## 2005 Annual Report

# Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, Massachusetts

Prepared for:

Department of the Army BRAC Environmental 30 Quebec Street, Box 100 Devens, Massachusetts 01432

May 2007

Prepared By: CH2IVIHILL 25 New Chardon Street Suite 300 Boston, MA 02114-4770

---

## TABLE OF CONTENTS

| <u>Section</u>                  | Title                                                                                                             | <u>Page</u> |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------|
|                                 | EXECUTIVE SUMMARY                                                                                                 | ES-1        |
| 1.0<br>1.1<br>1.2               | INTRODUCTION<br>Evaluating Effectiveness of Remedial Objectives<br>Five-Year Site Reviews                         | 1<br>2      |
| 1.3                             | 2005 Annual Report Objectives                                                                                     |             |
| 2.0                             | LANDFILL CAP MAINTENANCE ACTIVITIES                                                                               | 3           |
| 3.0                             | LANDFILL CAP MONITORING ACTIVITIES                                                                                | 3           |
| 4.0                             | LANDFILL GAS MONITORING RESULTS                                                                                   | 4           |
| 5.0                             | GROUNDWATER ELEVATIONS                                                                                            | 6           |
| <b>6.0</b><br>6.1<br>6.2<br>6.3 | GROUNDWATER SAMPLING<br>Preparation for Sampling<br>Sampling<br>Equipment Decontamination                         |             |
| <b>7.0</b><br>7.1<br>7.2        | LABORATORY TESTING<br>Sample Handling<br>Analyses                                                                 | 10          |
| 7.3                             | Summary of Results                                                                                                |             |
| 7.3.1<br>7.3.2<br>7.3.3         | Arsenic Results<br>COC Results for Samples Collected Summer 2005<br>COC Results for Samples Collected Winter 2005 | 13          |
| 8.0                             | QUALITY CONTROL                                                                                                   | 14          |
| <b>9.0</b><br>9.1<br>9.2        | Implementation of Contingency Remedy<br>Description<br>Start-Up Activities                                        | 15          |
| <b>10.0</b><br>10.1             | CONCLUSIONS AND RECOMMENDATIONS                                                                                   |             |
| 10.1<br>10.2                    | Recommendations                                                                                                   |             |
| 11.0                            | REFERENCES                                                                                                        |             |

#### TABLE OF CONTENTS (Continued)

#### TABLES

| Table ES-1 | Compliance Point Wells Exceeding Arsenic Cleanup Level in 2005 |
|------------|----------------------------------------------------------------|
|            | (see Executive Summary)                                        |
| Table 1-1  | Contaminants of Concern (COC) Cleanup Levels                   |
| Table 5-1  | Monitoring Well Specifications and Groundwater Elevations      |
| Table 5-2  | Site-wide Groundwater Elevations                               |
| Table 7-1  | Groundwater Sample Analysis and Procedures                     |
| Table 7-2  | Groundwater Analytical Results – June 2005                     |
| Table 7-3  | Groundwater Analytical Results – January 2006                  |
| Table 7-4  | Comparison of Historic Arsenic Results                         |
| Table 7-5  | Comparison of Historic Iron, Manganese, and Sodium Results     |
| Table 7-6  | Monitoring Well Trigger Chemical Cleanup Level Exceedances at  |
|            | Monitoring Wells Previously Attaining Cleanup Goals (Group 1)  |
| Table 8-1  | Sample Preparation and Analysis Methods                        |

#### FIGURES

| Figure 3-1 | Findings of Inspection (Site Map) - Shepley's Hill Landfill, Devens RFTA, Devens, MA |
|------------|--------------------------------------------------------------------------------------|
| Figure 5-1 | Contour Map of Baseline (Pre-Test) Groundwater Elevations, August 24, 2006           |
| Figure 5-2 | Contour Map of Groundwater Elevations at Maximum Drawdown, August 26, 2006           |
| Figure 7-1 | Long-Term Monitoring Network – Arsenic Data - June 2005 and January 2006             |

#### APPENDICES

- Appendix A Geotechnical Engineering Fall 2005 Annual Inspection Report
- Appendix B Groundwater Field Analysis Forms
- Appendix C Comparison of Arsenic Results
- Appendix D Data Quality Evaluation and Chemical Quality Analysis Reports
- Appendix E On-Site Discharge Evaluation Technical Memorandum
- Appendix F Extraction Test Technical Memorandum
- Appendix G Start-Up Process Testing Technical Memorandum
- Appendix H Response to Comments

#### **EXECUTIVE SUMMARY**

This annual report documents the results of long term monitoring and maintenance activities conducted in the summer (June 2005) and winter of 2005 (monitoring event January, 2006), the ninth year of monitoring, at Shepley's Hill Landfill in Devens, Massachusetts. CH2M HILL prepared this report in accordance with the Record of Decision (ROD) for Areas of Contamination 4, 5, and 18 (ABB-ES, Oct 1995), and the approved Long Term Monitoring and Maintenance Plan (LTMMP), SWEC, May 1996. In addition, this report summarized activities associated with the construction and start-up of the Contingency Remedy, involving an arsenic groundwater extraction, treatment, and discharge system. The *Explanation of Significant Differences* (CH2M HILL, June, 2005) states:

Among other alternatives, the ROD describes two remedial alternatives: Alternative SHL-2, Limited Action, and Alternative SHL-9, Groundwater Pump and Discharge to the Ayer Publicly-Owned Treatment Works (POTW). These alternatives became the primary and contingency elements of the elected remedy for the Shepley's Hill Landfill remedial action, respectively. Alternative SHL-2 generally involves landfill closure with capping and monitoring. Alternative SHL-9, involving active extraction of groundwater, was selected as a contingency element of the selected remedy in order to supplement SHL-2, should SHL-2 not prove to be effective at controlling site risk.

Alternative SHL-2, required completion of landfill closure and on-going, post-closure monitoring of the effectiveness of the landfill cover. Monitoring activities are described in the LTMMP and consist of an annual inspection of the landfill cover, annual landfill gas vent monitoring, and semiannual groundwater chemistry monitoring. The Contingency Remedy, a modification of Alternative SHL-9 (Pump and Discharge to Ayer POTW) has been implemented according to the *Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill (CH2M HILL, May 2005).* Performance monitoring for start-up and initial operation of the Contingency Remedy is being conducted in accordance with the design document and the *Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy (CH2M HILL, August, 2005).* The LTMMP and the Performance Monitoring Plan will be merged into a single monitoring program in 2006. The results of these activities conducted in 2005 are described below.

An annual landfill inspection was conducted in the Fall of 2005 and observations made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Presently, the landfill is in fair to good condition. The cover surface contains areas of sparse vegetation, intrusive vegetation, and settlement. Intermittent standing water, erosion, overgrowth of vegetation, and encroachment of wetland plants within drainage swales were observed. Maintenance activities are scheduled to be performed including repairs to fencing and gates, maintenance to remove wetland vegetation from drainage swales, and drainage improvements for the landfill cap involving filling of low spots resulting from subsidence. As part of the annual landfill gas vent monitoring program, readings were collected from eighteen gas vents on the landfill plus four perimeter probes just north of the landfill. Readings collected from the four perimeter probes were similar to levels measured during last year's annual inspection. Readings collected from the 18 gas vents on the landfill indicated levels of carbon monoxide, and carbon dioxide production decreased since last year, while measurements of LEL, methane, oxygen, and hydrogen sulfide remained about the same. As observed in the 2004 monitoring, VOC concentrations were not detected.

LEL readings from the landfill gas vents near the southern end of the landfill have consistently registered higher than other areas in the past. These increased LEL readings, coupled with increased carbon monoxide, carbon dioxide, and methane readings in the landfill gas vents and the proximity of commercial development warranted installation of additional perimeter gas monitoring probes along the property line where the landfill is adjacent to structures. Nine gas monitoring probes were installed in November 2005 at the southern perimeter of the site along the commercial properties. Readings were collected from these monitoring probes in February 2006. Methane and hydrogen sulfide were not detected. Concentrations of VOCs, LEL, carbon monoxide, and carbon dioxide were detected in two or more of the probes.

Group 1 and Group 2 wells were monitored in the summer (June 2005) and winter (January 2006) of 2005 to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels for contaminants of concern (COCs) in groundwater. The COCs are arsenic, chromium, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. Of the network of 14 monitoring wells, nine were sampled during the June 2005 event. However, the five wells that were not monitored during the June, 2005 event were monitored independently under the Performance Monitoring Plan for the Contingency Remedy in February/April 2005 and August 2005. The data from the Performance Monitoring Plan work are reported elsewhere. Fourteen monitoring wells were scheduled to be monitored as part of the January 2006 monitoring, however, one well, SHL-3, could not be sampled because the well was pumped dry prior to stabilization. Poor recharge in monitoring well SHL-3 has been documented in previous sampling rounds.

The goal of Alternative SHL-2 alone had been to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells. Annual reports since capping of the landfill compare the concentrations of COCs to the cleanup levels, supporting five-year site reviews in which the effectiveness of remedial actions are evaluated. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells. According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk.

Originally, all existing wells were designated as Group 2 wells per the LTMMP, including the three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B) based on their first round of sampling. Risk reduction was evaluated during the first five-year review (FYR) in August 1998 (Stone & Webster 1998). During the August 1998 review, six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. Since the August 1998 review, three of the Group 1 wells (SHL-9, SHL-22) have exceeded the cleanup level for arsenic at least once during the semi-annual monitoring. A basewide five year review for all sites at the former Fort Devens undergoing investigation and remediation, was completed in September, 2000 (HLA, 2000). This comprehensive FYR was triggered by the initiation of soil remediation activities of AOC 44 and 52 on August 11, 1995.

Data evaluated during these two five year reviews relating to Shepley's Hill Landfill triggered the implementation of the Contingency Remedy because risk reduction goals were not being met by the selected remedy, SHL-2. The Army and the regulatory agencies decided to implement the contingency element of the selected remedy, alternative remedy SHL-9, Groundwater Extraction and Discharge. Construction of the groundwater extraction and treatment system for the landfill was undertaken primarily in Fall 2004 through Spring 2005, after a design process that had been initiated in Fall 2003. The completed system is located at the north end of the landfill, near downgradient monitoring wells SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C. This system includes a wellfield with two extraction wells, a treatment plant, and utility berm across the cap connecting with the Devens POTW system and electrical power near Cooke Street. The treatment system became operational in Fall 2005.

A second basewide FYR report was completed by the United States Army Corps of Engineers, New England District (USACE) in September 2005 (Nobis, 2005). The review concluded that a protectiveness statement or determination could not be made at the time until follow-up actions were competed including start-up and performance monitoring of the extraction and treatment system, landfill cap maintenance, and completion of the Comprehensive Site Assessment/Corrective Actions Alternative Analysis (CSA/CAAA). It was anticipated that within 2 years, time enough for completion of the CSA/CAAA a protectiveness determination could be made.

Groundwater sampling was performed at nine LTMMP monitoring wells in June 2005. Two of these monitoring wells are located on the down-gradient edge of the landfill to the north, while the remaining seven are located on the east side of the landfill near Plow Shop Pond. These wells and five others, with the exception of SHL-3, were sampled as part of the January 2006 sampling. SHL-3 could not be sampled because the well was pumped dry prior to stabilization. Samples were collected in accordance with the *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996). Samples were analyzed for volatile organic compounds (VOCs), inorganics, and general water quality parameters. Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed, all data was determined to be of acceptable quality for use, with

some qualifications due to low matrix spike duplicate recovery, holding time exceedances, and associated field and method blank contamination in the June 2005 sampling.

Arsenic was the only trigger chemical detected above the cleanup level during the 2005 sampling program (see Table ES-1 on following page). Most results indicated no significant change from previous arsenic levels. However, the highest concentration of arsenic, 3,320ug/L, was recorded at SHM-96-22B during the January 2006 sampling. The previous greatest concentration of 2,500 ug/L was detected during the November 2003 sampling. Northern well SHM-96-5B was the monitoring well location with the highest concentration of arsenic of the wells sampled as part of the 2005 monitoring program. The highest arsenic concentration has been recorded at SHM-96-5B for all of the sampling rounds except fall 2004, in which the highest concentration was observed in well SHM-96-22B. Wells SHM-96-5B and SHM-96-22B are located relatively close to each other and are screened at a similar depth in sand/till. Monitoring wells SHM-96-5B and SHM-96-22B show a trend of generally increasing arsenic concentrations. Both these wells have continuously exhibited the highest arsenic levels measured at the site, one to two orders of magnitude above levels measured at the other compliance wells. Seven of the thirteen monitoring wells sampled in January, 2006 were below the arsenic cleanup level. Northern well SHL-22 was the only Group 1 well having arsenic concentrations exceeding the cleanup level, which has occurred continuously since May 2002. Concentrations measured at Group 2 wells SHL-4, SHL-10 and SHM-96-5C also met the cleanup level for arsenic, a trend that has been occurring over the past years, particularly at SHL-10.

Cleanup levels for the other three trigger chemicals were not exceeded. However, cleanup levels for the COCs iron, manganese and sodium were exceeded in the 2005 sampling events. In general, with the exception of iron, manganese, and sodium concentrations at wells SHL-5, SHM-96-5C and SHM-93-10C, concentrations of iron, manganese, and sodium have remained stable or declined since 2002.

| Well       | Orientation<br>to Landfill | Geological Group #<br>Designation |   | Concentration<br>June 2005 | Concentration<br>January 2006 |
|------------|----------------------------|-----------------------------------|---|----------------------------|-------------------------------|
| SHL-22     | North                      | Till                              | 1 | Not Sampled                | 154 μg/L                      |
| SHM-96-22B | North                      | Sand/Till                         | 2 | Not Sampled                | 3,320 µg/L                    |
| SHM-96-5B  | North                      | Sand/Till                         | 2 | Not Sampled                | 4,130 μg/L                    |
| SHL-11     | East                       | Water Table                       | 2 | 524 μg/L                   | 567 µg/L                      |
| SHL-19     | East                       | Water Table                       | 2 | 26.7 μg/L                  | 156 μg/L                      |
| SHL-20     | East                       | Till                              | 2 | 159 μg/L                   | 189 µg/L                      |

|                       |               |                          | ~ ~ .         |                    |
|-----------------------|---------------|--------------------------|---------------|--------------------|
| TABLE ES-1 Compliance | Point Wells E | <b>Exceeding Arsenic</b> | Cleanup Level | of 50 µg/L in 2005 |
|                       |               | 0                        | L .           |                    |

Corrective action recommendations relating to the cap system and associated drainage are included in the Geotechnical Engineering Fall 2005 Annual Inspection Report (USACE, March 2006), provided in Appendix A. These recommendations include the following: (1) repair and replace the security fence and gates as required to control access to the site and (2) place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it was recommended: (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill and (2) Repair and re-grade around the catch basins on the south side of the landfill.

Gas monitoring probes were installed along the south side of the landfill in December 2005 and were monitored in February 2006. Although monitoring was conducted in February, 2006 it is reported in this 2005 annual report. These wells will be monitored again in 2006 as part of annual gas monitoring. In addition, in December, 2005 repairs were made to security fences and no-trespassing signs were installed. Regrading activities are anticipated to occur upon completion of the CSA/CAAA. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately. All of the above is discussed in more detail in Section 3.0 of this report.

#### 1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted in 2005 at the Shepley's Hill Landfill in Devens, Massachusetts. These procedures were conducted in accordance with the *Record of Decision, Shepley's Hill Operable Unit, Areas of Contamination 4, 5, and 18* (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18, and the *Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill (LTMMP)* (SWEC, May 1996). This annual report was prepared by CH2M HILL.

The ROD selected remedy, Alternative SHL-2, which is a source control action that addresses longterm residential exposure to contaminated groundwater, the principal known threat at the Shepley's Hill Landfill Operable Unit. Alternative SHL-2 consisted of completing closure of Shepley's Hill Landfill in accordance with applicable Massachusetts requirements of 310 CMR 19.000, and monitoring and evaluating the effectiveness of the landfill cover system (completed in 1993) to control groundwater contamination and site risk.

The LTMMP for Shepley's Hill Landfill, completed in May 1996, outlines the landfill closure monitoring and maintenance procedures required by the ROD. These procedures include an annual visual inspection and gas emission monitoring of the landfill cap, and a semi-annual groundwater sampling program to monitor contaminants of concern (COCs) and evaluate the effectiveness of the landfill cover system to control groundwater contamination and site risk. The COCs and their cleanup levels for Shepley's Hill Operable Unit are listed in Table 1-1.

### 1.1 Evaluating Effectiveness of Remedial Objectives

Fourteen compliance point wells are monitored to evaluate the effectiveness of the landfill at reducing risk and achieving cleanup levels in monitoring wells. They are designated as Group 1 or Group 2 wells. The ultimate goal of Alternative SHL-2 is to maintain groundwater quality below cleanup levels at Group 1 wells, and to attain cleanup levels at Group 2 wells.

Five-year site reviews evaluate the effectiveness of Alternative SHL-2 at reducing the potential human health risk from exposure to groundwater and at preventing groundwater from contributing to Plow Shop Pond sediment contamination in excess of human health and ecological risk-based values. Evaluating effectiveness at Group 2 wells is based on reduction of risk rather than reduction of concentration as a measure of progress toward attainment of cleanup levels, because this approach focuses on the cleanup of arsenic, which is the primary contributor to risk in the Group 2 wells.

According to the LTMMP, only chemicals that present carcinogenic risk are considered trigger chemicals in the monitoring program. The trigger chemicals are arsenic, 1,2 dichlorobenzene, 1,4 dichlorobenzene and 1,2-dichloroethane. Reduction of carcinogenic risk, rather than simply reduction of contamination, is the measure of progress toward attainment of cleanup. This risk-based approach keeps the focus on mitigation of the most significant contributors to risk.

The LTMMP states Alternative SHL-2 will be considered effective with regard to Group 2 wells if five-year reviews show an ongoing reduction of potential human health risk (based on trigger chemicals) at Group 2 wells and the ultimate attainment of cleanup levels for all COCs by January 2008. Alternative SHL-2 will be considered effective with regard to Group 1 wells if five-year site reviews show that groundwater quality remains at or below cleanup levels for all COCs.

Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all existing wells were designated as Group 2 wells per the LTMMP (Stone & Webster, 1996), including three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B) based on initial sampling. During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. The second basewide FYR (HLA, 2000), did not reclassify any of the monitoring wells. However, the review concluded that based on the data collected to date, the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement Alternative SHL-9, Groundwater Extraction and Discharge.

Construction of a groundwater extraction and treatment system for the landfill was undertaken during 2004 and became fully operational following start-up testing in March 2006. The system is located just north of the landfill cap, near the set of compliance point wells that monitor the groundwater down-gradient of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C). This construction included a utility dike across the northern half of the cap. The treatment system was not operational at the time of monitoring activities in January 2006. The data collected during 2004, 2005, and January 2006 may therefore serve as baseline data to compare pre-treatment to post-treatment conditions in the future.

### 1.2 Five-Year Site Reviews

Stone & Webster Environmental Technology & Services (SWEC) conducted the first two years of monitoring in 1996 and 1997. These first two years of monitoring were included in the first *Five Year Review, Shepley's Hill Landfill, Long Term Monitoring* (SWEC, August 1998) required by the ROD, and marking five years since the final capping of the landfill in 1993. Since 1998, monitoring has been conducted by USACE, New England District. In 2000, a review of all Devens sites was performed and included in the *First Five Year Review Report for Devens Reserve Forces Training Area, Devens, MA* (HLA, 2000) which included monitoring conducted for Shepley's Hill Landfill Operable Unit in 1996 through 1999. The second five year review, *2005 Five Year Review* Report, was prepared for monitoring conducted from 2000 through 2004.

### 1.3 2005 Annual Report Objectives

This annual report covers long term monitoring and maintenance activities conducted in 2005 including the following:

- Landfill cap inspection to identify areas requiring maintenance.
- Installation of nine landfill perimeter gas monitoring probes along the south side of the landfill.
- Landfill gas measurements at 18 gas vents and 13 landfill perimeter gas monitoring probes to establish long-term trends with regard to gas production and venting.
- Monitoring of fourteen compliance point wells for groundwater elevations and COC concentrations to compare to cleanup levels as a measure of determining the effectiveness of the selected remedy.
- Monitoring of an expanded hydraulic network as part of the baseline study established under the Groundwater Extraction, Treatment, and Discharge Remedy.

The findings documented in this annual report support the third five-year site review for monitoring to be conducted from 2005 through 2009 in which the effectiveness of the remedy is formally evaluated with regard to risk reduction and attainment of cleanup levels. Interim recommendations are identified at the end of this report.

## 2.0 LANDFILL CAP MAINTENANCE ACTIVITIES

The ROD for the Shepley's Hill Landfill requires monitoring and maintenance of the landfill cap based on observations made during the annual inspections. Normally scheduled maintenance activities performed during 2005 included mowing of the landfill vegetative cover and cutting of vegetative growth. An upcoming Comprehensive Site Assessment (CSA), expected to be completed by the fall of 2007, will assess the adequacy of the landfill. Following the CSA, a Corrective Action Alternatives Analysis (CAAA) will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill cap is in fair to good condition and appears to be functioning adequately.

These activities, and all maintenance items monitored during the 2005 cap inspection, are summarized in Section 3.0 of this report. A more detailed report of the monitoring and maintenance activities completed as part of the annual inspection is provided in the Geotechnical Engineering Fall 2005 Annual Inspection Report (USACE, March 2006), which has been included as Appendix A.

## 3.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected to identify areas requiring maintenance on November 8 and 9 2005 by personnel from the U.S. Army Corps of Engineers,

New England District (USACE). Features of the landfill inspected included the cap, drainage system, gas vent system, access roads, and security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. A narrative of the findings and recommendations of this inspection are included below.

- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. The rim of this catch basin should be lowered to the surrounding grade.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in. The grade of the channel bottom is uneven and standing water is present. Wetland species are becoming established as well. The structure and channel immediately downstream is should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel will then be reseeded or riprap should be placed, depending on water velocities. This work is scheduled to be performed in 2006. Areas of standing water are present at numerous locations across the landfill surface.
- The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale should be cleared of vegetation and sand.
- In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the cap area was seen. On the east side near monitoring well SHL-11, the fence has been rolled back and is open. A gate and lock will be added here. There are also several other locations around Plow Shop Pond which provide unrestricted access. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired.

The recommendations will be addressed in a forthcoming Comprehensive Site Assessment that will be conducted to assess the overall effectiveness of the landfill cap with regard to infiltration. A summary of Corrective Action measures for the Landfill Cap are included in Section 9.0.

## 4.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed on 18 passive gas vents on the landfill cover and 13 perimeter gas monitoring probes to determine whether methane, hydrogen

sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site, and if so, how these readings compare with the previous year.

Originally, 18 passive gas vents were installed in the landfill cover. In November 2001, four landfill perimeter gas monitoring probes were installed to monitor potential landfill gas migration from Shepley's Hill Landfill towards the north, in the direction of Sculley Road. Nine additional landfill gas monitoring probes were installed along the commercial property at the south side of the landfill in December 2005 after the initial 2005 landfill gas monitoring had been completed. These newly installed probes were sampled in February 2006 as part of a supplemental landfill gas survey.

The annual landfill gas sampling was conducted on November 8, 2005. The weather was clear, with temperatures in the 50's Fahrenheit (°F) and the barometric pressure was 29.9 inches of mercury and rising. The supplemental landfill gas sampling was conducted on February 16, 2006. Weather conditions on this day were recorded as clear, 55 °F and a barometer reading of 30.1 inches mercury and falling. Gas samples were field analyzed for the following parameters using the listed equipment:

| Parameter                                 | Gas Monitoring Equipment                                                                              |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Total Volatile Organic<br>Compounds (VOC) | Thermo Environmental 580B (PID) with a 10.6 eV lamp                                                   |
| Percent Oxygen                            | Landtec GEM 500 landfill gas monitor (November 2005) and<br>Landtec GA90 (February 2006)              |
| Hydrogen Sulfide (ppm)                    | Industrial Scientific TMX 412 CGI (November 2005) and<br>Industrial Scientific MG 140 (February 2006) |
| Percent Lower Explosive<br>Limit (LEL)    | Industrial Scientific TMX 412 CGI                                                                     |
| Carbon Monoxide (ppm)                     | Industrial Scientific TMX 412 CGI (November 2005) and<br>Industrial Scientific MG 140 (February 2006) |
| Percent Carbon Dioxide                    | Landtec GEM 500 landfill gas monitor (November 2005) and<br>Landtec GA90 (February 2006)              |
| Percent Methane                           | Landtec GEM 500 landfill gas monitor (November 2005) and<br>Landtec GA90 (February 2006)              |

The equipment used to collect the landfill gas readings was calibrated in the shop by U.S. Environmental. Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to an Industrial Scientific SKC224-PCXRE air sampling pump in November 2005 and an Industrial Scientific Sampling Pump SP402 in February 2006. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached to the pump and turned on.

The landfill gas monitoring results are provided in the *Geotechnical Engineering Fall 2005 Annual Inspection Report* (Appendix A). The following is a summary of the perimeter landfill gas monitoring results.

## November 2005 Landfill Gas Vent Monitoring

VOCs and hydrogen sulfide were not detected in any of the gas vents. The oxygen levels ranged from 0% (V-16, and, V-17) to 21.0% (V-18). LEL readings ranged from 0% (V-15 and V-18) to over 100% LEL in eight of the 18 vents. Carbon monoxide was not measured in 16 of the 18 gas vents. The greatest carbon monoxide concentration, 3 PPM, was detected V-17. Carbon dioxide ranged from 0% (V-15 and V-18) to 27% at V-17. Methane ranged from 0% (V 15 and V-18) to 32.7 % at V-17. Levels of carbon monoxide and carbon dioxide production decreased since last year, while measurements of VOCs, LEL, methane, oxygen, and hydrogen sulfide remained about the stable. Increased levels of LEL, carbon monoxide, carbon dioxide and methane production were observed between the 2003 and 2004 monitoring.

## November 2005 Landfill Gas Probe Monitoring

All four perimeter landfill gas monitoring probes (PGP-1, PPG-2, PGP-3, and PGP-4) tested negative for VOC's, LEL, hydrogen sulfide, carbon monoxide, and methane. Carbon Dioxide was detected in all four probes ranging in concentrations from 0.6% to 2.2%. Oxygen levels ranged from 19.2 % at PGP-2 to 20.3% at PGP-1 and PGP-4. Levels of all gases were similar to levels measured during 2004 annual inspection.

## February 2006 Landfill Gas Probe Monitoring

VOCs were detected in seven of the nine gas probes installed along the southern border of the landfill. The VOC concentrations ranged from 0.9 ppm at LGP-14 to 0.2 ppm at LGP-7, LGP-8, and LGP-11. LEL concentrations of two percent were observed at LGP-8 and LGP-9 and one percent at LGP-7. Carbon monoxide was detected in two probes: LGP-9 at 1 ppm and LGP-14 at 2 ppm. Carbon Monoxide was detected in eight of the nine probes at concentrations ranging from 0.3 ppm (LGP-5) to 10.7 ppm (LGP-8). Methane and hydrogen sulfide were not detected.

The gas readings are within the parameters of a mature landfill. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should be no significant off-site migration of landfill gases; however, due to the increased LEL, carbon monoxide, carbon dioxide, and methane readings, and the proximity of residential housing and commercial development, the gas monitoring probes installed along the northern and southern property lines where the landfill is adjacent to structures should continued to be monitored.

## 5.0 GROUNDWATER ELEVATIONS

Groundwater elevations were collected from the compliance point wells in order to observe any changes in elevation and the direction of groundwater flow. Groundwater elevations at compliance point wells were measured on the first day of each sampling event, June 6, 2005 and January 19, 2006, respectfully. The depth to water table was measured in the field, and then subtracted from the

elevation of the reference point to determine the elevation of the water table at each location. Table 5-1 lists the water table elevations (for each sampling round), the geological unit(s) screened by the wells, and the elevation of the screened interval for each well. Groundwater elevations measured in January 2006 were consistently higher than those measured in June 2005.

In addition to these semi-annual groundwater measurements, groundwater measurements of all Shepley's Hill Landfill wells were conducted by CH2M HILL in conjunction with the Performance Monitoring Plan (PMP) implemented as part of the Groundwater Extraction, Treatment, and Discharge Alternative. Site-wide groundwater measurements were collected on February 16, August 1, August, 24, August 26, and August 29, 2006. Water level measurements collected on August 24 and 26 as part of an extraction test are provided as Table 5-2. Data collected on August 24, 2006 represent water level conditions prior to the extraction test and the data collected on August 26 represent water level conditions during the extraction test. The synoptic groundwater data collected prior to and during the extraction tests has been contoured to depict conditions prior to pumping (Figure 5-1) and immediately prior to termination of pumping at 25 gpm (Figure 5-2).

During the first 5-year review (SWEC, August 1998), groundwater elevations were re-evaluated to identify hydraulic gradients and to confirm changes due to the construction of the landfill cap. Groundwater modeling suggested that the landfill cap has reduced the volume of water beneath the cap, resulting in a more northerly groundwater flow (SWEC, 1998). Water level data collected on August 24, 2006, under baseline conditions suggests that the model analysis of a northerly groundwater flow is still valid. The water level data collected during the extraction test indicates that the operation of the groundwater extraction system will create an even greater northerly flow.

## 6.0 GROUNDWATER SAMPLING

Groundwater sampling is conducted at the landfill on a semi-annual basis in accordance with the LTMMP at assorted compliance point monitoring wells. Nine monitoring wells were sampled as part of the 2005 summer monitoring: SHL-3, SHL-4, SHL-5, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHL-20, and SHM-93-22C in June 2005. The wells were sampled on June 6 and 7, 2005. Fourteen wells were scheduled to be sampled as part of the 2005 winter sampling, including the wells mentioned above as well as SHM-96-5B, SHM-96-5C, SHL-22, and SHM-96-22B. However, monitoring well SHL-3 could not be sampled because the well went dry during purging. Poor recharge in SHL-3 has been documented in previous sampling rounds. The 2005 winter sampling program was conducted on January 19, 20, and 25, 2006. The 2005 summer sampling program was conducted by USACE personnel and the 2005 winter sampling was completed by CH2M HILL personnel.

Of these fourteen long term monitoring wells, the seven at the north end of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C) are located in the area predicted to experience the greatest intrusion of groundwater flow from the landfill, as suggested by previous modeling results (Harding ESE, A MACTEC Company, 2002). The remaining seven are located along the eastern edge of the landfill, between the landfill and Plow Shop Pond.

Four additional wells located near Molumco Road (SHM-99-31A, SHM-99-31B, SHM-99-31C, and SHM-99-32X) are frequently sampled at the same time as the compliance point wells, for comparison purposes only. However, these wells not sampled during the 2005 monitoring.

In accordance with the ROD and LTMMP, compliance point wells are designated as Group 1 or Group 2 wells. Chemical concentrations in Group 1 wells have historically attained cleanup goals, while those in Group 2 have not. Originally, all existing wells were designated as Group 2 wells per the LTMMP, including three newer wells installed in 1996 (SHM-96-5B, SHM-96-5C, and SHM-96-22B). During the first five-year site review (August 1998), six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. The remaining eight wells continue to be classified as Group 2 wells. The 2005 Five Year Review Report did not make any changes to the well group designations. If necessary, these group designations will be revised during the next five-year review (based on data collected in the years 2005 to 2009) depending on whether groundwater quality meets the criteria of section 1.2 of the ROD.

## 6.1 Preparation for Sampling

Sampling activities were coordinated with the Devens BRAC Environmental Office and the contract laboratory prior to commencement of sampling. Bottles were checked to insure they complied with the requirements of the sampling program. Sampling equipment, including YSI water quality meters, portable generators and tubing, was rented (or purchased in the case of supplies) from local vendors. USACE used their own Grundfos Rediflow II pumps, controllers, Heron water level indicators, and HF Scientific DRT-15CE turbidity meters for the sampling events (equipment is occasionally supplemented with identical or similar models rented from U.S. Environmental, as required – these instances are noted on the Groundwater Field Analysis Forms where appropriate). CH2M HILL rented all of the equipment used during the winter sampling from Pine Environmental. All equipment was inventoried and tested to ensure it was accounted for and functioning. The well logs of each of the wells to be sampled were reviewed by the field team prior to the scheduled event to determine tubing requirements, and brought to the landfill during the sampling event to confirm the screened intervals.

## 6.2 Sampling

Monitoring wells were purged and sampled in accordance with *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996) using an adjustable rate, low flow pump.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. YSI water quality meters and turbidity meters were calibrated at the beginning of each day of use. A calibration check was also performed at the end of each day. During sampling, the generator used to power the pumps was located at a downwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust. Upon initial opening of each well, initial water level measurements were collected. The pump intake was lowered to approximately the middle of the screen of each well to be sampled when

possible. When the water level was below the top of the screen, the pump was positioned at a depth approximately midway between the top of the water level and the bottom of the screen.

Water quality parameters, including temperature, specific conductance, pH, oxidation-reduction potential (ORP), turbidity, and dissolved oxygen (DO) were collected every 3 to 5 minutes to ensure proper purging of the wells before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix B. Most of the water quality parameters, were monitored using a flow-through cell and a Sonde-YSI water meter (YSI 600XL). Turbidity samples were not collected from the flow through cell due to the silt buildup that can occur in the cell. A T-connector with ball valve was set up before the flow-through cell to facilitate the collection of samples for turbidity readings. With the exception of the last day of the winter sampling (January 25, 2006) dissolved oxygen readings were measured in the flow cell. Dissolved oxygen readings on January 25, 2006 were collected with a YSI 85 in-situ probe after the YSI 600 XL began giving erroneous dissolved oxygen readings. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during the sampling activities include:

- To ensure precision of water level measurements, well casings that had faded marks or no marks were remarked.
- At several wells during each event, the water level was lower than the top of the screen, and the pumps were lowered to approximately midway between the water level and the bottom of the screen.
- Monitoring well SHL-3 could not be sampled during the 2006 winter monitoring because the well went dry while purging Previous sampling programs have noted problems with recharge at SHL-3 due to siltation problems

### 6.3 Equipment Decontamination

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination between sampling points. The submersible pump was decontaminated using the following procedure:

- Upon removal of the pump from the well following sample collection, the pump was submersed in potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (starting the pump at a low flow rate, as in sampling, and increased to a higher speed).
- The pump was removed and sprayed with potable water to minimize the transfer of soap to the riser.
- The pump was then submersed in potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in deionized water and at least 1 to 2 gallons were pumped through.

- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a hand held spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

## 7.0 LABORATORY TESTING

Groundwater samples collected during the summer sampling event were sent to Severn Trent Laboratories in Colchester, Vermont for analysis. Groundwater samples collected during the winter 2005 sampling were submitted to Alpha Analytical Labs of Westborough, Massachusetts. All samples were analyzed for volatile organic compounds, inorganics, and general water quality parameters.

## 7.1 Sample Handling

Samples were collected in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leak proof plastic bag and placed in a strong thermal ice chest filled with bubble wrap packing material, or equivalent, to ensure sample integrity during shipment. Ice was added to cool samples to 4 degrees Celsius (°C) or just below. Chains of custody were used to identify and document the samples being shipped. Sample custody was initiated by the sampling team upon collection of samples and chain-of-custody forms were placed in waterproof plastic bags and taped to the inside lid of the cooler. The cooler was sealed with chain-of-custody seals. Samples collected during the spring sampling were shipped to the laboratory via overnight delivery while the samples collected in January 2006 were delivered by courier.

## 7.2 Analyses

Contaminants of concern (COCs) for compliance point wells include arsenic, chromium, 1,2dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, lead, manganese, nickel, sodium, aluminum, and iron. Cleanup levels for these COCs are listed on Table 1-1. Water analyses were conducted according to SW846 methods 8260B for volatile organic compounds (VOCs), and 6010B for target analyte list (TAL) metals (7471A for mercury). The summer monitoring used the following methods for general chemistry: chemical oxygen demand (COD) by EPA method 410.1, biochemical oxygen demand (BOD) by EPA method 405.1, hardness by Standard Method 2340B, alkalinity by EPA method 310.1, cyanide by EPA method 335.4, anions (chloride, nitrate, and sulfate) by EPA method 300.0, total organic carbon (TOC) by SW846 method 9060, total dissolved solids (TDS) by EPA method 160.1, and total suspended solids (TSS) by EPA method 160.2. The winter monitoring utilized the following methods for the general chemistry analyses: COD by Standard Method 5220D, BOD by Standard Method 5210B, hardness by Standard Method 2340B, alkalinity by Standard Method2320B, cyanide by Standard Method 9014, TOC by SW846 9060, TDS by Standard Method 2540C, TSS by Standard Method 2540D, chloride by Standard Method 9251, nitrate by Standard Method 4500NO3-F, and sulfate by Standard Method 9033B.These analyses were conducted on samples collected from all compliance point wells. As reported in previous annual reports, starting with the fall event of 2001, the method used to determine hardness

for use, with some qualifications due to low matrix spike duplicate recovery, holding time exceedances and associated field and method blank contamination in the June 2005 sampling.

## 9.0 IMPLEMENTATION OF CONTINGENCY REMEDY

#### 9.1 Description

The rationale for implementing the contingency remedy for the Shepley's Hill groundwater along with detailed plans and specifications is presented in the document entitled, Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. (CH2M HILL, May, 2005). Groundwater modeling work indicated that the system would effectively provide containment of the groundwater moving beneath Shepley's Hill Landfill and to the north if operated at 50 gallons per minute (gpm). The BRAC Cleanup Team (BCT) decided during the completion of the final design effort to conduct initial operation of the system at 25 gpm and initial operational data would be utilized to assess whether or not pumping rates could be increased in the future. The design document (CH2M HILL, May, 2005) provides the following statements about this plan:

Although the wellfield design extraction rate is 50 gallons per minute (gpm) total from the wellfield, the startup pumping rate will be a reduced rate of 25 gpm identified by the BCT while the BCT reviews initial extraction test and startup data (e.g., baseline geochemical monitoring, influent concentrations, etc.).

The primary performance objective of the extraction system is to contain the arsenic plume in the vicinity of the base boundary near the north end of the landfill. Pump test work (SWET, 1998), a 60% design for an extraction/discharge system (USAEC, 1997), and groundwater modeling (Harding ESE, 2003) provide the basis for development of this design and remedial action work plan. In addition, as mentioned previously, the Army decided in October, 2003 to treat the extracted water stream with a goal for the treatment system of 10  $\mu$ g/l for arsenic, ensuring 1) that the arsenic concentration and mass-related discharge limitation requirements of the MassDevelopment Industrial Discharge Permit would be easily met and 2) that treatment goals are consistent with the new arsenic drinking water standard of 10  $\mu$ g/l, promulgated on January 22, 2001 and due to be implemented by public water systems by January 23, 2006. The decision of the BCT to operate the wellfield at lower pumping rate (25 gpm vs the 50 gpm modeled flow) will focus groundwater extraction in the deeper part of the glacial aquifer during initial operations. Higher flow rates will likely be needed in the future to achieve full containment of the groundwater plume.

Construction of the wellfield, involving two 6-inch extraction wells, was completed in February 2005 and the remainder of system construction and connections with the treatment plant were completed in the Spring and Summer 2005. Concurrent with final design and construction work, CH2M HILL evaluated surface water and groundwater disposal options for treated water from the Arsenic Treatment Plant (CH2M HILL, 2005). This work involved hydraulic modeling to evaluate the impacts of surface water and groundwater discharge at a number of locations east and southeast of the wellfield. Appendix E provides a Technical Memorandum, dated December 22, 2005, providing details of this evaluation. In brief, the evaluation identified locations east of the treatment plant that could be viable for groundwater or surface water discharge. Further work evaluating

potential process modifications that may be necessary to provide for dechlorination of effluent is being conducted in 2006.

Start-up wellfield extraction testing, plant process testing, and early system operation were conducted in late August and September 2005. Section 9.2 further describes activities conducted during system start-up.

## 9.2 Start-Up Activities

The extraction/recovery testing was conducted from August 24<sup>th</sup> through August 30<sup>th</sup> and involved two 24 hour drawdown tests and one recovery test of the EW-1 extraction well. A technical memorandum describing this testing is provided in Appendix F. Most importantly, hydraulic triggers established for start-up period operations (CH2M HILL, 2005c) were not exceeded during the tests at 25 gallons per minute.

During the start-up period, process testing and adjustments were made over a period of several days to evaluate the appropriate dosage of coagulant needed to achieve treatment to the operational goal of 10 ug/L. Influent and effluent sampling was conducted during this period to document arsenic, iron, and manganese concentrations throughout the testing period. This was necessary for evaluation of coagulant dosage, as well as to document influent/effluent characteristic under full operational pumping at 25 gpm. The testing demonstrated that the treatment process successfully treats a complex matrix (influent groundwater) and meets the goal of 10 ug/L arsenic. A brief summary memo (CH2M HILL, 2005d) provided in Appendix G discusses the process testing in greater detail.

In addition, to start-up process testing, geochemical and water-level monitoring were conducted during the start-up period and subsequently during routine operations in accordance with the Performance Monitoring Plan (CH2M HILL, 2005c). This data collection confirmed that the hydraulic triggers were not exceeded, in addition to demonstrating that groundwater arsenic levels and other geochemical parameters have remained relatively stable in the vicinity of the extraction wellfield and elsewhere during the early operation of the system.

During the first month of start-up operations 35% LEL was detected in the influent tank, 7% LEL in the effluent sump, and 2% LEL in the effluent manhole. Further monitoring indicated that methane was being generated from dissolved methane in influent groundwater as it is brought to the surface and equilibrates with atmospheric pressure. The methane/ethane levels in groundwater proved to be fairly typical for groundwaters having high TOC levels that are undergoing active methanogenesis. The plant was shutdown upgrade systems to ensure that hazardous atmospheres would not develop in headspaces the plant or process. Upgrades including LEL monitors on the clarifier and roll-off; an  $O_2$  monitor on the microfilter (MF) skid; explosion-proof electrical in the effluent sump and extraction wells; and sealing/venting of the effluent sump and MF process tanks were made during the Fall and Winter and the system was brought back on line in early March, 2006.

### 10.0 CONCLUSIONS AND RECOMMENDATIONS

#### 10.1 Conclusions

- The second five year review was completed by the USACE in September 2005. The five year concluded that the required incremental reduction in risk was not achieved and the Army and regulatory agencies decided to implement the Alternative SHL-9, Groundwater Extraction, Treatment, and Discharge. The groundwater extraction system began operation in March 2006.
- Site-wide groundwater measurements were collected on August 24 and 26, 2005. Water level data collected on August 24, 2006, representing baseline conditions suggests that the previous model analysis of a northerly groundwater flow is still valid. The water-level data collected on August 26 during an extraction test indicates that the operation of the groundwater extraction system will be expected create an even greater northerly flow.
- The locations of the wells in the LTMP remain appropriate, relative to source areas and the direction of groundwater flow.
- Shepley's Hill Landfill Cap appears to be in fair to good condition.
- The Geotechnical Engineering Annual Inspection in 2005 (refer to Appendix A) ۰ concluded: An upcoming Comprehensive Site Assessment will assess the adequacy of the landfill, Following the CSA, a Corrective Action Alternatives Analysis will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve the drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) Repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill (the probes were installed in November 05, after this inspection) (2) Repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately. As noted, gas probes were installed on the south end of the landfill monitored in February, 2006 (refer to Appendix A). Methane was not detected in any of the new or older perimeter gas probes. In addition, in December, 2005 the security fence was repaired and no-trespassing signs were installed.

### 10.2 Recommendations

• The list of parameters monitored as part of the long term sampling program should be reviewed as recommended in the 2005 Five Year Review Report (USACE, September 2005) with the intent of eliminating parameters that have no significant site history and do not contribute to site risks or to the understanding of the groundwater chemistry. These include copper, lead, nickel, selenium, silver, cyanide, BOD, and VOCs.

- Integrate LTM and PMP groundwater sampling programs.
- Other recommendations made in this annual report that are not currently scheduled but should be addressed in the future include, (1) Repair and regrade around the catch basins on the south side of the landfill; and (2) Repair the hasps on the casings of groundwater monitoring wells SHL-4 and SHL-9.

### 11.0 REFERENCES

ABB Environmental Services, Inc. (ABB-ES), 1993. *Final Remedial Investigation Addendum Report*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.

ABB Environmental Services, Inc. (ABB-ES), 1995a. *Final Feasibility Study, Shepley's Hill Landfill Operable Unit,* Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

ABB Environmental Services, Inc. (ABB-ES), 1995b. *Record of Decision, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

CH2M HILL, 2003. Remedial Design and Remedial Action Workplan, Draft Final Sixty Percent (60%)/Draft One-Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill, Prepared for Base Realignment and Closure (BRAC), Atlanta Field Office. December.

CH2M HILL, 2005a. Remedial Design and Remedial Action Workplan, Final Hundred Percent (100%) Submittal, Groundwater Extraction, Treatment, and Discharge Contingency Remedy for Shepley's Hill Landfill. May.

CH2M HILL, 2005b Explanation of Significant Differences, Groundwater Extraction, Treatment, and Discharge Contingency Remedy, Shepley's Hill Landfill, Fort Devens, MA., June.

CH2M HILL, 2005c. Shepley's Hill Landfill, Performance Monitoring Plan, Groundwater Extraction, Treatment, and Discharge Contingency Remedy. August. CH2M HILL, 2005d. Startup Testing Report Groundwater Treatment System Shepley's Hill Landfill, Devens, MA, October.

CH2M HILL, 2005e. Final Technical Memorandum, On-Site Discharge Evaluation– Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. December.

CH2M HILL, 2006 Final Technical Memorandum Start-Up Extraction Test – Shepley's Hill Groundwater Extraction, Treatment, and Discharge System. February

Harding Lawson Associates, 1999. *Final Work Plan – Supplemental Groundwater Investigation at Shepley's Hill Landfill*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.

Harding ESE, A MACTEC Company, 2002. *Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.

Nobis Engineering, 2005. 2005 Five-Year Review Report, Former Fort Devens, Devens, Massachusetts. Prepared for US. Army BRAC Environmental Office, Devens, MA September.

Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March.

Stone & Webster Environmental Technology & Services, 1997. *Shepley's Hill Landfill, Annual Report 1996*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April.

Stone & Webster Environmental Technology & Services, 1998. *Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August.

Stone & Webster Environmental Technology & Services, 1998. Groundwater Pumping Test Report, Shepley's Hill Landfill, Devens, MA. January.

U.S. Army Corps of Engineers, New England District (CENAE), 2006. *Geotechnical Engineering Fall 2005 Annual Inspection Report, Shepley's Hill Landfill.* March.

U.S. Army Corps of Engineers, New England District (CENAE), 2005. 2005 Five-Year Review, Shepley's Hill Landfill. September.

U.S. Army Corps of Engineers, New England District (CENAE), 2004. 2003 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts. March.

U.S. Army Corps of Engineers, New England District (CENAE), 2003. Draft Cap Drainage Report, Shepley's Hill Landfill, Devens RFTA, Ayer, Massachusetts. January.

US Army Corps of Engineers, New England District, 1997. 60% Design Extraction/Discharge System, Shepley's Hill Landfill, Devens, MA. November.

US Army Environmental Center (USAEC), 1995. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens, Massachusetts. September.

U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.

.

