both the TerraProbe points and the soil boring. Groundwater was not encountered; however, the last soil sample collected from 43P-92-01X was moist to wet indicating that groundwater may be present in the bedrock. The boring log for 43P-92-01X is provided in Appendix B.

A total of 21 soil samples were collected and analyzed in the field. No BTEX compounds were detected in any of the samples, and TPHC was detected in only one soil samples (220 ppm at 5 feet in TP-02) (Table 6.15-1; Figures 6.15-2 through 6.15-4).

43P-92-01X was drilled adjacent to TP-02 to confirm the TPHC field analytical result. Two soil samples were collected from 5 feet to 7 feet bgs and 12 feet to 14 feet bgs for laboratory analysis. No VOCs or TPHC were detected in either sample, and lead was present below the established background concentration (Table 6.15-2; Figure 6.15-5). The water table was not encountered at this site.

6.15.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

The objective of the field sampling program at SA 43P was to determine if residual soil contamination was present at this historic gas station. Based on the results of the field screening, which detected TPHC at 220 ppm in one soil sample, it does not appear that an unacceptable amount of residual contamination exists at this historic gas station.

6.15.5 Preliminary Human Health Risk Evaluation

The groundwater table was not encountered at this SA. The tank at this location was removed before 1945. Field analysis of 13 shallow and intermediate depth TerraProbe soil samples revealed no measurable concentrations of BTEX to a depth of 9 feet. TPHC was detected above the method detection limit in only one of these 13 samples, at 220 ppm. Comparing this result against the calculated risk-based commercial/industrial concentration value of 1,700 μ g/g for gasoline

	ABB	Environmental	Service	s, inc.
--	-----	---------------	---------	---------

W0099521.M80

indicates that there should be no significant risk to public health from soil contamination at SA 43P.

A confirmatory boring by ABB-ES supports the field-screening results. Soil samples at 5-feet and 12-feet in the boring through the suspected tank location (43P-92-01X) showed no residual TPHC contamination. Lead was detected at concentrations below the site-specific background.

6.15.6 Conclusions and Recommendations

The objective of the field sampling program at SA 43P was to determine if residual soil contamination was present at this historic gas station. Based on the results of the field screening, which detected TPHC at 220 ppm in only one soil sample and a human health PRE, it does not appear that an unacceptable level of residual contamination exists at this historic gas station. Since the investigation has focused on the subsurface, no ecological PRE was conducted. Therefore, NFA is recommended at this historic gas station.

ABB Environmental Services, Inc.

W0099521_M80

TABLE 6.15-1 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE P

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	ТРН ррш	TOTAL RTEX ppb	BEN*	TOL*	E-BEN*	M/P XYL** ppb	O-XYL*	COMMENTS
43TSP01XX501XF	43P	SOIL	TF-01	5	< 55	0	ND	ND	ND	ND	ND	
43TSP01XX901XF	43P	SOIL	TF-01	ÿ	< 60	Ø	ND	ND	ND	ND		
43TSP02XXS01XF	43P	SOIL	TP-02	5	220	0	ND	ND	ND	ND	ND	
43TSP02XX901XF	432	SOIL	TP-02	9	<52	0	ND	ND	ND.	ND	ND	
43TSP02X1501XF	43P	SOIL	119-02	15	< 55	0	ND	MD	ND	ND	ND	
43TSP03X1101XF	43P	SOIL	TP-03	11	< 55	0	ND	ND	ND	ND	ND	
43TSP03X1701XF	43F	SOIL	TP-03	17	< 60	0	ND	ND	ND	ND	ND	
43TSP04XX501XF	.43P	SOIL	TF-04	5	< 55	0	ND	ND	ND	ND	ND	
43TSP04XX901XF	43P	SOIL	TF-04	9	< 60	۵	ND	ND	ND	ND	ND	
43TSP04X1501XF	43P	SOIL	TF-04	15	< 55	D.	ND	ND	ND	ND	ND	
43TSP05X1101XF	43P	SOIL	TP-05	11	< 55	0	ND	ND	ND	ND	ND	
43TSP05X1601XF	43P	SOIL	TP-05	16	< 55	Ő	ND	ND	ND	ND	ND	
43TSP06XX901XF	43P	SOIL	TF-06	g	< 35	0	ND	ND	ND	ND	ND	
43TSP07XX501XF	43P	SOIL	TP-07	*	< 15	Ū	ND	ND	ND	ND	ND	
43 TSP07XX901XF	43P	SOIL	TF-09	9	< 60	Đ.	ND	ND	ND	ND	ND	
43TSP07X1501XF	43P	SOIL	TP-01	15	<57	D	ND	ND	ND	ND	ND	-
43TSP08XX901XF	43P	SOIL	119-08	9	< 55	0	ND	ND	ND	ND	ND	
437SP08X1601XF	43P	SOIL	TP-08	16	< 55	0	ND	ND	ND	NO	ND	
43TSP09XX901XF	43P	SOIL	TP-09	9	<\$5	0	ND	ND	ND	ND	ND	
43TSP10XX901XF	43P	SOIL	TP-10	9	< 55	D.	ND	ND	ND	ND	ND	
43TSP11XX901XF	43P	SOIL.	TP-11	9	< 55	0	ND	ND	ND	ND	ND	

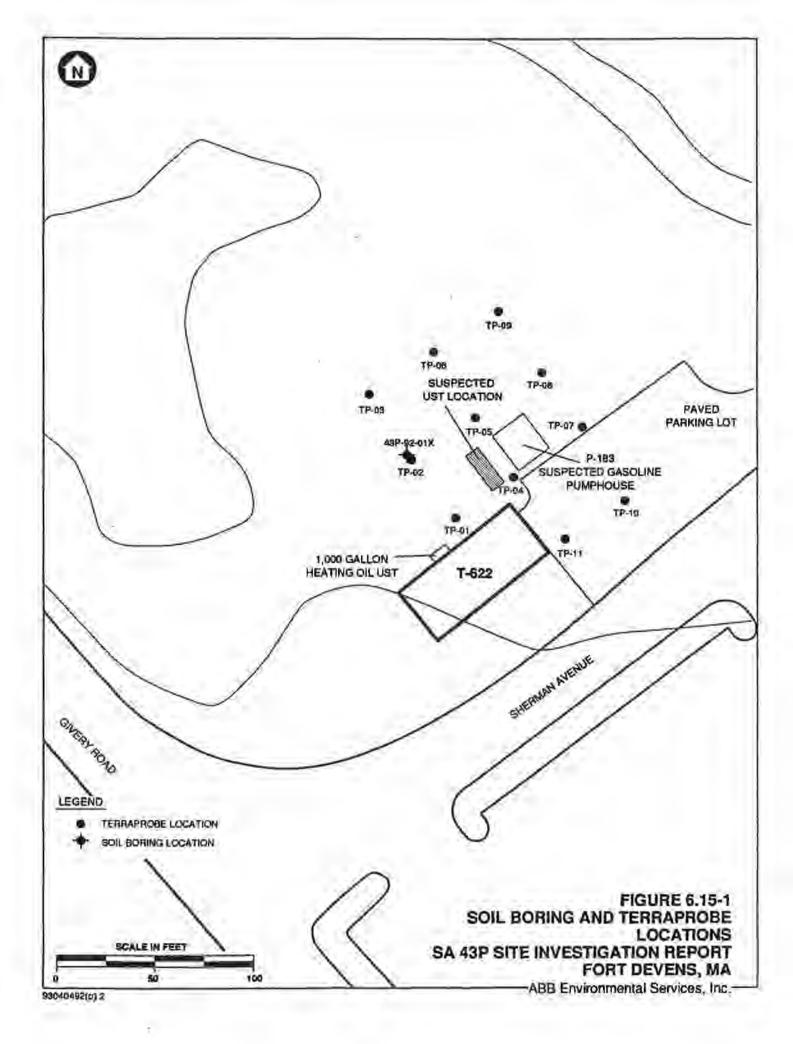
NOTES:

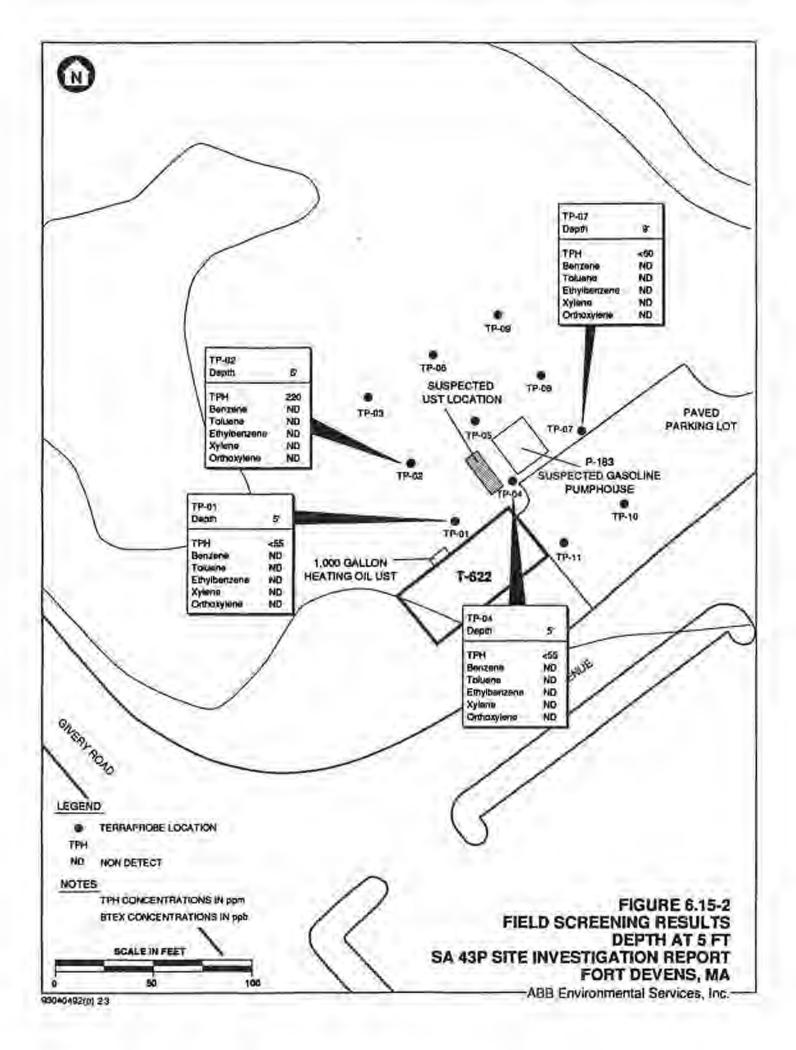
* = ND denotes a non detect or concentrations below 5 ppm.

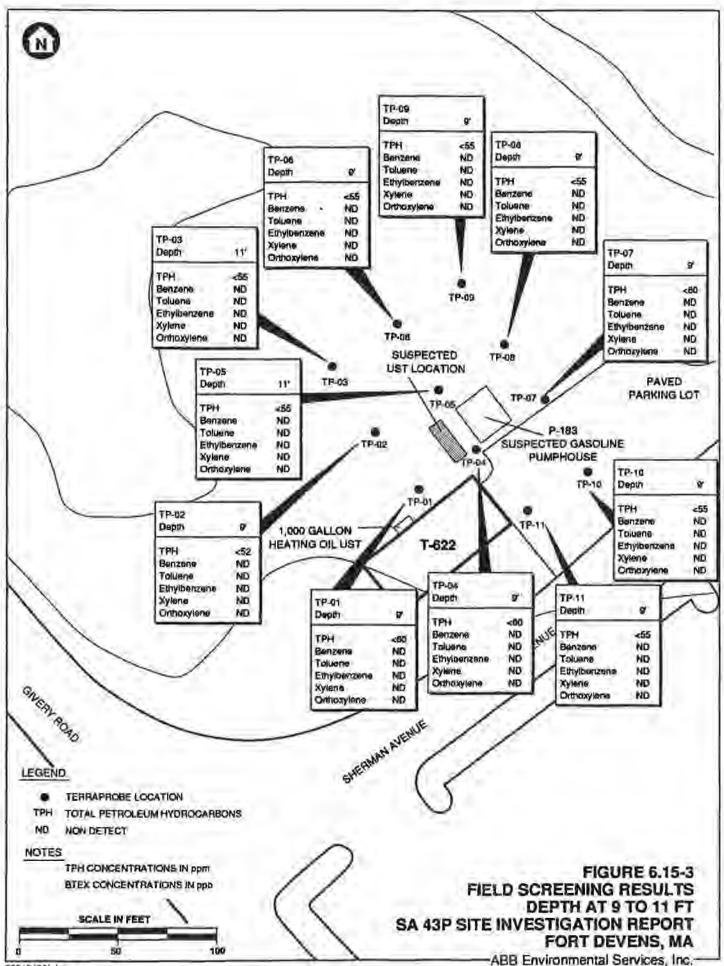
** = ND denotes a non detect or concentrations below 10 ppm

= Study area.

