

DEPARTMENT OF THE ARMY

BASE REALIGNMENT AND CLOSURE ATLANTA FIELD OFFICE 1777 HARDEE AVENUE, SW FORT MCPHERSON, GEORGIA 30330-1062

APRIL 2, 2003

DAIM-BO-A-DV

Ms. Lisa Dagdiglan Harvard Public Library P.O. Box 666 Harvard, MA 01451

Dear Ms. Dagdiglan:

Enclosed for your records, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments Reauthorization Act of 1986, is the following document:

2002Annual Report Shepley's Hill Landfill Devens Reserve Forces Training Area Devens, Massachusetts

If you have any questions regarding this matter, you may contact me at (978) 796-2205.

Sincerely,

Benjamin F. Goff

BRAC Environmental Coordinator

Enclosures

LISAThere has been
that of press about
lots of press about
Shepley's till landfill
Shepley's typer tried to
pecause Apartried to
pecause a nearby well.
neaper a nearby well.

. 2002 ANNUAL REPORT

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

March 2003

PREPARED BY:

DEPARTMENT OF ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS 01742

US Army Corps of Engineers New England District

SHEPLEY'S HILL LANDFILL 2002 ANNUAL REPORT

SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS

March 2003

SHEPLEY'S HILL LANDFILL 2002 ANNUAL REPORT

TABLE OF CONTENTS

Section	<u>Title</u>	Page
F	EXECUTIVE SUMMARY	1
1.0 I	NTRODUCTION	4
2.0 I	LANDFILL CAP MAINTENANCE ACTIVITIES	5
3.0 I	LANDFILL CAP MONITORING ACTIVITIES	6
4.0 I	LANDFILL GAS MONITORING RESULTS	8
5.0	GROUNDWATER ELEVATIONS	10
6.0	GROUNDWATER SAMPLING	11
6.1 6.2 6.3	Preparation for Sampling Sampling Equipment Decontamination	12
	LABORATORY TESTING	
7.1 7.2	Analyses	
7.2.1 7.2.2	Results for Samples Collected Spring 2002	
8.0	QUALITY CONTROL	19
8.1 8.2	Field Quality ControlLaboratory Quality Control	
8.3	Data Evaluation	
8.3.1 8.3.2	=	
90 (CODDECTIVE ACTION	25

SHEPLEY'S HILL LANDFILL 2002 ANNUAL REPORT

TABLE OF CONTENTS (Cont.)

TABLES

Table 4-1 Table 5-1 Table 6-1 Table 7-1 Table 7-2 Table 7-3 Table 7-4 Table 7-5 Table 7-6 Table 8-1	Landfill Gas Monitoring Monitoring Well Specifications and Groundwater Elevations Monitoring Well Designations Groundwater Sample Analysis and Procedures Groundwater Analytical Results – May 2002 – Compliance Point Wells Groundwater Analytical Results – May 2002 – Additional Wells Groundwater Analytical Results – October 2002 – Compliance Point Wells Groundwater Analytical Results – October 2002 – Additional Wells Comparison of Historic Arsenic Results Sample Preparation and Analysis Methods
	FIGURES
Figure 3-1 Figure 5-1 Figure 5-2 Figure 6-1	Findings of Inspection - Shepley's Hill Landfill, Devens RFTA, Devens, MA Geologic Cross Section - reprinted from: Draft Shepley's Hill Landfill Supplemental Groundwater Investigation Location of Geologic Cross Sections - reprinted from: Draft Shepley's Hill Landfill Supplemental Groundwater Investigation Modeled Particle Tracks, Present Day Conditions - reprinted from:
	Draft Shepley's Hill Landfill Supplemental Groundwater Investigation APPENDICES
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G	Landfill Maintenance Checklist Groundwater Field Analysis Forms Chain of Custody Forms Comparison of Arsenic Results Chemical Quality Assurance Reports Groundwater Analytical Data References

EXECUTIVE SUMMARY

This annual report has been prepared to document the monitoring and maintenance activities conducted at the Shepley's Hill Landfill in Devens, Massachusetts as required by the Record of Decision (ROD) for areas of contamination 4, 5, and 18 (ABB-ES, Oct 1995). This report was developed by the U.S. Army Corps of Engineers (USACE), New England District (NAE).

This report documents the results of the seventh year, 2002, of the Long Term Monitoring and Maintenance conducted in accordance with the approved Long Term Monitoring and Maintenance Plan (SWEC, May 1996). Activities conducted as part of this plan include an annual inspection of the landfill cover, annual landfill gas vent monitoring, and semi-annual groundwater monitoring. Post closure monitoring is required for a period of thirty years.

An annual landfill inspection was conducted and observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Presently, the landfill is in fair condition, and appears to be functioning adequately. The cover surface was noted to contain areas of sparse vegetation, intrusive vegetation and settlement. Intermittent standing water, erosion, overgrown areas and wetlands plants were observed in isolated areas within drainage swales. The access roads at the site are in good condition. The security fence was noted to be in need of repair at various locations. No significant difficulties were encountered with the monitoring of gas vents/probes or groundwater wells that are part of the Long Term Monitoring Program. There were no conditions observed which would immediately jeopardize the integrity of the landfill cap.

In 2002, normally scheduled maintenance activities included mowing of the landfill vegetative cover and cutting of vegetative growth in drainage swales. Additionally, a topographic survey of the landfill was conducted and compared to as-built topography to determine settlement patterns and drainage issues. The resulting analysis and conclusions were detailed in a draft feasibility study report submitted to the Army by the USACE under separate cover. Some of the findings of the current inspection will be addressed in that report, including recommendations concerning fencing on the perimeter of the landfill.

As part of the monitoring of the landfill, readings were collected from eighteen gas vents on the landfill, plus four probes just north of the landfill enabling a check for landfill gases migrating through the soil and off of the cap. The gas readings recorded from the vents were within the parameters of a mature landfill. No landfill gas was observed in the probes. The next round of gas monitoring will be conducted in the fall of 2003.

Additionally, groundwater sampling was performed on the fourteen compliance point monitoring wells located adjacent to the landfill on the north and east. Samples were collected in accordance with the EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (July 1996). Samples were analyzed for volatile organic compounds, inorganics, and general water quality

parameters. Samples were also similarly collected at four off-site groundwater monitoring wells, not part of the Long Term Monitoring Program, for comparison. It should be noted that one of the four off-site wells (SHM-99-32X) could not be sampled in the fall due to extensive damage to the well casing. However, all fourteen compliance point wells were monitored during both the spring and fall.

In accordance with the ROD, only chemicals that present carcinogenic risk are considered trigger chemicals in the Long Term Monitoring Program. The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. The evaluation of effectiveness of the selected alternative, SHL-2, is based on the reduction of carcinogenic risk, rather than reduction of contamination as a measure of progress toward attainment of cleanup. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor contributor to risk (i.e., 1,2-dichlorobenzene) overshadows the achievement of a 50-percent reduction of concentration of a higher carcinogenic risk (i.e., arcenic). Risk reduction was evaluated during the first five-year review in August 1998. However, for annual reports, contaminant concentrations will be referenced against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill Landfill is due to arsenic in the groundwater.

The effectiveness of the selected alternative, SHL-2, is determined by evaluating groundwater sampling results from two groups of monitoring wells, Group 1 and Group 2. Group 1 wells are wells where all chemical of concern concentrations have historically met or been below cleanup levels established in the Record of Decision. Group 2 wells are wells where chemical of concern concentrations have exceeded cleanup levels. In the Long Term Monitoring and Maintenance Plan, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated after the first round of sampling. During the first five-year site review (August 1998) six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. All other wells, including the three new wells, are currently classified as Group 2 wells. Monitoring will continue in order to examine if cleanup levels are maintained in Group 1 wells. It should be noted that three of the Group 1 wells (SHL-9, SHL-22 and SHM-93-22C) have exceeded a cleanup level for a trigger chemical at least once since the first five-year review – arsenic in all cases. In 2002, two of those wells, SHL-9 and SHL-22, had such exceedances.

Arsenic was the only trigger chemical detected above cleanup levels during the 2002 sampling events. Most wells indicated no definitive change over historic arsenic values, including SHM-96-5B, which continues to record the highest levels of the wells monitored (tending to rise in the spring). Wells SHL-9, SHL-11, SHL-22 and SHM-96-22B all recorded new high arsenic levels in 2002. Of those wells, SHL-11, SHL-22 and SHM-96-22B are showing trends that may be expected to continue rising. However, well SHM-96-22B, which typically shows one of the highest arsenic levels, also recorded a new low arsenic level in the fall. Data collected in the coming years will reveal the significance, or lack thereof, of this anomaly. Similarly, the historical peak value determined for well SHL-9 in the spring was uncharacteristic. Well SHL-20 continues to show a slow decline

in arsenic levels. It should be noted that seven of the fourteen compliance point wells were below the arsenic cleanup level for the latest round of sampling. The next round of groundwater monitoring will be conducted in the spring of 2003.

The first five-year review to assess the protectiveness of the selected remedial action for Shepley's Hill Landfill was completed in 1998, in accordance with the Record of Decision. The review concluded that reductions of contaminant concentrations and corresponding risk satisfied the evaluation criteria at most, but not all, historical groundwater monitoring wells. However, data from monitoring well SHM-96-5B, at the north end of the landfill, showed arsenic concentrations up to two orders of magnitude greater than historical values in other wells. Therefore, supplemental groundwater investigations were performed by the Army to assess whether arsenic contamination exists beyond the Devens Reserve Forces Training Area boundary, and to characterize its nature and location. In accordance with the *Final Work Plan, Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts* (HLA, February 1999) the work included: a hydrogeologic assessment of groundwater recharge potential along the western edge of the landfill, characterization of groundwater flow and quality north of Shepley's Hill Landfill to Nonacoicus Brook, updating and refining the groundwater model for Shepley's Hill Landfill, and analyzing rock samples for naturally occurring arsenic.

1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted at the Shepley's Hill Landfill in Devens, Massachusetts based on the Record of Decision (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18. This report was developed by the U.S. Army Corps of Engineers (USACE), New England District (NAE).

The Long Term Monitoring and Maintenance Plan (LTMMP) (SWEC, May 1996) for Shepley's Hill Landfill outlines the landfill closure monitoring and maintenance procedures. These procedures include a semi-annual groundwater sampling program to monitor contaminants, and an annual visual inspection and gas emission monitoring of the landfill cap. This report documents the seventh year of the long term monitoring program. The first two years of monitoring, 1996 and 1997, were conducted by Stone & Webster Environmental Technology & Services (SWEC). From 1998 through 2002, monitoring has been conducted by NAE. Post closure monitoring is required for a period of thirty years.

2.0 LANDFILL CAP MAINTENANCE ACTIVITIES

The Record of Decision for the Shepley's Hill Landfill required monitoring and maintenance of the landfill cap based on observations made during the annual inspections. Based on a recommendation made in the previous annual report, a topographic survey of the landfill was conducted in 2002 and compared to as-built topography to determine settlement patterns and drainage issues. The analysis and conclusions are detailed in a draft feasibility study report submitted to the Army by the USACE under separate cover. provides a set of alternatives to reduce the potential for water to pond, migrate and/or infiltrate through the existing cap. Some of the findings of the current inspection (refer to Section 3.0, Landfill Cap Monitoring Activities) will be addressed in that report, including recommendations concerning fencing on the perimeter of the landfill. Normally scheduled maintenance activities performed during 2002 included mowing of the landfill vegetative cover and cutting vegetative growth in drainage swales. The remaining recommended maintenance items listed in the previous annual report did not pose an immediate risk to the integrity of the landfill cap, and are considered non-critical maintenance procedures. Maintenance activities of this non-critical nature will continue to be monitored and evaluated. In the event that repair needs are identified which would prevent immediate damage to the cap, they will be conducted expeditiously.

3.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected on 5 November 2002 by personnel from the U.S. Army Corps of Engineers, New England District (NAE). Features of the landfill inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Appendix A of this report contains the Landfill Maintenance Checklist that summarizes the findings of this inspection. All observations are also presented on Figure 3-1. A narrative of the findings of this inspection follows.

- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. This rim of this catch basin should be lowered to the surrounding grade.
- Catch basin #7 near the southwest corner of the site is substantially overgrown by the adjacent vegetation and will soon be completely overgrown and hidden from view. This catch basin should be cleared of encroaching vegetation.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in. The grade of the channel bottom is uneven and standing water is present. Wetland species are becoming established as well. The structure and channel immediately downstream should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel should then be reseeded or riprap should be placed, depending on water velocities.
- Most of the drainage swale on the south side is being invaded by wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage. The south side drainage swale should be cleared of wetland vegetation and regraded as needed to properly drain all areas of standing water. Depending on water velocities, the channel should then be reseeded or riprap should be placed.
- In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the new rock-lined channel, the drainage swale is overgrown with wetland species. It appears to be silted in and has a large area of standing water. This reach of the drainage swale should be cleared of all vegetation and accumulated silt and sand, and regraded to drain properly. Seeding, or riprap placement, should follow, depending on water velocities.
- The northern reaches of the eastern drainage swale have some minor vegetation growth and sand accumulation. The swale should be cleared.

- In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should extend at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations, most notably at the Cook Street entrance, and continuing over to the dirt road at catch basin number 7. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the cap area was seen. On the east side near monitoring well SHL-11, the fence has been rolled back and is open. A gate and lock should be added here if permanent access is required. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired. Currently the entire perimeter fencing system is under review, and recommendations are forthcoming.
- The gas monitoring probes installed in 2001 at the northwest edge of the landfill appear to be in excellent condition, with locked, steel caps.
- The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time.

A summary of Corrective Action measures for the Landfill Cap are included in Section 9.0.

4.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site. Four new landfill gas monitoring probes were installed on 7 November 2001. This is the second annual report including data from those probes. The purpose of the probes is to monitor landfill gas migration from Shepley's Hill Landfill towards Sculley Road.

The seventh annual landfill gas sampling was conducted on 5 November 2002. The weather was sunny, with temperatures in the 50's (F), and the barometric pressure was 29.92 inches of mercury and FALLING. Gas samples were field analyzed for the following parameters using the listed equipment:

Parameter	Equipment
Total Volatile Organic Compounds (VOC)	HNu Photoionization Detector (PID) with a 10.6 eV lamp
Percent Oxygen	Industrial Scientific TMX 412 Combustible Gas Indicator (CGI)
Hydrogen Sulfide (ppm)	CGI
Percent Lower Explosive Limit (LEL)	CGI
Carbon Monoxide (ppm)	CGI
Percent Carbon Dioxide	Landtec Gem 500, GA-90 landfill gas monitor
Percent Methane	Landtec Gem 500, GA-90 landfill gas monitor

The CGI and the Landtec GA-90 were both calibrated in the shop by U.S. Environmental. The PID was calibrated in the field to 248 ppm isobutylene and 0 ppm.

Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to a MSA LC pump. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached

to the MSA pump and turned on. Once stabilization was reached, readings were recorded as displayed in Table 4-1. The locations of the gas vents and probes are shown in Figure 3-1.

The following is a brief summary of the results. The perimeter landfill gas monitoring probes (LGP-01-01X, LPG-01-02X, LPG-01-03X, LPG-01-04X) tested negative (0) for VOC's, hydrogen sulfide, carbon monoxide, and methane. Minimal levels of carbon dioxide were detected, ranging from 0.2 % at LGP-01-01X to 1.4 % at LGP-01-02X. Oxygen levels ranged from 19.3 % at LGP-01-02X to 20.2% at LGP-01-01X.

The following summarizes the gas vent results. VOCs were not detected in any of the gas vent wells. The oxygen levels ranged from 20.7% (Vent # 16) to 2.2% (Vent # 14) using the GA-90. No gas vent wells tested positive for hydrogen sulfide, reading 0 for all wells. LEL readings ranged from 0% in V-1 to over 100% LEL in Vent Nos. 3, 4, 6, 9, 13, 14, 15 and 18. Carbon monoxide registered 0 in all of the gas vent wells and vents. Carbon dioxide ranged from 19 ppm (Vent # 18) to 0 ppm (Vent # 12). Methane ranged from 23.5 ppm (Vent # 18) to 0 ppm in V-1.

The gas readings are within the parameters of a mature landfill. The vents are functioning properly. The scenario of high atmospheric pressure to low atmospheric pressure results in a venting of landfill gas into the atmosphere. The scenario of low atmospheric pressure to high atmospheric pressure results in air intrusion into the upper portion of the landfill. The scenario during this inspection was likely somewhere in-between. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should be no off-site migration of landfill gases; however, due to the high LEL readings and the proximity of residential housing and commercial development, gas monitoring probes should be installed along the property line where the landfill is adjacent to structures (note that this has been done at the northern end near Sculley Road). Gas monitoring probes should also be installed at the southern perimeter of the site along the commercial properties. The LEL readings along the southern perimeter, including gas vents 13, 14, 15, and 18 have consistently registered LEL readings above 100%.

5.0 GROUNDWATER ELEVATIONS

Groundwater elevations were collected from each well during groundwater sampling activities. The depth to groundwater was subtracted from the elevation of the reference point to determine the elevation of the groundwater at each location. Table 5-1 lists the water level elevations for each well for each sampling round. Also included in that table, for reference, are the geological interfaces of the wells, and the elevation of the screened interval for each well. Figure 5-1 shows a cross-section of the wells in the monitored area that has generally shown the highest levels of chemicals of concern, while Figure 5-2 shows the location of that cross-section relative to the landfill. During each sampling event, groundwater elevations were recorded on the first day of sampling for all compliance point wells scheduled to be sampled. Groundwater elevations measured during May 2002 were consistently higher than those measured in October 2002, as is typical for the area. The mean drop in groundwater elevation (from spring to fall reading) was 1.1-feet for the fourteen wells. Groundwater levels in 2002 were typically higher than those in the prior year, with spring levels rising an average 0.4-feet from the previous spring, and fall levels rising 0.6-feet on average. This indicates a partial recovery from low levels caused by low precipitation totals in 2001.

In addition to these semi-annual groundwater measurements, regular groundwater measurements of all Shepley's Hill Landfill wells were conducted by Harding ESE (formerly ABB-ES and HLA) from 1992 until 1999. During the first 5-year review (SWEC, August 1998), groundwater elevations were re-evaluated to identify hydraulic gradients and to confirm changes due to the construction of the landfill cap. Groundwater modeling has suggested that the landfill cap has reduced the volume of water beneath the cap, resulting in a more northerly groundwater flow (SWEC, 1998). Groundwater flow patterns will be reevaluated during the next 5-year review.

In light of data collected for the first Five-Year Review, performed in accordance with the Record of Decision for the Shepley's Hill Landfill Operable Unit, Harding ESE undertook supplemental groundwater investigations that included, in part, a hydrogeologic assessment to obtain additional data to evaluate the effectiveness of the selected remedial action.

6.0 GROUNDWATER SAMPLING

Groundwater sampling activities at the landfill are conducted semi-annually. Groundwater sampling, for the seventh consecutive year, was conducted in the spring (May 20 and 21, 2002) and in the fall (October 28 through 30, 2002). There were no significant precipitation events during either sampling event. During the week prior to the spring sampling event, approximately three inches of precipitation fell in the area, while approximately one inch fell in the week before the fall event. Wells are designated as either Group 1 or Group 2 wells. Wells which have historically attained cleanup goals are given a Group 1 designation. Wells which have not historically attained cleanup goals are designated as Group 2 wells. Initially, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated during the first five-year site review (SWEC, August 1998). During the first five-year site review, six wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. All other wells, including the three new wells, were classified as Group 2 wells. These group designations are presented in Table 6-1, as well as the occurrences of Group 1 wells that have exceeded cleanup levels for trigger chemicals since the first five-year site review. During 2002, two of the Group 1 wells were determined to contain such levels of arsenic (clean-up level = 50 µg/L): SHL-9 was found to contain 144 μg/L in the spring, and SHL-22 was found to contain 55.9 B μg/L and 77.1 μg/L in the spring and fall, respectively.

6.1 Preparation for Sampling

Wells sampled as part of the long term monitoring program included SHL-3, SHL-4, SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHL-20, SHL-22, SHM-96-22B, and SHM-93-22C. Locations of the wells are shown on Figure 3-1. Of these fourteen long-term monitoring wells, the seven at the north end of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C) are located in the area predicted to experience the greatest intrusion of groundwater flow from the landfill, as suggested by the modeling results depicted in Figure 6-1.

Sampling activities were coordinated with the Devens BRAC Environmental Office and the contract laboratory prior to commencement of sampling. The contract laboratory was contacted approximately three weeks prior to sampling and was requested to prepare and deliver sampling bottles, quality assurance bottles and coolers to New England District approximately one week prior to the sampling event. Bottles were checked to insure that they complied with the requirements of the sampling program. Sampling equipment (including YSI water quality meters, portable generators, Solinst water level indicators, and teflon lined tubing) was reserved for rental/purchase from U.S. Environmental and picked up in the days preceding the sampling event. NAE used their own Grundfos Rediflow II pumps, controllers, Heron water level indicators, and HF Scientific DRT-15CE turbidity meters for the sampling events (NAE's equipment is occasionally supplemented with identical or similar models rented from U.S. Environmental, as required – these instances are noted on the Groundwater Field Analysis Forms where appropriate). All equipment was inventoried and tested to ensure

it was accounted for and functioning. The well logs of each of the wells to be sampled were reviewed by the field team prior to the scheduled event to determine tubing requirements, and brought to the landfill during the sampling event to confirm the screened intervals.

6.2 Sampling

The seventh year of sampling was conducted by NAE on May 20 and 21, 2002 and later on October 28 through 30, 2002. Monitoring wells were purged and sampled in accordance with EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (July 1996) using an adjustable rate, low flow submersible pump. Teflon lined tubing was used for sample collection and was disposed after each well was sampled.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. YSI water quality meters and turbidity meters were calibrated at the beginning of each day of use. A calibration check was also performed at the end of each day. During sampling, the generator used to power the pumps was located at a downwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust. Upon initial opening of each well, initial water level measurements were collected. The pump intake was lowered to approximately the middle of the screen of each well to be sampled when possible. When the water level was below the top of the screen, the pump was positioned at a depth approximately between the top of the water level and the bottom of the screen.

Water quality parameters, including temperature (temp), specific conductance, pH, oxidation reduction potential (ORP), turbidity, and dissolved oxygen (DO) were collected every 3 to 5 minutes to ensure proper purging of the wells before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix B. All water quality parameters, except turbidity, were monitored using a flow-through cell and a Sonde-YSI water meter (YSI 600XL). Turbidity samples were not collected from the flow through cell due to the silt buildup that can occur in the cell. A T-connector was set up before the flow-through cell to facilitate the collection of samples for turbidity readings. Sampling was conducted when water quality parameters became stabilized for three consecutive readings. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during the sampling activities include:

- To ensure precision of water level measurements, well casings that had faded marks or no marks were remarked.
- None of the pre-preserved sample bottles required pH adjustments after they were filled with the water samples.
- In cases where the water level was lower than the top of the screen, the pumps were lowered to approximately midpoint between the water level and the

bottom of the screen. This procedure occurred at several wells during each event.

- Past difficulties with maintaining flowrates and achieving stabilization at wells SHL-3 and SHL-10 showed improvement in 2002, after an attempt to redevelop both wells was made on April 15, 2002 by NAE personnel.
- Instrument calibration checks performed at the end of each day of sampling revealed that the oxidation reduction potential (ORP) readings taken with one of the YSI water quality meters on October 29, 2002 could be questionable. This meter was used to measure ORP at wells SHL-11, SHL-22 and SHM-96-22B on that day (in the order listed). However, only the ORP readings taken at the last well, SHM-96-22B, appear possibly circumspect after reviewing historical ORP data (indicating the readings may be somewhat high biased) and concurrent dissolved oxygen (DO) readings (indicating nothing conclusive). Even so, the readings taken at SHM-96-22B may be valid, as the discrepancy from the limited historical data is not exceedingly large. For the other two wells, the readings are in good agreement with historical data and the relationship between ORP and DO dictates that these values are reasonable.
- During the fall sampling round, ground water sampling well SHM-99-32X, which is located outside the landfill (off of Molumco Road), was found damaged. Apparently, a vehicle collided with the well with a force great enough to destroy the bollards and severely bend the well casing. As such, a sample from this well could not be collected. This well is not among the fourteen compliance point wells at Shepley Hill Landfill, but it is one of four extra wells that have been historically sampled for comparison. Restoration of this well will be addressed in 2003.

6.3 Equipment Decontamination

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination between sampling points. The submersible pump was decontaminated using the following procedure:

- Upon removal of the pump from the well following sample collection, the pump was submersed in a 4-inch PVC riser containing potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (starting the pump at a low flow rate, as in sampling, and increased to a higher speed).
- The pump was removed and sprayed with potable water to minimize the transfer of soap to the rinser.

- The pump was then submersed in a riser filled with potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in a riser filled with deionized water and at least 1 to 2 gallons were pumped through.
- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a hand held spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

7.0 LABORATORY TESTING

Groundwater was sampled at monitoring well locations using the low-flow method in accordance with the procedures outlined in the approved Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill (SWEC, May 1996). Samples were sent to Severn Trent Laboratories in Colchester, Vermont for analysis. For the spring event, the fourteen compliance point samples were collected on May 20 and 21, 2002, with four additional samples collected off-site on May 22, 2002. For the fall event, the fourteen compliance point samples were collected on October 28 through 30, 2002, with three additional samples collected off-site on October 31, 2002. Samples were placed in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leakproof plastic bag and placed in a strong thermal ice chest (cooler) filled with bubble wrap packing material, or equivalent, to ensure sample integrity during shipment. Ice was added to cool samples to 4° C or just below. Chains of Custody (COCs) were used to identify and document the samples being shipped (copies are included in Appendix C). Sample custody was initiated by the sampling team upon collection of samples and COC forms were placed in waterproof plastic bags and taped to the inside lid of the cooler. The cooler was sealed with chain-of-custody seals and shipped to the laboratory via overnight delivery.

7.1 Analyses

Water analyses were conducted according to SW846 methods 8260B for volatile organics, 6010B/7470A for TAL metals, and as follows for general chemistry analyses: chemical oxygen demand by EPA method 410.1, biochemical oxygen demand by EPA method 405.1, hardness by Standard Method 2340B, alkalinity by EPA method 310.1, cyanide by EPA method 335.4, anions by EPA method 300.0, total organic carbon by SW846 method 9060, total dissolved solids by EPA method 160.1, and total suspended solids by EPA method 160.2. These analyses were conducted at all fourteen compliance point wells. As reported in the previous annual report, starting with the fall event of 2001, the method used to determine hardness was changed to Standard Method 2340B in order to eliminate the interference to EPA method 130.2 from other heavy metal ions typically present in some of the wells at the site. Table 7-1 indicates the analysis and procedures used for groundwater samples collected at Shepley's Hill Landfill.

7.2 Results

The approach for evaluating the effectiveness of the remedy is presented in the Record of Decision (ABB-ES, 1995). Of the chemicals of concern identified in the Record of Decision, only those chemicals that present carcinogenic risk were considered trigger chemicals in the Long Term Monitoring and Maintenance Plan (SWEC, May 1996). The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. Therefore, the evaluation of effectiveness of Alternative SHL-2 is based on the reduction of carcinogenic risk, rather than reduction of contamination, as a measure of progress toward attainment of cleanup. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor

contributor to risk (i.e., 1,2-dichloroethane) overshadows the achievement of a 50 percent reduction of concentration of a higher carcinogenic risk (arsenic). Risk reduction was evaluated during the first five-year review in August 1998. However, for the annual reports the contaminant concentrations will be referenced against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill Landfill is due to arsenic in the groundwater.

Arsenic was the only trigger chemical detected above cleanup levels at the site during the 2002 sampling events. Analytical results for groundwater analyses of samples collected at the fourteen compliance point wells are presented in Tables 7-2 and 7-4, for the spring and fall rounds, respectively. Tables 7-3 and 7-5 present additional data collected beyond the requirements of the Long Term Monitoring and Maintenance Plan, determined from samples taken at off-site wells near Molumco Road. Historical arsenic data for the fourteen compliance point wells, plus the additional wells, may be found in Table 7-6.

Refer to Appendix D for a graphical comparison of historical arsenic concentrations in compliance point monitoring wells. Most wells indicated no definitive change over previous arsenic values, including SHM-96-5B, which continues to record the highest levels of the wells monitored (tending to be higher in the spring). Wells SHL-9, SHL-11, SHL-22 and SHM-96-22B all recorded new high arsenic levels in 2002. Of those wells, SHL-11, SHL-22 and SHM-96-22B are showing trends that may be expected to continue rising. However, well SHM-96-22B, which typically shows one of the highest arsenic levels, also recorded a new low arsenic level in the fall. Data collected in the coming years will reveal the significance, or lack thereof, of this anomaly. Similarly, the historical peak value determined for well SHL-9 in the spring was uncharacteristic. Well SHL-20 continues to show a slow decline in arsenic levels.

Tables 7-2 through 7-5 present detectable concentrations of chemical contaminants. Where concentrations were not detected the value is recorded as less than the detection limit. These results are compared against the applicable cleanup level. Results of wet chemistry analyses are also included in the table. The results of the spring and fall events are summarized below.

7.2.1 Results for Samples Collected Spring 2002

Volatile Organic Compounds (VOCs), metals and general chemistry parameters were analyzed in eighteen groundwater monitoring wells in the spring of 2002. These wells consisted of the fourteen compliance point wells at the landfill site, plus four additional wells near Molumco Road.

None of the eighteen wells had detectable concentrations of the four VOC trigger chemicals (1,2-dichloroethane, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene). Therefore, none of the established cleanup levels were exceeded for these parameters. Furthermore, none of the other VOCs analyzed were detected above cleanup levels at any of the wells.

Of the identified chemicals of concern for metals, only arsenic was declared a trigger chemical for this site. Arsenic was detected at concentrations greater than the cleanup level of 50 μ g/L in the following compliance point monitoring wells: SHM-96-5B (3,800 μ g/L), SHM-96-5C (50.4 B μ g/L), SHL-9 (144 μ g/L), SHL-11 (469 μ g/L), SHL-19 (66.9 μ g/L), SHL-20 (154 μ g/L), SHL-22 (55.9 B μ g/L) and SHM-96-22B (2,040 μ g/L). The duplicate sample (collected from well SHM-96-5B) had a concentration of 3,830 μ g/L.

The other chemicals of concern (those not designated as trigger chemicals) detected at concentrations above cleanup levels were also metals (iron, manganese, and sodium). Metal chemicals of concern that were not found to exceed cleanup levels at any of the wells include aluminum, chromium, lead and nickel. Iron was detected at levels above its cleanup level of 9,100 μg/L at compliance point wells SHM-95-5B, SHM-96-5C, SHL-9, SHL-11, SHL-19, and SHM-96-22B, with the maximum detected (92,000 μg/L) at well SHM-96-22B. Compliance point wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, and SHL-20 had concentrations of manganese above the cleanup level of 1,715 μg/L. The maximum value detected for manganese was 11,000 μg/L at SHM-96-5B. Sodium was detected at levels above its cleanup level of 20,000 μg/L at compliance point wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, SHL-22 and SHM-96-22B with the maximum detected (43,700 μg/L) at well SHL-22.

The same four chemicals of concern were those found to be above the landfill's cleanup levels at some of the four off-site monitoring wells near Molumco Road. Of these four wells, SHM-99-31C was indicated as having the highest levels of each of these parameters (345 μ g/L arsenic, 54,100 μ g/L iron, 7,720 μ g/L manganese and 47,600 μ g/L sodium). The sodium concentration determined here is higher than at any of the fourteen compliance point monitoring wells.

7.2.2 Results for Samples Collected Fall 2002

Volatile Organic Compounds (VOCs), metals and general chemistry parameters were analyzed in seventeen groundwater monitoring wells in the fall of 2002 (the fourteen compliance point wells at the landfill site, plus three additional wells near Molumco Road), with the following exceptions noted. Due to laboratory error, VOCs, mercury and total organic carbon samples collected at one of the Molumco Road wells, SHM-99-31C, were not analyzed. An eighteenth well, which is normally monitored during these events, could not be accessed for sample collection due to recent severe damage to the well casing (apparently caused by a vehicular collision). This well, SHM-99-32X, is also located near Molumco Road. All fourteen compliance point wells were sampled and analyzed for all required parameters.

None of the sixteen wells analyzed for VOCs were determined to have concentrations of the four VOC trigger chemicals (1,2-dichloroethane, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene) above the established cleanup levels. The only well found to have a detectable concentration of any these four VOCs was SHL-11 (2.0 J µg/L 1,4-

dichlorobenzene). Furthermore, none of the other VOCs analyzed were detected above cleanup levels at any of the wells.

Of the identified chemicals of concern for metals, only arsenic was declared a trigger chemical for this site. Arsenic was detected at concentrations greater than the cleanup level of 50 μ g/L in the following compliance point monitoring wells: SHL-4 (56.1 μ g/L), SHM-96-5B (1,970 μ g/L), SHL-11 (648 μ g/L), SHL-19 (164 μ g/L), SHL-20 (175 μ g/L), SHL-22 (77.1 μ g/L) and SHM-96-22B (159 μ g/L). The duplicate sample (collected from well SHM-96-5B) had a concentration of 1,960 μ g/L.

The other chemicals of concern (those not designated as trigger chemicals) detected at concentrations above cleanup levels were also metals (iron, manganese, and sodium). Metal chemicals of concern that were not found to exceed cleanup levels at any of the wells include aluminum, chromium, lead and nickel. Iron was detected at levels above its cleanup level of 9,100 μ g/L at compliance point wells SHM-95-5B, SHM-96-5C, SHL-11, SHL-19, and SHL-20, with the maximum detected (64,500 μ g/L) at well SHL-11. Compliance point wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20 and SHL-22 had concentrations of manganese above the cleanup level of 1,715 μ g/L. The maximum value detected for manganese was 13,000 μ g/L at SHM-96-5B. Sodium was detected at levels above its cleanup level of 20,000 μ g/L at compliance point wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, SHL-22 and SHM-96-22B with the maximum detected (114,000 μ g/L) at well SHM-96-22B.