## Tables

| Table 1-1<br>Contaminants of Concern (COC) - Cleanup Levels<br>Shepley's Hill Landfill<br>Devens, Massachusetts |        |                 |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------|-----------------|--|--|--|--|--|--|--|--|--|
| COC Cleanup Level Selection Basis<br>ug/L                                                                       |        |                 |  |  |  |  |  |  |  |  |  |
| Arsenic                                                                                                         | 50     | MCL             |  |  |  |  |  |  |  |  |  |
| Chromium                                                                                                        | 100    | MCL             |  |  |  |  |  |  |  |  |  |
| 1,2-Dichlorobenzene                                                                                             | 600    | MCL             |  |  |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene                                                                                             | 5      | MCL             |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloroethane                                                                                              | 5      | MMCL            |  |  |  |  |  |  |  |  |  |
| Lead                                                                                                            | 15     | Action Level    |  |  |  |  |  |  |  |  |  |
| Manganese                                                                                                       | 291    | Background      |  |  |  |  |  |  |  |  |  |
| Nickel                                                                                                          | 100    | MCL             |  |  |  |  |  |  |  |  |  |
| Sodium                                                                                                          | 20,000 | Health Advisory |  |  |  |  |  |  |  |  |  |
| Aluminum                                                                                                        | 6,870  | Background      |  |  |  |  |  |  |  |  |  |
| lron                                                                                                            | 9,100  | Background      |  |  |  |  |  |  |  |  |  |

Based Upon Record of Decision

•

| Well ID         Description         Orientation to<br>Landfill <sup>4</sup> Surface<br>Flevation <sup>2</sup><br>(ft msl)         Reference<br>Flevation <sup>2</sup><br>(ft msl)         Total<br>Depth<br>(feet)         Screen<br>Length<br>(feet)         June 2005         Mater Levels         January 20<br>Water Levels           SHL-3         Water Table         East         247.4         248.6         33.29         10         29.75         218.85         29.58         Elevation<br>(ft         Elevation <sup>2</sup> 9.69         541.4         9.69         541.4         9.69         541.4         10.05         218.05         9.69         541.4         541.4         9.69         541.4         10.05         218.05         9.69         541.4         541.4         9.69         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4         541.4                                                                                                                                                                                                                                                                                                        |            | Table 5-1         Monitoring Well Specifications and Groundwater Elevations         Shepley's Hill Landfill         Devens, Massachusetts |                |       |       |       |    |       |               |              |         |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-------|-------|----|-------|---------------|--------------|---------|--|--|--|--|
| Landfill <sup>1</sup> (ft msl)         (ft msl)         (ft msl)         (feet)         Water<br>Levels         Groundwater<br>Levels         Water Levels<br>Elevation         Groundwater<br>Elevation         Water Levels         Groundwater         Groundwater <t< th=""><th>Well ID</th><th>Description</th><th>Orientation to</th><th></th><th></th><th></th><th></th><th>Ju</th><th>пе 2005</th><th>Janua</th><th>гу 2006</th></t<> | Well ID    | Description                                                                                                                               | Orientation to |       |       |       |    | Ju    | пе 2005       | Janua        | гу 2006 |  |  |  |  |
| SHL-3Water TableEast247.4248.633.291029.75218.8529.58SHL-4Water TableEast226.4228.114.651010.05218.059.69SHL-5Water TableNorth217.9218.613.75102.59216.011.40SHM-96-5BBase of Sand/TillNorth218.5220.092.47104.36215.643.89SHM-96-5CWater TableNorth218.7219.479.62103.88215.525.98SHL-9Water TableNorth221.7223.026.25107.51215.496.72SHL-10Water TableEast249.1248.8291530.35218.4130.64SHM-93-10CBedrockEast235.0236.5301518.28218.2217.99SHL-11Water TableEast235.0236.5301518.28218.2217.99SHL-19Water TableEast239.5241.532.371522.19219.3121.49SHL-20Base of TillEast235.4237.050.551018.62218.3818.34SHL-22Base of TillNorth220.0220.6110.6105.24215.364.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heirib     | becomption                                                                                                                                |                |       | •     | · · . |    |       | Elevation (ft | Water Levels | 17      |  |  |  |  |
| SHL-4         Water Table         East         226.4         228.1         14.65         10         10.05         218.05         9.69           SHL-5         Water Table         North         217.9         218.6         13.75         10         2.59         216.01         1.40           SHM-96-5B         Base of Sand/Till         North         218.5         220.0         92.47         10         4.36         215.64         3.89           SHM-96-5C         Water Table         North         218.7         219.4         79.62         10         3.88         215.52         5.98           SHL-9         Water Table         North         221.7         223.0         26.25         10         7.51         215.49         6.72           SHL-10         Water Table         East         249.1         248.8         29         15         30.35         218.41         30.64           SHM-93-10C         Bedrock         East         247.1         248.6         56.31         10         28.86         219.74         28.46           SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           S                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHL-3      | Water Table                                                                                                                               | East           | 247.4 | 248.6 | 33.29 | 10 | 29.75 |               | 29.58        | 219.02  |  |  |  |  |
| SHL-5         Water Table         North         217.9         218.6         13.75         10         2.59         216.01         1.40           SHM-96-5B         Base of Sand/Till         North         218.5         220.0         92.47         10         4.36         215.64         3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·      |                                                                                                                                           | East           | 226.4 | 228.1 | 14.65 | 10 | 10.05 | 218.05        | 9.69         | 218.41  |  |  |  |  |
| SHM-96-5C         Water Table         North         218.7         219.4         79.62         10         3.88         215.52         5.98           SHL-9         Water Table         North         221.7         223.0         26.25         10         7.51         215.49         6.72           SHL-9         Water Table         North         221.7         223.0         26.25         10         7.51         215.49         6.72           SHL-10         Water Table         East         249.1         248.8         29         15         30.35         218.41         30.64           SHM-93-10C         Bedrock         East         247.1         248.6         56.31         10         28.86         219.74         28.46           SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Water Table                                                                                                                               | North          | 217.9 | 218.6 | 13.75 | 10 | 2.59  | 216.01        | 1.40         | 217.20  |  |  |  |  |
| Orthogo         Hater Table         North         221.7         223.0         26.25         10         7.51         215.49         6.72           SHL-9         Water Table         East         249.1         248.8         29         15         30.35         218.41         30.64           SHL-10         Water Table         East         247.1         248.6         56.31         10         28.86         219.74         28.46           SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHM-96-5B  | Base of Sand/Till                                                                                                                         | North          | 218.5 | 220.0 | 92.47 | 10 | 4.36  | 215.64        | 3.89         | 216.11  |  |  |  |  |
| Officiency         Mater Table         East         249.1         248.8         29         15         30.35         218.41         30.64           SHL-10         Water Table         East         249.1         248.8         29         15         30.35         218.41         30.64           SHL-10         Bedrock         East         249.1         248.8         29         15         30.35         218.41         30.64           SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SHM-96-5C  | Water Table                                                                                                                               | North          | 218.7 | 219.4 | 79.62 | 10 | 3.88  | 215.52        | 5.98         | 213.42  |  |  |  |  |
| SHL-10         Bedrock         East         247.1         248.6         56.31         10         28.86         219.74         28.46           SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHL-9      | Water Table                                                                                                                               | North          | 221.7 | 223.0 | 26.25 | 10 | 7.51  | 215.49        | 6.72         | 216.28  |  |  |  |  |
| SHL-11         Water Table         East         235.0         236.5         30         15         18.28         218.22         17.99           SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SHL-10     | Water Table                                                                                                                               | East           | 249.1 | 248.8 | 29    | 15 | 30.35 | 218.41        |              | 218.47  |  |  |  |  |
| SHL-19         Water Table         East         239.5         241.5         32.37         15         22.19         219.31         21.49           SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHM-93-10C | Bedrock                                                                                                                                   | East           | 247.1 | 248.6 | 56.31 | 10 | 28.86 | 219.74        | 28.46        | 220.14  |  |  |  |  |
| SHL-20         Base of Till         East         235.4         237.0         50.55         10         18.62         218.38         18.34           SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SHL-11     | Water Table                                                                                                                               | East           | 235.0 | 236.5 | 30    | 15 | 18.28 | 218.22        | 17.99        | 218.51  |  |  |  |  |
| SHL-22         Base of Till         North         220.0         220.6         110.6         10         5.24         215.36         4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHL-19     | Water Table                                                                                                                               | East           | 239.5 | 241.5 | 32.37 | 15 | 22.19 | 219.31        | 21.49        | 220.01  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHL-20     | Base of Till                                                                                                                              | East           | 235.4 | 237.0 | 50.55 | 10 | 18.62 | 218.38        | 18.34        | 218.66  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHL-22     | Base of Till                                                                                                                              | North          | 220.0 | 220.6 | 110.6 | 10 | 5.24  | 215.36        | 4.75         | 215.85  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHM-96-22B | Sand/Till Interface                                                                                                                       | North          | 220.0 | 221.7 | 92.42 | 30 | 5.10  | 216.60        | 4.56         | 217.14  |  |  |  |  |
| SHM-93-22C Bedrock North 219.9 220.4 137.5 10 6.30 214.10 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHM-93-22C | Bedrock                                                                                                                                   | North          | 219.9 | 220.4 | 137.5 | 10 | 6.30  | 214.10        | 6,10         | 214.30  |  |  |  |  |

Notes: 1. North wells are located in the direction of groundwater flow away from the landfill. East wells are located between landfill and East Plow Pond. 2. Elevations based Meridian Associates survey (7&8/2005), referenced to be National Geodetic Vertical Datum of 1929 (NGVD29).

|                          | 19                       | ble 3-2 Grour            | ndwater Eleva<br>Site-Wide Gro<br>Sheple | our      |                | levations      | act                    | ion iest)            |                  |
|--------------------------|--------------------------|--------------------------|------------------------------------------|----------|----------------|----------------|------------------------|----------------------|------------------|
|                          |                          |                          | Devens,                                  | M        | ssachus        |                |                        |                      |                  |
|                          |                          |                          | 1                                        |          | Baseline       | : 8/24/05      |                        | Maximum D            | rawdown: 8/26/06 |
|                          | Ground                   | Outer                    |                                          |          |                |                |                        |                      |                  |
|                          | Surface                  | Casing                   | Reference                                |          | DTW            |                |                        | DTW                  |                  |
| Well ID                  | Elevation <sup>1,3</sup> | Elevation <sup>1,2</sup> | Elevation <sup>1,3</sup>                 |          | (TOC)          | Elevation      |                        | (TOC)                | Elevation        |
|                          | (ft msl)                 | (ft msi)                 | (ft msl)                                 |          | (#)            | (ft msi)       |                        | (ft)                 | (ft msl)         |
| SHM-05-39A               | 222.9                    | 222.9                    | 222.6                                    | _        | 11.93          | 210,7          |                        | 11.88                | 210.7            |
| SHM-05-39B               | 222.9                    | 222.9                    | 222.6                                    | _        | 12.70          | 209.9          |                        | 12.66                | 209.9            |
| SHM-05-40X<br>SHM-05-41A | 224.6<br>223.8           | 224.6                    | 224.4<br>223.5                           |          | 14,55          | 209.9<br>212.8 | -                      | 14.55                | 209.8            |
| SHM-05-41B               | 223.6                    | 223.6                    | 223.3                                    |          | 10.53          | 212.8          |                        | 10.63                | 212.7            |
| SHM-05-41C               | 224.0                    | 224.0                    | 223.6                                    |          | 10,75          | 212.9          |                        | 10.86                | 212.7            |
| SHM-05-42A               | 214.5                    | 217.9                    | 217.8                                    | _        | 4.98           | 212.8          |                        | 5.10                 | 212.7            |
| SHM-05-42B               | 214.5                    | 217.9                    | 217.8                                    |          | 4,93           | 212.9          |                        | 5.07                 | 212.7            |
| SHM-99-31A               | 213.9                    | 215.7                    | 215.4<br>215.4                           | ****     | 4.40           | 211.0          |                        | 4.28                 | 211.1            |
| SHM-99-31B<br>SHM-99-31C | 213.7<br>213.7           | 215.5                    | 215.4                                    | _        | 4.32           | 211.1 211.2    | —                      | 4.35                 | 211.1<br>211.2   |
| SHM-99-32X               | 220.2                    | 222.5                    | 222.3                                    |          | 10.17          | 217.2          | -                      | 10.24                | 212.1            |
| SHP-05-47A               | 214.4                    | NA                       | 218.5                                    | -        | 5.97           | 212.5          |                        | Dry                  | Dry              |
| SHP-05-47B               | 214.4                    | NA                       | 216.3                                    |          | 3.93           | 212.4          |                        | 3.81                 | 212.5            |
| SHP-05-48A               | 213.9                    | NA                       | 217.0                                    | _        | Dry            | Dry            |                        | Dry                  | Dry              |
| SHP-05-48B               | 213.8                    | NA                       | 218.4                                    | ļ        | Dry            | Dry            | Ľ                      | Dry                  | Dry              |
| SHP-05-49A               | 213.3                    | NA<br>NA                 | 217.8<br>216.2                           |          | 5.93           | 211.9          | $\left  \cdot \right $ |                      | Dry 2114 C       |
| SHP-05-49B<br>SHP-99-33A | 213.3<br>222.1           | 1 NA                     | 216.2                                    | -        | 4.28           | 211.9<br>210.9 | $\left  - \right $     | 4.65                 | 211.6<br>210.9   |
| SHP-99-33B               | 222.2                    | NA                       | 223.7                                    |          | 12.42          | 210.9          |                        | 12.55                | 210.9            |
| SHP-99-34A               | 223.6                    | NA                       | 225.7                                    |          | 13.65          | 212.1          |                        | 13.56                | 212.1            |
| SHP-99-348               | 223.6                    | NA                       | 225.6                                    |          | 13.33          | 212.3          |                        | 13.25                | 212.4            |
| WP-01                    | 213.3                    | NA                       | 213.4                                    |          | Dry            | Dry            |                        | Dry                  | Dry              |
| EW-01                    | NA                       | 228.2                    | 228.0                                    |          | 14.22          | 213.8          |                        | 24.18                | 203,8            |
| EW-01 pilot<br>EW-04     | NA<br>NA                 | 228.2<br>228.5           | 228.0                                    |          | 14.22          | 213.8          |                        | 14,84                | 213.2            |
| EW-04 pilot              | NA<br>NA                 | 228.5                    | 228.1                                    | _        | 14.53          | 213.0          |                        | - 14.82              | 213.3            |
| SHL-13                   | 220.1                    | 222.3                    | 221.8                                    |          | 7,59           | 213.3          | -                      | 7.52                 | 214,3            |
| SHL-21                   | 258.7                    | 261.2                    | 260.0                                    |          | 45.81          | 214.2          |                        | 45.75                | 214.3            |
| SHL-22                   | 220.0                    | 221,4                    | 220.6                                    |          | 7.36           | 213.2          |                        | 7.57                 | 213.0            |
| SHL-23                   | 240.5                    | 242.6                    | 242.3                                    | _        | 28.16          | 214.1          |                        | 28.17                | 214.1            |
| SHL-5                    | 217.9                    | 218.9                    | 218.6                                    | ļ        | 5.32           | 213.3          |                        | 5.38                 | 213.2            |
| SHL-8D<br>SHL-8S         | 220.1                    | 222,3                    | 221.8                                    | _        | 8.03           | 213.8<br>213.8 | $\vdash$               | 8,04                 | 213.8            |
| SHL-05                   | 220.1                    | 223.5                    | 222.0                                    | -        | 9.83           | 213.8          |                        | 8.27                 | 213.7<br>213.1   |
| SHM-05-45A               | 227.3                    | 229.7                    | 229.5                                    |          | 15.69          | 213.8          |                        | 16.09                | 213.3            |
| SHM-05-45B               | 227.7                    | · 230.3                  | 230.1                                    |          | 16.29          | 213.8          |                        | 16.61                | 213.0            |
| SHM-05-46A               | 227.3                    | 229.4                    | 229.3                                    |          | 15.32          | 214.0          |                        | 15.49                | 213.5            |
| SHM-05-46B               | 227.1                    | 228.8                    | 228.7                                    | L        | 14.60          | 214,1          |                        | 14.76                | 213.7            |
| SHM-93-22C               | 220.0                    | 221.7                    | 221.7                                    | ļ        | 8.45           | 213.3          |                        | 8.65                 | 213,1            |
| SHM-96-22B<br>SHM-96-5B  | 219.9                    | 220.2                    | 220.4                                    |          | 6.39           | 213,2<br>213,6 |                        | 7.42                 | 213.0<br>213.4   |
| SHM-96-5C                | 218.7                    | 219.6                    | 219,4                                    |          | 5.98           | 213.4          |                        | 6,12                 | 213.3            |
| SHP-05-43                | 259.4                    | 262.4                    | 261.7                                    |          | 45.45          | 216,3          |                        | 45.36                | 216.3            |
| SHP-05-44                | 256.4                    | 259.5                    | 259.1                                    |          | 42.46          | 216.6          | 1                      | 42.40                | 216.7            |
| N-1, P-1                 | 228.8                    | 231.5                    | 231.0                                    |          | 14.93          | 216.1          |                        | 14.86                | 216.1            |
| N-1, P-2                 | 228.8                    | 231.5                    | 231.0                                    | -        | 14.80          | 216.2          |                        | 14.77                | 216,2            |
| N-1, P-3<br>N-2, P-1     | 228.8                    | 231.5                    | 231.2                                    |          | 14.46          | 216.7          |                        | <u>14,40</u><br>5.85 | 216.8<br>217.3   |
| N-2, P-1                 | 221.6                    | 223.8                    | 223.0                                    | 1-       | 6.14           | 217.2          | -                      | 6.08                 | 217.3            |
| PSP-01                   | NA                       | NA                       | 216.1                                    | 1        | 0.94           | 217.0          |                        | 0,97                 | 210.5            |
| SHL-11                   | 235.0                    | 237,0                    | 236,5                                    |          | 18.98          | 217,5          |                        | 18.91                | 217.6            |
| SHL-20                   | 235.4                    | 237.0                    | 237.0                                    | Ľ        | 19.33          | 217.7          |                        | 19.30                | 217.7            |
| SHL-4                    | 226.4                    | 228.4                    | 228.1                                    | ┣        | 10.77          | 217.3          | 1_                     | 11.07                | 217.0            |
| SHP-01-36X<br>SHP-01-37X | 221.1<br>219.5           | NA<br>NA                 | 225.1<br>223.7                           |          | 7.16           | 217.9<br>216.8 | $\vdash$               | 8.11                 | 217.0            |
| SHP-01-37X<br>SHP-01-38A | 219.5                    | NA<br>NA                 | 223.7                                    | <u> </u> | 6.91<br>4.39   | 216.8          |                        | <u>6.53</u><br>4.36  | 217.2            |
| SHP-01-38B               | 219.9                    | NA                       | 222.0                                    | <u> </u> | 4.49           | 217.5          |                        | 4.34                 | 217.7            |
| N-3, P-1                 | 219.8                    | 222.5                    | 221.8                                    |          | 4.76           | 217.0          |                        | 4.71                 | 217,1            |
| N-3, P-2                 | 219.8                    | 222.5                    | 221.5                                    |          | 4.78           | 216.7          |                        | 4.76                 | 216,7            |
| N-4, P-14                | 218.3                    | 219,9                    | 219.2                                    | Ĺ        | <u> </u>       |                |                        | **                   |                  |
| N-4, P-24                | 218.3                    | 219.9                    | 219.2                                    |          | 2.10           | 217.1          |                        | 2.09                 | 217.1            |
| N-4, P-3*                | 218.3                    | 219.9                    | 219.2                                    | _        | -              |                |                        | **                   | -                |
| N-5, P-1                 | 241.7                    | 244.9                    | 243.7                                    | –        | 23.38          | 220.3          | $\vdash$               | 23.35                | 220,4            |
| N-5, P-2<br>N-6, P-1     | 241.7                    | 244.9<br>259.9           | 243.7                                    | ┣        | 23.27          | 220.4          | $\vdash$               | 23,22                | 220.5            |
| N-0, P-1<br>N-7, P-1     | 254.4                    | 259.9                    | 256.6                                    |          | 36.51<br>30.35 | 223.4<br>226.3 |                        | 36.05                | 223.9<br>226.3   |
| N-7, P-2                 | 254.4                    | 257.7                    | 257.1                                    | t-       | 30.33          | 226.7          | $\vdash$               | 30.34<br>30,44       | 226.7            |
| SHL-15                   | 260.1                    | 261.2                    | 260.9                                    | t        | 18.93          | 242.0          |                        | 18.98                | 241.9            |
| SHL-18                   | 236.8                    | 238.8                    | 238.6                                    | E        | 19,60          | 219.0          | Γ                      | 19.62                | 219.0            |
| SHL-19                   | 239.5                    | 241.8                    | 241.5                                    |          | 23.38          | 218.1          | $\Box$                 | 23,40                | 218.1            |
| SHL-3                    | 247,4                    | 248.6                    | 248.6                                    | <u> </u> | 30.77          | 217.8          |                        | 30.80                | 217.8            |
| SHM-93-10C               |                          | 249.1                    | 248.6                                    | -        | 29,92          | 218.7          |                        | 23.93                | 224.7            |
| SHM-93-10D<br>SHM-93-10E |                          | 249.1<br>248.8           | 248.9<br>248.5                           | +        | 30.63          | 218.3<br>218.8 | -                      | 30,64                | 218.3            |
| SHM-93-10E               |                          | 238.7                    | 238.3                                    | ⊢        | 19.29          | 218.8          | $\left  - \right $     | 29.64<br>19.30       | 218.9<br>219.0   |
| SHL-24                   | 237.8                    | 239.9                    | 239.8                                    | †        | 15.69          | 224.1          |                        | 15.72                | 215.0            |
| SHP-95-27X               | 236.3                    | 238.7                    | 238.5                                    |          | 33.02          | 205.5          | T                      | 16.14                | 222,4            |
| SHP-99-35X               |                          | 259.3                    | 259.2                                    |          | 36.39          | 222.8          | 1                      | 35.05                | 224.2            |

 SHP-39-33X
 257.3
 259.3
 259.2
 1 36.39
 222.8
 35.05
 22

 NA=Not Available (survey data not available)
 Notes:
 1, Field survey performed by Meridian Associates, Inc. between July and August 2005,
 2, Northing and easting coordinates based upon project system, reported to be North American Datum of 1983 (NADB3).
 3. Elevations referenced to National Geodetic Vertical Datum of 1929 (NGVD29).

 4, N-4 ice damaged, P-2 measurement approx.
 5, Reference elevation generally inner (PVC) casing or zero mark on stageboard. SHL-3 PVC (elev. 247.8) not used for reference due to depth in protective casing.

|                                  | Table 7-1                  |                                                     |
|----------------------------------|----------------------------|-----------------------------------------------------|
| Groundwa                         | ter Sample Analysis and Pr | ocedures                                            |
|                                  | Shepley's Hill Landfill    |                                                     |
|                                  | Devens, Massachusetts      |                                                     |
| Parameters                       | June 2005 Method           | January 2006 Method                                 |
| Volatile Organic Compounds       | SW846 8260B                | SW846 8260B                                         |
| Inorgai                          |                            | 0000002000                                          |
| Aluminum                         | SW846 6010B                | SW846 6010B                                         |
| Arsenic                          | SW846 6010B                | SW846 6010B                                         |
| Barium                           | SW846 6010B                | SW846 6010B                                         |
| Cadmium                          | SW846 6010B                | SW846 6010B                                         |
| Chromium                         | SW846 6010B                | SW846 6010B                                         |
| Copper                           | SW846 6010B                | SW846 6010B                                         |
| Cyanide                          | EPA Method 335.4           | SM 9014                                             |
| Iron                             | SW846 6010B                | SW846 6010B                                         |
| Lead                             | SW846 6010B                | SW846 6010B                                         |
| Manganese                        | SW846 6010B                | SW846 6010B                                         |
| Mercury                          | SW846 7470A                | SW846 7470A                                         |
| Nickel                           | SW846 6010B                | SW846 6010B                                         |
| Selenium                         | SW846 6010B                | SW846 6010B                                         |
| Sodium                           | SW846 6010B                | SW846 6010B                                         |
| Silver                           | SW846 6010B                | SW846 6010B                                         |
| Zinc                             | SW846 6010B                | SW846 6010B                                         |
| General Laboratory Parame        | ters                       | ann a t <b>t , ,,, , , , , , , , , , , , , , , </b> |
| Hardness                         | SM 2340B                   | SM 2340B                                            |
| Total Dissolved Solids           | EPA 160.1                  | SM 2540C                                            |
| Total Suspended Solids           | EPA 160.2                  | SM 2540D                                            |
| Chloride                         | EPA 300.0                  | SM 9251                                             |
| Nitrate as N                     | EPA 300.0                  | SM 4500NO3-F                                        |
| Sulfate                          | EPA 300.0                  | SM 9038B                                            |
| Alkalinity                       | EPA 310.1                  | SM 2320B                                            |
| Biological Oxygen Demand - 5 Day | EPA 405.1                  | SM 5210B                                            |
| Chemical Oxygen Demand           | EPA 410.1                  | SM 5220D                                            |
| Total Organic Carbon             | SW 846 9060                | SW 846 9060                                         |
| General Field Parame             | ters                       |                                                     |
| pH                               | YSI 600 XL                 | YSI 600 XL                                          |
| Temperature                      | YSI 600 XL                 | YSI 600 XL                                          |
| Specific Conductivity            | YSI 600 XL                 | YSI 600 XL                                          |
| Dissolved Oxygen                 | YSI 600 XL                 | YSI 600 XL/ YSI 85                                  |
| Oxygen Reduction Potential       | YSI 600 XL                 | YSI 600 XL                                          |
| Turbidity                        | HF Scientific DRT-15CE     | LaMotte 202                                         |

\*

-

|                                         |                     |                  |           | T                                      | able 7-2          |                   |                                       |                                        |           |                                        |            |  |  |
|-----------------------------------------|---------------------|------------------|-----------|----------------------------------------|-------------------|-------------------|---------------------------------------|----------------------------------------|-----------|----------------------------------------|------------|--|--|
|                                         |                     |                  | Gro       | oundwater An                           |                   | lts (ug/L)        |                                       |                                        |           |                                        | i          |  |  |
|                                         |                     |                  |           | June                                   | e 6-7, 2005       |                   |                                       |                                        |           |                                        | 1          |  |  |
|                                         |                     |                  |           |                                        | 's Hill Landfil   |                   |                                       |                                        |           |                                        | I          |  |  |
| Devens, Massachusetts                   |                     |                  |           |                                        |                   |                   |                                       |                                        |           |                                        |            |  |  |
| PARAMETERS                              | CLEANUP             |                  |           | ······································ |                   | Monitorir         | ng Well ID                            |                                        |           |                                        |            |  |  |
|                                         | LEVEL (1)           | SHL-3            | SHL-4     | SHL-5                                  | SHL-10            | SHM-93-10C        | SHL-11                                | SHL-11 DUP                             | SHL-19    | SHL-20                                 | SHM-93-22C |  |  |
| VOLATILES (8260B)                       |                     |                  |           |                                        |                   |                   |                                       |                                        |           |                                        |            |  |  |
| 1,1-Dichloroethane                      | 70 (4)              | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| 1,2-Dichlorobenzene                     | 600                 | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| 1,2-Dichloroethane                      | 5                   | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| 1,2-Dichloroethene (total)              | 70 (2)              | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 1.4 J                                 | 1.4 J                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| 1,3-Dichlorobenzene                     | 600 (2)             | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| 1,4-Dichlorobenzene                     | 5                   | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 1.8 J                                  | 5.0 U     | 2.1 J                                  | 5.0 U      |  |  |
| 2-Butanone                              | -                   | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 UJ    | 5.0 U                                  | 5.0 U      |  |  |
| 4-Methyl-2-Pentanone                    | -                   | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| Acetone                                 | 3,000 (4)           | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 UJ    | 5.0 U                                  | 5.0 U      |  |  |
| Benzene                                 | 5 (2)               | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 1.5 J                                 | 1.4 J                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| Methyl-t-Butyl Ether                    | 70 (4)              | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 U     | 5.0 U                                  | 5.0 U      |  |  |
| Xylenes                                 | 10,000 (2)          | 5.0 U            | 5.0 U     | 5.0 U                                  | 5.0 U             | 5.0 U             | 5.0 U                                 | 5.0 U                                  | 5.0 UJ    | 5.0 U                                  | 5.0 U      |  |  |
| METALS (6010B or as noted)              |                     |                  |           |                                        |                   |                   |                                       |                                        |           | T 00.11                                |            |  |  |
| Aluminum                                | 6,870               | 88 U             | 88 U      | 227                                    | 88 U              | 88 U              | 88 U                                  | 88 U                                   | 88U       | 88 U                                   | 88 U       |  |  |
| Arsenic                                 | 50                  | 4.5 U            | 10.1      | 7 B                                    | 4.5U              | 8.1 B             | 524                                   | 518                                    | 26.3      | 159                                    | 15.8       |  |  |
| Barium                                  | 2,000 (2)           | 8.4 U            | 35 B      | 9.5 B                                  | 8.4 U             | 8.4 U             | 78.5 B                                | 77.2 B                                 | 10.3 B    | 86.8 B                                 | 70.8 B     |  |  |
| Cadmium                                 | 5 (2)               | 0.6 U            | 0.6 U     | 0.6 U                                  | 0.6 U             | 0.6 U             | 0.6 U                                 | 0.6 U                                  | 0.6 U     | 0.6 U                                  | 0.6 U      |  |  |
| Chromium                                | 100                 | 2.9 B            | 1.2 U     | 1.2 U                                  | 1.2 U             | 1.2 U             | 1.2 U                                 | 1.2 U                                  | 1.2 U     | 1.2U                                   | 2.4 B      |  |  |
| Copper                                  | 1,300 (3)           | 4.2 U            | 4.2 U     | 4.2 U                                  | 4.2 U             | 4.2 U             | 6.6 B                                 | 4.2 U                                  | 4.2 U     | 4,2 U                                  | 4.2 U      |  |  |
| Iron                                    | 9,100               | 37.9 U           | 1,220     | 2,930                                  | 37.9 U            | 37.9 U            | 59,400                                | 57,400                                 | 6,680     | 5,980                                  | 572        |  |  |
| Lead                                    | 15                  | 2.7 U            | 2.7 U     | 2.7 U                                  | 2.7 U             | 2.7 U             | 4.8                                   | 2.9 U                                  | 2.7 U     | 2.7 U                                  | 2.7 U      |  |  |
| Manganese                               | 291 (5)             | 1.7 B            | 361       | 476                                    | 1.5 B             | 27.5              | 2,380                                 | 2,300                                  | 1,090     | 6,270                                  | 218        |  |  |
| Mercury (7470A)                         | 2 (2)               | 0.1 U            | 0.1 U     | 0.1 U                                  | 0.1 U             | 0.1 U             | 0.1 U                                 | 0.1 U                                  | 0.1 U     | 0.1 U                                  | 0.1 U      |  |  |
| Nickel                                  | 100                 | 3 U              | 4.2 B     | 3 U                                    | 3 U               | 3 U               | 3 U                                   | 3 U                                    | 4 B       | 7.2 B                                  | 3 U        |  |  |
| Selenium                                | 50 (2)              | 3.8 U            | 3.8 U     | 3.8 U                                  | 3.8 U             | 3.8 U             | 3.8 U                                 | 3.8 U                                  | 3.8 U     | 3.8 U                                  | 3.8 U      |  |  |
| Silver                                  | 40 (4)              | 1.8 U            | 1.8 U     | 1.8 U                                  | 1.8 U             | 1.8 U             | 1.8 U                                 | 1.8 U                                  | 1.8 U     | 1.8 U                                  | 1.8 U      |  |  |
| Sodium                                  | 20,000              | 696 B            | 7,190     | 3,240 B                                | 841 B             | 7,840             | 21,600                                | 20,900                                 | 1,470 B   | 32,000                                 | 9,910      |  |  |
| Zinc                                    | 2,000 (4)           | 1.9 B            | 3.6 U     | 7 B                                    | 4.7 B             | 1.6 U             | 5 B                                   | 3.6 B                                  | 2.5 B     | 3.1 B                                  | 16.4 B     |  |  |
| GENERAL CHEMISTRY                       | <u></u>             |                  | ·         |                                        | J                 |                   |                                       | <u> </u>                               |           |                                        | <u></u>    |  |  |
| Alkalinity as CaCO <sub>3</sub>         |                     | 7,600 UJ         | 58,100 UJ | 41,100 UJ                              | 17,600 UJ         | 191,000 J         | 201,000 J                             | 207,000 J                              | 32,700 UJ | 277,000 J                              | 147,000 J  |  |  |
|                                         |                     |                  |           | 1                                      |                   |                   |                                       | 1,100 U                                | 1,100 U   | 1,100 U                                | 1,300      |  |  |
| Biochemical Oxygen Demand               | -                   | 1,100 U          | 1,100 U   | 1,300                                  | 1,100 U           | 1,100 U           | 1,400                                 |                                        |           |                                        |            |  |  |
| Chemical Oxygen Demand                  |                     | 20,000 U         | 20,000 U  | 20,000 U                               | 20,000 U          | 20,000 U          | 20,000 U                              | 20,000 U                               | 20,000 U  | 20,000 U                               | 20,000 U   |  |  |
| Chloride                                | -                   | 690 U            | 8,800     | 6,400                                  | 1,100 U           | 24,300            | 23,900                                | 22,900                                 | 1,100 U   | 31,700                                 | 15,000     |  |  |
| Cyanide (Total)                         | 200 (2)             | 10 U             | 10 U      | 10 U                                   | 10 U              | 10 U              | 10 U                                  | 10 U                                   | 10 U      | 10 U                                   | 10 U       |  |  |
| Hardness as CaCO <sub>3</sub>           | _                   | 5,800            | 49,800    | 38,900                                 | 17,400            | 209,000           | 127,000                               | 123,000                                | 26,500    | 254,000                                | 149,000    |  |  |
| Nitrate as Nitrogen                     | 10,000 (2)          | 370 U            | 440 U     | 200 U                                  | 430 U             | 330 U             | 420 U                                 | 410 U                                  | 480 U     | 550 U                                  | 520 U      |  |  |
| Sulfate                                 | 500,000 (2)         | 3,900            | 7,300     | 910 U                                  | 3,000             | 23,600            | 880 U                                 | 1,200 U                                | 8,900     | 11,700                                 | 8,700      |  |  |
| Total Dissolved Solids                  |                     | 21,000           | 81,000    | 77,000                                 | 28,000            | 270,000           | 585,000 *                             | 297,000                                | 56,000    | 362,000                                | 200,000    |  |  |
| Total Organic Carbon                    | -                   | 1,000 U          | 1,700     | 6,000                                  | 1,000 U           | 1,000 U           | 3,600                                 | 4,800                                  | 1,100     | 3,000                                  | 4,300      |  |  |
| Total Suspended Solids                  | _                   | 1,700            | 1,200     | 1,600                                  | 500 U             | 500 U             | 33,100                                | 41,800                                 | 5,000     | 7,900                                  | 1,600      |  |  |
| FIELD READINGS (units as noted          | d below)            | · · · ·          |           | J                                      |                   | A                 |                                       | ······································ |           |                                        |            |  |  |
| Dissolved Oxygen (mg/L)                 | -                   | 11.2             | 0.8       | 0.3                                    | 11.2              | 0.7               | 0.5                                   | 0.5                                    | 1.9       | 0.3                                    | 1.0        |  |  |
| Oxidation Reduction Potential (mv)      | _                   | 176              | 122       | 153                                    | 211               | 249               | -7                                    | -7                                     | 69        | -1                                     | -23        |  |  |
| pH                                      | -                   | 6.6              | 5.6       | 4.2                                    | 6.4               | 7.3               | EF                                    | EF                                     | 4.9       | 6.2                                    | 6.8        |  |  |
| Specific Conductivity (µS/cm)           | -                   | 18               | 141       | 94                                     | 29                | 433               | 548                                   | 548                                    | 88        | . 586                                  | 292        |  |  |
| Notes:                                  | <u></u>             |                  | <u></u>   | EF = equipment                         |                   | 1                 | · · · · · · · · · · · · · · · · · · · |                                        | <u></u>   | ······································ | <u></u>    |  |  |
| Shaded areas with bold numbers indica   | ate cleanup level r | exceedance -     |           |                                        |                   | in the ROD (unle  | ess otherwised not                    | ted).                                  |           |                                        |            |  |  |
| B = (Inorganics) value below laboratory | •                   |                  |           |                                        |                   |                   | al Maximum Conta                      |                                        | was used. |                                        |            |  |  |
| J = estimated value                     |                     |                  |           | • • •                                  |                   |                   | achusetts Maximu                      |                                        |           |                                        |            |  |  |
| * = duplicate analysis Relative Percent | Difference outside  | e acceptance lim | its       | •••                                    |                   |                   | achusetts Conting                     |                                        |           |                                        |            |  |  |
| U = below laboratory RL                 |                     |                  |           |                                        |                   |                   | L. This level has t                   |                                        |           |                                        |            |  |  |
| NS = not sampled                        |                     |                  |           | The ROD inc                            | dicated a cleanun | goal of 291 ug/L. | As there was no                       | ESD prepared.                          |           |                                        |            |  |  |

.

NS = not sampled

-

~

NA = not analyzed

The ROD indicated a cleanup goal of 291 ug/L. As there was no ESD prepared, the ROD value iscurrently reflected in this table.

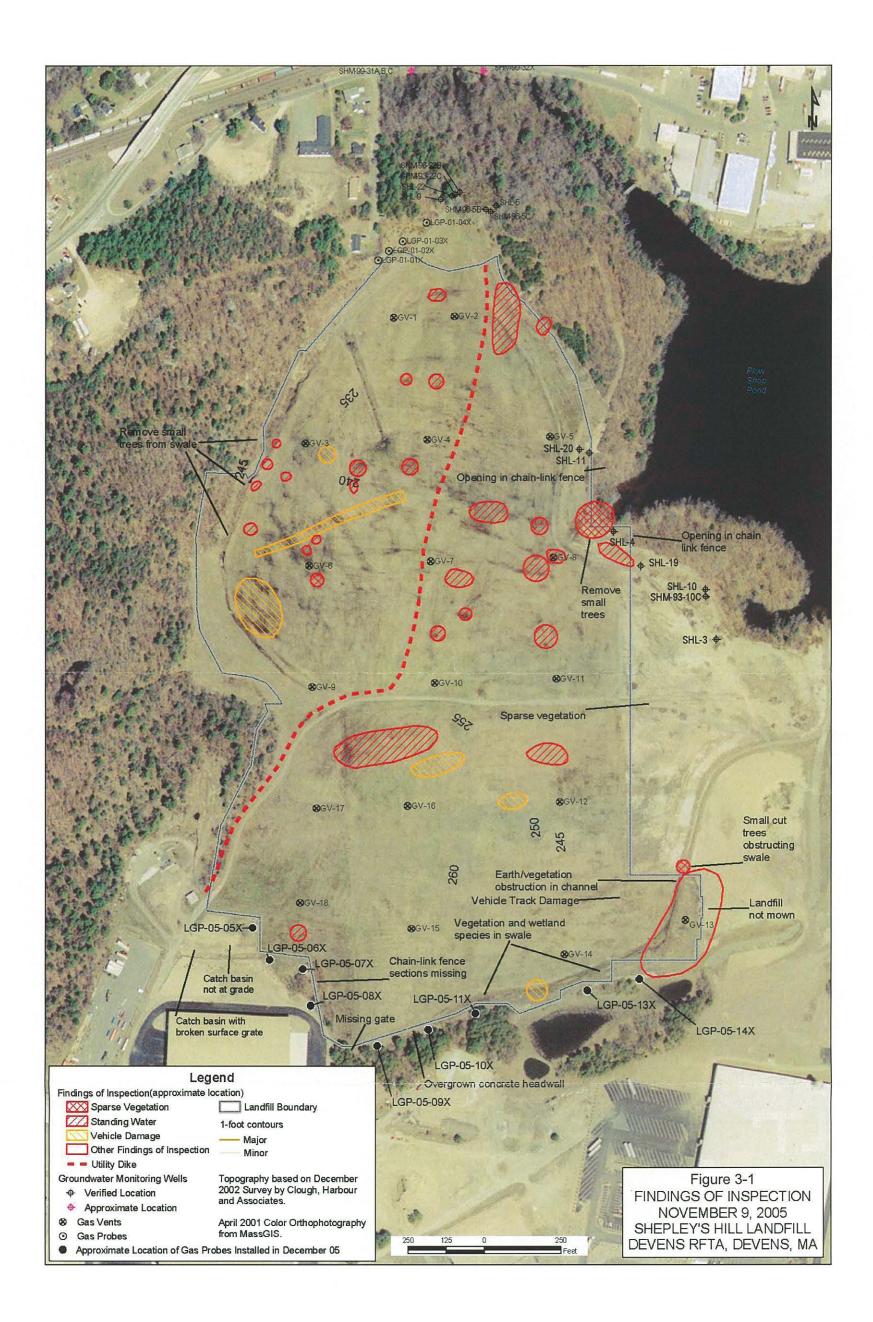
|                                    |                                        |             |               | <u></u>       |               | Groundwat   | Table 7-3<br>ter Analytical Re | esuits (uali )   |                  |                  |                  |                  |                  |                |                  |
|------------------------------------|----------------------------------------|-------------|---------------|---------------|---------------|-------------|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|------------------|
|                                    |                                        |             |               |               |               |             | 0, and 25, 2006 \$             |                  |                  |                  |                  |                  |                  |                |                  |
|                                    |                                        |             |               |               |               |             |                                | ince Point Wells |                  |                  |                  |                  |                  |                |                  |
|                                    |                                        |             |               |               |               |             | /ens. Massachu                 |                  |                  |                  |                  |                  |                  |                |                  |
| Parameters                         | Cleanup                                |             |               |               |               |             | ·                              | Mo               | nitoring Well ID |                  |                  |                  |                  |                |                  |
|                                    | Level (1)                              | SHL-4       | SHL-5         | SHM-96-5B     | SHM-96-5B DUP | SHM-96-5C   | SHL-9                          | SHL-10           | SHM96-10C        | SHL-11           | SHL-19           | SHL-20           | SHL-22           | SHM-96-22B     | SHM-93-22C       |
| Volatile Organics (8260B)          |                                        | 1           |               |               |               |             | <b>1</b>                       |                  |                  | • • • • • • •    |                  |                  |                  |                |                  |
| I, I-Dichloroethane                | 70 (4)                                 | 0.75 U      | 0.75 U        | 1.0           | 1.0           | 1.0         | 0.75 U                         | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U           | 1.4              | 1.3            | 0.75 U           |
| 1,2-Dichlorobenzene                | 600                                    | 2.5 U       | 2.5 U         | 2.5 U         | 2.5 U         | 2.5 U       | 2.5 U                          | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U          | 2.5 U            |
| 1,2-Dichloroethane                 | 5                                      | 0.5 U       | 0.5 U         | 0.5 U         | 0.5 U         | 0.5 U       | 0.5 U                          | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U          | 0.5 U            |
| 1,3-Dichlorobenzene                | 600 (2)                                | 2.5 U       | 2.5 U         | 2.5 U         | 2.5 U         | 2.5 U       | 2.5 U                          | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U          | 2.5 U            |
| 1,4-Dichlorobenzene                | 5                                      | 2.5 U       | 2.5 U         | 2.5 U         | 2.5 U         | 2.5 U       | 2.5 U                          | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U            | 2.5 U          | 2.5 U            |
| 2-Butanone                         | -                                      | 5.0 U       | 5.0 U         | 5.0 U         | 5.0 U         | 5.0 U       | 5.0 U                          | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U          | 32               |
| 4-Methyl-2-pentanone               | -                                      | 5.0 U       | 5.0 U         | 5.0 U         | 5.0 U         | 5.0 U       | 5.0 U                          | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U          | 5.0 U            |
| Acetone                            | 3,000 (4)                              | 5.0 U       | 5.0 U         | 5.0 U         | 5.0 U         | 5.0 U       | 5.0 U                          | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U          | 5.0 U            |
| Benzene                            | 5 (2)                                  | 0.5 U       | 0.5 U         | 0.94          | 0.94          | 1.6         | 0.5 U                          | 0.5 U            | 0.5 U            | 1.4              | 0.5 U            | 1.1              | 0.5 U            | 1.1            | 0.5 U            |
| Chlorobenzene                      |                                        | 0.5 U       | 0.5 U         | 0.84          | 0.88          | 2.6         | 0.5 U                          | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.5 U            | 0.72           | 0.5 U            |
| Chloroform                         |                                        | 0.75 U      | 0.75 U        | 0.75 U        | 0.75 U        | 0.75 U      | 0.75 U                         | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U           | 0.75 U         | 0.75 U           |
| Ethyl ether                        |                                        | 2.5 U       | 2.5 U         | 17            | 17            | 18          | 2.5 U                          | 2.5 U            | 6.7              | 15               | 2.5 U            | 11               | 19               | 17             | 8.2              |
| Methyl tert butyl ether            | 70 (4)                                 | 1.0 U       | 1.0 U         | 1.0 U         | 1.0 U         | 1.0 U       | 1.0 U                          | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U          | 1.0 U            |
| Methylene chloride (6)             |                                        | 5.0 U       | 5.0 U         | 5.0 U         | 5.0 U         | 5.0 U       | 5.0 U                          | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U          | <u>5.0 U</u>     |
| Tetrahydrofuran                    |                                        | 10 U        | 10 U          | 10 U          | 10 U          | 88          | 10 U                           | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 140              | 10 U           | 33               |
| Vinyl chloride                     |                                        | 1.0 U       | 1.0 U         | 1.0 U         | 1.0 U         | 1.1         | 1.0 U                          | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U          | 1.0 U            |
| Xylenes (total)                    | 10,000 (2)                             | 1.0 U       | 1.0 U         | 1.0 U         | 1.0 U         | 1.0 U       | 1.0 U                          | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U            | 1.0 U          | 1.0 U            |
| 1,2-Dichloroethene (Total)         | 70 (2)                                 | 0.75 U      | 0.75 U        | 2.1           | 2.1           | 2.2         | 0.75 U                         | 0.75 U           | 0.75 U           | 1.2              | 0.75 U           | 0.6              | 1.9              | 2.5            | 0.75 U           |
| Total Metals (6010B or as noted)   |                                        |             |               |               |               | T           | 1                              |                  | 1                |                  | 1                | 1 100.11         | 1 100 17         | 1 100 11       | 100 11           |
| Aluminum, Total                    | 6,870                                  | 100 U       | 170           | 100 U         | 100 U         | 100 U       | 110                            | 100 U            | 470              | 100 U            | 100 U            | 100 U            | 100 U            | 100 U<br>3,320 | 100 U            |
| Arsenic, Total                     | 50                                     | <u>5 U</u>  | 5.0 U         | 4,130         | 4,190         | 43          | 18                             | 5.0 U            | 11               | 567              | 156              | 189<br>90        | 154              | 70             | 23               |
| Barium, Total                      | 2,000 (2)                              | 10<br>5.0 U | 10            | 50            | 50            | 70<br>5.0 U | 10 U<br>5.0 U                  | 10 U<br>5.0 U    | 10 U<br>5 U      | 70<br>5.0 U      | 5.0 U            | 5.0 U            | 5.0 U            | 5.0 U          | 5.0 U            |
| Cadmium, Total                     | 5 (2)                                  | 10 U        | 5.0 U<br>10 U | 5.0 U<br>10 U | 5.0 U<br>10 U | 10 U        | 10 U                           | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U           | 10 U             |
| Chromium, Total                    | 1,300 (2)                              | 10 U        | 10 U          | 10 U          | 10 U          | 10 U        | 10 U                           | 10 0             | 10 U             | 10 U           | 10 U             |
| Copper, Total<br>Iron, Total       | 9,100                                  | 280         | 2,600         | 39,000        | 40.000        | 100,000     | 4,400                          | 50 U             | 490              | 57,000           | 13,000           | 5,500            | 650              | 70,000         | 740              |
| Lead, Total                        | 15                                     | 10 U        | 10 U          | 10 U          | 10 U          | 100,000     | 10 U                           | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U           | 10 U             |
| Manganese, Total                   | 291 (5)                                | 200         | 500           | 7,500         | 7,600         | 4,600       | 310                            | 10 U             | 60               | 2,400            | 980              | 5,500            | 2,600            | 1,700          | 250              |
| Mercury, Total (7470A)             | 2 (2)                                  | 0.2 U       | 0.2 U         | 0.2 U         | 0.2 U         | 0.2 U       | 0.2 U                          | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U            | 0.2 U          | 0.2 U            |
| Nickel, Total                      | 100                                    | 25 U        | 25 U          | 25 U          | 25 U          | 25 U        | 25 U                           | 25 U             | 25 U             | 25 U             | 25 U             | 25 U             | 25 U             | 25 U           | 25 U             |
| Selenium                           | 50 (2)                                 | 10 U        | 10 U          | 10 U          | 10 U          | 10 U        | 10 U                           | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U             | 10 U           | 10 U             |
| Silver, Total                      | 40 (4)                                 | 7 U         | 7 U           | 7 U           | 7 U           | 7 U         | 7 U                            | 7 U              | 7 U              | 7 U              | 7 U              | 7 U              | 7 U              | 7 U            | 7 U              |
| Sodium, Total                      | 20,000                                 | 2,000 U     | 2,500         | 28,000        | 28,000        | 40,000      | 2,000                          | 2,000 U          | 9,500            | 24,000           | 2,000 U          | 29,000           | 40,000           | 31.000         | 13,000           |
| Zinc, Total                        | 2,000 (4)                              | 50 U        | 50 U          | 50 U          | 50 U          | 50 U        | 50 U                           | 50 U             | 50 U             | 50 U             | 50 U             | 50 U             | 50 U             | 50 U           | 50 U             |
| Genearl Chemistry                  | ······································ |             |               |               |               |             |                                |                  |                  |                  |                  |                  |                  |                |                  |
| Alkalinity, Total                  | -                                      | 17          | 29            | 320           | 330           | 440         | 54                             | 14               | 180              | 260              | 35               | 250              | 380              | 320            | 160              |
| Solids, Total Dissolved            | -                                      | 25,000      | 70,000        | 320,000       | 340,000       | 440,000     | 130,000                        | 25,000           | 240,000          | 210,000          | 73,000           | 270,000          | 450,000          | 300,000        | 230,000          |
| Solids, Total Suspended            | -                                      | 5,000 U     | 5,000 U       | 59,000        | 62,000        | 110,000     | 5,000 U                        | 6,400            | 6,700            | 28,000           | 33,000           | 8,500            | 5,000 U          | 87,000         | 9,800            |
| Cyanide, Total                     | 200 (2)                                | 5 U         | 5 U           | 5 U           | 5 U           | 5 U         | 5 U                            | 5 U              | 5 U              | 5 U              | <u>5 U</u>       | 5 U              | <u>5 U</u>       | 5 U            | <u>5 U</u>       |
| Chloride                           | -                                      | 1,000       | 2,200         | 21,000        | 21,000        | 51,000      | 6,200                          | 1,200            | 21,000           | 22,000           | 1,000 U          | 24,000           | 32,000           | 23,000         | 18,000           |
| Nitrogen, Nitrate                  | 10,000 (2)                             | 700         | 620           | 220           | 190           | 240         | 100 U                          | 200              | 100 U            | 190              | 100 U            | 100 U            | 4,200            | 210            | 110              |
| Sulfate                            | 500,000 (2)                            | 10,000 U    | 24,000        | 10,000 U      | 10,000 U      | 10,000 U    | 10,000 U                       | 10,000 U         | 22,000           | 10,000 U         | 10,000 U         | 10,000 U         | 10,000 U         | 10,000 U       | 10,000 U         |
| Chemical Oxygen Demand             | (5)                                    | 20,000 U    | 33,000        | 26,000        | 29,000        | 45,000      | 20,000 U                       | 20,000 U         | 20,000 U         | 24,000           | 20000 U          | 20,000           | 20,000 U         | 26,000         | 20,000 U         |
| BOD, 5 day                         |                                        | 2,000 U     | 2,000 U       | 2,900         | 2,000 U       | 5,000 U     | 2,000 U                        | 2,000 U          | 2,000 U          | 8,200            | 2,000 U<br>1,000 | 2,000 U<br>3,000 | 2,000 U<br>4,000 | 4,800<br>5,300 | 2,000 U<br>4,500 |
| Total Organic Carbon               |                                        | 850         | 4,800         | 4,500         | 4,400         | 8,900       | 6,000                          | 500 U            | 200,000          | 3,800<br>130,000 | 35,000           | 3,000            | 320,000          | 190,000        | 4,500            |
| Hardness                           | -                                      | 16,000      | 43,000        | 220,000       | 220,000       | 270,000     | 57,000                         | 13,000           | 200,000          | 1 130,000        | 1 33,000         | 160,000          | 1 320,000        | 1 \$70,000     | 100,000          |
| Field Readings (units as noted)    |                                        |             |               |               |               | 1           |                                |                  |                  |                  |                  |                  | 1 0.10           | 0.47           | 0.70             |
| Dissolved Oxygen (mg/L)            |                                        | 5.28        | 0.65          |               | .22           | 0.15        | 0.45                           | 6.71             | 0.01             | 0.63             | 2.42             | 0.2              | 0.16             | 0.17           | 0.73             |
| Oxidation Reduction Potential (mv) | -                                      | 412         | 425.2         |               | 32.1          | -85.9       | -23.4                          | 330.4            | 228.2            | 3.7              | 282.9            | -0.2             | 208.2            | -114.0         | -235.1           |
| pH                                 |                                        | 5.81        | 5.2           |               | .53           | 6.49        | 5.92                           | 6.04             | 7.4              | 6.2<br>689       | 5.78<br>120      | 6.45<br>634      | 5.17             | 5.54<br>730    | <u> </u>         |
| Specific Conductivity (uS/cm)      | -                                      | 48          | 113           |               | 366           | 1035        | 141                            | 39               | 450              | 1 009            | 120              | 034              | 1 144            | 1 /00          | 575              |
| NOTES:                             |                                        |             |               |               |               |             |                                |                  |                  |                  |                  |                  |                  |                |                  |

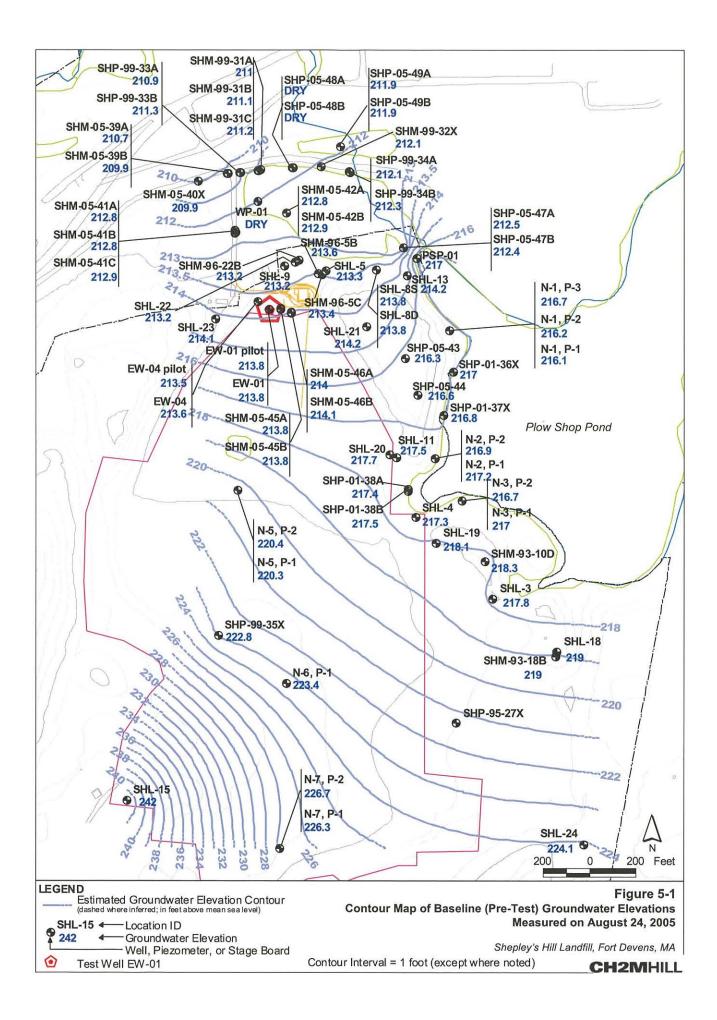
.