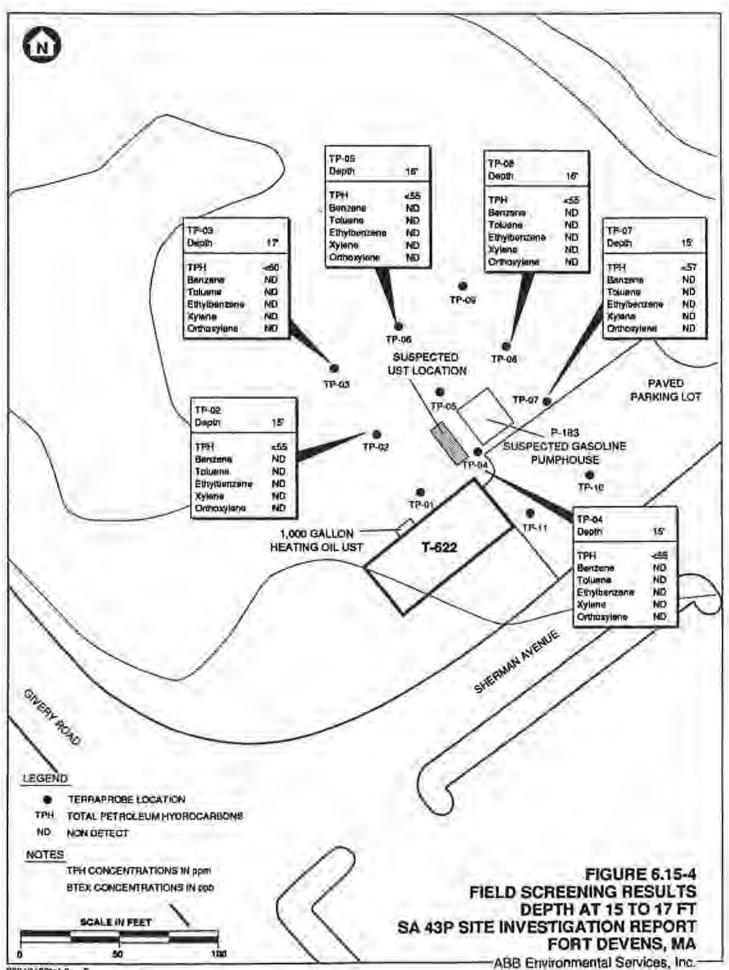
TABLE 6.15-2 INORGANIC AND ORGANIC COMPOUNDS IN SOIL SA 43P - HISTORIC GAS STATIONS

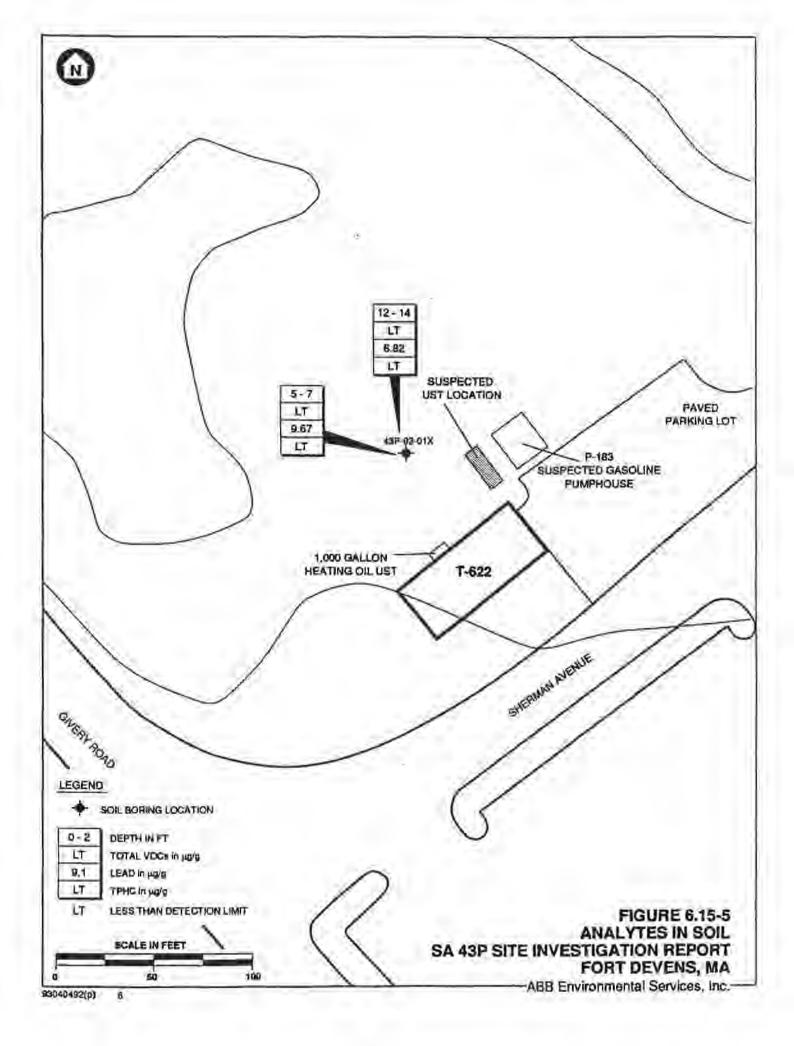

SITE INVESTIGATION REPORT FORT DEVENS, MA


ANALYTE	BACK -	BORING	43P-92-01X		
	GROUND	DEPTH	5	12	
INORGANICS (ug/g)					
LEAD	48.4	9.67	6.82		
OTHER (ug/g)					
TOTAL ORGANIC CARBON			NA.	854.0	
TOTAL PETROLEUM HYDROCARBONS			< 27.9	< 27.9	


111

NOTES:


TABLE LISTS DETECTED ANALYTES ONLY – SEE PROJECT ANALYTE LIST FOR SUMMARY < = LESS THAN DETECTION LIMIT SHOWN NA = NOT ANALYZED



⁰³⁰⁴⁰⁴⁹²⁽p) 2 4

⁹³⁰⁴⁰⁴⁹²⁽p) 2 5

6.16 STUDY AREA 43Q

6.16.1 Study Area Background and Conditions

The structure of the historic gas station at SA 43Q consisted of a pump island and a small gasoline pumphouse. Based on available documentation, the gas station at SA 43Q was a Type A station design. The Type A station had one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available of the decommissioning of the gas station or the removal of the associated UST. This historic gas station was located on the northern side of Sherman Avenue across from the existing Building 694 (Figure 6.16-1). Presently, the area around where SA 43Q was located is used by installation personnel as a soccer field.

6.16.2 Study Area Investigation Program Summary

The field investigation program at SA 43Q consisted of a surficial geophysical program, 10 TerraProbe points to collect subsurface soil and soil-gas samples and field analysis of those soil and soil-gas samples.

The surficial geophysical program consisted of a metal detector, magnetometer, and GPR survey. This program was designed to determine if any abandoned UST(s) were present at this site. The metal detector and magnetometer surveys covered a majority of the existing soccer field while the GPR survey was used to investigate magnetic anomalies detected in the other two surveys (see Figure 6.16-1).

A total of three soil samples were collected from two TerraProbe points, and 11 soil-gas samples were collected from 10 TerraProbe points. The soil samples were analyzed in the field for BTEX and TPHC, while the soil-gas samples were analyzed for BTEX, only (Figure 6.16-2).

6.16.3 Field Investigation Results and Observations

The results of the surficial geophysical surveys did not indicate the presence of an abandoned UST, but several small magnetic anomalies were detected in the

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

reported area of the historic gas station. These anomalies were believed to be construction debris from the former pumphouse and/or pump island. The results of the surveys are presented in Appendix L.

Only three soil samples were collected, from two locations, because refusal was reached at approximately 9 feet. Refusal was encountered at each TerraProbe point prior to reaching the water table. No BTEX or TPHC were detected in any of the soil samples collected (Table 6.16-1; see Figure 6.16-2). Because each of the TerraProbe points met refusal before encountering groundwater, soil-gas samples were collected between 8 and 9 feet from all 10 proposed points. Two soil-gas samples were collected from TP-04. These depths were estimated to be at or below the bottom of the former UST. All of the soil-gas samples were analyzed for BTEX, only. No BTEX was detected in the soil-gas sample collected from SA 43Q (see Table 6.16-1; Figure 6.16-3).

6.16.4 Preliminary Human Health Risk Assessment

No abandoned UST(s) was detected during the geophysical survey conducted at SA 43Q. Field analysis of three TerraProbe soil samples revealed no measurable concentrations of BTEX to a depth of 16 feet. TPHC was not detected above the method detection limit in any of these samples. Eleven TerraProbe soil-gas samples were collected, and no measurable concentrations of BTEX were encountered. There should be no significant risk to public health from soil contamination at SA 43Q.

6.16.5 Conclusions and Recommendations

The objective of the field sampling program at SA 43Q was to determine if residual soil contamination was present at this historic gas station. Based on the results of the field investigation program and a human health PRE, it does not appear that the past activities at SA 43Q have adversely impacted the soil or the groundwater quality. Since the investigation has focused on the subsurface, no ecological PRE was conducted. Therefore, NFA is recommended at this historic gas station.

ABB Environmental Services, Inc.