The same four chemicals of concern were those found to be above the landfill's cleanup levels at some of the three off-site monitoring wells near Molumco Road. Of these three wells, SHM-99-31C was indicated as having the highest levels of each of these parameters $(332 \mu g/L \text{ arsenic}, 45,500 \mu g/L \text{ iron}, 6,740 \mu g/L \text{ manganese} \text{ and } 47,200 \mu g/L \text{ sodium}).$

8.0 QUALITY CONTROL

Quality assurance/quality control (QA/QC) samples were collected to monitor the sample collection, transportation, and analysis procedures.

8.1 Field Quality Control

One set of equipment (rinsate) blank samples was collected from the pump after decontamination had been conducted for each sampling event (spring and fall) and analyzed for the full suite of analytical parameters. Results of equipment blank samples are discussed in Section 8.3, Data Evaluation. One field duplicate groundwater sample was collected during each sampling round at well SHM-96-5B and analyzed for the full suite of analytical parameters. Results of duplicate samples are shown on Tables 7-2 and 7-4 and are also discussed in Section 8.3. One trip blank sample was collected per shipped cooler, and submitted for VOC analysis only to evaluate potential cross-contamination of samples during transport. No chemicals of concern were detected in the trip blanks.

8.2 Laboratory Quality Control

One set of QA samples were also collected by the sampling team and sent to the designated QA laboratory (an independent testing laboratory) in the form of duplicates for each sampling round. A QA sample was collected during each event at well SHM-96-5B and analyzed for the full suite of analytical parameters. QA samples were collected, packaged and shipped in the same manner as the other groundwater samples. Appendix E presents the Chemical Quality Assurance Report (CQAR) for both sampling rounds, providing a statistical comparison of the primary and QA laboratory results.

8.3 Data Evaluation

8.3.1 Data Evaluation for Samples Collected Spring 2002

Eighteen groundwater samples were collected at or near Shepley's Hill Landfill, Fort Devens, MA. Fourteen of these samples were collected at the landfill, and the remaining four samples were collected near Molumco Road. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Target Analyte List (TAL) Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on May 20, 21, and 22, 2002 (see Tables 7-2 and 3).

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, standard EPA SW846 guidance and/or guidelines provided in the EPA Contract Laboratory Program (CLP) Data Validation Functional Guidelines.

8.3.1.1 Sample Shipment and Receipt, Spring Event

All sample coolers were packed with ice in the field. Sample shipments were received at the laboratory on 21, 22, and 23 May 2002. All samples were appropriately preserved by the procedures shown in Table 8-1. There are no sample shipment or receipt anomalies associated with these samples.

8.3.1.2 Holding Times, Spring Event

Samples were extracted and analyzed in accordance with the methods and holding time requirements cited in Table 8-1, except for BOD in which the 48-hour holding time was exceeded by between one to seven hours for samples SHL-3, SHL-4, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHL-20, SHM-99-31A, SHM-99-31B, and SHM-99-32X. All such results are consequently qualified.

8.3.1.3 Volatile Organic Compound (VOC) Analysis, Spring Event

In addition to the regular sample complement, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B); three trip blanks (dated 5/20/02, 5/21/02, and 5/22/02); one equipment blank (EB-5B, taken 5/21/02), and one MS/MSD (SHL-19 MS and SHL-19 MSD).

<u>Laboratory Method Blank, Trip Blank and Equipment Blanks</u>: Although there were some analytes detected at levels above the reporting limits, none were for the site-specific contaminants of concern. All results are consequently without qualifications.

<u>Laboratory Control Sample (LCS)</u>: Although there were some analytes with recoveries outside limits for all three of the LCS results, none of these exceedances were for the site-specific contaminants of concern, with the sole exception of 4-methyl-2-pentanone (for one LCS). Nevertheless, although positive bias for this analyte would normally be anticipated, since 4-methyl-2-pentanone was not detected in any potentially affected samples, all results are consequently without qualification.

<u>Field Duplicate Sample</u>: Sample results for SHM-96-5B, and its duplicate, sample SHM-DUP-02A, are within limits and no qualifications have been applied.

<u>Surrogates</u>: All recoveries are within acceptance limits and no qualifications have been applied.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>: One MS/MSD pair was analyzed for this project. Although there were four analytes whose recoveries were outside limits, none of these exceedances were for the site-specific contaminants of concern and no qualifications have been applied.

8.3.1.4 Target Analyte List (TAL) Metals Analysis, Spring Event

In addition to the regular sample complement, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B) along with one equipment blank (EB-5B, taken 5/21/02), and one MS/MSD (SHL-19 MS and SHL-19 MSD).

Laboratory Preparation Blank and Equipment Blank: Relative to the site-specific contaminants of concern, Pb, Se, and Zn were detected at levels less than the Contract Required Detection Limit (CRDL) but greater than the reporting limit (RL) for the preparation blank. In addition, Cd, Cr, Cu, Pb, Na, Se, and Zn were also detected in the equipment blank sample at levels less than the CRDLs but greater than the RLs. Finally, As and Mn were also detected in the equipment blank but at levels above both the CRDLs and the RLs. All results for these metals are qualified for those sample data concentrations within five times that of the greater of the preparation blank or the equipment blank value.

<u>Laboratory Control Sample (LCS)</u>: Since all analyte recoveries were within limits, no qualifications have been applied.

<u>Field Duplicate Sample</u>: For reported concentrations within five times the reporting limit, then the comparison was judged to be acceptable if the values were within two times the RL. As such, the precision is acceptable and no qualifications have been applied.

Matrix Spike (MS) and Duplicate (MSD): One set of (MS/ MSD) was analyzed for this project. All precision and accuracy calculations are within the acceptance limits for project analytes and no qualifications have been applied.

8.3.1.5 General Inorganic Analyses, Spring Event

In addition to the regular sample complement, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B) along with one equipment blank (EB-5B, taken 5/21/02), and one MS (SHL-19 MS). In addition, a laboratory repeat of sample SHL-19 was also performed.

<u>Laboratory Preparation Blank and Equipment Blank</u>: No target analytes were detected for preparation blanks. The equipment blank showed detectable levels of Alkalinity (4.0 mg/L) and COD (26 mg/L), but since no corresponding concentrations for sample results are within five times that of these equipment blank values, no qualifications have been applied.

<u>Field Duplicate Sample</u>: Of all matrix duplicate results, only COD exceeded precision limits. Consequently, COD results for samples SHM-96-5B and SHM-96-5B-DUP are qualified.

Matrix Spike (MS) and Duplicate: Of all MS/MSD results, there were no exceedances of precision or accuracy and no qualifications have been applied.

8.3.1.6 Conclusion, Spring Event

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, field duplicate results, surrogate recoveries, and MS/MSD recoveries), all necessary analytical data qualifications have been applied as summarized in Table 7-2, Table 7-3, and as enumerated above.

8.3.2 Data Evaluation for Samples Collected Fall 2002

Seventeen total groundwater samples were collected. Fourteen were collected from Shepley's Hill Landfill at the former Fort Devens and three from the Molumco Road wells (off-site), Ayer, Massachusetts. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Target Analyte List (TAL) Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on October 28, 29, 30 and 31, 2002 (see Tables 7-4 and 5).

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, with standard EPA SW846 guidance, with guidelines provided in the "Interim Chemical Data Quality Management (CDQM) Policy for USACE Hazardous, Toxic and Radioactive Waste (HTRW) Projects", dated 23 November 1998, and/or EM 200-1-10 (DRAFT/Final), "Guidance for Evaluating Performance Based Chemical Data Packages".

8.3.2.1 Sample Shipment and Receipt, Fall Event

All sample coolers were packed with ice in the field. Sample shipments were received at the laboratory on October 29, 30, 31 and November 1, 2002. All samples were appropriately preserved by the procedures shown in Table 8-1. There are no sample shipment or receipt anomalies associated with these samples.

8.3.2.2 Holding Times, Fall Event

Samples were prepared and analyzed in accordance with the methods and holding time requirements cited in Table 8-1, except for TDS in which the 48-hour holding time was exceeded by as much as three days in some cases. All samples for TDS are affected. TDS results for all samples are qualified as "H" for holding time exceedance.

8.3.2.3 Volatile Organic Compound (VOC) Analysis, Fall Event

Sixteen groundwater samples were analyzed for VOCs using SW846 method 8260B. As a result of an error at the laboratory, sample SHM-99-31C was not analyzed for volatiles. In

addition to the sixteen groundwater samples, the laboratory analyzed: one field duplicate (SHM-DUP), a duplicate of sample SHM-96-5B); four trip blanks (dated 10/28/02, 10/29/02, 10/30/02 and 10/31/02); and one equipment blank (SHL-EB, dated 10/30/02).

<u>Laboratory Method Blank, Trip Blank and Equipment Blank Results</u>: Target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for method blank, trip blank. The equipment blank sample exhibited acetone contamination at 5.7 ug/L. Since no acetone was detected in any of the samples, data is reported unqualified. All results are acceptable.

<u>Field Duplicate Sample Results</u>: VOC results for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for all detected target analytes. The field duplicate sample shows acceptable comparative results.

<u>Surrogate Results</u>: All VOC sample surrogate recoveries are within the laboratory's stated acceptance limits. All results are acceptable.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results: One set of matrix spike/matrix spike duplicate (MS/MSD) samples was submitted to the laboratory for analysis. As a result of an error at the laboratory, the MS/MSD samples for volatile analysis were not analyzed. In the absence of this information, the LCS/LCSD was reviewed and found to be in control for all project specific target analytes. Since the LCS/LCSD was in control, and surrogate spike recoveries were all acceptable and the fact that historically spike recovery for the project target analytes has not typically been a problem, all data is acceptable and usable.

8.3.2.4 Target Analyte List (TAL) Metals Analysis, Fall Event

Seventeen groundwater samples were analyzed for TAL metals using SW846 method 6010B or 7000 series methods. Through an error at the laboratory, sample SHM-99-31C was not analyzed for mercury. In addition to the seventeen groundwater samples, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B), and one equipment blank (SHL-EB, dated 10/30/02).

<u>Laboratory Preparation Blank and Equipment Blank Results</u>: Target analytes were undetected at levels above the Contract Required Detection Limit (CRDL) for preparation blank and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: The results of the metals for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for all analytes detected above the CRDL. All results are acceptable.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike (MS) and duplicate samples were analyzed for this project. All MS recoveries are within the 75-125 % recovery acceptance limits. For analytes, which showed concentrations above the CRDL, the duplicate RPDs are within the 20% acceptance limit. All results are acceptable.

8.3.2.5 General Inorganic Analyses, Fall Event

Seventeen groundwater samples were analyzed for general inorganic analyses, including Alkalinity by EPA method 310.1, Anions (Nitrate, Sulfate, and Chloride) by EPA method 300.0, Biochemical Oxygen Demand (BOD) by EPA method 405.1, Chemical Oxygen Demand (COD) by EPA method 410.1, Total Hardness by Standard Method 2340B, Total Dissolved Solids (TDS) by EPA method 160.1, Total Suspended Solids (TSS) by EPA method 160.2, Cyanide by EPA method 335.4, and Total Organic Carbon (TOC) by SW846 method 9060 with the following exception: due to an error at the laboratory, analysis of TOC was not performed for sample SHM-99-31C. In addition to the seventeen groundwater samples, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B) and one equipment blank (SHL-EB, dated 10/30/02).

<u>Laboratory Preparation Blank and Equipment Blank Results</u>: All target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for preparation blank samples.

Field Duplicate Sample Results: The results of the general inorganic analyses for sample SHM-96-5B, and its duplicate, sample SHM-DUP, showed less than 20 % relative percent difference for all detected analytes, except COD and TOC. As a result of the exceedance of RPD criteria for COD and TOC, sample SHM-96-5B, and its duplicate are qualified with a "*", indicating that the duplicate sample RPD values are outside the acceptance limits. Other field duplicate results show acceptable comparative results.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike and duplicate samples was analyzed for Anions, TOC, COD, Total Hardness and Alkalinity. All MS recoveries are within the laboratory's acceptance limits.

8.3.2.6 Conclusion, Fall Event

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, surrogate recoveries, field duplicates, and MS/MSD recoveries), all data may be reported without qualification, except as summarized below:

- Total Dissolved Solids (TDS) Analysis: Holding times for TDS were exceeded in some cases by as much as several days. All samples for TDS analysis are affected. All results are qualified as estimated "H" as a result of holding time exceedance.
- Chemical Oxygen Demand (COD) Analysis and Total Organic Carbon (TOC) Analysis
 The results of sample SHM-96-5B and it's duplicate for both of these parameters exhibited greater than 20% RPD. Therefore, results for the sample and duplicate are qualified, "*", indicating that duplicate sample RPD values are outside of the acceptance limits.

9.0 CORRECTIVE ACTION

Options for corrective action have been detailed in a draft report titled "Draft Cap Drainage Report, Shepleys Hill Landfill, Devens RFTA, Ayer, MA" and dated January 2003, which was submitted to the Army by the USACE. Implementation of the selected options should improve the drainage and function of the landfill cap. The following items should be addressed before the next inspection or as provided for in the final recommendations in the report cited above: (1) Repair and replace the security fence and gates as required to control access to the site; (2) Place topsoil and seed over the sandy area lacking vegetation on the east side along the perimeter of the cap. Along with the corrective actions listed above, it is recommended to: (1) Install additional landfill gas monitoring probes along the commercial property at the south side of the landfill; (2) Repair and regrade around the catch basins on the south side of the landfill.

With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately.

TABLE 4-1 Landfill Gas Monitoring

INSPECTOR: Kullberg/Michalak TITLE: Civil Engineer DATE: 11/05/02

ORGANIZATION: CENAE-EP WEATHER: Sunny, 50 d F,

BAROMETER: 29.92 in Hg TIME: 1050 BAROMETER: 29.86 in Hg TIME: 1330

Vent	VOC	O_2	H ₂ S	LEL	CO	CO ₂	CH4	Remarks
No.	ppm	%	ppm	%	ppm	%	%	
	PID	GA-90	CGI	CGI	CGI	GA-90	GA-90	
V-1	0.0	18.3	0	0	0	1.2	0	CGI O2 – 18.9
V-2	0.0	18.1	0	75	0	1.3	1.4	CGI O2 – 18.1
V-3	0.0	10.7	0	>100	0	5.7	3.4	CGI O2 – 10.7
V-4	0.0	14.1	0	>100	0	4	0.9	CGI O2 – 14.0
V-5	0.0	18.8	0	0	0	0.8	0	CGI O2 – 19.0
V-6	0.0	15.4	0	>100	0	3.4	2.8	CGI O2 – 15.9
V-7	0.0	18.0	0	16	0	0.8	0.2	CGI O2 – 18.3
V-8	0.0	16.1	0	40	0	2.4	0.6	CGI O2 – 16.3
V-9	0.0	7.2	0	>100	0	14.7	19.8	CGI O2 – 9.3
V-10	0.0	17.8	0	9	0	0.6	0	CGI O2 – 17.7
V-11	0.0	16.3	0	62	0	1.5	1	CGI O2 – 16.5
V-12	0.0	20.5	0	0	0	0	0	CGI O2 – 20.7
V-13	0.0	9.3	0	>100	0	6.3	4.9	CGI O2 – 9.0
V-14	0.0	2.2	0	>100	0	15.7	18.6	CGI O2 – 2.0
V-15	0.0	4.2	0 -	>100	0	12.2	10.6	CGI O2 – 4.4
V-16	0.0	20.7	0	0	0	0	0	CGI O2 – 20.9
V-17	0.0	14.9	0	17	0	3	0.5	CGI O2 – 19.2
V-18	0.0	3.2	0	>100	0	19	23.5	CGI O2 – 3.4
PGV-1	0.0	20.2	0	0	0	0.2	0	CGI O2 – 21.7
PGV-2	0.0	19.3	0	0	0	1.4	0	CGI O2 – 19.5
PGV-3	0.0	20.2	0	0	0	0.6	0	CGI O2 – 20.3
PGV-4	0.0	20.2	0	0	0	0.2	0	CGI O2 – 21.7

CALIBRATION INFORMATION:

Instrument: PID, 10.6 eV lamp

Results: 0.0/248 ppm isobutylene Calibrated by: Michalak

Instrument: Industrial Scientific TMX 412 CGI

Results: 53% LEL Methane/Pentane, 14%, 20.9% O₂, 26 ppm H₂S, 54 ppm CO Calibrated by: US Environmental Co

Instrument: <u>Landtech Gem 500 GA-90</u> Results: 20.9% O2, 15% CO2, 15% CH4

Calibrated by: US Environmental Co

TABLE 5-1
Monitoring Well Specifications and Groundwater Elevations

			Groundwater Elevations (feet NGVD)						
Well Identification	Description	Screened Interval (feet NGVD)	May 20, 2002	October 28, 2002					
SHL-3	Water Table	213.4-223.4	218.27	217.61					
SHL-4	Water Table	213.0-223.0	218.48	217.89					
SHL-5	Water Table	203.4-213.4	216.19	215.60					
SHM-96-5B	Base of Sand/Till	128.5-138.5	214.94	213.47					
SHM-96-5C	Water Table	158.5-168.5	214.91	213.44					
SHL-9	Water Table	197.8-207.8	215.10	213.23					
SHL-10	Water Table	210.1*-231.0	218.18	217.26					
SHM-93-10C	Bedrock	192.7-202.7	218.79	218.09					
SHL-11	Water Table	206.5-221.5	217.64	217.22					
SHL-19	Water Table	209.3-224.3	219.14	217.98					
SHL-20	Base of Till	185.8-195.8	217.74	217.24					
SHL-22	Base of Till	104.5-114.5	214.74	213.19					
SHM-96-22B	Sand/Till Interface	127.6-157.6	214.70	213.18					
SHM-93-22C	Bedrock	87.3-97.3	214.75	213.20					

^{*} Records show well SHL-10 having an as-built bottom elevation of 207.0 NGVD. Recent field observations have revealed that fine material has collected in the bottom of the well, causing refusal to be met at 211.2 NGVD prior to this year. On 15 April 2002, an attempt was made to redevelop the well, with over a foot of the material being removed. At that point, the amount of material continuing to resuspend, allowing removal, was minimal.

TABLE 6-1 Monitoring Well Designations

	Well Designation	Exceedances of Cleanup Levels
Monitoring	(Based on First Five-Year	for Trigger Chemicals, Since
Well Identification	Review, SWEC, Aug 1998)	Achieving Group 1 Status
	100000,000	
SHL-3	Group 1	None
SHL-4	Group 2	Not Applicable
SHL-5	Group 1	None
SHM-96-5B	Group 2	Not Applicable
SHM-96-5C	Group 2	Not Applicable
SHL-9	Group 1	71.3 µg/L As (Spring 1999)
		144 μg/L As (Spring 2002)
SHL-10	Group 2	Not Applicable
SHM-93-10C	Group 1	None
SHL-11	Group 2	Not Applicable
SHL-19	Group 2	Not Applicable
SHL-20	Group 2	Not Applicable
SHL-22	Group 1	55.9 B μg/L As (Spring 2002)
		77.1 µg/L As (Fall 2002)
SHM-96-22B	Group 2	Not Applicable
SHM-93-22C	Group 1	51.1 μg/L As (Fall 1998)

As - Arsenic

B - Value was within 5 times of the greater amount detected in the equipment or preparation blank samples.

TABLE 7-1

Groundwater Sample Analysis and Procedures

PARAMETERS	METHOD
Volatile Organic Compounds	
Xylenes	SW846 8260B
Acetone	3 W 040 0200D
2-Butanone	
2-Methyl-2-Pentanone	
Benzene	
Methyl-t-Butyl Ether	
1,1-Dichloroethane	
1,2-Dichloroethene (total)	
1,2-Dichloroethane	
1,2-Dichlorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
Inorganics	
Aluminum	SW846 6010B
Arsenic	
Barium	except Cyanide by EPA 335.4
Cadmium	
Chromium	and Mercury by SW846 7470A
Copper	
Cyanide (wet chemistry)	
Iron	
Lead	
Manganese	
Mercury	
Nickel Selenium	
Sodium	
Silver	
Zinc	
General Parameters (laboratory determination)	
77 -1	
Hardness	SM 2340B
Total Dissolved Solids	EPA 160.1
Total Suspended Solids Chloride	EPA 160.2
Nitrate as N	EPA 300.0
Sulfate	EPA 300.0
Alkalinity	EPA 300.0
Biochemical Oxygen Demand – 5 day	EPA 310.1 EPA 405.1
Chemical Oxygen Demand	EPA 403.1 EPA 410.1
Total Organic Carbon	SW846 9060
	511010 2000
General Parameters (field determination)	
pН	
Temperature	
Specific Conductance	
Dissolved Oxygen	
Oxygen Reduction Potential	
Turbidity	

Table 7-2

Groundwater Analytical Results - May 20 & 21, 2002 Sampling Event Shepley's Hill Landfill Compliance Point Wells Devens, Massachusetts

(Sheet 1 of 1)

	Well No.	SHL-3	SHL-4	SHL-5	SHM-96-58	SHM-96-5B DUP	SHM-96-5C	SHL-9	SHL-10	SHM-93-10C	SHL-11	SHL-19	SHL-20	SHL-22	SHM-96-22B	SHM-93-22C
PARAMETERS	CLEANUP	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L
	LEVEL (1)													L		
	µg/L															
VOLATILES (8260B)																
Xylenes	10,000 (2)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	3,000 (4)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone	- 1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-Pentanone	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	5 (2)	<5.0	<5.0	<5.0	1.0 J	1.1 J	1.4 J	<5.0	<5.0	<5.0	2.1 J	<5.0	1.4 J	<5.0	1.6 J	<5.0
Methyl-t-Butyl Ether	70 (4)	<5.0	<5.0	<5.0	1.0 J	1.1 J	1.6 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.5 J	1.1 J	1.2 J
1,1-Dichloroethane	70 (4)	<5.0	<5.0	<5.0	1.8 J	1.8 J	1.8 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2.2 J	2.3 J	1.6 J
1,2-Dichloroethene (total)	70 (2)	<5.0	<5.0	<5.0	2.7 J	2.7 J	2.8 J	<5.0	<5.0	<5.0	<5.0	<5.0	1.0 J	2.7 J	3.2 J	1.2 J
1,2-Dichloroethane	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	600 (2)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichlorobenzene	600	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
METALS (6010B or as noted)												<u></u>				
Aluminum	6,870	<19.8	<19.8	248	<19.8	<19.8	<19.8	229	<19.8	21.2	<19.8	<19.8	<19.8	<19.8	<19.8	<19.8
Arsenic	50	2.8 B	47.8 B	11.9 B	3,800	3,830	50.4 8	144	4.0 B	11.0 B	469	66.9	154	55.9 B	2,040	30.5 B
Barium	2,000 (2)	8.6	23.2	10.0	60.1	60.9	55.9	17.5	<6.3	8.1	101	15.6	94.7	15.8	100	68.8
Cadmium	5 (2)	1.2 B	1.1 B	1.3 B	1.1 B	0.94 B	1.3 B	1.4 B	1.4 B	1.4 B	1.4 B	1.3 B	1.4 B	1.6 B	1.3 B	1.2 B
Chromium	100	5.1 B	3.1 B	2.9 B	3.2 B	2.7 B	2.9 B	2.5 B	3.1 B	2.9 B	2.3 B	2.1 B	3.0 B	4.0 B	1.8 B	4.7 B
Copper	1,300 (3)	4.2 B	2.4 B	3.8 B	2.9 B	4.2 B	4.3 B	2.5 B	2.7 B	2.4 B	2.0 B	1.9 B	3.4 B	4.0 B	3.0 B	2.3 B
Iron	9,100	30.4	1,520	1,110	40,100	39.600	49,200	19,300	<17.0	71.1	55,400	13,900	7,010	605	92,000	916
Lead	15	1.8 B	2.2 B	2.0 B	<0.80	1.8 B	2.0 B	4.2 B	2.8 B	1.8 B	1.1 B	1.1 B	1.6 B	1.1 B	<0.80	1.2 B
Manganese	1,715	14.3 B	573	289	11,000	10,900	4,110	446	1,3 B	45.4 B	2,010	2,280	5,950	1,370	1,680	425
Mercury (7470A)	2 (2)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10
Nickel	100	5.5	4.3	3.3	15.2	14.9	6.2	<2.8	<2.8	3.7	4.9	8.8	11.7	12.6	9.1	3.5
Selenium	50 (2)	<2.0	4.5 B	3.5 B	4.4 B	2.4 B	3.3 B	3.8 B	5.2 B	<2.0	4.2 B	3.2 B	6.3 B	2.8 B	8.7 B	4.5 B
Silver	40 (4)	3.0	1.6	2.4	2.1	3.1	3.0	<1.2	<1.2	1.3	<1.2	1.8	2.1	2.4	<1.2	1,5
Sodium	20,000	1,340 B	6,370	2,340 B	36,600	37,000	34,000	2,380 B	1,380 B	8,620	27,600	2,570 B	34,000	43,700	35,900	18,800
Zinc	2,000 (4)	5.1 B	4.3 B	5.1 B	8.9 B	8.8 B	29.3	6.2 B	2.8 B	3,6 B	8.9 B	5.8 B	5.4 B	21.3 B	12.0 B	4.4 B
GENERAL CHEMISTRY																
Alkalinity as CaCO ₃	-	5,000	39,000	33,000	348,000	336,000	320,000	68,000	4,000	188,000	228,000	38,000	280,000	440,000	312,000	232,000
Biochemical Oxygen Demand ₅	-	<1,300 H	<1,300 H	<1,300	<1,300	<1,300	<1,300	<1,300	<1,300 H	<1,300 H	1,200 H	<1,300 H	<1,300 H	<1,300	<1,300	2,200
Chloride		720	4,700	1,100	41,200	39,600	49,000	1.500	800	32,800	31,000	1.300	42,000	52,600	45,700	36,800
Chemical Oxygen Demand	 -	<5,000	<5,000	37,500	43,500 *	148,000 *	53,400	53,400	<5.000	8,100	14,100	<5,000	16,100	67,200	53,400	33,600
Cyanide (Total)	200 (2)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Hardness as CaCO ₃		9,500	31,000	28,200	304,000	301,000	258,000	68,400	18,400	237,000	162,000	37,400	250,000	433,000	249,000	238,000
Nitrate as Nitrogen	10,000 (2)	400	220	<200	<200	<200	<200	<200	1.900	<200	210	220	380	<200	220	<200
Sulfate	500,000 (2)	2,700	8,700	2,900	5,400	5,400	3,700	9,700	2,100	19,800	530	12,800	8,800	4.900	1.800	12,400
Total Dissolved Solids	300,000 (2)	23,000	65.000	61.000	438,000	452.000	398.000	91,000	43.000	326,000	314.000	76,000	371,000	547,000	412,000	320,000
Total Suspended Solids	 	2,300	11,100	1,200	59,500	61,700	53,400	35,500	<500	1,700	37,400	7,200	9,000	1,900	104,000	2,400
Total Organic Carbon	 	<1.000	2,300	6,500	5,100	5,600	6,300	6,700	<1,000	<1,000	4,200	<1,000	3,500	4,300	6,800	3,400
. J.a. C. garilo Carbon	<u> </u>		1 2,300	L 0,000	1 3,100	1 3,000	1 0,300	0,100	1 1,000	1 71,000	4,200	1 -1,000	1 3,300	1 4,000	1 0,000	0,700
FIELD READINGS (units as no	ted below)															
		() ·											-		The second secon	PA

TICED INCADINGS (UIIIS as 110)	eu below)															
Dissolved Oxygen (mg/L)		11.0	0.3	0.2	0.4	0.4	0.3	0.3	10.4	0.8	0.4	1.9	0.2	6.8	0.4	0.4
Oxidation Reduction Potential (mv)		232.2	6.5	93.5	-40.8	-40.8	-53.9	-19.4	255.6	65.6	-54.7	53.2	29.2	63.1	-75.8	-111.3
pH	-	6.5	6.5	5.2	6.6	6.6	6.5	6.5	6.8	7.1	6.5	5.9	6.4	6.6	6.6	7.6
Specific Conductivity (µS/cm)	-	26	114	67	816	816	832	151	47	479	659	154	627	921	848	548

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

- B = value within 5 times of the greater amount detected in the equipment or preparation blank samples
- J = estimated value
- N = Matrix Spike sample recovery outside acceptance limits
- * = duplicate analysis Relative Percent Difference outside acceptance limits
- H = holding time exceeded
- NA = not analyzed

- (1) Cleanup values as developed in the ROD (unless otherwised noted)
- (2) No cleanup value was developed so the Federal Maximum Contamination Level was used
- (3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used
- (4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

TABLE 7-3

Groundwater Analytical Results - May 22, 2002 Sampling Event Molumco Road Wells (RE: Shepley's Hill Landfill) Ayer, Massachusetts

(Sheet 1 of 1)

	Well No.	SHM-99-31A	SHM-99-31B	SHM-99-31C	SHM-99-32X	
PARAMETERS	CLEANUP	μg/L	μg/L	μg/L	μg/L	
	LEVEL (1)					
	μg/L					
VOLATILES (8260B)						
Xylenes	10,000 (2)	<5.0	<5.0	<5.0	<5.0	
Acetone	3,000 (4)	<5.0	<5.0	<5.0	<5.0	
2-Butanone	-	<5.0	<5.0	<5.0	<5.0	
4-Methyl-2-Pentanone	-	<5.0	<5.0	<5.0	<5.0	
Benzene	5 (2)	<5.0	2.1 J	1.5 J	<5.0	
Methyl-t-Butyl Ether	70 (4)	<5.0	<5.0	1.7 J	2.0 J	
1,1-Dichloroethane	70 (4)	<5.0	<5.0	2.0 J	2.0 J	
1,2-Dichloroethene (total)	70 (2)	<5.0	<5.0	2.5 J	2.8 J	
1,2-Dichloroethane	5	<5.0	<5.0	<5.0	<5.0	
1,3-Dichlorobenzene	600 (2)	<5.0	<5.0	<5.0	<5.0	
1,4-Dichlorobenzene	5	<5.0	<5.0	<5.0	<5.0	
1,2-Dichlorobenzene	600	<5.0	<5.0	<5.0	<5.0	
METALS (6010B or as noted)						
Aluminum	6,870	80.7	<19.8	<19.8	21.4	
Arsenic	50	16.6 B	75.1	345	176	
Barium	2,000 (2)	9.0	71.3	103	55.5	
Cadmium	5 (2)	0.73 B	0.77 B	1.1 B	1.2 B	
Chromium	100	2.0 B	1.8 B	2.3 B	1.8 B	
Copper	1,300 (3)	1.7 B	1.7 B	3.2 B	3.1 B	
Iron	9,100	4,670	25,400	54,100	51,900	
Lead	15	1.3 B	1.9 B	<0.80	1.5 B	
Manganese	1,715	386	2,780	7,720	3,960	
Mercury (7470A)	2 (2)	0.40	<0.10	<0.10	<0.10	
Nickel	100	<2.8	<2.8	17.5	8.8	
Selenium	50 (2)	<2.0	<2.0	9.3 B	4.7 B	
Silver	40 (4)	1.4	1.4	2.4	1.4	
Sodium	20,000	9,130	14,200	47,600	40,600	
Zinc	2,000 (4)	4.8 B	8.5 B	12.2 B	7.6 B	
GENERAL CHEMISTRY						
Alkalinity as CaCO ₃	-	196,000	4,000	432,000	388,000	
Biochemical Oxygen Demand ₅	-	<1,300 H	2,000 H	<1,300	<1,300 H	
Chloride	-	6,300	19,800	60,100	60,000	
Chemical Oxygen Demand	-	14,100	22,200	36,300	28,200	
Cyanide (Total)	200 (2)	<10.0	<10.0	<10.0	<10.0	
Hardness as CaCO ₃	-	26,100	145,000	391,000	334,000	
Nitrate as Nitrogen	10,000 (2)	<200	<200	<200	<200	
Sulfate	500,000 (2)	8,000	2,800	2,100	2,300	
Total Dissolved Solids		72,000	243,000	584,000	507,000	
Total Suspended Solids	-	1,200	8,900	60,000	36,900	
Total Organic Carbon	-	4,200	5,800	7,100	5,300	

FIELD READINGS (units as noted	below)				
Dissolved Oxygen (mg/L)	-	0.2	0.4	0.4	0.3
Oxidation Reduction Potential (mv)	-	51.7	32.6	-72.1	-62.8
pH	-	5.8	5.3	6.6	6.5
Specific Conductivity (µS/cm)	-	103	407	1,053	939

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

25

B = value within 5 times of the greater amount detected in the equipment or preparation blank samples

J = estimated value

N= Matrix Spike sample recovery outside acceptance limits

* = duplicate analysis Relative Percent Difference outside acceptance limits

H = holding time exceeded

NA = not analyzed

- (1) Cleanup values as developed in the ROD (unless otherwised noted)
- (2) No cleanup value was developed so the Federal Maximum Contamination Level was used
- $\hbox{(3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used } \\$
- (4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

TABLE 7-4

Groundwater Analytical Results - October 28-30, 2002 Sampling Event Shepley's Hill Landfill Compliance Point Wells Devens, Massachusetts (Sheet 1 of 1)