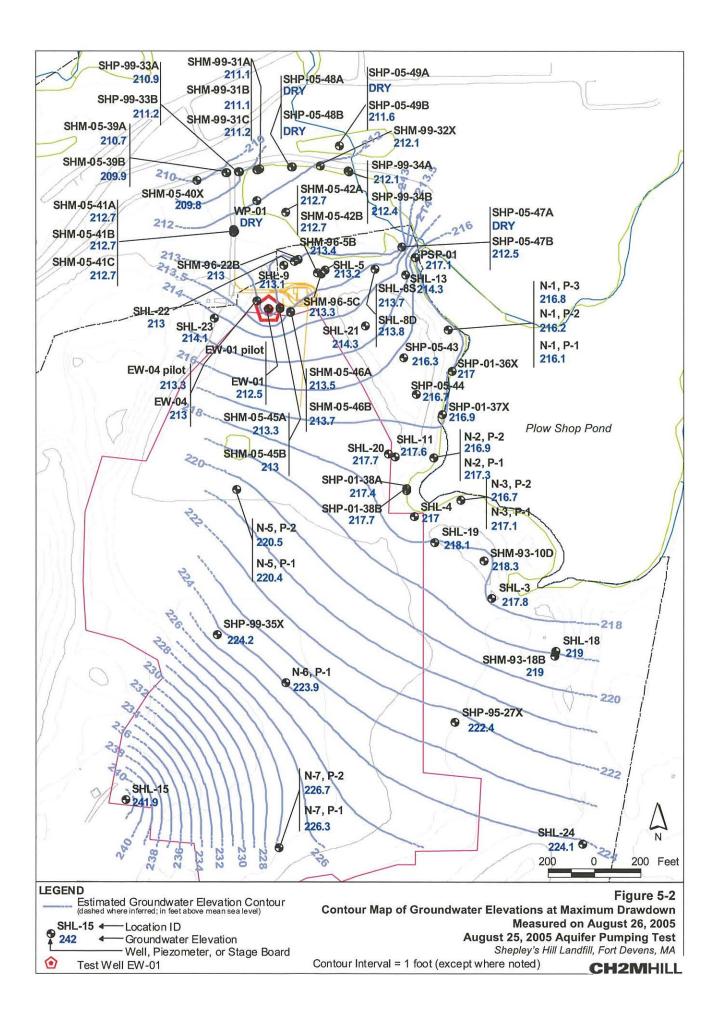
Shaded areas with bold numbers indicate cleanup level exceedance U = Analyte or compound was analyzed but not detected at a concentration above the reporting limit.

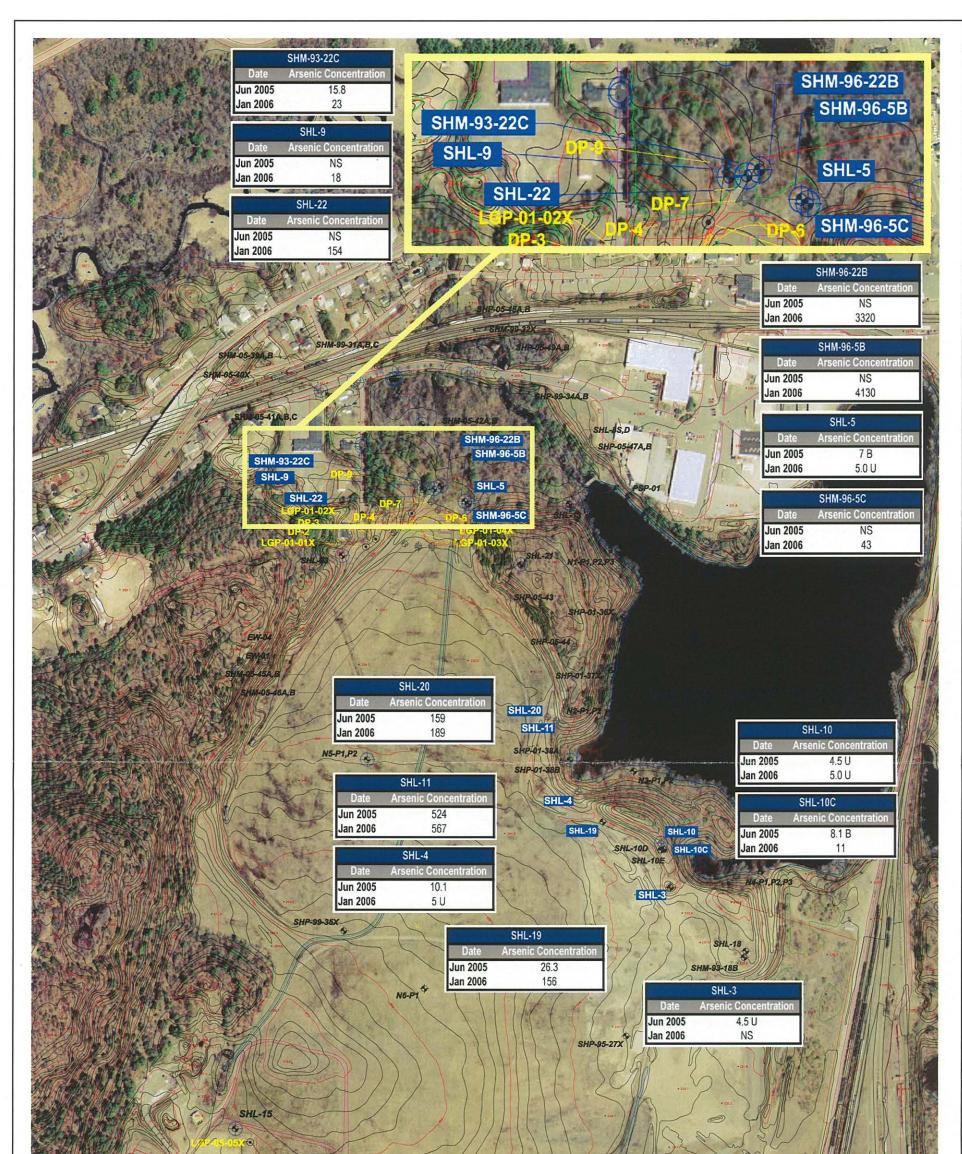
(1) Cleanup values as developed in the ROD (unless otherwise noted)

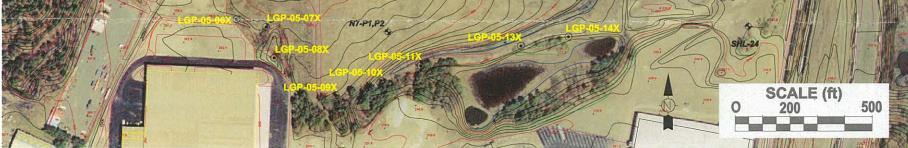
(1) Cleanup values as developed in the ROD (unless otherwise noted)
 (2) No cleanup value was developed so the Federal Maximum Contamination Level was used.
 (4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used.
 (5) The LTMMP listed a cleanup goal of 1,715 ug/L. This level has been in use by the USACE in past years. The ROD indicated a cleanup goal of 291 ug/L. As there was no ESD prepared, the ROD value is currently reflected in this table.
 (6) Methylene Chloride was detected in the equipment blank a concentration of 8.5 ug/L but not detected in any of the groundwater samples
 (7) YSI 600 XLM failed, collected In-situ readings with a YSI 85 probe.


|                |                                                                                                                                                                               |           |               |        | Та          | ble 7.    | -1               |            |                   |                   |                |       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|--------|-------------|-----------|------------------|------------|-------------------|-------------------|----------------|-------|
|                |                                                                                                                                                                               |           | Compari       | son o  |             |           | -4<br>ic Concent | ratio      | ne (uall )        |                   |                |       |
|                |                                                                                                                                                                               |           |               |        |             |           | npliance Pe      |            |                   |                   |                |       |
|                |                                                                                                                                                                               |           | One           | Jieya  | Devens, N   |           | •                |            | vens              |                   |                |       |
| Comple         |                                                                                                                                                                               |           |               |        |             |           |                  |            | declaration       |                   |                |       |
| Sample<br>Date | Monitoring Well ID (group designation)           SHL-3 (1)         SHL-4 (2)         SHL-5 (1)         SHM-96-5B (2)         SHM-96-5C (2)         SHL-9 (1)         SHL-10 ( |           |               |        |             |           |                  |            |                   |                   |                | (2)   |
| Aug-91         | 35.0                                                                                                                                                                          | <u>''</u> | 260           | (2)    | 23.0        | <u>')</u> | NS               | D (2)      | NS                | 37.0              | 67.0           | (2)   |
| Dec-91         | 120                                                                                                                                                                           |           | 140           |        | 38.0        |           | NS               | ····       | NS                | 67.0              | 120            |       |
| Mar-93         | 6.5                                                                                                                                                                           |           | 2.54          |        | 11.4        |           | NS               |            | NS                | 42.4              | 280            |       |
| Jun-93         | NS                                                                                                                                                                            |           | NS            |        | NS          |           | NS               | ····       | NS                | 42.4<br>NS        | NS NS          |       |
| Nov-96         | NS NS                                                                                                                                                                         |           | 48.8          |        | 12.0        |           | 1,440            |            | 71                | 46,9              | 3.4 B          |       |
| May-97         | <10                                                                                                                                                                           |           | 73.6          | J      | <10         |           | 3,300            | J          | 43.2              |                   | <u>3.4 B</u>   |       |
| Oct-97         | <10                                                                                                                                                                           |           | 180           |        | <10         |           | 2,040            |            | 43.1              | 25.2              | 209            |       |
| May-98         | <5                                                                                                                                                                            |           | 37.4          |        | <5          |           | 4,300            |            | 49.5              | 15.0              | <5             | ,     |
| Nov-98         | <5.4                                                                                                                                                                          |           | 89.1          |        | 11.5        |           | 3,080            |            | 46.8              | 27.2              | <5.4           |       |
| May-99         | 2.7                                                                                                                                                                           | В         | 78.2          |        | 5.0         | В         | 3,490            |            | 57                | 71.3              | 2.7            | В     |
| Nov-99         | <1.9                                                                                                                                                                          | - 0       | 61.3          |        | 6.5         | D         | 2,700            |            | 44.8              | 28.5              | <1.9           | В     |
| May-00         | <2.5                                                                                                                                                                          |           | 116           |        | <2.5        |           | 5,110            |            | 52.2              | 15.0              | <2.5           |       |
| Nov-00         | 17.4                                                                                                                                                                          |           | 91.5          |        | 13.8        |           | 2,500            |            | 40.3              | 31.4              | <2.5           |       |
| May-01         | <4.1                                                                                                                                                                          |           | 50.8          |        | 13.8        |           | 3,800            |            | 80.5              | 15.1              | <4.2           |       |
| Oct-01         | <1.5                                                                                                                                                                          |           | 66.0          |        | 14.8        |           | 1,850            |            | 41.1              | 28.1              | <1.5           |       |
| May-02         | 2.8                                                                                                                                                                           | в         | 47.8          | В      | 11.9        | В         | 3,800            | ······     | 50.4 B            | 144               | 4.0            | В     |
| Oct-02         | <3.2                                                                                                                                                                          |           | 66.1          |        | <3.2        | <u></u>   | 1,970            |            | 41.3              | 29                | <3.2           | D     |
| May-03         | <4.7                                                                                                                                                                          |           | 26.6          |        | 7.3         |           | 3,920            |            | 55.1              | 13.4              | <4.7           |       |
| Nov-03         | <4.1                                                                                                                                                                          |           | 13.4          |        | 4.7         | В         | 3,380            |            | 48.3              | 30.6              | <4.1           |       |
| May-04         | <2.6                                                                                                                                                                          |           | 27.2          |        | 7.4         | B         | 3,950            |            | 47.1              | 19.8              | <2.6           |       |
| Nov-04         | <5.8                                                                                                                                                                          |           | 19.5          |        | 6.8         | B         | 2,110            | ***        | 49.5              | 32.2              | <5.8           |       |
| Jun-05         | <4.5                                                                                                                                                                          |           | 10.0          |        | 7.0         | B         | NS               |            | NS                | NS 102.2          | <4.5           |       |
| Jan-06         | NS                                                                                                                                                                            |           | <5            |        | <5          |           | 4,130            |            | 43.0              | 18.0              | <5             |       |
| 0011 00        |                                                                                                                                                                               |           | L             |        | I           |           | 1                |            | 10.0              | 1 10.0            |                |       |
| Sample         |                                                                                                                                                                               |           |               |        | Monit       | nrina     | Well ID (or      | 0110       | designation)      |                   |                |       |
| Date           | SHM-93-10                                                                                                                                                                     | C(1)      | SHL-11        | (2)    | SHL-19      |           | SHL-20           |            | SHL-22 (1)        | SHM-93-22B (      | 21 5 1 1 0 2 2 | 20 (1 |
| Aug-91         | NS                                                                                                                                                                            | <u>~~</u> | 320           |        | 340         | <u>\/</u> | 98               | <u>\_/</u> | 27                | NS                | 1              | 20 (1 |
| Dec-91         | NS                                                                                                                                                                            |           | 320           | ,      | 710         |           | 89               | ·          | 25                | NS                | NS             |       |
| Mar-93         | 21.3                                                                                                                                                                          |           | 340           |        | 390         |           | 330              |            | 32.9              | NS                | 68.9           |       |
| Jun-93         | 18.1                                                                                                                                                                          |           | NS            |        | NS          |           | NS               |            | NS NS             | NS                | 49.8           |       |
| Nov-96         | 12.4                                                                                                                                                                          |           | 332           |        | 138         |           | 244              |            | 24.8              | 324               | 44.6           |       |
| May-97         | <10                                                                                                                                                                           |           | 252           | j      | <10         |           | <10              |            | <10               | -!                | J 40.4         |       |
| Oct-97         | 10.5                                                                                                                                                                          |           | 366           |        | 298         |           | 227              |            | 34.8              | 352               | <10            |       |
| May-98         | 7.5                                                                                                                                                                           |           | 346           |        | 77.5        |           | 238              |            | 10.6              | 365               | 31.6           |       |
| Nov-98         | 10.2                                                                                                                                                                          |           | 376           |        | 145         |           | 218              |            | <5.4              | 406               | 51.0           |       |
| May-99         | 10.2                                                                                                                                                                          | в         | 431           |        | 156         |           | 216              |            | 12.2 B            | 707               | 42.8           |       |
| Nov-99         | 8.7                                                                                                                                                                           | 5         | 492           |        | 176         |           | 215              |            | 7.3               | 1,440             | 33.2           |       |
| May-00         | 5.9                                                                                                                                                                           | J         | 404           |        | 41.4        |           | 215              |            | 14.6              | 1,360             | 34.4           |       |
| Nov-00         | 8.8                                                                                                                                                                           |           | 523           |        | 154         |           | 172              |            | 45                | 1,380             | 47.8           |       |
| May-01         | 6.9                                                                                                                                                                           |           | 487           |        | 129         |           | 186              |            | 47.6              | 1,160             | 47.8           |       |
| Oct-01         | 10.1                                                                                                                                                                          |           | 573           |        | 183         |           | 165              |            | 41.0              | 1,540             | 31.6           |       |
| May-02         | 11.0                                                                                                                                                                          | В         | 469           |        | 66.9        |           | 155              |            | 55.9 B            | 2,040             | 30.5           | В     |
| Oct-02         | 7.1                                                                                                                                                                           | <u> </u>  | 648           |        | 164         |           | 175              |            | 77.1              | 159               | 30.5           | P     |
| May-03         | 9.8                                                                                                                                                                           |           | 498           |        | 36.1        |           | 197              |            | 101               | 2,070             | 21.0           |       |
| Nov-03         | <5.2                                                                                                                                                                          |           | 639           |        | 83.6        |           | 197              |            | 76.4              | 2,070             | 21.0           |       |
| May-04         | 7.2                                                                                                                                                                           | В         | 502           |        | 75          |           | 134              |            | 88.1              | 1,690             | 29.8           |       |
| Nov-04         | 10.6                                                                                                                                                                          | B         | 617           |        | 121         |           | 156              |            | 65.4              |                   |                |       |
|                | 8.1                                                                                                                                                                           | <u>B</u>  | 524           |        | 26.3        |           | 156              |            | ~~~~              | 2,360             | 34.9           |       |
| Jun-05         | 11.0                                                                                                                                                                          |           | 524           |        | 26.3        |           | 159              |            | NS<br>154         | NS<br>2.220       | 15.8           |       |
| Jan-06         |                                                                                                                                                                               | h a ·· :  | t             |        |             |           |                  |            |                   | 3,320             | 23.0           |       |
| es:            | Bold Num                                                                                                                                                                      | ber In    | Indicates cle | eanup  | level excee | cance     | es (MUL cle      | anup       | level is 50 ug/L) |                   |                |       |
|                |                                                                                                                                                                               |           |               | or the |             |           |                  |            | quipment or prep  |                   |                |       |
|                | J = Estima<br>NS = Not S                                                                                                                                                      |           |               |        | <5 = Conce  | entrat    | uon less tha     | n the      | indicated metho   | d detection limit |                |       |
|                |                                                                                                                                                                               | somel     | 90            |        |             |           |                  |            |                   |                   |                |       |


|                  |                                        |                   |                  | C               | Comparison of H                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 7-5<br>nganese, and So<br>ndfill Complianc |                 |                       | ations (ug/L)  |                |                |                     |               |                         |
|------------------|----------------------------------------|-------------------|------------------|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|-----------------------|----------------|----------------|----------------|---------------------|---------------|-------------------------|
|                  |                                        |                   |                  |                 | 31                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is, Massachuset                                  |                 | 3                     |                |                |                |                     |               |                         |
|                  |                                        |                   |                  |                 | His                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rations for Iron                                 |                 | 0)                    |                |                |                |                     |               |                         |
| Sample           | Monitoring Well ID (group designation) |                   |                  |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |                       |                |                |                |                     |               |                         |
| Date             | SHL-3 (1)                              | SHL-4 (2)         | SHL-5 (1)        | SHM-96-5B (2)   | SHM-96-5C (2)                         | SHL-9 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHL-10 (2)                                       | SHM-93-10C      | ; (1)                 | SHL-11 (2)     | SHL-19 (2)     | SHL-20 (2)     | SHL-22 (1)          | SHM-93-22B (2 | ()                      |
| May-02           | 30                                     | 1,520             | <b>1</b> ,110    | 40,100          | 49,200                                | 19,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <17.0                                            | 71              |                       | 55,400         | 13,900         | 7,010          | 606                 | 92,000        | 916                     |
| Oct-02           | <22.6                                  | 4,380             | 1,120            | 18,700          | 44,800                                | 8,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <22.6                                            | 53              |                       | 64,500         | 27,600         | 9,100          | 707                 | 446           | 778                     |
| May-03           | 56                                     | 2,790             | 1,140            | 37,400          | 78,900                                | 3,280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                                               | 41              |                       | 62,200         | 6,740          | 7,720          | 626                 | 88,600        | 885                     |
| Nov-03           | 540                                    | 1,840             | 1,720            | 32,000          | 63,200                                | 7,820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <45.0                                            | <45.5           |                       | 68,700         | 15,400         | 8,190          | 444                 | 87,000        | 904                     |
| May-04           | 30 B                                   | 4,330             | 1,900            | 29,000          | 71,100                                | 5,680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <19.2                                            |                 | В                     | 60,500         | 13,400         | 5,640          | 541                 | 59,500        | 1,010                   |
| Nov-04           | <35.5                                  | 6,690             | 2,740            | 21,600          | 55,400                                | 8,580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 B                                             |                 | В                     | 63,000         | 20,000         | 6,630          | 469                 | 82,900        | 1,340                   |
| Jun-05           | <37.9                                  | 1,220             | 2,930            | NS              | NS                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <37.9                                            | <37.9           |                       | 59,400         | 6,680          | 5,980          | NS                  | NS            | 572                     |
| Jan-06           | NS                                     | 280               | 2,600            | 39,000          | 100,000                               | 4,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <50                                              | 490             |                       | 57,000         | 13,000         | 5,500          | 650                 | 70,000        | 740                     |
|                  |                                        |                   |                  |                 |                                       | a na a na an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                 |                       |                |                |                |                     |               |                         |
|                  |                                        |                   |                  |                 | Histor                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ions for Mangai                                  |                 |                       |                |                |                |                     |               |                         |
| Sample           |                                        | 0111 4 (0)        | <u></u>          |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onitoring Well ID                                |                 |                       |                |                |                | 0111 00 (4)         |               | V CHIM 02 22C (1)       |
| Date             | SHL-3 (1)                              | SHL-4 (2)         | SHL-5 (1)        | SHM-96-5B (2)   | · · · · · · · · · · · · · · · · · · · | SHL-9 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | SHM-93-10C      |                       | SHL-11 (2)     | SHL-19 (2)     | SHL-20 (2)     | SHL-22 (1)<br>1,370 | SHM-93-22B (2 | ) SHM-93-22C (1)<br>425 |
| May-02           | 14 B                                   | 573               | 289              | 11,000          | 4,110                                 | 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>1 B</u>                                       |                 | В                     | 2,010          | 2,280<br>3,400 | 5,950<br>7,200 | 1,370               | 1,680<br>12   | 425                     |
| Oct-02           | <2.5                                   | 436               | 259              | 13,000          | 4,110                                 | 484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2.5                                             | <u>47</u><br>37 |                       | 1,990<br>2,180 | 1,200          | 7,260          | 1,860               | 1,340         | 324                     |
| May-03           | 2                                      | 843               | 273              | 9,500           | 4,230                                 | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.6                                             | 46              |                       | 3,030          | 2,100          | 7,760          | 2,110               | 1,950         | 425                     |
| Nov-03           | 20                                     | 324               | 340              | 10,600          | 4,260                                 | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.6                                             | 30              |                       | 2,340          | 1,510          | 6,560          | 1,960               | 798           | 368                     |
| May-04           | <1.9                                   | 856               | 332              | 8,910           | 3,960                                 | 336<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1.9<br>1 B                                      | 48              |                       | 2,570          | 2,950          | 5,630          | 2,460               | 1,590         | 385                     |
| Nov-04           | 1 B<br>2 B                             | 1,240<br>361      | 439<br>476       | 10,800<br>NS    | 3,970<br>NS                           | <br>NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 B                                              | 28              |                       | 2,380          | 1,090          | 6,270          | NS                  | NS            | 218                     |
| Jun-05<br>Jan-06 | 2 B<br>NS                              | 200               | 500              | 7,500           | 4,600                                 | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <10                                              | 60              |                       | 2,400          | 980            | 5,500          | 2,600               | 1,700         | 250                     |
| Jan-00           | 6/1                                    | 200               |                  | 1,500           | 4,000                                 | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                         | 0               |                       | 2,400          |                | 0,000          | 2,000               | 1,100         | 1 200                   |
|                  |                                        |                   |                  |                 | Hieto                                 | rical Concentra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tions for Sodiur                                 | o (MCI is 20    | იიი                   | 1              |                |                |                     |               |                         |
| Sample           | 1                                      |                   |                  |                 | Theorem                               | and the set of the set | onitoring Well ID                                |                 | and the second states |                |                |                |                     |               |                         |
| Date             | SHL-3 (1)                              | SHL-4 (2)         | SHL-5 (1)        | SHM-96-5B (2)   | SHM-96-5C (2)                         | SHL-9 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | SHM-93-10C      |                       | SHL-11 (2)     | SHL-19 (2)     | SHL-20 (2)     | SHL-22 (1)          | SHM-93-22B (2 | ) SHM-93-22C (1)        |
| May-02           | 1,340 B                                | 6,370             | 2,340 B          | 38,600          | 34,000                                | 2,380 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,380 B                                          | 8,620           |                       | 27,600         | 2,570 B        | 34,000         | 43,700              | 35,900        | 18,800                  |
| Oct-02           | 1,570                                  | 2,840             | 2,180            | 36,200          | 35,400                                | 2,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,520                                            | 8,180           |                       | 29,800         | 4,240          | 35,600         | 45,500              | 114,000       | 19,500                  |
| May-03           | 1,220                                  | 2,380             | 2,340            | 32,600          | 32,000                                | 2,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 950                                              | 8,990           |                       | 31,100         | 1,600          | 36,800         | 43,400              | 37,300        | 14,200                  |
| Nov-03           | 1,360 B                                | 13,400            | 2,030 B          | 33,500          | 34,800                                | 2,310 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,280 B                                          | 8,370           |                       | 27,000         | 2,670          | 35,800         | 42,700              | 36,300        | 17,400                  |
| May-04           | 1,060 B                                | 5,390             | 2,040 B          | 31,000          | 30,000                                | 1,620 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,020 B                                          | 8,650           |                       | 22,500         | 2,300 B        | 33,300         | 40,900              | 56,900        | 15,100                  |
| Nov-04           | 684 B                                  | 4,060             | 1,870 B          |                 | 32,200                                | 1,550 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 845 B                                            | 8,190           |                       | 22,800         | 2,280 B        | 31,900         | 41,900              | 34,300        | 16,100                  |
| Jun-05           | 696                                    | 7,190             | 3,240 B          |                 | NS                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 841 B                                            | 7,840           |                       | 21,600         | 1,470 B        | 32,000         | NS                  | NS            | 9,910                   |
| Jan-06           | NS                                     | <2,000            | 2,500            | 28,000          | 40,000                                | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <2,000                                           | 9,500           |                       | 24,000         | <2,000         | 29,000         | 40,000              | 31,000        | 13,000                  |
| Notes:           | Bold Number in                         | idicates cleanup  | level exceedance | ces (MCL cleanu | o level is 50 ug/L)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |                       |                |                |                |                     |               |                         |
|                  |                                        | •                 |                  | •               | equipment or prep                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |                       |                |                |                |                     |               |                         |
|                  | <5 = Concentrat                        | ion less than the |                  |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |                       |                |                |                |                     |               |                         |
|                  | NS = Not Sampl                         | ed                |                  |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |                       |                |                |                |                     |               |                         |


| Table 7-6<br>Monitoring Well Chemical Cleanup Level Exceedances At Monitoring<br>Wells Previously Attaining Cleanup Goals (Group 1)<br>Shepley's Hill Landfill<br>Devens, Massachusetts |                                                                      |                                                                                                                                                                                                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Monitoing Well<br>Identification                                                                                                                                                        | Well Designation (Based<br>on First Five-Year Review,<br>SWEC, 8/98) | Exceedances of Cleanup Levels for<br>Triggering Chemicals, Since Achieving<br>Group 1 Status                                                                                                             |  |  |  |  |  |
| SHL-3                                                                                                                                                                                   | Group 1                                                              | None                                                                                                                                                                                                     |  |  |  |  |  |
| SHL-4                                                                                                                                                                                   | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHL-5                                                                                                                                                                                   | Group 1                                                              | None                                                                                                                                                                                                     |  |  |  |  |  |
| SHL-9                                                                                                                                                                                   | Group 1                                                              | 71.3 ug/L As (Spring 1999)<br>144 ug/L As (Spring 2002)                                                                                                                                                  |  |  |  |  |  |
| SHL-10                                                                                                                                                                                  | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHL-11                                                                                                                                                                                  | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHL-19                                                                                                                                                                                  | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHL-20                                                                                                                                                                                  | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHL-22                                                                                                                                                                                  | Group 1                                                              | 55.9 B ug/L As (Spring 2002)<br>77.1 ug/L As (Fall 2002)<br>101 ug/L As (Spring 2003)<br>76.4 ug/L As (Fall 2003)<br>88.1 ug/L As (Spring 2004)<br>65.4 ug/L As (Fall 2004)<br>154 ug/L As (Winter 2005) |  |  |  |  |  |
| SHM-93-10C                                                                                                                                                                              | Group 1                                                              | None                                                                                                                                                                                                     |  |  |  |  |  |
| SHM-93-22C                                                                                                                                                                              | Group 1                                                              | 51.1 ug/L (Fall 1998)                                                                                                                                                                                    |  |  |  |  |  |
| SHM-96-5B                                                                                                                                                                               | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHM-96-5C                                                                                                                                                                               | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| SHM-96-22B                                                                                                                                                                              | Group 2                                                              | Not Applicable                                                                                                                                                                                           |  |  |  |  |  |
| Notes:<br>As = Arsenic<br>B = Value was withir                                                                                                                                          | ng five times of the greater an preparation blank samples            | nount detected in the equipment or                                                                                                                                                                       |  |  |  |  |  |


|                                                                                       | · _ · · · · · · · · · · · · · · · · · ·                                    | Table                                                                   |                                                 |         |                                             |                                                       |  |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|---------|---------------------------------------------|-------------------------------------------------------|--|--|--|
|                                                                                       | •                                                                          | •                                                                       | d Analysis Methods,                             |         |                                             |                                                       |  |  |  |
|                                                                                       | Containers                                                                 | s, Holding Tim                                                          | es, and Preservatives                           | 5       |                                             |                                                       |  |  |  |
|                                                                                       |                                                                            | Shepley's Hi                                                            | ll Landfill                                     |         |                                             |                                                       |  |  |  |
|                                                                                       |                                                                            | Devens, Mass                                                            | sachusetts                                      |         |                                             |                                                       |  |  |  |
| Parameters Analysis Method Sample Container Minimum Preservative                      |                                                                            |                                                                         |                                                 |         |                                             |                                                       |  |  |  |
|                                                                                       | Jun-05                                                                     | Jan-06                                                                  |                                                 | Volume  |                                             | Time<br>14 Days                                       |  |  |  |
| Volatile Organic Compounds                                                            | <sup>*</sup> SW846 8260B                                                   | SW846 8260B                                                             | 3 x 40 mL Vials with<br>Teflon septa screw caps | 40 mL   | HCl to pH <2<br>No Headspace<br>4° +/- 2° C |                                                       |  |  |  |
| Metals, except<br>Cyanide<br>Mercury<br>Hardness                                      | SW846 6010B<br>EPA Method 335.4<br>SW846 7470A<br>SM 2340B                 | SW846 6010B<br>SM 9014<br>SW846 7470A<br>ISM 2340B                      | 1 Liter HDPE                                    | 300 mL  | HNO3 to pH <2                               | 180 Days<br>(except Hg)<br>28 Days Hg<br>14 Days      |  |  |  |
| Cyanide                                                                               | EPA Method 335.4                                                           | SM 9014                                                                 | 500 ml HDPE                                     | 500 mL  | NaOH to pH >12<br>4° +/- 2o C               |                                                       |  |  |  |
| Anions<br>Chloride<br>Nitrate as N<br>Sulfate<br>Alkalinity<br>Total Dissolved Solids | EPA 160.1<br>EPA 300.0<br>EPA 300.0<br>EPA 300.0<br>EPA 160.2<br>EPA 160.1 | SM 2540C<br>SM 9251<br>SM 4500NO3-F<br>SM 9038B<br>SM 2540D<br>SM 2540C | 500 mL HDPE                                     | 100 mL  | 4° +/- 2° C                                 | 28 Days<br>48 Hours<br>28 Days<br>14 Days<br>48 Hours |  |  |  |
| Chemical Oxicdation Demand                                                            | EPA 410.1 SM 5220D                                                         |                                                                         | 250 mL HDPE                                     | 250 mL  | H2SO4 to pH <2<br>4° +/- 2o C               | 28 Days                                               |  |  |  |
| Biochemical Oxidation Demand - 5 Day                                                  | EPA 405.1                                                                  | SM 5210B                                                                | 1 Liter HDPE                                    | 1 Liter | 4° +/- 2° C                                 | 48 Hours                                              |  |  |  |
| Total Suspended Solids                                                                | EPA 160.2                                                                  | SM 2540D                                                                | 1 Liter HDPE                                    | 1 Liter | 4° +/- 2° C                                 | 7 Days                                                |  |  |  |
| Total Organic Carbon                                                                  | SW 846 9060                                                                | SW 846 9060                                                             | 3 x 40 mL Vials with<br>Teflon septa screw caps | 40 mL   | H2SO4 to pH <2<br>4° +/- 2o C               | 28 Days                                               |  |  |  |


Figures











### LEGEND

Long Term Monitoring Network



(LGP-05-05X)

Permanent Gas Monitoring Probes

Note: Contingency Remedy performance monitoring network included for reference. Includes Hydraulic  $\mbox{\$}$  and Geochemistry monitoring  $\oplus$ .

FIGURE 7-1 Long Term Monitoring Network



# Appendix A

## Geotechnical Engineering Fall 2005 Annual Inspection Report



US Army Corps of Engineers® New England District

# GEOTECHNICAL ENGINEERING FALL 2005 ANNUAL INSPECTION REPORT

## SHEPLEY'S HILL LANDFILL FORMER FORT DEVENS DEVENS, MASSACHUSETTS

March 2006

### 1.0 BACKGROUND

Shepley's Hill Landfill encompasses approximately 84 acres in the northeast corner of the main post of the former Fort Devens, Massachusetts (Figure 1). The landfill is bordered to the northeast by Plow Shop Pond, to the north by Nonacoicus Brook (which drains the pond), to the west by Shepley's Hill, to the south by recent commercial development, and to the east by the site of a former railroad roundhouse.

The landfill was reportedly operating by the early 1940s, and evidence from test pits within the landfill suggests earlier usage, possibly as early as the mid-nineteenth century. The landfill contains a variety of waste materials, including incinerator ash, demolition debris, asbestos, sanitary wastes, spent shell casings, glass, and other wastes. The maximum depth of the refuse occurs in the central portion of the landfill and is estimated to be about 40 feet. The volume of waste in the landfill has been estimated at over  $1.3 \times 10^6$  cubic yards (cy), of which approximately 25 percent is below the water table.

The landfill was closed in five phases between 1987 and 1992-93 in accordance with Massachusetts regulations 310 CMR 19.000 (1985). The Massachusetts Department of Environmental Protection (MADEP) approved the closure plan in 1985. Closure consisted of installing a 30/40-mil polyvinyl chloride (PVC) membrane cap, covered with soil and vegetation and incorporating gas vents. Closure also included installation of wells to monitor groundwater quality around the landfill, and construction of a storm drainage system to control surface water runoff. MADEP issued a Landfill Capping Compliance Letter approving the closure in February 1996.

The ROD outlined the remediation objectives for the site (USEPA, 1995). It requires the Army to monitor groundwater, inspect and maintain the landfill, and prepare annual reports. It also requires that the Army review the effectiveness of the remedy every five years.

### 2.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected on 8 and 9 November 2005 by personnel from the U.S. Army Corps of Engineers, New England District (NAE). Features of the landfill inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. A comprehensive site assessment is currently being conducted to assess the effectiveness of the landfill cap. Appendix A of this report contains the Landfill Maintenance Checklist that summarizes the findings of this inspection. All observations are also presented on Figure 1. A narrative of the findings of this inspection follows.

- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. The rim of this catch basin should be lowered to the surrounding grade.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in (Photo 1). The grade of the channel bottom is uneven and standing water is present. Wetland species are

becoming established as well. The entire southern swale should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel should then be revegetated.

- Ponded areas of standing water are present at numerous locations across the landfill surface. See Figure 1 and Photos 2, 3 and 5.
- The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale should be cleared of vegetation and sand.
- East of gas vents 8, 11 and 12, the perimeter of the cap has some areas of erosion and sparse vegetation. The soil in these areas is comprised predominantly of sand. The areas should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations. Some evidence of off-road vehicles (trucks, ATV's, dirt bikes, etc. see photo 3) using the cap area was seen. On the east side near monitoring well SHL-11, the fence has been rolled back and is open. A gate and lock should be added here if permanent access is required. There are also several other locations around Plow Shop Pond (see Photo 4) which provide unrestricted access. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired.
- The gas monitoring probes at the northwest edge of the landfill are in excellent condition, with locked, steel caps. The gas vents are in good condition. All screens and pipes are in functional condition. The older gas vents, painted yellow, are showing signs of age, with rusting/corrosion evident (See Photo 7). They should be scraped, cleaned, and repainted.
- A summary of Corrective Action measures for the Landfill Cap are included in Section 4.0.

### 3.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site. Four landfill perimeter gas monitoring probes were installed on 7 November 2001 on the northern side of the landfill. The purpose of the probes is to monitor potential landfill gas migration from Shepley's Hill Landfill towards Sculley Road. Following this inspection, ten more probes were installed on the the southern perimeter of the landfill and will be available for the next annual report

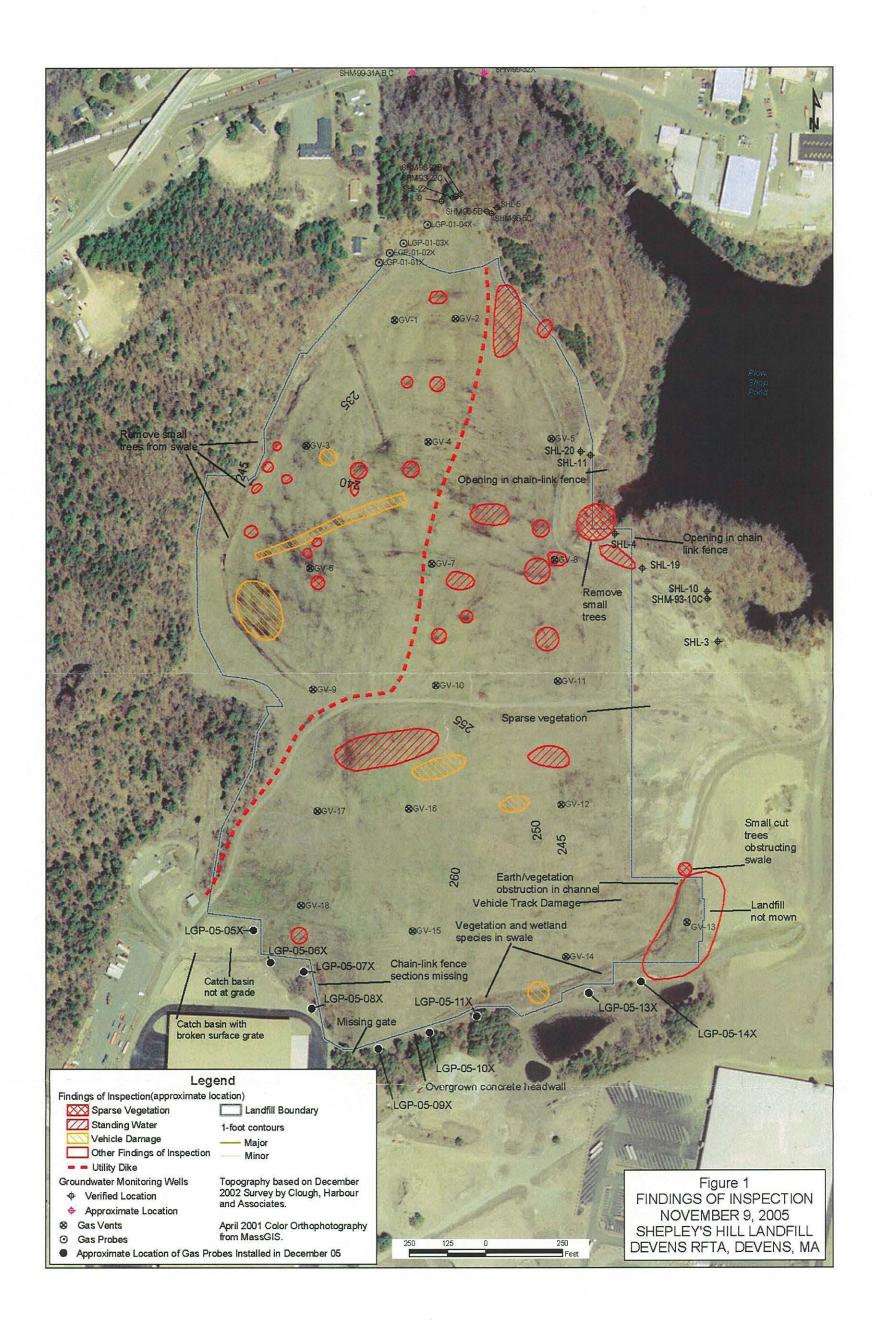
The annual landfill gas sampling was conducted on 8 and 9 November 2005. The weather was sunny,

with temperatures in the 50's (F) and the barometric pressure was 29.9 inches of mercury and rising. Gas samples were field analyzed for the following parameters using the listed equipment:

| Parameter                              | Equipment                                           |
|----------------------------------------|-----------------------------------------------------|
| Total Volatile Organic Compounds (VOC) | Thermo Environmental 580B (PID) with a 10.6 eV lamp |
| Percent Oxygen                         | Landtec GEM 500 landfill gas monitor                |
| Hydrogen Sulfide (ppm)                 | Industrial Scientific TMX 412 CGI                   |
| Percent Lower Explosive Limit (LEL)    | Industrial Scientific TMX 412 CGI                   |
| Carbon Monoxide (ppm)                  | Industrial Scientific TMX 412 CGI                   |
| Percent Carbon Dioxide                 | Landtec GEM 500 landfill gas monitor                |
| Percent Methane                        | Landtec GEM 500 landfill gas monitor                |

The TMX 412, PID and the GEM 500 were all calibrated in the shop by U.S. Environmental. Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to a SKC224-PCXRE air pump. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached to the pump and turned on. The readings were recorded on the Landfill Gas Monitoring form (Appendix B) after they had stabilized. The locations of the gas vents are shown in Figure 1.

The results from the monitoring event can be found on Table 1 in Appendix B. The following is a brief summary of the results. The perimeter landfill gas monitoring probes (LGP-01, LGP-02, LGP-03, LGP-04) tested negative for VOC's, hydrogen sulfide, carbon monoxide, and methane. Minimal levels of carbon dioxide were detected, ranging from 0.6 % at LGP-04 to 2.2 % at LGP-02. Oxygen levels ranged from 19.2 % at LGP-02 to 20.3% at LGP-01 and LGP-04.