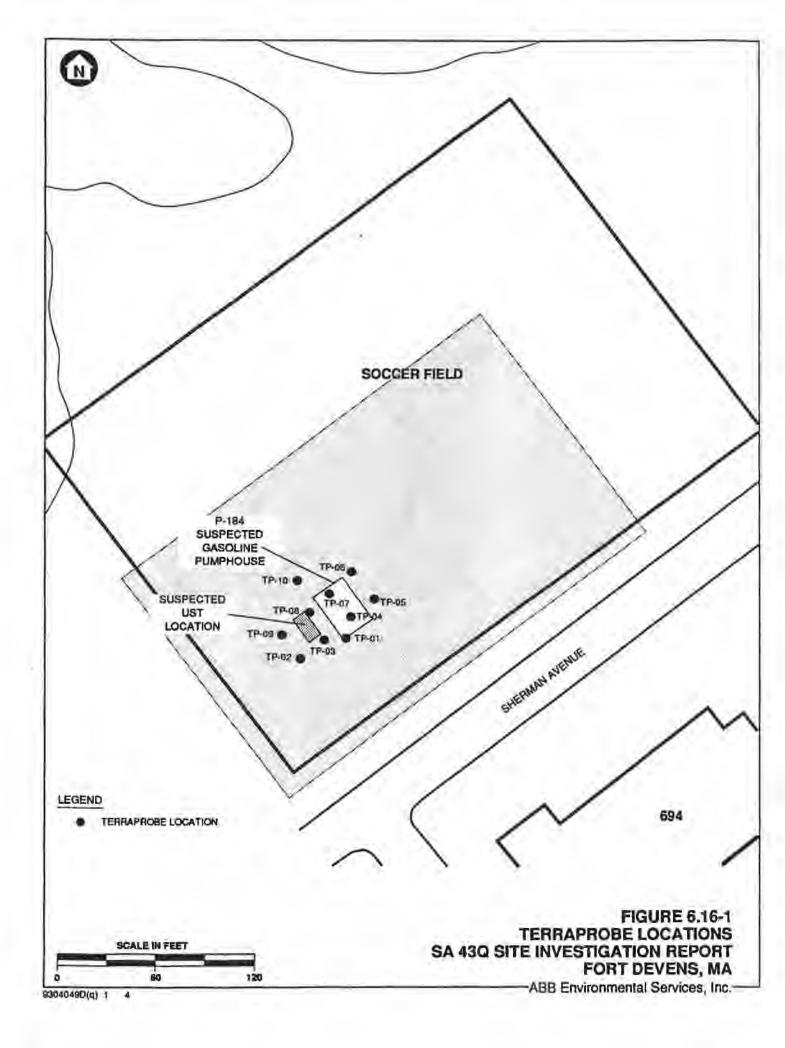
W0099521_M80

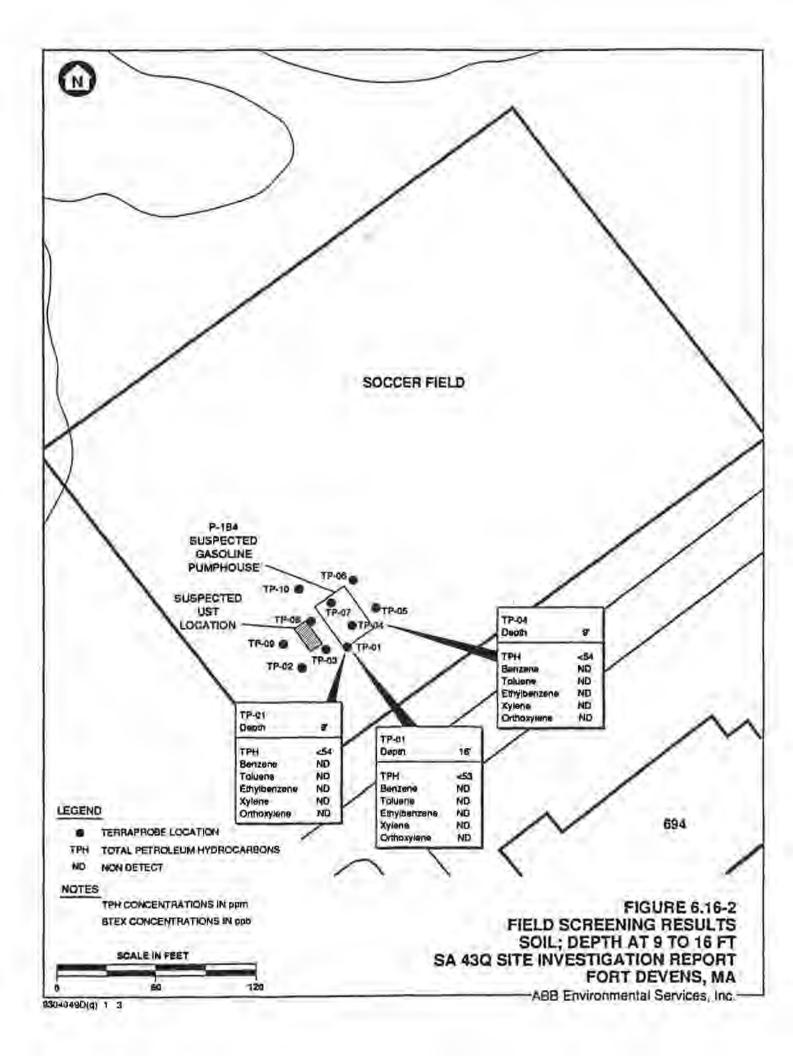
TABLE 6.16-1 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE Q

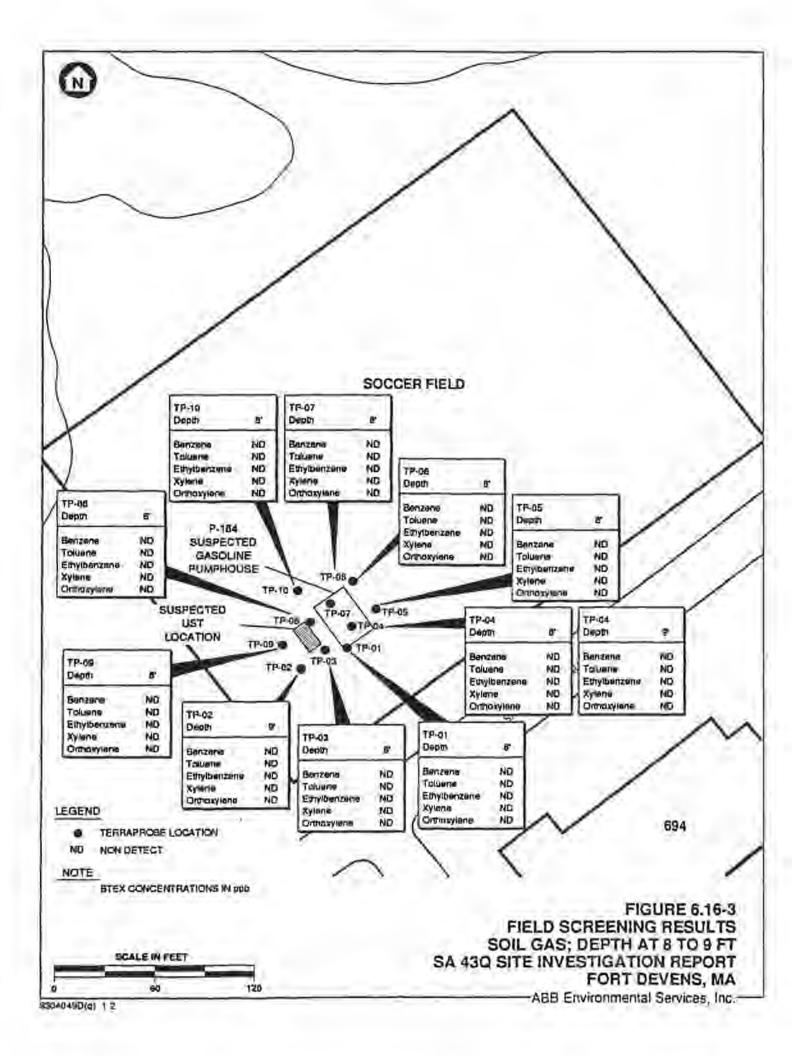
SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	TPH ppm	TOTAL BTEX ppb	BEN*	TOL*	E-BEN* ppb	M/P XYL** ppb	O-XYL* ppb	COMMENTS
43TSQ01XX901XF	430	SOIL	TP-01	9	<54	0	ND	ND	ND	ND	ND	
43TSQ01X160LXF	43Q	SOIL	TP-01	15	<53	0	ND	ND	ND	ND	ND	
43TSQ04XX901XF	430	50IL	TP-04	9	<54	0	ND	ND	ND	ND	ND	
437GQ01XX801XF	43Q	GAS	TP-01	8	NA	0	ND	ND	ND	ND	ND	
43TGQ02XX901XF	430	GAS	TP-02	9	NA	0	ND	ND	ND	ND	ND	
43TGQ03XX801XF	43Q	GAS	TP-03	8	NA	D	ND	ND	ND	ND	ND	
43TGQ04XX801XF	43Q	GAS	TP-04	ő	NA	Q	ND	ND	ND	ND	ND	
43TGQ04XX901XF	430	GAS	TP-04	9	NA	0	ND	ND	ND	ND	ND	
431GQ05XX801XF	43Q	GAS	TP-05	B	NA	0	ND	ND	ND	ND	ND	
43TGQ06XX801XF	43Q	GAS	TP-05	8	NA	0	ND	ND	ND	ND	ND	
43TGQ07XX801XF	430	GAS	TP07	8	MA	0	ND	ND	ND	ND	ND	
43TGQ08XX801XF	430	GAS	TP-08	8	ŇA	Q	ND	ND	ND	ND	ND	
43TGQ09XX80UXF	430	GAS	·TP>-09	8	NA	0	ND	ND	ND	ND	ND	-
43TGQ10XX80EXF	430	GAS	TP-10	8	NA.	0	ND	ND	ND	ND	DIN	

NOTES:


* = ND denotes a non detect or concentrations below 5 ppb


** = ND denotes a non detect or concentrations below 10 pph


= Study Area

NA = Not applicable

GAS = Soil gas

6.17 STUDY AREA 43R

6.17.1 Study Area Background and Conditions

The structure of the historic gas station at SA 43R consisted of a pump island and a small gasoline pumphouse. Based on available documentation, the gas station at SA 43R was a Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available of the decommissioning of the gas station or the removal of the associated UST. This historic gas station was located on the northern side of Sherman Avenue across from the existing Building 696 and approximately 600 feet northeast of SA 43Q (Figure 6.17-1). Presently, the area around where SA 43R was located is a grassy area bordered on the south-southwest by a parking lot and Sherman Avenue (see Figure 6.17-1).

6.17.2 Study Area Investigation Program Summary

The field investigation program consisted of surficial geophysical surveys, TerraProbe points to collect subsurface soil and soil-gas samples, field analysis of these soil and soil-gas samples, and one soil boring to collect soil samples for laboratory analysis.

The surficial geophysical program consisted of a metal detector, magnetometer, and GPR survey. This program was designed to determine if any abandoned UST(s) were present at this site. The metal detector and magnetometer surveys covered an area approximately 250 feet long and 150 feet wide, while the GPR survey was used to investigate magnetic anomalies detected in the other two surveys (see Figure 6.17-1).

A total of two soil samples were collected from two TerraProbe points, and one soil-gas sample was collected from each of the 10 TerraProbe points. The soil samples were analyzed in the field for BTEX and TPHC, while the soil-gas samples were analyzed for BTEX, only (see Figure 6.17-1).

ABB Environmental Services, Inc.

W0099521.M80

One soil boring (43R-92-01X) was drilled through the UST excavation, and two subsurface soil samples were collected for laboratory analysis. The samples were analyzed for VOCs, TPHC, and lead.

6.17.3 Field Investigation Results and Observations

Only three soil samples were collected from 43R-92-01X; the soil below the UST excavation consisted of poorly graded sand with gravel grading to a sandy silt. The groundwater was encountered at 12 feet bgs. Bedrock was not encountered in this soil boring. The major hydrologic feature on this side of the Main Post is the Nashua River which is located west of SA 43R. Based on this it appears that the groundwater flow in this area would also be to the west.

The geophysical surveys determined that one abandoned UST was present at the site. The UST was added to the installation's tank removal program, and on June 26, 1992 ATEC removed a 5,000 gallon UST. At the time of the removal, tank contents consisted of fuel and sludge (ATEC, 19921). There was no visibly contaminated soil observed in the excavation, and groundwater was not encountered. ATEC performed field screening on 10 soil samples (SS-1 and SS-8) collected from the walls of the excavation at 5 feet to 6 feet, and two soil samples (SS-9 and SS-10) from the bottom of the excavation (Figure 6.17-2). VOC concentrations (measured by PID in soil headspace) ranged from 0.1 to 17.0 ppm, and TPHC levels (measured on an NDIR) ranged from 9.9 to 90.3 ppm (ATEC, 19921) (Table 6.17-1). One composite soil sample was collected from the bottom of the excavation by ABB-ES and submitted for laboratory analysis at ABB-ES' Wakefield, Massachusetts laboratory. The results of this analysis indicated a TPHC concentration of 168 ppm (see Table 6.17-1). Based on the results of ATEC's sampling and screening, the soils in the excavation were deemed to be uncontaminated and the excavation was backfilled (ATEC, 1992l). However, based on the results of the sample collected and analyzed by ABB-ES, an additional investigation was conducted to confirm the nature and distribution of fuel-related contamination detected in the bottom of the abandoned UST excavation.

After the excavation was backfilled 10 TerraProbe points were advanced at SA 43R (see Figure 6.17-1). Only two soil samples were collected due to the dense soil, and subsurface obstructions. No BTEX or TPHC were detected in these soil samples (Figure 6.17-3). Groundwater was not encountered in the first

ABB Environmental S	ervices,	INC.
---------------------	----------	------

W0009521.M80

two TerraProbe points so 10 soil-gas samples were collected from the 5 foot depth interval from 10 TerraProbe points. This depth was chosen due to the dense soil and subsurface obstruction encountered. BTEX was not detected in any of the soil-gas samples collected (Table 6.17-2; Figure 6.17-4).