	Well No.	SHL-3	SHL-4	SHL-5	SHM-96-5B	SHM-96-5B DUP	SHM-96-5C	SHL-9	SHL-10	SHM-93-10C	SHL-11	SHL-19	SHL-20	SHL-22	SHM-98-22B	SHM-93-22C
PARAMETERS	CLEANUP	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L.	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
	LEVEL (1)								F - F					1	1	
	µg/L	·	 													
VOLATILES (8260B)	l bar															
Xylenes	10,000 (2)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	3,000 (4)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Butanone		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-Pentanone	- 1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	5 (2)	<5.0	<5.0	<5.0	< 5.0	<5.0	0.92 J	<5.0	<5.0	<5.0	2.0 J	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl-t-Butyl Ether	70 (4)	<5.0	<5.0	<5.0	1.0 J	0.98 J	1.2 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.2 J	<5.0	1.0 J
1,1-Dichloroethane	70 (4)	<5.0	<5.0	<5.0	1.6 J	1.6 J	1.9 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	1.9 J	<5.0	1.3 J
1,2-Dichloroethene (total)	70 (2)	<5.0	<5.0	<5.0	2.6 J	2.6 J	2.7 J	<5.0	<5.0	<5.0	<5.0	<5.0	1.4 J	2.4 J	<5.0	1.2 J
1,2-Dichloroethane	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	600 (2)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	2.0 J	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichlorobenzene	600	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
METALS (6010B or as noted)	 													ļ <u>. </u>		
Aluminum	6,870	<16.1	<16.1	199	20.0	19.0	<16.1	60.0	<16.1	38.3	<16.1	<16.1	<16.1	<16.1	18,4	21.1
Arsenic	50	<3.2	56.1	<3.2	1,970	1,960	41.3	29.0	<3.2	7.1	648	184	175	77.1	159	30.1
Barium	2,000 (2)	<9.2	46.0	15.9	45.6	45.6	56,4	14.2	<9.2	<9.2	112	25.0	105	12.7	<9.2	72.7
Cadmium	5 (2)	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	0.46	<0.30	<0.30	<0.30	<0.30	<0.30
Chromium	100	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6
Copper	1,300 (3)	1.9	<1.8	<1.8	5.8	<1.8	<1.8	<1.8	<1.8	11.3	<1.8	<1.8	19.6	<1.8	<1.8	<1.8
Iron	9,100	<22.6	4,380	1,120	18,700	18,700	44,800	8,430	<22.6	52.8	64,500	27,600	9,100	707	446	778
Lead	15	<1.1 <2.5	<1.1 436	<1.1 259	<1.1	<1.1 12,800	<1.1 4.110	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1 7.200	<1.1 1.760	<1.1	<1.1
Manganese Mercury (7470A)	1,715				13,000			484	<2.5	46.9	1,990	3,400			11.9	407
Nickel	2 (2) 100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Selenium	50 (2)	<13.5 <3.9	<13.5 <3.9	<13.5 <3.9	<13.5 6.3	<13.5 6.0	<13.5 6.8	<13.5	<13.5	<13.5	<13.5	<13.5	<13.5 8.9	<13.5 <3.9	<13.5	<13.5
Silver	40 (4)	<1.4	<1.4	<1.4	<1.4	5.0 <1.4	<1.4	<3.9 <1.4	<3.9 <1.4	<3.9 <1.4	4.4 <1.4	4.5 <1.4	<1.4	<1.4	4.2 <1.4	<3.9 <1.4
Sodium	20,000	1,570	2,640	2,180	36,200	35.800	35,400	2.560	1,520	8,180	<1.4 29,800	4.240	35.600	45,500	114,000	19.500
Zinc	2,000 (4)	<6.9	<6.9	<6.9	8.9	7.3	<6.9	<6.9	<6.9	<6.9	7.5	7.9	<6.9	16.4	<6.9	<6.9
GENERAL CHEMISTRY	2,000 (4)	10.9	0.9	- 10.3	0.5	7.3	~0.9	\0.3	\0.9	<u> </u>	7.5	7.9	\0.9	10.4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>
Alkalinity as CaCO ₃	I	24,900	86,100	32.600	367.000	366.000	307,000	54.000	27.300	200,000	218.000	75,800	263,000	378,000	193,000	121,000
Biochemical Oxygen Demands		<1,500	<1.500	<1.500	<1.500	<1,500	<1,500	<1,500				<1,500	<1,500	<1,500		
Chloride	·								<1,500	<1,500	<1,500			L	<1,500	1,500
Chemical Oxygen Demand	 	1,200 27,500	<200	2,100	42,200	41,200	45,600	1,800	<200	31,700	28,900	3,100	44,000	48,000	45,500	36,100
Cyanide (Total)	200 (2)	<10.0	19,600	35,200 <10.0	87,900 * <10.0	13,700 * <10.0	41,000 <10.0	25,500 <10.0	11,800	23,500	37,300	29,400	21,600 <10.0	17,600 <10.0	39,200	17,600
Hardness as CaCO ₃	ZUU (Z)								<10.0	<10.0	<10.0	<10.0			<10.0	<10.0
<u> </u>	1	29,700	90,600	38,900	315,000	314,000	246,000	74,500	29,400	228,000	183,000	62,800	284,000	437,000	28,000	246,000
Nitrate as Nitrogen	10,000 (2)	400	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
Sulfate Total Discolude Salida	500,000 (2)	7,500	11,400	13,000	6,300	6,300	6,600	10,700	2,600	18,700	390	13,600	11,600	5,600	2,900	13,500
Total Dissolved Solids Total Suspended Solids	 	53,000 H	123,000 H	99,000 H	467,000 H	475,000 H	382,000 H	148,000 H	48,000 H	312,000 H	336,000 H	130,000 H	462,000 H	565,000 H	395,000 H	350,000 H
Total Organic Carbon	 -	<500 <1,000	1,100 2,200	7,000 8,100	26,900 5,400 *	25,600 4,200 *	44,400 6.400	<500 8,300	900	1,600 <1,000	58,700 4,000	9,900 1,200	11,000 2,100	1,600 4,100	700 4,000	4,100 3,400
FIELD READINGS (units as no	tad balaus			<u> </u>		7,200	<u> </u>	0,000	-1,000	1,000	7,000	1,200	21100	1 7,100	1 7,000	1 0,700
	rea pelow)	7.0	1 00	0.0		2.2	~ ~								T .	1
Dissolved Oxygen (mg/L) Oxidation Reduction Potential (mv)	1	7.9	0.3	0.6	0.3	0.3	0.3	0.1	9.4	0.5	0.6	0.3	0.3	0.8	0.4	0.5
DH Oxidation Reduction Potential (mv)	1	209.9	28.0	27.5	-62.7	-62.7	-55.8	-46.9	219.4	-5.3	-46.3	-6.9	-31.1	7.4	14.4 #	-135.1
Specific Conductivity (µS/cm)	 	6.3 67	6.1 221	5.7 94	6.6 846	6.6 846	6.5 822	6.6 182	6.9	7.5 491	6.5 756	6.5 254	6.5 751	6.6 927	8.7 824	7.5 549
opeonic Conductivity (parciti)		0/	1 441	74	040	040	022	182	68	491	756	254	101	j 921	824	049

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

25

B = value within 5 times of the greater amount detected in the equipment or preparation blank samples

= value circumspect due to potential field equipment failure

NS = not sampled NA = not analyzed

- (1) Cleanup values as developed in the ROD (unless otherwised noted)
- (2) No cleanup value was developed so the Federal Maximum Contamination Level was used
- (3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used
- (4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

J = estimated value

N = Matrix Spike sample recovery outside acceptance limits

^{* =} duplicate analysis Relative Percent Difference outside acceptance limits

H = holding time exceeded

TABLE 7-5

Groundwater Analytical Results - October 31, 2002 Sampling Event Molumco Road Wells (RE: Shepley's Hill Landfill) Ayer, Massachusetts

(Sheet 1 of 1)

	Well No.	SHM-99-31A	SHM-99-31B	SHM-99-31C	SHM-99-32X
PARAMETERS	CLEANUP	μg/L	μg/L	μg/L	μg/L
	LEVEL (1)				i
	µg/L				
VOLATILES (8260B)					
Xylenes	10,000 (2)	<5.0	<5.0	NA	NS
Acetone	3,000 (4)	<5.0	<5.0	NA	NS
2-Butanone	-	<5.0	<5.0	NA	NS
4-Methyl-2-Pentanone	+	<5.0	<5.0	NA	NS
Benzene	5 (2)	<5.0	1.7 J	NA	NS
Methyl-t-Butyl Ether	70 (4)	<5.0	<5.0	NA	NS
1,1-Dichloroethane	70 (4)	<5.0	<5.0	NA	NS
1,2-Dichloroethene (total)	70 (2)	<5.0	<5.0	NA	NS
1,2-Dichloroethane	5	<5.0	<5.0	NA	NS
1,3-Dichlorobenzene	600 (2)	<5.0	<5.0	NA	NS
1,4-Dichlorobenzene	5	<5.0	<5.0	NA	NS
1,2-Dichlorobenzene	600	<5.0	<5.0	NA	NS
METALS (6010B or as noted)					
Aluminum	6,870	54.1	22.7	<16.1	NS
Arsenic	50	11.6	71.1	332	NS
Barium	2,000 (2)	<9.2	63.4	98.0	NS
Cadmium	5 (2)	<0.30	<0.30	<0.30	NS
Chromium	100	<4.6	<4.6	<4.6	NS
Copper	1,300 (3)	3.5	<1.8	<1.8	NS
Iron	9,100	3,760	19,500	45,500	NS
Lead	15	1.2	<1.1	<1.1	NS
Manganese	1,715	655	2,270	6,740	NS
Mercury (7470A)	2 (2)	<0.10	<0.10	NA	NS
Nickel	100	<13.5	<13.5	13.5	NS
Selenium	50 (2)	<3.9	<3.9	<3.9	NS
Silver	40 (4)	<1.4	<1.4	<1.4	NS
Sodium	20,000	8,200	11,600	47,200	NS
Zinc	2,000 (4)	<6.9	<6.9	<6.9	NS
GENERAL CHEMISTRY					
Alkalinity as CaCO ₃	-	23,800	155,000	448,000	NS
Biochemical Oxygen Demand₅	-	<1,500	1,900	<1,500	NS
Chloride	-	8,400	16,200	61,800	NS
Chemical Oxygen Demand	-	11,800	37,300	51,000	NS
Cyanide (Total)	200 (2)	<10.0	<10.0	<10.0	NS
Hardness as CaCO ₃	-	26,000	123,000	382,000	NS
Nitrate as Nitrogen	10,000 (2)	<200	<200	<200	NS
Sulfate	500,000 (2)	14,200	3,500	2,500	NS
Total Dissolved Solids		45,000 H	208,000 H	575,000 H	NS
Total Suspended Solids	-	1,500	2,200	49,300	NS
Total Organic Carbon	-	3,800	5,900	NA	NS
FIELD READINGS (units as note	ed below)				
Dissolved Oxygen (mg/L)		0.2	0.5	0.3	NS NS
Oxidation Reduction Potential (mv)		-15.2	-4.8	-94.8	NS
1					

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance -

25

6.7

1,059

NS

NS

B = value within 5 times of the greater amount detected in the equipment or preparation blank samples

5.9

104

6.1

362

J = estimated value

Specific Conductivity (µS/cm)

N= Matrix Spike sample recovery outside acceptance limits

* = duplicate analysis Relative Percent Difference outside acceptance limits

H = holding time exceeded

NS = not sampled

NA = not analyzed

- (1) Cleanup values as developed in the ROD (unless otherwised noted)
- (2) No cleanup value was developed so the Federal Maximum Contamination Level was used
- (3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used
- (4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

Table 7-6 Comparison of Historic Arsenic Results Shepley's Hill Landfill and Molumco Road Groundwater Monitoring

Landfill Compliance Point	Arsenic (ug/L)																
Monitoring Well ID	Aug-91	Dec-91	Mar-93	Jun-93	Nov-96	May-97	Oct-97	May-98	Nov-98	May-99	Nov-99	May-00	Nov-00	May-01	Oct-01	May-02	Oct-02
SHL-3	35	120	6.5	NS	NS	<10	<10	<5	<5.4	2.7 B	<1.9	<2.5	17.4	<4.1	<1.5	2.8 B	<3.2
SHL-4	260	140	2.54	NS	48.8	73.6 J	180	37.4	89.1	78.2	61.3	116	91.5	50.8	66.0	47.8 B	56.1
SHL-5	23	38	11.4	NS	12	<10	<10	<5	11.5	5.0 B	6.5	<2.5	13.8	13.8	14.8	11.9 B	<3.2
SHM-96-5B	NS	NS	NS	NS	1,440	3,300 J	2,040	4,300	3,080	3,490	2,700	5,110	2,500	3,800	1,850	3,800	1,970
SHM-96-5C	NS	NS	NS	NS	71	43.2	43.1	49.5	46.8	57.0	44.8	52.2	40.3	80.5	41.1	50.4 B	41.3
SHL-9	37	67	42.4	NS	46.9	16.1 J	25.2	15	27.2	71.3	28.5	15.0	31.4	15.1	28.1	144	29.0
SHL-10	67	120	280	NS	3.4 B	<10	209	<5	<5.4	2.7 B	<1.9	<2.5	<4.2	<4.1	<1.5	4.0 B	<3.2
SHM-93-10C	NS	NS	21.3	18.1	12.4	<10	10.5	7.5	10.2	10.8 B	8.7	5.9 J	8.8	6.9	10.1	11.0 B	7.1
SHL-11	320	320	340	NS	332	252 J	366	346	376	431	492	404	523	487	573	469	648
SHL-19	340	710	390	NS	138	<10	298	77.5	145	156	176	41.4	154	129	183	66.9	164
SHL-20	98	89	330	NS	244	<10	227	238	218	216	215	216 '	172	186	165	154	175
SHL-22	27	25	32.9	NS	24.8	<10	34.8	10.6	<5,4	12,2 B	7.3	14.6	45.0	47.6	44,2	55,9 B	77.1
SHM-96-22B	NS	NS	NS	NS	324	318 J	352	365	406	707	1,440	1,360	1,180	1,540	1,670	2,040	159
SHM-93-22C	NS	NS	68.9	49.8	44.6	40.4	<10	31.6	51.1	42.8	33.2	34.4	47.8	19.7	31.6	30.5 B	30.1

Molumco Road		Arsenic (ug/L)															
Monitoring Well ID	Aug-91	Dec-91	Mar-93	Jun-93	Nov-96	May-97	Oct-97	May-98	Nov-98	Jun-99	Nov-99	May-00	Nov-00	May-01	Oct-01	May-02	Oct-02

SHM-99-31A*	NS	NS	NS	NS	NS	NS	NS	NS	NS	<5.2	14.5	8.1 J	21.3	14.2	9.6	16.6 B	11.6
SHM-99-31B*	NS	NS	NS	NS	NS	NS	NS	NS	NS	57.9	63.7	44.3	65.5	57.9	66.8	75.1	71.1
SHM-99-31C*	NS	NS	NS	NS	NS	NS	NS	NS	NS	345	311	332	316	321	317	345	332
SHM-99-32X*	NS	NS	NS	NS	NS	NS	NS	NS	NS	188	185	188	198	181	187	176	NS

Notes:

J: estimated value

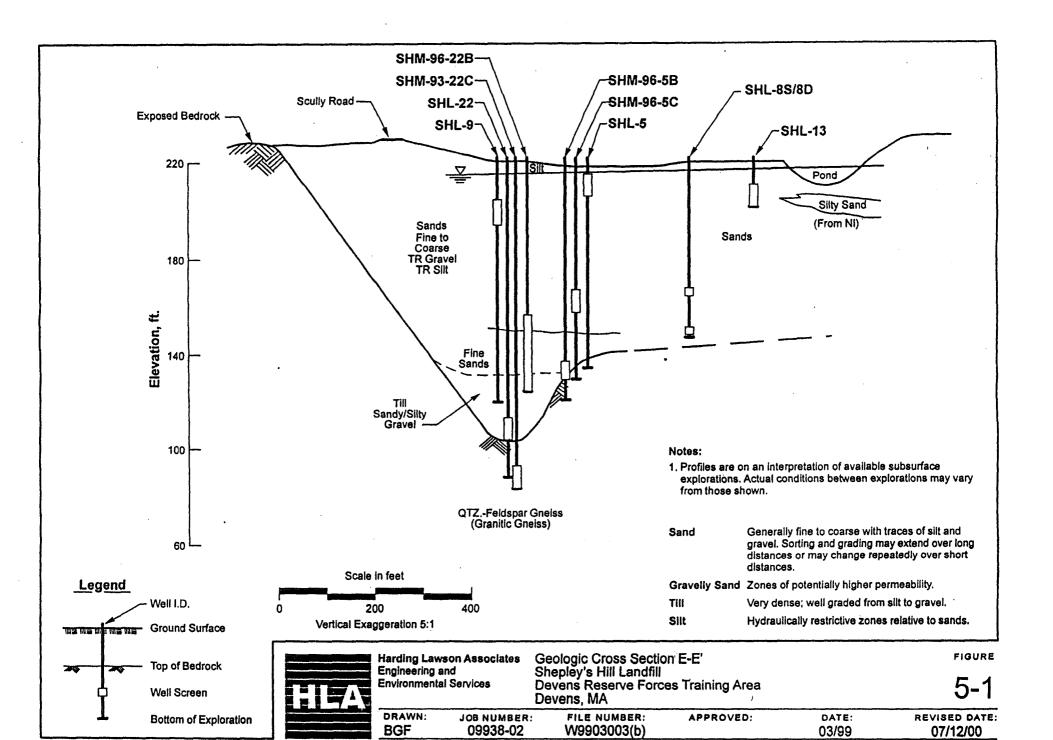
B: value within five times of the greater amount detected in the equipment or preparation blank samples

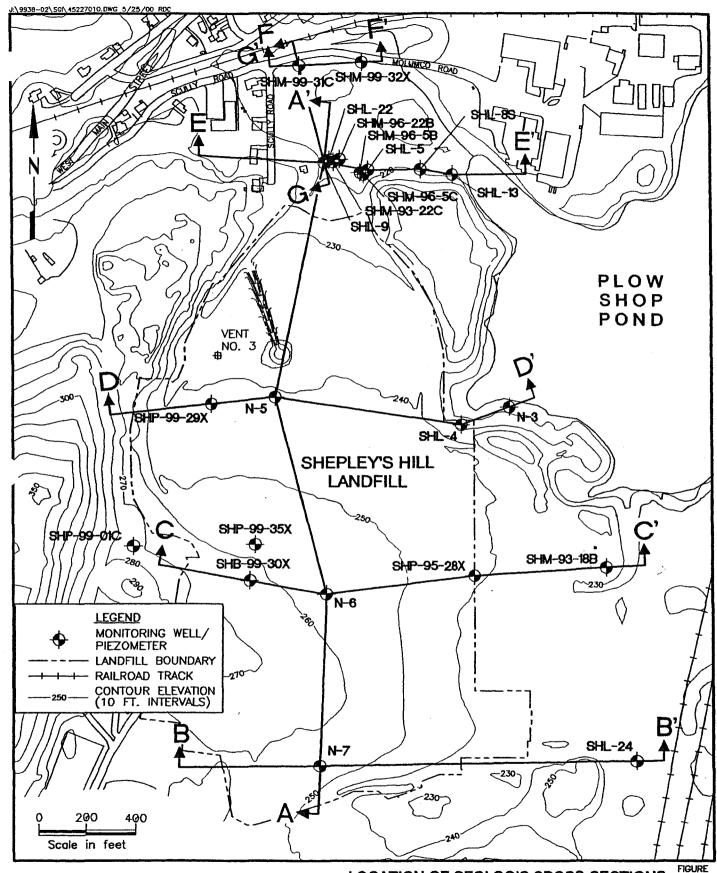
NS: not sampled

^{*:} Molumco Road monitoring wells are not compliance point wells - data is provided for comparison purposes bold numbers indicate cleanup level exceedances (MCL cleanup level is 50 ug/L)

TABLE 8-1 Sample Preparation and Analysis Methods, Containers, Holding Times, and Preservatives

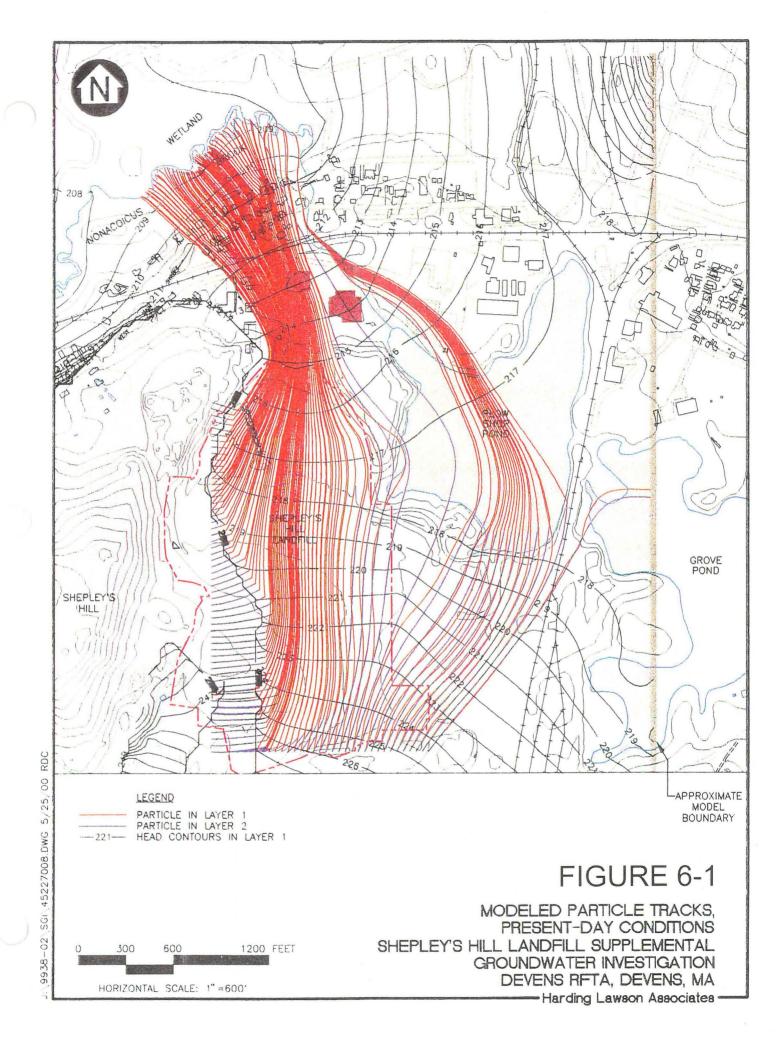
Parameter	Prepa- ration Method ¹	Analysis Method ¹	Sample Container ²	Minimum Volume	Preservative	Holding Time (VTS) ³
VOCs	5030B	8260B	3 X 40 mL vials with Teflon septa screw caps ⁴	40 mL	HCl to pH <2 (No Headspace) 4°+/- 2°C	14 days
Metals ⁵	3010A	6010B - Trace ICAP or 7000 series	1-Liter HDPE	300 mL	HNO ₃ to pH < 2	180 days (except Hg) 28 days (Hg)
Hardness	NA	SM2340B		100 mL		180 days
Cyanide	NA	335.4	500-mL HDPE	500 mL	NaOH to pH > 12, 4°+/- 2°C	14 days
Anions ⁶	NA	300	500-mL HDPE	100 mL	4°+/- 2°C	48 hours for ortho- Phosphate and Nitrate; 28 days for Sulfate and Chloride
Alkalinity	NA	310.1		100 mL		14 days
TDS	NA	160.1		100 mL		48 hours
COD	NA	410.1	250-mL HDPE	250 mL	H ₂ SO ₄ to pH < 2, 4°+/- 2°C	28 days
BOD	NA	405.1	1-Liter HDPE	1000 mL	4°+/- 2°C	48 hours
TSS	NA	160.2	1-Liter HDPE	1000 mL	4°+/- 2°C	7 days
TOC	NA	9060	3 X 40 mL vials with Teflon septa screw caps ⁴	40 mL	H ₂ SO ₄ to pH < 2, 4°+/- 2°C	28 days


- 1 "Methods for Chemical Analysis of Water and Wastes", Cincinnati, OH, March 1979, EPA 600-4-79-020.
 "Test Methods for Evaluating Solid Waste, Physical and Chemical Methods", U.S. EPA SW-846, 3rd Edition.
 "Standard Methods for the Examination of Water and Wastewater", APHA/AWWA/WPCF, 17th Edition.
- 2 Additional sample containers/volume is required for matrix quality control samples.
- 3 VTS Verified Time when the Sample was collected.
- 4 Two vials will be shipped to the laboratory; one will be measured for pH in the field to verify that the sample has been preserved correctly (i.e. pH less than 2).
- 5 TAL metals include Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc.
- 6 Anions include Nitrate, Sulfate, Orthophosphate and Chloride.


NA = Not Applicable

Hg = Mercury

FIGURES


Harding Lawson Associates

Engineering and Environmental Services

LOCATION OF GEOLOGIC CROSS-SECTIONS SHEPLEY'S HILL LANDFILL SUPPLEMENTAL GROUNDWATER INVESTIGATION DEVENS RFTA, DEVENS, MA

 DRAWN
 JOB NUMBER
 APPROVED
 DATE
 REVISED DATE

 RDC
 45227
 5/25/00
 00/00/00

APPENDIX A LANDFILL MAINTENANCE CHECKLIST

APPENDIX A Landfill Maintenance Checklist

To be completed in indelible ink.

Inspections are to be performed annually.

DATE: 5 November 2002

INSPECTOR: Jonathan Kullberg & Scott Michalak

ORGANIZATION: U.S Army Corps of Engineers, New England District

LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Cover Surface	Vegetative cover is generally satisfactory except as noted in the comments that follow. Various species growing; mowed to about 8 inches height. There are several areas where possible settlement is occurring.	See specific comments under the sections that follow. Survey and compare to original.	SAT
	3. Trees have been removed from the vicinity of GV-13, the southern perimeter, and the eastern perimeter GV-13 area is unmowed.	3. Monitor for tree growth in future 4. GV-13 area should be mowed during future maintenance.	SAT
Vegetative Growth	1. In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass cover should extend at least twenty feet beyond the limits of the cap.	This area should be reseeded, with hay or straw placed on the surface, to prevent further erosion.	UNSAT
Landfill Gas Vent Wells	The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time.	1. None	SAT

LANDFILL ATTRIBUTE	OBSERVATIONS	RECOMMENDATIONS	SAT/ UNSAT
Drainage Swales	Most of the drainage swale on the south side is being invaded by vegetation/wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage.	1. The south side drainage swale should be cleared of vegetation and regraded as needed to properly drain all areas of standing water. Depending on water velocities, the channel should then be reseeded or riprap should be placed.	UNSAT
	2. In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the new rock-lined channel, the drainage swale is heavily overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond.	2. This reach of the drainage swale should be cleared of the obstruction, all vegetation and accumulated silt and sand, and regraded to drain properly. Seeding, or riprap placement, should follow, depending on water velocities. Survey the swale to determine how to promote proper drainage (note – this task is underway).	UNSAT
Culverts	1. The concrete drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in. Standing water is present and wetland species are becoming established as well.	The structure and channel immediately downstream should be cleaned out and the channel regraded as required to properly drain.	UNSAT
Catch Basins	1. Catch Basin #2 near the entrance to the site has a broken surface grate.	The surface grate should be replaced.	UNSAT
	2. Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding ground.	2. The rim of this catch basin should be lowered to meet the surrounding grade.	UNSAT
	3. Catch basin #7 near the southwest corner of the site is substantially overgrown by the adjacent vegetation and will soon be completely overgrown and hidden from view.	3. This catch basin should be cleared of encroaching vegetation.	UNSAT

Settlement	1. It appears that many areas of the landfill may be settling. The extent and its effect on the function of the landfill is unknown.	1. A topographic survey was conducted and compared to the original as-built topo. This indicated where and how much settlement has taken place.	SAT
Erosion	1. No substantial erosion observed. Areas along the east side perimeter in the vicinity of GV-8, 11 & 12 have sparse vegetation.	Reseed perimeter of cap and establish vegetative cover at least 20 feet beyond cap limits. Continue monitoring east perimeter of cap for advancing erosion in sandy areas	SAT
Access Roads	1. The access roads on the site are in good condition.	There are no problems on access roads which warrant repair at this time.	SAT
Security Fencing	1. The perimeter chain-link security fence is in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at many locations. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the turfed cap area was seen.	1. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired.	UNSAT
Wetland Encroachment	1. Wetland encroachment is taking place at several locations, but is not happening on a wide scale. Overall, the areas of encroachment are small. These locations have been noted in above comments.	1. Wetland encroachment should be eliminated by simple mowing in some areas, and by regrading channels in other areas. The above comments address the actions to take at specific locations.	UNSAT

Immediate Action Required: The following problem areas, from among those mentioned in the comments above, are the most critical and should be addressed before the next inspection;

(1) Repair and replace the security fence and gates as required to control access to the site;

Along with the corrective actions listed in the report, the following are recommended:

- (1) Repair and regrade around the catch basins on the south side of the landfill,
- (2) Based upon recent topographic survey conducted, determine if corrective action required for historic ponding areas due to settlement or disturbance of drainage system. Note that feasibility study is being conducted to determine options to address this and other problems.

General Comments: With the exception of the items mentioned above, and the other recommended repairs, the landfill is in fair condition and appears to be functioning adequately.