The following summarizes the gas vent readings. VOCs were not detected in any of the gas vents. The oxygen levels ranged from 0% (Vent # 9, 16,17) to 21.0% (Vent # 15) using the GEM 500. No hydrogen sulfide was detected in any of the gas vents. Methane LEL readings ranged from 0% at V-15 and V-18 to over 100% LEL in many of the vents. No carbon monoxide was detected in any of the gas vents except for V-16 and V-17, which had readings of 2 and 3 ppm, respectively. Carbon dioxide ranged from 0% (Vent # 15, 18) to 27.0% at Vent #17. Methane ranged from 0% (Vent # 15,18) to 32.7% at Vent #17.

The gas readings are within the parameters of a mature landfill. The vents are functioning properly. The scenario of high atmospheric pressure to low atmospheric pressure results in a venting of landfill gas into the atmosphere. The scenario of low atmospheric pressure to high atmospheric pressure results in air intrusion into the upper portion of the landfill. The scenario during this inspection was most likely the latter, as barometric pressure was rising during the inspection. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should not be off-site migration of landfill gases; however, due to the high LEL readings and the proximity of residential housing and commercial development, gas monitoring probes should be installed along the property line where the landfill is adjacent to structures (note that this has been done at the northern end near Sculley Road). Gas monitoring probes should also be installed at the southern perimeter of the site along the commercial properties. The LEL readings along the southern perimeter have consistently registered high LEL readings in the past, and were sometimes above 100%. As of the date of this inspection, 10 landfill gas probes were planned to be installed on the southern perimeter of the landfill and will be available for analysis for the next annual inspection.

### 4.0 CORRECTIVE ACTION

An upcoming Comprehensive Site Assessment will assess the adequacy of the landfill. Following the CSA, a Corrective Action Alternatives Analysis will be conducted to identify any remedial repairs required. Implementation of the selected options (if required based on the outcome of the CAAA) should improve the drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) Repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill (the probes were installed in November 05, after this inspection) (2) Repair and regrade around the catch basins on the south side of the landfill. With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately.

FIGURE



### PHOTOGRAPH LOG

### **Index of Photographs**

- Picture 1 Southern Swale Looking East.
- Picture 2 Northwest Swale Looking East
- Picture 3 Northwest Swale Area Looking North East
- Picture 4 Fence Line Looking West Near Plow Shop Pond
- Picture 5 Northern End of Landfill, Along Utility Berm, Looking South.
- Picture 6 Looking South from Center of Landfill
- Picture 7 Gas Vent No. 3



Photo 1



Photo 2



Photo 3



Photo 4



Photo 5



Photo 6



Photo 7

### APPENDIX A

Inspection & Maintenance Check List

DATE: 8 November 2005 INSPECTOR: Kullberg/Michalak

| LANDFILL<br>ATTRIBUTE      | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                               | RECOMMENDATIONS                                                                                                                                                          | SAT/<br>UNSAT |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Cover Surface              | 1. Vegetative cover is generally satisfactory except<br>as noted in the comments that follow. Various<br>species growing; mowed to about 8 inches height<br>(see Photo 6).                                                                                                                                                                                                                                                 | 1. See specific comments<br>under the sections that<br>follow.                                                                                                           | SAT           |
|                            | 2. There are several areas where settlement has occurred.                                                                                                                                                                                                                                                                                                                                                                  | 2. A Comprehensive Site<br>Assessment (CSA) is being<br>conducted to address this<br>condition.                                                                          | SAT           |
|                            | 3. Trees were removed in the fall of 2002 & 2004 in the vicinity of GV-13, the southern perimeter, and the eastern perimeter, and have not reestablished.                                                                                                                                                                                                                                                                  | 3. Monitor for tree growth in future                                                                                                                                     | SAT           |
|                            | 4. A utility berm was constructed through the middle of the landfill in 2004. It provides utility service to a newly constructed pumping station at the northeastern corner of the landfill.                                                                                                                                                                                                                               | 4.Observe effect on<br>drainage patterns in the<br>vicinity of the utility berm<br>during future inspections.<br>This may be investigated as<br>part of the ongoing CSA. | NA            |
|                            | 5. Several areas on the landfill have sustained damage by trespassing vehicles, and in some cases damage by lawn mowing equipment (Photo 3).                                                                                                                                                                                                                                                                               | 5. Damaged areas should<br>be repaired as soon as<br>possible.                                                                                                           | UNSAT         |
| Vegetative<br>Growth       | 1. In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass cover should extend at least twenty feet beyond the limits of the cap. | 1. This area should be<br>reseeded, with hay or straw<br>placed on the surface, to<br>prevent further erosion.<br>This area to be considered<br>as part of the CSA.      | UNSAT         |
| Landfill Gas<br>Vent Wells | 1. The gas vents are in good condition. All screens<br>and pipes are in functional condition. All of the<br>non-galvanized vents are showing signs of rusting<br>and corrosion. These include all gas vents except<br>for V-12 through V-15.                                                                                                                                                                               | 1. All of the nongalvanized<br>vents should be scraped,<br>cleaned and painted.                                                                                          | SAT           |

| LANDFILL<br>ATTRIBUTE | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECOMMENDATIONS                                                                                                                                                | SAT/<br>UNSAT  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Drainage Swales       | 1. Most of the drainage swale on the south side is<br>being invaded by vegetation/wetland species.<br>There are also intermittent zones of standing<br>water indicating a lack of proper channel slope<br>and drainage.                                                                                                                                                                                                                      | 1. The swale should be<br>cleared of vegetation,<br>accumulated sediment, and<br>debris. The swale should<br>then be regraded to promote<br>adequate drainage. | UNSAT          |
|                       | 2. In the south east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the rip rap - lined channel, the drainage swale is overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond. | 2. The swale should be<br>cleared of vegetation,<br>accumulated sediment, and<br>debris. The swale should<br>then be regraded to promote<br>adequate drainage. | UNSAT          |
| Culverts              | 1. The concrete drainage structure at the terminus<br>of the catch basin and underground conduit<br>system on the southwest side is overgrown with<br>vegetation and is silting in. Standing water is<br>present and wetland species are becoming<br>established as well.                                                                                                                                                                    | 1. The structure and<br>channel immediately<br>downstream should be<br>cleaned out and the channel<br>regraded as required to<br>properly drain.               | UNSAT          |
| Catch Basins          | <ol> <li>Catch Basin #2 near the entrance to the site has<br/>a broken surface grate.</li> <li>Catch Basin #3 near the entrance to the site is<br/>not set at grade. The rim of the basin is about six<br/>to eight inches higher than the surrounding<br/>ground.</li> </ol>                                                                                                                                                                | <ol> <li>The surface grate should<br/>be replaced.</li> <li>The rim of this catch<br/>basin should be lowered to<br/>meet the surrounding grade.</li> </ol>    | UNSAT<br>UNSAT |

| Settlement              | 1. It appears that many areas of the landfill may<br>be settling. The extent and its effect on the<br>function of the landfill is unknown                                                                                                                                                                          | 1 A Comprehensive Site<br>Assessment is underway to<br>address this condition.                                                                                                                                                                                                        | SAT   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Erosion                 | 1. No substantial erosion observed.                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       | SAT   |
| Access Roads            | 1. The access roads on the site are in good condition.                                                                                                                                                                                                                                                             | 1. There are no problems<br>on access roads which<br>warrant repair at this time.                                                                                                                                                                                                     | SAT   |
| Security Fencing        | 1. The perimeter chain-link security fence is in<br>poor condition. Fence sections and gates are<br>missing and unrestricted access to the site is<br>available at many locations. Some damage to the<br>cap by off-road vehicles (trucks, ATV's, dirt<br>bikes, etc.) using the turfed cap areas was<br>observed. | 1. The security fence<br>should be repaired/replaced<br>and extended. This work is<br>currently planned under the<br>maintenance work<br>underway at the landfill.                                                                                                                    | UNSAT |
| Wetland<br>Encroachment | 1. Wetland encroachment is taking place at<br>several locations, but is not happening on a wide<br>scale. Overall, the areas of encroachment are<br>small. These locations have been noted in above<br>comments.                                                                                                   | 1. Wetland encroachment<br>should be eliminated by<br>simple mowing in some<br>areas, and by regrading<br>channels in other areas.<br>The above comments<br>address the actions to take<br>at specific locations. A<br>CSA is underway to<br>address this concern at the<br>landfill. | UNSAT |

the most critical and should be addressed before the next inspection;

(1) Repair and replace the security fence and gates as required to control access to the site;

(2) Repair damage to cap caused by trespassers and lawn mowing equipment.

### ${\rm SAT-Satisfactory}$

UNSAT- Unsatisfactory

NA – Not Applicable

### APPENDIX B

### Landfill Gas Monitoring

#### APPENDIX B Landfill Gas Monitoring Table 1

INSPECTOR: Kullberg/ Michalak TITLE: Civil Engineer DATE: 11/08/05

ORGANIZATION: CENAE-EP WEATHER: Sunny, 55 d F BAROMETER: 29.9 in Hg and rising.

| Vent  | VOC | <b>O</b> <sub>2</sub> | $H_2S$ | LEL   | СО    | CO <sub>2</sub> | CH4  | Remarks       |
|-------|-----|-----------------------|--------|-------|-------|-----------------|------|---------------|
| No.   | ppm | %                     | ppm    | %     | ppm   | %               | %    |               |
|       | PID | GEM                   | ISTMX  | ISTMX | ISTMX | GEM             | GEM  |               |
|       |     | 500                   |        |       |       | 500             | 500  |               |
| V-1   | 0   | 5.6                   | 0      | 32    | 0     | 10.8            | 1.7  | CGI O2 – 6.9  |
| V-2   | 0   | 5.2                   | 0      | >100  | 0     | 12.8            | 8.6  | CGI O2 – 13.4 |
| V-3   | 0   | 2.8                   | 0      | >100  | 0     | 15.1            | 9.0  | CGI O2 – 3.6  |
| V-4   | 0   | 6.4                   | 0      | 50    | 0     | 10.6            | 4.3  | CGI O2 – 12.7 |
| V-5   | 0   | 10.4                  | 0      | 11    | 0     | 7.7             | 1.4  | CGI O2 – 17.1 |
| V-6   | 0   | 0.4                   | 0      | >100  | 0     | 18.9            | 12.5 | CGI O2 – 12.9 |
| V-7   | 0   | 2.1                   | 0      | 14    | 0     | 12.2            | 4.4  | CGI O2 – 17.6 |
| V-8   | 0   | 8.3                   | 0      | 25    | 0     | 8.9             | 4.2  | CGI O2 – 15.8 |
| V-9   | 0   | 0                     | 0      | >100  | 0     | 21.8            | 26.4 | CGI O2 – 9.0  |
| V-10  | 0   | 0.6                   | 0      | >100  | 0     | 14.8            | 10.3 | CGI O2 – 9.3  |
| V-11  | 0   | 10.1                  | 0      | 12    | 0     | 6.4             | 2.2  | CGI O2 – 18.4 |
| V-12  | 0   | 2.8                   | 0      | >100  | 0     | 9.4             | 6.4  | CGI O2 – 4.7  |
| V-13  | 0   | 20.2                  | 0      | 25    | 0     | 0.5             | 0.5  | CGI O2 – 19.1 |
| V-14  | 0   | 20.7                  | 0      | 6     | 0     | 0.2             | 0.3  | CGI O2 – 20.9 |
| V-15  | 0   | 20.9                  | 0      | 0     | 0     | 0               | 0    | CGI 02 – 21.0 |
| V-16  | 0   | 0                     | 0      | >100  | 2     | 23.7            | 20.7 | CGI O2 – 0.3  |
| V-17  | 0   | 0                     | 0      | >100  | 3     | 27              | 32.7 | CGI O2 – 0.2  |
| V-18  | 0   | 21.0                  | 0      | 0     | 0     | 0               | 0    | CGI O2 – 20.9 |
| LGP-1 | 0   | 20.3                  | 0      | 0     | 0     | 0.7             | 0    | CGI O2 – 20.7 |
| LGP-2 | 0   | 19.2                  | 0      | 0     | 0     | 2.2             | 0    | CGI O2 – 19.6 |
| LGP-3 | 0   | 19.5                  | 0      | 0     | 0     | 1.7             | 0    | CGI O2 – 20.1 |
| LGP-4 | 0   | 20.3                  | 0      | 0     | 0     | 0.6             | 0    | CGI O2 – 20.5 |

CALIBRATION INFORMATION:

Instrument: Thermo Environmental 580B PID 10.6 SN#: 182

Calibrated by: US Environmental Rental Co. 7 November 2005

Calibrated With: 100 ppm isobutylene (R.F. = 1.0)

Instrument: Industrial Scientific TMX412 SN#: 98090009-447 Sampling Pump: Industrial Scientific Sampling Pump SP402 SN#: 9911050-292 Calibrated by: <u>US Environmental Rental Co. 8 November 2005</u> Calibrated With: <u>50 ppm CO, 25 H<sub>2</sub>S, 50% LEL Methane, 20.9% O<sub>2</sub></u>

Instrument: Landtec GEM 500 Serial#: E-0904 Calibrated by: US Environmental Rental Co. 7 November 2005 Calibrated With: <u>15% CH<sub>4</sub>, 15% CO<sub>2</sub>, 20.9% O<sub>2</sub></u>

\* Note: Barometric Pressures were obtained from NOAA National weather Service Forecast Office Boston, MA at <u>http://www.erh.noaa.gov/box/stationobs.shtml</u> for the nearest available reporting station at the airport in Fitchburg, MA for the sample date 8 November 2005.

### APPENDIX C Landfill & Gas Probe Supplemental Inspection

### 1.0 PURPOSE

Perimeter gas probes were installed (Photo 2) on the southern border of the landfill in December 2005 and were sampled for gas levels on February 16, 2006. This supplemental inspection appendix presents the gas level readings recorded, documents the installation of new perimeter fencing at Shepley's Hill Landfill, and documents some damage to the access roads at SHL which occurred during the recent maintenance contract work.

### 2.0 FENCING AND ACCESS ROADS

New chain link fencing was installed during recent maintenance work at the landfill. On the south side near the former Web Van warehouse, a section of fencing was constructed at a location of unrestricted access (Photo 3). Two other sections of fencing and gates were added on the south and west sides of Plow Shop Pond where the fence had been rolled back for access (Photos 4 & 5). The fencing appeared to be in excellent condition and will help minimize unauthorized access to the landfill by pedestrians and vehicles.

During the recent maintenance work, the access roads were slightly damaged by rutting and erosion (Photos 1 & 6). The access roads should be regraded, gravel added if necessary, and revegetated on the perimeter.

### 3.0 GAS PROBE READINGS

### INSPECTOR: Kullberg/ Michalak TITLE: Civil Engineer DATE: 02/16/06

ORGANIZATION: CENAE-EP WEATHER: Sunny. 55 d F

BAROMETER: 30.1 in Hg @ 1030 BAROMETER: 30.0 in Hg @ 1200

| Probe  | VOC | O <sub>2</sub> | H <sub>2</sub> S | LEL   | CO    | CO <sub>2</sub> | CH4  | Remarks       |
|--------|-----|----------------|------------------|-------|-------|-----------------|------|---------------|
| Numbe  | ppm | %              | ppm              | %     | ppm   | %               | %    |               |
| r      | PID | GA90           | MG140            | MG140 | MG140 | GA90            | GA90 |               |
| LGP-5  | 0.2 | 20.6           | 0                | 0     | 0     | 0.3             | 0    | CGI O2 – 20.7 |
| LGP-6  | 0.7 | 20.6           | 0                | 0     | 0     | 0               | 0    | CGI O2 – 21.0 |
| LGP-7  | 0.2 | 11.6           | 0                | 1     | 0     | 3.8             | 0    | CGI 02 –12.4  |
| LGP-8  | 0.2 | 11.9           | 0                | 2     | 0     | 10.7            | 0    | CGI O2 – 13.8 |
| LGP-9  | 0   | 12.5           | 0                | 2     | 1     | 5.9             | 0    | CGI O2 -13.2  |
| LGP-10 | 0   | 15.5           | 0                | 0     | 0     | 7.6             | 0    | CGI O2 – 19.5 |
| LGP-11 | 0.2 | 17.8           | 0                | 0     | 0     | 3.9             | 0    | CGI O2 –18.4  |
| LGP-12 | x   | x              | x                | x     | x     | x               | x    | Not Installed |
| LGP-13 | 0.4 | 17.0           | 0                | 0     | 0     | 2.4             | 0    | CGI O2 – 19.2 |
| LGP-14 | 0.9 | 8.2            | 0                | 0     | 2     | 3.2             | 0    | CGI O2 – 9.0  |

CALIBRATION INFORMATION:

Instrument: <u>Thermo Environmental 580B PID 10.6 SN#: 237</u> Calibrated by: <u>US Environmental Rental Co. 15</u> February 2006 Calibrated With: <u>100 ppm isobutylene (R.F. = 1.0)</u>

Instrument: Industrial Scientific MG 140 SN#: 01044002-134 Sampling Pump: Industrial Scientific Sampling Pump SP402 SN#: 0004373-050 Calibrated by: US Environmental Rental Co. 15 February 2006 Calibrated With: 50 ppm CO, 25 H<sub>2</sub>S, 50% LEL Methane, 20.9% O<sub>2</sub>

Instrument: Landtec GA90 Serial#: G1457 Calibrated by: US Environmental Rental Co. 15 February 2006 Calibrated With: <u>15% CH<sub>4</sub>, 15% CO<sub>2</sub>, 20.9% O<sub>2</sub></u>

#### 4.0 Photographs



РНОТО 1





РНОТО 3



**РНОТО 4** 



**РНОТО 5** 



РНОТО 6

# Appendix B

**Groundwater Field Analysis Forms** 

## June 2005 Monitoring

### U. S. Army Corps of Engineers GROUNDWATER LEVEL MEASUREMENT SHEET

#### SITE INFORMATION

Site Name:Shepley's Hill LandfillLocation:Devens, MADate:Oleg Jime 2005

Project Name: Long Term Monitoring & Maint Personnel: Tack Keenan Ton Markotte

### WEATHER CONDITIONS AND EQUIPMENT

| Temperature Range | : | 70'5 |     |    |
|-------------------|---|------|-----|----|
| Precipitation: de |   |      |     |    |
|                   |   | Yes  | [x] | No |

.

Equipment No.: \_\_\_\_\_\_\_ Barometric Pressure: \_\_\_\_\_\_\_

|     | Monitoring<br>Well | Date/Time | Reference<br>Point | Elevation of<br>Reference Point<br>(feet NGVD) | Water Level<br>Indicator Reading<br>(feet) | Groundwater<br>Elevation<br>(feet NGVD) |
|-----|--------------------|-----------|--------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------|
|     | SHL-3              | 1135      | top of<br>casing   | 248.5<br>(top of cas.)                         | 29.75                                      | 218.75                                  |
| - [ | SHL-4              | 1220      | top PVC            | 228.71                                         | 10,05                                      | 218.66                                  |
|     | SHL-5              | 1520      | top PVC            | 218.53                                         | 2.59                                       | 215.94                                  |
|     | SHL-9              | 1532      | top PVC            | 222.84                                         | 7.51                                       | 215.33                                  |
| -   | SHL-10             | 0845      | top PVC            | 248.76                                         | 30.35                                      | 218.41                                  |
|     | SHL-11             | 1513      | top PVC            | 236.34                                         | 18.28                                      | 218.06                                  |
|     | SHL-19             | 1320      | top PVC            | 241.34                                         | 22.19                                      | 219.1.5                                 |
|     | SHL-20             | 1510      | top PVC            | 236.84                                         | 18.62                                      | 218.22                                  |
|     | SHL-22             | 1537      | top PVC            | 220.45                                         | 5.24                                       | 21.5.21                                 |
| -   | SHM-93-10C         | 0845      | top PVC            | 248.42                                         | 28.84                                      | 219.54                                  |
|     | SHM-93-22C         | 1536      | top PVC            | . 221.55                                       | 6.30                                       | 215.25                                  |
|     | SHM-96-5B          | 1529      | top PVC            | 219.81                                         | 4.36                                       | 215.45                                  |
|     | SHM-96-5C          | 1527      | top PVC            | 219.25                                         | 3.88                                       | 215.37                                  |
|     | SHM-96-22B         | 1540      | top PVC            | 220.27                                         | 5.10                                       | 215.17                                  |

9/98

|          |                   | ·····         |                          | ······································ |                  |                                                   |           |            | <u> </u>    |                        |                                       |
|----------|-------------------|---------------|--------------------------|----------------------------------------|------------------|---------------------------------------------------|-----------|------------|-------------|------------------------|---------------------------------------|
| GVVIVI   | WELL#             | SHL-          | 3                        | ······································ |                  | le la         |           |            | •           | of Engi                |                                       |
| SCREEN I | NTERVAL DEPTH:    | 25.1-         | 35.1 (2)                 | WELL DIAMETER:                         | 2 <sup>in</sup>  |                                                   |           |            |             | ng Log S               |                                       |
| H20 LEVE | EL: DEPTH, PRE PU | MP INSERTION  | 29.75                    | - J                                    |                  | Project Name: Shepley's Hill Landfill, Devens, MA |           |            |             |                        | evens, MA                             |
|          | DEPTH, POST PU    | IMP INSERTION |                          |                                        |                  |                                                   | SAMPLE    | METHOD:    | EPA LOW     | STRESS ME              | THOD                                  |
| DEPTH SA | _                 | 33.0          | •                        | REFERENCE POINT:                       | PVC OR CASING    | Metals/Hardness                                   | 1 x 1L HI | DPE (HNO3  | )           |                        | 0ml glass vials (HCI)                 |
|          | 6 June 2005       | TIME:         | 113.5                    | (DEPTHS RECORDED BENEATH)              |                  | Cyanide 1 x 250                                   |           | • •        |             | BOD 1 x 1L             |                                       |
|          | ED BY:JK SS AG    |               | SIGNATURE:<br>SIGNATURE: | Thomas A. Mar                          | cotto            | Anions,Alkalinity,                                |           | 500ml HDPE | <u>:</u>    |                        | )mL HDPE (H2SO4)                      |
| SAMPLED  | BY: JK SS AG      | i(TM)         | Thomas J. Mo             | rote                                   | TSS 1 x 1L HDP   | 'Е                                                |           |            | TOC 3 x 40n | nl glass víals (H2SO4) |                                       |
| TIME     | WATER DPTH        | PUMP          | PURGE RATE               | CUM. VOLUME                            | WATER            | SPECIFIC                                          | рH        | ORP/Eh     | D. O.       | TURBIDITY              | COMMENTS                              |
| (24hr)   | BELOW MP (feet)   | SETTING       | (ml/min)                 | PURGED (gal)                           | TEMP (°C)        | COND. (µS/cm)                                     |           | (mv)       | (mg/L)      | (NTU's)                |                                       |
| 1030     | 30.30             | 118.0         | 240                      |                                        | 11.49            | 20                                                | 7.63      | 235.0      | 11.59       | 7.50                   |                                       |
| 1034     | 30.31             | 118,0         | 24D                      |                                        | 11.43            | 19                                                | 7.28      | 230.17     | 11.10       | 6.50                   |                                       |
| 1038     | 29.80             | 118,0         | 240                      | 0.75 gal                               | 13,29            | 19                                                | 7.06      | 221.1      | 10.97       | 5.95                   |                                       |
| 1042     | 29.70             | 122.8         | 80                       |                                        | 13.96            | 19                                                | 7.05      |            | 10.97       | 4,85                   |                                       |
| 1046     | 29.71             | 159.2         | 240                      | 1800                                   | 14.27            | 19                                                | 6.90      | 219.1      | 10.91       | 7.50                   |                                       |
| 1050     | 29.85             | 168-2         | 240                      |                                        | 14.51            | 19                                                | 6.82      | 189.1      | 10.64       |                        | ,                                     |
| 1054     |                   | -10           |                          |                                        |                  |                                                   |           |            |             |                        | Back Flush well,                      |
|          |                   |               |                          | <u></u>                                |                  |                                                   |           |            |             |                        | had stopped                           |
| 1106     | 30.50             | 121.0         | 480                      | 1.50                                   | 18.42            | 19                                                | 6.83      | 155.3      | 10.54       | 63                     | · · · · · · · · · · · · · · · · · · · |
| 1104     | 30.12             | 121.0         | 600                      |                                        | 15.15            | 18                                                | 6.77      | 167.3      | 11-14       | 44                     |                                       |
| 1108     | 30,45             | 121.0         | 640                      | 2.75                                   | 14.42            | 18                                                | 6.73      |            | 11.27       | 43                     |                                       |
| 1112     | 30.48             | 121.0         | 600                      |                                        | 12.83            | 18                                                | 6.69      | 147.3      | 11.31       | 11                     |                                       |
| 1116     | 30.48             | 121.0         | 600                      |                                        | 12.43            | 18                                                | 6.66      | 159.9      | 11.26       | 6.05                   |                                       |
| 1120     | 30.48             | 121.0         | 600                      | 4.00                                   | 12.26            | 18                                                |           | 160.6      | 11-25       | 3-65                   |                                       |
| 1124     | 30.48             | 121.0         | 600                      | 5.00                                   | 12.13            | 18                                                | 6.63      | 174.1      | 11.20       | 2.75                   |                                       |
| 1128     | 30.48             | 121.0         | 606                      |                                        | 12.08            | 18                                                |           | 174.6      | 11.20       | 2.45                   |                                       |
| 1132     | 30.48             | 121.0         | 600                      |                                        | 12.11            | 18                                                | 6.61      | 175.8      | 11.20       | 2.52                   |                                       |
|          |                   |               |                          |                                        |                  |                                                   |           |            |             |                        |                                       |
|          |                   |               |                          |                                        |                  |                                                   |           |            |             |                        | ·····                                 |
| NOTES:   | 1                 |               | <u> </u>                 |                                        | 0.07             |                                                   |           | 140        | 1001        | 100                    |                                       |
|          | TAKEN AT: [[      | ふご            |                          |                                        | - <u>1.36</u> 3% | 1 2,45 3%                                         | +0.1 unit | +10 mv     | 10%         | 10%                    |                                       |
|          |                   | 75            |                          |                                        |                  |                                                   |           |            |             |                        |                                       |

·

.

| GWM W             | ELL#                          | <u> </u>                              | . /]       |                           |                | U                  | .S. A                                         | rmy C    | orps      | of Engi     | neers                                 |
|-------------------|-------------------------------|---------------------------------------|------------|---------------------------|----------------|--------------------|-----------------------------------------------|----------|-----------|-------------|---------------------------------------|
|                   |                               | <u></u>                               | 7          | WELL DIAMETER:            | 711            |                    | Groundwater Sampling Log S                    |          |           |             |                                       |
|                   | RVAL DEPTH:<br>DEPTH, PRE PUT | SI /-1                                | 5.1        | WELL DIAMETER;            |                | Proie              | ect Nam                                       | e: Shepl | ev's Hill | Landfill, D | evens, MA                             |
|                   | EPTH, POST PU                 |                                       |            |                           |                | [                  |                                               |          |           | V STRESS ME |                                       |
| DE<br>DEPTH SAMPL |                               | 13                                    | 10,03      | REFERENCE POINT:          | ANTE OR CASING | Metals/Hardness    |                                               |          |           |             | 10ml glass vials (HCI)                |
| ,                 | 5/05 -                        | <u>7.5</u><br>TIME:                   | 17:22      | (DEPTHS REGORDED BENEATH) |                | Cyanide 1 x 250    |                                               |          |           | BOD 1x1L    |                                       |
| $\frac{1}{2}$     | Y:JK (55) AG                  |                                       | SIGNATURE: | load                      |                | Anions, Alkalinity |                                               |          | Ē         | COD 1 x 250 | )mL HDPE (H2SO4)                      |
|                   | JK SS AG                      |                                       | SIGNATURE: |                           |                | TSS 1 x 1L HDF     |                                               |          |           | TOC 3 x 40r | nl glass vials (H2SO4)                |
|                   | VATER DPTH                    | PUMP                                  | PURGE RATE | CUM. VOLUME               | WATER          | SPECIFIC           | pH                                            | ORP/Eh   | D. O.     | TURBIDITY   | COMMENTS                              |
|                   | LOW MP (feet)                 | SETTING                               | (ml/min)   | PURGED (gal)              | TEMP (°C)      | C<br>COND. (µS/cm) |                                               | (mv)     | (mg/L)    | (NTU's)     |                                       |
|                   | 05,0                          | 73.0                                  | 2000       | 1961                      |                |                    |                                               |          |           |             | Worker before Con                     |
|                   | 0.15                          | 70.7                                  | 1400       | 1.5g-1                    |                |                    |                                               |          |           |             | to YSI                                |
|                   |                               |                                       | Co         | neuted to                 | YSI_           |                    |                                               |          |           | 10.0        | cleaver water                         |
| 1240 16           | 0.10                          | 69.0                                  | 700        | 2.5 3~1                   | 11.06          | 142                | 5.6F                                          | 117.7    | 0.95      | 5.0         |                                       |
|                   | 1,10                          | 69. C                                 | 700        | p ip                      | 11.10          | 142                | 5.65                                          | 117.6    | 0.60      | 4.5         |                                       |
|                   | 2.10                          | 69.2                                  | 700        | 35921                     | 11.14          | 142                | 5.64                                          | 117.6    | 0.61      | 4.5         | ·                                     |
|                   | 10                            | 69.2                                  | 700        |                           | <i>i</i> ].17  | 142                | 5.64                                          | 117.7    | 0.63      | 4.1         |                                       |
| 1252 10           | 5.10                          | 69.2                                  | 700        | 4.5 g=1                   | 11.17          | 142                | 5.63                                          | 117.0    | 6.65      | 3.8         |                                       |
| 1255 10           |                               | 69.2                                  | 700        |                           | 11,15          | 142                | 5.63                                          | 118.9    | 6.70      | 3.5         |                                       |
| 1258 10           | .11                           | 69.2                                  | 700        | 5.5 921                   | 11.19          | 141                | 5.62                                          | 120.0    | 0.77      | 2.8         |                                       |
|                   | 11                            | 69.2                                  | 700        |                           | 11.16          | 141                | 5.62                                          | 120.2    | 0.79      | 2.0         |                                       |
| 1364 10           | 11                            | 69.2                                  | 760        | 6.5 ya                    | 11.14-         | 141                | 5.61                                          | 121,5    | 0,50      | 1.8         |                                       |
|                   |                               |                                       |            |                           |                |                    | <u>                                      </u> |          |           |             |                                       |
|                   |                               |                                       |            |                           |                |                    |                                               |          | ļ         |             |                                       |
|                   |                               |                                       |            |                           |                |                    | 1                                             |          |           |             | · · · · · · · · · · · · · · · · · · · |
|                   |                               |                                       |            |                           |                |                    |                                               |          |           |             |                                       |
|                   |                               | · · · · · · · · · · · · · · · · · · · |            |                           |                |                    | <u> </u>                                      | <br>     | <u> </u>  |             |                                       |
|                   |                               |                                       |            |                           |                |                    |                                               |          |           |             |                                       |
|                   | <u></u>                       |                                       |            |                           |                |                    |                                               |          |           | -           | · · · · · · · · · · · · · · · · · · · |
| I<br>NOTES:       |                               |                                       |            |                           | 20/            | L 20/              | +0.1 unit                                     | +10 m/   | 10%       | <u> </u>    |                                       |
|                   | EN AT: / 3                    | 05                                    |            |                           | 20.3 3%        | ±4.2 3%            | - 70.1 UIIII<br>~                             |          | 1010      | s 10%       |                                       |
|                   | LINAL 13                      | <i></i>                               |            |                           | /              |                    |                                               | V        | V         |             | <u> </u>                              |

| GWM      | WELL#                | SHL-S       |                     | <u> </u>                              |           | U                                                                                   | .S. A     | rmy Co | orps     | of Engi       | neers                                  |
|----------|----------------------|-------------|---------------------|---------------------------------------|-----------|-------------------------------------------------------------------------------------|-----------|--------|----------|---------------|----------------------------------------|
| SCREEN I | NTERVAL DEPTH        | : 5.1 -     | - 15.1 lee<br>2.621 | WELL DIAMETER:                        | 2"        | Groundwater Sampling Log Sheet<br>Project Name: Shepley's Hill Landfill, Devens, MA |           |        |          |               |                                        |
|          | DEPTH, POST PL       |             | 2.60                |                                       |           |                                                                                     |           |        |          | / STRESS ME   |                                        |
| DEPTH SA |                      | 8.0 fi      |                     | REFERENCE POINT:                      |           | Metals/Hardness                                                                     |           |        |          |               | 0ml glass vials (HCl)                  |
| 11       | 6/7/05               | TIME:       | 1145                | (DEPTHS RECORDED BENEATH)             |           | Cyanide 1 x 250                                                                     |           |        | ,<br>,   | BOD 1 x 1L I  | • • •                                  |
|          | ED BY:JK SS AG       | $\sim$      |                     | Thomas Marc                           |           | Anions,Alkalinity,                                                                  |           | • •    |          |               | mL HDPE (H2SO4)                        |
| 11       | BY: JK SS AG         |             | SIGNATURE:          | Thomas Mar                            | with a    | TSS 1 x 1L HDP                                                                      |           |        |          |               | il glass vials (H2SO4)                 |
| TIME     | WATER DPTH           | PUMP        | PURGE RATE          | CUM VOLUME                            | WATER     | SPECIFIC                                                                            | pН        | ORP/Eh | D. O,    | TURBIDITY     | COMMENTS                               |
| (24hr)   | BELOW MP {feet}      | SETTING     | (mi/min)            | PURGED (gai)                          | TEMP (°C) | COND. (µS/cm)                                                                       |           | (mv)   | (mg/L)   | (NTU's)       |                                        |
| 1056     | 3.05                 | 45.6        | 560                 |                                       | 11-81     | 92                                                                                  | 4.61      | 123.6  | 1.12     | 9.62          |                                        |
| 1100     | 3.03                 | 45.6        | 400                 | 22                                    | 12.02     | 93                                                                                  | 4.27      | 130.7  | 0.77     | 5.47          |                                        |
| 1104     | 3.07                 | 45.6        | 560                 |                                       | 12.02     | 91                                                                                  | 4.18      | 134.2  | 0.59     | 3.63          |                                        |
| 1108     | 3,09                 | 45.6        | 560                 | 5l                                    | 11.95     | 91                                                                                  | 4.11      | 137.5  | 0.52     | 3-49          |                                        |
| 1112     | 3.11                 | 45.6        | 560                 |                                       | 12.08     | 94                                                                                  | 4.08      | 140.1  | 0.61     | 2.80          | •                                      |
| 1116     | 2.96                 | 43.7        | 400                 | 9l                                    | 12.58     | 95                                                                                  | 4.16      | 141.2  | 0.43     | 3,04          |                                        |
| 1120     | 2.96                 | 43.7        | 400                 | 11                                    | 12.65     | 95                                                                                  | 4.13      | 145.3  | 0.45     | 2.65          |                                        |
| 1124     | 2.96                 | 43.7        | 400                 |                                       | 12.49     | 95                                                                                  | 4.06      | 148.2  | 0.34     | 1-40          |                                        |
| 1128     | 2.96                 | 43.7        | 400                 | 14                                    | 12.62     | 94                                                                                  | 4.01      | 152.6  | 0.32     | 1.25          |                                        |
| 1132     | 2.96                 | 43.7        | 400                 | 15                                    | 13.38     | 94                                                                                  | 4.13      | 152.3  | 0.38     | 1.48          |                                        |
| 1136     | 2.96                 | 43.7        | 400                 |                                       | 13,56     | 94                                                                                  | 4.22      | 152.7  | 0.35     | 1.55          |                                        |
| 1140     | 2.96                 | 43.7        | 400                 | 17                                    | 13.60     | 94                                                                                  | 4-24      | 152.6  | 0.34     | 1.47          | ·····                                  |
|          |                      |             |                     |                                       |           |                                                                                     |           |        |          |               | · · · ·                                |
|          |                      |             |                     |                                       | <u></u>   |                                                                                     |           |        |          | <u>,</u>      |                                        |
|          |                      |             |                     |                                       |           | ······································                                              |           |        |          |               |                                        |
|          |                      |             |                     |                                       |           |                                                                                     |           |        |          |               | ······································ |
|          |                      | ·           |                     |                                       |           |                                                                                     |           |        |          |               |                                        |
|          |                      | <u>-</u>    |                     |                                       |           | ·                                                                                   |           |        |          |               |                                        |
| NOTES:   |                      |             |                     |                                       | t 00/     | <u> </u>                                                                            | 10 1      | 140    | 1000     |               |                                        |
|          | TAKEN AT: 11         | 45          |                     |                                       | ±0.36 3%  | 52.5 3%                                                                             | +0.1 unit | +10 mv | ±.04 10% | <i>45</i> 10% |                                        |
|          | 11 12 12 12 12 12 12 | <u>-</u> VJ |                     | · · · · · · · · · · · · · · · · · · · |           |                                                                                     |           |        |          |               |                                        |

|             | WELL #            | SHL-          | -i0        |                                  |           | U U                                               |           | •          | -           | of Engi       |                        |
|-------------|-------------------|---------------|------------|----------------------------------|-----------|---------------------------------------------------|-----------|------------|-------------|---------------|------------------------|
|             | INTERVAL DEPTH    |               |            | WELL DIAMETER:                   | 2″        |                                                   | Groun     | dwater :   | Sampli      | ing Log S     | Sheet                  |
| 120 LEV     | EL: DEPTH, PRE PU | JMP INSERTION | 30.35      |                                  |           | Project Name: Shepley's Hill Landfill, Devens, MA |           |            |             |               |                        |
|             | DEPTH, POST PL    | JMP INSERTION |            |                                  |           |                                                   |           |            |             | / STRESS ME   |                        |
| EPTH S      | AMPLED:           | 35            |            | REFERENCE POINT:                 |           |                                                   |           |            | )           |               | 40ml glass vials (HCI) |
| ATE:        | 616/05            | TIME:         | 845        | (DEPTHS RECORDED BENEATH)        | NGVC      | Cyanide 1 x 250                                   |           |            |             | BOD 1 x 1L    |                        |
|             | ED BY:JK SAC      | G TM          | SIGNATURE: | J.L.                             |           | Anions,Alkalinity                                 |           | 500ml HDPE |             |               | 0mL HDPE (H2SO4)       |
| AMPLE       | ову: JK 🔄 АС      | 6 TM          | SIGNATURE: | Am                               |           | TSS 1 x 1L HDF                                    | РЕ        |            |             | TOC 3 x 40    | ml glass vials (H2SO4) |
| TIME        | WATER DPTH        | PUMP          | PURGE RATE | CUM. VOLUME                      | WATER     | SPECIFIC                                          | рН        | ORP/Eh     | D. O.       | TURBIDITY     | COMMENTS               |
| (24hr)      | BELOW MP (feet)   | SETTING       | (ml/min)   | PURGED (gal)                     | TEMP (°C) | COND. (µS/cm))                                    |           | (mv)       | (mg/L)      | (NTU's)       |                        |
| 406         | 30.28             | 120           | 400        |                                  | 16.75     | 30 .                                              | 7.17      | 149.6      | 11.51       | 9.5           | Very Clear unter Q     |
| 910         | 30.40             | 119.5         | 450        |                                  | 10.70     | 26                                                | 672       | 1607       | 11.34       | 5.0           |                        |
| 914         | 30.40             | 119.5         | 500        | 1 gallon_                        | 12.56     | 26                                                | 6.44      | 170.6      | 11.26       | 1.3           |                        |
| 917         | 30 40             | 119.5         | 500        |                                  | 12 78     | 26                                                | 6.39      | 176.9      | 11.29       | 1.0           |                        |
| 922         | 30.40             | 119.5         | 502        |                                  | 12.86     |                                                   | 6.37      | 185.2      | 11.26       | 6.F           |                        |
| 923         | 30.40             | 115.5         | 500        | 24-110-1                         | 12.37     | 25                                                | 6.37      | 187.2      | 11.23       | 0.7           |                        |
| 526         | 30 40             | 119.5         | 500        | ·                                | 12.90     | 28                                                | 6.37      | 1931       | 11.24       | 0.5           |                        |
| 979         | 30.40             | 119.5         | 500        |                                  | 12.89     | Z.£                                               | 6.37      | 195.5      | 11.22       | 0.4           |                        |
| <u>932</u>  | 30 40             | 119.5         | 500        | 3gallins                         | 12.74     | 28                                                | 6.37      | 198.1      | 11.20       | 0.5           |                        |
| <u> 935</u> | 30.40             | 119.5         | 500        |                                  | 12.80     | 28                                                | 6.37      | 202.9      | 11.13       | 0.5           |                        |
| 938         | 30.40             | 119.5         | 500        | Ligalions                        | 12.80     | 29                                                | 6.36      | 208.2      | 11.12       | 0.3           |                        |
| 141         | 30.40             | 119.5         | 500        |                                  | 12.90     | 29                                                | 6.37      | 209-1      | 11.12       | 0.2           |                        |
| 744         | 30 412            | 119.5         | 500        | 592110-1                         | 17.8F     | 25                                                | 6.37      | 210.5      | 11.16       | 6.2           |                        |
|             |                   |               |            |                                  |           |                                                   | ·····     |            |             | <u> </u>      |                        |
|             |                   |               |            |                                  |           |                                                   |           |            |             |               |                        |
|             |                   |               |            |                                  |           |                                                   |           |            |             |               | ·                      |
|             |                   |               | <u>.</u>   |                                  | <u> </u>  | ·                                                 |           |            |             |               |                        |
|             |                   |               |            |                                  |           |                                                   |           |            |             |               |                        |
| IOTES:      | TAKEN AT: 9       | 45            |            | n <u>Outrant yn regene name.</u> | ±0.37 3%  | ±0.8 3%                                           | +0.1 unit | +10 mv     | 10%<br>1.1/ | <u>د ج10%</u> | )                      |

| F       |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        | 1 |
|---------|-------------------|---------------------------------------|------------|---------------------------|--------------|---------------------------------------|-----------|-----------|--------|-------------|----------------------------------------|---|
| GWM     | I WELL #          | SHM-                                  | - 93-10    | C                         |              | U                                     | .S. A     | rmy C     | orps   | of Engii    | neers                                  |   |
| SCREEN  | INTERVAL DEPTH:   |                                       | ~~~7'      | WELL DIAMETER:            | 4"           |                                       | Groun     | dwater \$ | Sampli | ng Log S    | heet                                   |   |
|         | EL: DEPTH, PRE PU |                                       | 78.86      |                           | •·····       | Proje                                 |           |           |        | Landfill, D |                                        |   |
|         | DEPTH, POST PU    |                                       |            | )                         | -            |                                       |           |           |        | STRESS ME   | ······································ |   |
| DEPTH S |                   | 50'                                   |            | REFERENCE POINT:          | PVOOR CASING | Metals/Hardness                       |           |           |        |             | 0ml glass vials (HCl)                  |   |
| DATE:   | 6/6/05 -          | TIME:                                 | 0845       | (DEPTHS RECORDED BENEATH) | $\sim$       | Cyanide 1 x 250                       |           |           |        | BOD 1x1L    |                                        |   |
|         | ED BY:JK SS AS    | ТМ                                    | SIGNATURE: | hey la                    |              | Anions,Alkalinity                     |           | • •       |        | COD 1 x 250 | mL HDPE (H2SO4)                        |   |
| SAMPLED | DBY: JK SS AS     | ≽ TM                                  | SIGNATURE: | Aby lon                   |              | TSS 1 x 1L HDF                        |           |           |        | TOC 3 x 40m | nl glass vials (H2SO4                  | ) |
| TIME    | WATER DPTH        | PUMP                                  | PURGE RATE | CUM. VOLUME               | WATER        | SPECIFIC                              | рН        | ORP/Eh    | D. O.  | TURBIDITY   | COMMENTS                               |   |
| (24hr)  | BELOW MP (feet)   | SETTING                               | (ml/min)   | PURGED (gal)              | TEMP (°C)    | COND. (µS/cm)                         |           | (mv)      | (mg/L) | (א'U's)     |                                        |   |
| 0917    | 29.75             | 119.5                                 | 520        |                           | 10,88        | 432                                   | 7.14      | 241,3     | 1.49   | 0,22        |                                        |   |
| 0921    | 29,90             | 118.7                                 | 300        | 2/GAL                     | 11.78        | 431                                   | 7,21      | 244.5     | 1.08   | 0,24        |                                        | - |
| 0924    | 29,95             | 118.7                                 | 300        |                           | 11.91        | 433                                   | 7.27      | 237.5     | 0,90   | 0.32        |                                        |   |
| 0929    | 29,98             | 118.7                                 | 300        | 2 GAL                     | 11.94        | 433                                   | 7.27      | 239,2     | 0,85   |             |                                        |   |
| 0932    | 29,98             | 118.7                                 | 300        |                           | 11.98        | 433                                   | 7.30      | 241.6     | 0.77   | 0,50        |                                        |   |
| 0935    |                   | 118.7                                 | 300        |                           | 12,03        | 433                                   | 7.30      | 243,0     | 0.77   | 0.51        |                                        |   |
| 0938    | 30.0              | 118.7                                 | 300        |                           | 12,07        | 433                                   | 7.33      | 715.6     | 0.75   | 0,49        |                                        |   |
| 0942    | 30,0              | 118.7                                 | 300        | 23 6.12                   | 12,13        | 433                                   | 7.34      | 249,2     | 0.72   | 0,52        |                                        |   |
|         |                   |                                       |            |                           |              | · · · · · · · · · · · · · · · · · · · |           |           |        |             |                                        |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
|         |                   | <u></u>                               |            |                           |              |                                       |           |           |        |             |                                        |   |
|         |                   | ······                                |            |                           |              |                                       |           |           |        |             | van                                    |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
| ╠       |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             | ·                                      |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
|         |                   |                                       |            |                           |              |                                       |           |           |        |             |                                        |   |
|         | <del>.</del>      | · · · · · · · · · · · · · · · · · · · |            |                           |              |                                       |           |           |        |             |                                        |   |
| NOTES:  | <u></u>           |                                       | <u> </u>   |                           |              |                                       |           |           |        |             |                                        |   |
|         | TAKEN AT:         | 949                                   |            |                           | 3%           | 3%                                    | +0.1 unit | +10 mv    | 10%    | 10%         |                                        |   |
|         | TAKENAI: U        | 14/                                   |            |                           | ·            |                                       |           |           |        |             |                                        |   |
|         |                   |                                       |            |                           |              | ,                                     | •         |           |        |             |                                        |   |