Soil boring 43R-92-01X was drilled through the middle of the backfilled UST excavation in an attempt to reach the water table directly below the excavation. Groundwater was encountered at 12 feet, and soil samples were collected for laboratory analysis from depths 11 feet to 13 feet and 156 feet to 17 feet bgs. No VOCs or TPHC were detected in either sample and lead was present below the established Fort Devens background concentration (Table 6.17-3; Figure 6.17-5).

6.17.4 Preliminary Human Health Risk Evaluation

A 5,000 gallon UST at SA 43R was discovered by ABB-ES and removed by ATEC during the SI field investigation. The groundwater table was encountered at 12 feet. Prior to backfilling, ATEC collected 10 soil samples from the excavation walls which were screened in the field for TPHC by the NDIR method, and analyzed for TPHC in the laboratory. TPHC levels ranged from 10 ppm to a maximum value of 90 ppm on the NDIR, and from <10 ppm to 63 ppm in the laboratory. The TPHC level in a confirmatory soil sample collected by ABB-ES for TPHC analysis by USEPA Method 418.1 was 168 ppm. The excavation was backfilled by ATEC and ABB-ES conducted follow-up SI activity.

Field analysis of two TerraProbe soil samples in the unsaturated zone revealed no measurable concentrations of BTEX or TPHC to a depth of 15 feet. Ten TerraProbe soil-gas samples were collected, and no measurable concentrations of BTEX were encountered. A confirmatory boring by ABB-ES supports ABB-ES' field analysis results. Soil samples at 11 feet and 15 feet in the boring through the former UST location (43R-92-01X) showed no residual TPHC contamination. Lead was detected at concentrations below site-specific background. Comparing the TPHC results to the calculated risk-based commercial/industrial concentration value of 1,700 μ g/g for gasoline indicates that there should be no significant risk to public health from soil contamination at SA 43R.

ABB Environmental Services, Inc.

W0099521 M80

6.17.5 Conclusions and Recommendations

ATECs findings during removal of a UST at SA 43R and ABB-ES' field investigation and human health PRE indicate that little residual petroleum contamination exists in soils and that it poses no significant risk to public health. Since the investigation has focused on the subsurface, no ecological PRE was conducted. Therefore, no further action is recommended at this historic gas station.

ABB Environmental Services, Inc.

W0099521.M80

TABLE 6.17-1 ATEC/ABB-ES FIELD SCREENING RESULTS SA 43R - HISTORIC GAS STATIONS

SAMPLE NO.	FIELD SC	REENING	LABORATORY
	PID (ppm)	NDIR (ppm)	TPHC (ppm)
SS-1	0.1	18	N/A
SS-2	1.5	53	N/A
SS-3	0.2	28.3	N/A
SS-4	1.1	22.1	N/A
SS-5	17	41.7	N/A
SS-6	1 1	9,9	N/A
SS-7	1.8	13.9	N/A
SS-8	0.5	31.3	N/A
SS-9	5.2	90.3	N/A
SS-10	0.8	51.3	NA
LSS-1	N/A	N/A	< 10
LSS-2	N/A	N/A	63
XRE-92-01X	N/A	N/A	168

SITE INVESTIGATION REPORT FORT DEVENS, MA

NOTES:

SS = ATEC FIELD SCREEN SOIL SAMPLE LSS = ATEC LABORATORY SOIL SAMPLE XRE-92-01X = ABB-BS COMPOSITE LABORATORY SOIL SAMPLE N/A = NOT APPLICABLE

TABLE 6.17-2 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE R

SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feet)	TPH ppm	TOTAL HTEX ppb	BEN"	TOL.	E-BEN* ppb	M/P XYL** ppb	0-ХҮІ.* ррb	COMMENTS
43TSR01X1501XF	438	SOIL	TP-01	15	<54	0	ND	ND	ND	ND	ND	*** PHC's Detected
43TSR02X150LXF	43R	SOIL	TP-02	15	<55	0	ND	ND	ND	ND	ND	*** PHC's Detected
43TGR0iXX50LXF	43R	GAS	TP-01	5	NA	0	ND	ND	ND	ND	ND	
43TGR02XX50LXF	43R	GAS	TP-02	5	NA	ŋ	ND	ND	ND	ND	ND	
43TGR06XX501XF	43R	GAS	TP-03	5	NA	đ	ND	ND	ND)	ND	MD	
43TGR04XX501XF	43R	GAS	TP-04	5	NA	0	ND	ND	ND	ND	ND	
43TGR05XX501XF	43R	GAS	TY-05	5	NA	.0	ND	ND	ND	ND	ND	
43TGR06XX501XF	43R	GAS	TF-06	5	NĂ	.0	ND	ND	ND	ND	ND	
43TGR07XX501XF	43R	GAS	TP-07	5	NA	0	ND	ND	ND	ND	ND	
43TGR08XX501XF	43R	GAS	TP-08	5	NA	-0	ND	ND	ND	ND	ND	
43TGR09XX501XF	43R	GAS	·m-10	5	NĂ	. 0	ND	ND	ND	ND	ND	
43TGR 10XX501XF	43R	GAS	TP-10	5	NA	ß	ND	ND	ND	ND	ND	-

NOTES.

* = ND denotes a non detect or concentrations below 10 ppb-

** = ND denotes a non detect or concentrations below 5 pph

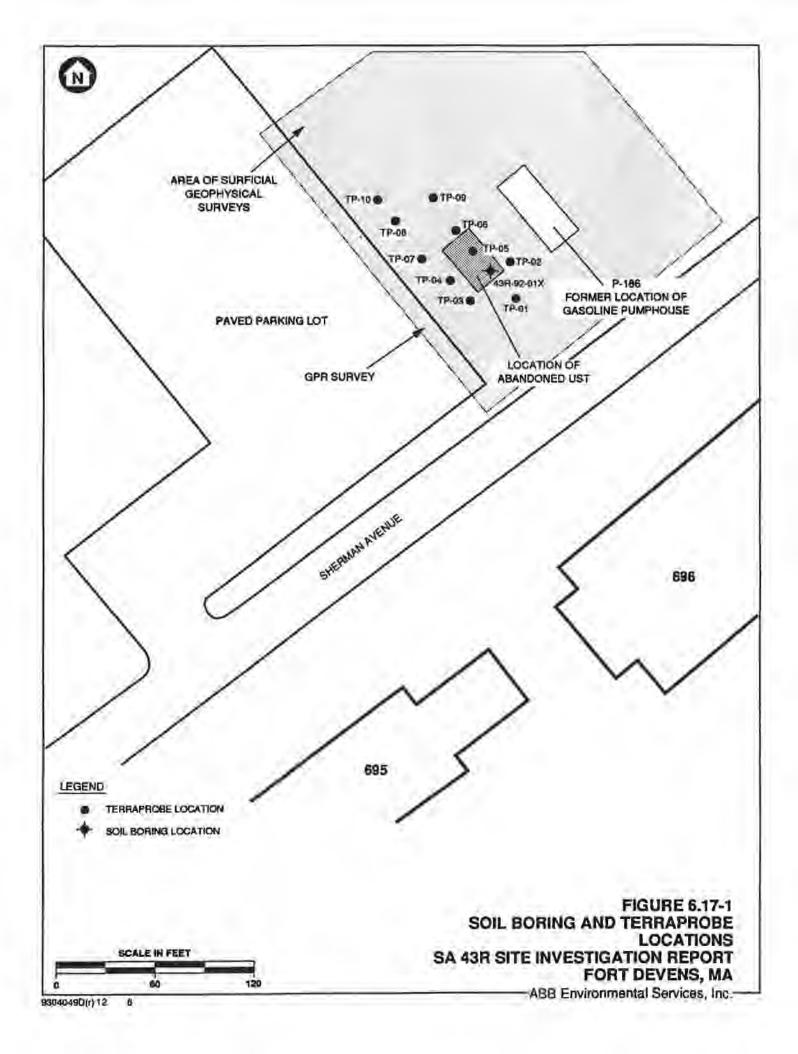
*** = Detection of Noncalibrated Petroleum Hydrocarbon Peaks