APPENDIX B GROUNDWATER FIELD ANALYSIS FORMS

Groundwater Field Analysis Forms Spring 2002

GWM	WELL#	SHL-	 3			US A	rmy (Corps	of En	gineers	3	
II.	INTERVAL DEPTH			WELL DIAMETER:	2"	Grou	ndwate	er Samp	ling Lo	g Sheet		
H2O LEVI	EL: DEPTH, PRE PL	JMP INSERTION	30 73'	•		Project N	lame: S	Shepley's	Hill Lan	dfill, Deve	ns, MA	
	DEPTH, POST PU					SAMPLE METHO	DD: EPA L	OW STRES	S METHO	D		
DEPTH S		33 ′		REFERENCE POINT:	PVC OR CASING	Metals/Hardness	1 x 1L H	DPE (ph<2)		VOC'S 3 x 4	I0ml glass vials (ph<2)	
DATE: 20 TIME: 0855 (DEPTHS RECORDED BENEATH) 248. SNGVD Cyanide 1 x 250ml HDPE (ph>12 + AscAc) BOD 1 x 1L HDPE											HDPE	
SAMPLED BY: JK DL PY BW MK SIGNATURE; SUCKET Anions, Alkalinity, TDS 1 x 500ml HDPE COD 1 x 250ml HDPE (ph<2)										`` ` h		
RECORD	ED BY: JK DL PY	BWMK	SIGNATURE	Busing		TSS_1 x 1L HDF	<u> </u>			TOC 3 x 40n	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. YOLUME	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's		
te go					1				4.			
1100	30.60	118.7	300		11.23	38	7.14	213.4	// .7/	50.2	70	
1104	30.50	118.6	200	·5 gal	11.91	32	6,59	183.8	11.03	25.2	dropping off	
1108	30.4	118.5		J	14.14	29	6,60	187.7	16.73	-	Surged Dump	
1615	30.0	118.7	500	1.25 gal.	16.01	38	6.57	167.2	10.61	10,7	, 'm'	
11 18	30.7	118.2	500	,	14,12	27	6.58	196.6	10.74	7.14	dropping off	
1121	30,55	119.1	250	2 901	13,93	27	6.56	212.3	10.67		Surged pump	
1126	30.78	119.1	500		15.01	27	6.50	189.2	10.51	9.53	, ,	
1129	30.75	[19.1	500	2.75 gal	14.32	27	6.54	192.3	10 73	5.80		
1132	30,70	119.1	500	3.25 gal	13.81	27	6.52	202.2	10.71	4,49		
1135	30.70	119.1	450	4 gal.	13.71	27	6.51	208.2	10,68	3.79		
1140	30.61	119.1	250		13.84	26	6.52	213,4	10.61	3.58	dropping oft	
1143	31.15	12/13	1000	5.25	13,40	27	6.50	212.4	10.98	4,50	Surged!	
(148	31.19	121.5	1800	6.50	12,10	26	6.47	225.1	10,9)	4.52		
1152	31.20	121.8	850	5 0	12.00	26 26	6,46	229.8				
1155	31.20	121.3	850	7,25	11,96	8	6.45	232.2	10.76	3.90		
NOTES: 3% 3% +0.1 unit +10 my 10% 10%												
SAMPLE	SAMPLE TAKEN AT: 1157 Wetted screen volume = TT (12')2 (35.1'-30.23') (7.481 gal/ff3) = 0.8 gal											

								~					
GWN	WELL#	SHL-	Ц			US Army Corps of Engineers							
SCREEN	INTERVAL DEPTH		15.7	WELL DIAMETER:	۵″	Grou	ndwate	er Samp	ling Lo	g Sheet			
1	EL: DEPTH, PRE P	UMP INSERTION	1 10.23			Project N	lame: S	Shepley's	Hill Lan	dfill, Deve	ns, MA		
	DEPTH, POST P				•	SAMPLE METHO	DD: EPA I	OW STRES	S METHO	D			
DEPTH S		13′		REFERENCE POINT	PVO OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)		
1	20 May 20		1300	(DEPTHS RECORDED BENEATH)	228.71 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L l	HDPE		
SAMPLE		Y BY MK	SIGNATURE:	Busu 4!	19n	Anions,Alkalinity	TDS 1 x 5	500ml HDPE			mL HDPE (ph<2)		
RECORD	ED BY: JK DL PY	(B) MK	SIGNATURE:	Duan A	Nay	TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials		
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS		
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's			
1318 1321	10.30	88.1	700		11, 83	126	6.69	\$5-21.8		175.2	Very turbid		
1321	10:36	68.1	950	1.75 gal.	11.68	120	6.63	-12.2	0.56	95.7	muddy water		
1323	10, 30	68.1	950	3.5 421	11.38	118	6,58	-4.6	0.40		Appearance		
1328	10.30	68.1	950	,	11.35	116	6.57	-1.3	0.37	40.7			
15:51	10.30	68.1	950	4,25 gal	11.3Z	116	6,56	0,7	0.33	17.2			
1334	10.30	68.1	950	5,25 89)	11,35	115	6.55	2,8	0,34	9,6			
137 1940 1943	10.30	68,1	950	6,25 gal	11.32	114	6.54	3.7	0.31	5.6			
340	10,30	68.1	950	7,25 gal	11.30	114	6.54	4,9	0.30	3.6			
(343	10.30	68.1	950		11.28	114	6,54	5,6	0.31	2.8			
1346	10,30	68.1	950	8 gal	11,28	114	6,54	6.6	0,29	2.5			
1349	10.30	68.1	900	J	11,28	114	6.54	6.5	0.28	2.1			
								*** ****					
		ļ											

NOTES:			<u> </u>	<u> </u>	3%	20/	+0.1 unit	+10 my	10%	10%			
	TAKEN AT: 13	51	We	thed screen v		TT (5,1)21	15.7	10.21)/7.481	an/f43)	= 0.9 991		
									, , , , , , , , ,	Jarres	J		

GWM	WELL#	ح ال	16-5		US A	rmy (Corps	of En	gineers	3		
ll	INTERVAL DEPTI			WELL DIAMETER:	a "	Grou	ındwate	er Samp	oling Lo	g Sheet		
{I	EL: DEPTH, PRE P			_		Project N	lame: S	Shepley's	Hill Lan	idfill, Dever	ns, MA	
		UMP INSERTION			•	SAMPLE METHO	OD: EPA L	OW STRES	SS METHO	DD		
DEPTH S		10'		REFERENCE POINT:	PVQ OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)	
I)	5/21/02	TIME:	1355	(DEPTHS RECORDED BENEATH)	213.33NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	scAc)	BOD 1 x 1L		
SAMPLED		Y BW(MK)	SIGNATURE:	Mark R. Koenie	<u> </u>	Anions,Alkalinity		500ml HDPE	:		mL HDPE (ph<2)	
RECORD	ED BY: JK DL P	Y BW (MK)	SIGNATURE:	mark R. Koe	nig	TSS 1 x 1L HDF	PE			TOC 3 x 40m	ıl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE	1.0	mv	mg/L	NTU's		
1355	2.65'	41.8	350	1.1 gal	10.47	64	5.38	102.8	0.64	2,22		
1400	2.651	41.8	380	1.6	10.67	65	5.29	101.1	0.43	1.06		
1405	2.651	41.8	380	2.0	10.65	66	5,21	100.5	0.25	0.90		
1410	2.65'	41.8	380	2.5	10.82	66	5.11	100.1	0.20	0,93		
1415	2,65'	41.8	380	3.0	10.98	66	5.08	98.3	0.26	2.01		
1418	2.65'	41.8	380	3,3	10.96	90	5.09	98.2	0.42	1.20		
1422	2,651	41.8	380	3,6	11.08	67	5.06	97.2	0.45	1.23		
1426	2,651	141.8	380	4.0	11.15	6 F	5.01	96.7	0.36			
1431	2.651	14/.8	380	4,3	10.87	6 t	5.01	95.3	0.16	0.82		
1435	2.651	41.8	380	4.7	10.72	67	5.08	95.0	0.25	0.87		
1438	2.651	41.8	380	5.0	10.66	67	5.16	93.5	0.24	0.72		
					 		 		ļ			
									 			
NOTES:					3%		+0.1 unit		10%		,	
SAMPLE	MPLE TAKEN AT: 1444 wethod screen volume = TP(+2')2(15.1'-5.1')(7.481 gal/f43) = 1.6 gal											
			-						0	,	-3	
							-					

GWM	WELL#	SHM-		US A	rmy (Corps	of En	gineers	5		
SCREEN	INTERVAL DEPTH			WELL DIAMETER	· 4"	Grou	indwate	er Samp	ling Lo	g Sheet	
11	EL: DEPTH, PRE P			-		Project N	Name: S	Shepley's	Hill Lan	dfill, Deve	ns, MA
	DEPTH, POST P				_	SAMPLE METHO	OD: EPA I	OW STRES	S METHO	OD	
DEPTH S.		861		REFERENCE POINT		Metals/Hardness	1 x 1L H	DPE (ph<2)			10ml glass vials (ph<2)
DATE:	21 Man 2002	TIME:	1430	(DEPTHS RECORDED BENEATH	219,8/NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L	
SAMPLE		A BM WK	SIGNATURE:	Mark R. K		Anions,Alkalinity		500ml HDPE)mL HDPE (ph<2)
RECORD	ED BY: JK DL PY	/ BW(MK)	SIGNATURE:	Mark R. F	benix	TSS 1 x 1L HDF	E			TOC 3 x 40n	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's	
1523	4.88'	52.2	350	0.2 gal	9.77	675	6.07	-34.2	2.30	2.55	
1540	5.21	52,2	350	1.0 gal	9.80	763	6.32	-36.4	1.08	2.44	
1545	5.21	52,2	360	1,2	9,85	795	6.44	37.7	0.55	الع والحد	<i>≳.</i> 10
1549	5.21	52,2	360	1.6	9.83	805	6.50	-38.6	0.45	3.05	
1553	5.21	52.2	360	2.1	9.81	811	6.55	-39.4	0.38	1.57	
1557	5,21	52,2	350	2.6	9.83	818	6.57	-39.6	0.47	1.59	
1602	5 -> 5.11	<u>52.0</u>	360	3.0	9.66	816	6.60	-40.8	0.37	0.95	
ļ									1		

			<u> </u>	 	 						

							-				
		<u> </u>									
						· · · · · · · · · · · · · · · · · · ·					
NOTES:		7 A C 31			3%	3%	+0.1 unit	+10 mv	10%	10%	
SAMPLE	TAKEN AT: 🗡	106 16	06	welled =							/A23) = 6.5 qa/
								<u> </u>		J^{-}	1 3

CREEN INTERVAL DEPTH: 50.8'- CO.8 WELL DIAMETER: 4" US Army Corps of Engineers Groundwater Sampling Log Sheet												
INTERVAL DEPTH				4"		•	-		_			
		4.3	.4'							ns, <mark>MA</mark>		
DEPTH, POST PL	JMP INSERTION			•	SAMPLE METHO	OD: EPA L	OW STRES	S METHO	D			
AMPLED:	551			PVC)OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)		
5/21/02	TIME:	1435	(DEPTHS RECORDED BENEATH)						BOD 1 x 1L	1		
			bokerid 7		i e		00ml HDPE			mL HDPE (ph<2)		
DBY: JKOLPY	BW MK	SIGNATURE:	David 2	ulwa	TSS 1 x 1L HDF	Έ			TOC 3 x 40n	nl glass vials		
WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS		
BELOW MP feet	SETTING	ml/mln	PURGED	TEMP C	CONDUCTANCE	<u></u>	mv	mg/L	NTU's	***************************************		
		550	,		479	6.16	-26.3					
		550	1-Ogal	10.00		6.34						
			J A									
			3.0gal									
			<i></i>									
			4.09ck									
			5.03al									
<u> </u>	62.1	550		10.42	832	6.46	-53.4	0.28	1.53			
						<u> </u>						
									——————————————————————————————————————			
				20/	20/	40.1 1154	±10 my	100/	100/			
mill LE TAILLY AT. 1) (4 WETTER Screen Volume = 11(72) (60.8-50.8) (7.48/gal/ff3) = 6.3 gal												
		3										
	INTERVAL DEPTH EL: DEPTH, PRE PU DEPTH, POST PU AMPLED: 6 21 02 DBY: JKDL PY ED BY: JKDL PY WATER DPTH BELOW MP feet 4,40 4,40 4,40 4,40 4,40 4,40 4,40 4,4	INTERVAL DEPTH: 5 EL: DEPTH, PRE PUMP INSERTION DEPTH, POST PUMP INSERTION AMPLED: 55' S 21 02 TIME: D BY: JKDL PY BW MK ED BY: JKDL PY BW MK WATER DPTH PUMP BELOW MP feet SETTING 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7 4,40 52.7	INTERVAL DEPTH: 50.8'- C0.8 EL: DEPTH, PRE PUMP INSERTION DEPTH, POST PUMP INSERTION AMPLED: 55' 5 21 02 TIME: 1435 DBY: JKDL PY BW MK SIGNATURE: ED BY: JKDL PY BW MK SIGNATURE: WATER DPTH BELOW MP feet SETTING WIMIN 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550	INTERVAL DEPTH: 50.8'- CO.8' WELL DIAMETER: EL: DEPTH, PRE PUMP INSERTION 4.34' DEPTH, POST PUMP INSERTION 4.34' AMPLED: 55' S 21 02 TIME: 1435 D BY: JKDL PY BW MK SIGNATURE: 10EPTHG RECORDED BENEATH) WATER DPTH PUMP PUMP PURGE RATE CUM. VOLUME PURGED 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 4.40 52.7 550 5.03al	INTERVAL DEPTH: 50.8'- 60.8' WELL DIAMETER: 4" EL: DEPTH, PRE PUMP INSERTION	STORY CO. 8 WELL DIAMETER: 4" Group Project N	Solution Solution	Company Comp	STERVAL DEPTH:	SO S / - CO S WELL DIAMETER: 4" Groundwater Sampling Log Sheet Size Copper Property P		

YSI# 0150851

TURBIDITY# 39575

GWM	WELL#		US A	rmy (Corps	of En	gineers	6			
il .	INTERVAL DEPTH	SHL-	2"	Grou	ndwate	er Samp	ling Lo	g Sheet			
13	EL: DEPTH, PRE P			7		Project N	lame: S	Shepley's	Hill Lan	dfill, Deve	ns, MA
		UMP INSERTION				SAMPLE METHO	DD: EPA L	OW STRES	S METHO	D	
DEPTH S		201		REFERENCE POINT	PVOOR CASING	Metals/Hardness	1 x 1L HI	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)
DATE:	5/21/02		0955	(DEPTHS RECORDED BENEATH)	222. 54 NGVD	Cyanide 1 x 250	mi HDPE ((ph>12 + As	cAc)	BOD 1 x 1L l	HDPE
SAMPLE		Y BW MK	SIGNATURE:	I wid Leely	/'C	Anions, Alkalinity	TDS 1 x 5	600ml HDPE		COD 1 x 250	mL HDPE (ph<2)
F 8	ED BY: JK OL P		SIGNATURE:	David Lu	lucian	TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's	
0955	8,41	64.3	550		8.91	118	5.94	64.5	2.34	22,9	
0959	8.29	63.5	400	1.050	9.31	126	6.25	35.2	1.3/	15.7	
1003	8.29	63.6	425	/ '	9.80	136	6.39	13,2	0-87	6.48	
1009	8.29	63.6	-2.4	0.59	4.45						
1013	8.25	63.6	425		16.63	143	6.47	-7.5	0.50	3.83	
1018	8.29	63.6	450	3.09af	10.11	146	6.48	-11.0	0.44	3.2/	
1023	8.28	67.6	425		10.12	148	6.48	-14.8	0.38	2.52	
1026	8.29	63.6	400	4.09al	10.17	149	6.49	-16.7	0.37	2.79	
1029	8.29	63.6	425	, /	10-11	150	6.49	-17.7	0.35	2.32	
1032	F.29				10.08	15-1	6.50	-19.4	0.33	2.89	
					····						
	###										
لـــــــــــــــــــــــــــــــــــــ											
NOTES:		. /			3%	3%	+0.1 unit	+10 mv	10%	10%	
SAMPLE	TAKEN AT:	1035		wetted screen	volume =	=TT (121)21	25.0%	15.01)(7.4819	al/H3) =	1. Le gal
						-			J	,	J

31	WELL#	SHL-1	0			1	•	•		gineers	3		
SCREEN	INTERVAL DEPTH	17.8-3	8.5-7	WELL DIAMETER:	ス"					g Sheet			
	EL: DEPTH, PRE P					Project N	Name: S	Shepley's	Hill Lan	dfill, Deve	ns, MA		
	DEPTH, POST P	JMP INSERTION	30.57			SAMPLE METH	OD: EPA l	OW STRES					
DEPTH S	AMPLED:	3 <i>5</i> ′		REFERENCE POINT		Metals/Hardness					0ml glass vials (ph<2)		
DATE: 5	20 May 2002	TIME:	0835	(DEPTHS RECORDED BENEATH)		Cyanide 1 x 250				BOD 1 x 1L l	To the second se		
SAMPLED	BY: JK DL P		SIGNATURE:	Buall 1. 1		Anions,Alkalinity		500ml HDPE			mL HDPE (ph<2)		
RECORD	ED BY: JK DL PY	BWMK	SIGNATURE:	hurden 1	1/2/	TSS 1 x 1L HDF	PE			TOC 3 x 40n	nl glass vials		
TIME	WATER DPTH	PUMP	PURGE RATE	CUM, VOLUME	#30	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS		
24hr	BELOW MP feet	SETTING	ml/mln	PURGED	TEMP C	CONDUCTANCE	<u> </u>	mv	mg/L	NTU's			
923	30.68	118.7	400	.5 gel	10.66	54	6.91	228.8		7.8			
927	30.68	118.7	400		11.97	48	6.72	228.6	10.67	4,10			
930	30.65	118.7	400	1991	13.44	47	6.72	228.8					
955	30.65	118.7	400	<u> </u>	14.26	47	6.78	235.1	10.45	1.72			
938	30.65	118.7	400	2 gal.	14.44	47			10,44				
	942 30.65 118 7 400 14.43 47 6,79 242.9 10.44 1.50 945 20.65 118.7 400 2.5 gal, 14.60 47 6.77 247.6 10.38 1.70												
945	30.65		400				 	250.1					
948	30.65	118.7	400	3921.	14.43	47	6.77	251.9	10.40	0.95			
	30.65	118,7	400	4901,	14,28	47	6.77	255.1	10.17	0.29			
958	30.65	118.7	400		14.13	45	6.75	255.6	10,30	0,70			
1003	50.63	110.1	100	4.5 gal	17.15		6. 13	900.0	14,57	0,10			
							<u> </u>						
						W	 						
		<u> </u>					1						
		<u> </u>											
NOTES:					3%	3%	+0.1 unit	+10 mv	10%	10%			
SAMPLE	TAKEN AT: /	007	we	etted screen vo	dune =	丁(た)2(3	8.51-	30.581)	(7.481	9al/f4)	= 1.3 aal		
4.									· · · · · ·	, ,			
Thothon	n of well has	been filling	w/sil+(?)	- depth was rec	ently rest	ned to 38.	5. Orig	nel nell	death is	5 41.8 dow	n from gvc.		
		•	, /	,	J				7				
2/01//													
YSI# D	150851	TURBIDITY #	76		Pump - Grui	nfos Redi-flow I	İ						

GWM	WELL#	< UM -	93-100			US A	rmy (Corps	of En	gineers	3	
13	INTERVAL DEPTH	1 45 7-	557	WELL DIAMETER:	4"	Grou	indwate	er Samp	oling Lo	g Sheet		
H2O LEVI	EL: DEPTH, PRE P	UMP INSERTION	129/03	_		Project N	Name: S	Shepley's	Hill Lar	ndfill, Dever	ns, MA	
	DEPTH, POST P	UMP INSERTION	29, 29		-	SAMPLE METH	OD: EPA l	OW STRES	SS METHO	OD		
DEPTH S		51'		REFERENCE POINT	PVC OR CASING	Metals/Hardness	1 x 1L HI	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)	
13	20 May 2002		0845	(DEPTHS RECORDED BENEATH)	248.424GVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	scAc)	BOD 1 x 1L H	4	
	BY: JKOLP		SIGNATURE:	Kand Fee	J	Anions,Alkalinity	TDS 1 x 5	500ml HDPE	=		mL HDPE (ph<2)	
RECORD	ED BY: JK DI P	BW MK	SIGNATURE:	David Lell	4	TSS 1 x 1L HDF	PE			TOC 3 x 40m	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	(H2O	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's		
0924	29.97	118.7	750		11.01	484	6.89	86.5	4,25	6.52		
0927	30. Ú	118.3	200		10.86	480	7.01	74.0	2.54	565		
0931	30.11	117.9	100		11,65	480	7.04	73.3	1.21	5.64		
0936	36.11	117.8	100	482	7.05	68.5	1.05	6.75				
0940 30.11 117.8 100 1.0 11.90 482 7.05 67.9 1.01 5.46												
0944	30.4	117.9	100		11.74	481	7.05	67.Y	0.99			
0948	30.12	118.0	100		16.76	480	7,07	67.7	0.89	5.42	-	
0952	20.13	117.8	100	 	11.63	480	7.10	66.4	0.85	4.40		
0953	30.15	117.9	100	2.0	11.04	479	7.11	65.5		3.79		
1000	30.15	((7.0	100		10,77	479	7.12	65.6	0.76	2.1.1		
 									 			
												
									 			
									 			
				<u> </u>								
									1			
NOTES:		, ,			3%	3%	+0.1 unit	+10 mv	10%	10%		
SAMPLE	TAKEN AT:	100	<u> </u>	wetted sc	reen volu	ne = T (3/2	2/55.	7-45.7	1 () (1.4	481 apl/ft3) = 6.5 gal	
										71		
	·			<u>, , , , , , , , , , , , , , , , , , , </u>								

GWM	I WELL#	SHL-11				US A	rmy (Corps	of En	gineers	}
	INTERVAL DEPTH		9.8	WELL DIAMETER:	2"	Grou	ındwate	er Samp	ling Lo	g Sheet	
H2O LEV	EL: DEPTH, PRE PU	JMP INSERTION	18.70	-						ndfill, Deve	ns, MA
	DEPTH, POST PU	JMP INSERTION	18.70			SAMPLE METH			SS METHO		
DEPTH S	AMPLED:	24		REFERENÇE POINT	PVOOR CASING	Metals/Hardness	5 1 x 1L HI	OPE (ph<2)			0ml glass vials (ph<2)
DATE: a	20May 2002	TIME:	500 (3pm)	(DEPTHS RECORDED BENEATH)	7 236. NGVD	Cyanide 1 x 250	ml HDPE	ph>12 + As	cAc)	BOD 1 x 1L	
SAMPLE		>*×~	SIGNATURE:	Bucu & M	y -	Anions,Alkalinity	TDS 1 x 5	600ml HDPE			mL HDPE (ph<2)
RECORD	ED BY: JK DL PY	(BW) MK	SIGNATURE:	Buan 4.	Da _	TSS 1 x 1L HDF	PE			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pH	ORP/Eh	D.O.	TURBIDITY	COMMENTS
24hr	BELOW MP feet	SETTING	m!/min	PURGEO	TEMP C	CONDUCTANCE		mv	mg/L	NTU's	
3120	18.75	91.7	900		10.72	629	5.64	-19.7	1.03	45,9	Rusty
3160	18 75	91,7	900	2 gcl.	11.07	641	6.23	-34.6	0.74	29.2	
310	18.75	91.7	950	2.5 gal	17.14	646	6.36	-40.1	0.61	8.2	
3220	18.75	91.7	950	J	11.18	651	6.43	-44.6	0,53	13.7	
3250	18,75	91.7	950	4901.	11,19	646	6,44	-46.8	0.48	13.1	
3280	18.75	91,7	950	J	11,19	652	6.46	-48.1	0.45	13.4	
3310	18.75	91.7	900	4,75 991.	11,20	652	6.47	-49.5	0,43	7,3	
334°p	18.75	71,7	900		11,22	654	6:48	-51.0	041	4.6	
3370	18.75	91.7	900	6 gal.	11.22						
3400	18.75	91.7	900		11,23	652	6.48	-51.6			
3420	18,75	91.7	900	7 gal.	11.21	656	6.49	-53.5			
345 p	18.75	91.7	900		11.21	656	6.49	-548			
348p	(8.75	91.7	900	8 gal.	11, 18	65 9	6.49	-54,7	0.39	3.2	
ļ		_			 						
 					<u> </u>						
 											
 							}				
 				 							1
 										 	
NOTES:			<u> </u>	<u> </u>	3%	۱	+0.1 unit	+10 my	L10%	10%	
	TAKEN AT:	35	Opn	wetted scree							1=18001
		- 20	- pro	were sere	v noin	c = n (72)	/ (d -1.)	5 18.70	J JC 1.7	organ /Tt	1- 110 gal

76

GWM	I WELL #	SHL-1				US A	rmy (Corps	of En	gineers	}	
	INTERVAL DEPTH			WELL DIAMETER:	4"	Grou	ndwate	er Samp	ling Lo	g Sheet		
u	EL: DEPTH, PRE PL									dfill, Dever	ns, MA	
1,20 22			72,20	/		SAMPLE METHO						
DEPTH S.		27	0,	REFERENCE POINT	PVC OR CASING	1					0ml glass vials (ph<2)	
DATE:	20Man 2002	TIME:	1140	(DEPTHS RECORDED BENEATH)		Cyanide 1 x 250			cAc)	BOD 1 x 1L H	HDPE	
SAMPLE			SIGNATURE:	David I		Anions,Alkalinity				COD 1 x 250	mL HDPE (ph<2)	
}	ED BY: JK DL PY		SIGNATURE:	(1 devid of	dus	TSS 1 x 1L HDF	E			TOC 3 x 40m	l glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pН	ORP/Eh	D. O .	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	темр с	CONDUCTANCE		mv	mg/L	NTU's		
1200	22.22	101.6	400		10.95	239	5.94	17.6	2.43	65.3		
1204	22.23	101.6	400	<u> </u>	11.71	229	5.96	17.7	1.48	72.2		
1207 22.23 101.6 400 1.0 gal 12.04 233 5.96 19.1 1.09 66.3												
1210 22.23 101.5 400 12.30 232 5.95 22.5 0.86 63.2												
1214	22,23	101.5	400	2.0gal	12.43	220	5.94	26.4	0.77	55.4		
12/8	22.23	101.6	400		12.14	216	5.94	30.3	0.72	49.		
1223	92.27	101.5	450		12.39	202	5.93	73.0	0.68	40-7		
1227	22.23	101.5	425	3.09al	12.50	197	5,92	35.4	0.70	37.4		
1230	22.23	101.5	425		12.44	191	5,92	38.4	0.84	36.8		
1234	02.23	101.5	450	4.05al	12.47	185	5,90	40.6	0.97	34.4		
1239	82,23	101.5	450		12.45	180	5.90	43.4	1.18	33.3		
1243	22.23	101.5	425	5.0 gal	12-43	175	5.88	45.7	1.40	34.4		
1248	02,23	101.5	425		12.26	166	5.87	48.4	1.64	30.1		
1252	72.23	101.5	400	6.0gal	12.26	163	5.89	49.3	1.72	28.2		
1255	02,23	101.5	425	J	12.38	1.62	5,91	49, 9	1.78	29.5		
1258	22.23	101.5	400	7.09al	12.49	159	5.90	51.1	1.87	27.1		
1301	72.27		450		12.49	157	5.92	51.9	1.94	a 3.7		
1304	22.23				12.63	154	5,86	53.2	1.94	21.7		
NOTES:	NOTES: 3% 3% +0.1 unit +10 mv 10% 10%											
SAMPLE	SAMPLE TAKEN AT: py 12 (0.49a) = 6.49a) wetted screen volume = T(3/2')2(32.0'-22.20')(7.4819a1/ft) = 6.49a)											
	- 0									5-7	J	

YSI# 9 8 FO769 TURBIDITY# 75

GWIV	I WELL #	SHLZ	<u></u>			US A	rmy (Corps	of En	gineers	3	
	INTERVAL DEPTH		<u> </u>	WELL DIAMETER:	411	Grou	ındwate	er Samp	ling Lo	g Sheet		
11	EL: DEPTH, PRE P			•		Project N	Name: S	Shepley's	Hill Lan	dfill, Deve	ns, MA	
			# 19.05	/	,	SAMPLE METH	OD: EPA L	OW STRES	S METHO	DD		
DEPTH S		46'		REFERENCE POINT:	FVOOR CASING	12					0ml glass vials (ph<2)	
DATE:	5/20/02	TIME:	1509	(DEPTHS RECORDED BENEATH)	736.84 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L i	HDPE	
SAMPLE		Y BW MK	SIGNATURE:	Christ Ly	1110	Anions,Alkalinity				COD 1 x 250	mL HDPE (ph<2)	
	ED BY: JKODP		SIGNATURE:	() Les	hias	TSS 1 x 1L HDF	PE			TOC 3 x 40m	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/mln	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's		
1509	19.10'	95.1	300		12.61	591	6.23	78,7	2.97	92.9		
1514	17.10'	75.1	300		11.96	606	6.26		1.68	56,5		
1517	19.10	95.1	300	1,05al	614	6.28	27.8	1.07	43.7			
1521	19.10	95.1	300		13,00	617	6.29	29.9	0.78	34.3		
1525	19.10	95.1	250	2.05al	13.07	619	6.31	36.4	0.72	30.3		
1528	19.10	95.8	400		13.10	620	6.31	33,9	0.43	27.1		
1532	19.10	95.8	400		13.28	620	6.31	33.8	0.28	23.5		
1537	19.10	95.8	400		13.25	623	6.33	32,5	0.26	17.8		
1542	19.10	95.8	400		13.23	624	6.34	31.5	0.22	16.		
1545	19.10	75-8	400	,,,	13.20	625	6.34	31.3	0.27	15.9		
1550	19.12	95.8	400	4.0421	13.22	626	6.35	30,3	0.20	12.10		
1553	19.12	95.8	400	, °	13.24	427	4.36	29.9	0.20	12.4		
1556	14.12	95.8	400	3.0 gal	13.24	427	6.36	29.2	0.20	11.7		
				J								
							}					
 							ļ					
			 									
							ļ		· · · · ·			
 		 			_		 					
NOTES:					30/	20/	101.1-14	110 mi	100/	400/		
	NOTES: 3% 3% +0.1 unit +10 mv 10% 10% SAMPLE TAKEN AT: (600) wetted screen volume = $T(3/2)^2(51.0^2 - 41.0^2)(7.481 \text{ gal}/ft^3) = 6.5 \text{ gal}$											
	1			Merco Sincen	wilme =	11 (72)	(31.0	71.0 /	1,7819	m/th)	w.s gui	
										•		

GWM	WELL#	SHL-	7.2			US A	rmy (Corps	of En	gineers	3			
ll .	INTERVAL DEPTH		111/2	WELL DIAMETER:	4"	Grou	indwate	er Samp	ling Lo	g Sheet				
	EL: DEPTH, PRE P			_						idfill, Deve	ns, MA			
	DEPTH, POST P				•	SAMPLE METHO	OD: EPAL	OW STRES	S METHO	DD				
DEPTH S		111		REFERENCE POINT:	PVQ OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	I0ml glass vials (ph<2)			
DATE:	21 May 02	TIME:	0915	(DEPTHS RECORDED BENEATH)	ZZO, 45 MGVD	Cyanide 1 x 250	ml HDPE ((ph>12 + As	cAc)	BOD 1 x 1L I	HDPE			
SAMPLE	BY: JKDLP	Y BW MK	SIGNATURE:	Mark R. Keening		Anions,Alkalinity				COD 1 x 250	mL HDPE (ph<2)			
RECORD	ED BY: JK DL PY	BW WK	SIGNATURE:	mark R. Koenia		TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials			
TIME	WATER OPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D, O.	TURBIDITY	COMMENTS			
24hr	BELOW MP feet	SETTING	mi/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's				
1000	5.87	59.1	100	0.3	10.33	561	7.08	57.0	68.7	1.53				
1005	6.01	60.3	320	0.7	9.82	845	6.39	45.3	28.8	1.02				
1010	6.13	61.3	320	1,0	10.11	906	6,40	50.0	17.2	0.73				
1014	Co.14	61.3	300	1.2	10.16	914	6.40	54.9	13.8	0.65				
1019	6.14	61,3	300	1,6	10.16									
1023	6.15	61.3	300	2,0	10,16	922	6.45	59.6	10.5	0.55				
1027	6.15	61.3	300	2.2	10.11	925	6,46	60.6	9.7	0.41				
1031	6.15	61.3	300	2.6	9.85	921	6.54	62-1	9.1	0.37				
1035	6.16	61.3	300	3,0	10.08	915	6.60	62.0	8.1	0.34				
1038	6.16	61.3	300	3.3	10.00	921	6,61	62.5	7.3	0.39				
1042	6.16	61.3	300	3,8	10.29	921	6.59	63.1	6.8	0.45				
NOTES:		216			3%		+0.1 unit		10%	10%				
SAMPLE	TAKEN AT: /	047	wett	ed serven volu	me = TI	(3/21)2(116	01-104	0.51) (7.	48/ gal	/f43) =	6.5 ga)			
									- 3 7	, –	J			

GWM	WELL#	SHM	-96-22B			3	•	•		_	}	
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	4"	Project Name: Shepley's Hill Landfill, Devens, MA						
	EL: DEPTH, PRE PU		5,59'	•	(2"screen)	Project N	lame: S	shepley's	Hill Lan	dfill, Dever	ns, MA	
	DEPTH, POST PO	JMP INSERTION		ı		SAMPLE METHO	DD: EPA L	OW STRES	S METHO	D		
DEPTH S	AMPLED:	78'		REFERENCE POINT:(VOC'S 3 x 4	0ml glass vials (ph<2)	
DÄTE:	21 May 02		1210	(DEPTHS RECORDED BENEATH)	220.27 NGVD	Cyanide 1 x 250	ml HDPE (ph>12 + Asc			1	
SAMPLE	BY: JKDLP	BW MK	SIGNATURE:	mark R. Kee	níg	Anions,Alkalinity	TDS 1 x 5	00ml HDPE			" '	
RECORD	ED BY: JK DL PY	BW (MK)	SIGNATURE:	mark R. Koe		TSS 1 x 1L HDP	E			TOC 3 x 40m	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рH	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C							
1210	5.58	58.7	240	0,2 gal	9.12						Do recorded in %	
1215	5.61	59.8	350	1,0	9.33							
1220	5.61	59.8 59.0	380 400									
1225	5.62											
1230	5.62	59.8	400	2.2	9.44							
1235	5.62	59.8	400	2.6	9.50		6.67			19.7		
1239	5.62	59.8	400	3,1	9.55		6.66					
1243	5.62	59.8	400	3.7	9,58		6.66				20 mg/l	
1247	5.62	59-8	420	4,1	9.60							
1251	5,62	59.8	420	4.5	9,63	848	6.61	-75.8	0.387%	19.7	4	
L												
NOTES:	TES: 3% 3% +0.1 unit +10 mv 10% 10% MPLE TAKEN AT: 1254 wetted screen volume = $T(12')^2(92.7'-62.7')(7.48)(92)(64^3) = 4.9 ga)$											
SAMPLE	TAKENAT: /	<u> -97</u>	wette	d screen volv	me = TI	(12) (925	7-62.7	(7.48	1 gal/f	$(4^3) = 4$.9 ga	
•									• •		J	

GWM	WELL#	SH	m-93-229		US A	rmy (Corps	of En	gineers	3				
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	4"					g Sheet				
13	EL: DEPTH, PRE PL		6.8	-		Project N	lame: S	Shepley's	Hill Lan	dfill, Deve	ns, MA			
	DEPTH, POST P	JMP INSERTION	5.8	r '		SAMPLE METHO			S METHO)D				
DEPTH SA	AMPLED:	TAK+29.0	- 130.01 130	REFERENCE POINT:	(FVC)OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)			
DATE:	5 21 02	TIME:	1100	(DEPTHS RECORDED BENEATH)	221.55 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As		BOD 1 x 1L I				
SAMPLED			SIGNATURE:	Jan V		Anions,Alkalinity		500ml HDPE			mL HDPE (ph<2)			
RECORD	ED BY: (JB) DL PY	BW MK	SIGNATURE: -	Jacob. L		TSS 1 x 1L HDF	E			TOC 3 x 40n	nl glass vials			
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	pH	ORP/Eh	D. O.	TURBIDITY	COMMENTS			
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's	<u> </u>			
1/33	13.44	103.7	/800	4 901	10.57	650	7.54	-126.2	0.47	1.23	Cleer			
1138	17.45	100.0	1300	7 900	10.56	638	7.57	-131,8	0.37	1.42	(Slight Hydrogen			
1145	20.56	100.2	700	9 gal	10.41	627	7.60	-134.2	0-37	1.32	Sulfide odar)			
1154 23.05 109.0 900 11 5 at 10.87 587 7.62 -136.8 0.30 1,50														
	1204 25.42 112.7 800 13 401 10.47 520 7.58 -131.0 0.30 1.56													
II														
1219	27.29			1580	10.38	519			0.32					
1225	27.42	113.8	200	-	10.31	543	7.58	-)22./	0.34	1.70				
1229	27.48	113.8			(0.6)	533	7.58	-118.8	0.34	1.79				
11-1-1	27.51		150 150	11 0	9.98	539 547	7.58	-114-3	0.38	1.60				
1242	27.53	113.8		legal				-111.0		1.61				
12-10	1246 27.53 113.8 150 9.93 548 7.58 -111.3 0.39 1.74													
 							<u></u>	<u> </u>						
								19.00						
											<u> </u>			
NOTES:					3%	3%	+0.1 unit	+10 mv	10%	10%				
SAMPLE	MPLE TAKEN AT: 1250 welled screen volume = TT(3/2')2(134.3'-124.3')(7.481gal/ft3) = 6.5gal													
	,													
Well	Vell has history of limited to no re-charge until the water level is drawn down 20-30ft, so													
	_										, -			
YSI# 01	20821	TURBIDITY #	75	until that	Pump - Grur	nfos Redi-flow II	#2							