YSI #0000698 TURBIDITY # 39576

-

| GWM              | WELL#                               | S14L -        | 11         |                           | <u></u>   | U                  | J.S. A    | rmy C    | orps         | of Engi     | neers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|-------------------------------------|---------------|------------|---------------------------|-----------|--------------------|-----------|----------|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                |                                     |               |            | WELL DIAMETER:            | 2"        | 1                  |           |          |              | ng Log S    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H20 LEVE         | INTERVAL DEPTH<br>EL: DEPTH, PRE PL | IMP INSERTION |            | ect                       |           | Proie              | ect Nam   | e: Shepl | ley's Hill   | Landfill, D | evens, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | DEPTH, POST PU                      |               |            | ert                       | -         |                    |           |          |              | STRESS ME   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DEPTH S          |                                     | 25 fee        |            | REFERENCE POINT           |           | Metals/Hardness    |           |          |              |             | 10ml glass vials (HCl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| H .              | 6/7/05                              | TIME:         | 830        | (DERTHS RECORDED BENEATH) | NGVE      | Cyanide 1 x 250    | ml HDPE   | (NaOH) _ |              | BOD 1 x 1L  | HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                     | G TM          | SIGNATURE: | at light                  | ~         | Anions, Alkalinity |           |          |              | COD 1 x 250 | )mL HDPE (H2SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16               | DBY: JK (SS) AC                     |               | SIGNATURE: | A. P. L                   | ~         | TSS 1 x 1L HDF     | PE        |          | ÷            | TOC 3 x 40r | nl glass vials (H2SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TIME             | WATER DPTH                          | PUMP          | PURGE RATE | CUM, VOLUME               | WATER     | SPECIFIC           | рН        | ORP/Eh   | p. 0,        | TURBIDITY   | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (24br)           | BELOW MP (feet)                     | SETTING       | (ml/min)   | PURGED (gal)              | TEMP (°C) | ے<br>COND. (µS/cm) |           | (mv)     | (mg/L)       | (NTU's)     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 845              | 18.35                               | 95.5          |            |                           |           |                    |           |          |              | 1200+       | Rimpiel Grange /R<br>Water beturn war                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 848              | 18.35                               | 95.5          |            | 2901                      |           |                    |           |          |              | 175         | to YST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | - <u></u>                           |               | Connected  | to YST                    |           |                    |           |          |              |             | Clearer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 850              | (8.35                               | 95.5          | 1250       | 3gal                      | 11.58     | 550                | 4.92      | -4.1     | 0.37         | 130         | Reduced speech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 853              | 18.35                               | 95.1          | 1200       | Mgal                      | 11.61     | 542                | 4,71      | -17.0    | 6.4F         | 100         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 856              | 18.35                               | 95.1          | 1700       | 5 gal                     | 11.61     | 542                | 4.48      | -19.4    | 0.47         | 25          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 859              | 18.35                               | 9511          | (300       | 6 gal                     | 11.63     | 542                | 4.25      | -70,7    | 0.49         | 14.4        | Slight ador h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 902              | 18.34                               | 95.1          | 1300       | 7 gal                     | 11.61     | 539                | 3,97      | - 20.0   | 0.50         | 9.8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 905              | 18.34                               | 95.1          | 1300       | 8921                      | 11.64     | 543                | 3.70      | -19.9    | 0.50         | 6.6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 908              | 18.34                               | 95.1          | 1250       | 9 9-1                     | 11.66     | 542                | 3.53      | -19.0    | 0.51         | 5.9         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 911              | 18.34                               | 95,1          | 1250       |                           | 11.61     | 544                | 3.40      | -18.4    | 0.50         | 5.1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 913              | 18.34                               | 95.1          | 12.50      | 10 gil                    | 11.64     | 546                | 3.25      | -18,5    | 0.49         | 4.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 916              | 18.34                               | 95.1          | 1250       | 11991                     | 11.61     | 544                | 303       | -15,9    | 6,52         | 4.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 919              | 18.34                               | 95.1          | 1250       | 12941                     | 11.65     | 513                | 2.78      | -13,9    | 0.53         | 3.8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 922              | 18.34                               | 95.1          | 1250       | 13901                     | 11.61     | 546                | 2.58      | -13.4    | 0.51         | 3.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 925              | 18.34                               | 9511          | 1250       | 14 991                    | 11.61     | 545                | 2.36      | -11.0    | 0.54         | 2.9         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 928              | 18.34                               | 95.1          | 17.50      |                           | 11.62     | 548                | 2.16      | -10.2    | 0,51         | 2.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 931              | 18.34                               | 9511          | 1250       | 15 521                    | 11.65     | 548                | 2.01      | -9.3     | 6.51         | 2.0         | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> 934</u>      | 18.34                               | 95.1          | 1750       | 16 gen                    | 11.62     | 548                | 1.68      | -70      | 0.51         | 1.5         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                     |               |            |                           |           |                    | ≯         |          |              |             | Ph senier is all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NOTES:<br>SAMPLE | TAKEN AT: 9                         | 35            |            |                           | + U.3 3%  | ± 15 / 3%          | +0.1 unil | : +10 mv | 10%<br>±0.05 | 10%<br>4.5  | and and a second s |
| Du               | to extremul                         | 1             |            | ed water -                | - Zyull.  | - were             | amrid     | 0.1      | util         | weeker b    | camy Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| belo             | 4 Concell                           |               | YSI.       |                           |           |                    | r         |          |              |             | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| YSI# 4           | 800508                              | TURBIDITY #   | 110110     |                           | •         | nfos Redi-flow I   |           | . /0     | 1            | 1.1.1       | $\overline{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                | Sample take.                        | ~ (~ 935      | all para   | alphikes Stohi            | field exc | yir ph             | which     | 13 0 Hr  | ( wei        | س دا ډرو ۱  | c +h )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|              | WELL#            | SHL           | -19         |                           |           |                   |           |                                       |        | of Engi     |                                       |
|--------------|------------------|---------------|-------------|---------------------------|-----------|-------------------|-----------|---------------------------------------|--------|-------------|---------------------------------------|
| SCREEN I     | NTERVAL DEPTH    | : 17.0-       | 32.01       | WELL DIAMETER:            | _4"       |                   | Groun     | dwater                                | Sampli | ing Log S   | Sheet                                 |
| H2O LEVE     | L: DEPTH, PRE PL | JMP INSERTION | 22.19       |                           |           | Proje             |           |                                       |        |             | evens, MA                             |
|              | DEPTH, POST PL   |               | 22.19       |                           | $\sim$    |                   |           |                                       |        | / STRESS ME |                                       |
| DEPTH SA     |                  | 27'           | -           | REFERENCE POINT:          |           |                   |           |                                       | )      |             | 10ml glass vials (H                   |
| DATE: (      | 016105           | TIME:         | 1320        | (DEPTHS RECORDED BENEATH) | NGVD      | Cyanide 1 x 250   |           | -                                     |        | BOD 1 x 1L  |                                       |
|              | ED BY:JK SS AC   |               | SIGNATURE:  | Thomas & Mar              | cotta     | Anions,Alkalinity |           | i00ml HDPE                            | 3      |             | )mL HDPE (H2SO                        |
| SAMPLED      | BY: JK SS AC     | G(TM/         | SIGNATURE:  | Thomas J.M.               | arcotto   | TSS 1 x 1L HDF    |           |                                       |        | TOC 3 x 40r | nl glass vials (H2S                   |
| TIME         | WATER OPTH       | PUMP          | PURGE RATE  | CUM. VOLUME               | WATER     | SPECIFIC          | рН        | ORP/Eh                                | D. Ö.  | TURBIDITY   | COMMENTS                              |
| (24hr)       | BELOW MP (feet)  | SETTING       | (ml/min)    | PURGED (gal)              | TEMP ("C) | COND. (µS/cm)     |           | (mv)                                  | (mg/L) | (NTU's)     | reddish-Brown                         |
| 1246         | 22.28            | 105.2         | 1280        | -                         | 11.31     | 104               | 5.68      | 32.1                                  | 1021   | 87.7        | reading - 0.000                       |
| 1250         | 22.19            | 105.2         | 1500        | 2.0                       | 11.18     | 100               | 5.47      | 34.1                                  | 0.98   | 61.8        | · · · · · · · · · · · · · · · · · · · |
| 1254         | 22.19            | 105.2         | 1600        | 3.5                       | 11.12     | 96                | 5.29      | 41.1                                  | 1.08   | 28.3        |                                       |
| 1258         | 22.25            | 102.6         | 960         | 4.5 -                     | 11.96     | 92                | 5.13      | 50.7                                  | 1.48   | 16:9        | · · · · · · · · · · · · · · · · · · · |
| 1302<br>1306 | 22.19            | 102.6         | 900         | 5.5                       | 11.94     | 91                | 5.11      | 55.5                                  | 1.66   | 14.8        |                                       |
|              | 22.19            | 102.6         | 960         | 6.5                       | 11.98     | 90                | 5.05      | 59.3                                  | 1066   | 18.8        |                                       |
| 1310         | 22.19            | 102.6         | 900         | 7.5                       | 11.95     | 89                | 4.48      | 63.7                                  | 1.74   | 20.5        |                                       |
| 1314<br>1318 | 22.19            | 102.6         | 960         | 8.5                       | 11.99     | 88                | 4.92      | 66.5                                  | 1.86   | 18.5        |                                       |
| 1010         | 22,19            | 102.0         | 760         | 9+5                       | 11-99     | 88                | 4.89      | 68.5                                  | 1.88   | 19.0        | ·····                                 |
|              |                  |               |             |                           | <u> </u>  |                   |           |                                       |        |             |                                       |
|              |                  |               |             |                           |           |                   |           |                                       |        |             |                                       |
|              |                  |               |             |                           |           |                   |           |                                       |        |             |                                       |
|              | ·····            |               |             |                           |           |                   |           |                                       |        |             |                                       |
|              | <u></u>          |               |             |                           |           |                   |           |                                       |        |             |                                       |
|              |                  |               |             |                           |           |                   | ·         |                                       |        |             |                                       |
|              |                  |               |             |                           |           |                   |           | ·····                                 |        |             |                                       |
|              |                  |               | -           |                           |           |                   |           |                                       |        |             |                                       |
|              |                  |               |             |                           |           | <u> </u>          |           |                                       |        | · · · · · · |                                       |
|              |                  |               |             |                           |           | <u> </u>          |           |                                       |        |             |                                       |
| NOTES:       |                  |               |             | <u></u>                   | ¥.35 3%   | 127 3%            | +0.1 unit | +10 mv                                | 10%    | 10%         |                                       |
|              |                  | 320           |             |                           |           |                   |           |                                       |        |             |                                       |
| -let w       | ell dischargo, i | nto bucket    | at start to | eliminate slug            | (v2.5a)   | llohs)            |           |                                       |        |             |                                       |
|              |                  | <u> </u>      |             |                           | <u> </u>  | *****             |           | · · · · · · · · · · · · · · · · · · · |        |             | ··· • • • •                           |
| <u>781#</u>  | 1860505 AA       |               | J           |                           |           | nfos Redi-flow I  |           | · · · · · · · · · · · · · · · · · · · |        |             | · · · · · · · · · · · · · · · · · · · |

.

| GWM WELL            | # 5141 -           | 20         |                           |                                       | U                  | .S. A         | rmy C     | orps      | of Engir                                                                                                       | neers                                         |
|---------------------|--------------------|------------|---------------------------|---------------------------------------|--------------------|---------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| SCREEN INTERVAL D   |                    | 51.0 Reed  | - WELL DIAMETER:          | 4                                     |                    | Groun         | dwater \$ | Sampli    | ing Log S                                                                                                      | heet                                          |
| H20 LEVEL: DEPTH, F |                    |            |                           | · · · · · · · · · · · · · · · · · · · | Proje              | ect Nam       | e: Sheple | ey's Hill | Landfill, D                                                                                                    | evens, MA                                     |
| 1                   | OST PUMP INSERTION |            | ert                       | •                                     |                    |               |           |           | / STRESS ME                                                                                                    |                                               |
| DEPTH SAMPLED:      | -46 lee            |            | REFERENCE POINT:          | PVD OR CASING                         | Metals/Hardness    |               |           |           |                                                                                                                | 0ml glass vials (HCl)                         |
| DATE: 617/04        |                    | 0830       | (DEPTHS RECORDED BENEATH) |                                       | Cyanide 1 x 250    |               |           |           | BOD 1 x 1L                                                                                                     | IDPE                                          |
| RECORDED BY:JK S    |                    | SIGNATURE: | - Misla -                 |                                       | Anions, Alkalinity |               | •         |           | COD 1 x 250                                                                                                    | mL HDPE (H2SO4)                               |
| SAMPLED BY: JK S    |                    | SIGNATURE: | Hurles                    |                                       | TSS 1 x 1L HDF     |               |           |           | TOC 3 x 40m                                                                                                    | nl glass vials (H2SO4)                        |
| TIME WATER DP1      |                    | PURGE RATE | CUM. VOLUME               | WATER                                 | SPECIFIC           | рН            | ORP/Eh    | Đ. Ô.     | TURBIDITY                                                                                                      | COMMENTS                                      |
| (24hr) BELOW MP (   | (feet) SETTING     | (mi/min)   | - PURGED (gal)            | TEMP (°C)                             | COND. (µS/cm)      |               | (mv)      | (mg/L)    | (NTU's)                                                                                                        |                                               |
| 0840 18.64          | 92.1               | 300        |                           | 17.65                                 | 580                | 6.25          | -17,8     | 1.31      | 96,0                                                                                                           |                                               |
| 0843 18.65          | 92,1               | 300        |                           | 12.94                                 | 585                | 6,24          | -15.0     | 1.07      | 80.0                                                                                                           |                                               |
| 0846 18.65          | 9211               | 300        |                           | 13.20                                 | 587                | 6.24          | -12,5     | 1.00      | 65.5                                                                                                           |                                               |
| 0849 18.65          | 92.1               | 300        | El GALLON                 | 13.58                                 | 587                | 6.23          | -10.8     | 0.82      | 59.3                                                                                                           |                                               |
| 0852 18,65          | 92,1               | 300        |                           | 13,72                                 | 589                | 6.20          | -8:2      | 0,71      | 54.6                                                                                                           |                                               |
| 0855 18,65          | 92.1               | 300        |                           | 13,74                                 | 589                | 6.21          | -7.3      | 0,60      | 50.0                                                                                                           |                                               |
| 8858 1865           | 52.1               | 350        | 226ALLONS                 | 13.85                                 | 587                | 6,22          | -7,0      | 0,52      | 38.0                                                                                                           |                                               |
| 0901 18.65          | 92.1               | 350        |                           | 13.98                                 | 585                | 6.22          | -5,6      | 0,42      | 34.2                                                                                                           |                                               |
| 0904 18.65          | 72.1               | 350        |                           | 13.93                                 | 587                | 6.21          | -5.2      | 0,41      | 30,6                                                                                                           |                                               |
| 0907 18.65          | 92.1               | 350        |                           | 14,00                                 | 585                | 6.21          | - 4,2     | 0,39      | 28,8                                                                                                           |                                               |
| 0910 18.65          |                    | 350        |                           | 14.14                                 | 584                | 6.20          | -3.6      | 0.38      | 25,5                                                                                                           |                                               |
| 0913 18.65          | 92.1               | 350        | a 361120NS                | 14,17                                 | 585                | 6.20          | - 3.0     | 0,36      | ZZIS                                                                                                           |                                               |
| 0916 18.65          |                    | 350        |                           | 14.13                                 | 586                | 6.19          | - Z. Z    | 0.34      | the second s |                                               |
| 0919 18,65          |                    | 350        |                           | 14.21                                 | 586                | 6.18          | -1.5      | 0,33      | 18,9                                                                                                           | , <u>, , , , , , , , , , , , , , , , , , </u> |
| 0922 18.65          | 92.1               | 350        | 2. 46AUPNS                | 14.23                                 | 586                | 6116          | - 0,5     | 0,33      | 17.9                                                                                                           |                                               |
|                     |                    |            |                           |                                       |                    | <br>          | 1         |           |                                                                                                                | · · · · · · · · · · · · · · · · · · ·         |
| ······              |                    |            |                           |                                       | <u> </u>           | <u> </u>      |           |           | · · · · · · · · · · · · · · · · · · ·                                                                          |                                               |
|                     |                    |            |                           |                                       |                    |               |           |           |                                                                                                                |                                               |
|                     |                    |            |                           |                                       |                    |               |           |           |                                                                                                                |                                               |
| NOTES:              |                    |            |                           | <u>1</u>                              | ۱ <u> </u>         | +0.1 unit     | +10 mv    | 10%       | 10%                                                                                                            |                                               |
| SAMPLE TAKEN AT     | : 0924             |            |                           | 570                                   | 576                | · v. r ui lit |           | 1070      | 1070                                                                                                           |                                               |
|                     | UYAT               |            |                           |                                       |                    |               | . <u></u> |           |                                                                                                                | ·····                                         |

|                    |                                        |             | nganisin , ai an an an an                                                                                                   |                | 1 1               | C ^                  |                | <u> </u>   | ofFact        | nooro                                 |
|--------------------|----------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------------|----------------|------------|---------------|---------------------------------------|
| GWM WELI           | _# <u>5'HM</u>                         | - 93-220    | ۲<br>مر <u>احد المحمد المحمد</u> |                | U U               |                      | ¥              |            | of Engi       | 11                                    |
|                    | DEPTH: /24,3-                          |             | WELL DIAMETER:                                                                                                              | 4 <sup>1</sup> |                   |                      |                |            | ing Log S     |                                       |
| H2O LEVEL: DEPTH   | , PRE PUMP INSERTION                   | 6.32        | -                                                                                                                           |                | Proje             | ect Nam              | e: Shepl       | ey's Hill  | Landfill, D   | evens, MA                             |
| DEPTH,             | POST PUMP INSERTION                    |             |                                                                                                                             |                |                   | SAMPLE               | METHOD:        | EPA LOW    | / STRESS ME   |                                       |
| DEPTH SAMPLED:     | 130'                                   |             | REFERENCE POINT:                                                                                                            | PUO OR CASING  | Metals/Hardness   | 1 x 1L HI            | OPE (HNO3      | )          | VOC'S 3x4     | 0ml glass vials (HCI)                 |
| DATE: 617/0        | 5TIME:                                 | 1040        | CORPTHS RECORDED BENEATH)                                                                                                   | NGVD           | Cyanide 1 x 250   | ml HDPE              | (NaOH)         |            | BOD 1 x 1L    |                                       |
| RECORDED'BY:JK     | XX                                     | SIGNATURE:  | 1892 m                                                                                                                      |                | Anions,Alkalinity |                      | 500ml HDPE     | 3          |               | )mL HDPE (H2SO4)                      |
| SAMPLED BY: JK     | (SS) AG TM                             | SIGNATURE:  | dat                                                                                                                         |                | TSS 1 x 1L HDF    | E                    |                |            | TOC 3 x 40n   | nl glass vials (H2SO4)                |
| TIME WATER D       | PTH PUMP                               | PURGE RATE  | CUM. VOLUME                                                                                                                 | WATER          | SPECIFIC          | рН                   | ORP/Eh         | D. Q.      | TURBIDITY     | COMMENTS                              |
| (24hr) BELOW MP    |                                        | (mt/min)    | PURGED (gal)                                                                                                                | TEMP (°C)      | COND. (µS/cm)     |                      | (mv)           | (mg/L)     | (NTU's)       |                                       |
| 1045 5.10          |                                        | $\uparrow$  |                                                                                                                             |                |                   |                      |                |            |               | clear color                           |
| 1050 6.3.0         |                                        | Vorres      | 2901                                                                                                                        | 10.44          | 433               | 6,88                 | -70.9          | 2.06       | 3.0           | sulfer our                            |
| 1055 9,50          |                                        | drive dian  | 3901                                                                                                                        | 10.60          | 524               | 6,75                 | -117.3         | 0.30       | 2.0           |                                       |
| 1100 17.00         |                                        |             | 690                                                                                                                         | 10,67          | 362               | 6.73                 | -90-1          | 0.21       | 2.5           |                                       |
| 1105 21.40         |                                        | <u> </u>    | 10 901                                                                                                                      | 10.77          | 272               | 6.64                 | - 48.1         | 0.63       | 2.0           |                                       |
| 1110 29,10         |                                        |             | 17 921                                                                                                                      | 10.51          | 265               | 6.67                 | - 10.11        | 0.79       | 2.3           | Reduced Speed                         |
| 1115 34.43         |                                        | 4           | 17 9-1                                                                                                                      | 10.92          | 260               | 6.69                 | -1.4           | 0.97       | 2.5           |                                       |
| 1120 37.12         | 1472                                   | 1460        | 120 961                                                                                                                     | 11.05          | 263               | 6.62                 | -1,6           | 6.93       | Z. 10         | Reduced pury Speed                    |
| 1125 38.70         | 139.3                                  | \$00        | 219-1                                                                                                                       | 11.22          | 269               | 6.56                 |                | 0.92       | 1.8<br>Z.0    | li ci li                              |
| 11.30 39,70        | 136.0                                  | 225         |                                                                                                                             | 12.17          | 277               | 6.67                 | -15.8          | 0.95       |               |                                       |
| 1140 39.80         | ······································ | 005         |                                                                                                                             | 11.90          | 278               |                      |                | <u> </u>   | 1.9           |                                       |
| 1143 39.80         |                                        | 150         | 2290                                                                                                                        | 12.10          | 280               | 6.73                 | -11.3          | 0.99       | 2.0<br>2.1    | and Shopped                           |
| 1146 39.81         |                                        | 150         |                                                                                                                             | 12.21          |                   |                      |                | +- <u></u> | 2.0           | drowing down<br>shaded ysz - solution |
| 1149 39.81         | 136.0                                  | 150         |                                                                                                                             | 12,16          | 285               | 6.73                 | -13 9          | 1,00       |               | Shaded YSI - alice                    |
| 1152 39.81         | 136.0                                  | 150         | · · · · · · · · · · · · · · · · · · ·                                                                                       | 12.02          | 289               | 6.72                 | -17.0          | 1.00       | 7.3<br>2.0    |                                       |
| 1155 39.81         |                                        | 150         |                                                                                                                             | 11.93          | 291               | 6.7 <u>3</u><br>6.75 | -20.3<br>-23 1 |            |               |                                       |
|                    | 36.0                                   | 130         |                                                                                                                             | 11.72          | 292               | 6.12                 | - 25 1         | 1,00       | 1.9           | ······                                |
|                    |                                        |             | · · · · · · · · · · · · · · · · · · ·                                                                                       |                | ····              |                      |                |            |               |                                       |
|                    |                                        |             |                                                                                                                             |                |                   |                      |                |            |               | ······                                |
| NOTES:             |                                        | <u></u>     |                                                                                                                             | To 3 3%        | ·† 8 3%           | +0.1 unit            | +10 mv         | 10%        | _10%          | <u> </u>                              |
| SAMPLE TAKEN A     | T: 1155                                |             |                                                                                                                             | -0-5 -10       | - 0               | V                    |                | 20.1       | <u>د جامع</u> |                                       |
| will has history   | of loss deter                          | me until we | M is down a                                                                                                                 | dun ~ 30       | ) feet to 10      | -<br>CMUII           | hed :          | - Well     | 1             | I I Pas                               |
|                    |                                        | 51.         |                                                                                                                             | 1              |                   | CRUIT                | · Mar (        | - wer      | cour c        | two at first                          |
| to reach a<br>YSI# | Livel that it TURBIDITY                |             | charge crucial                                                                                                              |                | hm/h              |                      |                |            |               |                                       |
| 000698             |                                        | 1576        |                                                                                                                             | Fump - Gfu     | nfos Redi-flow II |                      |                |            |               |                                       |
|                    | 2                                      | 1710        |                                                                                                                             |                |                   |                      |                |            |               |                                       |

### January 2006 Monitoring

SHL-3

| Field Data Sheets for Low Flow G                                                                                                                                         | round Water                                           | Sampli                                   | ng                            | <u></u>                                                                                                      |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------|------------------|
| Weather Conditions <u>Clear Hoof</u><br>PID <u>NA</u> (ppm) Condition <u>9000</u><br>Sample Team <u>TB//LL</u>                                                           | <u>9 106 - 11</u>                                     | 20/06                                    |                               |                                                                                                              |                  |
| Well Stabilization Data<br>Well Depth 35 (FT.) Datum<br>Static Water Level 29.58/29.8 (FT.) Diameter : 2"<br>Water Column(FT.) Purge Method: Peristaltic Pump / A edited | Flow I                                                |                                          | Waler Level i<br>Time Purging | begins (T <sub>o</sub> ):<br>at time T <sub>o;</sub><br>rends: (T <sub>1</sub> )<br>at time T <sub>1</sub> : | •<br>            |
| Volume<br>Removed         pH         CPCOND(mS/cm)         TEMP.(C)         Redox (mV)           + / - 0.1         + / - 3%         + / - 0.2 or 3%         + / - 10 mV  |                                                       | 0,0, (mg/L)<br>+/-10%                    | Turbidity<br>(NTU)<br>< 5 NTU | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM                                                                      | Appearance       |
| V19/06 - Whiter table too deep for peris                                                                                                                                 |                                                       |                                          |                               |                                                                                                              |                  |
| 1/21/06 - Attempted to pump w/ Grund                                                                                                                                     |                                                       | Floa                                     |                               | well                                                                                                         | sept             |
| Joing dry e lowest Flow rate (3. 9<br>1008 5621 6.17 .017 11.58 309                                                                                                      | FLPM)                                                 |                                          | 109                           |                                                                                                              | ·····            |
| hot submitted                                                                                                                                                            | removed                                               | ) <u>, b</u> u                           | - Sau                         | nple                                                                                                         |                  |
| SAMPLING                                                                                                                                                                 |                                                       |                                          |                               |                                                                                                              |                  |
| Date: / ZI / D6 Analysis:<br>Time: <u>1015</u><br>Field Filtering: <u>W0</u><br>Sampling Methodology: Low Flow Sampling                                                  | Diameter (inch)           1           1.5           2 | Gallon / Foot<br>0.040<br>0.091<br>0.163 | * delta w.t. (fl)             | = voium                                                                                                      | e lest (gallons) |
| Laboratory: Method of Shipment:<br>Remarks:                                                                                                                              | 4                                                     | 0.652                                    |                               | 1gallo                                                                                                       | n = 3.78 liters  |

| ield Conditions                                                                                        | Clear 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -50°E                                                                                                                                                | windy                                                                                                                                                      |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                        | nple Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                            | ]                                                                                        | Start Time_11.30                                                                                                                                |                                                                                                                |                                                                           |
| Initial Darith to                                                                                      | Water 9, 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The A A                                                                                                                                              | 35' 25'                                                                                                                                                    | J<br>Jensura Poloti                                                                      | Well TOC) Steel Casing                                                                                                                          |                                                                                                                |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                             | -11 12/ 14                                                                                                                                                 |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
| Vertical Profilir                                                                                      | ·/·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | ell 13' bg                                                                                                                                                 |                                                                                          | - www.i                                                                                                                                         |                                                                                                                |                                                                           |
| Depth                                                                                                  | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | рН                                                                                                                                                   | Conductivity<br>mS/cm                                                                                                                                      | Turbidity<br>NTU                                                                         | / Diss. Oxygen<br>mg/L                                                                                                                          | Temp.<br>°⊂                                                                                                    | Eh/OR<br>mv                                                               |
| ft below TOC                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                            |                                                                                          | ······································                                                                                                          |                                                                                                                |                                                                           |
| <u> </u>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 | -                                                                                                              |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••                                                                                                                                                  |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
|                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 | ·····                                                                                                          |                                                                           |
| ·                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            | ·                                                                                        |                                                                                                                                                 | ·····                                                                                                          |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          | ····                                                                                                                                            |                                                                                                                |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
|                                                                                                        | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
| <u> </u>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          | <u> </u>                                                                                                                                        |                                                                                                                |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                          |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
| ······································                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | . <u> </u>                                                                                                                                                 | <u> </u>                                                                                 |                                                                                                                                                 | <u>}</u>                                                                                                       |                                                                           |
| l                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                            |                                                                                          |                                                                                                                                                 | $+ \sim$                                                                                                       |                                                                           |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | - <u>} · · · · · · · · · · · · · · · · · · ·</u>                                                                                                           |                                                                                          |                                                                                                                                                 |                                                                                                                |                                                                           |
| Remarks:<br>Purge Method:<br>Geopump                                                                   | Start C 113<br>Ded: Pump Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      | Split Sam<br>Duplicate                                                                                                                                     | ple ID<br>Sample ID                                                                      | 011906 - SHLO                                                                                                                                   | Dupl. Time                                                                                                     |                                                                           |
| Purge Method:<br>geopump<br>Flow Cell:                                                                 | Ded: Pump Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r<br>Min. Pu                                                                                                                                         | Duplicate                                                                                                                                                  | Sample ID                                                                                | M Purge Rate                                                                                                                                    | Dupl. Time                                                                                                     |                                                                           |
| Purge Method:<br>geopump<br>Flow Cell:<br>Time                                                         | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>Min. Pu<br>pH                                                                                                                                   | Duplicate                                                                                                                                                  | Sample ID                                                                                | Purge Rate<br>Diss. Oxygen<br>mg/L                                                                                                              | (gpm)/(ml.pm)<br>Temp.<br>°c                                                                                   | Eh / OR<br>mv                                                             |
| Purge Method:<br>geopump<br>Flow Cell:                                                                 | Ded: Pump Othe<br>N<br>Vot. Purged<br>gollons / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Min: Pu<br>pH                                                                                                                                        | Duplicate                                                                                                                                                  | Sample ID<br>OS 5 L 0<br>Turbidity<br>NTU<br>SIA / Cla                                   | Purge Rate<br>Diss. Oxygen<br>mg/L                                                                                                              | (gpm)/(mtpm)                                                                                                   | Eh / OR                                                                   |
| Purge Method:<br>geopump<br>Flow Cell:<br>Time                                                         | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH                                                                                                                                                   | Duplicate                                                                                                                                                  | Sample ID                                                                                | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4,15                                                                                                   | Dupl. Time                                                                                                     | Eh/OR<br>mv<br>326, 8                                                     |
| Purge Method:<br>geopump<br>Flow Cell:<br>Time                                                         | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>0-5 12L<br>DTU - 9<br>18.5L<br>DTU -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>5,36<br>71 Cost<br>5,12<br>5,12<br>2 7 17 1                                                                                         | Duplicate                                                                                                                                                  | Sample ID<br>OS 5 L 0<br>Turbidity<br>NTU<br>SIA / Cla                                   | Purge Rate<br>Diss. Oxygen<br>mg/L<br>W 4,15<br>U,30                                                                                            | Dupl. Time                                                                                                     | Eh/OR<br>mv<br>326, 8                                                     |
| Purge Method:<br>geopump<br>Flow Cell:<br>Time                                                         | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>Drw c9<br>18.5L<br>Drw<br>Drw<br>28 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Min. Pu<br>pH<br>5,36<br>(-)1 Cost<br>5,-12<br>2 (1,1)<br>5,69                                                                                       | Duplicate                                                                                                                                                  | Sample ID                                                                                | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4,15                                                                                                   | Dupl. Time                                                                                                     | Eh / OR<br>mv                                                             |
| Purge Method:<br>Geopump<br>Flow Cell:<br>Time<br>12-67<br>12-12                                       | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>0-5 12L<br>DTU - 9<br>18.5L<br>DTU -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>5,36<br>(71 Cost<br>5,12<br>2,12<br>2,14<br>1,71<br>5,69<br>1,71                                                                    | Duplicate                                                                                                                                                  | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA ( Cla<br>NA                                | Purge Rote<br>Diss. Oxygen<br>mg/L<br>ar) 4,15<br>4,80<br>4,66                                                                                  | Dupl. Time -<br>(gpm)/(mLpm) (<br>Temp.<br>°c<br>10.55<br>10.39                                                | Eh/OR<br>mv<br>326,5<br>387<br>465,7                                      |
| Purge Method:<br>Geopump<br>Flow Cell:<br>Time<br>115 4<br>12-6 7                                      | Ded: Pump Othe<br>N<br>Vol. Purged<br>goilons / liters<br>Or5 12 L<br>Drw = 0<br>18.5L<br>Drw = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Pu<br>pH<br>5,36<br>(71 Cot<br>5,12<br>2,12<br>2,12<br>1,71<br>5,68                                                                             | Duplicate                                                                                                                                                  | Sample ID<br>O:5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA                                | Purge Rate<br>Diss. Oxygen<br>mg/L<br>W 4,15<br>U,30                                                                                            | Dupl. Time                                                                                                     | Eh/ORI<br>mv<br>386.8<br>387                                              |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>115 4<br>12.67<br>12.12<br>12.18                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>goilons / liters<br>Or5 12 L<br>Drw = 0<br>18.5L<br>Drw = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Pu<br>pH<br>5,36<br>(71 Cot<br>5,12<br>2,12<br>2,12<br>2,14<br>1,71<br>5,69<br>1,71                                                             | Duplicate<br>Irge Volume (gci)/(L)<br>Conductivity<br>ms/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035                                        | Sample ID<br>OSS LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM                   | $\frac{1}{10000000000000000000000000000000000$                                                                                                  | Dupl. Time<br>(gpm)/(ml.pm) (<br>Temp.<br>°c<br>10.39<br>10.39<br>10.99                                        | Eh/ORI<br>my<br>326,5<br>387<br>405,7<br>417,5                            |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>DTW = 9<br>DTW = 9<br>DTW = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min: Pu<br>pH<br>5:36<br>71 Cot<br>5:42<br>2 1,71<br>5:69<br>1:71<br>5:68<br>2 1,71<br>5:68<br>2 1,71<br>5:68                                        | Duplicate<br>rige Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035                         | Sample ID<br>Song LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | Purge Rate           Diss. Oxygen           mg/L           41,15           41,15           41,66           41,66           41,79           5,48 | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.39<br>10.80<br>10.80          | Eh/ORI<br>my<br>326.5<br>387<br>405.7<br>413.5<br>4113.5                  |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>115 4<br>12.67<br>12.12<br>12.18                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>DTW = 9<br>DTW = 9<br>DTW = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min. Pu<br>pH<br>5,36<br>(71 Cost<br>5,12<br>2,12<br>2,12<br>2,12<br>1,71<br>5,68<br>2,71                                                            | Duplicate<br>rige Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035                         | Sample ID<br>OSS LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM                   | $\frac{1}{10000000000000000000000000000000000$                                                                                                  | Dupl. Time<br>(gpm)/(ml.pm) (<br>Temp.<br>°c<br>10.39<br>10.39<br>10.99                                        | Eh/ORI<br>my<br>326,5<br>387<br>405,7<br>417,5                            |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>DTW = 9<br>DTW = 9<br>DTW = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min: Pu<br>pH<br>5:36<br>71 Cot<br>5:42<br>2 1,71<br>5:69<br>1:71<br>5:68<br>2 1,71<br>5:68<br>2 1,71<br>5:68                                        | Duplicate<br>Irge Volume (gci)/(L)<br>Conductivity<br>ms/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035                                        | Sample ID<br>Song LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | Purge Rate           Diss. Oxygen           mg/L           41,15           41,15           41,66           41,66           41,79           5,48 | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.39<br>10.80<br>10.80          | Eh/ORI<br>my<br>326.5<br>387<br>405.7<br>413.5<br>4113.5                  |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>DTW = 9<br>DTW = 9<br>DTW = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min: Pu<br>pH<br>5:36<br>71 Cot<br>5:42<br>2 1,71<br>5:69<br>1:71<br>5:68<br>2 1,71<br>5:68<br>2 1,71<br>5:68                                        | Duplicate<br>rige Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035                         | Sample ID<br>Song LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | Purge Rate           Diss. Oxygen           mg/L           41,15           41,15           41,66           41,66           41,79           5,48 | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.39<br>10.80<br>10.80          | Eh/ORI<br>my<br>326.5<br>387<br>405.7<br>413.5<br>4113.5                  |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25                    | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / liters<br>Or5 12 L<br>Drw c9<br>18.5L<br>Drw c9<br>18.5L<br>Drw c<br>Drw | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar $4.154.664.664.664.665.28$                                                                             | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |
| Purge Method:<br>(2eopump)<br>Flow Cell:<br>Time<br>115 4<br>12.67<br>12.12<br>12.18<br>12.25<br>12.33 | Ded. Pump Othe<br>N<br>Vol. Purged<br>gollons / lifers<br>Or5 12L<br>DTW = 9<br>18.5L<br>DTW = 1<br>DTW = 1<br>DTW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4.15<br>4.66<br>4.66<br>4.66<br>4.66<br>5.28                                                           | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25<br>12.33<br>12.33  | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / liters<br>Or5 12 L<br>Drw c9<br>18.5L<br>Drw c9<br>18.5L<br>Drw c<br>Drw | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4.15<br>4.66<br>4.66<br>4.66<br>4.66<br>5.28                                                           | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25<br>12.33<br>12.33  | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / liters<br>Or5 12 L<br>Drw c9<br>18.5L<br>Drw c9<br>18.5L<br>Drw c<br>Drw | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4.15<br>4.66<br>4.66<br>4.66<br>4.66<br>5.28                                                           | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25<br>12.33<br>12.33  | Ded: Pump Othe<br>N<br>Vol. Purged<br>gollons / liters<br>Or5 12 L<br>Drw c9<br>18.5L<br>Drw c9<br>18.5L<br>Drw c<br>Drw | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4.15<br>4.66<br>4.66<br>4.66<br>4.66<br>5.28                                                           | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |
| Purge Method:<br>(eopump)<br>Flow Cell:<br>Time<br>12.67<br>12.12<br>12.18<br>12.25<br>12.33<br>12.33  | Ded. Pump Othe<br>N<br>Vol. Purged<br>gallons / lifers<br>DTW = 9<br>18.5L<br>DTW = 9<br>18.5L<br>DTW = 1<br>DTW = 1<br>DTW = 1<br>DTW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Min. Pu<br>pH<br>5,36<br>,71 cot<br>5,12<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,68<br>2 7,71<br>5,83<br>2 9,71<br>5,83 | Duplicate<br>Irge Volume (gci)/(L<br>Conductivity<br>mS/cm<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035 | Sample ID<br>O.5 LO<br>Turbidity<br>NTU<br>NA<br>NA<br>NA<br>NA<br>LPM<br>SA<br>LPM      | Purge Rate<br>Diss. Oxygen<br>mg/L<br>ar 4.15<br>4.66<br>4.66<br>4.66<br>4.66<br>5.28                                                           | Dupl. Time<br>(gpm)/(mt.pm)<br>(<br>Temp.<br>°c<br>10.35<br>10.39<br>10.39<br>10.91<br>10.80<br>10.85<br>10.75 | Eh/OR<br>mv<br>326.5<br>387<br>405.7<br>417.5<br>4117.5<br>411.4<br>412.0 |

| Project Name                                                                  | Shepley Simil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ······································                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Job Number<br>Field Teom                                                      | 284350.0M.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                      | ·······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date                                                                                      |                                                                                                   | 2                                                                                                                       |
| Field Conditions                                                              | TB3CC<br>Clear 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OF                                                                                                                                                     | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page                                                                                      | of                                                                                                |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A to 2                                                                                    |                                                                                                   | <u></u>                                                                                                                 |
|                                                                               | ple Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-5_                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t'lime_BAM                                                                                |                                                                                                   |                                                                                                                         |
| Initial Depth to                                                              | Water , 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | easure Point: 🐙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Steel Casing                                                                              |                                                                                                   |                                                                                                                         |
| Vertical Profiling                                                            | g Lock or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | well                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
| Depth                                                                         | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | рН                                                                                                                                                     | Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diss. Oxygen                                                                              | Temp.                                                                                             | Eh / ORP                                                                                                                |
| ft below TOC                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L                                                                                      | <u>ී</u> ල                                                                                        | mv                                                                                                                      |
|                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                     |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                             |                                                                                                                         |
| ·                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
| Rémarks                                                                       | Army Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11/0                                                                                                                                                 | 4 field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sata .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ancierobic                                                                                |                                                                                                   |                                                                                                                         |
| Rei I CIRa.                                                                   | ( DO Z 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 mall                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MICLEIUVIL                                                                                | Copaiti                                                                                           | ons                                                                                                                     |
|                                                                               | - Handle Handle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                   |                                                                                                                         |
| Purge Method:                                                                 | start O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        | Spilt Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ile ID 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2006-9410                                                                                 |                                                                                                   | 0450                                                                                                                    |
| Purge Method:                                                                 | Start @<br>Ded. Pump Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        | Spilt Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2006-9410                                                                                 | 5 Split Time                                                                                      | 0450                                                                                                                    |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ar <u> </u>                                                                                                                                            | Split Samp<br>Duplicato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le ID 01<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                   |                                                                                                                         |
| Geopump                                                                       | Ded, Pump Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ar <u> </u>                                                                                                                                            | Split Samp<br>Duplicato<br>Ga Volume (gab)(()<br>450(2214)222<br>Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sample ID<br>Sample ID<br>Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | Bupl, Time                                                                                        |                                                                                                                         |
| Geopump<br>Flow Cell:                                                         | Ded, Pump Othe<br>/ N<br>Vol. Purged<br>gallons / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er<br>Min. Pu<br>pH                                                                                                                                    | Split Samp<br>Duplicate<br>(ga Volume (gab)/(L)<br>45000000<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ile ID 01<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Purge Role (<br>Diss: Oxygen<br>mg/L                                                      | <del>Bupl, Time</del><br>gpm)/(mLpm)<br>Temp.<br>°c                                               | D. 3LPM<br>Eh/ORP<br>mv                                                                                                 |
| Geopump<br>Flow Cell:                                                         | Ded, Pump Othe<br>) / N<br>Vol. Purged<br>gollons / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH                                                                                                                                                     | Split Samp<br>Duplicate<br>Conductivity<br>ms/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ile ID 01<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Purge Raie (<br>Diss: Oxygen<br>mg/L                                                      | Dupl. Time<br>gpm)/(mLpm)_(<br>Temp.<br>°c<br>41,13                                               | D. 3LPM<br>Eh/ORP<br>mV<br>431                                                                                          |
| Geopump<br>Flow Cell:<br>Time<br>0819                                         | Ded, Pump     Other       Image: Provide the state of the sta                                                     | Min. Pu<br>pH<br>5.38<br>8 (41                                                                                                                         | Split Samp<br>Duplicate<br>Conductivity<br>ms/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ile ID 01<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Purge Role (<br>Diss: Oxygen<br>mg/L                                                      | <del>Bupl, Time</del><br>gpm)/(mLpm)<br>Temp.<br>°c                                               | D. 3LPM<br>Eh/ORP<br>mv                                                                                                 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0440                                 | Ded, Pump Other<br>9/N<br>Vol. Purged<br>gallons / liters<br>3L<br>$p_T \omega = 1.9$<br>4L<br>$p_T W = 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min. Pu<br>pH<br>5.38<br>8 (4)<br>9.41                                                                                                                 | Split Samp<br>Duplicate<br>Conductivity<br>mS/cm<br>0.07L1<br>c = 0.3 L<br>0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turbidity<br>NTU<br>6.08<br>Pm<br>6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Purge Rate (<br>Diss. Oxygen<br>mg/L<br>1.17<br>0.93                                      | Dupl. Time<br>pm)/(mLpm)_(<br>Temp.<br>°c<br>41, 13<br>4, 19                                      | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1                                                                                  |
| Geopump<br>Flow Cell:<br>Time<br>0819                                         | Ded, Pump Other<br>P/N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>AL<br>DTW = 1.9<br>GL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Pu<br>pH<br>5.38<br>8 (4)<br>9.41<br>8<br>5.7 (0)                                                                                                 | Split Samp<br>Duplicate<br>Conductivity<br>ms/cm<br>0.07L1<br>c = 0.3 L<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ile ID 01<br>Sample I                                                                                                                                                                                                                | Purge Rate (<br>Diss: Oxygen<br>mg/L<br>1,17<br>0.93                                      | Dupl. Time<br>gpm)/(mLpm)_(<br>Temp.<br>°c<br>41,13                                               | D. 3LPM<br>Eh/ORP<br>mV<br>431                                                                                          |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0840<br>0834                         | Ded. Pump Other<br>P/N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>AL<br>DTW = 1.9<br>AL<br>DTW = 1.9<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>DTW<br>AL<br>AL<br>DTW<br>AL<br>AL<br>DTW<br>AL<br>AL<br>DTW<br>AL<br>AL<br>DTW<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>AL<br>A | Min. Pu<br>pH<br>5,38<br>8 (4)<br>9,41<br>8<br>5,7 (0<br>5,20                                                                                          | Split Samp<br>Duplicate<br>Conductivity<br>ms/cm<br>0.07L1<br>c = 0.3 L<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ile ID 01<br>Sample I                                                                                                                                                                                                                | Purge Rate (<br>Diss: Oxygen<br>mg/L<br>1,17<br>0.93                                      | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>*c<br>4,13<br>4,13<br>4,19<br>4,21                         | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1                                                                         |
| Geopump<br>Flow Cell:<br>Time<br>08/9<br>0834<br>0834                         | Ded, Pump Other<br>9/N<br>Vol. Purged<br>gollons / liters<br>3L<br>$prt \omega = 1.9$<br>4L<br>pt W = 1.9<br>4L<br>$pt \omega$<br>1a.5<br>$pt \omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min. Pu<br>pH<br>5,38<br>8 (47<br>9.41<br>8<br>5,2(9<br>5,20<br>= 11,58                                                                                | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>ms/cm<br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{10 \text{ ID} \qquad 01}{\text{Sample ID}}$ $\frac{10 \text{ Turbidity}}{\text{NTU}}$ $\frac{10 \text{ Constants}}{\text{Constants}}$ $\frac{5.13}{\text{Constants}}$ $\frac{5.13}{3.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68         | Dupl.Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,13<br>4,19<br>4,21<br>4,21<br>4,20          | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1                                                       |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0840<br>0834                         | Ded, Pump Other<br>9/N<br>Vol. Purged<br>gollons / liters<br>3L<br>$prr \omega = 1.9$<br>4L<br>pr W = 1.9<br>9L<br>12.5<br>$DT \omega$<br>15L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>5,38<br>8 (47<br>9.41<br>8<br>5,20<br>5,20<br>= 11.58<br>5,20                                                                         | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>ms/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078                                                                                                                       | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (<br>Diss: Oxygen<br>mg/L<br>1,17<br>0.93                                      | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>*c<br>4,13<br>4,13<br>4,19<br>4,21                         | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1                                                                         |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0834<br>0834<br>0843<br>0843 | Ded, Pump Other<br>9/N<br>Vol. Purged<br>gollons / liters<br>3L<br>$prr \omega = 1.9$<br>4L<br>pr W = 1.9<br>9L<br>12.5<br>$DT \omega$<br>15L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>5,38<br>8 (47<br>9.41<br>8<br>5,20<br>5,20<br>= 11.58<br>5,20                                                                         | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>ms/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078                                                                                                                       | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>*c<br>4,13<br>4,19<br>4,21<br>4,21<br>4,21<br>4,20<br>4,19 | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.2                                                       |
| Geopump<br>Flow Cell:<br>Time<br>08/9<br>0834<br>0834                         | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>ms/cm<br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>0.078                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68         | Dupl.Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,13<br>4,19<br>4,21<br>4,21<br>4,20          | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1                                                       |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0834<br>0834<br>0843<br>0843 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5,38<br>8 (47<br>9.41<br>8<br>5,20<br>5,20<br>= 11.58<br>5,20                                                                         | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>ppm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,19<br>4,20        | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.2                                                       |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0834<br>0834<br>0843<br>0843 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>ppm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,19<br>4,20        | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.2                                                       |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0834<br>0834<br>0843<br>0843 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>ppm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,19<br>4,20        | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0839<br>0839<br>0839<br>0849 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0834<br>0834<br>0843<br>0843 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0839<br>0839<br>0839<br>0849 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0839<br>0839<br>0839<br>0849 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5.38<br>8 (41<br>9.41<br>8<br>5.7 (0<br>5.20<br>- 11.58<br>5.20<br>1.98 (0<br>5.20<br>1.98 (0<br>5.20                                 | Split Samp<br>Duplicate<br>Duplicate<br>Conductivity<br>mS/cm <sup>12</sup><br>0.07L1<br>c = 0.3 L<br>0.078<br>0.078<br>-0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078<br>0.078 | $\frac{10 \text{ ID} 01}{\text{Sample ID}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>08/9<br>0834<br>0834<br>0849<br>0849<br>0849 | Ded, Pump Other<br>y/N<br>Vol. Purged<br>galons / liters<br>3L<br>DTW = 1.9<br>4L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>12L<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW   | Min. Pu<br>pH<br>5,38<br>8 (4)<br>8 (4)<br>9,20<br>5,20<br>- 11,98<br>5,20<br>- 11,98<br>5,20<br>1.98 (0<br>5,20<br>1.98 (0<br>5,20<br>1.98 (0<br>5,20 | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>mS/cm<br>0.0741<br>c = 0.3 L<br>0.078<br>-0.1380<br>0.078<br>-0.133.09<br>1car<br>0.080<br>-0.133.09<br>1car<br>0.080<br>-0.133                                                                                                                                                                                                                                                                                                                                                                      | $ \frac{10}{\text{Sample ID}} = 01 $ $ \frac{10}{\text{Sample ID}} $ | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |
| Geopump<br>Flow Cell:<br>Time<br>0819<br>0839<br>0839<br>0839<br>0839<br>0849 | Ded. Pump Other<br>Y N<br>Vol. Purged<br>gallons / liters<br>3L<br>DTW = 1.9<br>7L<br>DTW = 1.9<br>4L<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>12.5<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DTW<br>DT | Min. Pu<br>pH<br>5,38<br>8 (4)<br>8 (4)<br>9,20<br>5,20<br>- 11,98<br>5,20<br>- 11,98<br>5,20<br>1.98 (0<br>5,20<br>1.98 (0<br>5,20<br>1.98 (0<br>5,20 | Split Samp<br>Duplicato<br>Duplicato<br>Conductivity<br>mS/cm<br>0.0741<br>c = 0.3 L<br>0.078<br>-0.1380<br>0.078<br>-0.133.09<br>1car<br>0.080<br>-0.133.09<br>1car<br>0.080<br>-0.133                                                                                                                                                                                                                                                                                                                                                                      | $ \frac{10}{\text{Sample ID}} = 01 $ $ \frac{10}{\text{Sample ID}} $ | Purge Rate (c<br>Diss: Oxygen<br>mg/L<br>1.17<br>0.93<br>0.75<br>0.35 Lem<br>0.68<br>0.62 | Dupl. Time<br>pm)/(mLpm) (<br>Temp.<br>°c<br>4,13<br>4,19<br>4,21<br>4,20<br>4,20<br>4,20<br>L    | ).3LPM<br>Eh/ORP<br>mv<br>431<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>424.1<br>425.2 |

|                              |                                           |                          | +M - C                    |                                                     |            |                  |                | •                           |                                                                              |                       |
|------------------------------|-------------------------------------------|--------------------------|---------------------------|-----------------------------------------------------|------------|------------------|----------------|-----------------------------|------------------------------------------------------------------------------|-----------------------|
| Sample Source<br>Weather Con | ditions <u>C</u>                          | ley<br>cation) SI        | d Data She                | <u>د</u>                                            |            | er 2343          |                | ing                         |                                                                              |                       |
| PIDNA<br>Sample Tean         |                                           |                          | Condition <u>5</u> 00     | ×                                                   | -          |                  |                |                             |                                                                              |                       |
| Static Water                 | <b>19' A65</b><br>Level <b>5,98</b><br>m( | To: (FT.)                | Datum                     | Stabilization I<br><u>4" PUC</u><br>Peristaltic Pur |            |                  |                | Water Level<br>Time Purging | begins $(T_o)$ :<br>at time $T_{c_1}$<br>gends: $(T_1)$<br>at time $T_{1_2}$ | 0225<br>1722          |
| Time                         | Volume<br>Removed                         | рH                       | SPCOND(mS/cm)<br>+ / - 3% | TEMP.(C)                                            | Redox (mV) | Water level (Ft) | D.O. (mg/L)    | Turbidity<br>(NTU)          | Purge rate<br>(Lpm)<br>0.3 to                                                | Appearance            |
| 0911                         | 82                                        | +1-0.1<br>C.24           | +7-3%                     | +/-0.2 or 3%                                        | +1-10 mV   | <0.3 ft<br>2 25# | +1-10%         | <5NTU                       | 0.5LPM                                                                       |                       |
| 0926                         | 15                                        | 6.47                     | 0.784                     | 875                                                 | -58.5      | 2 34             | Dida<br>All    | 2.35                        | 0.45                                                                         | <u>clear</u><br>clean |
| 0932                         | 17.5                                      | C.47                     | 0.786                     | 8.71                                                | -70.7      | 7.77<br>7 25     | A 14           |                             |                                                                              | 1                     |
| 0440                         |                                           | 1                        | 0.706                     | 0171                                                |            | 275              | 0.14           | 1.92                        | 0.95                                                                         | /                     |
| 0949                         | 20                                        | C.48                     | 0.480                     | 8.60                                                | -79.2      | 3.35             | 6.14           | 1,33                        | 0.45                                                                         |                       |
|                              | 23                                        | 6.48                     |                           | 8.55                                                | - 35.4     | 2.20             | 0.15           | 1,46                        | 0.4                                                                          |                       |
| 0957                         | 25                                        | 6.47                     | 0.779                     | 0.55                                                | -35.9      | 3.35             | 0:15           | 1.31                        | 0.4                                                                          | V                     |
|                              |                                           |                          |                           |                                                     |            |                  |                | <u> </u>                    | atto/                                                                        | 7)                    |
|                              |                                           |                          |                           |                                                     |            |                  |                |                             |                                                                              | · · ·                 |
| Date: 1 / 🤧                  | 20/06                                     |                          | Analysis:                 | SAMPLING                                            | i-f        | Diameter (inch)  | Gallon / Foot  | * delta w.t. (ti)           | = volun                                                                      | e lost (gallons)      |
| Field Filterin               | ıg:                                       |                          | 006 - SI                  |                                                     | *          | 1.5              | 0.040          |                             |                                                                              |                       |
|                              | Method of S                               | Low Flow Sam<br>hipment: | ipling Sam                | ple time                                            | ID         | 2 -              | 0.163<br>0.652 |                             | igallo                                                                       | n = 3.78 liters       |
| Remarks:                     |                                           |                          | Acto                      | nal San                                             | sole tin   | ne = 0           | 953            |                             |                                                                              |                       |
| 51                           | witched                                   | 40                       | steel c                   |                                                     |            |                  |                | 4                           |                                                                              |                       |