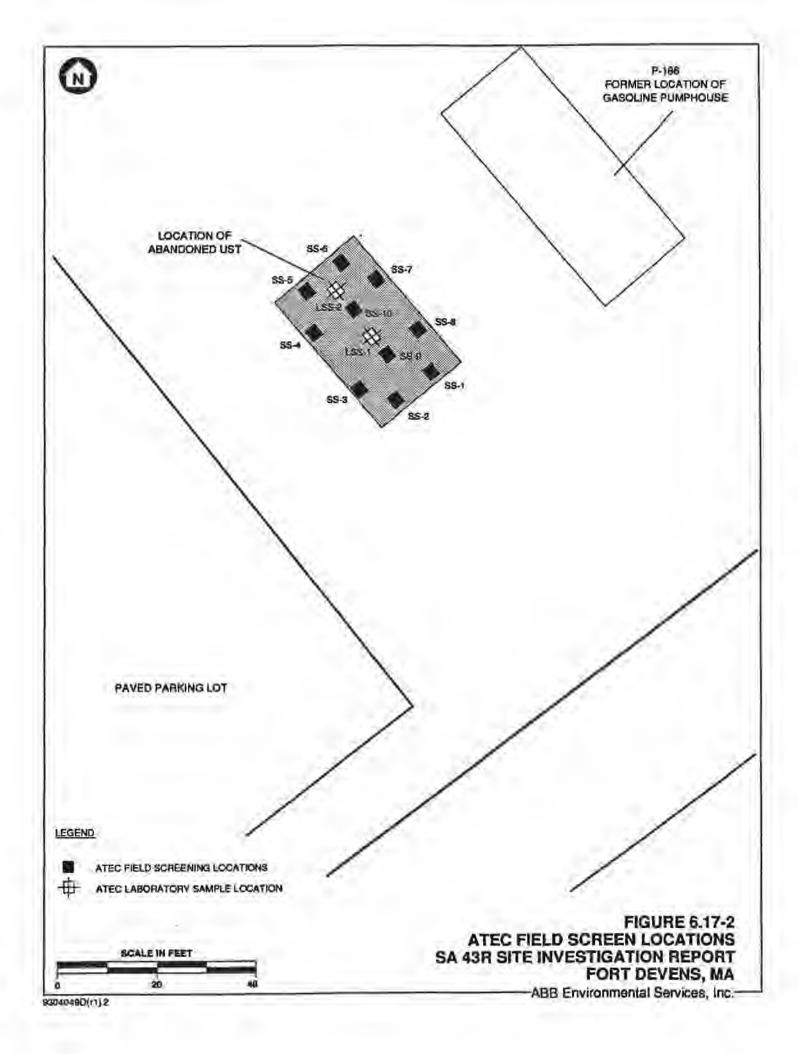
= Study area

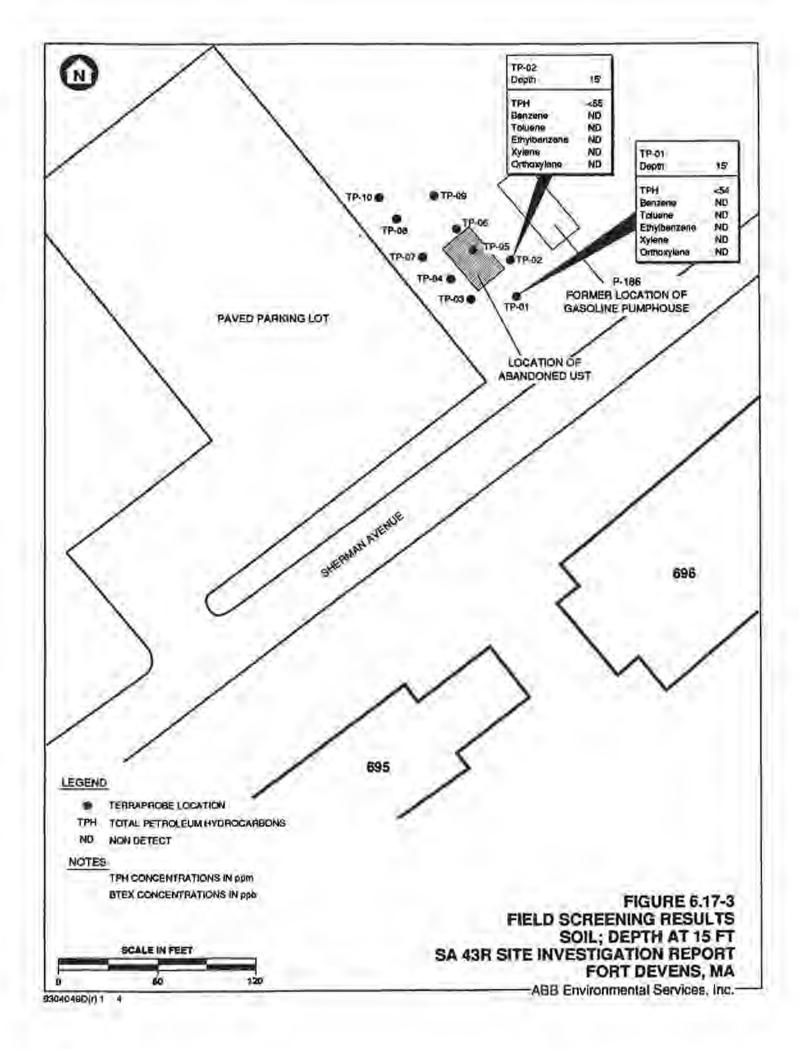
GAS = Soil gas

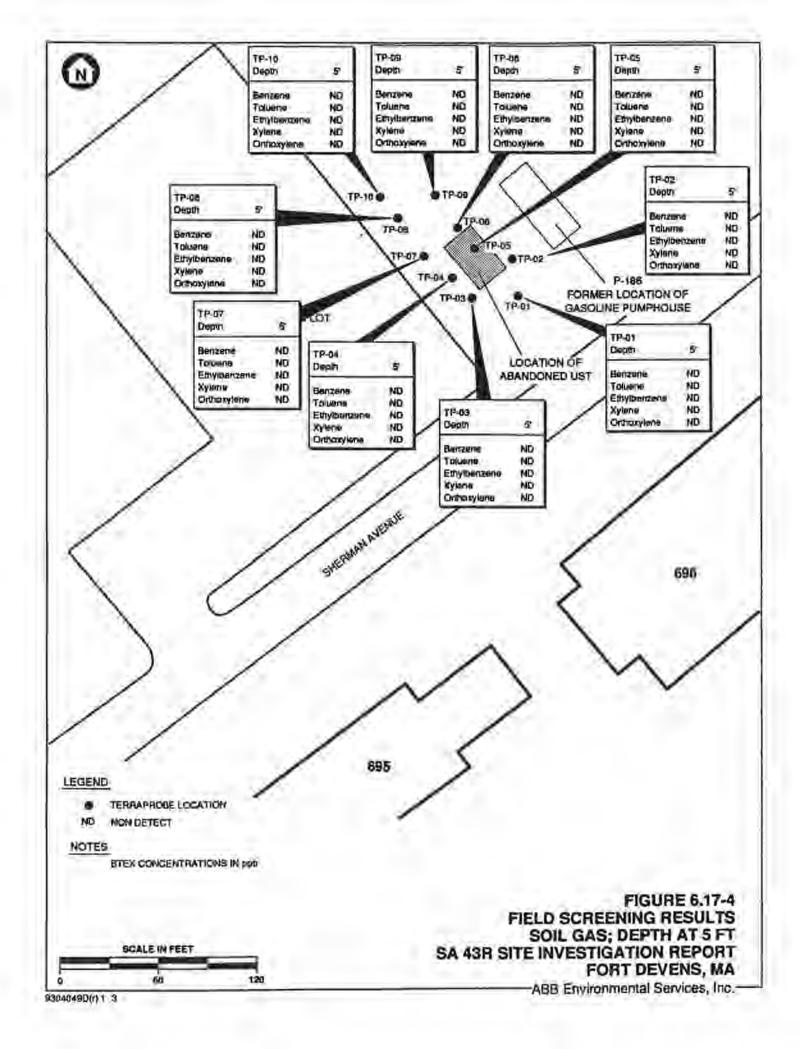
NA = Not applicable

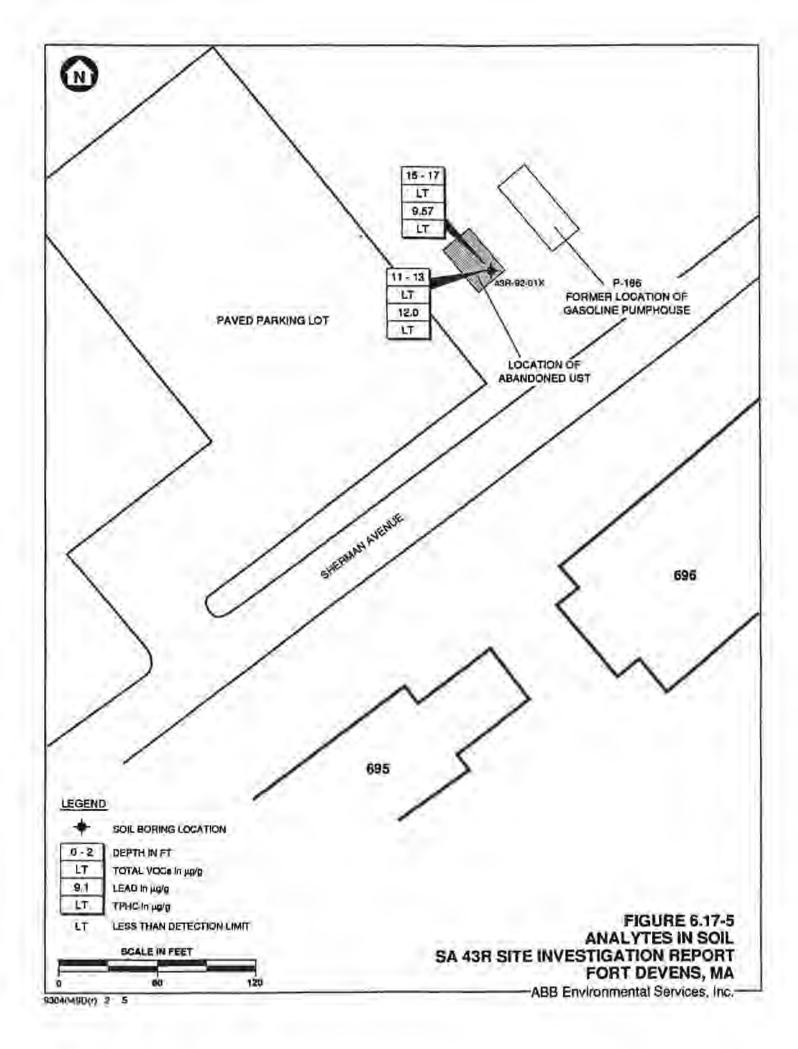
TABLE 6.17-3 INORGANIC AND ORGANIC COMPOUNDS IN SOIL SA 43R – HISTORIC GAS STATIONS


SITE INVESTIGATION REPORT FORT DEVENS, MA


ANALYTE	BACK -	BORING	43R-92-01X		
	GROUND	DEPTH	11	15	
INORGANICS (ug/g)			1		
LEAD	48.4		12.0	9.57	
OTHER (ug/g)					
TOTAL ORGANIC CARBON			NA	854.0	
TOTAL PETROLEUM HYDROCARBONS			< 27.9	< 27.9	


Ũ.


NOTES:


TABLE LISTS DETECTED ANALYTES ONLY -SEE PROJECT ANALYTE LIST FOR SUMMARY < = LESS THAN DETECTION LIMIT SHOWN NA = NOT ANALYZED

6.18 STUDY AREA 435

6.18.1 Study Area Background and Conditions

The structures of the historic gas station at SA 43S consisted of a pump island and a small gasoline pumphouse. Based on available documentation, the gas station at SA 43S was a Type A station with one 5,000 gallon (or possibly 5,140 gallon) UST located between the gasoline pumphouse and the pump island. The station was used during World War II as a vehicle motor pool to support military operations. The motor pool operations were discontinued during the late 1940s or early 1950s. No records were available of the decommissioning of the gas station or the removal of the associated UST. This historic gas station is located on the portion of the Main Post that is west of the Nashua River. Presently, the area around this historic gas station is used as a storage and training facility for a U.S. Army communication unit. This facility is approximately 15 acres in size. SA 43S was reportedly located on the western side of the training facility. During the field investigation, a concrete fuel spill containment pad was built approximately 50 feet east of the reported location of SA 43S. The area where the gas station was reportedly located is presently a grassy area bordered on the west by Gorgas Street and on the east by an access road (Figure 6.18-1). The entire communications training facility is surrounded by a chain-link fence with a locked gate on the eastern side of the area.

6.18.2 Study Area Investigation Program Summary

The field investigation program consisted of surficial geophysical surveys, 10 TerraProbe points for the collection of subsurface soil and soil-gas samples, and field analysis of the soil and soil-gas samples.

The surficial geophysical program consisted of a metal detector survey, magnetometer survey, and GPR survey. This program was designed to determine if any abandoned UST(s) were present at this site. The metal detector and magnetometer surveys covered a majority of the lawn area around SA 43S while the GPR survey was used to investigate magnetic anomalies detected in the other two surveys (see Figure 6.18-1).

A total of three soil samples were collected from TP-01, and one soil-gas sample was collected from each of 10 TerraProbe points. The soil samples were analyzed

ABB Environmental Services, Inc.

W0099521.M80

SECTION 6

in the field for BTEX and TPHC, while the soil-gas samples were analyzed for BTEX, only.

6.18.3 Field Investigation Results and Observations

The results of the surficial geophysical surveys did not indicate the presence of any abandoned USTs at this site. Results of the surveys are presented in Appendix L.

Three soil samples were collected from location TP-01 in an attempt to reach the water table. No other soil samples were collected from the other nine points, because groundwater was not reached in TP-01. BTEX was not detected in any of the soil samples, TPHC was detected at 140 ppm in the soil samples collected from 21 feet (Table 6.18-1; Figure 6.18-2). Because refusal was met without encountering groundwater, soil-gas samples were collected at eight feet from all 10 TerraProbe points. BTEX was not detected in any of the soil-gas samples collected from SA 43S (see Table 6.18-1; Figure 6.18-3).

6.18.4 Nature and Distribution of Contamination (Field Screening and Laboratory Results)

TPHC was detected in one soil sample; however, no other residual soil or soil-gas contaminants were detected at SA 43S.

6.18.5 Preliminary Human Health Risk Evaluation

No UST(s) was detected by ABB-ES at this location during the geophysical surveys. The groundwater table was not encountered during the SI. Field analysis of three TerraProbe soil samples revealed no measurable concentrations of BTEX to a depth of 21 feet. TPHC was detected above the method detection limit in one of these samples at 21 feet (140 ppm). Ten TerraProbe soil-gas samples were collected, and no measurable concentrations of BTEX were encountered. There should be no significant risk to public health from soil contamination at SA 43S.

6.18.6 Conclusions and Recommendations

The objective of the field sampling program at SA 43S was to determine if residual soil contamination was present at this historic gas station. Based on the

ABB Environmental Services, Inc.

W0099521,M80

results of the field investigation program and human health PRE, it does not appear that the past activities at this site have adversely impacted the soil or groundwater quality. Since the investigation has focused on the subsurface, no ecological PRE was conducted.

TPHC was detected in one soil sample; however, no other residual soil or soil-gas contaminants were detected at SA 43S. Therefore, NFA is recommended at this historic gas station.

ABB Environmental Services, Inc.