GWN	WELL#	SHM-9	9-31A			11	_	•		gineers	3	
SCREEN	INTERVAL DEPTH		5.3	WELL DIAMETER:	2"	Grou	ndwate	r Samp	ling Lo	g Sheet		
H2O LEV	EL: DEPTH, PRE P		1.82	-		Project N	lame: S	hepley's	Hill Lan	dfill, Deve	ns, MA	
	DEPTH, POST PL	JMP INSERTION			_	SAMPLE METHOD: EPA LOW STRESS METHOD						
DEPTH S	AMPLED:	11'		REFERENCE POINT	PVC OR CASING	Metals/Hardness	1 x 1L H	PE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)	
DATE:	22 May 200	, TIME:	0935	(DEPTHS RECORDED BENEATH)	215.09 NGVD	Cyanide 1 x 250	ml HDPE (ph>12 + As	cAc)	BOD 1 x 1L I		
SAMPLE		BW MK	SIGNATURE:	mark-R. Koe	enig.	Anions, Alkalinity	TDS 1 x 5	00ml HDPE		COD 1 x 250	mL HDPE (ph<2)	
RECORDED BY: JK DL PY BW MK SIGNATURE:				mark R. Ko	TSS 1 x 1L HDPE				TOC 3 x 40ml glass vials			
TIME WATER DPTH PUMP PURGE RATE			CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D, O.	TURBIDITY	COMMENTS		
24hr	BELOW MP feet	SETTING	mi/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's		
1206	1.83	34.8	450	0.6 gal	10.79	104	5.90	60,4	1.14	6.57		
1211	2.10	34.8	450	1.2	10.76	103	5.85	60.7	0.58	4.32		
1215	2.10	34.8	450	1.8	10.87	/03	5.84	59.8	0.47	3.70		
1220	2,10	34.8	450	2,2	10.99	/03	5.83	57.4	0.30	1.45		
1224	2,10	34,8	450	2.0	11.00	/03	5.82	55.4	0.27	1.34		
1228	2.10	34.8	450	3,2	10.97	103	5.82	54.3	0,24	0,97		
1232	2.10	34.8	450	3.8	11.00	103	5.83	53.3	0.22	0.80		
1236	2,10	34.8	450	4,1	11.00	/03	5.82	52.7	10.20	0.85		
1240	2.10	34,8	450	4.5	10.96	103	5.83	51.7	0.19	0.86		
									_			
										•		
NOTES:		1511			3%	3%	+0.1 unit	+10 mv	10%	10%		
SAMPLE	TAKEN AT: $/\mathcal{S}_{\gamma}$	44	<u>wei</u>	ted screen v	oline =	T(42)	15-7-5	5.7//7	1.481 441	$1/(4^3) = 1$,60 aal	
	···· •								J		J	

GWM	WELL#	dll.m.d	G-212			US A	rmy (Corps	of En	gineers	3	
li .			19-31B	WELL DIAMETER:	2"	Groundwater Sampling Log Sheet						
	INTERVAL DEPTH			- WELL DIAMETER.		Project Name: Shepley's Hill Landfill, Devens, MA						
ILIZO ELVI	DEPTH, POST P				•	SAMPLE METHO						
DEPTH S		57'	·	REFERENCE POINT	PVC OR CASING	łf .					0ml glass vials (ph<2)	
DATE:	5/22/02	TIME:	1/00	(DEPTHO RECORDED BENEATH)		Cyanide 1 x 250			cAc)	BOD 1 x 1L	HDPE	
SAMPLE		Y BW MK	SIGNATURE:	Courid Lee	Anions,Alkalinity	TDS 1 x 5	600ml HDPE			mL HDPE (ph<2)		
							PE			TOC 3 x 40n	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mν	mg/L	NTU's		
122-1	2.95	38-7	450		10.72	352	5.46	23.1	a.70	2.61	clear	
1230	2.96	39.6	500	1 gal	10.95	358	5.47	23.9	2.36	3.12		
1236	2.90	39.6	500	a	10,95	376	5.42	25.9	1.69	1.87		
1241	2.96	39.6	500		10,99	381	5.40	27.4	1.38	1.63		
1244	2-96	39.6	200	3	11.12	389	5.38	29.0	1.03	1.62		
1250	2.95	39.6	500	4	11.02	375	5.36	31.0	0.72	1.53		
1254	2.96	37.6	450		11.03	397	5.34	31.2	0.63	0.93		
1257	2.96	39.6	450	5.0 gal	11.03	401	6.32	32.2	0.54	0.78		
1300	2.96	39.7	450		11.09	403	5.31	32.3	0.46	0.73		
1304	2.95	39.6	450		11.09	407	3.71	3≥.6	0.41	0.62		
												
				<u> </u>								
	——————————————————————————————————————											
NOTES: 3% 3% +0.1 unit +10 mv 10% 10% SAMPLE TAKEN AT: 1307 wetted screen volume = $T(t_2)^2(62.3'-52.3')(7.48 qa /ft^3) = 1.6 qa $												
										<i>J</i> / · ·	3	

YSI# TURBIDITY# 39576

Pump - Grunfos Redi-flow II

H20 LEVEL: DEPTH, PRE PLIMP INSERTION 3, 3, 3	GWM	WELL#	SHM-	99-310			US Army Corps of Engineers							
H20 LEVEL: DEPTH, PRE PUMP INSERTION 3 . 3 / 2	SCREEN	INTERVAL DEPTH	70.1'-	80.1	WELL DIAMETER:	2"	Groundwater Sampling Log Sheet							
DEPTH SAMPLED: 75 REFERENCE POINT: (Prob. CASINO) Metals/Hardness 1 x 1L HDPE (ph<2) VOC'S 3 x 40ml glass vials (ph<2) DATE: 21 May 1002 2. TIME: 09.5	H2O LEVE	EL: DEPTH, PRE PU	JMP INSERTION	3.23	_	_	<u> </u>					ns, MA		
DEPTH SAMPLED: 75		DEPTH, POST PU	JMP INSERTION	3.22		~	SAMPLE METHO	OD: EPA L	OW STRES	S METHO	D			
SAMPLED BY: GMOL PY BW MK RECORDED BY: GMOL PY BW MK SIGNATURE: SIGNATURE: TSS 1x 1L HDPE TIME WATER DPTH PHUN PHUNGE RATE BELOW MP field SETTING MINITION PURGED TEMP C CONDUCTANCE MINITION MITUS 09572 3.48 44.8 7.00 1 a.d. 9.99 10.94 6.32 -30.2 137 30.9 CMART MINITION MITUS 09573 3.37 34.5 550 J 10.15 10.53 6.50 -70.7 0.69 6.16 1002 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 10.34 10.50 6.59 -73.1 0.48 1.97 1014 3.36 39.2 400 4 10.44 10.51 6.60 -70.1 0.48 1.97 1017 3.36 39.2 400 4 10.44 10.53 6.60 -70.1 0.49 1.73	DEPTH SA				REFERENCE POINT:	(PVC)OR CASING	Metals/Hardness	1 x 1L HC	OPE (ph<2)		VOC'S 3 x 4	40ml glass	vials (ph<2)	
SAMPLED BY: GMOL PY BW MK RECORDED BY: GMOL PY BW MK SIGNATURE: SIGNATURE: TSS 1x 1L HDPE TIME WATER DPTH PHUN PHUNGE RATE BELOW MP field SETTING MINITION PURGED TEMP C CONDUCTANCE MINITION MITUS 09572 3.48 44.8 7.00 1 a.d. 9.99 10.94 6.32 -30.2 137 30.9 CMART MINITION MITUS 09573 3.37 34.5 550 J 10.15 10.53 6.50 -70.7 0.69 6.16 1002 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 10.34 10.50 6.59 -73.1 0.48 1.97 1014 3.36 39.2 400 4 10.44 10.51 6.60 -70.1 0.48 1.97 1017 3.36 39.2 400 4 10.44 10.53 6.60 -70.1 0.49 1.73	DATE:	22 May 200	Z_ TIME:	0925	(DEPTHS RECORDED BENEATH)	215-5 ZNGVD	Cyanide 1 x 250	ml HDPE (ph>12 + As	cAc)				
TOC 3 x 40ml glass vials TOC 3 x 40ml glass vials vials TOC 3 x 40ml					FackA.K		Anions,Alkalinity,	TDS 1 x 5	00ml HDPE					
TIME 2411 BELOW ME 1664 SETTING MINIMIN PURGED TEMP C CONDUCTANCE PH ORPICA NO. TURBIDITY NO. 9 CRAC MINIMIN PURGED TEMP C CONDUCTANCE PH ORPICA NO. 9 CRAC MINIMIN N	RECORDE	ED BY: (JK) DL PY	BW MK	SIGNATURE: -	Paces !	 -:	TSS 1 x 1L HDF	E			TOC 3 x 40r	nl glass vi	als	
0952 3.48 44.8 700 1 aal 9.99 1044 6.32 -30.2 1.37 20.9 (PAR With HE 0.957) 3.37 34.5 550 0 10.15 1053 6.50 -70.7 0.68 6.16 1002 3.36 39.2 400 2 10.32 10.51 6.57 -74.1 0.55 3.63 1006 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 3 10.38 10.50 6.59 -73.2 0.51 3.00 1014 3.36 39.2 400 10.44 10.51 6.60 -70.1 0.48 1.97 10.47 3.36 39.2 400 4 10.44 10.53 6.60 -70.1 0.46 1.73 10.47 10.53 6.60 -70.1 0.46 1.73 10.47 10.53 6.60 -70.1 0.47 1.73 10.47 10.53 6.60 -70.1 0.47 1.73 10.55 10	TIME	WATER DPTH	PUMP	PURGE RATE	7/	H20	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	C	OMMENTS	
0957 3.37 39.5 550 U 10.15 1053 6.50 -70.7 0.68 616 1002 3.36 39.2 400 2 10.32 1051 6.57 -74.1 0.55 3.63 1006 3.36 39.2 400 10.34 1050 6.59 -73.2 0.51 3.00 1010 3.36 39.2 400 3 10.38 1052 660 -71.0 0.48 1.97 1014 3.36 39.2 400 4 1051 6.60 -70.1 0.46 1.73 1017 3.36 39.2 400 4 10.44 1051 6.60 -70.1 0.46 1.73 1019 3.36 39.2 400 4 10.44 1053 6.60 -72.1 0.44 2.13	24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's			
1007 3.36 39.2 400 2 10.32 10.51 6.57 -74.1 0.55 3.63 1006 3.36 39.2 400 10.34 10.50 6.59 -73.2 0.57 3.00 1010 3.36 39.2 400 3 10.38 10.52 660 -71.0 0.48 1.97 1014 3.36 39.2 400 10.44 10.51 6.60 -70.1 0.46 1.73 1017 3.36 39.1 400 4 10.44 10.53 6.60 -72.1 0.44 2.13	0952	3.48	44.8	700	1 aal	9.99	1044	6.32	-30.2	1.37	20.9	CHAT	My 21. 4 pt 26.2	
1006 3.36 39.2 400 10.37 1050 6.59 -73,2 0.5-1 3.00 1010 3.36 39.2 400 3 10.38 1052 660 -71.0 0.48 1.97 1014 3.36 39.2 400 10.44 1051 6.60 -70.1 0.46 1.73 1017 3.36 39.2 400 4 10.44 1053 6.60 -72.1 0.44 2.13	0957	3.37	39.5	220	J	10.15	1053	6.50	-70.7	0.68				
1010 3.36 39.2 400 3 10.38 1052 600 -71.0 0.48 1.97 1014 3.36 39.2 400 10.44 1051 6.60 -70.1 0.46 1.73 1017 3.36 39.2 400 4 10.44 1053 6.60 -72.1 0.44 2.13	1002	3.36	39.2	400	2	10.32	1051	6.57	-74.1	0.55	3.63	ļ		
1014 3.34 39.2 400 10.44 1051 6.60 -70.1 0.46 1.73 (***7 3.36 39.2 400 4 10.44 1053 6.60 -70.1 0.46 1.73	1000	3.36	39.2	400		10.34	1050	6.59	-73,2	0.5-1	3.00			
7.7 3.36 39.2 400 4 10.44 10.53 6.60 -72.1 2.44 2.13	1010	3.36	39.2		3	/0.38	1052	6.60						
	1014	3.36	39.2	400		10.44	1051	6.60	-70.1	0.46	1.73			
	1017	3.36	39.1	400	4	10.44	1053	6.100	-72.1	0.44	2.13	<u> </u>		
	<u> </u>				<u> </u>							<u> </u>		
														
												<u> </u>		
												ļ		
												<u> </u>		
NOTES												<u> </u>		
NOTES.														
	لـــــــــــــــــــــــــــــــــــــ			<u> </u>								<u> </u>		
	NOTES:					3%	3%	+0.1 unit	+10 mv	10%	10%	>		
SAMPLE TAKEN AT: /020 wetled screen volume = TT (1/21)2(80.21-70.21) (7.481 gas/ft3) = 1.6 gas	SAMPLE	TAKEN AT: / o	20		wether scre	en volu	x= T(/21) (80.2	21-70.2	<u>~)(7.1</u>	481 gas/f	23)=	1.6 gal	
3 / 3											<i>O</i> /		J	

GWM	WELL#	- U 00	99-22 V			US A	rmy (Corps	of En	gineers	3		
		<u> </u>	99-32X	WELL DIAMETER:	ວ"		•	•		g Sheet			
H2O I EVE	INTERVAL DEPTH	IMP INSERTION	8.70	7		Project Name: Shepley's Hill Landfill, Devens, MA							
	DEPTH, POST P					SAMPLE METHO	OD: EPA L	OW STRES	S METHO	DD			
DEPTH SA	•	791		REFERENCE POINT:	PVC OR CASING	Metals/Hardness	1 x 1L HI	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)		
lł.	22 May 2002		0900	(DEPTHS RECORDED BENEATH)	ZZI.95 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L l			
SAMPLED		Y BW MK	SIGNATURE:	Savid Leets		Anions,Alkalinity	TDS 1 x 5	500ml HDPE			mL HDPE (ph<2)		
	DBY: JK DLPY	BW MK	SIGNATURE:	Juil Kul	TSS 1 x 1L HDPE TOC 3 x 40ml glass vials								
TIME WATER DPTH PUMP PURGE RATE COM. VOLUME 7120 SPECIFIC PIT ON THE STATE COM. VOLUME 7120 SPECIFIC PIT ON THE STATE COM.											COMMENTS		
24hr	BELOW MP feet	SETTING	ml/min	PURGED	TEMP C	CONDUCTANCE		mv	mg/L	NTU's			
0949	8.75	66.2	300		9,87	819	6.04	-40.8	1.67	23.2			
0955	8.76	66.2	300	1.0gal	9.90	781	6.32	-53.5		15.9			
0759	8.75	66.2	300		10.05	921	636	-55.2		10.2			
1003	8.75	106.7	300		10.29	933	6.44	-57,3	0.46	7.91			
1008	8.75	66.2	300	2.0 gal	10.39	933	6.47	-589	0.44	5.35			
1012	4.74	66.2	300		10.41	938	6.48	-60.1	0.38	4.12			
1016	8.74	66.2	300		10.49	939		-62.0		3.89			
1023	8.74	66.2	300	3.09al	10.55	939	6.50	-61.8	0.30	3.32			
1030	8.74	66.2	300	3.09ax	10.56	939	6.30	-62,5		3,43			
10	8.73	66.2	300		10.61	939	6.51	-62.8		3.32			
10	0, 1)	60.2	700		70307		6.31	-66.0	0.00	المرازين			
											· · · · · · · · · · · · · · · · · · ·		
										t			
NOTES:		_			3%		+0.1 unit		10%	10%			
SAMPLE	TAKEN AT:	1039		metted screen	r volume	= T(Tz')	(84.1	-74.1 <u>(</u>)	(7.481	gal/ft3)	= 1.6 gal		
		•								•	U		
	*												

Groundwater Field Analysis Forms Fall 2002

	OMMANUTUR CALL 2											
GWM	SWM WELL# SHL-3 U.S. Army Corps of Engineers Groundwater Sampling Log Sheet											
SCREEN	INTERVAL DEPTH	1: 25.1-	351 ft	WELL DIAMETER:	2"							
H2O LEVI	EL: DEPTH, PRE P	UMP INSERTION	30.39	Ft.		Proje	ect Nam	e: Sheple	ey's Hill	Landfill, D	evens, MA	
	DEPTH, POST P	UMP INSERTION	30,85	£4		SAMPLE METHOD: EPA LOW STRESS METHOD						
DEPTH S	AMPLED:	344		REFERENCE POINT:						VOC'S 3 x 4	0ml glass vials (ph<2)	
DATE:	DATE: 250c+02 TIME: c1900 (DEPTHS RECORDED BENEATH) 248.5 NGVD Cyanide 1 x 250ml HDPE (ph>12 + AscAc) BOD 1 x 1L HDPE											
SAMPLED BY: JK KM DL PYMB WM SIGNATURE: Mark R. Kolma Anions, Alkalinity, TDS 1 x 500ml HDPE COD 1 x 250ml HDPE (ph<2)											••	
RECORD	ED BY: JK KM D	LPYMBWM	SIGNATURE:	Mark R. Keery	9	TSS 1 x 1L HDF	Έ			TOC 3 x 40m	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)		
0932	31.92	122.0	800	1.0	15.02	68	6.16	219.1		\$ 0.82		
0940	31.68	122.0	750	210	15.18	68	6.26	218.8		g/l 0,29		
0945	31.14	121.2	420	2,8	15.98	67	6,28	215.3	7.86			
0950	31.24	121,2	200	3.1	16.75	67	6,27	2/3.0	7.82	0.30		
0952	31.52	123.7	500	3,8	19.50	67	6.28	203.1	7.85	6.35	Increased pump/	
1002	31.36	123.9	200	4, [17.30	68	6.29	206.2	7.87	0.41	77	
1006	31.62	121.8	600	4.9	16.59	68	6.27	204,0	8.00	0.27	Backflushed	
1010	31.60	121.8	500	5.3	16.03	67	6.26	209.9	7.93	0.35		
			ļ				ļ					
				<u> </u>								
			<u> </u>	ļ	ļ							
		ļ										
		ļ		<u> </u>								
												
	***	ļ										
							<u></u>					
NOTES:		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	.10	4000	100/		
	TAKEN AT:	1013	h a lla A	Streen Volume	3%	2/2/2/3%	+0.1 unit	+10 mv	10%	10%	7 001	
OAIVIF LE	TARENAI.		werted 4	otren volume	= 11 (7)	2) (35.1	- 30.84	9 /(1.18	19a / H	t ³) 5 0.	7 gal	
											-	

GWN	I WELL#	SHL-	4				J.S. A	rmv C	orps	of Engi	neers			
1	INTERVAL DEPTH		"- 15.7"	WELL DIAMETER	a"	1		•	•	ing Log S				
ti .	EL: DEPTH, PRE P					Proi					evens, MA			
	DEPTH, POST P				_					/ STRESS ME				
DEPTH S	AMPLED:	14.0)	REFERENCE POINT:	: (PVQ) OR CASING	Metals/Hardness					40ml glass vials (ph<2)			
DATE:	10-28-02	TIME:	1415	(DEPTHS RECORDED BENEATH		Cyanide 1 x 250			scAc)	BOD 1 x 1L	HDPE			
SAMPLE	BY: JK KM E	L PYMBWM	SIGNATURE:	mark R. Koe	nia.	Anions,Alkalinity	,TDS 1 x !	500ml HDPE	•	COD 1 x 250	mL HDPE (ph<2)			
RECORD	ED BY: JK KM D	L PAYMK JVM	SIGNATURE:	Mark R. Kom	if .	TSS 1 x 1L HDF	PE			TOC 3 x 40r	nl glass vials			
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. Q.	TURBIDITY	COMMENTS			
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)				
1435	10.86	70.0	450	1.2	14.82	295	5.92	46.1	0.57	18.3	Heavey Brown TSS			
1440	10.83	70.0	450	1.8	14.98	279	6.02	36.0	0.43	6.3	Ü			
1445	10.84	70.0	450	2.5	15,05	257	6.05	33.3	0.36	3.3				
1449	449 10.85 70.0 450 2.9 15.16 242 6.06 31.7 0.33 1.7													
1453	10.86	70.0	450	3,3	14.97	229	6.07	30.9	0.34	1.20				
1457	10.86	70.0	440	3.8	15.10	224	6,07	29.7	0.31	0.73				
1501	10.86	70.0	440	4.3	15,22	223	6,08	28.3	0.32	0.53				
1504	10.86	70,0	440	4,8	15,19	221	6.08	28.0	0.31	0.52				
														
				<u> </u>	ļ			_,						
	· · · · · · · · · · · · · · · · · · ·						 							
			 											
NOTES: 3%							3% 3% +0.1 unit +10 mv 10% 10% $T(\frac{1}{2})^{2}(15.7' - 10.82')(7.4813a1)ft^{3}) = 0.89a1$							
SAMPLE	TAKEN AT:	1009	we	thed screen volu	me = T	(1/2) (15.7	1-10.82	1)(7.48	Igal fi	(3) = 0.	8991			
well	casing broken					v /		•						
	J				· · · · · · · · · · · · · · · · · · ·									

·	· · · · · · · · · · · · · · · · · · ·												
GWM	WELL#	SHL-	5			U	I.S. A	rmy C	orps (of Engi	neers		
	INTERVAL DEPTH		151 ft	WELL DIAMETER:	2"					ng Log S			
H	EL: DEPTH, PRE PU			-		. Proje	ect Name	e: Shepl	ey's Hill	Landfill, D	evens, MA		
			1 3 12 ft		•		SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD		
DEPTH S		10 fee		REFERENCE POINT:	PVC OR CASING	Metals/Hardness	1 x 1L HC	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)		
DATE:	3000002	TIME:	0815	(DEPTHS RECORDED BENEATH)	718.53NGVD	Cyanide 1 x 250	mi HDPE (ph>12 + As	cAc)	BOD 1 x 1L I	HDPE		
SAMPLE		L PY (MB) WM	SIGNATURE:	marker. Koi	ems	Anions,Alkalinity	TDS 1 x 5	i00ml HDPE	Ē	COD 1 x 250	mL HDPE (ph<2)		
RECORD	ED BY: JK KM DI	_ PY (MK) WM	SIGNATURE:	Mark R. Ko		TSS 1 x 1L HDF	'E			TOC 3 x 40m	nl glass vials		
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS		
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)			
0914	3.41	47,5	440	0.5	10.13	84	5.55	55.9	1.07	3.98			
0918	3,42	47.5	440	1.0	10.49	85	5.69	54.6	0.86	1.11			
0922	3,47	47.5	450	1.3	10.73	86	5.61	50.9	0.85	0.89			
0926	0926 3.47 47.5 500 1.8 10.90 87 5.62 46.2 0.74 0.82												
0930	3.49	47.5	500	2.2	11,00	89	5.64	41.9	0.67	0.78	· · · · · · · · · · · · · · · · · · ·		
0934	_3,51	47.5	500	2,8	11.01	91	5.65	37.7	0.62	0.73			
0938	3,51	47.5	500	3.2	11.03	9.3	5.67	33.6	0.61	0.63			
0942	3.51	47.5	500	3.8	11,07	94	5.67	31.2	0.60	0.58			
0946	3.51	47.5	500	4,2	11.07	94	5.68	27.5	0.61	0.59			
					<u> </u>				ļ				
									ļ				
NOTES:					3%	3%	+0.1 unit	+10 my	10%	10%			
	TAKEN AT:	1050	ار مدر ۱	ted screen vo	/2000 D	サノといっしい	5.1/-5	11/17	HRIOAL	1943) = 1	.6 gal		
*		<u> </u>		THE BLIEBLE VO	COPPLE -	VI (1/4) (V	<u> </u>	· / / (1-0 /	• • • • • • • • • • • • • • • • • • • •		

GWM	WELL#	SHM-0	7h-5B			U		_	•	of Engi	
H	INTERVAL DEPTH		91.3 ft	WELL DIAMETER:	41					ing Log S	
H2O LEV	EL: DEPTH, PRE P			[+		Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA
	DEPTH, POST P	UMP INSERTION			•		SAMPLE	METHOD:	EPA LOW	/ STRESS ME	THOD
DEPTH S	AMPLED:	8 ધ્ર		REFERENCE POINT:						VOC'S 3 x 4	0ml glass vials (ph<2)
DATE:	30 007 02	TIME:	1030	(DEPTHS RECORDED BENEATH)	219,8/NGVD	Cyanide 1 x 250	mi HDPE	(ph>12 + As	cAc)	BOD 1 x 1L1	HDPE
SAMPLE	BY: JK KM D	L PY MK (WM)	SIGNATURE:	note I not	h.	Anions,Alkalinity	TDS 1 x 5	500ml HDPE	•	COD 1 x 250	mL HDPE (ph<2)
RECORD	ED BY: JK KM D		SIGNATURE:	holom & hel		TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(mi/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1115	6.81	61.9	600		10.36	424	7.16	-213	5.27	3,52	
1/19	6.81	62.0	600	1,25 gzl	10.69	746	6,61	-49.7	0.65	2,32	
1/23	6,83	61.9	520		10.26	821	6.64	-55,0	0.47	j.87	
1126	6.23	61.9	570	2.8 98	10.88	842	6.64	-57.6	0.39	1,80	Ancket EMATIED
1131	6.83	62.0	600		10.91	845	6.64	-60:5	0.35	2.16	
1/34	6.83	62.0	600		10.95	846	6,64	-61.7	0.32	2.17	
11,38	6.83	62.1	600	4.8 gal (757al)	10.89	846	6.64	-62,7	0.31	1,52	
				/							
NOTES:		1		3%	3%	+0.1 unit	+10 mv	10%	10%		
SAMPLE	TAKEN AT:	1141	wetted s	= T/ (1/2")2(91.3'-8	<u>1.3')(7</u>	481 gal/	$f_{\ell}^{3}) =$	10.5 90	<i>\</i>	
								7 /		J	
											

						,					
GWN	1 WELL#	SHM-	96-5°C		U	I.S. A	rmy C	orps	of Engi	neers	
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	4"		Groun	dwater	Sampli	ing Log S	heet
H2O LEV	EL: DEPTH, PRE P	UMP INSERTION	5.76			Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA
	DEPTH, POST P	UMP INSERTION			•		SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD
DEPTH S	SAMPLED:	56 F		REFERENCE POINT:						VOC'S 3 x 4	0ml glass vials (ph<2)
DATE:	30 0CT 02		0835	(DEPTHS RECORDED BENEATH)	7.19 25 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L I	HDPE
SAMPLE	D BY: (JK)KM D	L PY MKOVIND		Daens. 10		Anions, Alkalinity	TDS 1 x 5	500ml HDPE	į	COD 1 x 250	mL HDPE (ph<2)
il e	ED BY: JK KM D		SIGNATURE:	hall nul		TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
0010	5.80	57.6	560	1 nal	10:27	810	6.45	-49.6	0.59	1.17	
0014	5.81	57.6	560	7	10,59	818	6,47	-48.9	0.41	0,37	
0918	5.81	57.6	550		10.72	820	6.48	-51,2	0.36	0.36	
0929	5.82	57.6	550	39a1	10.84	820	6.48	-54.2	0.28	0.27	
0932	5.82	57.6	550	3gal 4gal	10.83	822	6.47	-55.8	0.27	0.23	
				Ü							
									ŧ		
	ł										
					<u> </u>						
NOTES:					3%	3%	+0.1 unit	+10 mv	10%	10%	
SAMPLE	TAKEN AT: 0	135	wetted	Screen volum	re = 11/	3/2') (60.8'	-50.8	1)(7.48	19al/-	$(4^3) = 6.$	5921
									y - r -		J

GWM	WELL#	SHL-	9			U.S. Army Corps of Engineers Groundwater Sampling Log Sheet						
	INTERVAL DEPTH			WELL DIAMETER:	2"							
H2O LEVI	EL: DEPTH, PRE P	UMP INSERTION	9.60 ft	,		Proje					evens, MA	
	DEPTH, POST P	UMP INSERTION			•				EPA LOW	STRESS ME		
DEPTH S	AMPLED:	20 f		REFERENCE POINT:	PVC OR CASING	Metals/Hardness	1 x 1L HI	OPE (ph<2)			0ml glass vials (ph<2)	
DATE:	29 oct 02	TIME:	1430	(DEPTHS RECORDED BENEATH)	222.84 NGVD	Cyanide 1 x 250	mi HDPE	(ph>12 + As	cAc)	BOD 1 x 1L l		
SAMPLE		LPYMBWM	SIGNATURE:		enia	Anions,Alkalinity		500ml HDPE	:		mL HDPE (ph<2)	
RECORD	ED BY: JK KM DI	LPY(MR)WM	SIGNATURE:	M.R.K.	0	TSS 1 x 1L HDF	E			TOC 3 x 40m		
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)	7.77	(mv)	(mg/L)	(NTU's)		
1141	9.71	67.9	380.ml	0,8	12.64	172	6.49	-31.9	0.45	0.87	Hydrogen sulfide od	
1145	9.81	69.2	520	1.5	12.76	181	6.56	-40.5	0.27	0.72		
1152	9.81	69,2	520	2.1	12.40	180	6.56	-41.9	0,20	0.67		
1156	9.81	69.2	520	2,6	12.28	179	6.56	-42.4	0.17	0.54		
1200	9.81	69,2	520	3.2	12,22	180	6.56	-43, F	0.15	0.26	1000	
1204	9.80	69,2	520	2,8	12,17	181	4.56	-44.8	017	0.24	MT bucket @ 45al	
1308	4.80	69.2	520	4.2	12.17	181	6.56	-45.7	0.13	0.21		
12/2	9.80	69,2	520	5.0 5.5	12,17	182	6,56	-46,9	011	0,22		
12/6	9.80	69.2	520	2.5	12,14	182	6.56	76, 1	$\mathcal{O}_{i,j}$	0,20		
				7					·			
NOTES:		1220			3%	+0.1 unit	+10 mv	10%	10%			
SAMPLE	TAKEN AT:	1220	wetted	screen volum	a = 77 (.	/ (25.0°	-15.0	167.481	941/CH	3) = 1.6	90/	
				screen volum Vote: X We	U Casin	ig broke	n at	lock			<i></i>	
						0						

GWN	I WELL#	SHL	-10			U	I.S. A	rmy C	orps	of Engi	neers
SCREEN	INTERVAL DEPTH	1: 17.8-3	A.Y filt	WELL DIAMETER:	7."		Groun	dwater	Sampli	ng Log S	Sheet
H2O LEV	EL: DEPTH, PRE P	UMP INSERTION	TAB2: 31,5	- - o ft		Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA
l l.	DEPTH, POST P				-		SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD
DEPTH S	AMPLED:	36 ft		REFERENCE POINT:	PV OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	10ml glass vials (ph<2)
DATE:	280ct 02	TIME:	1005	(DEPTHS RECORDED BENEATH)					cAc)	BOD 1 x 1L	HDPE
SAMPLE	BY: JK KM D	L PYM)WM	SIGNATURE:	Mark R. Koes		Anions,Alkalinity				COD 1 x 250	mL HDPE (ph<2)
RECORD	ED BY: JK KM D	L PAMK WM	SIGNATURE:	Mark R Koe	un E.	TSS 1 x 1L HDF	PE			TOC 3 x 40n	nl glass vials
TIME	WATER OPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gai)	TEMP (°C)	COND, (µS/cm)		(mv)	(mg/L)	(NTU's)	
1144	31.65	123.8	610	0.6	12.24	97	6.71	284.6	8,15	0.90	
1151 1156	31.71	123.8	610	1.8	13,29	77	6.89	253,6	9.37		
1156	31.70	123.8	580	2.5	13.36	74	6.89	246.1	9.39	0.21	
1200	31,70	123.8	580	3,2	13,31	72	6.88	240.0	9.40	0.15	
1204	31,70	123.8	580	3.8	13.36	72	6.88	236,1	9.34	0.07	
1209	31, 70	123.8	560	4,2	13, 39	7-1	6.87	230.9	9.33	0.05	
1213	31.70	123.8	560	4.8	13.27	70	6.88	228.6		0.07	
1216	31.70	123.2	560	5.2	13.34	69	6.87	225.8		0.08	
1220	31.70	123.2	560	5.8	13.29	68	6.86	222.1			
1224	31.70	123.2	560	6.4	13.26	68	6.87	219.4	9.40	0.03	
									·		
			<u> </u>								
NOTES:	TAI/511 A.	1227		.1	3%	3%	+0.1 unit	+10 mv	10%	10%	
	TAKEN AT:	1227		Hed screen vol	me= I	$(1/2')^{2}(38.$	4-31.	501)(7.	48192/4	$(2^3)^2 .1$	991
* Well	has history	of Silling	in - attempts	have been mad	de to ren	ove material	יטינעשוני	shy - reco	ords hav	د سال عن	1 to 41.8 ft.
		J						7			J