Devens\_DataSheets.xistemplate-low flow

|                             | <                |                              | N - 96         | ~               | 8 - P          | ~                |               |                   | <u></u>                      |                                          |
|-----------------------------|------------------|------------------------------|----------------|-----------------|----------------|------------------|---------------|-------------------|------------------------------|------------------------------------------|
|                             |                  | Fie                          | d Data She     | ets for Lo      | w Flow G       | round Wat        | er Sampl      | ìng               |                              |                                          |
|                             |                  | • •                          |                |                 |                | er: 2-847        | 350           | _                 |                              |                                          |
| Project Name                | <u>Shepl</u>     | ey U                         |                | h               | Project Numb   |                  |               |                   |                              |                                          |
| Sample Source               | ditions <u> </u> | calion <u>) ar</u><br>Calion | 1m-96-5        | ~               | Date,/_        |                  |               |                   |                              |                                          |
| PID NA                      | ÷c               | (ppm) (                      | Condition Che  | 5000            | · · ·          |                  |               |                   |                              |                                          |
| Sample Team                 | TBICC            |                              |                | <u> </u>        |                |                  |               |                   |                              |                                          |
| <u> </u>                    | 275136           | 4                            |                | Stabilization I | Data           |                  |               | Time Dureing      | ) begins (T <sub>o</sub> ):, | 0940                                     |
|                             | evel 3,89        |                              | Datum          | 4" - PUC        |                |                  |               |                   | at time $T_0$                |                                          |
|                             | n(I              |                              | urge Method:   | Peristaltic Pur |                |                  |               |                   | g ends: (T <sub>1</sub> )    |                                          |
|                             | ريرا             | •••                          | aige meande.   | renstancer un   | · <u>···</u> , | •                |               | Water Level       |                              | 4.11                                     |
| ]ı                          | Volume           |                              |                | • `             |                |                  |               | Turbidity         |                              |                                          |
| Time                        | Removed          | pН                           | ePCOND(mS/cm)  | TEMP.(C)        | Redox (mV)     | Water level (Ft) | D.O. (mg/L)   | (NTU)             | (Lpm)                        | Appearance                               |
|                             |                  | +/-0.1                       | <b>9</b> +/-3% | +/-0.2 or 3%    | +/-10 mV       | < 0.3 ft         | +/-10%        | < 5 NTU           | 0.3 to<br>0.5LPM             |                                          |
| 1003                        | 136              | 6.59                         | 0.509          | 8.66            | -85.5          | 4.11             | 0.54          | 0-6               | 0.4                          | Clear                                    |
| 1012                        | 16L              | 6.54                         | 0.503.         | 8.77            | -81.3          | 4.11             | 0.26          | 0.43              | 0.4                          | Clear                                    |
| 1016                        | 1.8L             | C.54                         | 0.502          | 8.74            | -81,4          | 4.11             | 0.24          | 0.62              | 11                           | clear                                    |
| 1022                        | all              | 6.53                         | 0.503          | 8.82            | -82.1          | 4.11             | 0.22          | 0.59              | 0.4                          | Clear                                    |
|                             |                  |                              |                |                 | •              | •                |               | · •               |                              |                                          |
|                             |                  | •                            | •              | ÷               |                | -                | · · ·         | , i               |                              | -                                        |
| -                           |                  | •                            |                |                 |                |                  | •             |                   |                              | - • •                                    |
|                             |                  | ,                            |                |                 | ·              |                  |               |                   |                              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                             |                  |                              | ······         | SAMPLING        | ·              |                  | <u> </u>      | J                 | <u></u>                      | <u>.</u>                                 |
| Date: / 2                   |                  | ~~~                          | Analysis:      | S AFARA         | a da           | Diameter (inch)  | Gallon / Foot | * delta w.t. (ft) | = Volun                      | ne lost (gallons)                        |
| Time: 104<br>Field Filterin |                  | -0                           | = 012006       | 2-24MI-         | 10-20          | 1                | 0.040         | 1                 |                              |                                          |
| Sampling Me                 | thodology 1      | ow Flow Sam                  | nlino          |                 |                | 1.5<br>2         | 0.091         | [                 |                              |                                          |
| Laboratory                  | Method of SI     | nipment:                     | courier        | •               |                | 4                | 0.652         |                   | 1gallo                       | n = 3.78 liters                          |
| nemarks.                    | Å lpha           |                              |                |                 |                |                  |               |                   |                              | • • •                                    |

• "

.

٠,

• • •

٠

•

. •

2 a - 1

.

· .

۰.

•

Devens\_DataSheets.xlstemplate-low flow

× -

,

. •

| nitial Depth t                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measure Point: 🗸 w                                                                                           | rt Time 1400<br>ell TOC Steel Cosing                                                                   | - makader                                                                                                                 | P                                                                                        |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ertical Profil                                                           | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bottom =                                                                                                                   | 25' BGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                        | ·                                                                                                                         |                                                                                          |
| Depth<br>It below TOC                                                    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рН                                                                                                                         | Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> Turbidity<br>NTU                                                                                | Diss. Oxygen<br>mg/L                                                                                   | Temp.<br>°G                                                                                                               | Eh / ORP<br>mv                                                                           |
|                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | and the second s |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [                                                                                                            |                                                                                                        | <u> </u>                                                                                                                  |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
| <u></u>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
| <u></u>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                           |                                                                                          |
| Remarks:<br>urge Method                                                  | Begin pum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) Sput                                                                                                                     | Split Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·····                                                                                                        | zoo6-sou                                                                                               |                                                                                                                           | 515                                                                                      |
| urge Method                                                              | Begin pum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>pe1400</u><br>her                                                                                                       | Split Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ple ID<br>Sample ID                                                                                          | 2006 - SHLQ                                                                                            | 9 Split Time                                                                                                              | X                                                                                        |
| urge Method<br>eopump<br>low Cell;<br>Time                               | Beg in Pum<br>Ded. Pump Of<br>Of N<br>Vol. Purged<br>gollons / lifers;                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) <u>Shut</u><br>p <u>e1400</u><br>her<br>Min. Pu<br>pH                                                                    | Split Sam<br>Duplicate<br>rige Volume (gol)/(L<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID                                                                                          | 2006 - SHLQ                                                                                            | gpm)/(mLpm)<br>Temp.<br>°C                                                                                                |                                                                                          |
| urge Method<br>eopump<br>low Cell;<br>Time                               | Beg in pum<br>Ded. Pump Of<br>M/N<br>Vol. Purged<br>gollons / liters;                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) Shut<br>p e 1400<br>her<br>Min. Pu<br>pH                                                                                 | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU                                                            | V<br>Purge Rate (<br>Diss. Oxygen                                                                      | Split Time     Dupl. Time     gpm)/(mLpm)     Temp.                                                                       | S.Y.LPM<br>Eh/ORP                                                                        |
| urge Method<br>eopump<br>low Cell:<br>Time                               | With Section       Beg in pump       Ded. Pump       Ol       Vol. Purged       gollons / lifers;       G4 = 1                                                                                                                                                                                                                                                                                                                                                                                                   | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>0.4 L.P.M<br>5.76                                                   | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ple ID<br>Sample ID<br>D.H.LP<br>Turbidity<br>NTU<br>3.10<br>F.22<br>Z.29                                    | V Purge Rate (<br>Diss. Oxygen<br>mg/L                                                                 | gpm)/(mLpm)<br>Temp.<br>°C                                                                                                |                                                                                          |
| urge Method<br>eopump<br>low Cell:<br>Time                               | Uncluded       Bagin pump       Ded. Pump       Oil       O/ N       Vol. Purged       gollons / lifers;       O-5 L       CG41 = 1       Q3 L                                                                                                                                                                                                                                                                                                                                                                   | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>0.4 L.P.M<br>5.76                                                   | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ple ID<br>Sample ID<br>D.H.LP<br>Turbidity<br>NTU<br>3.10<br>F.22<br>Z.29                                    | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>36 0.70<br>0.53                                 | P       Split Time         Dupl. Time         gpm)/(mLpm)         Temp.         °C         9.13         9.04              | X<br><u>5. JLPN</u><br>Eh/ORP<br>mV<br>- 102.2<br>- 31.6                                 |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1441<br>451                | Interference       Bagin pump       Ded. Pump       Oil       O/ N       Vol. Purged       gollons / lifers;       O.5       C.6.4       23       DIC       31                                                                                                                                                                                                                                                                                                                                                   | ) Shull<br>p C 1400<br>her<br>Min. Pu<br>pH<br>C 20<br>D. 4 LPM<br>S. 76<br>S. 82                                          | Split Sam<br>Duplicate<br>rge Volume (gal)/(L<br>Conductivity<br>mS/cm<br>./OS<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ple ID<br>Sample ID<br>0.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49                 | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47                         | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.09<br>9.09                                          | X<br><u>5. 4 LPN</u><br>Eh/ORP<br>mv<br>- 102.20<br>- 31.6<br>- 31.4                     |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1491<br>1451               | Big in pum<br>Ded. Rump Of<br>Of N<br>Vol. Purged<br>gollons / lifers;<br>2.5 L<br>CG+1 = 2<br>31 L<br>33 L                                                                                                                                                                                                                                                                                                                                                                                                      | ) Shui<br>p C1400<br>her<br>Min. Pu<br>pH<br>C, 20<br>D, 4 Lpm<br>S, 76<br>F, 82<br>5, 82                                  | Split Sam<br>Duplicate<br>rige Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ =<br>.104<br>.104<br>.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ple ID<br>Sample ID<br>0.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.49         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1991<br>1956               | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>p.<br>4 Lpm<br>5.92<br>5.82<br>5.82<br>5.82                         | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ=<br>.103<br>.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47                         | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.09<br>9.09                                          | X<br><u>5. 4 LPN</u><br>Eh/ORP<br>mv<br>- 102.20<br>- 31.6<br>- 31.4                     |
| urge Method<br>eopump<br>low Cell;                                       | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p C1400<br>her<br>Min. Pu<br>pH<br>C, 20<br>D, 4 Lpm<br>S, 76<br>F, 82<br>5, 82                                  | Split Sam<br>Duplicate<br>rige Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ =<br>.104<br>.104<br>.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1491<br>1451               | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>p.<br>4 Lpm<br>5.92<br>5.82<br>5.82<br>5.82                         | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ=<br>.103<br>.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1491<br>1451               | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>p.<br>4 Lpm<br>5.92<br>5.82<br>5.82<br>5.82                         | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ=<br>.103<br>.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1491<br>1451               | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>p.<br>4 Lpm<br>5.92<br>5.82<br>5.82<br>5.82                         | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ=<br>.103<br>.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1491<br>1451               | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$ | ) Shui<br>p e 1400<br>her<br>Min. Pu<br>pH<br>G. 20<br>p.<br>4 Lpm<br>5.92<br>5.82<br>5.82<br>5.82                         | Split Sam<br>Duplicate<br>rge Volume (gol)/(L<br>Conductivity<br>mS/cm<br>./09<br>pTLJ=<br>.103<br>.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 5914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48                 | 9 Split Time<br>Dupl. Time<br>gpm)/(mLpm)<br>Temp.<br>°C<br>9.73<br>9.73<br>9.09<br>9.00<br>9.00                          | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.2<br>- 31.6<br>- 31.4<br>- 27.4            |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1991<br>1956<br>500<br>505 | $\frac{\text{NCICCC}}{\text{Bcg in } \text{PWM}}$ $\frac{\text{Ded. Rump}  \text{Oi}}{\text{Oi}}$ $\frac{\text{Oi}}{\text{N}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{GG41} = 2}{\text{GG41} = 2}$                                                                                                                                                      | ) Shui<br>p C 1400<br>her<br>Min. Pu<br>pH<br>C, 20<br>p.<br>4 LPA<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82 | Split Sam<br>Duplicate<br>rige Volume (gol)/(L<br>Conductivity<br>mS/cm<br>.107<br>.107<br>.107<br>.107<br>.107<br>.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>0.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.49<br>3.49 | 2006 - 3914<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48<br>0.48<br>0.45 | P       Split Time       I         Dupl. Time       Dupl. Time         gpm)/(mLpm)                                        | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.23<br>- 31.6<br>- 31.4<br>- 27.4<br>- 27.4 |
| urge Method<br>eopump<br>low Cell:<br>Time<br>1991<br>1956<br>500<br>505 | $\frac{\text{Weights}}{\text{Begin pump}}$ $\frac{\text{Begin pump}}{\text{Oil}}$ $\frac{\text{Oil}}{\text{Oil}}$ $\frac{\text{Vol. Purged}}{\text{gollons / liters}}$ $\frac{\text{QS}}{\text{GS}}$                               | ) Shui<br>p C 1400<br>her<br>Min. Pu<br>pH<br>C, 20<br>p.<br>4 LPA<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82<br>5.82 | Split Sam<br>Duplicate<br>rige Volume (gol)/(L<br>Conductivity<br>mS/cm<br>.107<br>.107<br>.107<br>.107<br>.107<br>.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ple ID<br>Sample ID<br>O.4 LP<br>Turbidity<br>NTU<br>3.10<br>7.22<br>3.89<br>0.4 LPM<br>3.49<br>3.41         | 2006 - 544<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>2. 0.70<br>0.53<br>0.47<br>0.48<br>0.45          | P       Split Time         Dupl. Time         gpm)/(ml.pm)         °c         9.73         9.73         9.00         9.00 | X<br><u>D. Y LPN</u><br>Eh/ORP<br>mv<br>- 102.23<br>- 31.6<br>- 31.4<br>- 27.4<br>- 27.4 |

|                     |                                    | Fiel         | d Data She                                                                                                 | ets for Lo                  | w Flow G                  | round Wat        | er Sampl                       | ina                                   |                                         | · · · · · · · · · · · · · · · · · · · |       |
|---------------------|------------------------------------|--------------|------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|------------------|--------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-------|
| roject Name         | e: Shep                            | ley L        | F                                                                                                          |                             | Project Numb              |                  |                                |                                       |                                         |                                       |       |
| eather Con          | ditionsC                           | lear         | Condition goe                                                                                              |                             |                           |                  |                                |                                       |                                         |                                       |       |
| ell Depth _         | <u>39' ß(</u><br>Level <u>30.1</u> | 57 (FT.)     | Datum                                                                                                      | Stabilization I             |                           |                  | ,                              |                                       | begins $(T_o)$ :<br>at time $T_o$ :     |                                       |       |
|                     |                                    | •            | urge Method:                                                                                               | Peristaltic POT             | no (B)<br>No fas Rad      | Flow I           |                                | Time Purging                          | g ends: $(T_1)$                         | 240 *<br>30.72                        |       |
| Time                | Volume<br>Removed                  | рН<br>+/-0.1 | + / - 3%                                                                                                   | TEMP.(C)<br>+ / - 0.2 or 3% | Redox (mV)<br>+ / - 10 mV | Water level (Ft) | D.O. (mg/L)<br>★★<br>+ / - 10% | Turbidity<br>(NTU)<br>< 5 NTU         | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM | Appearance                            |       |
| 1150                | Canit                              |              | l. readin                                                                                                  |                             |                           |                  |                                |                                       |                                         | ·                                     |       |
|                     | got                                | w.l          | readin                                                                                                     | · · ·                       |                           | 30.70            |                                |                                       |                                         |                                       |       |
| 210                 | Connec                             | HZ FI        | ow Cell                                                                                                    |                             |                           |                  | · · ·                          |                                       |                                         |                                       |       |
| 212                 | 47                                 | 7.29         | .034                                                                                                       | 13.87                       | 206.2                     | ×                | 11.92(?)                       | 1.70                                  | 0.6                                     | Clear                                 | 127.  |
| 219                 | 52                                 | 6.21         | 1033                                                                                                       | 14.22                       | 329.9                     | *                | 11.78 ?                        | 0,99                                  | 0.6                                     | de                                    |       |
| 224                 | 54                                 | 6.08         | ,032                                                                                                       | 13.94                       | 355.5                     | ×                | 11,98?                         | 0.59                                  | 4                                       | Clear                                 | 126,0 |
| 227                 | 56                                 | C.03         | .034                                                                                                       | 13.65                       | 369.2                     | X                | 1268?                          | 0,49                                  | 0.6                                     | clean                                 |       |
| 230                 | 58                                 | 6.02         | .033                                                                                                       | 13.64<br>SAMPLING           | 367.2                     | *                | 12,18?                         | 0.17                                  | 11                                      |                                       | 126.6 |
| ate: <u>/</u>       |                                    |              | Analysis:                                                                                                  | SAMPLING                    |                           | Dlameter (inch)  | Gallon / Foot                  | * delta w.t, (it)                     | ⊭ volur                                 | ne lost (gallons)                     |       |
| ne:<br>eld Filterin | g:                                 |              |                                                                                                            |                             |                           | 1.5              | 0.040                          |                                       |                                         |                                       |       |
| mpling M            | ethodology:                        |              | ipling <p.e< td=""><td>~</td><td></td><td>2</td><td>0.163</td><td>[</td><td></td><td></td><td></td></p.e<> | ~                           |                           | 2                | 0.163                          | [                                     |                                         |                                       |       |
| boratory:<br>marks: | Method of S                        | Shipment:    |                                                                                                            | 2<br>29.7                   |                           | 4                | 0.652                          | ]                                     | 1gall                                   | on = 3.78 liters                      |       |
| <u>۴</u>            |                                    |              |                                                                                                            | <u></u>                     |                           |                  |                                | · · · · · · · · · · · · · · · · · · · |                                         |                                       | ļ     |

|                               |                    | Fiel                                   | d Data She                           | ets for Lo      | w Flow G               | round Wat        | er Sampl      | ing                           |                               |                   |       |
|-------------------------------|--------------------|----------------------------------------|--------------------------------------|-----------------|------------------------|------------------|---------------|-------------------------------|-------------------------------|-------------------|-------|
| Project Name<br>Sample Source | Shep               | Ner LI                                 |                                      |                 | Project Numb<br>Date:/ |                  |               |                               |                               |                   |       |
| Weather Con                   | ditions <u>CIC</u> | (nnm) (                                | HL-10<br>HO <sup>O</sup> F           |                 |                        |                  |               |                               |                               |                   |       |
| Sample Team                   | TAIDE              |                                        |                                      |                 |                        | <u></u>          |               |                               |                               |                   |       |
| Well Depth                    | _39_               | (FT.)                                  | Datum                                | Stabilization I |                        |                  |               | Time Purging                  |                               |                   |       |
| Static Water I<br>Water Colum |                    |                                        | Diameter ;_ <b>_</b><br>urge Method: | -1" Steen       |                        |                  |               | Water Level a<br>Time Purging |                               |                   |       |
| Water Oolonn                  |                    | n try – tr                             | uige wennoù.                         | GTUS            | nd for R               | edi Flow II      | ••            | Water Level                   |                               |                   |       |
| Time                          | Volume<br>Removed  |                                        | SPCOND(mS/cm)                        | TEMP.(C)        | Redox (mV)             | Water level (Ft) |               | (ΝΤυ)                         | Purge rate<br>(Lpm)<br>0.3 to | Appearance        |       |
| 1233                          | 60                 | +/-0.1                                 | -032                                 | +1-0.2 or 3%    | +/-10 mV<br>369.8      | < 0.3 ft         | 12.27?        | <5 NTU                        |                               | Clean             |       |
| 1236                          | 6.3                | 6.01                                   |                                      | 13.69           |                        | *                | 12.31?        | 0,13                          |                               |                   | 128.7 |
| 1240                          | (Affer             | lately 1                               |                                      |                 |                        |                  |               |                               | <u> </u>                      |                   | 140.T |
|                               | P.Sam              | ······································ | )                                    |                 |                        | 30.72            | 1             |                               |                               |                   |       |
| 1600                          | Pampei             | 2 10                                   | min e                                | . 0.6           | LPM                    | (128,2)          | 5             | ·                             |                               |                   |       |
|                               | ······             |                                        | .032                                 |                 | 330.4                  |                  | G.71          |                               |                               |                   |       |
|                               |                    |                                        |                                      |                 |                        |                  |               |                               |                               |                   |       |
|                               |                    |                                        |                                      |                 |                        |                  |               |                               |                               |                   |       |
| 1 mar 1                       | 5/06               |                                        | Analysis: ID =                       | SAMPLING        | -54-10                 | Diameter (inch)  | Gallón / Foot | * delta w.t. (fi)             | ⇒ volum                       | ne lost (gallons) |       |
| Field Filtering               | g: <u>NO</u>       |                                        | VOC                                  | Is, Meta        |                        | 1.5              | 0.040         |                               |                               |                   |       |
|                               | , Method of S      | <u>ow Flow Sam</u><br>hipment:         | pling Hard                           | ness, TD.       |                        | 4                | 0.163         |                               | Inallo                        | n = 3.78 liters   |       |
| Remarks: A                    | lpha               | <b>CO</b> 19                           | 170C1-                               | 3,504,          | · · · ·                | L                | 1             | i l                           |                               |                   |       |

|                                   |                                                                                  | SHI                                    | m - 96 - 1                                    | OC                          | LOF 2                             |                           |                          |                                            |                                                                          |                   | -     |
|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------|-----------------------------------|---------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------------------------|-------------------|-------|
|                                   |                                                                                  | Fie                                    | ld Data She                                   | ets for Lo                  | w Flow G                          | round Wat                 | er Sampl                 | ing                                        |                                                                          |                   |       |
| Sample Sour<br>Weather Cor<br>PID | e: <u>Shepler</u><br>ce (Well No./Lo<br>nditions <u>SNO</u><br>P. <u>TB ( DR</u> | cation) <u>5</u>                       | HM-96-10<br>errics 35<br>Condition <u>gos</u> | -4v                         | Project Numb<br>Date: <u>0</u> ]/ | er:<br>25.00              |                          |                                            |                                                                          |                   |       |
| Well Depth _<br>Static Water      | 54 ' 865<br>Level 23.4                                                           | 6 10 (FT.)                             | Datum<br>Diameter :                           | Peristallic PU              |                                   | -100) <del>1</del> 2      |                          | Water Level<br>Time Purging<br>Water Level | begins $(T_o)$ :<br>at time $T_o$ :<br>pends: $(T_1)$<br>at time $T_1$ : | 8.46<br>0.29      | -     |
| Time                              | Volume<br>Removed                                                                | рН<br>+/-0.1                           | -GPCOND(mS/cm)                                | TEMP.(C)<br>+ / - 0.2 or 3% | , Bedox (mV)<br>+/-10 mV          | Water level (Ft) < 0.3 ft | D.O. (mg/L)<br>+ / - 10% | Turbidity<br>(NTU)<br>< 5 NTU              | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM                                  | Appearance        |       |
| 0917                              |                                                                                  |                                        |                                               |                             |                                   | 31.09                     |                          |                                            | 1.2                                                                      | Clear             |       |
| 0925                              |                                                                                  | 7.63                                   | 6.354                                         | (].48                       | 257.8                             | 31.01                     | 0.77                     | 15.0                                       | 1.0                                                                      |                   |       |
| 0937                              | 20L                                                                              |                                        | 0.354                                         | 11,35                       | 239.1                             | 32.19                     | 0.45                     |                                            | 0.55                                                                     |                   |       |
| 0953                              | 27L                                                                              |                                        |                                               |                             |                                   | 31,38                     |                          |                                            |                                                                          |                   |       |
|                                   | re.                                                                              | Start                                  | pump c                                        | 0955                        |                                   |                           |                          |                                            |                                                                          |                   |       |
| 1002                              | 30                                                                               | 7.55                                   | 0.358                                         | 12.05                       | 73.8                              |                           | 0,67                     | 10.34                                      | 014                                                                      | clear             |       |
| 1008                              | 33                                                                               | 7.47                                   | 0.358                                         | 12.11                       | 179,8                             | 31.34                     | 0,36                     | 9.97                                       | 0.4                                                                      | LIENT             | 126.2 |
| 1008                              | CCO                                                                              | ATTA                                   | UED)                                          |                             |                                   |                           |                          |                                            | 0.4                                                                      |                   |       |
| Date: /                           | /                                                                                | ······································ | Analysis:                                     | SAMPLING                    |                                   | Diameter (inch)           | Gallon / Foot            | * delta w.t. (ft)                          | = volun                                                                  | ne lost (gallons) |       |
| Time:                             |                                                                                  |                                        | 2                                             |                             |                                   | 1                         | 0.040                    |                                            |                                                                          |                   | 1     |
| Field Filterin                    | ÷ — — — —                                                                        |                                        | Spe                                           |                             |                                   | 1.5                       | 0.091                    |                                            |                                                                          |                   | -     |
|                                   | ethodology: <u>L</u><br>Method of S                                              |                                        | npling ~D                                     | -                           |                                   | 2                         | 0.163                    |                                            |                                                                          | 0 70 IN           | 4     |
| Remarks:                          | Method 01-0                                                                      | mhineur:                               | PG -                                          | .2                          |                                   | 4                         | 0.652                    | J                                          | 1gallo                                                                   | n = 3.78 liters   | 1     |
|                                   |                                                                                  |                                        |                                               |                             |                                   |                           | _                        |                                            |                                                                          |                   |       |

•

Devens\_DataSheets.xIstemplate-low flow

| Project Nam                     | e: Shenle                                                                 |                  | ld Data She         |                                |                        |                                       | ər Sampl                | ing                           |                                                             |                   | -           |
|---------------------------------|---------------------------------------------------------------------------|------------------|---------------------|--------------------------------|------------------------|---------------------------------------|-------------------------|-------------------------------|-------------------------------------------------------------|-------------------|-------------|
| Sample Sou<br>Weather Co        | ne: <u>Sheple</u><br>arce (Well No/Lon<br>nditions <u>SNO</u>             | cation) <u>S</u> | HM-96-19            | 35-07                          | Project Numb<br>Date:/ | 25/06                                 |                         |                               |                                                             |                   |             |
| PID<br>Sample Tea               | $\sim \alpha$                                                             | (ppm) (          | Condition gene      | 3 No COC                       | <u>~</u>               |                                       |                         |                               |                                                             |                   |             |
|                                 | 54                                                                        |                  | Datum               | Stabilization                  |                        |                                       |                         | Water Level                   | the begins $(T_o)$ :<br>at time $T_o$ :<br>at ends: $(T_1)$ | 28.46             |             |
| Water Dolor                     | · · · · · · · · · · · · · · · · · · ·                                     | · · · · ·        | uge meniou.         | R-C3                           | Flow                   | 1                                     | . te                    | Water Level                   | at time T <sub>1:</sub> _3                                  | 75.10             |             |
| Time                            | Volume<br>Removéd                                                         | рН<br>+/-0.1     | SPEOND(mS/cm)       | TEMP.(C)<br>+ / - 0.2 or 3%    | + / - 10 mV            | Water level (Ft)<br>< 0.3 ft          |                         | Turbidity<br>(NTU)<br>< 5 NTU | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM                     | Appearance        |             |
| 1015                            | 356                                                                       | 7,43             | .356                | 2.07                           | 186.2                  | 31.27                                 | 0.31                    | 6.55                          | 0.4                                                         | Cleva             | _<br>  Z  c |
| 023                             | 38L                                                                       | 7.42             | 0.359               | 12.14                          | 193.0                  | 31,34                                 | 0.29                    | 4.07                          | 0.4                                                         |                   | 126         |
| 1029                            | YOL                                                                       | 7.40             | .358                | 12,17                          | 191.6                  | 31,34                                 | 0,29                    | 4.01                          | 0,4                                                         | 4                 | 12          |
| 165                             | Pumpec                                                                    | For              | 10 min              | e 13                           | 0.0                    |                                       |                         | 4                             |                                                             |                   | -           |
|                                 |                                                                           |                  |                     | 12.04                          | 228.2                  | in-sita                               | = 0.0 >                 | <u> </u>                      |                                                             |                   |             |
| ·····                           | -                                                                         |                  | · .                 |                                |                        |                                       |                         |                               |                                                             | . <b>r</b>        | -           |
| Time: 15                        |                                                                           |                  | Analysis: Ne<br>Har | SAMPLING<br>Hals, VX<br>Jacss, | 5,                     | Dlameter (inch)                       | Gallon / Foot           | * delta w.t. (fl)             | ⊭ volun                                                     | ne lost (gallons) |             |
| Sampling N<br>Laboratory:       | lethodology: L<br>Method of SI                                            | ow Flow San      |                     | k, CI, BC                      | CN,                    | <u>2</u><br>4                         | 0.163                   |                               | 1gallo                                                      | n = 3.78 liters   | -           |
| Time: <u>1</u><br>Field Filteri | <u>&gt;30</u><br>ng: <u>₩0</u><br>lethodology: <u>∟</u><br>: Method of SI | hipment:         |                     | k, CI, BC                      | CN,                    | Dlameter (inch)<br>1<br>1.5<br>2<br>4 | 0.040<br>0.091<br>0.163 | * delta w.t. (fi)             | ·<br>·<br>·                                                 |                   |             |

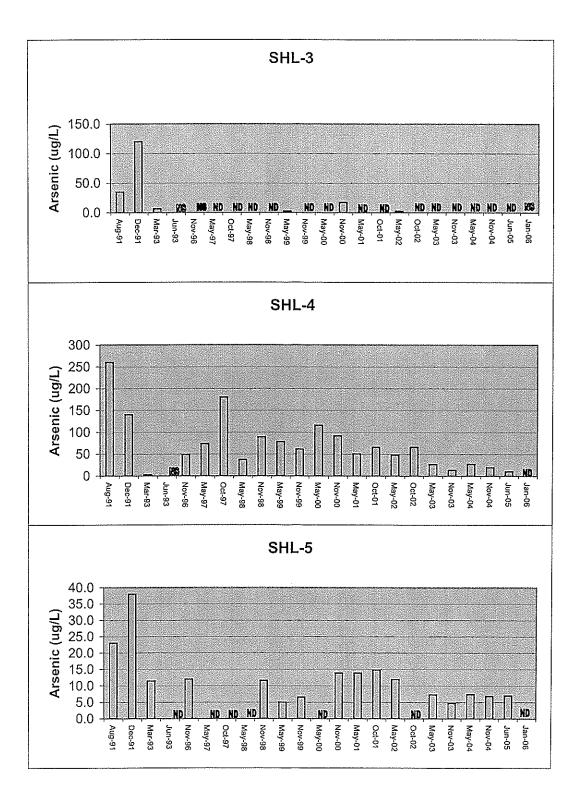
| NS GW Campli<br>106<br>1.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10. |
|------------------------------------------------------------------------------------------|
| <br>1p. Eh / ORP                                                                         |
| • •                                                                                      |
| • •                                                                                      |
| • •                                                                                      |
| • •                                                                                      |
| • •                                                                                      |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
| <u> </u>                                                                                 |
| ima X                                                                                    |
| O.4LPM                                                                                   |
| np. Eh / OFIP                                                                            |
| 89.0                                                                                     |
| 37.2                                                                                     |
| 55 27.9                                                                                  |
| 55 16.0                                                                                  |
| .27 5.5                                                                                  |
| 23 3.7                                                                                   |
| 4                                                                                        |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |
|                                                                                          |

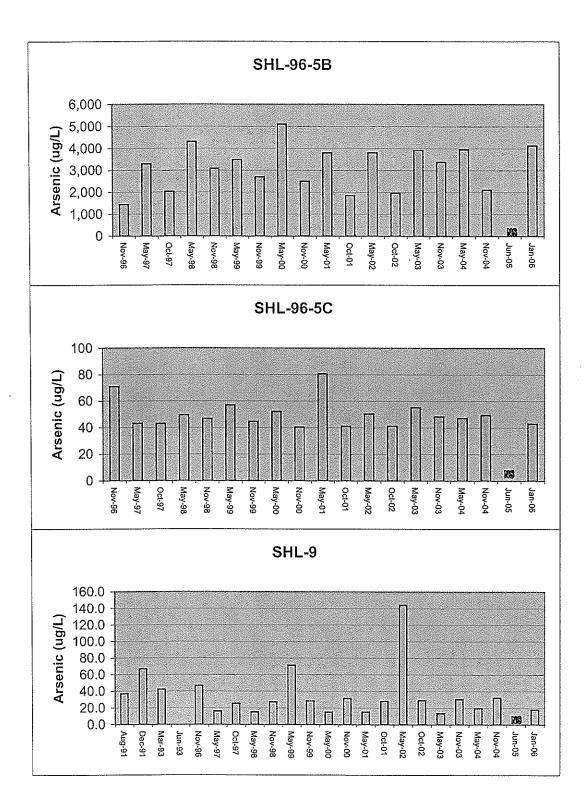
| Field Condition                                                                                                                              | sclear, which                                                                                                                              | y, 240                                                                                                                                    | of                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Poge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well/San                                                                                                                                     | nple Number ら                                                                                                                              | 41-19                                                                                                                                     | ····                                                                                                                                                                                                                        | Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rt Time 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Initial Depth to                                                                                                                             | Water 21.49                                                                                                                                | TOC.                                                                                                                                      | N                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ell TOC Steel Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vertical Profili                                                                                                                             |                                                                                                                                            | m= 30'                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Depth                                                                                                                                        | Time                                                                                                                                       | <u>рн</u>                                                                                                                                 | Conductivity                                                                                                                                                                                                                | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diss. Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (t below TOC                                                                                                                                 | line                                                                                                                                       |                                                                                                                                           | mS/cm                                                                                                                                                                                                                       | NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °C                                                                                                                              | Eh/OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8                                                                                                                                            |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ·····                                                                                                                                        |                                                                                                                                            |                                                                                                                                           | · · ·                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           | 2                                                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 <u>- 14</u><br>9 844 - 1                                                                                                                   | <u> </u>                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                             | 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>}</u>                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second s                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                              |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                              | ·                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 | <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                        |                                                                                                                                            | ·····                                                                                                                                     |                                                                                                                                                                                                                             | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·····                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                                                                                                            |                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Remarks:<br>Purce Method:<br>Geopump                                                                                                         | Diếd. Pump Othe                                                                                                                            | 31                                                                                                                                        | <del>3plii</del> Sanj<br>Duplicate                                                                                                                                                                                          | ple ID<br>Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 906-6HL199<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Split Time<br>Dupl, Time                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Purce Method:<br>Geopump                                                                                                                     | Ø N                                                                                                                                        | Min. Pu                                                                                                                                   | <del>9plii</del> Samj<br>Duplicate                                                                                                                                                                                          | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl, Time                                                                                                                      | 40 (<br>X<br>0/01 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Purce Method:<br>Geopump                                                                                                                     | N N                                                                                                                                        | ······                                                                                                                                    | <del>3plii</del> Samj<br>Duplicate                                                                                                                                                                                          | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl, Time                                                                                                                      | 40 (<br>X<br>0000 0.5<br>'Eh/ORF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purce Method:<br>Geopump<br>Flow Cell:<br>Time                                                                                               | N<br>Vol. Purged<br>gollone / liters                                                                                                       | Min. Pui<br>pH<br>6.13                                                                                                                    | Split Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>Split (Gol)/(L)<br>Conductivity<br>ms/cm 3                                                                                                                               | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss, Oxygen<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dupl, Time<br>pm)/(mLpm)_vy<br>Temp.<br>℃                                                                                       | 40<br>X<br>offer 0.5<br>VEN/ORF<br>niv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time                                                                                              | Vol. Purged<br>gallons / liters<br>0.5 @<br>1.D                                                                                            | Min. Pui<br>pH<br>6.13<br>. 5.19                                                                                                          | 9plit Samj<br>Duplicate<br>rge Volume (gab)/(L)<br>20824 (                                                                                                                                                                  | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss, Oxygen<br>mg/L.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second.<br>http://www.second. | Dupl, Time<br>Dupl, Time<br>Temp.<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                              | 40<br>X<br>0500 0.5<br>VEh/ORF<br>niv<br>197<br>200.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Purce Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 360<br>L0 412-<br>L0 412-<br>L0 416                                                     | N<br>Vol. Purged<br>gollon//liters<br>0.5<br>1.D<br>1.5                                                                                    | Min. Pui<br>pH<br><u>6.13</u><br>5.79<br>5.78                                                                                             | 9pli Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>20864 77<br>Conductivity<br>ms/cm 3<br>0.137<br>0.132<br>0.131                                                                                                            | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mg/L<br>http://www.<br>0.94<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dupl, Ilme<br>Dupl, Ilme<br>Temp.<br>C<br>Q.66<br>4,99<br>-<br>Q.06                                                             | 40<br>X<br>Veh/0RF<br>Veh/0RF<br>197<br>200.2<br>201.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Purce Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 348<br>10 42-<br>10 42-<br>10 46<br>10 55                                               | N<br>Vol. Purged<br>gollon//liters<br>0.5 (<br>1.D<br>1.5<br>2.0                                                                           | Min. Pui<br>pH<br><u>6.13</u><br>5.49<br>5.98<br>5.98                                                                                     | 3pli Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Spect 77<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128                                                                                                   | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>0-66<br>0-94<br>1-03<br>1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dupl, īlme<br>pm)/(mLpm)_v/<br>°C<br>Q.66<br>4,99<br>9.06<br>9.06<br>9.09                                                       | 40<br>X<br>0100 0.5<br>VEN/ORF<br>NW<br>197<br>200.2<br>201.0<br>201.0<br>211.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Purce Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 348<br>10 42-<br>10 446<br>10 55<br>10 55                                               | N<br>Vol. Purged<br>gollon//liters<br>0.5<br>1.D<br>1.5                                                                                    | Min. Pui<br>pH<br><u>6.13</u><br>5.79<br>5.78                                                                                             | 9pli Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>20864 77<br>Conductivity<br>ms/cm 3<br>0.137<br>0.132<br>0.131                                                                                                            | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mg/L<br>http://www.<br>0.94<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dupl, Ilme<br>Dupl, Ilme<br>Temp.<br>C<br>Q.66<br>4,99<br>-<br>Q.06                                                             | 40<br>X<br>0100 0.5<br>VEN/ORF<br>197<br>200.2<br>201.0<br>211.7<br>220.<br>230.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purche Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 346<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 2                              | Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.15<br>3.0<br>PTW: 21.5                                                     | Min. Put<br>pH<br>6.13<br>5.49<br>5.98<br>5.98<br>5.98<br>5.98<br>5.97<br>5.96<br>5.97<br>5.96                                            | 9914 Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.132<br>0.131<br>0.123<br>0.129                                                                                                      | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mg/L<br>0.94<br>1.03<br>1.51<br>1.82<br>1.84<br>2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dupl. Time<br>Dupl. Time<br>Temp.<br>°C<br>Q.66<br>4.99<br>9.06<br>9.09<br>9.12<br>9.12<br>9.22                                 | 40<br>X<br>0100 0.5<br>VEN/ORF<br>197<br>200.3<br>201.0<br>201.0<br>211.7<br>220.<br>230.<br>252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Purche Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 368<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 2-<br>11 15                    | Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.15<br>3.0<br>DTW: 21.5<br>4.0                                              | Min. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.76<br>5.76<br>5.76<br>5.76<br>5.76                                                    | 9pHi Samj<br>Duplicate<br>rge Volume (gal)/(l)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>0.123<br>0.129<br>0.129                                                                                             | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss, Oxygen<br>mg/L<br>D.94<br>1.03<br>1.51<br>1.82<br>1.84<br>2.21<br>2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>×<br>0,50, 0.5<br>VEh/ORF<br>197<br>200.3<br>201.0<br>201.0<br>2,20.<br>2,30.<br>2,52<br>2,52<br>2,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 348<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 56<br>10 2-<br>11 15<br>11 22- | Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.15<br>3.0<br>DTW: 21.5<br>4.0<br>4.5                                       | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.74<br>5.74<br>5.74<br>5.74<br>5.74                            | 3pHi Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>Conductivity<br>mS/cm 3<br>0.137<br>0.132<br>0.131<br>0.131<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123                                                         | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>n20.66 *<br>0.914<br>1.03<br>1.91<br>1.91<br>1.92<br>1.92<br>1.94<br>2.21<br>2.21<br>2.21<br>* .2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl. Time<br>(mLpm) - M<br>Temp                                                                                                | 40<br>×<br>0,50, 0.5<br>VEh/ORF<br>197<br>200.3<br>201.0<br>201.0<br>2,30.<br>2,30.<br>2,52<br>2,52<br>2,52<br>2,52<br>2,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 348<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 56<br>10 2-<br>11 15<br>11 22- | Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.15<br>3.0<br>DTW: 21.5<br>4.0                                              | Min. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.76<br>5.76<br>5.76<br>5.76<br>5.76                                                    | 9pHi Samj<br>Duplicate<br>rge Volume (gal)/(l)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>0.123<br>0.129<br>0.129                                                                                             | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>n20.66<br>0.94<br>1.03<br>1.51<br>1.51<br>1.52<br>1.54<br>2.25<br>2.21<br>2.21<br>1.2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0 |
| Purche Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 368<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 2-<br>11 15                    | N<br>Vol. Purged<br>gollon)/liters<br>0.5<br>1.0<br>1.6<br>2.0<br>2.5<br>3.0<br>7.5<br>3.0<br>7.5<br>9TW: \$1.5<br>4.0<br>4.5<br>.5<br>5.5 | Min. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.78<br>5.75<br>5.76<br>5.78<br>5.78                                    | 3pH+Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.120                                                          | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>n20.66 *<br>0.914<br>1.03<br>1.91<br>1.91<br>1.92<br>1.92<br>1.94<br>2.21<br>2.21<br>2.21<br>* .2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl. Time<br>(mLpm) - M<br>Temp                                                                                                | 40<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0 |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>L0 348<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>10 56<br>10 2-<br>11 15<br>11 22- | Vol. Purged<br>(gallong / liters<br>0.5<br>1.0<br>1.6<br>2.6<br>3.0<br>PTW: 21.4<br>4.0<br>4.5<br>- 9.0                                    | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.78<br>5.78<br>5.78<br>5.78                                            | 3pH+Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.120                                                          | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mgri.<br>b70.66<br>0.94<br>1.03<br>1.51<br>1.82<br>1.82<br>1.84<br>2.21<br>1.84<br>2.21<br>1.2.06<br>2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dupl. Time<br>Dupl. Time<br>Temp.<br>*C<br>Q.66<br>3,99<br>9.06<br>9.09<br>9.12<br>9.12<br>9.22<br>9.22<br>9.28<br>9.28<br>9.23 | 200.=<br>201.6<br>211.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>(gollon) / liters<br>0.5<br>1.D<br>1.6<br>2.0<br>2.15<br>3.0<br>DTW: 21.5<br>4.0<br>4.5<br>5.5<br>5.5                  | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 399114 Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mgri.<br>b70.66<br>0.94<br>0.94<br>1.03<br>1.51<br>1.82<br>1.51<br>1.82<br>1.54<br>2.21<br>2.21<br>2.21<br>2.21<br>2.24<br>2.34<br>2.34<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl. Time<br>Dupl. Time<br>Temp.<br>*C<br>Q.66<br>3,99<br>9.06<br>9.09<br>9.12<br>9.12<br>9.22<br>9.22<br>9.28<br>9.28<br>9.23 | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>gollon)/liters<br>0.5<br>1.0<br>1.6<br>2.0<br>2.5<br>3.0<br>7.5<br>3.0<br>7.5<br>9TW: \$1.5<br>4.0<br>4.5<br>.5<br>5.5 | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 3pH+Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.120                                                          | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mgri.<br>b70.66<br>0.94<br>0.94<br>1.03<br>1.51<br>1.82<br>1.51<br>1.82<br>1.54<br>2.21<br>2.21<br>2.21<br>2.21<br>2.24<br>2.34<br>2.34<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>PTW: 51.5<br>4.0<br>4.5<br>5.5<br>5.5<br>5.5              | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 399114 Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mgri.<br>b70.66<br>0.94<br>0.94<br>1.03<br>1.51<br>1.82<br>1.51<br>1.82<br>1.54<br>2.21<br>2.21<br>2.21<br>2.21<br>2.24<br>2.34<br>2.34<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>PTW: 51.5<br>4.0<br>4.5<br>5.5<br>5.5<br>5.5              | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 399114 Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>n20.66<br>0.94<br>1.03<br>1.91<br>1.82<br>1.84<br>2.21<br>2.21<br>1.84<br>2.21<br>2.21<br>1.2.06<br>2.34<br>2.42<br>100 GFte<br>1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl. Time<br>Dupl. Time<br>Temp.<br>*C<br>Q.66<br>3,99<br>9.06<br>9.09<br>9.12<br>9.12<br>9.22<br>9.22<br>9.28<br>9.28<br>9.23 | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>PTW: 51.5<br>4.0<br>4.5<br>5.5<br>5.5<br>5.5              | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 399114 Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate &<br>Diss. Oxygen<br>mgri.<br>b70.66<br>0.94<br>0.94<br>1.03<br>1.51<br>1.82<br>1.51<br>1.82<br>1.54<br>2.21<br>2.21<br>2.21<br>2.21<br>2.24<br>2.34<br>2.34<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | N<br>Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>PTW: 51.5<br>4.0<br>4.5<br>5.5<br>5.5<br>5.5              | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.78<br>5.74<br>5.74<br>5.75<br>5.78<br>5.78<br>5.78<br>5.78                    | 399114 Samj<br>Duplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>ms/cm 3<br>0.137<br>0.137<br>0.131<br>6.128<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123 | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purge Rate g<br>Diss. Oxygen<br>mg/L<br>n20.66<br>0.94<br>1.03<br>1.91<br>1.82<br>1.84<br>2.21<br>2.21<br>1.84<br>2.21<br>2.21<br>1.2.06<br>2.34<br>2.42<br>100 GFte<br>1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dupl. Time<br>(mLpm) - M<br>remp                                                                                                | 40<br>×<br>veh/ORF<br>197<br>200.<br>201.<br>201.<br>201.<br>220.<br>252.<br>252.<br>251.<br>252.<br>252.<br>252.<br>252.<br>252.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Purcie Method:<br>Geopump<br>Flow Cell:<br>Time<br>10 343<br>10 42-<br>10 46<br>10 56<br>10 56<br>10 56<br>11 02<br>11 15<br>11 22<br>11 35  | Vol. Purged<br>(gollon)/liters<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>DTW: 21.5<br>4.0<br>4.5<br>5.5<br>6.5<br>104 So.Mp             | MIn. Put<br>pH<br>6.13<br>5.79<br>5.78<br>5.78<br>5.78<br>5.76<br>5.77<br>5.76<br>5.77<br>5.78<br>5.77<br>5.78<br>5.78<br>Jidart<br>& Red | 9pH4 Samj<br>Duplicate<br>rge Volume (gol)/(L)<br>Conductivity<br>mS/cm 3<br>0.137<br>0.137<br>0.137<br>0.137<br>0.137<br>0.123<br>0.123<br>0.123<br>0.123<br>0.120<br>0.120<br>0.120<br>0.120                              | Sample ID<br>Turbidity<br>NTU<br>Stilty, Tur<br>Stilty, Tur<br>Stilty, Tur<br>Stary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purge Rate &<br>Diss. Oxygen<br>mg/L<br>0.94<br>1.03<br>1.51<br>1.52<br>1.54<br>2.21<br>2.21<br>2.21<br>1.2.06<br>2.34<br>2.42<br>1c) GFte<br>1ize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dupl. Time                                                                                                                      | 40<br>X<br>0200.0.5<br>VEN/ORF<br>197<br>200.2<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>201.0<br>200.2<br>201.0<br>201.0<br>200.2<br>201.0<br>200.2<br>201.0<br>200.2<br>201.0<br>200.2<br>201.0<br>200.2<br>201.0<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2<br>200.2  |

|                                                   |                          |                          | SHI                                    | 2                                                  | G                                 |                              |                       |                               |                                                                                                                 |                                       |
|---------------------------------------------------|--------------------------|--------------------------|----------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                   |                          | Fiel                     | d Data She                             | ets for Lo                                         | w Flow G                          | round Wat                    | er Sampl              | ing                           |                                                                                                                 |                                       |
| Project Name<br>Sample Sour<br>Weather Con<br>PID | allions                  | CHO C                    | $\frac{00}{HL} = \frac{1}{200}$        | ~                                                  | Project Numb<br>Date: <b>i</b> /_ | 19/06<br>19/06               | 1320                  |                               |                                                                                                                 |                                       |
|                                                   | B/CC                     | _ <i>1</i> bhu) <i>c</i> |                                        | <u> </u>                                           |                                   |                              |                       |                               |                                                                                                                 |                                       |
| Well Depth _<br>Static Water                      | Level <u>18.3</u><br>n(I | 4 (FT.)                  | Datum<br>Diameter :                    | Stabilization I<br>Tok<br>"Sfcc<br>Peristaltic Pur | ·                                 |                              |                       | Water Level<br>Time Purging   | ) begins (T <sub>o</sub> ):_<br>at time T <sub>o:</sub><br>g ends: (T <sub>1</sub> )<br>at time T <sub>1:</sub> | 5.34<br>1445                          |
| Time                                              | Volume<br>Removed        | рН<br>+/-0.1             | -82COND(mS/cm)<br>• / - 3%             | TEMP.(C)<br>+ / - 0.2 or 3%                        | Redox (mV)<br>+ / - 10 mV         | Water level (Ft)<br>< 0.3 ft | D.O. (mg/L)<br>+/-10% | Turbidity<br>(NTU)<br>< 5 NTU | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM                                                                         | Appearance                            |
| 1426                                              | 1.0                      | 6.43                     | 0,471                                  | 10.51                                              | 0.6                               | 18.34                        | 0.83                  | <b>WAKKA</b>                  | 0.4                                                                                                             | Clear                                 |
| 1429                                              | 1.2                      | 6.44                     | 0.479                                  | 10.51                                              | 0,3                               | 18.35                        | 0.6                   | NA                            | 0,4                                                                                                             | Clear                                 |
| 1434                                              | 1.6                      | 6.45                     | ,487                                   | 10,64                                              | 0,3                               |                              | 0.42                  | T                             | "]                                                                                                              | I                                     |
| 1438                                              | 2,0                      | 6.46                     | 0,489                                  | 10.57                                              | D.2                               |                              | .32                   |                               | .4                                                                                                              |                                       |
| 1441                                              | 2.3                      | 0.46                     | 0.490                                  | 10.64                                              | 0,D                               | 18,35                        | 0.29                  |                               | 0.4                                                                                                             | 1                                     |
| 1444                                              | 2.5                      | Ç45                      | .491                                   | 10.72                                              | -0,2                              |                              | 0.25                  |                               | 11                                                                                                              |                                       |
| 1450                                              | 3.0                      | 6.45                     | 0,492                                  | 12.69                                              | -02                               |                              | 0.22                  |                               | 0.4                                                                                                             | L                                     |
| 1453                                              | 3,2                      | 6.35                     | 0,493                                  | 10.65                                              | 0.a                               | 18.35                        | .20                   | J.                            | .4                                                                                                              | J                                     |
| Date: 01/ 1                                       |                          | · · · · ·                | Analysis:                              | SAMPLING                                           |                                   | Diameter (inch)              | Gallon / Foot         | * delta w.t. (ft)             | = volum                                                                                                         | é lost (gallons)                      |
|                                                   | 455_                     |                          |                                        |                                                    |                                   |                              | 0.040                 |                               |                                                                                                                 |                                       |
| Field Filterin<br>Sampling Me                     | g;<br>thodology: L       | ow Flow Sam              | nlina                                  |                                                    |                                   | 1.5                          | 0.091                 |                               |                                                                                                                 |                                       |
| Laboratory:                                       | Method of Si             |                          | <u> </u>                               |                                                    |                                   | 1                            | 0.163                 |                               | 1gallor                                                                                                         | 1 = 3.78 liters                       |
| Remarks:                                          |                          |                          | •••••••••••••••••••••••••••••••••••••• |                                                    | <br>                              |                              |                       |                               |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |

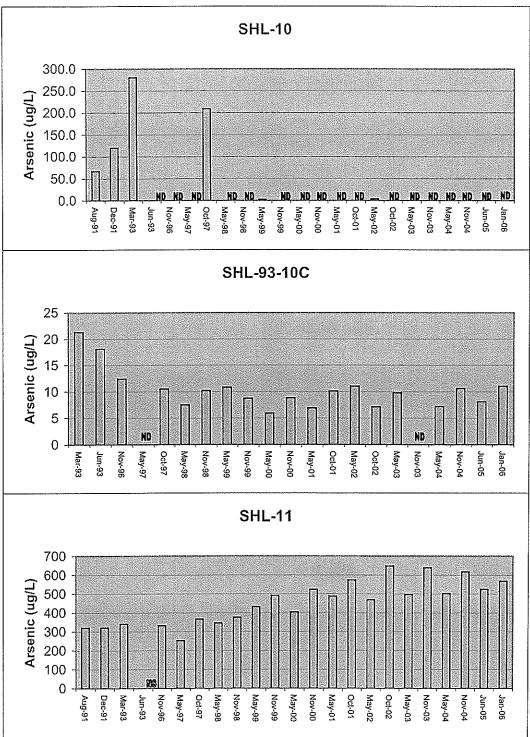
| Field Team                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               | Pagi                                                                                                                                                                                     | e_tor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d Conditions                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | idd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Well/San                                                                                                           | nple Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4:75-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sta                                                                                                                                                           | rt Time 121-                                                                                                                                                                             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    | Water SHL-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               | ell TOC Steel Casing                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ertical Profilir                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | τ.                                                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Depth                                                                                                              | iy ,<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity                                                                                                                                                     | Diss. Oxygen                                                                                                                                                                             | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eh / ORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tt below TOC                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTU                                                                                                                                                           | mg/L                                                                                                                                                                                     | reno.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ··· •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ <u>,</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                                          | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               | _ <u>_</u>                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>}</u>                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Margaria ar 2 Kr.                                                                                                                                          |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ******                                                                                                                                                        |                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·····                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1999)<br>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          | Ana and a second and a second and a second a sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    | · 유진화(1878) · · · · · ·<br>· · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Remarks;<br>urge Method:                                                                                           | Start e 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/04 Cic.ld<br>1 Mg/L<br>Split Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ole ID 01                                                                                                                                                     | DESCRUCE                                                                                                                                                                                 | @ 13:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13:293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| urge Method:                                                                                                       | Start e I<br>Ded. Pump Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <b>222</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Split Sam;<br>Buplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID                                                                                                                                                     | 2006- 54420                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13-293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| urge Method:                                                                                                       | Start e I<br>Ded. Pump Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>722</b><br>Ier<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Splif Sam;<br><b>Buplicate</b><br>Jige Volume (gol)/(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble ID <b>Q1</b><br>Sample ID                                                                                                                                 | 2006- 54420                                                                                                                                                                              | @ 13:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13-293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| urge Method:                                                                                                       | Start e i<br>Ded. Pump Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <b>222</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Splif Sam;<br><b>Puplicate</b><br>Jige Volume (gol)/(L)<br>Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ble ID<br>Sample ID<br>Turbidity                                                                                                                              | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen                                                                                                                                              | gpm)/(mLprn) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13-293<br>). 375<br>Eh/ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| urge Method:<br>eopump<br>ow Cell:<br>Time                                                                         | Start e j<br>Ded. Pump Off<br>Off<br>Vol. Purged<br>golions / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2222.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Splif Sam;<br>Puplicate<br>Jige Volume (gal)/(L)<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Die ID<br>Sample ID<br>Turbidity<br>NTU                                                                                                                       | 2006- SHLZC<br>Purge Rate (<br>Diss, Oxygen<br>mg/L                                                                                                                                      | @ ∰ 60<br>Dupl: 11ne<br>gpm)/(mLpm)_C<br>Temp.<br>℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.375<br>Eh/ORP<br>my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| urge Method:                                                                                                       | Start e I<br>Ded. Pump Off<br>Off<br>Vol. Purged<br>gollons / liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 222<br>Her<br>DH<br>PH<br><b>5.41</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Splif Sam<br>Duplicate<br>Jige Volume (gal)/(L)<br>Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ble ID<br>Sample ID<br>Turbidity                                                                                                                              | 2006- SHL 20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.15                                                                                                                             | gpm)/(mLpm) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13-293<br>). 375<br>Eh/ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| urge Method:<br>eopump<br>ow Cell:<br>Time                                                                         | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / liters<br>6.5 L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>Min. Pu<br>PH<br><u> 5.41</u><br>5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Splif Sam<br>Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die ID<br>Sample ID<br>Turbidity<br>NTU                                                                                                                       | 2006- SHLZC<br>Purge Rate (<br>Diss, Oxygen<br>mg/L                                                                                                                                      | gpm)/(mLpm)_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.375<br>Eh/ORP<br>my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Irge Method:<br>ow Cell:<br>Time                                                                                   | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / liters<br>6.5 L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Splif Sam<br>Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44                                                                                                       | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.25<br>0.23                                                                                                                      | @ <b>\$3:30</b><br>Dupit time<br>gpm)/(mLpm)<br>Temp.<br>℃<br><b>9:85</b><br><b>9:62</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-253<br>3-3-7-5<br>Eh/ORP<br>my<br>-3-9<br>-3-9<br>-3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| urge Method:<br>copump<br>ow Cell:<br>Time<br>1236<br>1241<br>1243                                                 | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>Jollons / liters<br>6.6 L<br>DTW:-<br>9.0L<br>DTW-<br>10 L<br>8.45 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222<br>Her<br>DH<br>DH<br><u>9.22 ft</u><br><u>9.22 ft</u><br><u>9.22 ft</u><br><u>9.22 ft</u><br><u>5.22 ft</u><br><u>5.07</u><br>.5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Buplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.599<br>0.597<br>0.577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18                                                                                               | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.25<br>0.23<br>0.20                                                                                                              | @ 43:30           Dupi films           gpm)/(mLpm)           Temp.           °C           9.85           9.62           9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23-253<br>375<br>Eh/ORP<br>my<br>-8.9<br>13.1<br>13.1<br>13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Irge Method:<br>ow Cell:<br>Time                                                                                   | Start e I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / liters<br>6.5 L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>IPT<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9<br>9<br>9.22<br>1<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Splif Samp<br>Buplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.579<br>0.579<br>0.579<br>0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18                                                                                       | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.25<br>0.23                                                                                                                      | @ <b>\$3:30</b><br>Dupit time<br>gpm)/(mLpm)<br>Temp.<br>℃<br><b>9:85</b><br><b>9:62</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23-253<br>3-3-7-5<br>Eh/ORP<br>my<br>-3-9<br>-3-9<br>-3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Jrge Method:<br>eopump<br>ow Cell:<br>Time<br>12-36<br>12-41<br>12-41<br>12-42<br>12-51                            | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / lifers<br>6.51<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>5.07<br>5.07<br>3.45<br>4.99<br>2.0<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Splif Sam<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.590<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599 | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18                                                                                       | 2006- SHL20<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>0.25<br>0.23<br>0.20<br>2<br>0.17                                                                                                 | @ 43:30         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.67         9.89         10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23-253<br>2. 375<br>Eh/ORP<br>my<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8 |
| Irge Method:<br>eopump<br>ow Cell:<br>Time<br>1236<br>1241<br>1247<br>1257<br>1303                                 | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / lifers<br>6.51<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>5.07<br>5.07<br>3.45<br>4.99<br>2.0<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Splif Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.5999<br>0.5999<br>0.5995<br>0.575<br>0.575<br>0.575<br>0.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.32<br>375 LPM                                            | 2006- SH420<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>0.25<br>0.25<br>0.20<br>2<br>0.17<br>0.17                                                                                         | € \$3:30<br>pupitine <sup>-1</sup><br>gpm)/(mLpm) <u>C</u><br>Temp.<br>°C<br>9:85<br>9:62<br>9:89<br>ID:05<br>9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>3-293</u><br>). <u>375</u><br>Ен/ОКР<br>ту<br>-3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jrge Method:<br>eopump<br>ow Cell:<br>Time<br>12-36<br>12-41<br>12-41<br>12-42<br>12-51                            | Start e I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / liters<br>6.5 L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>5.07<br>5.07<br>3.45<br>4.99<br>2.0<br>4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Splif Sam<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.590<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599<br>0.599 | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18                                                                                       | 2006- SHL20<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>0.25<br>0.23<br>0.20<br>2<br>0.17                                                                                                 | @ 43:30         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.67         9.89         10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23-253<br>2. 375<br>Eh/ORP<br>my<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8.9<br>-8 |
| Jrge Method:<br>popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1241<br>1251<br>1303<br>1309                 | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>gollons / liters<br>6.5L<br>DTW:<br>8.0L<br>DTW:<br>10L<br>10L<br>8att =<br>12L<br>DTW $$<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L<br>10L | 222<br>Pr<br>PH<br>PH<br>9.22 ft<br>9.22 ft<br>9.27 | Split Samp<br>Buplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.579<br>0.579<br>0.579<br>0.578<br>Rate = 0.1<br>0.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18<br>1.32<br>375 LPM<br>2.06                                                            | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.23<br>0.23<br>0.20<br>2<br>0.17<br>0.17<br>0.17                                                                                 | C 43.80<br>Dupi ine<br>gpm)/(mLpm) C<br>Temp.<br>°C<br>9.85<br>9.62<br>9.62<br>9.62<br>9.65<br>9.65<br>10.05<br>10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-253<br>3-7-5<br>Eh/ORP<br>my<br>-3.9<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.0<br>169.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded. Pump Off<br>Off N<br>Vol. Purged<br>gollons / liters<br>6.5 L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222<br>Per<br>PH<br>PH<br>9.22 ft<br>9.22 ft<br>9.29 ft<br>9.2 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.5995<br>0.575<br>0.575<br>0.575<br>0.575<br>0.575<br>0.575<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.32<br>375 LPM                                            | 2006- SH420<br>Purge Rate (<br>Diss. Oxygen<br>mg/L<br>0.25<br>0.25<br>0.20<br>2<br>0.17<br>0.17                                                                                         | @ 43:80         Dupi line         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.05         9.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 215.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jrge Method:<br>popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1241<br>1251<br>1303<br>1309                 | Start C I<br>Ded. Pump Off<br>N<br>Vol. Purged<br>actions / liters<br>6.5L<br>DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>4.25<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.09<br>1<br>9.00<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>ms/cm<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.32<br>375 LPM<br>2.06<br>1.43<br>                                                        | 2006- SHL20<br>Purge Rate (<br>Diss, Oxygen<br>mg/L<br>0.23<br>0.23<br>0.20<br>2<br>0.17<br>0.17<br>0.17                                                                                 | C 43.80<br>Dupi ine<br>gpm)/(mLpm) C<br>Temp.<br>°C<br>9.85<br>9.62<br>9.62<br>9.62<br>9.65<br>9.65<br>10.05<br>10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-253<br>3-7-5<br>Eh/ORP<br>my<br>-3.9<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.1<br>13.0<br>169.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded Pump Off<br>O N<br>Vol. Purged<br>Jollons / liters<br>6.5L<br>DTW -<br>8.0L<br>DTW -<br>10L<br>8ate =<br>12L<br>DTW $36$<br>16L<br>DTW $35$<br>16L<br>DTW $35$<br>16L<br>23L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.00<br>25<br>1<br>9.00<br>25<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.575<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.32<br>375 LIM<br>2.0b<br>1.43<br>                                                        | Z006- SHLZC         Purge Rote (I         Diss, Oxygen         mg/L         0.25         0.23         0.23         0.23         0.17         0.17         0.17         0.17         0.16 | @ 43:80         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.07         9.98         9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215.4<br>208.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded Pump Off<br>O N<br>Vol. Purged<br>Jollons / liters<br>6.5L<br>DTW -<br>8.0L<br>DTW -<br>10L<br>8ate =<br>12L<br>DTW $36$<br>16L<br>DTW $35$<br>16L<br>DTW $35$<br>16L<br>23L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.00<br>25<br>1<br>9.00<br>25<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>ms/cm<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579<br>0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.32<br>375 LIM<br>2.0b<br>1.43<br>                                                        | Z006- SHLZC         Purge Rote (I         Diss, Oxygen         mg/L         0.25         0.23         0.23         0.23         0.17         0.17         0.17         0.17         0.16 | @ 43:80         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.07         9.98         9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded Pump Off<br>O N<br>Vol. Purged<br>Jollons / liters<br>6.5L<br>DTW -<br>8.0L<br>DTW -<br>10L<br>8ate =<br>12L<br>DTW $36$<br>16L<br>DTW $35$<br>16L<br>DTW $35$<br>16L<br>23L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.00<br>25<br>1<br>9.00<br>25<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.575<br>0.575<br>0.575<br>0.575<br>0.575<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.32<br>375 LIM<br>2.0b<br>1.43<br>                                                        | Z006- SHLZC         Purge Rote (I         Diss, Oxygen         mg/L         0.25         0.23         0.23         0.23         0.17         0.17         0.17         0.17         0.16 | @ 43:80         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.07         9.98         9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215.4<br>208.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded Pump Off<br>O N<br>Vol. Purged<br>Jollons / liters<br>6.5L<br>DTW -<br>8.0L<br>DTW -<br>10L<br>8ate =<br>12L<br>DTW $36$<br>16L<br>DTW $35$<br>16L<br>DTW $35$<br>16L<br>23L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.00<br>25<br>1<br>9.00<br>25<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.575<br>0.575<br>0.575<br>0.575<br>0.575<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18<br>1.18<br>1.32<br>375 LPM<br>2.06<br>1.43<br>2.06<br>1.43<br>5.24<br>1.22<br>375 LPM | Z006- SHLZC         Purge Rote (I         Diss, Oxygen         mg/L         0.25         0.23         0.23         0.23         0.17         0.17         0.17         0.17         0.16 | @ 43:80         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.07         9.98         9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215.4<br>208.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jrge Method:<br>Popump<br>ow Cell:<br>Time<br>1236<br>1241<br>1241<br>1247<br>1258<br>1303<br>1303<br>1309<br>1319 | Start C I<br>Ded Pump Off<br>O N<br>Vol. Purged<br>Jollons / liters<br>6.5L<br>DTW -<br>8.0L<br>DTW -<br>10L<br>8ate =<br>12L<br>DTW $36$<br>16L<br>DTW $35$<br>16L<br>DTW $35$<br>16L<br>23L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222<br>Pr<br>PH<br>PH<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.22<br>1<br>9.09<br>1<br>9.00<br>25<br>1<br>9.00<br>25<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Split Samp<br>Duplicate<br>Jige Volume (gol)/(L)<br>Conductivity<br>mS/cm<br>0.599<br>0.599<br>0.575<br>0.575<br>0.575<br>0.575<br>0.575<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Die ID<br>Sample ID<br>Turbidity<br>NTU<br>2.03<br>0.44<br>1.18<br>1.18<br>1.18<br>1.32<br>375 LPM<br>2.06<br>1.43<br>2.06<br>1.43<br>5.24<br>1.22<br>375 LPM | Z006- SHLZC         Purge Rote (I         Diss, Oxygen         mg/L         0.25         0.23         0.23         0.23         0.17         0.17         0.17         0.17         0.16 | @ 43:80         Dupi films         gpm)/(mLpm)         Temp.         °C         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.85         9.95         10.07         9.98         9.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 215.4<br>208.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Project Name<br>Job Number                                                                                                                                                                                       | Shepley's Hil<br>284350.OM.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  | Sampling Event<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/20/0                                                                        | <u>US EN</u>                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Field Team<br>Field Conditions                                                                                                                                                                                   | TBACU<br>Clear,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N 450                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                  | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | _                                                                                           |
|                                                                                                                                                                                                                  | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     | 1.22                                                                                                                                                                              |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  | ple Number 5<br>Water <u>4.56</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                   | لــــــــــــــــــــــــــــــــــــ                                                                            | t Time 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | start                                                                         | 3                                                                                           |
| Vertical Profilin                                                                                                                                                                                                | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
| Depth                                                                                                                                                                                                            | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pН                                                                                                                                                  | Conductivity                                                                                                                                                                      | Turbidity                                                                                                        | Diss. Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temp.                                                                         | Eh / ORP                                                                                    |
| It below TOC                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | mS/cm                                                                                                                                                                             | NTU                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               | VIT1                                                                                        |
| <br>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               | • []                                                                                        |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   | ······································                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | -                                                                                           |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | ·                                                                                           |
|                                                                                                                                                                                                                  | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | ···                                                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | -{{                                                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | ]                                                                                           |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  | The second secon |                                                                               | - <u> </u>                                                                                  |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
|                                                                                                                                                                                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                      |                                                                                             |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | •                                                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <b>h, ,</b>                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                  | _L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                             |                                                                                             |
| Demarks*                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
| Remarks:                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | <del></del>                                                                                 |
| Remarks:                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                             |
| Remarks:<br>Purge Method:                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | Split Samr                                                                                                                                                                        |                                                                                                                  | 2006.411193.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 <b>B</b> Split Time                                                        | 4130                                                                                        |
| <br>                                                                                                                                                                                                             | Ded. Pump Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÐÍ                                                                                                                                                  |                                                                                                                                                                                   | ble ID OY<br>Sample ID                                                                                           | 2006.9111193.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22BSplit Time                                                                 | 4130                                                                                        |
| Purge Method:                                                                                                                                                                                                    | Ded. Pump Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·····                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                  | 2006:9HM93.<br>Purge Rate (g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dupl Time                                                                     | 4130                                                                                        |
| Purge Method:                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min. Pu<br>pH                                                                                                                                       | Puplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>mS/cm                                                                                                                        | Sample ID                                                                                                        | Purge Rate (g<br>Diss. Oxygen<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)0<br>Temp.<br>℃                                        |                                                                                             |
| Purge Method:<br>Geopumo<br>Flow Cell:<br>Time                                                                                                                                                                   | Vol. Purged<br>gollons / liters<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Min. Pu<br>pH<br><b>6.19</b>                                                                                                                        | Puplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>mS/cm<br>0.554                                                                                                               | Sample ID                                                                                                        | Purge Rate (g<br>Diss. Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dupl Time<br>pm)/(mLpm)<br>Temp.                                              | 7.375<br>Eh/QRP                                                                             |
| Purge Method:<br>Geopump<br>Flow Cell:<br>Time<br>13:53<br>TDT                                                                                                                                                   | Vol. Purged<br>gallons / liteis<br>3L<br>W <sup>1</sup> 4.56 Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min. Pu<br>pH<br>6.19<br>Vale Vate                                                                                                                  | Puplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>mS/cm<br>0.554<br>2:0.395                                                                                                    | Sample ID                                                                                                        | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dupl. Time<br>pm)/(mLpm) <u>(</u><br>Temp.<br>°C<br><b>9.3!</b>               | 2.375<br>Eh/ORP<br>My<br>-106.0                                                             |
| Purge Method:<br>Geopump<br>Flow Cell:<br>Time<br>13:53<br>DT<br>(4:04                                                                                                                                           | N<br>Vol. Purged<br>gallons / liteis<br>3L<br>W <sup>1</sup> 4.56 Pu<br>7L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min. Pu<br>pH<br>6.19<br>Vge vate<br>6.19                                                                                                           | Puplicate<br>rge Volume (gal)/(L)<br>Conductivity<br>mS/cm<br>0.554<br>2:0.395<br>0.555                                                                                           | Sample ID                                                                                                        | Purge Rate (g<br>Diss. Oxygen<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)0<br>Temp.<br>℃                                        | 2.375<br>Eh/ORP<br>my                                                                       |
| Purge Method:<br>Seopump<br>Flow Cell:<br>Time<br>13:53<br>DT<br>[4:04<br>DT                                                                                                                                     | Vol. Purged<br>gollons / liteis<br>3L<br>W: 4.56 Pu<br>7L<br>W: 4.56 Pu<br>IDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min. Pu<br>pH<br>6.19<br>Ge vate<br>6.19<br>c. Rate:<br>6.08                                                                                        | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.555           0.555           0.555 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.2-1                                                                   | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.19<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupl. Time<br>pm)/(mLpm)<br>Pm),<br>(mLpm)<br>Temp.<br>°C<br>9.31<br>9.42     | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0                                                   |
| Purge Method:<br>Seopump<br>Flow Cell:<br>Time<br>13:53<br>DT<br>(4:04<br>DT<br>(4:11<br>DTM                                                                                                                     | N       Vol. Purged       gollons / liteis       3L       W1: 4.56       7L       W1: 4.56       Pu       10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>6.19<br>Vate<br>6.19<br>Ge. Rate:<br>6.08                                                                                          | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.2                                                             | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.19<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dupi Time<br>pm)/(mLpm) (<br>Temp.<br>°C<br>9.31<br>9.42<br>9.48              | 2.375<br>Eh/ORP<br>my<br>-106.0<br>-112.0<br>-114.4                                         |
| Purge Method:<br>Seopump<br>Flow Cell:<br>Time<br>13:53<br>DT<br>(4:04<br>DT<br>(4:11<br>DTM<br>14:17                                                                                                            | N       Vol. Purged       gollons / liteis       3L       W1: 4.56       7L       W1: 4.56       Pu       10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>6.19<br>Vate<br>6.19<br>Ge. Rate:<br>6.08                                                                                          | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.2-1                                                                   | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.19<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupl. Time<br>pm)/(mLpm)<br>Pm),<br>(mLpm)<br>Temp.<br>°C<br>9.31<br>9.42     | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0                                                   |
| Purge Method:<br>Geopump<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:04<br>DT<br>14:17<br>DTM<br>14:17                                                                                             | N       Vol. Purged       gollons / liteis       3L       W1: 4.56       7L       W1: 4.56       Pu       10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>6.19<br>Vate<br>6.19<br>Ge. Rate:<br>6.08                                                                                          | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.17<br>0.17<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.48<br>9.80                 | 2.375<br>Eh/ORP<br>My<br>-106.0<br>-112.0<br>-114.4<br>-114.5                               |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:19<br>DTW<br>14:19<br>DTU<br>UH:21                                                                                            | N       Vol. Purged       gollons / liteis       3L       W1: 4.56       7L       W1: 4.56       Pu       10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min. Pu<br>pH<br>6.19<br>Vate<br>6.19<br>Ge. Rate:<br>6.08                                                                                          | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Ge vate<br>6.19<br>c. Rate:<br>6.08                                                                                        | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21                                                                    | Purge Rate (g<br>Diss. Oxygen<br>mg/L<br>0.17<br>0.17<br>0.17<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.48<br>9.80                 | 2.375<br>Eh/ORP<br>My<br>-106.0<br>-112.0<br>-114.4<br>-114.5                               |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $\begin{array}{c c} (Y) & N \\ \hline Vol. Purged \\ gollons / liteis \\ \hline 3L \\ \hline 12L \\ \hline 0L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 12L \\ \hline 13L \\ \hline 14.5L \\ \hline 14.5L \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/ORP<br>MV<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.3                     |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $ \begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0<br>2.6<br>2.73                                              | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.5<br>-114.5<br>-114.0 |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $ \begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0                                                             | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.5<br>-114.5<br>-114.0 |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>DT<br>14:17<br>DTW<br>14:17<br>DTW<br>14:21<br>14:25                                                                                   | $ \begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | Min. Pu<br>pH<br>6.19<br>Vale vate<br>6.19<br>var Rate:<br>0 6.08<br>ge Rate:<br>5.78<br>var Rate<br>5.63<br>5.54                                   | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0<br>2.6<br>2.73                                              | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.5<br>-114.5<br>-114.0 |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>01<br>14:19<br>DTM<br>14:19<br>DTM<br>14:19<br>DTM<br>14:20<br>14:25<br>DT<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | Vol. Purged<br>gailons / liteis<br>3L<br>W <sup>1</sup> 4.56 Pu<br>7L<br>W <sup>1</sup> 4.56 Pu<br>10L<br>1. 4.56 Pu<br>12L<br>1. 4.56 Pu<br>12L<br>1. 4.56 Pu<br>13L<br>12L<br>14.5L<br>N 4.56 Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min. Pu<br>pH<br>6.19<br>vge. vate<br>6.19<br>vge. vate<br>6.19<br>vge. Rate:<br>0 6.08<br>ge Rate:<br>5.38<br>vge. Rate<br>5.53<br>5.54<br>e10.375 | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0<br>2.6<br>2.73                                              | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.5<br>-114.5<br>-114.0 |
| Purge Method:<br>Seopumo<br>Flow Cell:<br>Time<br>13:53<br>DT<br>14:04<br>01<br>14:19<br>DTM<br>14:19<br>DTM<br>14:19<br>DTM<br>14:20<br>14:25<br>DT<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | $ \begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | Min. Pu<br>pH<br>6.19<br>vge. vate<br>6.19<br>vge. vate<br>6.19<br>vge. Rate:<br>0 6.08<br>ge Rate:<br>5.38<br>vge. Rate<br>5.53<br>5.54<br>e10.375 | Duplicate           rge Volume (gal)/(L)           Conductivity           mS/cm           0.554           2:0.395           0.555           0.375           0.560                 | Sample ID<br>Turbidity<br>NTU<br>4.06<br>4.21<br>3.0<br>2.6<br>2.73                                              | Purge Rote (g<br>Diss. Oxygen<br>mg/L<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dupi Time<br>pm)/(mLpm)<br>°C<br>9.31<br>9.42<br>9.42<br>9.48<br>9.80<br>9.87 | 2.375<br>Eh/QRP<br>my<br>-106.0<br>-112.0<br>-114.4<br>-114.5<br>-114.5<br>-114.5<br>-114.0 |

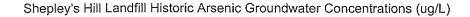

| Weather Con                | ditions <u> </u>             | (ppm) (                       |               | -aux (          | Date: //   | 2343             |               |                             |                                                                         |                   |       |
|----------------------------|------------------------------|-------------------------------|---------------|-----------------|------------|------------------|---------------|-----------------------------|-------------------------------------------------------------------------|-------------------|-------|
| Sample Tean                | 1 TB/ D                      | R                             |               | Stabilization   |            |                  |               |                             |                                                                         |                   |       |
| Well Depth                 |                              | (FT.)                         | Datum         | Bradinzation    |            |                  |               | Time Purging                | j begins (T <sub>o</sub> ):                                             | 1330              |       |
|                            | Level 6.1                    |                               |               |                 |            |                  |               | Water Level                 | at time T <sub>o:</sub> _                                               | 0-10%             |       |
| Water Colum                | n(                           | FT.) P                        | urge Method:  | Peristattic Put | THE FIGS   | Y                |               | Time Purging<br>Water Level | 3 ends: (T <sub>1</sub> ) <u>}</u><br>at time T <sub>1</sub> , <b>4</b> | 515*<br>48.29*    |       |
| Time                       | Volume<br>Removed            |                               | epcond(mS/cm) | TEMP.(C)        | Redox (mV) | Water level (Ft) | D:O. (mg/L)   | Turbidity<br>(NTU)          | Purge rate<br>(Lpm)<br>0,3 to                                           | · · · ·           |       |
| 1400                       | 436                          | +/-0.1                        |               | +/-0,2 or 3%    | +/-10 mV   | <0.3 ft<br>37.15 | +/-10%        | < 5 NTU                     | 0.5LPM                                                                  |                   |       |
| 1420                       |                              | 8.72                          | ,236          | 10.82           | 725        |                  | NOT           | 5.79                        | 0.7                                                                     | Clear             | Hz    |
| 1423                       |                              | 8.61                          | .242          | 10,75           |            | 46.02            | ADDL          |                             | 0.7                                                                     | 1                 | 169.9 |
| 1429                       |                              | 8.52                          | .249          |                 |            | 46.26            | INE           | 493                         | 0.7                                                                     |                   |       |
| 1440                       |                              | 8.60                          | . 262         | 1               | -154.2     |                  |               |                             | 0.7                                                                     |                   |       |
| 1445                       |                              | 8.60                          | .270          | 10.82           | -175.4     | 47.37            |               | 5,33                        | 0.7                                                                     |                   |       |
| 1458                       |                              | 8.55                          | .279          | 10.85           | -199.3     | 47.93            |               | 5.01                        | 0.7                                                                     |                   | 163.Z |
|                            | Fac                          |                               |               |                 |            |                  |               |                             | 1                                                                       |                   |       |
| Date:/                     |                              |                               | Analysis:     | SAMPLING        |            | Diameter (inch)  | Gallon / Foot | • delta w.t. (ft)           | - votu                                                                  | me lost (gallons) |       |
| Time:                      |                              |                               |               |                 |            | 1                | 0.040         | Dena W.L. (17)              |                                                                         | ne tost (galions) | -     |
| Field Filterin             |                              |                               | Sec           |                 |            | 1.5              | 0.091         |                             |                                                                         |                   | 1     |
| Sampling Me<br>Laboratory: | ethodology: I<br>Method of S | <u>ow Flow Sam</u><br>hipment |               | 2               |            | 2                | 0.163         |                             |                                                                         |                   | 4     |
| Remarks:                   |                              |                               | P.            | g. 2            |            | 4                | 0.652         | ļ                           | l 1gallo                                                                | on = 3.78 liters  | -     |

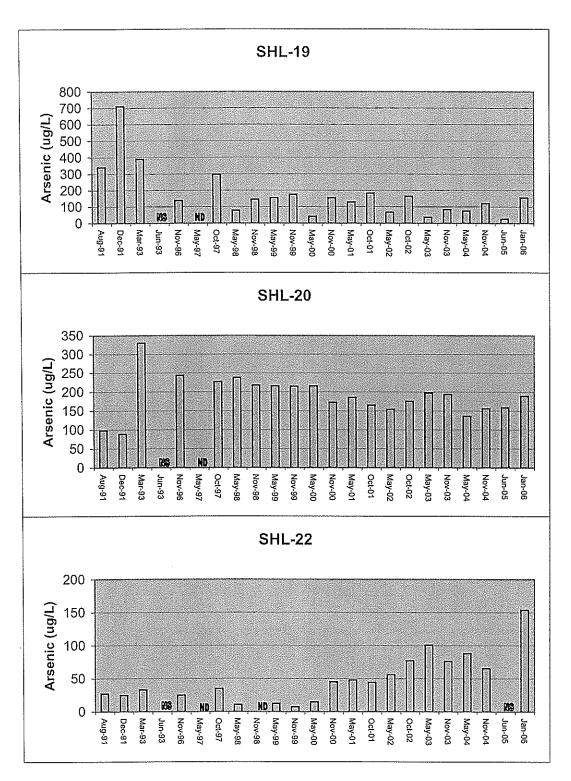

|                |                             |              | SHM -         | 93-2                    | vac                       | a of a                                 | <u>ک</u>                 |                               |                                         | ·                 | 1     |
|----------------|-----------------------------|--------------|---------------|-------------------------|---------------------------|----------------------------------------|--------------------------|-------------------------------|-----------------------------------------|-------------------|-------|
|                |                             | Fie          | ld Data She   | ets for Lo              | w Flow G                  | round Wat                              | er Sampl                 | ing                           |                                         |                   |       |
| Sample Sour    | منصلة فسيستناه              | cation)      | Condition     | ට                       | Project Numb              | ner:<br>25/06                          |                          |                               |                                         |                   |       |
| Well Depth     |                             | (FT.)        | Datum         | Stabilization I         | Data                      |                                        |                          | Time Purging                  | j begins (T_):_                         | 13307             |       |
| Static Water   |                             | (FT.)        | Diameter :    | Ч"                      |                           |                                        |                          | Water Level                   | at time T <sub>o:</sub>                 | .10*              |       |
|                | n(                          |              |               | Peristaltic Pur         |                           | -                                      |                          | Time Purging                  | g ends: (T <sub>1</sub> ) _             | 5/5#              |       |
|                |                             |              |               | Redil                   | Frow I                    | · ···································· | 3                        |                               |                                         | 18.464            |       |
| Time           | Volume<br>Removed           | рН<br>+/-0.1 | 8PCOND(mS/cm) | TEMP.(C)                | Redox (mV)<br>+ / - 10 mV | Water level (Ft)<br>< 0.3 ft           | D.O. (mg/L)<br>+ / - 10% | Turbidity<br>(NTU)<br>< 5 NTU | Purge rate<br>(Lpm)<br>0.3 to<br>0.5LPM | Appearance        |       |
| 1505           | 772                         | 8.50         |               | 10.86                   | -225.2                    | 48.05                                  |                          | 4.17                          | 0.7                                     | Clear             | 162.Z |
| 1510           | 81                          | 8.52         | .288          | 10.88                   | -230.0                    | 48.18                                  | wow                      | 4.21                          | 1                                       |                   | -     |
| 1515           | 841                         | 8.49         |               | 10.81                   |                           |                                        |                          | 4.18                          | 2                                       |                   | -     |
| 1530           |                             |              |               |                         | The                       | # D.O.                                 |                          |                               |                                         |                   |       |
|                |                             |              |               | **                      | · *                       | ~/ PSI 85                              | 0.73                     |                               |                                         |                   |       |
|                |                             |              |               | *                       |                           | Frazell                                |                          |                               |                                         |                   |       |
|                |                             |              |               |                         |                           |                                        |                          |                               |                                         |                   |       |
| Date: 1/2      | 5106                        |              | Analysis:     | SAMPLING                |                           | Diameter (inch)                        | Gallon / Foot            | * delta w.t. (ft)             | - volup                                 | ne lost (gallons) | •     |
| Time: 151      | 5                           |              | = 012506      | - SHM 9                 | 3.995                     | 1                                      | 0.040                    | Gena wir (ii)                 |                                         | ne toar (Annota)  |       |
| Field Filterin |                             |              |               | S, VOC, H               |                           | 1.5                                    | 0.091                    |                               |                                         |                   | -     |
| Laboratory:    | thodology: L<br>Method of S |              |               | ληνς για<br>Πλειζαϊιαδί | n. <0.                    | 2 4                                    | 0.163                    |                               | 1oallo                                  | n = 3.78 liters   | -     |
| Remarks:       |                             |              | Alk,          | 105, CI, No<br>300, COD | , TOC                     | · · · · · · · · · · · · · · · · · · ·  | 1                        | J                             |                                         |                   |       |