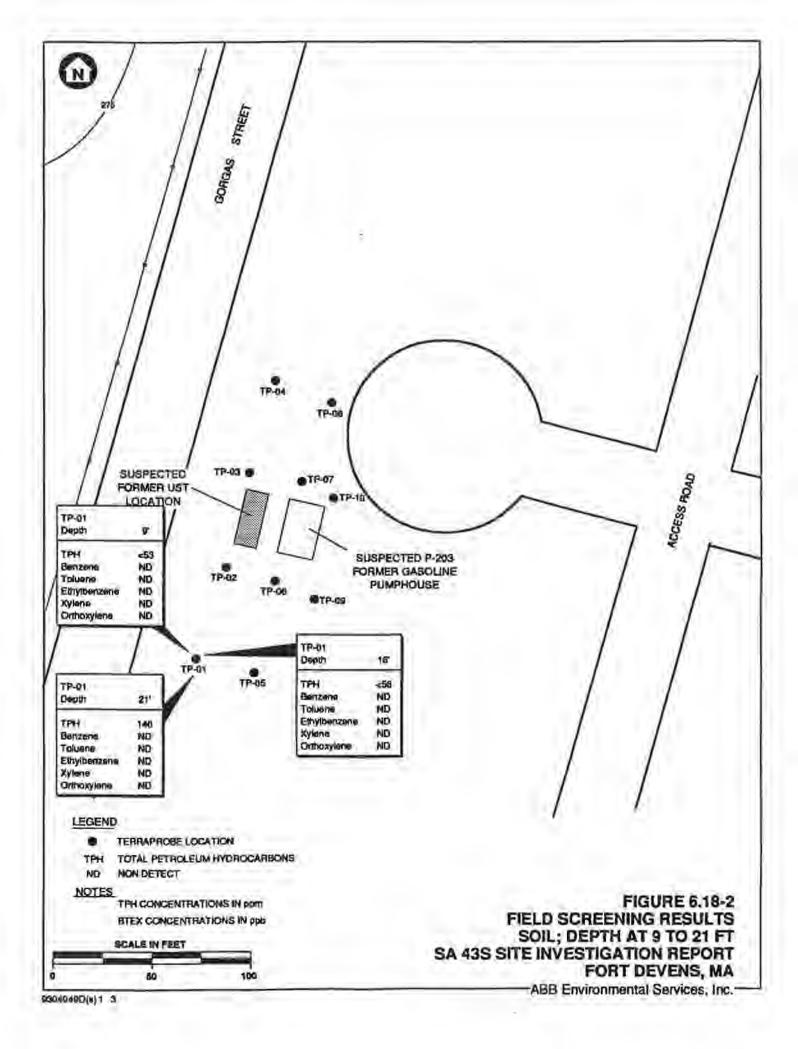
W0099521.M80

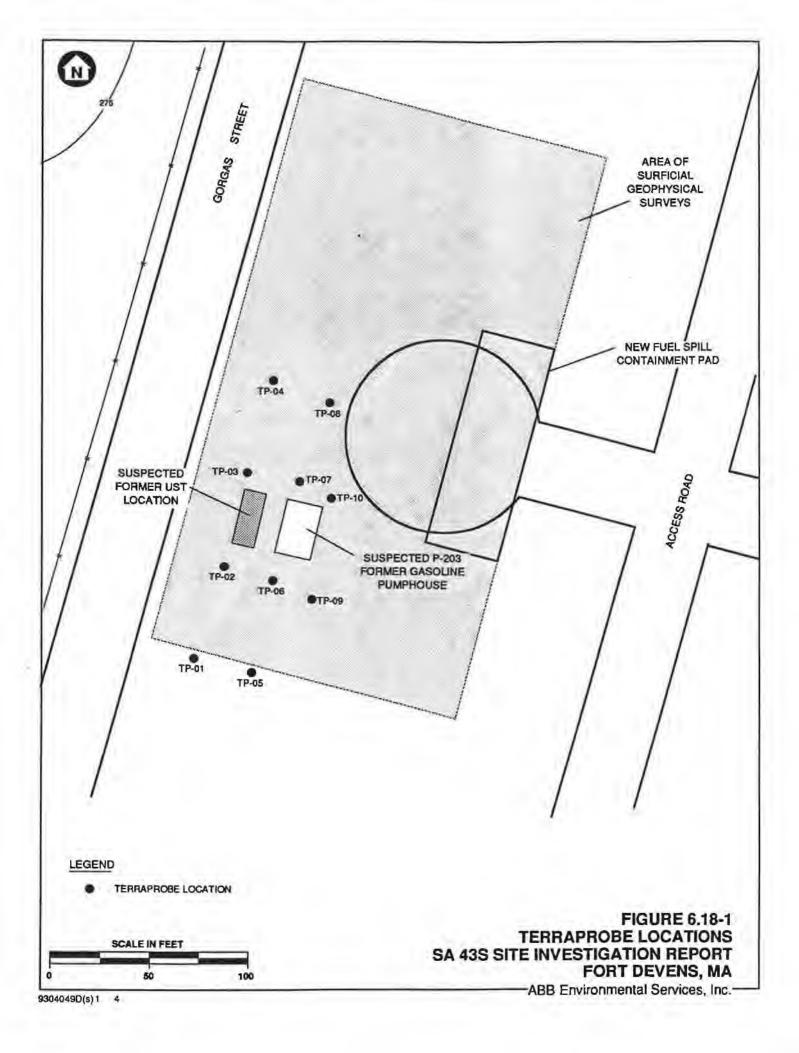
TABLE 6,18-1 FIELD SCREENING RESULTS HISTORIC GAS STATION-SITE S

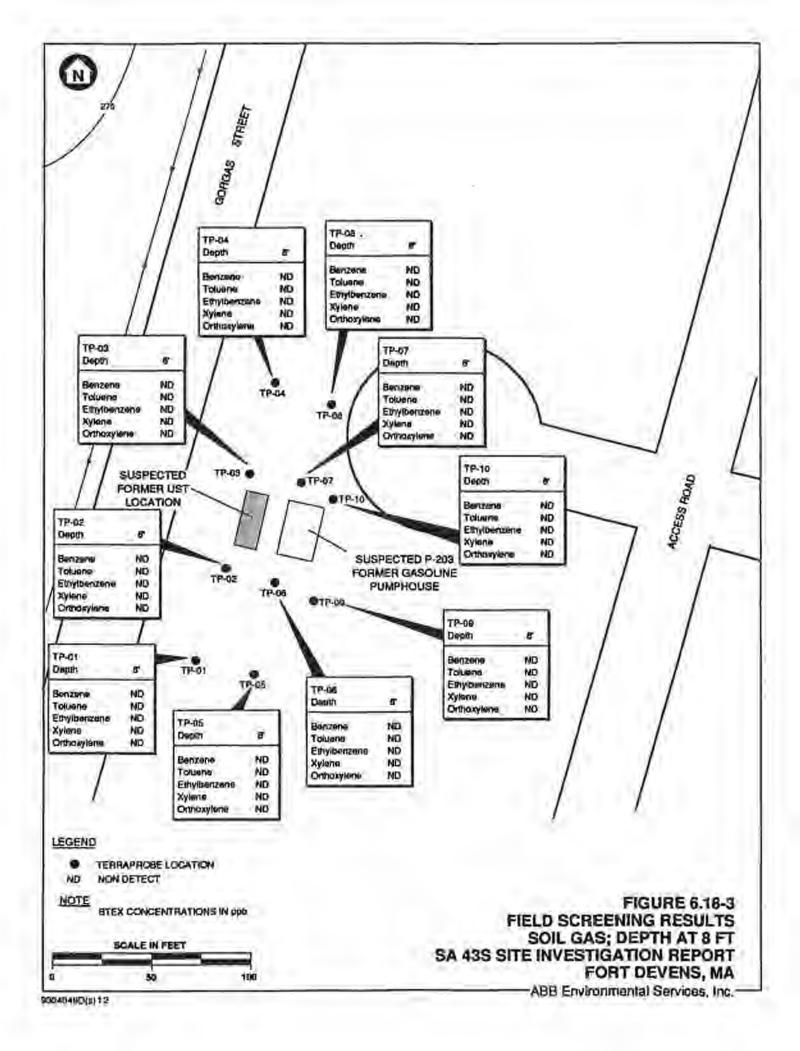
SITE INVESTIGATION REPORT FORT DEVENS, MA

SAMPLE ID	SA#	MEDIUM	SITE ID	DEPTH (feel)	ТРН ррт	TOTAL BTEX ppb	BEN*	TOL.	E-BEN* pph	M/P XYL** ppb	O-XYL* ppb	COMMENTS
4375S0LXX901XF	435	SOIL	TP-01	9	<53	ŭ	ND	ND	ND	ND	ND	
43TSS01X1601XF	435	5011.	TP-01	16	<55	0	ND	ND	ND	ND	ND	
43TSS01X2101XF	435	SOIL	TP-01	-21	140	Q	ND	ND	ND	ND	ND	
43TG501XX801XF	435	GAS	TP-01	8	NA	0	ND	ND	ND	ND	ND	
43TG502XX801XF	435	GAS	TP-02	8	NA	0	ND	ND	ND	ND	ND	
43TGS03XX801XF	435	GAS	TP-03	8	NA	0	ND	ND	ND	ND	ND	
43TGS04XX801XF	435	GAS	TP-04	8	NA	0	ND	ND	ND	ND	ND	
43TGS05XX801XF	43S	GAS	TP-05	8	NA	Ŭ.	ND	ND	ND	ND	ND	
43 FGS06XX801XF	435	GAS	TP-06	8	NA	0	ND	ND	ND	ND	DN	
43TGS07XX801XF	435	GAS	TP-67	8	NA	Ò	ND	ND	MD	ND	ND	
43TG508XX801XF	435	GAS	TP-08	8	NA	0	ND	ND	ND	ND	ND	
43TG509XX801XF	435	GAS	TP-09	8	NA	0	ND	ND	ND	ND	ND	
43TGS10XX801XF	435	GAS	'IP-10	8	NA	0	ND	ND	ND	ND	ND	

NOTES:


* = ND denotes a non detect or concentrations below 5 pph


** = ND denotes a non detect or concentrations below 10 ppb


= Study area.

NA = Not applicable

GAS = Soil gas

AAFES	Army and Air Force Exchange Service
ABB-ES	ABB Environmental Services, Inc.
ACEC	Area of Critical Environmental Concern
AEC	U.S. Army Environmental Center
AEHA	U.S. Army Environmental Hygiene Agency
AMCCOM	Army Armament, Munitions, and Chemical Command
ANL	Argonne National Laboratory
ARAR	Applicable or Relevant and Appropriate Requirement
AREE	Area Requiring Environmental Evaluation
ARF	Analysis Request Form
Army	U.S. Army
AST	above ground storage tank
ATEC	ATEC Environmental Consultants
AWQC	Ambient Water Quality Criteria
bgs	below ground surface
BIS	bis (2-ethylhexyl) phthalate
BRAC	Base Closure and Realignment Act
BTEX	benzene, toluene, etbylbenzene, and xylenes
CaCO ₃	calcium carbonate
CCC	Civilian Conservation Corps
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CLP	Contract Laboratory Program
cm/sec	centimeters per second
CMR	Code of Massachusetts Regulations
CMTC	Civilian Military Training Corps
COC	chain-of-custody
COR	Contracting Officer's Representative
CPC	Chemicals of Potential Concern
CRL	[4] M.
CKL	Certified Reporting Limit
°C	degree Celcius
DCA	1,2-Dichloroethane
DDD	dichlorodiphenyl dichloroethane
	All As in the direct matter (A) the base task the d
DDE	dichlorodiphenyl dichloroethene dichlorodiphenyl trichloroethene

ABB Environmental Services, Inc.