GWN	1 WELL#	5HM-	93-100			U	I.S. A	rmy C	orps	of Engil	neers			
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	4"		Groun	dwater	Sampli	ng Log S	heet			
	EL: DEPTH, PRE P			Ēŧ		Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA			
	DEPTH, POST P	UMP INSERTION			•					STRESS ME	THOD			
DEPTH S		51		REFERENCE POINT:	VC)OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)			
DATE:	2802+02	TIME:	0940	(DEPTHS RECORDED BENEATH)	248.4 2NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L l				
SAMPLE	BY: JKKM	PY MK WM	SIGNATURE:	David Lub		Anions,Alkalinity	-	600ml HDPE	Ē		mL HDPE (ph<2)			
RECORD	EDBY: JKKM(Ď	D PY MK WM	SIGNATURE:	David Luly		TSS 1 x 1L HDF	E			TOC 3 x 40m				
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS			
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)				
1002	30.65	118.7	150		10.95	493	7.57	-7.9	1.46	7.87				
1007	30.85	119.5	350		11.29	486	7,51	-5.9	0.86	10.92				
1010	30.90	119.1	150	ļ	12,07	486	7.51	-3.6	0.54	6.77				
(020	820 30.94 119 150 19al 12.22 490 7.55 -4.2 0.71 5.07 018 30.99 119 150 12.19 490 7.54 -4.2 0.62 4.42													
LVVJ														
(029	31,00	/(9. /	160											
1032	31.00	117.1	100		12.57	490	7.56	-3.9	0.51					
1035	91.01	119.1	100		12.78	489	7.56	-4.2	10.65	3,39				
1039	31.02	119.1	100		12.18	491	7.59	-5.5 -4.8	0.50	2.91				
1043	31.03	(19.1	100	2 7 al	12.8	490	7.53	-4,0 -52	0.58	2 62				
1049	31.03	117.1	(02)		12.71	491	7.53	-5.3	0.54	2.25	•			
7097) (00 /				10.11	7.0	1.77		0.57	<u> </u>				
						,								
										`				
NOTES:				ed Sercen volum	3%	3%	+0.1 unit	+10 mv	10%	10%				
SAMPLE	TAKEN AT:	056	weth	.7-45	7 (1.	481 921	(A) = (6.5941						
					- J	, <u> </u>	- - -							
	·		· · · · · · · · · · · · · · · · · · ·											

GWM	WELL#	SI	L-11			U	I.S. A	rmy C	orps	of Engi	neers	
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	2"					ing Log S		_
	EL: DEPTH, PRE P			<u> </u>		Proje				Landfill, D		Α
:	DEPTH, POST P	UMP INSERTION					SAMPLE	METHOD:	EPA LOW	STRESS ME		
DEPTH S	AMPLED:	251		REFERENCE POINT						VOC'S 3 x 4	_	als (ph<2)
DATE:	10/24/02	TIME:	6350	(DEPTHS RECORDED BENEATH)	23-60.34 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L		
SAMPLE	BY: JK KM(C	PY MK WM	SIGNATURE:	David Lu	wl	Anions,Alkalinity	TDS 1 x 5	500ml HDPE	=	COD 1 x 250		h<2)
RECORD	EDBY: JKKMQ	L) PY MK WM	SIGNATURE:	David Le	wh	TSS 1 x 1L HDF	Έ			TOC 3 x 40n	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMM	ENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)		
8-55	19.13	93.3	300		12.38	677	6.17	-34.1	0.86	74.5	Rust al	
1000	19.13	94.0	450	Igal	14.57	714	6.41	-41.3	0.61	76.2	pirst 46	ren clea
1004	19.13	94.0	500	, , , , , , , , , , , , , , , , , , ,	14.43	727	6.46	-41.9	0.57	38.6		
1052	19.13	94.0	500	Jan.	15,03	736	6.46	-43,8		25.6		
1013	19,13	94.0	500	- 0	14.99	747	4.48	-44.3	0 51	15.4		
1013	19.13	94.0	500	39al	14.98	148	6.49	-44.2	0.53	10-83		
1021	19.13	94.0	450		14.96	151	6.49	-44.7	0.53	10.42		
1025	19.13	94.0	500	4 gal	15.03	752	6.48	-44.8	0.52	7.85		
1028	19,13	94.0	500	- 0	15,13	752	6.48	-45.3	0.52	5.64		
1032	19.13	93.9	500	55al	15.11	75 Y		-45.6	0.53	4.45		
1035	$-\frac{19.13}{12}$	94.0	450	. , , , , , , , , , , , , , , , , , , ,	15.04	757	6.48	-45.5	0.56	4,49		
1038	19.13	94.0	500	6 5al	15.15	756	6.40	-46.3	0.56	4.69		
<u> </u>		 										
<u> </u>												
 												
I 									 			<u> </u>
		· · · · · · · · · · · · · · · · · · ·										
NOTES:			1		3%	3%	+0.1 unit	+10 mv	10%	10%		
	TES: 3% +0.1 unit +10 my 10% 10% APLE TAKEN AT: $(04)^2$ welfed screen value = $T(\frac{1}{2})^2(29.8'-19.13')(\frac{7.418}{7.488}7.4819a1/ft^3) = 1.79a1$											
			WENTED!	alleun Volume	<u> </u>	. / (310	1 (113)	(T. 11 0	(, 10 / 4	741/11)
			,									

YSI# COD (98

TURBIDITY# 39515

Pump - Grunfos Redi-flow II

GWM	WELL#	SHL	19			U	I.S. A	rmy C	orps	of Engi	neers			
SCREEN	INTERVAL DEPTH	1: 17.0	1-32.0'	WELL DIAMETER:	44		Groun	dwater	Sampli	ing Log S	Sheet			
H2O LEVI	EL: DEPTH, PRE P	UMP INSERTION	23,3	-6 '		Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA			
	DEPTH, POST P	UMP INSERTION					SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD			
DEPTH S.	AMPLED: ,	28	7	REFERENCE POINT:						VOC'S 3 x 4	40ml glass vials (ph<2)			
DATE:	10/28/02		1238	(DEPTHS RECORDED BENEATH)	241.34 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L	HDPE			
SAMPLE		DPY MK WM	SIGNATURE:	Marid &	ul	Anions,Alkalinity	TDS 1 x 5	500ml HDPE	•		0mL HDPE (ph<2)			
RECORD	EDBY: JKKM(D	DPY MK WM	SIGNATURE:	Harih Ku		TSS 1 x 1L HDF	PE			TOC 3 x 40r	nl glass vials			
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS			
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)				
1251	13.37	104.5	400		12.03	257	6.65	-14.6	1.19	61.4	red-orange fines			
1255	33.37	104.5	400		13.67	256	6.59	-9.3	0.63	51.8				
1259	23.37	104.5	400	1gal	14,46	259	4.59	-8.2	0.46	56.3				
1305	305 23.37 104.5 400 14.62 241 6.57 -7.3 0.32 51.6													
1309	309 23.37 104.5 400 2gal 14.80 260 6.56 -6.3 0.30 44.1													
1313	23.37	104.5	400	U	14.83	760	6.55	-6.le	0.28	38.8				
1317	23.37	104.5	400	3991	14.94	259	6.54	-6.8	0.26	37.7				
1320	23.37	104.5	400	٥	15.00	257	6.53	-6.4	0,27	32.4				
1323	23.37	104.5	400		14.93	257	6.51	-6.2	0.26	31.7				
1326	23.37	104,5	400	4921	15.06	254	6.51	-6.9	0.27	29.9				
		<u> </u>		0										
<u> </u>														
	·													
10755														
NOTES:	TAI/EN AT 105	9 6	.1 -		3%	3%	+0.1 unit	+10 mv	10%	10%				
SAMPLE	TAKEN AT: 1330 wested screan volume = T(3/2)2(32.0'-23.36')(7.4619a1/ft3) = 5.69a1													

GWN	I WELL #	SHL	-20			Ū	.S. A	rmy C	orps	of Engi	neers			
H	INTERVAL DEPTH		,0'-51.0	/ WELL DIAMETER:	: 4"		Groun	dwater	Sampli	ing Log S	heet			
11	EL: DEPTH, PRE P					Proje					evens, MA			
	DEPTH, POST P	UMP INSERTION							EPA LOW	/ STRESS ME				
DEPTH S	AMPLED:	46'		REFERENCE POINT:	EVOOR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)			
DATE:	10-29-02	TIME:	0945	(DEPTHS RECORDED BENEATH		Cyanide 1 x 250	mi HDPE	(ph>12 + As	cAc)	BOD 1 x 1L l				
SAMPLE		L PY MIN WM	SIGNATURE:	mark R. Kon	enis	Anions,Alkalinity		500ml HDPE			mL HDPE (ph<2)			
RECORD	ED BY: JK KM D	L PY MIOWM	SIGNATURE:	Mark R. Koo	nia	TSS 1 x 1L HDF	'E 			TOC 3 x 40m				
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS			
	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)	111	(mv)	(mg/L)	(NTU's)				
0950		98.1	620	1,2	12.57	776	6.45	-16.9	0.78	7.21				
0959	19.61	97.0	480	2.2	12.58	771	6.49	-21.7 -23.7		5.17				
1004	08 19.61 97.0 500 3.4 12.95 761 6.51 -25.7 0.36 4.63													
	12 19.61 92.0 500 4.0 13.00 758 6.52 -26.9 0.33 6.71 MT bucket@4.0ged													
1017														
1021	19.61	97.0	500	4,9	13.08	753	6,52	-29.9						
1024	19.61	97,0	500	5,3	13.12	751	6.52	-31.1						
	77,4	1 7 7	1000		19-10-		0.55		0111					
				ļ										
 														
NOTES:		<u> </u>	<u> </u>	<u> </u>	20/	20/	±0.1	+10 my	100/	109/				
	ES: $3\% + 0.1 \text{ unit} + 10 \text{ mV} = 10\%$ IPLE TAKEN AT: 1029 welfed streen where $= TI(3/2')^2(51.0' - 41.0')(7.481941/42^3) = 6.5 ga/$													
		<u>val</u>	wern	so street toth	mo = 0	1 (12) (3	1.0 7	··	· 10/94	1/22-0	0.0 900			
SKI O'	LB0141		# 39541											
YSI#		TURBIDITY #	#		Pump - Gru	nfos Redi-flow II								

GWM	WELL#	SHL.	. <u>22</u>			U	I.S. A	rmy C	orps	of Engi	neers
H	INTERVAL DEPTH		0-116.0	WELL DIAMETER:	4"					ng Log S	
14	EL: DEPTH, PRE P			.		Proje					evens, MA
	DEPTH, POST P	UMP INSERTION		(_				EPA LOW	STRESS ME	THOD
DEPTH S	AMPLED:		,	REFERENCE POINT:	(PVC)OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)
DATE:	10/29/02	TIME:	1130	(DERTHS RECORDED BENEATH)	7 20.45 NGVD	Cyanide 1 x 250	ml HDPE (ph>12 + As		BOD 1 x 1L l	
SAMPLED		DPY MK WM	SIGNATURE:	(David Fred		Anions,Alkalinity		600ml HDPE	Ē		mL HDPE (ph<2)
RECORD	EDBY: JKKM(DI	()PY MK WM	SIGNATURE:	Maria Lul		TSS 1 x 1L HDF	E			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	pН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(mi/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1203	7.58	64.7	300		10.62	876	5.32	14.9	48.88	4,39	
1206	7.53	64.7	150		10.75	915	6.31	4.4	1,20	2.22	
1210	7.55	66.2 66.3	300	(gal	(0.77	929	6.59	3.0	1.08	1.63	
1215	0.68										
1220	7.68	66.2	300	η	10-87	928	6.61	5.3	0-86	0.55	
1224	7.68	66.2	300	2 gal	10.88	<u>827</u>	6.61	6.3	0.80	0.50	
1227	7.67				10.86	927	6.61	7.4	0.79	0.38	
ļļ							L				

									-		
NOTES:			<u> </u>	retted screen	3%	3%	+0.1 unit	+10 mv	10%	10%	_
SAMPLE	TAKEN AT:	1235	h	retted screen :	whene =	$= T (3/2')^2$	(116.0'	-106.01) (7.48	1 gal A23)=65 941
										- 	J
					······································						

YSI # 00 D 6 9 8

TURBIDITY# 39515

Pump - Grunfos Redi-flow II

GWN	VM WELL# 5HM-9G-みみB U.S. Army Corps of Engineers											
SCREEN	INTERVAL DEPTH		7-92,7'	WELL DIAMETER:	4"					ng Log S		
H2O LEV	EL: DEPTH, PRE PL			·-	12" 5Creen	Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA	
	DEPTH, POST P	JMP INSERTION			.		SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD	
DEPTH S	AMPLED:	77'		REFERENCE POINT:	PVO OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)	
DATE:	10/29/02	TIME:	1409	(DEPTHS RECORDED BENEATH)	220.27NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L I		
SAMPLE		PY MK WM	SIGNATURE:	Warriet Re	Jan -	Anions,Alkalinity	TDS 1 x 5	500ml HDPE			mL HDPE (ph<2)	
RECORD	ED BY: JK KM(b)	PY MK WM	SIGNATURE:	David Le	b	TSS 1 x 1L HDF	<u> </u>			TOC 3 x 40m	nl glass vials	
TIME	WATER DPTH	PUMP	PURGE RATE	CUM, VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS	
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)		
1413	7.10	63.9	250		10.12	807	7.62	17.8	4.03	9.39	* ORP readings	
1417	7.10	64.7	500		10.75	318	8.46	15.2	0.88	5.87	may not be	
1420	7.11	64.7	500	1gal	10.72	818	8.57	14.7	0.64	5,29	accurate since	
1424	7.11	64.7	500	/ ,	18.86	823	8.64	14.6	0.48	5.13	check of calibration	
1427	7.11	64.7	500	2 gal	10.90	824	8.67	14.6	0.43	4.44	of meter after	
1430	7.11	44.7	500		10.92	824	8.69	14.3	0.40	4.63	revealed an	
1433	7.11	64.7	500	35al	10.95	824	8.69	14.4*	0.37	4.39	inaccuracy.	
											3	
												
												
NOTES:		11120			3%	MF 3%	+0.1 unit	+10 mv	10%	10%		
SAMPLE	TAKEN AT:	1439		etted screened	me = 1	1 (1/2) 2 (9	2.7'-6	2.7′)(7	.48) ga	1/43)	= 4.9 ge/	
									0	7		

GWN	1 WELL#	51	IM-93-8	22C		L	J.S. A	rmy C	orps	of Engi	neers
SCREEN	INTERVAL DEPTH			WELL DIAMETER:	411	1	Groun	ndwater	Sampl	ing Log S	Sheet
	EL: DEPTH, PRE P			-		Proje	ect Nam	e: Shep	ley's Hill	Landfill, D	evens, MA
	DEPTH, POST P	UMP INSERTION		7	-		SAMPLE	METHOD:	EPA LOV	V STRESS ME	THOD
DEPTH S	SAMPLED:	1291		REFERENCE POINT:	PVC OR CASING	Metals/Hardness	1 x 1L H	DPE (ph<2)		VOC'S 3 x 4	I0ml glass vials (ph<2)
DATE:	10/29/02	TIME:	1220	(DEPTHS RECORDED BENEATH)	221.55 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	scAc)	BOD 1 x 1L	HDPE
SAMPLE		LOWK WM	SIGNATURE:	Paul Young		Anions,Alkalinity	TDS 1x	500ml HDPl	Ξ	COD 1 x 250	mL HDPE (ph<2)
RECORD	DED BY: JK KM DI	LØMKWM	SIGNATURE:	Paul Young		TSS 1 x 1L HDF	PE			TOC 3 x 40n	nl glass vials
TIME	WATER DPTH-	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
/3/3	30,87	120,6	450		10,98	574_	7,44	-98,7	0.87	3,14	
1318	3/132	118,7	py72 125	,	10.86	530	7.49	-115.5	0,60	2.73	
1323	31.25	118.7	150		10.69	543	7,50	-122.1	0.64	2.69	
1328	31.22	118.7	150		10,68	544	7,51	-120,4	0,63	2,29	
1333	31.30	120,2	300		10,68	545	7.51	-126,6	0,63	2.26	
1338	31,49	119.8	200	2.0	10.45	549	7,52	-13017	0,65	1.82	
1343	31,58	119,7	200		10,55	549	7,52	-132,4	0.56	1,49	
1348	31,63	119.7	200	3,0	10.55	549	7,53	-135,1	0,51	1,53	
		l									
				~							

								····	<u> </u>		
NOTES: SAMPLE	TAKEN AT:	355 hour	15 ja	retted screen i	3% = . samulou	T(¾,′)²(+0.1 unit	+10 mv	10% 17.4814	10%	= 6.5 aal
# Well			recharge	therefore e	quilibrat	tion is achie	red on	In afte	- 2VM	o'na wate	er depth down
_70~	30 below	tra of	PV c C	ppn. 7- PY 10	gallons were	2 Dungel Pain	to record	line of la	to (a) [3]	3 hus	
YSI# O	280141	TURBIDITY#	39576	ppr. 7-14 10	Pump - Grur	nfos Redi-flow II		7			

GWM	I WELL#	5HM-	99-31 A			U		_	•	of Engi	
13	INTERVAL DEPTH	1: 57-1.	s·7′	WELL DIAMETER:	2"	Drois	Groun	dwater	Sampli	ing Log S	heet evens, MA
H2O LEV	EL: DEPTH, PRE PI	JMP INSERTION	3.301			Proje					
	DEPTH, POST P	JMP INSERTION	3.20		ا سمر.				EPA LOW	STRESS ME	
DEPTH S	AMPLED:	11.	•	REFERENCE POINT:	(PVC OR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)
DATE:	31 OCT 02-	TIME:	0940	(DEPTHS RECORDED BENEATH)	215.07 NGVD	Cyanide 1 x 250	ml HDPE	(ph>12 + As	cAc)	BOD 1 x 1L H	
SAMPLE			SIGNATURE:	Ban's Zul		Anions,Alkalinity	TDS 1 x 5	500ml HDPE	•		mL HDPE (ph<2)
RECORD	ED BY: JK KM(D)	L PY MK WM	SIGNATURE:	Caril Jul	i	TSS 1 x 1L HDF	PE			TOC 3 x 40m	ıl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1012	3.39	43.0	400		12,24	105	5.46	17.9	0.81	25,0	
10:6	3.38	43.€	45C	1908	12.97	102	5.80	-0.3	0.54	14.6	
1620	3,39	43.0	450		13.53	103	5.91	-5.6	0.40	10.57	
1025	3,39	43.0	450	25al	13.69	103	5.93	-8.2	0.32	8,54	
1029	3.40	43.0	450		13.75	i03	5,93	-10.2	0.28	5,09	
1034	3,41	42?43.Z	350		13-79	103	5.90	-12.2	0.24	4.05	
1049	3,37	42,2	350	3901	14.14	103	5.89	-12.1	0.24	4.08	
1043	3,35	42.2	350	/	14.23	103	5.93	~12.6	0.27	5.72	
1046	3,36	42.7	750		14.31	(04	5.91	-13.9	0.22	3.96	
1049	3.36	42.2	350	4 gal	14.27	104	5.50	-17.8	021	2.85	
1052	3,36	42.2	35Û	,	14.30	104	5.94	-15.2	C.22	2.98	
1055	3,36	42.2			14.32	(04	5.72	-15.2	0.21	3,08	
						\					
			`								
NOTES:				·	3%		+0.1 unit		10%		
SAMPLE	TAKEN AT: / C	57	wetted	Screen volume	= TT/-	/2 (15.7	-5.7	()(7.4)	8/99/	$\mathcal{A}^3) = 1$	10 gal
								, , , , , , , , , , , , , , , , , , , ,	J /	•	- J

YSI# 00 D 0698 AF TURBIDITY# 39576

GWM	WELL#	<hm-< th=""><th>·99-31B</th><th></th><th></th><th>U</th><th>I.S. A</th><th>rmy C</th><th>orps</th><th>of Engi</th><th>neers</th></hm-<>	·99-31B			U	I.S. A	rmy C	orps	of Engi	neers
li	INTERVAL DEPTH		-102.3 ft	WELL DIAMETER:	2"					ing Log S	
u	EL: DEPTH, PRE P			•		Proje	ect Nam	e: Shepl	ey's Hill	Landfill, D	evens, MA
	DEPTH, POST P				•		SAMPLE	METHOD:	EPA LOW	STRESS ME	THOD
DEPTH S			Ft	REFERENCE POINT:	PVC DR CASING	Metals/Hardness	1 x 1L H	DPE (ph<2)		VOC'S 3 x 4	0ml glass vials (ph<2)
II.	310CT 02	TIME:	1045	(DEPTHS RECORDED BENEATH)						BOD 1 x 1L I	HDPE
SAMPLE		L PY MK WM	SIGNATURE:	Tacha P		Anions,Alkalinity	TDS 1x	500ml HDPE	•	COD 1 x 250	mL HDPE (ph<2)
III .	ED BY: JBKM D		SIGNATURE:	TackAL		TSS 1 x 1L HDF	Έ			TOC 3 x 40m	nl glass vials
TIME	WATER DPTH	РИМР	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D.O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/min)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1127	3.97	46.0	600	1,0	10.78	336	5.93	1.4	0.48	0.54	
1144	3.97	45.2	580	1.6	10.98	349	10.07	-2.6	0.49	0.48	
1148	3.98	44,5	400	3,3	11,06	354	6.13	-3,8	0.45	0,44	
1152	3,98	44,4	400	26	11.08	356	6.1.3	-4,2	0.55	0,46	
1156	3.98	44,4	400	3,2	1/./3	358	6,12	-4,4	0.53	0.35	
1159	3,98	44,5	400	3,6	11.16	360	6.13	-4.6	0.50	0.32	
1203	3,98	44.5	400	4,2	11.16	362	6.14	-4.8	0.54	0.26	
ļ											
							<u> </u>				
				· · · · · · · · · · · · · · · · · · ·			! 				
										· · · · · · · · · · · · · · · · · · ·	
				:							
	· · · · · · · · · · · · · · · · · · ·										
NOTES:	-	10 00			3%	3%	+0.1 unit	+10 mv	10%	10%	
SAMPLE	TAKEN AT:	1205	<u> </u>	vetted screen	sline =	TP (121)2(623/-s	72.37)(1	.481991	1/f43) = 1	.6 94/
		-							~		<i>U</i>
				· ——							

YSI# 39576 TURBIDITY# 39576 S/n=001 '98 AF

GWM	1 WELL#	<4M- <	99-31C.			l U	.S. A	rmy C	orps	of Engi	neers
11	INTERVAL DEPTH			WELL DIAMETER	: 2"		Groun	dwater	Sampl	ing Log S	heet
	EL: DEPTH, PRE PL			-		Proje					evens, MA
	DEPTH, POST PL	JMP INSERTION	4.25 ++		_		SAMPLE	METHOD:	EPA LOV	STRESS ME	
DEPTH S	AMPLED:	75 ft			PVOOR CASING	Metals/Hardness	1 x 1L H	OPE (ph<2)			0ml glass vials (ph<2)
DATE:	310CT02	TIME:	1010	REFERENCE POINT:	315.52 GVD	Cyanide 1 x 250	ml HDPE (ph>12 + As	cAc)	BOD 1 x 1L	
SAMPLE		L PY MKWM	SIGNATURE:	m/ 4-1	hell	Anions,Alkalinity	TDS 1 x 5	600ml HDPE	•		mL HDPE (ph<2)
RECORD	ED BY: JK KM DI	PY MK WMD	SIGNATURE:	mll IT	helle	TSS 1 x 1L HDF	Έ			TOC 3 x 40n	nl glass vials
TIME	WATER DPTH	PUMP	PURGE RATE	CUM. VOLUME	WATER	SPECIFIC	рН	ORP/Eh	D. O.	TURBIDITY	COMMENTS
(24hr)	BELOW MP (feet)	SETTING	(ml/mln)	PURGED (gal)	TEMP (°C)	COND. (µS/cm)		(mv)	(mg/L)	(NTU's)	
1051	4.43	46.3	480		10.71	426	6.68	-367	3,32	10.60	
1056	4.43	4.6.3	500		10.50	10.58	6,67	-83,4	0.55	5,57	
1059	r 4.43	46.3	500	1.898	10.67	1062	6.69	-88.2	0.44	4,15	
1103	4,43	4613	T00		10,79	1054	C.LR	-90.5	0.39	2.03	
1107	4,43	4613	480	3.090	10.79	1048	6.68	-92.3	0.35	0.89	
1/11	4,43	46.3	500		10.82	1051	6.62	-92.9	0.33	0:71	
1114	4,43	463	500	ļ	10.87	1055	6.67	-93,8	0.31	0.73	
1117	4,43	96,3	500	4.2.991	10.93	10.59	6.67	-948	0.30	0.65	
											
<u> </u>											
								·			· · · · · · · · · · · · · · · · · · ·
									ļ		
]											
					<u> </u>						
											
NOTES:			<u> </u>		L	<u> </u>		-40	100/	100	
	TAKEN AT:	121	11 /	sven who	3%	·/ L /2/-	+0.1 unit	+10 mv	10%	10%	17 - 1
SAIVIPLE	TAKEN AT:	161	wetted	screen wilms	<u>= 71</u>	(12)(80.	1-70-1)(7.48	51 gal,	1463)=	1.6 gal
					<u></u>				- ·		

APPENDIX C CHAIN OF CUSTODY FORMS

Severn Trent Laboratories, Inc.

208 South Park Drive, Suite 1, Colchester, VT 05446 Tel: (802) 655-1203

Report to:		Invoice to						NALY		7	7	7	\int						Lab Us Due Da	se Only ate:	4	9.1
Company: U.S. ARMY CURPS OF ENG.		any:				-	ΠŁ	QUES	אונט	I	$\int_{-\infty}^{\infty}$		1.	-/-				11	Temp.	of coolers		\dashv
Address: 696 VIRGINIA Road	Addr	ess:								/			/-	/				1 /	1	received (C		1
Cenearl, my 01742	-								1			/ -		/	/	/			1 2	2 3	4 5	
Contact: MARIE LUOJTAS	Conf	act:							/	-/	3346	'- <i> </i>	160		I - J	' 1	/ /	- -	Custoc	ty Seal	N/Y	7
Phone: 978/2/8 - 8/75	— Ph	one:							-/		37	. J.	W	/-	- /				Intact		N/Y	- [
Fax:	-	Fax:						•			. الأيا	. /~	F)-			• [.	Screer	ied		\exists
Contract/ Cuote:									/	(HIMON.	X	./ ;	7					1	For Ra	dioactivity		
Sampler's Name Pavid Lubianez	Sampler	's Signature Law	7	1	14	=		. /	/ ,	3	1 0	7 3	7	/	/	/		/	L		Τ.	-
Brian Waz	· Outriple:	Busin Hay	~						20	2	2	K			ا ما	ا ^ا	/ /					
		The first	1						XX.	ŽĮ.	63	ST	0	405.	60.2	Page 1						
Proj. No. Project Name CO776 Shepleys Hill	/ / Tn	1	No/1)	pe of C	ontair	ners*		1:			છું	Ŋ	Res 140.1	7	y	63			€		1	
CG	, , , , , , , , , , , , , , , , , , , ,	<u>/</u>		XG C	050	T		ن /	$\sqrt{\epsilon}$	\mathcal{J}	<u>}</u>)	4			ર/ ∖	$\int_{\mathcal{F}}$					
Matrix Date Time o r Identifying Marks of	Sample(s)		VOA	alass	250 ml	P/Q		13	METAL BROK	15000 - SIM	A41.	Co. 300 / 1/2/		# F	7 6	j j		La	ıb/Sample	ID (Lab U	Jse Only)	
W \$12/02 1007 X SHL-10			3	3	1	5		3	1	1	1	t	1	1	3						,	
w shop 1008 X SHM- 93-	10C		3	3	1	5		3	1	١	1	1	1	١	3							
W \$2/02 1310 X SHL-19			3	3	١	5		3	1	1	1	1	1	1	3							
W 92/02 1310 X SHL- 19n	15		3	3	1	2		3	-	1	l	-	1	_	3						,	
W 9462 1310 X SHL- 191			3	3	ī	1		3	1	1	-	_	1	_	3					,	Ź	
w 5/2% 1157 X SHL-3		· · · · · · · · · · · · · · · · · · ·	3	3	1	5		3	1	1	1	1	-	1	3	Г						
W 6/2/03/35/ X SHL-4		•	3	3	17	5		3	1	1		1	1	1	3	T		1		-		
ł 15/./1 ! ! !			3	3	1	5		3	$\overrightarrow{}$	<u> </u>		<u> </u>	<u>`</u>	1	3	\vdash	\vdash					
			3	3	1,	5		3	·	•	 	 	,	-	3	╁	+-					\dashv
W 5/26/1600 X SHL-20 W 5/26/2 X TRIPBLANK	·		+	-	<u> </u>	+	-	,				_	-	Ė	1	\vdash	+					_
	`		<u> </u>		بــــــــــــــــــــــــــــــــــــــ	17					ــِــــــا			<u> </u>	1	<u> </u>	1	<u> </u>		,		\dashv
Relinquished/by: (Signature) Date 514 02	Time 1830	Received by: (Signature ain bill # 827 4	Feb. 6 11009	5xpre 516	4	Date		Time		Re	emark	3	ر د		<u></u>	/		-/ •				
Relinquished by: (Signature) Date	Time	Received by: (Signature				Date	Ī	Time		1			_ _	•	(00	(EA	'>	shipp	RO()			
Relinquished by: (Signature) Date	Time	Received by: (Signature		-		Date		Time										ptance of S Schedule.	levern Trer	nt Laborate	ories	
'Matrix WW - Wastewater W - Water ² Container VOA - 40 ml vial A/G - Amber	S - Soil / Or Glass 1 Lite	L - Liquid A - / er - 250 ml - Glass wid				narcoal - Pla			SL -		ze	. () • (Oil				cannot a lease Fax		changes	•	

Report to: Company: U.S. ARMY Corps OF ENG. Address: G96 VIRCINIA Road Concord, MA 01742 Contact: MARIE WOJTHS Phone: 978/315 - 8175 Fax: Contract/ Ouote:	Invoice to Company: Address: Contact: Phone: Fax:					•	NALY: QUES			3 23 100	12	Jan. 1705-160							Lab Use (Due Date: Temp. of when reco 1 2 Custody S Intact Screened For Radio	coolers eived (C°		5
Sampler's Name A. Keenan Mark R. Keenig Proj. No. Project Name Shepley's Hill Matrix! Date Time of a Identifying Marks of Sam		No/J	Age of C	250	ers²	1	Mac	MeTal Solole	B	4. 2010 A	Ŋ	1015-112	1507	The 160.2	300			Lab/S	Sample ID	 (Lab Us	se Only)	
W 5/21/02 1035 X SHL-9		3	3	1	5		3	T	ī	7	i	1	1	3								
W 5/2/01/047 X SHL-22		3	3	1	5		3	1		1	١	1.	1	3		1						
W \$/2/21250 X SHM-93-3	L2C	3	3	,	5		3	1	1	ı	1	1	1	3				~.				
W 5/0/01/254 X SHM-96-	- -	3	3	1	5		3	ī	1	1	1	1	l	3							<u> </u>	
W 86/02 14444 X SHL-5		3	3	,	5		3	1	ī	1	1	1	ī	3								
W 5/31/ 1516 X SHM-96-50	-	3	3	1	5	Î	3	ī	,	1	1	1	1	3								
W 9/3-/02 /600 X 5 Hm - 96 - 5	_	3	3	1	5		3	7	7	1	1	1	1	3								
w 7/21/ lac X SHm - DUP-		3	3	1	5		3	,	1	1	1	ı	1	3							<u> </u>	コ
W \$31/021748 X EB-5B		3	3	7	5	\neg	3	1	,	-	1	1	1	3								7
W 3/2/01 - X TRIP BLAN.	k	1	-	-	-		1	_	_	_	-	-	_	-				7				ᅦ
Relinquished by: (Signature) Pare form 9 Relinquished by: (Signature) Date 1	Received by: (Signature AIRBILL # 8274) Time Received by: (Signature Received	Fod. 6 19100	52°	7	Date Date Date		Time Time		CIM		3 deliver	ÿ of sa	ample		titutes	ассер	otance of	of Sever	rn Trent L	aborator	ies	
'Matrix WW - Wastewater W - Water S 2Container 40 ml vial A/G - Amber / Or		Air bag de mout		- Ch P	arcoal T	Tube astic or		SL -) -		amed I	n une 1	STL	cannot lease F	t acce	ept verba ritten cha	anş	/es.	

Severn Trent Laboratories, Inc.