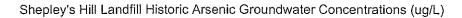
# Appendix C

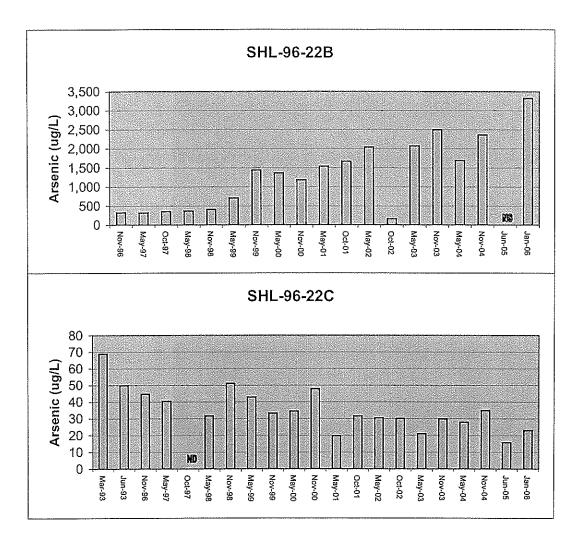

# **Comparison of Arsenic Results**

|                                                                                                                      |                                                                                                                                            |                                                                                  | Hill Landfill Cor                                                                    | iic Concentratio<br>npliance Point \                                | · • /                                                                                    |                                                                                                     |                                                                      |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                      |                                                                                                                                            |                                                                                  | Devens, Massa                                                                        |                                                                     |                                                                                          |                                                                                                     |                                                                      |
| Sample                                                                                                               |                                                                                                                                            |                                                                                  |                                                                                      | Well ID (group                                                      |                                                                                          |                                                                                                     |                                                                      |
| Well Group #                                                                                                         | 2                                                                                                                                          | 2                                                                                | 2                                                                                    | 2                                                                   | 2                                                                                        | 2                                                                                                   | 2                                                                    |
| Date                                                                                                                 | SHL-3 (1)                                                                                                                                  | SHL-4 (2)                                                                        | SHL-5 (1)                                                                            | SHM-96-5B (2)                                                       | SHM-96-5C (2)                                                                            | SHL-9 (1)                                                                                           | SHL-10 (2                                                            |
| Aug-91                                                                                                               | 35.0                                                                                                                                       | 260                                                                              | 23.0                                                                                 | NS                                                                  | NS                                                                                       | 37.0                                                                                                | 67.0                                                                 |
| Dec-91                                                                                                               | 120                                                                                                                                        | 140                                                                              | 38.0                                                                                 | NS                                                                  | NS                                                                                       | 67.0                                                                                                | 120                                                                  |
| Mar-93                                                                                                               | 6.5                                                                                                                                        | 2.54                                                                             | 11.4                                                                                 | NS                                                                  | NS                                                                                       | 42.4                                                                                                | 280                                                                  |
| Jun-93                                                                                                               | NS                                                                                                                                         | <u>NS</u>                                                                        | NS                                                                                   | NS                                                                  | NS                                                                                       | NS                                                                                                  | NS                                                                   |
| Nov-96                                                                                                               | NS                                                                                                                                         | 48.8                                                                             | 12.0                                                                                 | 1,440                                                               | 71                                                                                       | 46.9                                                                                                | 3.4 B                                                                |
| May-97                                                                                                               | <10                                                                                                                                        | 73.6 J                                                                           | <10                                                                                  | 3,300 J                                                             | 43.2                                                                                     | 16.1 J                                                                                              | <10                                                                  |
| Oct-97                                                                                                               | <10                                                                                                                                        | 180                                                                              | <10                                                                                  | 2,040                                                               | 43.1                                                                                     | 25.2                                                                                                | 209                                                                  |
| May-98                                                                                                               | <5                                                                                                                                         | 37.4                                                                             | <5                                                                                   | 4,300                                                               | 49.5                                                                                     | 15.0                                                                                                | <5                                                                   |
| Nov-98                                                                                                               | <5.4                                                                                                                                       | 89.1                                                                             | 11.5                                                                                 | 3,080                                                               | 46.8                                                                                     | 27.2                                                                                                | <5.4                                                                 |
| May-99                                                                                                               | 2.7 B                                                                                                                                      | 78.2                                                                             | 5.0 B                                                                                | 3,490                                                               | 57                                                                                       | 71.3                                                                                                | 2.7                                                                  |
| Nov-99                                                                                                               | <1.9                                                                                                                                       | 61.3<br>116                                                                      | 6.5<br><2.5                                                                          | 2,700                                                               | 44.8                                                                                     | 28.5                                                                                                | <1.9                                                                 |
| May-00                                                                                                               | <2.5                                                                                                                                       | 91.5                                                                             | < <u>&lt;2.5</u><br>13.8                                                             | 5,110<br>2,500                                                      | 52.2                                                                                     | 15.0                                                                                                | <2.5                                                                 |
| Nov-00                                                                                                               | <u> </u>                                                                                                                                   | 50.8                                                                             | 13.8                                                                                 | 3,800                                                               | 40.3<br>80.5                                                                             | 31.4                                                                                                | <4.2                                                                 |
| May-01                                                                                                               | <1.5                                                                                                                                       | 66.0                                                                             | 14.8                                                                                 | 1,850                                                               | 41.1                                                                                     | 15.1<br>28.1                                                                                        | <4.1                                                                 |
| Oct-01                                                                                                               | 2.8 B                                                                                                                                      | 47.8 B                                                                           | 14,8<br>11.9 B                                                                       | 3,800                                                               | 41.1<br>50.4 B                                                                           | 144                                                                                                 | <1.5<br>4.0                                                          |
| May-02                                                                                                               | <3.2 B                                                                                                                                     | 66.1                                                                             | <3.2                                                                                 | 1,970                                                               | 41.3                                                                                     | 29                                                                                                  | <u>4.0</u><br><3.2                                                   |
| Oct-02<br>May-03                                                                                                     | <4.7                                                                                                                                       | 26.6                                                                             | 7.3                                                                                  | 3,920                                                               | 55.1                                                                                     | 13.4                                                                                                | <3.2                                                                 |
| Nov-03                                                                                                               | <4.1                                                                                                                                       | 13.4                                                                             | 4.7 B                                                                                | 3,380                                                               | 48.3                                                                                     | 30.6                                                                                                | <4.1                                                                 |
| May-04                                                                                                               | <2.6                                                                                                                                       | 27.2                                                                             | 7,4 B                                                                                | 3,950                                                               | 47.1                                                                                     | 19.8                                                                                                | <2.6                                                                 |
| Nov-04                                                                                                               | <5.8                                                                                                                                       | 19.5                                                                             | 6.8 B                                                                                | 2,110                                                               | 49.5                                                                                     | 32.2                                                                                                | <5.8                                                                 |
| Jun-05                                                                                                               | <4.5                                                                                                                                       | 10.1                                                                             | 7.0 B                                                                                | NS                                                                  | 43.5<br>NS                                                                               | NS                                                                                                  | <4.5                                                                 |
| Jan-06                                                                                                               | NS NS                                                                                                                                      | <5                                                                               | <5                                                                                   | 4,130                                                               | 43.0                                                                                     | 18.0                                                                                                | <5                                                                   |
|                                                                                                                      |                                                                                                                                            |                                                                                  |                                                                                      |                                                                     |                                                                                          |                                                                                                     |                                                                      |
| Sample                                                                                                               |                                                                                                                                            | 2                                                                                | Monitoring                                                                           | Well ID (group                                                      |                                                                                          |                                                                                                     |                                                                      |
| Well Group #                                                                                                         | 2<br>SHM-93-10C (1)                                                                                                                        |                                                                                  | 스<br>SHL-19 (2)                                                                      | 2<br>SHL-20 (2)                                                     | 2<br>SHL-22 (1)                                                                          | 2<br>SHM-93-22B (2)                                                                                 | 2                                                                    |
| Date 01                                                                                                              | NS                                                                                                                                         | 320                                                                              | 340                                                                                  | 98                                                                  | 27                                                                                       | NS                                                                                                  | SHM-93-22C<br>NS                                                     |
| Aug-91<br>Dec-91                                                                                                     | NS NS                                                                                                                                      | 320                                                                              | 710                                                                                  | 89                                                                  | 25                                                                                       | NS                                                                                                  | NS NS                                                                |
| Mar-93                                                                                                               | 21.3                                                                                                                                       | 340                                                                              | 390                                                                                  | 330                                                                 | 32.9                                                                                     | NS                                                                                                  | 68.9                                                                 |
| Jun-93                                                                                                               | 18.1                                                                                                                                       | NS                                                                               | NS                                                                                   | NS                                                                  | <u>52.5</u>                                                                              | NS                                                                                                  | 49.8                                                                 |
| Nov-96                                                                                                               | 12.4                                                                                                                                       | 332                                                                              | 138                                                                                  | 244                                                                 | 24.8                                                                                     | 324                                                                                                 | 49.6                                                                 |
| May-97                                                                                                               | <10                                                                                                                                        | 252 J                                                                            | <10                                                                                  | <10                                                                 | <10                                                                                      | 318 J                                                                                               | 40.4                                                                 |
| Oct-97                                                                                                               | 10.5                                                                                                                                       | 366                                                                              | 298                                                                                  | 227                                                                 | 34.8                                                                                     | 352                                                                                                 | <10                                                                  |
| May-98                                                                                                               | 7.5                                                                                                                                        | 346                                                                              | 77.5                                                                                 | 238                                                                 | 10.6                                                                                     | 365                                                                                                 | 31.6                                                                 |
| 141014-20                                                                                                            | 10.2                                                                                                                                       | 376                                                                              | 145                                                                                  | 218                                                                 | <5.4                                                                                     | 406                                                                                                 | 51.1                                                                 |
| Nov-98                                                                                                               |                                                                                                                                            | 431                                                                              | 156                                                                                  | 216                                                                 | 12.2 B                                                                                   | 707                                                                                                 | 42.8                                                                 |
| Nov-98<br>May-99                                                                                                     | 1 10.8 B                                                                                                                                   |                                                                                  |                                                                                      | 215                                                                 |                                                                                          | 1,440                                                                                               | 33.2                                                                 |
| May-99                                                                                                               | <u> </u>                                                                                                                                   | 492                                                                              | 176                                                                                  | 213                                                                 | 1.3                                                                                      |                                                                                                     |                                                                      |
| May-99<br>Nov-99                                                                                                     | 8.7<br>5.9 J                                                                                                                               | 492<br>404                                                                       | 176<br>41.4                                                                          | 215                                                                 | 7.3                                                                                      | ······                                                                                              | 34.4                                                                 |
| May-99<br>Nov-99<br>May-00                                                                                           | 8.7                                                                                                                                        |                                                                                  |                                                                                      |                                                                     | 14.6<br>45                                                                               | 1,360                                                                                               | 34.4<br>47.8                                                         |
| May-99<br>Nov-99<br>May-00<br>Nov-00                                                                                 | 8.7<br>5.9 J                                                                                                                               | 404                                                                              | 41.4                                                                                 | 216                                                                 | 14.6                                                                                     | 1,360<br>1,180                                                                                      | <u>34.4</u><br>47.8<br>19.7                                          |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01                                                                       | 8.7<br>5.9 J<br>8.8<br>6.9                                                                                                                 | 404<br>523<br>487                                                                | 41.4<br>154<br>129                                                                   | 216<br>172<br>186                                                   | 14.6<br>45<br>47.6                                                                       | 1,360<br>1,180<br>1,540                                                                             | 47.8<br>19.7                                                         |
| May-99<br>Nov-99<br>May-00<br>Nov-00                                                                                 | 8.7<br>5.9 J<br>8.8                                                                                                                        | 404<br>523                                                                       | 41.4<br>154                                                                          | 216<br>172                                                          | 14.6<br>45                                                                               | 1,360<br>1,180                                                                                      | 47.8                                                                 |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01                                                             | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1                                                                                                         | 404<br>523<br>487<br>573                                                         | 41.4<br>154<br>129<br>183                                                            | 216<br>172<br>186<br>' 165                                          | 14.6<br>45<br>47.6<br>44.2                                                               | 1,360<br>1,180<br>1,540<br>1,670<br>2,040                                                           | 47.8<br>19.7<br>31.6<br>30.5                                         |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02                                                   | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1<br>11.0 B                                                                                               | 404<br>523<br>487<br>573<br>469                                                  | 41.4<br>154<br>129<br>183<br>66.9                                                    | 216<br>172<br>186<br>'165<br>154                                    | 14.6<br>45<br>47.6<br>44.2<br>55.9 B                                                     | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159                                                    | 47.8<br>19.7<br>31.6                                                 |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02<br>Oct-02                                         | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1<br>11.0 B<br>7.1                                                                                        | 404<br>523<br>487<br>573<br>469<br>648                                           | 41.4<br>154<br>129<br>183<br>66.9<br>164                                             | 216<br>172<br>186<br>'165<br>154<br>175                             | 14.6<br>45<br>47.6<br>44.2<br>55.9 B<br>77.1                                             | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159<br>2,070                                           | 47.8<br>19.7<br>31.6<br>30.5<br>30.1                                 |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02<br>Oct-02<br>May-03                               | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1<br>11.0 B<br>7.1<br>9.8                                                                                 | 404<br>523<br>487<br>573<br>469<br>648<br>498                                    | 41.4<br>154<br>129<br>183<br>66.9<br>164<br>36.1                                     | 216<br>172<br>186<br>165<br>154<br>175<br>197                       | 14.6<br>45<br>47.6<br>44.2<br>55.9 B<br>77.1<br>101                                      | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159                                                    | 47.8<br>19.7<br>31.6<br>30.5<br>30.1<br>21.0                         |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02<br>Oct-02<br>May-03<br>Nov-03                     | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1<br>11.0 B<br>7.1<br>9.8<br><5.2                                                                         | 404<br>523<br>487<br>573<br>469<br>648<br>498<br>639                             | 41.4<br>154<br>129<br>183<br>66.9<br>164<br>36.1<br>83.6                             | 216<br>172<br>186<br>165<br>154<br>175<br>197<br>194                | 14.6<br>45<br>47.6<br>44.2<br>55.9 B<br>77.1<br>101<br>76.4                              | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159<br>2,070<br>2,500<br>1,690                         | 47.8<br>19.7<br>31.6<br>30.5<br>30.1<br>21.0<br>29.8<br>27.8         |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02<br>Oct-02<br>May-03<br>Nov-03<br>May-04           | 8.7<br>5.9 J<br>8.8<br>6.9<br>10.1<br>11.0 B<br>7.1<br>9.8<br><5.2<br>7.2 B                                                                | 404<br>523<br>487<br>573<br>469<br>648<br>498<br>639<br>502                      | 41.4<br>154<br>129<br>183<br>66.9<br>164<br>36.1<br>83.6<br>75                       | 216<br>172<br>186<br>'165<br>154<br>175<br>197<br>194<br>136        | 14.6<br>45<br>47.6<br>44.2<br>55.9 B<br>77.1<br>101<br>76.4<br>88.1                      | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159<br>2,070<br>2,500                                  | 47.8<br>19.7<br>31.6<br>30.5<br>30.1<br>21.0<br>29.8                 |
| May-99<br>Nov-99<br>May-00<br>Nov-00<br>May-01<br>Oct-01<br>May-02<br>Oct-02<br>May-03<br>Nov-03<br>May-04<br>Nov-04 | 8.7           5.9         J           8.8           6.9           10.1           11.0         B           7.1           9.8           <5.2 | 404<br>523<br>487<br>573<br>469<br>648<br>498<br>639<br>502<br>617<br>524<br>567 | 41.4<br>154<br>129<br>183<br>66.9<br>164<br>36.1<br>83.6<br>75<br>121<br>26.3<br>156 | 216<br>172<br>186<br>'165<br>154<br>175<br>197<br>194<br>136<br>156 | 14.6<br>45<br>47.6<br>44.2<br>55.9 B<br>77.1<br>101<br>76.4<br>88.1<br>65.4<br>NS<br>154 | 1,360<br>1,180<br>1,540<br>1,670<br>2,040<br>159<br>2,070<br>2,500<br>1,690<br>2,360<br>NS<br>3,320 | 47.8<br>19.7<br>31.6<br>30.5<br>30.1<br>21.0<br>29.8<br>27.8<br>34.9 |




-









## Appendix D

## Data Quality Evaluation and Chemical Quality Analysis Reports

### June 2005 Monitoring

#### Data Evaluation Report For Shepley's Hill Landfill, Fort Devens, MA Long Term Monitoring Groundwater Samples Samples Collected June 2005

#### Introduction

Nine total groundwater samples were collected were collected from Shepley's Hill Landfill at the former Fort Devens, Ayer, Massachusetts. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Project specific Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD<sub>5</sub>), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on June 6 and 7, 2005 (see Groundwater Analytical Results Table.

Laboratory reports were reviewed for adherence to acceptable laboratory practices. The data evaluation elements reviewed include sample shipment temperatures, holding times, blank sample results, surrogate recoveries, LCS/LCSD recoveries and precision, MS/MSD recoveries and precision, and precision between sample duplicates.

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, with standard EPA SW846 guidance, with guidelines provided in EM 200-1-3, Appendix I "Shell For Analytical Requirements", dated 1 February 2001, and/or EM 200-1 - 10 (DRAFT/Final), "Guidance for Evaluating Performance Based Chemical Data Packages".

#### Sample Shipment and Receipt

All sample coolers were packed with ice in the field. Sample shipments were received at the laboratory on June 7 and 8, 2005. All samples were appropriately preserved. There are no sample shipment or receipt anomalies associated with these samples.

#### Data Qualification by Method

#### Volatile Organic Compounds (VOCs, SW-846 Method 5030/8260B)

#### SAMPLES :

SHL- 19 - Results for 2-butanone, acetone and xylenes are qualified ("J") estimated due to low matrix spike duplicate recovery, low matrix spike recovery, and low matrix spike recovery and high RPD between MS and MSD, respectively.

SHL-11-DUP - Due to equipment blank contamination, the reported value for acetone for this sample, 2.4 J ug/L, is elevated to the reporting limit for acetone and is reported as 5.0 U ug/L.

#### Metals (SW-846 Method 601 0B; Mercury Method 7470)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### Alkalinity (Method 310.1)

All alkalinity results are qualified as ("J") estimated due to holding time exceedance of date of sampling to date of analysis.

#### Biological oxygen Demand (BOD<sub>5</sub>, EPA Method 405.1)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### COD (Method 410.4)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### Anions (Method 300.0)

#### SAMPLES:

SHL-3 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 690 U ug/L.

SHL-5 - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 910 U ug/L.

SHL-10 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 1,100 U ug/L.

SHL-11 - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 880 U ug/L

SHL-11 DUP - Due to equipment blank contamination, the reporting limit for sulfate is elevated to the level found in the sample and reported as 1,200 U ug/L.

SHL-19 - Due to equipment blank contamination, the reporting limit for chloride is elevated to the level found in the sample and reported as 1,100 U ug/L.

All sample results for nitrate are qualified. Due to equipment blank contamination, the reporting limit for nitrate is elevated to the level found in each sample and reported as ("U").

#### Hardness as CaCO<sub>3</sub> (Method 130.2)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### Total Cyanide (EPA Method 335.4)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### TDS (Method 160.1)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### TSS (Method 160.2)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### Total Organic Carbon (SW-846 Method 9060)

No data review qualifiers were applied. All data is acceptable and useable as reported.

#### CHEMICAL QUALITY ASSURANCE REPORT

#### LONG TERM GROUNDWATER MONITORING AT SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS JUNE 2005 SAMPLING ROUND

#### PREPARED BY DAVID LUBIANEZ OF THE GEOLOGY & CHEMISTRY SECTION ENGINEERING/PLANNING DIVISION

#### DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

ΰ

MARCH 3, 2006

#### CHEMICAL QUALITY ASSURANCE REPORT

### LONG TERM GROUNDWATER MONITORING AT SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS JUNE 2005 SAMPLING ROUND

One groundwater QA sample from Shepley's Hill Landfill Long Term Monitoring, Devens Massachusetts project was analyzed by the QA laboratory, resulting in a total of 37 target determinations. In 24 of these determinations analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analyses of the corresponding primary samples.

All primary lab analyses were performed by Severn Trent Laboratories, Inc., Colchester, VT. Analyses performed were VOCs; trace metals, aluminum, arsenic, barium, cadmium, chromium, copper, iron, manganese, lead, nickel, silver, selenium, sodium, zinc, and mercury; total dissolved solids (TDS), chloride, nitrate, sulfate, alkalinity, total cyanide, biological oxygen demand (BOD), total organic carbon (TOC), total suspended solids (TSS) and chemical oxygen demand (COD). QA laboratory analyses were performed by AMRO Environmental Laboratories, Merrimack, NH.

Comparability and agreement was evaluated and expressed in terms of relative percent difference (RPD). For all analyses, RPD values greater than or equal to 75% RPD constituted a data discrepancy. For VOCs and metals, only project specific targets were used for comparison.

The primary and QA samples agreed overall in 33 (89%) of the comparisons. Primary and QA samples agreed quantitatively in 19 out of 24 (79%) of the comparisons. Refer to Table 1 for a QA split sample data comparison summary. Quantitative agreement represents only those determinations where analyte was detected by at least one laboratory.

Primary laboratory QC was evaluated and reported in the data evaluation report. See that report for findings. QA laboratory data was evaluated for custody, holding times, and laboratory QC compliance and found to be within criteria except as noted: sample SHL-11 had the pH adjusted to >12 upon receipt at the laboratory and the analysis for nitrate was performed outside of holding time. These discrepancies could result in possible low bias. Any other noted QC anomalies did not seriously impact the QA data or its usability and are not considered significant. None of the above noted QC issues significantly impact the usability of the QA data. All QA data is acceptable for its intended use and data comparison between laboratories exhibits mostly good agreement except for metals, which exhibited only fair agreement.

#### Table 1

### Quality Assurance Split Sample Data Comparison Summary

### Project: Shepley's Hill Landfill, LTM, Devens, Massachusetts

|                   | Overall Ag | reement (1) | Quantitative 2 | Agreement (2) |
|-------------------|------------|-------------|----------------|---------------|
| Test<br>Parameter | Number     | Percent     | Number         | Percent       |
| VOC               | 12/12      | 100         | 3/3            | 100           |
| Trace Metals      | 11/15      | 73          | 6/11           | 54            |
| TDS               | 1/1        | 100         | 1/1            | 100           |
| Chloride          | 1/1        | 100         | 1/1            | 100           |
| Nitrate           | 1/1        | 100         | 1/1            | 100           |
| Sulfate           | 1/1        | 100         | 1/1            | 100           |
| Alkalinity        | 1/1        | 100         | 1/1            | 100           |
| Total Cyanide     | 1/1        | 100         | 1/1            | 100           |
| BOD               | 1/1        | 100         | 1/1            | 100           |
| COD               | 1/1        | 100         | 1/1            | 100           |
| TOC               | 1/1        | 100         | 1/1            | 100           |
| TSS               | 1/1        | 100         | 1/1            | 100           |
| Total             | 33/37      | 89          | 19/24          | 79            |

#### NOTES:

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

#### Groundwater Analytical Results - June 6-7, 2005 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (Sheet 1 of 1)

|                                       | Well No.    | SHL-11   | SHL-11-QA | [     |
|---------------------------------------|-------------|----------|-----------|-------|
| PARAMETERS                            | CLEANUP     | µg/Ĺ     | µg/L      | RPD   |
|                                       | LEVEL (1)   |          | <u> </u>  |       |
| · · · · · · · · · · · · · · · · · · · | μg/L        |          |           |       |
| VOLATILES (8260B)                     | P 9         |          |           |       |
| 1,1-Dichloroethane                    | 70 (4)      | 5.0 U    | 2.0 U     | N/A   |
| 1,2-Dichlorobenzene                   | 600         | 5.0 U    | 2.0 U     | N/A   |
| 1,2-Dichloroethane                    | 5           | 5.0 U    | 5.0 U     | N/A   |
| 1,2-Dichloroethene (total)            | 70 (2)      | 1.4 J    | 1.2 J     | 15    |
| 1,3-Dichlorobenzene                   | 600 (2)     | 5.0 U    | 2.0 U     | N/A   |
| 1,4-Dichlorobenzene                   | 5           | 5.0 U    | 1.6 J     | N/A   |
| 2-Butanone                            | _           | 5.0 U    | 10 U      | N/A   |
| 4-Methyl-2-Pentanone                  | -           | 5.0 U    | 10 U      | N/A   |
| Acetone                               | 3,000 (4)   | 5.0 U    | 10 U      | N/A   |
| Benzene                               | 5 (2)       | 1.5 J    | 1.4       | 7     |
| Methyl-t-Butyl Ether                  | 70 (4)      | 5.0 U    | 2.0 U     | N/A   |
| Xylenes                               | 10,000 (2)  | 5.0 U    | 2.0 U     | N/A   |
| METALS (6010B or as noted)            |             |          |           | ····· |
| Aluminum                              | 6,870       | 88 U     | 480       | N/A   |
| Arsenic                               | 50          | 524      | 527       | 1     |
| Barium                                | 2,000 (2)   | 78.5 B   | 67 U      | 16    |
| Cadmium                               | 5 (2)       | 0.6 U    | 5.0 U     | N/A   |
| Chromium                              | 100         | 1.2 U    | 10.0 U    | N/A   |
| Copper                                | 1,300 (3)   | 6.6 B    | 4.82 J    | 31    |
| Iron                                  | 9,100       | 59400    | 57000     | 4     |
| Lead                                  | 15          | 4.8      | 1.1 J     | 125   |
| Manganese                             | 1,715       | 2380     | 2410      | 1     |
| Mercury (7470A)                       | 2 (2)       | 0.1 U    | 0.2 U     | N/A   |
| Nickel                                | 100         | 3 U      | 4.94 J    | N/A   |
| Selenium                              | 50 (2)      | 3.8 U    | 5.0 U     | N/A   |
| Silver                                | 40 (4)      | 1.8 U    | 2.36 J    | N/A   |
| Sodium                                | 20,000      | 21600    | 21100     | 2     |
| Zinc                                  | 2,000 (4)   | 5 B      | 27.4      | 138   |
| GENERAL CHEMISTRY                     |             |          |           |       |
| Alkalinity as CaCO <sub>3</sub>       | -           | 201,000  | 170,000   | 17    |
| Biochemical Oxygen Demand             | -           | 1,400    | 2,000 U   | N/A   |
| Chloride                              | -           | 23,900   | 25,000    | 4     |
| Chemical Oxygen Demand                | -           | 20,000 U | 16,000 J  | N/A   |
| Cyanide (Total)                       | 200 (2)     | 10 U     | 5.0 J     | N/A   |
| Hardness as CaCO <sub>3</sub>         | ] - [       | 127,000  | 123,000   | 3     |
| Nitrate as Nitrogen                   | 10,000 (2)  | 420 U    | 51 J      | N/A   |
| Sulfate                               | 500,000 (2) | 880 U    | 730 J     | N/A   |
| Total Dissolved Solids                |             | 585,000* | 380,000   | 42    |
| Total Suspended Solids                | -           | 33,100   | 21,000    | 45    |
| Total Organic Carbon                  | -           | 3,600    | 3,600     | 0     |

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

B = value within 5 times of the greater amount detected in the equipment or preparation blank samples B (inorganics)= value below PQL but above IDL

J = estimated value

U = Below laboratory RL

\* = duplicate analysis Relative Percent Difference outside acceptance limits

N/A = not applicable

# January 2006 Monitoring

# Fort Devens 2005 Annual Shepley's Hill Sampling Data Quality Evaluation Report

# Introduction

The objective of this Data Quality Evaluation (DQE) report is to assess the data quality of analytical results for water samples collected for Fort Devens during the 2005 Annual Shepley's Hill sampling event. Individual method requirements, guidelines from the USEPA Contract Laboratory National Functional Guidelines for Inorganic Data Review, July 2002 (NFG) were used in this assessment.

This report is intended as a general data quality assessment designed to summarize data issues.

# Analytical Data

This DQE report covers 17 normal (N) and one field duplicate (FD) environmental samples. These samples were reported under three sample delivery groups. Samples were collected between January 19 and January 25, 2006 and delivered to the laboratory the same day as collection. Alpha Analytical Laboratories (APHW) in Westborough, Massachusetts performed the analyses. Selected samples were analyzed for the following analytes/methods:

|                                   | Table 1<br>Analytical Parameters |            |  |
|-----------------------------------|----------------------------------|------------|--|
| Parameter                         | <u>Method</u>                    | Laboratory |  |
| Total Alkalinity                  | A2320B                           | APHW       |  |
| Total Dissolved Solids            | A2540C                           | APHW       |  |
| Total Suspended Solids            | A2540D                           | APHW       |  |
| Total Cyanide                     | SW9014                           | APHW       |  |
| Chloride                          | SW9251                           | APHW       |  |
| Nitrogen, Nitrate                 | A4500                            | APHW       |  |
| Sulfate                           | SW9038                           | APHW       |  |
| Chemical Oxygen Demand            | A5220D                           | APHW       |  |
| Biochemical Oxygen Demand (5-day) | A5210B                           | APHW       |  |
| Total Organic Carbon              | SW9060                           | APHW       |  |
| Hardness                          | A2340B                           | APHW       |  |
| Methylene Chloride                | SW8260B                          | APHW       |  |
| 1,1-Dichloroethane                | SW8260B                          | APHW       |  |
| Chloroform                        | SW8260B                          | APHW       |  |
| Carbon Tetrachloride              | SW8260B                          | APHW       |  |
| 1,2-Dichloropropane               | SW8260B                          | APHW       |  |

|                           | Table 1<br>Analytical Parameters | 5          |  |
|---------------------------|----------------------------------|------------|--|
| Parameter                 | Method                           | Laboratory |  |
| Dibromochloromethane      | SW8260B                          | APHW       |  |
| 1,1,2-Trichloroethane     | SW8260B                          | APHW       |  |
| Tetrachloroethene         | SW8260B                          | APHW       |  |
| Chlorobenzene             | SW8260B                          | APHW       |  |
| Trichlorofluoromethane    | SW8260B                          | APHW       |  |
| 1,2-Dichloroethane        | SW8260B                          | APHW       |  |
| 1,1,1-Trichloroethane     | SW8260B                          | APHW       |  |
| Bromodichloromethane      | SW8260B                          | APHW       |  |
| trans-1,3-Dichloropropene | SW8260B                          | APHW       |  |
| cis-1,3-Dichloropropene   | SW8260B                          | APHW       |  |
| 1,1-Dichloropropene       | SW8260B                          | APHW       |  |
| Bromoform                 | SW8260B                          | APHW       |  |
| 1,1,2,2-Tetrachloroethane | SW8260B                          | APHW       |  |
| Benzene                   | SW8260B                          | APHW       |  |
| Toluene                   | SW8260B                          | APHW       |  |
| Ethylbenzene              | SW8260B                          | APHW       |  |
| Chloromethane             | SW8260B                          | APHW       |  |
| Bromomethane              | SW8260B                          | APHW       |  |
| Vinyl Chloride            | SW8260B                          | APHW       |  |
| Chloroethane              | SW8260B                          | APHW       |  |
| 1,1-Dichloroethene        | SW8260B                          | APHW       |  |
| trans-1,2-Dichloroethene  | SW8260B                          | APHW       |  |
| Trichloroethene           | SW8260B                          | APHW       |  |
| 1,2-Dichlorobenzene       | SW8260B                          | APHW       |  |
| 1,3-Dichlorobenzene       | SW8260B                          | APHW       |  |
| 1,4-Dichlorobenzene       | SW8260B                          | APHW       |  |
| Methyl tert butyl ether   | SW8260B                          | APHW       |  |
| m,p-Xylene                | SW8260B                          | APHW       |  |
| o-Xylene                  | SW8260B                          | APHW       |  |
| cis-1,2-Dichloroethene    | SW8260B                          | APHW       |  |
| Dibromomethane            | SW8260B                          | APHW       |  |
| 1,2,3-Trichloropropane    | SW8260B                          | APHW       |  |
| Styrene                   | SW8260B                          | APHW       |  |
| Dichlorodifluoromethane   | SW8260B                          | APHW       |  |
| Acetone                   | SW8260B                          | APHW       |  |
| Carbon disulfide          | SW8260B                          | APHW       |  |

C1DOCUMENTS AND SETTINGS1SSMITH91MY DOCUMENTS1SSS1PROJ/DEVENS\_SHL2005\_ANNUAL\_LTM12005\_06 REPORT\APP\_D\_ANALYTICAL QAQC\CH2M\_HILL\_QA\_QC\_DEVENS\_SHEPLEYSHILL\_2005ANNUAL\_0506.DOC 2

|                             | Table 1<br>Analytical Parameters | 5          |  |
|-----------------------------|----------------------------------|------------|--|
| Parameter                   | Method                           | Laboratory |  |
| 2-Butanone                  | SW8260B                          | APHW       |  |
| 4-Methyl-2-pentanone        | SW8260B                          | APHW       |  |
| 2-Hexanone                  | SW8260B                          | APHW       |  |
| Bromochloromethane          | SW8260B                          | APHW       |  |
| Tetrahydrofuran             | SW8260B                          | APHW       |  |
| 2,2-Dichloropropane         | SW8260B                          | APHW       |  |
| 1,2-Dibromoethane           | SW8260B                          | APHW       |  |
| 1,3-Dichloropropane         | SW8260B                          | APHW       |  |
| 1,1,1,2-Tetrachloroethane   | SW8260B                          | APHW       |  |
| Bromobenzene                | SW8260B                          | APHW       |  |
| n-Butylbenzene              | SW8260B                          | APHW       |  |
| sec-Butylbenzene            | SW8260B                          | APHW       |  |
| tert-Butylbenzene           | SW8260B                          | APHW       |  |
| o-Chlorotoluene             | SW8260B                          | APHW       |  |
| p-Chlorotoluene             | SW8260B                          | APHW       |  |
| 1,2-Dibromo-3-chloropropane | SW8260B                          | APHW       |  |
| Hexachlorobutadiene         | SW8260B                          | APHW       |  |
| Isopropylbenzene            | SW8260B                          | APHW       |  |
| p-Isopropyltoluene          | SW8260B                          | APHW       |  |
| Naphthalene                 | SW8260B                          | APHW       |  |
| n-Propylbenzene             | SW8260B                          | APHW       |  |
| 1,2,3-Trichlorobenzene      | SW8260B                          | APHW       |  |
| 1,2,4-Trichlorobenzene      | SW8260B                          | APHW       |  |
| 1,3,5-Trimethylbenzene      | SW8260B                          | APHW       |  |
| 1,2,4-Trimethylbenzene      | SW8260B                          | APHW       |  |
| Ethyl ether                 | SW8260B                          | APHW       |  |
| Isopropyl ether             | SW8260B                          | APHW       |  |
| Ethyl tert butyl ether      | SW8260B                          | APHW       |  |
| Tertiary amyl methyl ether  | SW8260B                          | APHW       |  |
| 1,4-Dioxane                 | SW8260B                          | APHW       |  |
| Total Aluminum              | SW6010B                          | APHW       |  |
| Total Arsenic               | SW6010B                          | APHW       |  |
| Total Barium                | SW6010B                          | APHW       |  |
| Total Cadmium               | SW6010B                          | APHW       |  |
| Total Chromium              | SW6010B                          | APHW       |  |
| Total Copper                | SW6010B                          | APHW       |  |

CADOCUMENTS AND SETTINGSISSMITH9IMY DOCUMENTSISSSIPROADEVENS\_SHL2005\_ANNUAL\_LTM2005\_06 REPORTIAPP\_D\_ANALYTICAL QAQCICH2M\_HILL\_QA\_QC\_DEVENS\_SHEPLEYSHILL\_2005ANNUAL\_0506.DOC 3

| Table 1<br>Analytical Parameters |         |            |
|----------------------------------|---------|------------|
| Parameter                        | Method  | Laboratory |
| Total Iron                       | SW6010B | APHW       |
| Total Manganese                  | SW6010B | APHW       |
| Total Mercury                    | SW7470A | APHW       |
| Total Nickel                     | SW6010B | APHW       |
| Total Silver                     | SW6010B | APHW       |
| Total Sodium                     | SW6010B | APHW       |
| Total Zinc                       | SW6010B | APHW       |

The assessment of data includes a review of: (1) the Chain-of-Custody (CoC) documentation; (2) holding time compliance; (3) the required quality control (QC) samples at the specified frequencies; (4) flagging for method blanks; (5) laboratory control spiking samples (LCS); (6) analytical spike data; (7) matrix spike/matrix spike duplicate (MS/MSD) samples; and (8) flagging for equipment blank.

Data flags were assigned according to the NFG. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are those listed in the NFG and are defined below:

- J = Analyte is present but the reported value may not be accurate or precise (estimated).
- R = The data are unusable due to deficiencies in the ability to analyze the sample and meet QC criteria.
- U = Analyte was not detected at the specified detection limit.
- UJ = Analyte was not detected and the specified detection limit may not be accurate or precise (estimated).

# Findings

The overall summaries of the data validation findings are contained in the following sections:

### **Holding Times**

All holding-time criteria were met.

# Method Blanks

Method blanks were analyzed at the required frequency and were free of contamination.

# Equipment Blank

An equipment blank was collected and analyzed at the required frequency. Methylene chloride, chloroform, and acetone were detected in the equipment blank. None of these target analytes were detected in any of the samples so no flags were applied.

# Trip Blank

Trip blanks were collected and analyzed at the required frequency. No target analytes were detected in the trip blanks so all acceptance criteria were met.

# **Field Duplicates**

FDs were collected and analyzed at the required frequency. The relative percent differences (RPD) between the N and FD results met the acceptance criteria.

# Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates were analyzed as required. Tetrahydrofuran was above the RPD limit but all samples were non-detects and no flagging is required per the NFG. Carbon tetrachloride and 1,2,3-trichloropropane was above the laboratory control limit but all samples were non-detects so no flags were applied. All other accuracy and precision criteria were met.

# Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicates (MS/SD) were analyzed as required. Total mercruy did not meet MS/SD acceptance criteria for sample 011906-SHL19. The associated result was non-detect so no flags were applied. All other accuracy and precision criteria were met.

# Chain of Custody

Methods outlined on the CoC were performed by the lab using the equivalent Standard Method. No other discrepancies were noted.

# Completeness

Out of approximately 1350 points, there were no data points rejected due to QC exceedances, no data points were qualified as non-detect due to blank exceedances, and no data points were qualified as estimated due to QC exceedances. These numbers indicate that the overall completeness goals for the project were met and that the quality of the analytical program and laboratory is sufficient to meet the project data quality objectives.

# **Overall Assessment**

The final activity in the data quality evaluation is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decisionmaking process. The precision, accuracy, representativeness, completeness and comparability are addressed in the NFG. The following summary highlights the data evaluation findings for the above-defined events:

- 1. The completeness objectives were met for all method/analyte combinations.
- 2. There were no results qualified because of low-level blank contamination.
- 3. The precision and accuracy of the data, as measured by laboratory QC indicators, suggest that the NFG goals have been met.

C:\DOCUMENTS AND SETTINGS\SSMITH9\MY DOCUMENTS\SSS\PROJ\DEVENS\_SHL\2005\_ANNUAL\_LTM\2005\_06 REPORT\APP\_D\_ANALYTICAL QAQC\CH2M\_HILL\_QA\_QC\_DEVENS\_SHEPLEYSHILL\_2005ANNUAL\_0506.DOC 6

# **Appendix E**

On-Site Discharge Evaluation Technical Memorandum (See Enclosed CD) Appendix F

Extraction Test Technical Memorandum (See Enclosed CD)

# Appendix G

Start-Up Process Testing Technical Memorandum (See Enclosed CD)

# Appendix H Response to Comments

### Follow-up Comments from EPA/DEP and Resolution

# <u>EPA</u>

**Resolution:** In an email dated April 5, 2007 EPA provided approval to finalize the 2005 Annual Report.

### **MADEP**

In a letter dated April 19, 2007, Hui Liang of DEP provided six (6) additional comments relating to the 2005 Annual Report.

General Response/Resolution: A detailed response on the DEP follow-up comments on the 2005 AR regarding issue of methane monitoring (both landfill gas monitoring and monitoring of dissolved methane in groundwater - Comments 1, 2, and 3 will be provided in a separate Army response letter. However, in general, the Army did not commit to performing quarterly monitoring of dissolved methane as stated in the comment letter. The Army did state in the referenced telecon that additional characterization of dissolved methane would be performed under the supplemental groundwater monitoring work plan in order to confirm the methane in groundwater sampling data collected to date. This data indicated that levels of dissolved methane in groundwater in the area of Scully Road do not pose a safety risk based on both the concentrations detected in groundwater and on the methane gas monitoring data collected in this area. The data also indicated that the methane concentrations in groundwater are attenuating in the down-gradient direction. The additional "off-site" groundwater characterization effort will include analyses for dissolved methane in order to confirm these conditions and the Army will work with the MADEP and USEPA in selecting the appropriate locations for this analysis.

Comment 4, similar to a comment from EPA, requested further discussion of the LTMMP network including SHL-3. This was undertaken at the April 26, 2007 BCT as part of finalization of that document (refer to RTC for Revised LTMMP). Responses to the other two comments on the Draft 2005 Annual Report (No. 5 and 6) are provided below. Comment 6 was also referenced by DEP in their comments on the Revised Long Term Monitoring and Maintenance Plan.

**DEP Follow-Up Comment No. 5:** As most of the sampling at SHL has focused on arsenic and geochemical parameters associated with reduction/oxidizing potential, MassDEP requests that a subset of monitoring wells be sampled quarterly for a year to establish and more fully characterize the leachate that now may exist. The subset of wells should be within 150 meter of the landfill footprint and must include SHP-15, SHP-99-29X, SHM-96-5B, SHL-11 and SHP-01-38A. MassDEP believes this is necessary for three reasons:

- 1) The RI/FS work was based on a recently capped landfill (1991-3) and leachate characteristics may have changed over time.
- 2) The ecological risk screening that determined the RI/FS CoPCs did not evaluate fish and benthic invertebrates as sensitive receptors. The CoPC list developed for the SHL source control remedy in 1992-3 and those associated with both the northern plume discharged at Nonacoicus Brook and at Red Cove in 2007 may not be comparable.

#### Follow-up Comments from EPA/DEP and Resolution

3) Solid Waste Regulation 310 CMR 19.118 (2) (a) 2 and 310 CMR 132 (1) (h) require the surface and ground water at landfills be adequately monitored and give minimum environmental monitoring requirements.

**Response/Resolution:** The Army believes that current monitoring network and plant sampling addresses the COCs for the site and is consistent with historical data and the requirements of the ROD. As indicated in the Army's initial response to DEP, the identified analytes are not COC's for the landfill, based on the initial RI and subsequent data collection. While the primary goal of monitoring is directed at assessing arsenic, as the principal COC, and geochemical indicator parameters, many of the requested analytes are currently assessed in the plant effluent. As indicated in the Revised LTMMP, VOCs are scheduled to be sampled annually each fall and several metals are sampled quarterly in plant effluent in accordance with POTW Permit #20. The permit also requires total toxic organics (TTO) sampling to be conducted annually on effluent (NPDES pretreatment requirements). TTO analysis includes a wide spectrum of VOC, SVOC, PCB, and pesticide analysis. This plant effluent sampling provides an indication of general contaminant characteristics (those not specifically addressed by the treatment train).

While the requested suite of analytes are not sampled in the monitoring well network, it is not clear that there are any indications that source loading, and therefore, leachate characteristics have deleteriously changed since capping. Site data do not suggest that leachate characteristics have changed such that: a) the original investigation is no longer reflective of site conditions; and b) the COCs identified in the site ROD are not appropriate. The age of the landfill suggests that leachate development and contaminant diversity was likely greatest prior to landfill capping. Capping which occurred in the 1980s and 1990s reduced infiltration and leachate development, and likely greatly reduced contaminant diversity and loading. The reduction of contaminant loading results in reduced groundwater concentrations with time. Site data support the assertion of reduced source loading and improving groundwater quality as evidenced by the waning of anoxic/reducing conditions beneath and downgradient of the landfill and declining trends in COC contaminant concentrations.

It is recognized that there is some uncertainty regarding groundwater quality emanating from the landfill, however, the request to greatly expand the analytical program is not well supported based on both current (on-going) and historical data collection. It is recommended that the need for (and scope of) an expanded monitoring program be revisited following completion of the next phase of investigation i.e., the Supplemental Groundwater and Landfill Cap Assessment for Long Term Monitoring and Maintenance and the AOC 72 Remedial Investigation.

**DEP Follow-Up Comment No. 6:** To fulfill these requirements MassDEP requests that the subset of monitoring wells referenced in Comment #5 be sampled and analyzed for <u>Indicator Parameters</u>, <u>Inorganics</u> and <u>compounds included in EPA Method 8260 including MEK, MIK</u>, <u>acetone and 1, 4 dioxane</u>, as identified in MassDEP Solid Waste Regulations 310 CMR 19.132 (1) (h) Environmental Monitoring Requirements. Please note that 1, 4 dioxane was added in 2005. In addition ammonia has been identified as possibly contributing to the toxicity at the Plow Shop Pond and should also be included.

Response/Resolution: Please see response to Specific Comment No. 5.

Response to EPA Comments (Letter dated February 5, 2007)

### EPA Comments on Draft 2005 Annual Report Shepley's Hill Landfill Long Term Monitoring & Maintenance Devens, Massachusetts December 2006

#### **Specific Comments:**

 Executive Summary. Page ES-1, Last Para: The last sentence on this page indicates that "(m)aintenance activities are scheduled to be performed including repairs to fencing and gates, maintenance to remove wetland vegetation from drainage swales, and drainage improvements for the landfill cap involving filling of low spots resulting from subsidence." Although the fencing and gate repairs were completed, as reported later in the report, the other maintenance activities are not currently scheduled, and elsewhere in the report, it is noted that these activities are anticipated to occur upon completion of the CSA/CAAA. Please clarify. Note that EPA recently requested that the Army evaluate whether removing wetland vegetation from drainage swales could be completed in the near future (i.e., not waiting until completion of the CSA) and Army is considering this.

**Army Response:** The Army is considering moving up some of the maintenance activities that have been deferred including removal of wetlands vegetation, subject to the availability of funding. In 2005, fences were repaired, new signage was installed, and permanent landfill gas probes were installed on the south end.

Executive Summary, Page ES-2, 2<sup>nd</sup> Para: It is acknowledged that the primary purpose of this report is to document the routine monitoring and maintenance activities, and not to provide data analysis or interpretation. Nevertheless, the statement regarding increased readings in landfill gas vents prompted further scrutiny of previous Annual Reports as well as the data reported in the 2005 document. It is particularly interesting to note that methane concentrations in several gas vents located in the central part of the landfill (e.g., GV-6, GV-7, GV -9, and GV-10) appear to be increasing systematically (please see attached figure). SHL is a "mature" landfill and it is expected that concentrations of methane should show an overall decrease, as the readily-degradable carbon is consumed early in a landfill's history. Therefore, the observed increases may be significant and results of continued monitoring should be assessed.

**Army Response:** Comment noted. Further assessment of methane generation across the landfill will be conducted in future reports.

3. <u>Executive Summary, Page ES-2, 3<sup>rd</sup> Para</u>: The report notes that the five wells that were not monitored in June 2005 as part of the LTMP were sampled under the Performance Monitoring Plan for the Contingency Remedy and that those results "...are reported elsewhere." Please provide the reference for these data.

#### Response to EPA Comments (Letter dated February 5, 2007)

**Army Response:** Baseline performance monitoring data, in accordance with the Performance Monitoring Plan (PMP) for the Contingency Remedy, were collected in February and August 2005. These data were collected at the five well locations that were not monitored during the USACE, June 2005 LTMMP event. The PMP data have been provided to the BCT in data summaries provided at technical meetings and on the FTP site. In addition, these data are included in the Appendix A of the recently Revised LTMMP.

4. Section 5.0. Page 7. 2<sup>nd</sup> Para: This section states that groundwater levels were measured on August 24 and August 26, 2006, as part of the extraction test. The data in Table 5-2 indicate that baseline water levels were measured on 8/24/2005 and maximum drawdown was measured on 8/26/2006. Also, water level elevations are shown on Figures 5-1 and 5-2 for pre-test and maximum drawdown conditions, respectively. The figure captions indicate that these measurements were taken on August 24 and 26, 2005. Please correct these dates.

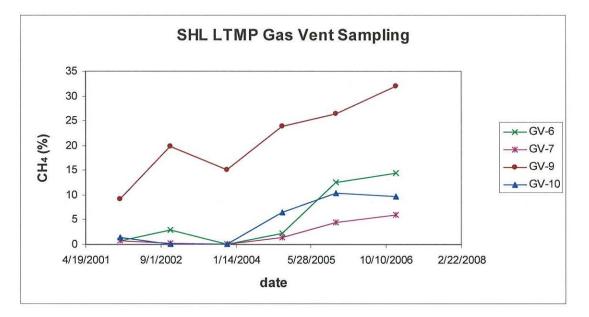
Army Response: Corrections relating to date references will be made.

5. Section 5.0, Page 7: Water-level measurements taken during August 2006 confirm the general northerly direction of groundwater flow in the overburden. The last sentence in this section suggests that results of the extraction test indicate "...that the operation of the groundwater extraction system will create an even greater northerly flow." Comparison of groundwater elevation contours on Figures 5-1 and 5-2 shows essentially no difference in the direction of groundwater flow, except in the immediate vicinity of the extraction wells. Please either explain what is meant by "...even greater northerly flow" or delete this statement.

**Army Response:** Modeling work suggests that the pumping stress applied at the north end of the landfill results in a greater number of flow lines (or flow tubes) directed to the north. Pumping stresses affect flow over the long term from distal points toward pumping centers through subtle pressure changes and gradient shifts neither readily observable with field instrumentation nor easily discerned on contour plots of synoptic field measurements. However, the observed water levels agree reasonably well with modeled water levels such that longer-term, steady-state simulations, involving particle-tracking of flow under un-pumped and pumped conditions are supported and provide a means to assess water flow over longer time frames.

Section 7.3.1, Page 12, 3<sup>rd</sup> Para: This section notes that "...the highest historic level of arsenic, 3320 ug/L, was recorded at SHM-96-22B during the January 2006 sampling." Does this statement refer only to this well? Please reconcile this statement with the data in Table 7-4, in which the highest historic level of arsenic, 5110 ug/L, was found in (May 2000 sampling round).

**Army Response:** The text was intended to be referring to the highest level detected at SHM-96-22B, historically. The commenter is correct that SHM-96-5B has had the highest levels detected of all wells in the LTM network. The text at the identified location and in the Executive Summary has been edited to provide clarification.


7. <u>Section 10.1, Page 17, 1<sup>st</sup> Bullet</u>: The FYR referenced here is the 2000 FYR, not the 2005. Please correct the reference.

Army Response: This has been corrected.

8. <u>Section 10.1, Page 17, 2<sup>nd</sup> Bullet</u>: This bullet repeats text from Section 5.0 regarding the expectation that the groundwater extraction system will create an "…even greater northerly flow." Please see previous Specific Comment 5.

Army Response: Pease refer to response to Specific Comment 5.





### [DEP Letter to Mr. Robert Simeone dated February 1, 2007]

RE: 2005 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance (2005 AR), Devens, Massachusetts, December 2006 Revised Long Term Monitoring and Maintenance Plan for Shepley's Hill Landfill (Revised LTMMP), Devens, Massachusetts, December 2006

### Dear Mr. Simeone:

The Massachusetts Department of Environmental Protection (MassDEP) has reviewed the above two submittals prepared by CH2M Hill, contractors for the Army's Shepley's Hill Landfill Contingency Remedy, per the DSMOA for Devens. MassDEP is providing the following comments for the two reports separately:

### 2005 AR:

1. Please provide detail information of recently installed landfill gas monitoring probes at southern perimeter of Shepley's Hill Landfill (SHL).

Army Response: This information has been provided to MA DEP under separate cover.

2. The gas vent V-18 was positioned at the last capped cell of Phase IV-B and had registered significant landfill gas until 2002. For the last four years the vent has only recorded nothing but air and should be pressure tested to determine whether it is functioning properly.

**Army Response:** No problems with the vent were noted during the last round of purging and monitoring conducted in December, 2006. During this event, data again indicated that air with  $O_2$  near saturation was present in the vent system. If methane production is not occurring, the detected conditions may develop as air moves in through the vadose zone from uncapped areas.

3. MassDEP has always noted the lack of vegetation on the east side of SHL, along the perimeter of the cap. Based on the Landfill Cap Assessment-Focused Test Pitting Summary Report drafted by AMEC and dated July 17, 2006 it may be caused by the capping system did not extend to that area. Further assessment and repair are necessary around those areas.

**Army Response:** The lack of vegetation is likely due to sandy soil conditions and resultant poor moisture retention (ie. loam is not present to support vegetation). This area will be improved as other maintenance activities on the landfill are completed following the Supplemental Groundwater Investigation and Landfill Cap Assessment (in progress).

4. Monitoring well SHL-3 went dry and was not sampled during 2006 winter monitoring. The well should be redeveloped and re-sampled.

#### **Response to DEP Comments** (Letter dated February 1, 2007)

**Army Response:** This well will be redeveloped to the extent possible, if monitoring continues. It has been redeveloped in the past by USACE and CH2M HILL but continues to have poor recovery when sampled. In responses to comments on the Revised LTMMP (December, 2006), per EPA's suggestion, we have decided that SHL-3 is a good candidate to remove from the LTM network.

5. Please see attached memorandum dated October 24, 2005 regarding further evaluation about surface water disposal option of treated water for Arsenic Treatment Plant that would be necessary before final implementation.

Army Response: Comment noted.

- 6. The MassDEP has concerns with the recommendations in the report, and requests the following two items be addressed:
  - a. Full suites of VOC, SVOC, PCB, pesticides, metal, and UXO should be analyzed, biannually at initial LTM network wells, at minimum. MassDEP Office of Research and Standards is concerned that contaminants, other than the flocculent and arsenic, from the landfill may migrate into Red Cove in the future and cause additional ecological impacts. Because the wastes disposed in the Shepley's Hill Landfill have not been well characterized, it is not possible to determine what contaminants may mobilize from these wastes in the future and get into groundwater and subsequently discharge into Red Cove. This creates an unknown ecological risk for Red Cove.

**Army Response:** The identified analytes are not currently COC's for the landfill, based on the initial RI and historical data collection since. However, as requested by EPA during development of the Performance Monitoring Plan (CH2M HILL, 2005) for the groundwater extraction and treatment system, monitoring for VOC's in plant influent is being conducted annually. The Revised LTMMP calls for this being conducted during the fall monitoring event. In addition, in accordance with POTW Permit #20 (June 26, 2006), several metals are analyzed for in plant effluent on a quarterly basis and arsenic is collected monthly. The permit also calls for total toxic organics (TTO) sampling to be conducted annually on effluent (NPDES pretreatment requirements). TTO analysis includes a wide spectrum of VOC, SVOC, PCB, and pesticide analysis.

b. Lead, copper, nickel and silver should not be eliminated for monitoring wells adjacent to Red Cove before the Plow Shop Pond remedial investigation is finalized, and ammonia should also be included.

**Army Response:** Based upon the original remedial investigation and risk assessment, lead (Pb) and nickel had clean-up levels established in the ROD (1995) but copper and silver did not. These clean-up levels were based on a groundwater action level of 15 ug/L and a Federal MCL of 100 ug/L for lead and nickel, respectively. Federal MCLs or State MMCL have been used to establish the clean-up levels for most parameters in the ROD table of clean-up levels. Lead and nickel have been below 15 ug/L and 100 ug/L clean-up standards, respectively, for groundwater at all compliance wells over many years. Although ROD clean-up levels are not formally

### Response to DEP Comments (Letter dated February 1, 2007)

established for copper and silver, they have been below MCLs or MMCLs at all compliance wells for many years. As mentioned in the response to Comment #6, quarterly sampling for metals including lead, copper, nickel, and silver is conducted on effluent.

Compliance wells have total nitrate-nitrite well below the MCLs of nitrate (10 mg/L), nitrite (1 mg/L), or total nitrate-nitrite (10 mg/L). There is no MCL for ammonia. Ammonia is not considered to be present as a significant source in the landfill due to the low levels of nitrate detected distally (nitrification would convert ammonia to nitrate) and no history of septage disposal at the landfill.