W0099521.M90

*Fdegree FahrenheitDQOData Quality ObjectivesDRMODefense Reutilization Marketing OfficeE&EEcology & Environment, Inc.EAEnvironmental ApplicationsEHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft ² /daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
DRMODefense Reutilization Marketing OfficeE&EEcology & Environment, Inc.EAEnvironmental ApplicationsEHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
DRMODefense Reutilization Marketing OfficeE&EEcology & Environment, Inc.EAEnvironmental ApplicationsEHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
EAEnvironmental ApplicationsEHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft ³ /daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
EHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
EHSIEnvironmental Hazards Specialists InternationalEMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft ³ /daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
EMOEnvironmental Management OfficeER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ER-LEffects Range-LowER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ER-MEffects Range-MedianESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ESEEnvironmental Science and Engineering, Inc.FESAFederal Endangered Species ActFORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
FORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
FORSCOMUnited States Army Forces CommandFSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
FSPField Sampling Planft/ftfeet per footft²/daysquare feet per dayft²/rfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ft/ftfeet per footft²/daysquare feet per dayft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ft²/daysquare feet per dayft/yrfeet per yearGCgas chromatographgpmgallons per minuteGPRground-penetrating radarGZARGZA Remediation, Inc.	
ft/yr feet per year GC gas chromatograph gpm gallons per minute GPR ground-penetrating radar GZAR GZA Remediation, Inc.	
gpm gallons per minute GPR ground-penetrating radar GZAR GZA Remediation, Inc.	
gpm gallons per minute GPR ground-penetrating radar GZAR GZA Remediation, Inc.	
GPR ground-penetrating radar GZAR GZA Remediation, Inc.	
GZAR GZA Remediation, Inc.	
HASP Health and Safety Plan	
and another sector proceedings and and a	
HMX cyclotetramethylenetetranitramine	
HSA hollow-stem augers	
ID inside diameter	
IDW investigation-derived waste	
IR infrared	
IRDMIS Installation Restoration Data Management Inform System	ation
ISA Initial Site Assessment	
Kurz Kurz Associates	

ABB Environmental Services, Inc.

W0099521,M80

LOEL	Lowest Observed Effects Level
LUST	leaking underground storage tank
MAAF	Moore Army Airfield
MADEP	Massachusetts Department of Environmental Protection
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goals
MCP	Massachusetts Contingency Plan
MEP	Master Environmental Plan
MESA	Massachusetts Endangered Species Act
mg/g	milligrams per gram
mg/day	milligrams per day
mg/kg/day	milligrams per kilogram per day
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
ml	milliter
MMCL	Massachusetts Maximum Contaminant Levels
MNHP	Massachusetts Natural Heritage Program
mph	miles per hour
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NBC	Nuclear, Biological, and Chemical
ND	non detect
NDIR	Non-Dispersive Infrared
NFA	no further action
NGVD	National Geodetic Vertical Datum
NOAA	National Oceanic and Atmospheric Administration
NOAEL	No Observed Adverse Effects Level
NWR	National Wildlife Refuge
NYSDEC	New York State Department of Environmental Conservation
OD	outside diameter
ORSG	Office of Research and Standards Guidelines
OSHA	Occupational Safety and Health Administration
PAH	polynuclear aromatic hydrocarbon
PAL	Project Analyte List
	the state of the s

ABB Environmental Services, Inc.

W0099521.M80

PARCC	precision, accuracy, representativeness, completeness, and comparability
PC	personal computer
PCB	Polychlorinated biphenyl
PCE	Tetrachloroethene
PCL	protective contaminant level
PCR	performance and cost report
PID	photoionization detector
POL	Petroleum, Oil, and Lubricant
POP	Project Operations Plan
ppb	parts per billion
ppm	parts per million
PQLs	Practical Quantitation Limits
PRC	Project Review Committee
PRE	Preliminary Risk Evaluation
PRI	Potomac Research, Inc.
psi	pound-per-square-inch
PVC	polyvinyl chloride
PX	Post Exchange
QA	quality assurance
QAC	Quality Assurance Coordinator
QAPP	Quality Assurance Project Plan
QC	quality control
RAS	Routine Analytical Services
RCRA	Resource Conservation and Recovery Act
RDX	cyclonite
RI/FS	Remedial Investigation/Feasibility Study
ROTC	Reserve Officer Training Corps
RPD	relative percent difference
SA	Study Area
SAP	Sampling and Analysis Plan
SARA	Superfund Amendments and Reauthorization Act
SAS	Special Analytical Services
SCS	Soil Conservation Service
SI	Site Investigation
10	

ABB Environmental Services, Inc.

W0099521.MB0

SQC	Sediment Quality Criteria
SSI	Supplemental Site Investigation
SVOC	semivolatile organic compound
SWMUs	Solid Waste Management Units
TBC	to be considered
TCE	Trichloroethene
TCLP	Toxic Compound Leaching Procedure
TEX	toluene, ethylbenzene, and xylenes
TKN	total Kjeldahl nitrogen
TNT	trinitrotoluene
TPHC	total petroleum hydrocarbons
TRC	Technical Review Committee
TSS	total suspended solids
TOC	total organic carbons
µg/kg	micrograms per kilogram
$\mu g/g$	micrograms per gram
$\mu g/L$	micrograms per liter
μÌ	microliter
USAEC	U.S. Army Environmental Center
USDA	U.S. Department of Agriculture
USEPA	U.S. Environmental Protection Agency
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geologic Survey
UST	underground storage tank
UXO	unexploded ordnance
VOC	volatile organic compound
WPA	Works Progress Administration
2,4-DNT	2,4-dinitrotoluene

ABB Environmental Services, Inc.

W0099521.M80

AAFES (See Army and Air Force Exchange Service)

ABB-ES (see ABB Environmental Services, Inc.)

- ABB Environmental Services, Inc., 1992. "Biological and Endangered Species Baseline Study Fort Devens, Massachusetts - Preliminary Draft"; November.
- ABB Environmental Services, Inc., 1992a. "Final Project Operations Plan for Site Investigations and Remedial Investigations, Fort Devens, Massachusetts"; Data Item A005/A008; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; July.
- ABB Environmental Services, Inc., 1992b. "Site Investigation Work Plan Groups 2 and 7, Fort Devens, Massachusetts, Final Task Order Work Plan", and "Site Investigation Work Plan - Historic Gas Stations, Fort Devens, Massachusetts, Final Task Order Work Plan"; Data Item A004; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; December.
- ABB Environmental Services, Inc., 1992c. "Site Investigation Work Plan -Groups 2 and 7, Fort Devens, Massachusetts, Draft Final Task Order Work Plan"; Data Item A004; prepared for Commander, US Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; September.
- ABB Environmental Services, Inc., 1993a. Site Investigation Data Package -Groups 2 and 7, Fort Devens, Massachusetts; Data Item A009; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; February.
- ABB Environmental Services, Inc., 1993b. "Final Site Investigation Reports"; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; May.

ABB Environmental Services, Inc.

W0099531_M80

- ABB Environmental Services, Inc., 1993c. "Final Site Investigation Work Plan"; Reports; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; August.
- ABB Environmental Services, Inc., 1993d. "Final Group 1A RI Addendum Report"; prepared for Commander, U.S. Army Toxic and Hazardous Materials Agency; prepared by ABB Environmental Services, Inc., Portland, Maine; December.
- AEC see U.S. Army Environmental Center
- Alden, W.C., 1925. "Physical Features of Central Massachusetts"; in Contributions to the Geography of the United States, 1923-1924; U.S. Geological Survey Bulletin 760; pp. 13-106.
- Alpha Analytical Laboratories, 1991. "Certificate of Analysis"; Westborough, MA; April 12.
- ATEC-BC, 1992a. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Diesel, UST No. 0108, Building 3549, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; September 25. [SA 43C]
- ATEC-EC, 1992b. "Post-Removal Report, Underground Storage Tank Closure, (1) 5,000 Gallon, (1) 5,000 Gallon Diesel, UST Nos. 0109/0110, Lot P-171, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; October 15. [SA 43D]
- ATEC-EC, 1992c, "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Gasoline, UST No. 0111, Building 2000, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; September 29. [SA 43E]

W0099521.M80

- ATEC-EC, 1992d. "Post-Removal Report, Underground Storage Tank Closure, 10,000 Gallon Diesel Fuel, UST No. 0016, Building 605, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; May 19, [SA 43H]
- ATEC-EC, 1992e. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Diesel Fuel, UST No. 0084, Building 605, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; May 19. [SA 43H]
- ATEC-EC, 1992f. "Post-Removal Report, Underground Storage Tank Closure, 10,000 Gallon Diesel Fuel, UST No. 0089, Building 605, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; June 4, [SA 43H]
- ATEC-EC, 1992g. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Diesel Fuel, UST No. 0017, Building 606, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; September 25. [SA 431]
- ATEC-EC, 1992h. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Gasoline, UST No. 0112, Building 2446, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; September 24. [SA 43J]
- ATEC-EC, 1992i. "Post-Removal Report, Underground Storage Tank Closure, 1,000 Gallon Waste Oil, UST No. 0055, Building 2446, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; June 8, [SA 43J]

W0099521.M80

- ATEC-EC, 1992j. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Gasoline, UST No. 0113, Building 2514, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; October 8. [SA 43K]
- ATEC-EC, 1992k. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Diesel Fuel, UST No. 0114, P-181/Lake George Street, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; June 8. [SA 43N]
- ATEC-EC, 1992l. "Post-Removal Report, Underground Storage Tank Closure, 5,000 Gallon Diesel Fuel, UST No. 0115, P-185/Sherman Avenue, Fort Devens, Massachusetts"; ATEC File No. 37.07.91.07451; Norwell, MA; prepared for U.S. Army Directorate of Contracting; Fort Devens, Massachusetts; July 14. [SA 43R]
- Army and Air Force Exchange Service, 1973. "Community Center Main Store & Warehouse, Fort Devens, Mass., Demolition Plan (As-Built)"; Drawing No. 73-EN-C-03, Sheet C-3; November 11.
- Barbour, F.A., c. 1941. "Fort Devens, Mass. General layout Plan"; Plan 6101-710.1B; prepared for Construction Division, Office of Quartermaster General; Scale approximately 1:7,000.
- Biang, C.A., R.W. Peters, R.H. Pearl, and S.Y. Tsai, 1992. "Master Environmental Plan for Fort Devens, Massachusetts"; prepared for U.S. Army Corps of Engineers Toxic and Hazardous Materials Agency; prepared by Argonne National Laboratory, Environmental Assessment and Information Sciences Division, Argonne, Illinois; April.
- Biang, C.A., R.W. Peters, R.H. Pearl, and S.Y. Tsai, 1991. "Master Environmental Plan for Fort Devens, Massachusetts"; prepared for U.S. Army Corps of Engineers Toxic and Hazardous Materials Agency; prepared by Argonne National Laboratory, Environmental Assessment and Information Sciences Division, Argonne, Illinois; November.

W0099521.M80

- Biang, C.A., R.W. Peters, R.H. Pearl, and S.Y. Tsai, 1990. "Master Environmental Plan for Fort Devens, Massachusetts"; prepared for U.S. Army Corps of Engineers Toxic and Hazardous Materials Agency; prepared by Argonne National Laboratory, Environmental Assessment and Information Sciences Division, Argonne, Illinois; July 1.
- Bouwer, H., and R.C. Rice, 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifer with Completely or Penetrating Wells"; Water Resources Research: v. 12, pp. 423-428.
- Brackley, R.A. and B.P. Hansen, 1977. "Water Resources of the Nashua and Souhegan River Basins, Massachusetts"; U.S. Geological Survey Hydrologic Investigations Atlas HA-276.
- Butler, B.O., 1992. Report of Blanding's Turtle Study Fort Devens, 1992. Submitted under Research Contract MA HP 925R-05.
- Coffin & Richardson, Inc., 1980. "Oil Pollution Control Facilities, Building 2516, Building 2446/2479, and Consolidated Wash Rack (2692), Fort Devens, Ayer, MA"; File No. 7701-3135; Boston, MA; prepared for U.S. Army Corps of Engineers, New York District, New York, NY; November 20.
- Construction Division, 1941. "Fort Devens Airport, Fort Devens, Massachusetts, A.C. Gasoline Fueling System, Location Plan, Layout Plan and Details"; Office of the Quartermaster General, Plan No. 6101-343; February 26.
- Cook, W. and S.L. Kurz, 1990. "Underground Storage Tank Removals, Fort Devens Military Reservation, Shirley Housing Area and Bldg T-2417, Fort Devens, MA"; prepared by Kurz Associates, Inc., Bridgewater, MA; prepared for Franklin Environmental Services, Inc., Wrentham, MA; December 6.

Corps of Engineers (See U.S. Army Corps of Engineers)

Degraaf, R. M. and D.D. Rudis, 1986. "New England Wildlife: Habitat, Natural History, and Distribution"; USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE-108.

ABB Environmental Services, Inc.