208 South Park Drive, Suite 1, Colchester, VT 05446 Tel: (802) 655-1203

Report to:	Invoice		Ť.			Analy		7	\int	\mathcal{T}	\int .	\int	1	1	7		Lab Use Only Due Date:	/•
Company: U.S. ARMY CORPS OF ENG.	1	•		·	-	NEQUE	,, ,,		1		18	} / "		/		1.1	Temp. of cools	ers
Address: 696 VIRBINIA ROAD CONCORD, MA 01747	Address:		•		-			/ ⁱⁱ	/ Ø	/	/ · •		/	/	<u> </u>	1	when received	
Contact: marie wolths	Contact:				-		1		3408	' /	ZZ/	1	1	/ /	Γ,	$ \setminus $	1 2 3	4 5
Phone: 978/3/8-8/75	Phone:				-				3		1005				- /		Custody Seal	N/Y
Fax:	Fax:				_	•	1	<i>\</i>	8/	, ,	, ,					/	Intact	.N / Y ⁸ / ₄
Contract/ Quote:	_					•	/_	The Dist	20	Alkalinis	*						Screened For Radioactiv	ity 🔲
Sampler's Name David Lugiane Z	Sampler's Signature Cause	il X	Zel	1/2		/	82608	80108	Solas	*			Ä	6	/	<i>[</i>		
Trak Keenan Mark R. Koenig	May	LAR	Ka	ons		. /	3	Ž	ا د	1/2	10.	705,	160.	8	البر	and the same	and the second of the second o	
Proj. No. Project Name SHEPTEY'S HILL		No/Ty	pe of Co	ontaire	Zs²	1			/لا	710	(-	<u>.</u>	4	ar.			2-	The same of the sa
Matrix Date Time O r Identifying Marks of Sa		VOA	NG AG	250 ml	P/O	780	5	C Y 2011	Anna	3	108	1 2				ે. વ્યા	ab/Sample ID (Lai	Use Only)
W 92/02 1039 X SHM-99-	32×	3	3	1	5	3	1	1	1	1	1	1	3			N. Car		
W 93/2 1020 X SHM-99-3		3	3	,	5	3	1	1	ı	ı	ı	ı	3			,	1	•
W 92/02/1244 X SHM-99-		3	3	1	5	3	1	1	1	1	1	1	3				\	
W 92/2 1307 X SHM-99-		3	3	1	5	3	1	1	$\overline{1}$	7	1	1	3					
W 92/2 - X TRIP BLAN		17	~_	-	_	1	_	-	-	-	_	_	_					
							_		- 1	7	\neg							
Paul							1											
Young					\neg					7	\neg		*					
			1		\dashv		-		1	寸	_							
		×: ,		\vdash	\dashv				\dashv	\neg	7						4	. 7.
		لتسلب														L	· · · · · · · · · · · · · · · · · · ·	
Relinquished by: (Giggature) Date 5/22/02	Time Received by: (Signature 41ABII #: 8274	1009	xpx6 538	55 Da	ate	Time		Rei	marks	ュ	SK	1 m	ple	c	(lens	shipp	(40)
Relinquished by: (Spenature) Date	Time Received by: (Signature			Da	ate	Time			500	haday.							, A)
Relinquished by: (Signature) Date	Time Received by: (Signature	· · · · · ·		Da	ate	Time										tance of S Schedule.	Severn Trent Labor	atories
¹ Matrix WW - Wastewater W - Water ² Container VOA - 40 ml vial A/G - Amber /	•	Air bag wide mouth	С	- Char P/O	rcoal To - Plas	ube stic or other	SL -	Sludge	•	0	- 0	il —				iease Fa	accept verbal ch x written change (2) 655-1248	

QA-AMRO.

PROJ. NO. EB776 SAMPLERS: (Sig Mark STA. NO. DATE	nature)	ko Ko	4 4 5	HILL LT	mı	, ·	NO.						K			///		•
SAMPLERS: (Sig	nature) R	Ko					NO.			/	/	/						
Mark	R	T .	eni	,				l	/	'	0 0/	/_ x		/ /	/ k			
		T .	en			•	OF		\ a ₁			1/2/s		>/:			REMARI	CS
STA. NO. DATE	TIME	1 .					CON-	,		ر پير کا	ر نعبہ ک	Mg.		12	/``Y	00	new.	
	İ	COMP	GRAB	STATE	ON LOCATION		TAINERS	/s	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		N. C. S.		2/2					
5/21/02	latto		X	SHn1-96-5	B-QA	Ņ.	12	3	1	1	1	1.	1		3			
5/21/02	-		X	TRIP BC			ا بيد.	1	-	-	-	-	-	-	1			
				<u> </u>	*													•
	 					······						-				`.		
	†					<u> </u>								- 4				
	\ 			1		<u>.</u>											·	
	 \ 		1					ļ						*				
	 \ 			,														And the second s
	+		-	164,000											├─			
	 			loung										 	 			
		1	$ \langle \rangle$					 							 			
		\vdash						 					<u> </u>		-		<u> </u>	
	ļ		1												ļ			,
	ļ			······································														
				\														
<u></u>															<u> </u>			
Relinquished by:	(Signatu M G	ire)	5/.	Date / Time 21/02 1900	Received by Fed. Exp. 83195119		re) #	Rei	inquis	shed b	y: <i>(S</i>	ignatu	ire) ,		Da	te / Time	Received by:	(Signature)
Relinquished by:	,,	re)	+	Date / Time	Received by		re) 🖁	Rei	inquis	hed b	y: (S	ignatu	ire)	\dashv	Da	te / Time	Received by:	Signature)
	<i>V</i>					•										1		
Relinquished by:				Date / Time	Received for (Signature)			£ ¹ .		e / Ti		F	Remai	rks	<i>i</i> :	cooler	Shippel	,

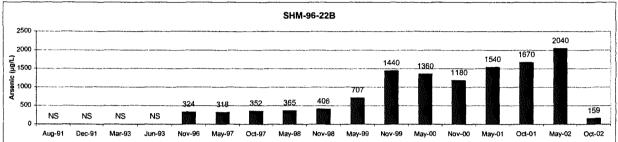
Report to: Company: U.S. Army Cope of En Address: Legle Virginia Road Concord MA 01747 Contact: Mark Koenig Phone: 978 318-8312 Fax: Contract/ Quote: Sampler's Name Mack Koenig Lusiane 2		R. K.	oeni Tull	W.	1	Analys	STED	9060	als 60100 /.	9010 Hardress	All Lair	90.	405-1	160.2			Temp. when 1 Custo Intact Scree	of cooler received (2 3— dy Seal	C°): 4 N/Y N/Y	
Proj. No. Project Name Shepley's Hill Matrix Date Time 2 I dentifying Marks		VOA		ontainers ²		, J. J. J. J. J. J. J. J. J. J. J. J. J.		4 2	5/ 	Aniale	N L		4004	$^{\prime}$. • • • •	
			Your Value	250 P/O	+-	+	\mathcal{L}_{\parallel}	F	4	8		A	1	_		L L	ab/Sampl	e ID (Lab	Use Only)	
W 2002 1013 X SHL-		3	3	6	4_	3	3	1	1	1 -	1	1	1.							
1 1056 X SHM-	73-10C	3	3	16	1	3	3	1	4		_1	\perp	1			ļ				
1 127 X SHL-	10	3	3	6	<u> </u>	3	3			1	L	ì	1	_						
1330 X SHL	•19	3	3	6		3	3	(١	1	ı							1	
	19ms	3		1		3		7	1	1										, "
	19 MSD	3		12		3		,		-										
	BLANK	影			1	1		4-1	+		٠,									
V 1500 X SHI -	11	3	3	1	\dagger	2	3	-,					╁╴		-	 				-
150 DH7 3	4	12	13	1 16	+-	131	2	-4-	-			4_	╀─							
		-		-	+	+							_	**	\vdash		2			
Relinguished by: (Signature)	Time Received by: (Signature	FED	EX	Date	1	Time		Re	marks											
Relinquished by: (Signature) Null 10-29-0 Date	Time Received by: (Signature 1927) Time Received by: (Signature 1927) Received by: (Signature 1927)		\2 3	Date		Time	*******			2			Co	ole	es	5	Ship	ped	-	
Relinquished by: (Signature) Date	Time Received by: (Signature)		Date		Time										otance of S Schedule.	Severn Tre	nt Laboral	ories	•
¹ Matrix WW - Wastewater W - Wate ² Container VOA - 40 ml vlal A/G - Amb	r S - Soil L - Liquid A - er / Or Glass 1 Liter 250 ml - Glass v	Air bag vide mout		- Charcoa P/O - F				Sludg	•	O	• 1	Oil					•	orbal cha changes	_	,

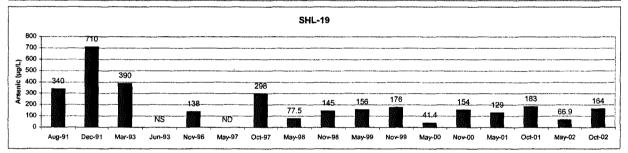
			Re	port	to:			Invoice t	o:	.:	-		Anal		1		Hardren	Ø		1001/501			\int		Lab Use Only Due Date:	
Com	oany:	11.5.	Arr	me	Corps of	Engineer	Comp:	any: <u>Same</u>				_ .	REQUE	STED		1		≵.	:/	S	- [-	A				
Add	ress:	696	Vira	ر فنمنه	Road	3	Addr	ess:				_				T^{2}		y	-/1	2				/1	Temp. of coolers when received (
ł			-	-	179 017		_					_			/ /	/ '	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1.	/=	~	/	Ι.	/ /	/	1 2 3	4 5
Cor					منو		l l	act:				_ :			'. /	. /	N]	36.1	/ /	/ /			ŀ	Custody Seal	N/Y
					312		_ Pho	one:				_					五		7						Intact	N/Y
		·					_ '	Fax:				_				1.	<i>></i>		7	\ /				ŀ	Screened	
Cont								•								/ 3	20 m	/:	<i>3</i>	`/		1.			For Radioactivity	, 🗆
Q	uote:							o Ollar	m4			_		/ g	/ /	/ 3	9	13	Ÿ		-	Ι,		L	· · · · · · · · · · · · · · · · · · ·	
Samp	oler's i	Name Koed	ria	Mu	ul you	rna	Sampler'	s Signature Paulyou			,			8260R	3060	1	. 9010B	V		<u> </u>		/ /				
Dar	بنط	Lubi	at a	2		Mark	R. Koe	ing land	().,	Zu	<u>lu</u>			22	व	#	ال	&/	5	5/	oi/					
Proj.	No.	1.	Proje	ect Nar	me	415.11		•	No/T	ype of C	ontaine	TST .],	શું .	र्यु	ν/ :	Š	1	46					
10 9	9 · 1	100	C	<u>> اح</u>	plen's	ИШ	ETM		├	140my	Т			ر ان	y <u>.</u>	<i>i</i> / .	3	۶/ ر	n/ 4	4						
Matrix	Date	Time	300	r	Identifyin	g Marks of S	ample(s)		VOA	AAA	250 ml	P/0	/ >	1 15	/ K	Che Matels Colle	DE	14	¥ &	1:504 7000				Lab/S	Sample ID (Lab I	Jse Only)
W	290	2 1029		×	SHI	ZO	·····		3	3		4	3	1	1			1	1	1						
W	T	1042		×		L-11			3	3		6	3			1	7	i	7	1						
W		1220	_	X	SHL			······································	3			6	3	+	il	i	j	1	İ	Ϋ́						
W		1235	-	X		L-22			3	3		4	3	1-1)	1	1	7	1	Ti						<u> </u>
W		1353	-	X		vi- 43.			3	3		6	3	/ 	7	•)	1	1	1	1						
W		1439	1	A		<u>~</u>	-22B		3	3		6	3	3	7	ī	1	4	1)						
W	J	1-		X		PBLA			1				1													
	•						<u></u>						1							1	_					
	7	12/2	2		<i>:</i>								T							\vdash					·	
		$\uparrow \rightarrow$	1							†			1	$\dagger \dagger \dagger$	7	_				\vdash	_			- 9		
		<u> </u>	L		.					<u> </u>				لــــــا					L	<u> </u>	<u> </u>					`
		1 by: (Sig) 	_	Date	Time - 1.700	Received by: (Signature 8353 1023)			111 D	ate 1 0 <i>c</i> 1 0 2	Time		Rer	marks		_				_			1	
		by: (Sig)	-	Date	Time	Received by: (Signature	, -(]			ate	Time)	1		7	\mathcal{C}	col	er	S	Sl	rip	pa	d	
Relina	uisher	d by: (Sig	nature			Date	Time	Received by: (Signature	····		+-	ate	Time		-	antin -	lalh :=:-	. of a-	mele		bib, ıbac	200001	ance =	f Cour	en Trant I sha-t	orion
		- 53. (OB				Jaic	TITLES	neceived by, (Signature	·			a.c	rinte				•					•	ance or chedule		rn Trent Laborat	JIICS
¹Matr ²Con	ix tainer	ww V		/astewa 0 ml vi		- Water G - Amber /	S - Soil Or Glass 1 Lite	•	Air bag de mouti		- Chai P/C	rcoal Tubo astic	or othe	SL - er	Sludge)	0	(DII				ease F	ax w	ept verbal char ritten change 655-1248	

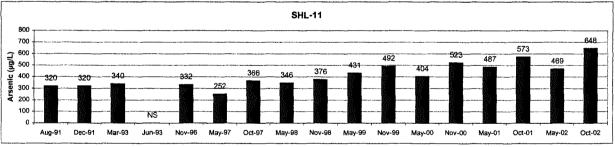
Report to:		Invoice to):				Analy		\mathcal{I}	\neg	Hardrere	82		-		\mathcal{I}			ab Use Only ue Date:	
Company: V.S. Army Corps of 1 Address: 696 Virginia Roa	Engineers Compa	ny: <u>Same</u>		<u>.</u>		-	REQUES	STED			1.	\$]		1:00 100:1		/-		/ _		
Address: 696 Virginia Roa	Addre	ess:				_	·.				/ 6	Y		<u>ა</u> /			1 1	, ,	emp. of coolers then received (C°):	
Concord MA 017	12_					_			/ /	/ 1	ي /	4	/L	1	/ /	/	/ /		2 3 4	5
Contact: Mark Koenia	Conta	act:				_					الج	' . _[\sim				' <i> </i> .	. ار	ustody Seal N / Y	
Phone: 978 318 8312	Pho	ne:				_			- [.	- [.	\$	[8					- 1	ntact N/N	
Fax:	1	ax:				_		1.			7	_ / .	4				/ .	. -		
Contract/										/ 5	0/0	ø/ .	<u>{</u>						creened or Radioactivity	
Quote:						_		/ m	Ι,	/ วั			7	/ .	Ι,	<i>l</i> .	/	L		
Sampler's Name	Sampler's	Signature Jah Mars	_					\$200B	_/	3	4	Z	1	-	$\sqrt{\lambda}$	' /	1			
Walliam Mullen Mark Koenig	Willem	Inh Mark	R,	Koe	nig		/		\e_{2}	Z	4	8	.5	5/	410.					
Proj. No. Project Name		V	No/Ty	pe of Co	onta Ge rs	S ²	/ ,		9906	A	.B	γ	Ž	3	3					
E \$776 Shepley's 1	HIII LTM							ز. /ii	3 / _	J .	<u>4</u>	š] ($\sqrt{}$	y_{i}	N					
Matrix ¹ Date Time C G G Identifying p b	Marks of Sample(s)		VOA	***	250 _P	2/0	Voc		1	Charle tals forms	Maria de	TS 300/All.	F. 2 160:2	1:504 -50			l	Lab/Sa	imple ID (Lab Use Only)	
W 30 pc - 2002 0935 X SHN	1-96-5C		3	3		6	3	3)	1	1	I_{\perp}	1)						
W DSG X SHL	5		3	3		6	3	3	1)	1	1	1	1						
	1-96-5B		3	3		6	3	3	,	1	1	1	1	1						
	1-DUP		3	3		6	3	3	1	7	1	1	1	1						
	Black		l			\top	1													
						\top														
						\neg														
1						\neg						-	<u> </u>							
						1												- 0		
				L																
Relinquished by: (Signature)	Date 7 1530	Received by: (Signature F		× A int	Da	ate	Time		Re	marks	3									
	Date Time	Received by: (Signature			Da	ate	Time	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Relinquished by: (Signature)	Date Time	Received by: (Signature			Da	ate	Time										tance of schedule		n Trent Laboratories	
¹ Matrix WW Wastewater W ² Container VOA - 40 ml vial A/G	L - Liquid A - A r 250 ml - Glass wid			- Chare P/O -		be ic or other	SL -) - :	Oil						pt verbal changes. tten changes to		

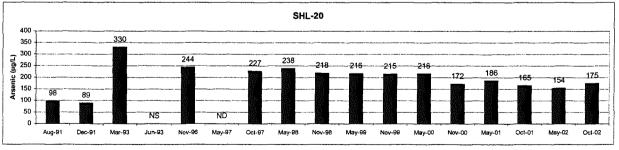
Report to:	Invoice to	o:				LYSIS				on/						Due Date:	
Company: U. S. Army Corps of Engineer	s Company: <u>Same</u>	<u> </u>			REQU	ESTED	' / ·		$\cdot/$:	\$	<i>\</i>	3/			//	Temp. of coolers	
Company: U.S. Army Corps of Engineers Address: 496 Virginia Road	Address:						1 -	/	18	BOM?	/ 0				11	when received (
Concord MA 01742			·				1 1	/	ير /	/	To the second	/	Ι.	[·]	- -	1 2 3	4 5
Contact: Mark Koenig	Contact:						[].	a-	a	- /	7	Luj	/ /	' /	-	Custody Seal	N/Y
Phone: 978 318-8312	Phone:						- /	/.	Herdaese	$-I_{I}$	310/	- /	. /		1	Intact	N/Y
Fax:	Fax:			[•		4	1	IJ	/:	#	-				Screened	
Contract/								/ a	g a	يٰ /د	<u> </u>				/	For Radioactivity	, 🗀 🤚
Sampler's Name Mark R. Koenig Mark Keenig David Lubioto 2 William Muller July	Sampler's Signature	Lehr	ièrs	3		8260 R	9060	.4/	19/0B	Te 300/11/4/1	160.2	405,1	410.4		1		:
Proj. No. Project Name E \$776 Shepley's Hill LT		No/Type	e of Cont	tainers ²		אר. ארב	Z (2)	iletz.	7			W	- /				
Matrix Date Time O I Identifying Marks of Sam		VOA	A/G 2	250 P/O		4065		7	A mide	1	र्वे द		7		La	b/Sample ID (Lab	Use Only)
W 2002 1057 X SHM-99-	31-A	3	3	4	3	3	1	1	1	1	1	1					
W 1121 X SHM-99-		3	3	6	3	3	,	1	1	1	1	1					:
W 1705 X SHM-99-		3	3	6	3	3 3	1	-1	-	1	1	1					
WV - X Trip Bla		1			1												
						1										 	
																	
7				_		1-		_				<u> </u>					
				-		+						 					·
			\dashv	-		╁				3		-	\vdash				
				-	+-	+		-		-,						7	
				i				اب				L	<u> </u>		 		
Relinquished by: (Signature) Date 310/To2	Time Received by: (Signature F	ed Ex/	AirBil 934	Date	. Tim	ie	Rer	narks		;							
Refinquished by: (Signature) Date 1	Time Received by: (Signature			Date	Tim	ie								٠			
Relinquished by: (Signature) Date 1	Time Received by: (Signature			Date	Tim	e								•	ance of Schedule.	evern Trent Laborat	ories
¹ Matrix WW - Wastewater W - Water S ² Container - 40 ml vial A/G - Amber / Or	S - Soll L - Liquid A - Ai Glass 1 Liter 250 ml - Glass wide	_	C - P	Charcoal T Pla	Tube stic or oth		Sludge)	0	- (Dil 				ease Fax	ccept verbal ch written chan 2) 655-1248	` ` \$\$.

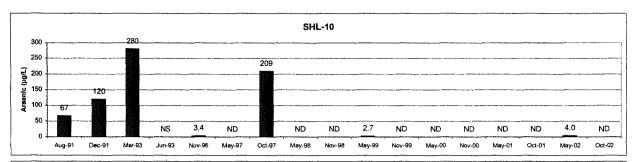
U.S. Y CORPS OF ENGINEERS


6	16 ···	giv ic	. P	ad				. CHAIN	N OF CUS	TOD	Y R	ECO	RD	/	2,	A						
ري	Nord	MA 3	174	2-	Mark	- Kuen 1	9163	18 8312				7		$\overline{}$	-~ /	/	<i>d</i> 7		, 	,		
1 1100.	PROJ. NO. PROJECT NAME \$17LP Sheplen'S Hill LTM						NO.															
SAMPLERS: (Signature)						25		/ 3// 0 / 8 & / N / E / E														
E\$17LD Shepley's Hill LTM SAMPLERS: (Signature) William Mullen July Dum							OF CON-		REMARKATION DE LA TOP TO THE REMARKATION OF THE PROPERTY OF TH										IARKS			
STA, NO.	DATE	TIME	COMP.	GRAB	STATION LOCATION				TAINERS	2 K 2 (1 / 6)							54/					
	30 OCT	1141		X	SHM-96-5B-QA			12	3	1	1	3	I	1		j					1	
	V		ļ	X	Trip Blank			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	١				ļ									
\			ļ							·		 										
\													· ·		,					<u>.</u>		
																				_		
	13																					~
	7	4-																•				
	\	1												•								
		1																				
		<u> </u>	1	ļ										ļ								
	·····		1																		· · · · · · · · · · · · · · · · · · ·	
																				,		· · ·
Relinquished by: (Signature) Date / Time Received by: (Signature)					re)	Rel	inquis	hed b	v · (S	ianati	irei		D	te / Ti	me	Received	by: (Signatu	rel				
Relinquished by: (Signature) Date / Time Received by: (Signature) Received by: (Signature) 300CT Fed Ex Airbi 2002 1530 83531023115					Relinquished by: (Sign						,					7	oy. Jorginaca	,				
Relinquished by: (Signature) Date / Time Received by: (Signature)						Relinquished by: (Signature)							Da	ite / Ti	me	Received	oy: <i>(Signatu</i>	re)				
Relinquished by: (Signature) Date / Time Received for Laborator (Signature)					ry by:	Date / Time Remarks						ks				<u> </u>						
	Distribu	tion: Orig	jinal A	ccom	panies Ship	ment; Cop	y 1 to San	nple Custodian; Co	opy 2 to Coo	rdinat	or Fiel	d File	<u> </u>	\dashv	٠							

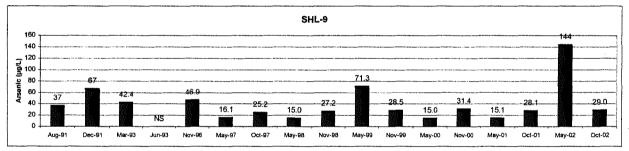

APPENDIX D COMPARISON OF ARSENIC RESULTS

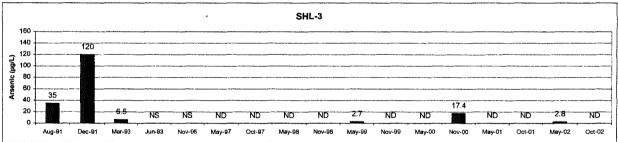

SHEPLEY'S HILL LANDFILL GROUNDWATER MONITORING HISTORIC ARSENIC CONCENTRATION CHARTS CLEANUP LEVEL = $50 \mu g/L$

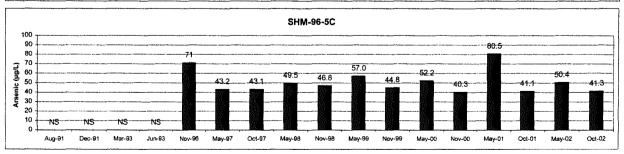

(Sheet 1 of 3)

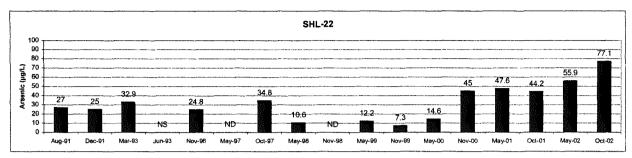

NOTES:

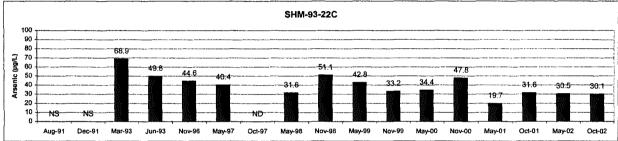
NS: Not Sampled ND: Not Detected

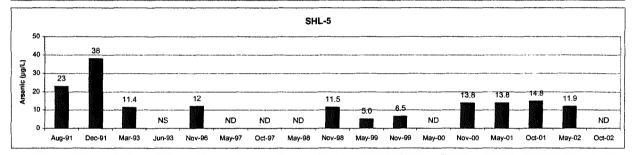

Charts are displayed in order of decreasing historical maximum arsenic concentrations

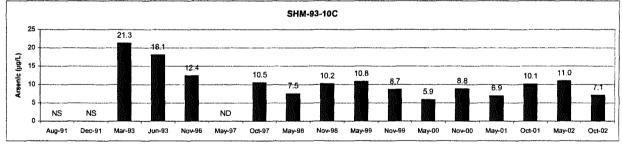

SHEPLEY'S HILL LANDFILL GROUNDWATER MONITORING HISTORIC ARSENIC CONCENTRATION CHARTS CLEANUP LEVEL = $50 \mu g/L$


(Sheet 2 of 3)


NOTES:


NS: Not Sampled ND: Not Detected


Charts are displayed in order of decreasing historical maximum arsenic concentrations


SHEPLEY'S HILL LANDFILL GROUNDWATER MONITORING HISTORIC ARSENIC CONCENTRATION CHARTS CLEANUP LEVEL = 50 µg/L

(Sheet 3 of 3)

NOTES:

NS: Not Sampled ND: Not Detected

Charts are displayed in order of decreasing historical maximum arsenic concentrations

APPENDIX E CHEMICAL QUALITY ASSURANCE REPORTS

Chemical Quality Assurance Report Spring 2002

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-092702

MAY 21, 2002 SAMPLING EVENT

PREPARED BY
THE
GEOLOGY
AND
CHEMISTRY SECTION
ENGINEERING/PLANNING DIVISION

DEPARTMENT OF THE ARMY
NEW ENGLAND DISTRICT, CORPS OF ENGINEERS
CONCORD, MASSACHUSETTS

SEPTEMBER 27, 2002

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS MAY 21, 2002 SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-092702

TABLE OF CONTENTS

<u>Paragraph</u>	<u>Title</u>	Page
	Executive Summary	1-2
	Table 1- Data Comparison Summary	3
	Table 2 - Analyses Performed by QA Laboratory	4
1.	QA sample shipping and chain-of-custody deficiencies	5
2.	Data comparison for volatiles by Method 8260B	5-7
3.	Data comparison for metals by Method 6010B and 7470	7-8
4.	Data comparison for cyanide by Method 9010B	8-9
5.	Data comparison for anions by Method 300.0	9-10
6.	Data comparison for COD by Method 410.4	10-11
7.	Data comparison for BOD by Method 405.1	11-12
8.	Data comparison for alkalinity by Method 310.1	12-13
9.	Data comparison for hardness by Method 2340B	13-15
10.	Data comparison for TDS and TSS by Methods 160.1 and 160.2	15-17
11.	Data comparison for total organic carbon (TOC) by Method 9060	17-18

TABLE OF CONTENTS (continued)

12. References 18

Appendix A - Key to Comments on Data Comparison Code

Appendix B - Data Comparison Tables

Appendix C - Custody Documentation

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS May 21, 2002 - QA SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-092702

Executive Summary

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 101 target analyte determinations. The shipment contained one QA water sample and one trip blank sample and was received in good condition. The data report from the QA laboratory, AMRO, Merrimack, NH, dated 14 December 2001, was used in the comparison. In 32 of these determinations target analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 12a). The primary and QA samples agreed overall in 98 out of 101 (97.0%) of the comparisons. Primary and QA samples agreed quantitatively in 32 out of 35 (91.4%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. Two major and one minor discrepancy between results from the primary and QA samples were noted. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's data report was evaluated based on the information that was provided. All of the data comparisons for Methods VOA's-8260, TAL Metals-6010B, CN, Anions, COD, BOD, Alkalinity, TDS, TSS, hardness and TOC were in good overall and quantitative agreement. There were two major data discrepancies noted in the metals comparisons which occurred in sample SHM-96-5B in which the QA laboratory reported aluminum at 310 ug/L and the primary laboratory reported a non-detect at 19.8 U ug/L. The second major data discrepancy was noted in sample SHM-96-5B-QA in which the QA laboratory reported copper at 12 J ug/L and the primary laboratory reported 2.9 B ug/L. This should not significantly affect the usability of the metals data.

The primary laboratory (STL-VT) was requested by the Corps to report hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B, expressed as mg equivalents of calcium carbonate per liter. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2, which employs an EDTA titration method. It appears that the previous discrepancies noted in the hardness results were caused by certain metal ions which interfere by causing fading, indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation.

This method change appears to have resolved the past hardness data discrepancies noted between the QA and primary laboratories. Refer to Section 9, page 13, Data Comparison for hardness by calculation by Method 2340B, for a more detailed discussion. All the other quantitative results for all analyses compared closely. There was very little bias to any of the QA laboratory's sample results and only a few minor QC deviations were noted in their case narrative. The data appears to be complete and useable.

The primary laboratory's data report was evaluated based on the information that was provided. As stated above, all of the data comparisons for the majority of the analyses were in good overall and quantitative agreement. The primary laboratory's wet chemistry data report lacked some of the information necessary to completely evaluate the batch QC. Their data report lacked the analysis dates needed to verify holding time compliance, and the QC limits for accuracy and precision were not provided for most wet chemistry methods. The primary laboratory did not provide the missing information. Although there were numerous minor QC outages documented in the primary laboratory's case narrative, the sample results appear to be comparable, reasonably complete, and useable. The missing information is most likely available, but it just wasn't included in STL-VT's report format. The Corps has requested that the missing information be included in their future reports so that a more complete evaluation can be performed.

The QA and primary laboratory's reporting limits were comparable, except for thallium and COD which were not detected in the QA sample. The primary laboratory reported the sample ID's in which tentatively identified compounds (TIC's) were detected. The QA sample SHM-96-5B was also reported to contain TIC's. This CQAR is based on the laboratory reporting limits because the detection limits were not always provided or well defined.

QA analyses were performed by AMRO Environmental Laboratories, Inc., 111 Herrick Street, Merrimack, NH, 03054 and Severn Trent Laboratories, Inc., 450 William Pitt Way, Pittsburgh, PA 15238-1330. The primary laboratory was Severn Trent Services, 208 South Park Drive, Suite 1, Colchester, VT, 05446.

Table 1 Quality Assurance Split Sample Data Comparison Summary

Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, May 21, 2002 Sampling Event

Overall Agreement (1) Quantitative Agreement (2)

Method	Parameter	Number	Percent	Number	Percent
8260B	Volatiles	66/66	100	7/7	100
6020/7471	Metals/Mercury	20/23	87.0	17/20	85.0
9010B	Cyanide	1/1	100	NA	NA
300.0	Anions	4/4	100	3/3	100
410.1	COD	1/1	100	1/1	100
405.1	BOD	1/1	100	NA	NA
310.1	Alkalinity	1/1	100	1/1	100
130.2	Hardness	1/1	100	1/1	100
160.1	TDS	1/1	100	1/1	100
160.2	TSS	1/1	100	1/1	100
9060	TOC	1/1	100	1/1	100
Total		98/101	97.0	32/35	91.4

NOTES:

- (1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.
- (2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

TABLE 2

QA ANALYSES PERFORMED

Sample ID	Matrix	Sample Date	ANALYSIS
SHM-96-5B-QA	Water	5-21-02	5030B/8260B-Volatiles
			3010A/6010B-ICP Metals, 7470A-Mercury
			9010B-Cyanide
			300.0-Anions by Ion Chromatography
			410.1-COD
			405.1-BOD
			310.1-Total Alkalinity as CaCO3
			2340B-Total Hardness by Calculation
		Ì	160.1-Total Dissolved Solids (TDS)
			160.2-Total Suspended Solids (TSS)
			9060-Total Organic Carbon (TOC)
Trip Blank	Water	5-21-02	5030B/8260B-Volatiles

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS MAY 21, 2002 QA SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-090402

QA Findings

1. QA sample shipping and chain-of-custody deficiencies.

AMRO Environmental Laboratories Corporation, Merrimack, NH, received one shipment containing one QA water sample and a trip blank. The samples were received in good condition on 22 May 2002. Proper sample handling protocols were followed for this shipment, except the cyanide sample container needed to be adjusted for pH at the lab to greater than 12 pH units.

Copies of the chain-of-custody form document and the cooler receipt form are appended to this report for reference.

2. Data comparison for volatiles (VOC) by Method 8260B.

There were 66 volatile determinations. In seven of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 66 (100%) of the cases and quantitative agreement in seven out of seven (100%) of the cases. No data discrepancies were noted.

The QA laboratory's target analyte list consisted of 66 volatile compounds which were all analyzed by the primary laboratory whose target analyte list consisted of 84 volatile compounds. The primary laboratory was requested to report the presence of Tentatively Identified Compounds (TIC's) in all the samples. QA sample SHM-96-5B-QA was reported to exhibit the presence of TIC's.

2a. Batch QC Evaluation for the QA Laboratory-AMRO.

<u>Holding Times</u>: All of the volatile samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: Results of all the method blanks that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

<u>Trip Blanks</u>: Results of the trip blank that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

Laboratory Control Samples: The QA laboratory spiked the LCS with all of their 66 target

analytes. The spiking levels, percent recoveries and the QC limits were appropriately indicated in the report. The QA laboratory reported that the LCS, V-3 020531A, was within the acceptance limits for all of the target analytes except for five compounds. The target analyte 1,1-dichloropropene was marginally above the acceptance limits and isopropylbenzene, n-propylbenzene, sec-butylbenzene and n-butylbenzene were all marginally below the acceptance limits. According to the "Shell for Analytical Chemistry Requirements", Version 1.0, 2 November 1998, a target analyte list of 66 compounds would allow five sporadic marginal failures (SMF) to fall in the expanded recovery range of (60-140%). The sample results would not be affected, since this requirement was met and none of these target analytes were detected in the sample.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the five target anlytes that were spiked in the MS and MSD were within the acceptance limits for accuracy and precision. The MS/MSD's samples reported were from another client's project.

<u>Surrogates</u>: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

2b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results associated with the QA sample showed contamination below the laboratory's reporting limits for the following target analytes; isobutyl alcohol at 53 J ug/L, 1,4-dioane at 210 J ug/L, 1,2,4-trichlorobenzene at 1.5 J ug/L, hexachlorobutadiene at 2.5 J ug/L, naphthalene at 3.2 J ug/L, and 1,2,3-trichlorobenzene at 1.7 J ug/L which were detected in the method blank samples VBLKR1. These target analytes were not detected in the QA sample SHM-96-5B-QA and were below the reporting limits for these target analytes. The sample results for SHM-96-5B-QA would not be affected.

<u>Trip Blanks</u>: All of the trip blank results for all of the target analytes showed no contamination above the laboratory's reporting limits.