W0099521_M80

- Detrick, C.E., 1991. "Installation Assessment, Fort Devens, Ayer, Massachusetts"; prepared for U.S. Army Toxic and Hazardous Materials Agency; prepared by Environmental Photographic Interpretation Center, Environmental Monitoring Systems Laboratory, Warrenton, VA; September.
- Directorate of Facilities and Engineering, 1977. "Oil Spill Prevention, Control, and Countermeasure Plan"; Fort Devens, MA; June.
- Engineering Technologies Associates, Inc., 1992. "Ground Water Flow Model at Fort Devens, Massachusetts"; prepared for Commander, US Army Toxic and Hazardous Materials Agency; Ellicott City, MD; October 30.
- Environmental Applications, Inc., 1990. "Ft. Devens Tank Replacement Project Final Report, Contract No., DAKF-31-89-C-0761, Vol. I"; prepared for U.S. Army, Fort Devens, MA; Waltham, MA; September.
- Fort Devens Dispatch, 1992. The Army in New England: 75 Years in the Making; Special Edition; Vol. 52, No. 34; September 10.
- Fox, W.A., 1988. Geohydric Study No. 38-26-0325-88, Fort Devens, Massachusetts, 11-19 July, United States Environmental Hygiene Agency, Aberdeen Proving Ground, Maryland.
- Gates, W.C.B., 1987. "Hydrogeologic Assessment Plan No. 38-26-0653-87, Fort Devens, Massachusetts"; U.S. Army Forces Command, Fort Gillem, Forest Park, Georgia; February 10.
- GZA Remediation, Inc., 1990. "Tank Replacement Project, Fort Devens, Massachusetts, Modification p00003, Hydrogeological Investigation, Contract No., DAKF-31-89-C00761"; prepared for U.S. Army, Fort Devens, MA; Waltham, MA; October.
- Hagstrom, G.W., 1977. "Consolidated Post Wash Platform, Fort Devens, Ayer, MA"; Department of the Army Directorate of Facilities Engineering; Fort Devens, MA; Drawing No. 655-2263; August 17.

W0099521.M80

- Hunt, D. and R. Zaremba, 1992. "Floristic Survey with Emphasis on Rare Species, of Fort Devens, Massachusetts, Massachusetts Division of Fish and Wildlife, Boston, MA.
- Hvorslev, M.J., 1951. "Time Lag and Soil Permeability in Groundwater Observations"; U.S. Anny Corps of Engineers Waterways Experiment Station Bulletin; Vol. 36; Vicksburg, Mississippi.
- Jahns, R.H., 1953. "Surficial Geology of the Ayer Quadrangle, Massachusetts": Scale 1:31,680; U.S. Geological Survey.
- Jones, B., 1991. "Soil Excavation at Bldg. 2650, 2417 and Shirley Housing"; Memorandum to the Record from Environmental Specialist, Environmental Management Office, Fort Devens, MA; May 15.
- Koteff, C., 1966. "Surficial Geologic Map of the Clinton Quadrangle, Worcester County, Massachusetts"; U.S. Geological Survey Map GQ-567.
- Kurz Associates, Inc., 1991. "Underground Storage Tank Removal and Related Environmental Investigations, Fort Devens Military Reservation, Harvard, Massachusetts"; prepared for Franklin Environmental Services, Inc., Wrentham, MA; Bridgewater, MA; January.
- Long, E.R. and L.G. Morgan, 1990. "The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program"; NOAA Technical Memorandum NOS OMA 52.
- Longest, H.L., II, 1988. "Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites"; U.S. Environmental Protection Agency; OSWER Directive 19355.4-02, September 7.
- MADEP (See Massachusetts Department of Environmental Protection)
- Marcoa Publishing Inc., 1990. Welcome to Fort Devens, A Community of Excellence; San Diego, CA.
- Massachusetts Department of Environmental Protection, 1988. "Massachusetts Contingency Plan"; 310 CMR 40.00 et seq.

W0099521.M80

- Massachusetts Department of Environmental Protection, 1988. "Massachusetts Ground Water Quality Standards"; 314 CMR 6.00 et seq.
- Massachusetts Department of Environmental Protection, 1990. "Massachusetts Surface Water Quality Standards"; 314 CMR 4.00 et seq.
- Massachusetts Natural Heritage Program, 1990. Massachusetts Division of Fisheries and Wildlife, Boston, MA.
- McHugh, K.E., R.F. Bukoski, and S.W. Butcher, 1990. "Estimation of Remaining Buildings 2648 and 2650 No. 2 Fuel Oil Contamination, Fort Devens"; prepared by Kurz Associates, Inc.; Bridgewater, MA; prepared for Franklin Environmental Services, Inc.; September 5.
- McMaster, B.N., J.D. Bonds, J.H. Wiese, K.L. Hatfield, J.B. Holly, L.C. Carter, E.A. Knauft, and K.A. Civitarese, 1982. "Installation Assessment of Headquarters Fort Devens, Report No. 326"; prepared for Commander, Headquarters Fort Devens and for U.S. Army Toxic and Hazardous Materials Agency; prepared by Environmental Science and Engineering, Inc.; Gainesville, FL; August.
- Miller, G., 1992. "Response and Clean Up of the 17 October 1992 Diesel Fuel Spill at the 756th Engineering Battalion Motor Pool"; Memorandum for Record; Environmental Management Office, Fort Devens, MA; November 19.
- New York State Department of Environmental Conservation (NYSDEC), 1989. "Sediment Criteria - December 1989"; Bureau of Environmental Protection, Division of Fish and Wildlife.
- Peck, J.H., 1975. "Preliminary Bedrock Geologic Map of the Clinton Quadrangle, Worcester County, Massachusetts"; U.S. Geological Survey Open-File Report 75-658; Scale 1:24,000; text and 3 maps.
- Peck, J.H., 1976. "Silurian and Devonian Stratigraphy in the Clinton Quadrangle, Central Massachusetts"; in Contributions to the Stratigraphy of New England; Geological Society of America Memoir 148; pp. 241-252.

W0099521.M80

- Pierce, J., 1991. Letter from Chief, Environmental Management Office, Fort Devens, MA; to David Salvador, Massachusetts Department of Environmental Quality Engineering, Worcester, MA; May 15.
- Poole, T., 1992. Personal Communication from Forester, DEH Technical Services Branch, to ABB Environmental Services, Inc., Fort Devens.
- Poole, T., 1993. Personal Communication from Forester, DEH Technical Services Branch, to ABB Environmental Services, Inc., Fort Devens.
- Potomac Research Inc. (PRI), 1993. "User's Manual, IRDMIS PC Data Entry and Validation Subsystem"; Version 5.0; prepared for U.S. Army Toxic and Hazardous Materials Agency; Aberdeen Proving Ground, MD; February.
- Robinson, G.R., Jr., 1978. "Bedrock Geologic Map of the Pepperell Shirley, Townsend Quadrangles, and Part of the Ayer Quadrangle, Massachusetts and New Hampshire"; U.S. Geological Survey; Miscellaneous Field Studies Map MF-957.
- Robinson, P., and R. Goldsmith, 1991. "Stratigraphy of the Merrimack Belt, Central Massachusetts"; in "The Bedrock Geology of Massachusetts; U.S. Geological Survey Professional Paper 1366-G; pp. 61-637.
- Russell, S.L., and R.W. Allmendinger, 1975. "Interim Geologic Map of the Shirley Quadrangle, Massachusetts"; U.S. Geological Survey Open File Report 76-267.
- Smith, R.L., 1992. "Risk-Based Concentration Table, Fourth Quarter 1992"; U.S. Environmental Protection Agency, Region III; Philadelphia, Pennsylvania; October 27.
- Soil Conservation Service, 1989. Untitled Middlesex County field sheet #19; U.S. Department of Agriculture; Middlesex Conservation District; January 5.
- Soil Conservation Service, 1991. "Middlesex County Massachusetts Interim Soil Survey Report"; U.S. Department of Agriculture; Middlesex Conservation District; Westford, MA (includes soil sheet #19).

W0899521.M80

- U.S. Army Environmental Center, 1990. "Quality Assurance Manual"; Aberdeen Proving Ground, MD; January.
- U.S. Army Environmental Center, 1993. "Fact Sheet: Fort Devens Installation Restoration Program (IRP) and BRAC 91 Environmental Restoration Impact"; March.
- U.S. Department of the Army, 1979. "Environmental Impact Statement, Fort Devens Mission Activities, Fort Devens, Massachusetts"; Headquarters, U.S. Army Forces Command; June 30; Revised May 1, 1980.
- U.S. Engineer Office, 1952. "Master Plan, Fort Devens, Ayer, Mass., Detail Site Plan, Building Use Map"; Sheets Nos. 6 through 21; Boston, MA; Files X100-109/705 through X100-109/720.
- USEPA (See U.S. Environmental Protection Agency)
- U.S. Environmental Protection Agency, 1983. "Guidelines for Deriving Numerical Water Quality Criteria for the Protection of Aquatic Life and Its Uses." Draft; July 5.
- U.S. Environmental Protection Agency, 1984. "Ambient Water Quality Criteria for Lead"; EPA 440/5-84-027.
- U.S. Environmental Protection Agency, 1986. "Test Methods for Evaluating Solid Waste"; Office of Solid Waste and Emergency Response, Washington, D.C., November.
- U.S. Environmental Protection Agency, 1988. "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA"; Interim Final; USEPA Office of Solid Waste and Emergency Response Directive OSWER 9335.3-01; Washington, D.C.; March.
- U.S. Environmental Protection Agency, 1988a. "Interim Sediment Criteria Values for Nonpolar Hydrophobic Organic Contaminants"; Office of Water Regulations and Standards; SCD No. 17; Washington, D.C.

W0099521.M80

2

- U.S. Environmental Protection Agency, 1988b. "Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA", USEPA Office of Emergency and Remedial Response, EPA/540/G-89/004, 'OSWER Directive 9355.3-01; October.
- U.S. Environmental Protection Agency, 1988c. "Ambient Water Quality Criteria for Aluminum"; EPA 440/5-86-008; August.
- U.S. Environmental Protection Agency, 1989. Interim Sediment Criteria Values for Nonpolar Hydrophobic Organic Contaminants, USEPA, Office of Water Regulations and Standards, Washington, D.C.
- U.S. Environmental Protection Agency (USEPA), 1991. "Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). U.S. Environmental Protection Agency, Office of Emergency and Remedial :Response, Washington, D.C., December.
- U.S. Environmental Protection Agency and U.S. Department of the Army, 1991a. "In the Matter of: The U.S. Department of the Army, Fort Devens Army Installation, Fort Devens, Massachusetts; Federal Facility Agreement under CERCLA Section 120"; May 13.
- U.S. Environmental Protection Agency, 1992. Memorandum to Ann-Marie Burke, USEPA Region I from Joan S. Dollarhide, Superfund Health Risk Technical Support Center, titled "Master List Responses for 2QTR 1992"; June 12.
- U.S. Environmental Protection Agency, 1992a. "Drinking Water Regulations and Health Advisories." Office of Drinking Water, Washington, D.C.
- U.S. Environmental Protection Agency, 1992b. "Framework for Ecological Risk 'Assessment"; EPA/630/R-92/001; February.
- United States Fish and Wildlife Service, 1992c. "Survey and Evaluation of Wetlands and Wildlife Habitat, Fort Devens, Massachusetts"; House of Representatives Appropriations Committee; p. 1-10.

ABB Environmental Services, Inc.

W0099521 M80

- West, C.R., 1992. "Massachusetts Drinking Water Standards and Guidelines"; Massachusetts Department of Environmental Protection; Office of Research and Standards; Boston, Massachusetts; Autumn.
- Wones, D.R. and R. Goldsmith, 1991. "Intrusive Rocks of Eastern Massachusetts"; U.S. Geological Survey Professional Paper 1366-I.
- Wright, Larry, ed., 1976. <u>The Beer Can, a Complete Guide to Beer Can</u> <u>Collecting</u>; Beer Can Collectors of America; Greatlakes Living Press, Matteson, IL.
- Zen, E-an, Ed., 1983. "Bedrock Geologic Map of New England"; U.S. Geological Survey; Scale 1:250,000; 3 sheets.

W0099521.MB0