<u>Laboratory Control Sample (LCSs)</u>: The primary laboratory reported that all of the target analytes in the three LCS samples, were within the acceptance limits for accuracy and precision, except for the following:

MWZI-LCS (water) 5-21-02	RDP= 0 out of 84 outside QC limits
, , ,	% Recoveries= 1 out of 84 outside QC limits,
NTLC-LCS (water) 5-21-02	RDP= 0 out of 84 outside QC limits
, ,	% Recoveries= 4 out of 84 outside QC limits,
NTLD-LCS (water) 5-21-02	RDP= 0 out of 84 outside QC limits
,	% Recoveries= 7 out of 168 outside QC limits,

All 84 of the target analytes were spiked into the LCS samples. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were marginally above or below the acceptable limits were detected in any of the associated samples. Target analytes that were reported below the acceptable QC limits may indicate a slight low bias around the reporting limit. According to the, "Shell for Analytical Chemistry Requirements", Version 1.0, 2 November 1998, a target analyte list of 84 compounds would allow six sporadic marginal failures in the range of 60-140% recoveries before re-extraction and analysis of the entire analytical batch should occur. This requirement was only exceeded by the NTLD-LCS and would not affect the sample results.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>: The primary laboratory reported that all of the five target analytes were within the acceptance limits for accuracy and precision, except for the following:

SHL-19-MS/MSD (water) 5-21-02	RDP= 0 out of 84 outside QC limits
	% Recoveries= 7 out of 168 outside QC limits

All 84 of the target analytes were spiked into the MS/MSD's. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were above or below the acceptable limits were detected in any of the associated samples and the outages may be attributed to matrix effects. The sample results would not be affected.

<u>Surrogates</u>: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

3. The data comparison for ICP metals by Methods 6010B and mercury by 7470A.

There were 22 ICP-metals determinations and one mercury determination. In 20 of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 20 (87.0%) of the cases and quantitative agreement in 17 out of 20 (85.0%) of the cases. Two major data discrepancies and one minor data discrepancy was noted.

The first major data discrepancy occurred in sample SHM-96-5B-QA in which the QA laboratory reported aluminum at 310 ug/L and the primary laboratory reported 19.8 U ug/L. The second major data discrepancy occurred in sample SHM-96-5B-QA in which the QA laboratory reported copper at 12 ug/L and the primary laboratory reported 2.9 B ug/L.

3a. Batch QC Evaluation for the QA Laboratory-AMRO.

Holding times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limits, except for iron which was reported below the at 58.84 J ug/L.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that all of the LCS results were within the laboratory's acceptance limits of 80-120%. The QA laboratory provided the spike amount, percent recoveries and the QC limits in all the data reports.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that all of the MS/MSDs were within the laboratory's acceptance limits for accuracy and precision for all the ICP-metal target analytes, except for arsenic, lead and selenium. The high MS/MSD recoveries for arsenic were due to the high sample concentration relative to the spike concentration. The lead (63.4% and 63.0%) and selenium (48.5% and 42.7%) outages were possibly due to a matrix interference. All of the spike levels, percent recoveries and QC limits were provided in the reports.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results.

3b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS/LCSDs):</u> The primary laboratory reported that all of the target analytes were recovered within the assumed acceptance limits of 80-120% recoveries. The primary laboratory did not provide LCS acceptance limits in their report.

<u>Matrix Spike (MS)</u>: The primary laboratory performed a matrix spike on sample SHL-19. The primary laboratory reported that all the target analytes in the MS recoveries were within the assumed acceptance limits (75-125%) for accuracy, except for iron which was recovered at 66.0%. The primary laboratory did not provide acceptance limits for the MS sample results. The post digestion spike recovery for iron was within the assumed acceptance limits at 97.0%.

<u>Laboratory Duplicate</u>: The primary laboratory reported the laboratory duplicate SHL-19D was within the assumed acceptance limits of 20% RPD for precision for all of the target analytes that were above the CRDL. The primary laboratory did not provide the acceptance limits for laboratory duplicates. The blind duplicate sample SHM-DUP-02A was in close agreement with the original sample SHM-DUP-02A. Refer to the data comparison table for the RPD's.

4. Data comparison for cyanide by Method 9010B.

There was one cyanide determination. No cyanide was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

Holding Times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank result for cyanide showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS result for cyanide was within the laboratory's acceptance limits of 90-110%, at 90%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory did not report any MS/MSD results for cyanide and they were not requested to on the C-O-C.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for cyanide.

4b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for cyanide.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported the LCS for cyanide was within the assumed acceptance limits of 90-110% at 103.0%. The spike amount added and the percent recoveries were all provided in the report, but no QC limits were provided.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the acceptance limits of 75-125% for cyanide at 102.4%.

<u>Laboratory Duplicate</u>: The primary laboratory reported that the laboratory duplicate sample results (both non-detects) were within the laboratory's acceptance limits for cyanide.

5. Data comparison for anions by Method 300.0.

There were four anion determinations. In three of the determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in three out of three (100%) of the cases. No data discrepancies were noted.

5a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for anions showed no contamination above the laboratory's reporting limit. Ortho-phosphate was analyzed by Method 365.2.

<u>Laboratory Control Samples (LCS)</u>: The QA laboratory reported that the LCS results for anions were within the laboratory's acceptance limits of 90-110%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that the MS for anions were within the laboratory's acceptance limits for accuracy. The QA laboratory did not provide any MSD results (except for ortho-phosphate at 3.17% RPD) and precision could not be determined for chloride, nitrate and sulfate. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Laboratory Duplicate</u>: The QA laboratory reported that all the anions laboratory duplicate results were within the acceptance limits of 20% RPD.

5b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for anions.

<u>Laboratory Control Samples (LCSs)</u>: The primary laboratory reported that all the LCS's for anions were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD was provided and no evaluation of precision could be made. The QA laboratory provides multiple sample analysis dates for their method blanks and LCS's and it is not possible to associate the supporting batch QC to any particular sample or analytical batch of samples.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the assumed acceptance limits of 80-120% for all the anions. No acceptance limits were provided for the matrix spike.

<u>Laboratory Duplicate</u>: The primary laboratory reported that the laboratory duplicate results were within reasonable acceptance limits for precision, but no acceptance limits were provided.

6. Data comparison for COD by Method 410.1.

There was one COD determination. The primary laboratory reported COD at 43.5 mg/L which was below the QA laboratory's reporting limit of 50 ug/L. There was 100% overall agreement for this determination, however the primary laboratory's reporting limit was ten times lower at 5.0 ug/L. No data discrepancy was noted based on the higher reporting limit.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for COD showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS)</u>: The QA laboratory reported that the LCS result for COD was within the laboratory's acceptance limits of 80-120%, at 98.6%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for COD were within the laboratory's acceptance limits of 80-120% for accuracy and precision, at 90.4% and 91.9% with a RPD of 1.27%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate result for COD.

6b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for COD.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that the LCS for COD was within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD was provided and no evaluation of precision could be made.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The primary laboratory was not requested to perform MS/MSD's on any of the samples for COD and no evaluation of accuracy and precision based on matrix effects could be made.

<u>Laboratory Duplicate</u>: The primary laboratory did not report any laboratory duplicate results for COD and no evaluation of precision could be made.

7. Data comparison for BOD by Method 405.1.

There was one BOD determination. No BOD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for BOD showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The QA laboratory reported that the LCS/LCSD recoveries for BOD were within the laboratory's acceptance limits for accuracy and precision at 108% and 97.4% recoveries, with a RPD of 10.3%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis. Refer to LCS/LCSD data for accuracy and precision verification.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for BOD and no evaluation of precision could be made.

7b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

<u>Holding Times</u>: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for BOD.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that all the LCS's for BOD were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. Precision could not be evaluated because no LCSD was performed for the BOD analysis.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis and were not requested on the C-O-C. Refer to LCS for accuracy verification.

<u>Laboratory Duplicate</u>: The primary laboratory did not provide any laboratory duplicate results for BOD.

8. Data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. Both laboratories detected alkalinity in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for alkalinity showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for alkalinity was within the laboratory's acceptance limits of 80-120% at 102%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for alkalinity were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 98% and 100% recoveries with an RPD of 0.382%.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for alkalinity.

8b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for alkalinity.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that the LCS for alkalinity was within the assumed acceptance limits of 90-110% at 103.4%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision. Precision could not be evaluated because no LCSD was performed for alkalinity.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The primary laboratory reported that the MS for alkalinity was recovered within the assumed acceptance limits of 80-120% at 92.0%. No acceptance limits were provided for accuracy and precision. Precision could not be evaluated because no MSD was requested on the C-O-C for alkalinity.

<u>Laboratory Duplicate</u>: The primary laboratory reported the laboratory duplicate results for sample SHL-19 were within reasonable acceptance limits at 2.7% RPD. No QC limits for precision were provided.

9. Data comparison for hardness by calculation by Method 2340B.

There was one hardness determination. Both laboratories detected hardness in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination and no data discrepancy was noted.

The primary laboratory was requested to perform hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B (Method 2340B), expressed as mg equivalents of calcium carbonate per liter. The results of the 15 May 2001 QA sampling event indicated a major discrepancy which occurred in sample SHM-96-5B in which the QA laboratory reported 300 mg/L hardness and the primary laboratory reported 90 mg/L. The OA laboratory reported hardness by Standard Method 2340B. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2 which employs an EDTA titration method. Also, some metal ions interfere by causing fading or indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation. Previous sampling events have indicated several data discrepancies when the calculated hardness was compared to hardness by titration, Method 130.2. Hardness will be determined from the 6010B calcium and magnesium metals (Method 2340B) results to avoid this possible interference in the future long term monitoring testing. The following table compares the primary lab's hardness by Method 130.2 to hardness by calculation and to the May 2002 sampling event results:

,	Calculated Hardness	Hardness by 130.2	Calculated Hardness
Sample ID	5-15-01 (mg/L)	5-15-01 (mg/L)	5-21-02 (mg/L)
SHL-10	17.6	20.0	18.4
SHM-93-10C	240	232	237
SHL-3	13.3	18.0	9.5
SHL-19	23.0	28.0	37.4
SHL-4	80.8	82.0	31.0
SHL-11	193	184	162
SHL-20	341	20.0	250 (As=154)
SHL-9	68.2	76.0	68.4
SHM-93-22C	201	196	238
SHL-22	450	472	433
SHM-96-22B-91.7'	289	150	249 (As=2040)
SHM-96-5B	313	90.0	304 (As=3800)
SHM-DUP-02A	316	144	301 (As=3830)
SHM-96-5C	288	300	258
SHL-5	30.3	34.0	28.2
EB-5B	0	< 2.0	< 1.0
SHM-99-32X	349	356	334
SHM-99-31C	392	400	391
SHM-99-31A	27.6	28.0	26.1
SHM-99-31B	128	124	145

The four samples in bold-faced print represent the historical data discrepancies that were most likely the result of heavy metal interference with the EDTA titration Method 130.2. The results from the hardness by calculation from 15 May 2001 compare reasonably close to the results from the hardness by calculation from 21 May 2002.

9a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for hardness showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for hardness was within the laboratory's acceptance limits of (80-120%) at 102%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for hardness were within the laboratory's acceptance limits for accuracy (75-125%) and precision (20%RPD), 105% and 103% recoveries with an RPD of 0.678%.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for hardness.

9b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

<u>Holding Times</u>: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for hardness.

<u>Laboratory Control Samples (LCS/LCSD's)</u>: The primary laboratory did not report any LCS results for hardness. No evaluation of method performance (accuracy and precision) on an interference free matrix could be made.

Matrix Spike/Matrix Sipke Duplicate(MS/MSDs): The primary laboratory did not report any MS/MSD results for hardness. No evaluation of accuracy and precision based on matrix effects could be made. The primary laboratory did not provide hardness results on the samples SHL-19MS and MSD which were requested on the chain-of-custody.

<u>Laboratory Duplicate</u>: The primary laboratory did not report any laboratory duplicate results for hardness for SHL-19. No QC limits for precision were provided.

10. Data comparison for TDS and TSS by Methods 160.1 and 160.2.

There was one total dissolved solids determination (TDS) and one total suspended solids (TSS) determination. Both laboratories reported detectable levels of TDS and TSS in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for the TDS determination and 100% overall and quantitative agreement for the TSS determination. No data discrepancies were noted for the TDS and TSS determinations.

10a. Batch QC Evaluation for the QA laboratory-AMRO.

<u>Holding Times</u>: The QA sample was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for TDS and TSS showed no contamination above the laboratory's reporting limits.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recoveries for TDS and TSS were within the laboratory's acceptance limits at 102% and 96%, respectively. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable for TDS and TSS.

<u>Laboratory Duplicate</u>: The QA laboratory reported that the TDS and TSS laboratory duplicates were within the laboratory's acceptance limits of 20% RPD at 2.26% and 2.94%, respectively.

10b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TDS and TSS.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that all the LCS's for TDS and TSS were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision. No LCSD's were performed and no evaluation of precision could be made.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: MS/MSD's are not applicable for TDS and TSS.

<u>Laboratory Duplicate</u>: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits for TDS at 0.0% RPD. No duplicate sample result for TSS was provided. No QC limits for precision were provided.

11. Data comparison for total organic carbon (TOC) by Method 9060.

There was one TOC determination. Both laboratories detected TOC in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted. The cooler was at the proper temperature when received at the subcontracted laboratory, STL Pittsburgh, PA.

11a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for TOC showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for TOC was within the laboratory's acceptance limits at 106%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that the MS/MSD's for TOC were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 91% and 89% recoveries with an RPD of 1.8%.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for TOC.

11b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TOC.

<u>Laboratory Control Samples (LCS's)</u>: The primary laboratory reported that the LCS's for TOC was within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD's were provided and no evaluation of precision could be made.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory reported the MS recovery at 113.3%. No matrix spike QC limits were provided. The primary laboratory did not provide any MSD results for TOC and no evaluation of precision could be made.

<u>Laboratory Duplicate</u>: The primary laboratory reported the duplicate sample results for SHL-19 were above the acceptance limits at 200% RPD. No QC limits for precision were provided.

12. References.

- a. Data Reports for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by the primary laboratory, Severn Trent Laboratories, Inc., 208 South Park Drive, Suite 1, Colchester, VT, 05446, were received 18 June 2002. The QA laboratory's data report, prepared by AMRO Environmental Laboratories Corporation, 111 Herrick Street, Merrimack, NH. 03054, were received 2 July 2002.
- b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.
 - c. Shell for Analytical Chemistry Requirements, Version 1.0, USACE, 2 November 1998.

APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

- 0 Data agrees if any one of the following apply:
 - both values are less than respective detection limit (N<MDL)
 - N₁<MDL₁ and N₂>MDL₂ but <MDL₁*
- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in soil:

<2X difference

For all other analyses:

<4X difference

- 1 Minor contamination by laboratory contaminant
- 2 Not tested by both laboratories
- 3 Minor data discrepancy, disagreement not serious, if any one of the following apply:
- N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ * does not exceed the upper limit (described below) defining a minor data discrepancy
- both values are above respective detection limit (N>MDL*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil:

2X<difference <3X

For all other analyses:

4X<difference <5X

- 4 Major data discrepancy, disagreement serious, if any one of the following apply:
- N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ and MDL₁* exceeds the limit (described below) defining a major data discrepancy
- both values are above respective detection limit (N>MDL*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil:

>3X difference

For all other analyses:

>5X difference

MDL = Method Detection Limit

N = Analytical result

* - not all < values are MDLs. Values which are not MDLs will be noted.

Key to data qualifiers:

B - detected in method blank

DO - Diluted out

J - estimated value, above MDL but below practical quantitation limit

NA - Not analyzed

ND - Not detected

NR - Not reported

APPENDIX B DATA COMPARISON TABLES

1		1 1			
	COM	PARISON OF O	A & CONTRACT	OR RESULTS	Page 1 of 2
	PROJE	CT: SHEPLEY'S	S HILL LANDFIL	L, SPRING 2002	
QA SAMPLE No.:	0205216-01A		CONTRACT	ORS SAMPLE No.:	488701
QA FIELD ID:	SHM-96-5B-QA		CONTRA	CTORS FIELD ID:	SHM-96-5B
A ANALYSIS DATE:	6/1/02		CONTRACTOR'S	ANALYSIS DATE:	5/28/02
QA LABORATORY:	AMRO			'S LABORATORY:	STL, VT
RACTION METHOD:	5030B			CTION METHOD:	5030B
ANALYSIS METHOD:	8260B		AN.	ALYSIS METHOD:	8260B
	MATERIAL D	ESCRIPTION: V	VATER		
			5/21/02		
		UNITS:	ug/L		
Target Analyte	AMRO	AMRO	STL-VT	STL-VT	
	QA LAB	RESULTS	CONTRACT		COMPARISO
	LRL	QA LAB	LRL	CONTRACTOR	CODE
Dichlorodifluoromethane			< 5.0		0
Chloromethane	< 5.0		< 5.0		0
Vinyl Chloride	< 2.0		< 5.0		0
Bromomethane	< 2.0		< 5.0		0
Chloroethane		3.156		- 14 4 th s	0
Trichlorofluoromethane	< 2.0		< 5.0		0
Acrolein	NR		< 5.0		2
Freon TF	NR		< 5.0		2
1,1-Dichloroethene	< 1.0		< 5.0		0
Acetone	< 10		< 5.0		0
Methyl Iodide	NR		< 5.0		2
Carbon Disulfide	< 2.0		< 5.0		0
Allyl Chloride	NR		< 5.0		2
Methylene Chloride	< 5.0		< 5.0		0
Acrylonitrile	NR		< 5.0		2
trans-1,2-Dichloroethene	< 2.0		< 5.0		0
1,2-Dichloroethene (total)	NR			: 4	2
Methyl-t-Butyl Ether	< 2.0				0
1,1-Dichloroethane		Tues 1		la de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	0
Vinyl Acetate	NR		< 5.0		2
Chloroprene	NR		< 5.0		2
cis-1,2-Dichloroethene				1,31,1	0
2-Butanone	< 10		< 5.0		0
Proionitrile	NR		< 20		2
Methacrylonitrile	NR NR		< 5.0		2
Bromochloromethane	< 2.0		< 5.0		0
Tetrahydrofuran	NR NR		< 50		2
Chloroform	< 2.0		< 5.0		0
1,1,1-Trichloroethane	< 2.0		< 5.0		0
Carbon Tetrachloride	< 2.0		< 5.0		0
Isobutyl Alcohol	NR NR		< 250		2
Benzene		8, 55, 1		i Aga Ba	
1,2-Dichloroethane	< 2.0		< 5.0		0
Trichloroethene	< 2.0		< 5.0		
1,2-Dichloropropane	< 2.0		< 5.0		
Methyl Methacrylate	NR NR		< 5.0		2
Dibromomethane	< 2.0		< 5.0		$\frac{2}{0}$
1,4-Dioxane	NR NR		< 250		2
Bromodichloromethane	< 2.0		< 5.0		
	NR NR		< 5.0		
2-Chloroethyl Vinyl Ether	···	100000000000000000000000000000000000000	< 5.0		
cis-1,3-Dichloropropene	< 1.0		< 5.0		0
			n m H/ (= = = ==	1 mo col c : m m=	
				TO COMMENTS	
			REPORTED		
		J=Estimate	ed value greater than	one half the reporting limit.	1 1

1 1	T						-			1		1	
		COMPARI	ISON OF	QA & CO	ONTRACT	OR RES	ULTS		Page 2 of	2			
					LANDFILI								
QA SAMPLE No.:	0205216-0			CO	NTRACTO				488701				
QA FIELD ID:	SHM-96-	5B-QA			CONTRAC				SHM-96-	5B			
A ANALYSIS DATE:	6/1/02				ACTOR'S A				5/28/02				
QA LABORATORY:	AMRO			CONT	ractor's				STL, VT				
RACTION METHOD:	5030B					CTION M			5030B				
NALYSIS METHOD:	8260B				ANA	LYSIS M	ETHOD:		8260B				
		<u></u>								1			
	MATERI	AL DESCR											
		DATE SA								ļ			
			UNITS:	ug/L									
	+												
										 	ļ		
		 			 -					 			
Target Analyte	AMRO	 	AMRO	ļ	STL-VT		STL-VT			-			
Target Allaryte	QA LAB		RESULTS		ONTRACTO		RESULTS			OMPARISO			
	LRL		QA LAB		LRL		NTRACT			CODE	JIN		
	1 11(1)	-	QA DAD		LICE		TIME			CODE	 		
	 	 		 	 				 	 	 		
4-Methyl-2-pentanone	< 10	 			< 5.0			· · · · · · · · · · · · · · · · · · ·	-	0	 	 	
Toluene Toluene	< 2.0	 			< 5.0				 	0	 	 	
trans-1,3-Dichloropropene	< 1.0	†			< 5.0					0		 	
Ethyl Methacrylate	NR	1			< 5.0					2	 	 	-
1,1,2-Trichloroethane	< 2.0	†			< 5.0				<u> </u>	0		 	
Tetrachloroethene	< 2.0				< 5.0					0			
2-Hexanone	< 10				< 5.0				<u> </u>	0	 	 	
Dibromochloromethane	< 2.0			***************************************	< 5.0			***************************************		0	1		
1,2-Dibromoethane	< 2.0			***************************************	< 5.0				†	0	1		†
Chlorobenzene	< 2.0				< 5.0					0	 		
1,1,1,2-Tetrachloroethane	< 2.0				< 5.0					0			
Ethylbenzene	< 2.0				< 5.0		:			0			
Xylene (m,p)	< 2.0				< 5.0		. 1			0			
Xylene (total)	< 2.0				< 5.0					0			
Xylene (o)	< 2.0				< 5.0					0			
Styrene	< 2.0				< 5.0					0			T
Bromoform	< 2.0				< 5.0				1	0			
Isopropylbenzene	< 2.0				< 5.0					0			
cis-1,4-Dichloro-2-butene	NR				< 5.0					2			<u></u>
1,1,2,2-Tetrachloroethane	< 2.0				< 5.0					0			<u>L</u> .
1,2,3-Trichloropropane	< 2.0				< 5.0				ļ	0	<u> </u>		<u> </u>
trans-1,4-Dichloro-2-buten					< 5.0					2	ļ	<u> </u>	↓
1,3-Dichlorobenzene	< 2.0				< 5.0				ļ	0		 	<u> </u>
1,4-Dichlorobenzene			1 1/4		< 5.0					0	-		↓
1,2-Dichlorobenzene	< 2.0		-		< 5.0				 	0		 	
1,2-Dibromo-3-Chloroprop				*********	< 5.0					0		 	┼
1,2,4-Trichlorobenzene	< 2.0		-		< 5.0				 	0		 	
Hexachlorobutadiene	< 2.0				< 5.0			<u> </u>	 	0		 	
Naphthalene	< 5.0			I	< 5.0	 			+	0	 	 	+
2,2-Dichloropropane	< 2.0				< 5.0			<u> </u>	1	0	1	 	+-
1,1-Dichloropropene 1,3-Dichloropropane	< 2.0				< 5.0	 		 	 	0	 	 	+
	< 2.0 < 2.0				< 5.0 < 5.0	 		l	 	0		+	+-
Bromobenzene					< 5.0						+	+	+
n-Propylbenzene	< 2.0 < 2.0				< 5.0	 			+	0		+	+
2-Chlorotoluene					< 5.0	 			+	0		+	+
4-Chlorotoluene 1,3,5-Trimethylbenzene	< 2.0				< 5.0	 		I	+	0	+	+	+
	< 2.0			I	< 5.0	 			+	0	 	+	+
1,2,4-Trimethylbenzene	< 2.0				< 5.0	 			+	1 0		+	+
sec-Butylbenzene	< 2.0		- 600		< 5.0	 		 	+	+ 0	+	+	+-
4-Isopropyltoluene	< 2.0				< 5.0	 		l		0	+	+	+
n-Butyibenzene	< 2.0				< 5.0	 		I		0	+	 	+
1,2,3-Trichlorobenzene	< 2.0				< 5.0	 	- , , , , , , ,		 	1 0	+	+	+
1,4,5-11 POLICE OFFICE			The state of the s		- 3.0	 	A PROPERTY.	-	+			 	+
SURROGATE RECOV	PIEC (0/)	QA	+		- 	 	+	 	PRIMA	RV	+	+	+-
SURROGATE RECUY	ALES (70)	- VA			-	 	+	+	1 7711/17	``		 	+-
Dibromofloromethane (85	120)	94.8	+	+	Toluena	d8 (88-11	<u></u>	 	101		+	+	+
1,2-Dichloroethane-d4 (8)		94.8	+-				<u>∪)</u> -d4 (72-14	1)	101	+		+	+
Toulene-d8 (88-109)	-123)	92.5					ne (72-142)		103	+		 	+
	7 117\	98.8		-			ne (72-122 ne-d4 (69-1		96		+	+	+
4-Bromofluorobenzene (7	1~11/)	98.8	+		1,2-1/1Ch	JUDENZE	10-44 (09-)	127)	1 90		+		+
			CEP A	DDDAIDIV	A FOR KEY	TO CO	AN ADVITE	 	+		+	+	+
				OT REPOR		TOCON	TIME IN TO	 				+	+-
					greater than	Long bale	the	na limit	+				+-
					e greater than			ng mmit.	+		+	+	+
1 1			I Marie A Ma							;	1		1

1.									7	T	
								······			1
		COMPARI									
		PROJECT:	SHEPLE	Y'S HILL	LANDFI	LL, SPRINC	G 2002				
QA SAMPLE No.:	0205216-01F	3		(CONTRAC	CTORS SAM	PLE No.:		488701		
QA FIELD ID:	SHM-96-5B	-QA			CONT	RACTORS F	TELD ID:		SHM-96-	5B	
QA ANALYSIS DATE:	5/28/02			CONT	RACTOR	'S ANALYS	IS DATE:		5/30/02		
QA LABORATORY:	AMRO			CO		DR'S LABOR			STL, VT		
EXTRACTION METHOD:	3010A					RACTION M			3010A		
ANALYSIS METHOD:	6010B,Hg-74	470A			A	NALYSIS M	ETHOD:		6010, Hg-	-7470	
									<u> </u>		
	MATE	RIAL DESC							-		
		DATE SA		5/21/02	ļ				 		-
		<u> </u>	UNITS:	ug/L		ļ			 		<u> </u>
		ļ			ļ				ļ		
									<u> </u>		ļ
									1		<u></u>
		ļ				ļ			CC	OMPARIS	UN
Target Analyte	AMRO	 	AMRO		STL-VT		STL-VT		-	CODE	
	QA LAB	 	QA LAB		NTRACT		NTRACT		Dup-	ļ	ļ
	LRL	<u> </u>	RESULTS	<u> </u>	LRL	K	ESULTS	Dup	RPD's		
		-		}	10077			10.077	 	 	
Aluminum	< 200	 	341		19.8 U	-		19.8 U	NC NC	4	
Antimony	< 20		AV2 (2.5 U		Na.	2.1 B	NC	3	
Arsenic	< 5.0	(SW7060A)			2.2 U	ļ	3,7515	3830	0.79	0	
Barium	< 200		35.4		6.3 U			60.9 B	1.32	0	ļ
Beryllium	< 5.0	ļ	W		0.11 U	 	dQF h	0.24 B	4.08	0	-
Cadmium	< 5.0	 	Wite-	L	0.50 U	 	1687111	0.94 B	6.86	0	
Calciuum	< 2500	 	Annui:		128 U	 		95200 2.7 B		0	
Chromium Colbolt	< 10 < 50		Mh 3		2.9 U	 	os t Mark	19.2 B	16.9 2.11	0	
Copper	< 25	 	14. 4		1.4 U		1 Table	4.2 B	36.6	4	
Iron	< 100	+	arintin	<u> </u>	61.4 U	 	dinin.	39800	0.75	0	
Lead	< 5.0	(SW7421)	Star		1.0 U	 	. At	1.8 B	53.1	0	
Magnesium	<2500	(511/741)	(6)DF		132 U	 	1.4.000	15300	0.65	0	
Manganese	< 15	 	19890		0.50 U	 	or High	10900	0.03	0	
Mercury	< 0.20	(SW7470A)				(11-13-01)	65	0.10 U	NC	0	1
Nickel	< 40	1	137		2.8 U	1	14	14.9 B	1.99	0	
Potassium	<2500	 	oithit.		273 U	<u> </u>	(J. 11)	11700	0	0	
Selenium	< 5.0	(SW7740)			2.7 U		0.006	2.4 B	58.8	0	1
Silver	< 7.0	1	411		1.3 U		4.3 1.	3.1 B	38.5	ō	1
Sodium	<2500	1	1311111		350 U		them	37000	1.09	0	
Thallium	< 5.0	(SW7841)			3.3 U		84	3.3 U	NC	0	
Vanadium	< 50		A17.00		2.0 U			2.0 U	NC	0	
Zinc	< 20		Nys		1.1 U		1891	8.8 B	1.13	0	
		1									
		T	SEE APP	ENDIX A	FOR KEY	TO COMM	ENTS				
				REPORT		T	·		T		
			ND= Not	Detected a	at the Repo	rting Limit		<u> </u>	1		
		1		Detected at							
		1				uired Detecti	on Limit (CRDL),			
		1				Detction Lin					
		1				ntitation limi			1	1	

	COMPAR	USON OF C	A & CON	JTD A CTO	D DECL	TTC				
		: SHEPLE								 -
	PROJECT	SHEFFE	SILLE	LANDEI	il, 31 Ki	10 2002				
		+				 				
		-								
QA SAMPLE No.:	0205216-01		CC	NTRACT	ORSSAN	API E No :	488701			ļ ·
QA FIELD ID:	SHM-96-5B-QA					FIELD ID:	SHM-9			
QA ANALYSIS DATE:	See Below		CONTR			IS DATE:	NR	T		
QA LABORATORY:	AMRO					RATORY:	STL, V	T		
TRACTION METHOD:	NA NA	+				METHOD:	NA			
ANALYSIS METHOD:	9010B	1				METHOD:	335.4			 -
		 				T				
										1
	MATERIAL DES	CRIPTION:	WATER					1		1
		SAMPLED:								1
		UNITS:	mg/L							
Target Analyte	AMRO	AMRO		STL-VT		STL-VT				
	QA LAB	RESULT		ONTRACT		RESULTS		COMPARIS	NC	<u> </u>
	LRL	QA LAB		LRL	C	ONTRACTO	R	CODE		
					ļ					
Cyanide (CN)	< 0.020			< 0.010		_		0		<u> </u>
				<u> </u>	ļ					<u> </u>
			Ļ	ļ	ļ				<u> </u>	
			ļ	<u> </u>	ļ	-			<u> </u>	 -
			 	<u> </u>	 				 	
		\	OR WEW	1					ļ	
		PENDIX A F		COMM	EN15				 	
		T REPORTE			14. > 12					
	*Note: C	yanide samp	ie was acju	isted for pr	1 to >12 u	ntii it was rece	eived at the lab.		 	
			 		 					+
			-	-	 				 	+
			+	+		+			+	+
			+	 	1				1	+
			+	+	1	+			 	+
		-	1	 	1	1			†	+
			1		1					1
									1	1
					1				1	1
					1					
			1							
								·		
									ļ	
			1							

						<u> </u>				L		<u> </u>	
						RISON OF							
				PR	OJECT:	SHEPLEY	'S HILL I	ANDFILI	, SPRIN	G 2002			
						11							
	QA SAM	PLE No.:		0205216-0	l		C	ONTRACT	TORS SAI	MPLE No.:	488701		
	QA F	IELD ID:		SHM-96-5	B-QA			CONTR	ACTORS	FIELD ID:	SHM-96-	5B	
QA	ANALYS	IS DATE:		See Below			CONT	RACTOR'S	ANALY	SIS DATE:	NR		
	QA LABOR			AMRO			CON	ITRACTO	R'S LABO	RATORY:	STL, VT		
XTR	ACTION M	IETHOD:		NA				EXTR	ACTION	METHOD:	NA		
Aì	IALYSIS N	IETHOD:		300.0				AN	IALYSIS	METHOD:	300.0		
	T												[<u>-</u>
				Ţ									[
				MATERI	AL DES	CRIPTION:	WATER						
			***************************************		DATE	SAMPLED:	5/21/02						
						UNITS:	mg/L						
						1							
				1				,					
	†			<u> </u>									
	Target Ar	nalyte		AMRO		AMRO		STL-VT		STL-VT			T
	1	1	·	QA LAB		RESULTS	C	ONTRACT	OR	RESULTS	CC	MPARISO	NC
	1			LRL		QA LAB	<u> </u>	LRL	C	ONTRACTOR		CODE	T
													
	Chloride		(5-29-02)	< 5.0		:		< 0.20	<u> </u>	5.10		0	
	Nitrate,		(5-23-02)	< 0.20		2 Table 19		< 0.20	ļ	7		0	<u> </u>
Ot	nophosphat		(5-23-02)		<u> </u>			< 0.20	<u> </u>			0	
	Sulfate,	SO4	(5-28-02)	< 1.0				< 0.20				0	
													<u> </u>
		<u> </u>				Manufacture and the				Waadda.			
									1			1	1
									<u> </u>				
*****						PENDIX A		TO COMP	ARISON	CODES			
						OT REPORT		<u> </u>					
				'		ot detected a			1				1
						nated value,			imit				
					LRL= I	aboratory Re	eporting Li	mit					
	_1	1											

				1						· ·		
		-	COMPA	RISON OF	QA & CO	NTRACT	OR RESU	LTS				
			PROJECT:	SHEPLEY	'S HILL I	ANDFILI	L, SPRIN	G 2002				ļ
	·			-								
				-								
+	QA SAMPLE No.:	02052	16-01	+		ONTRACT	ORSSAN	(PLE No ·		488701		
	QA FIELD ID:		96-5B-QA	+	ĭ		ACTORS I			SHM-96-	5B	 -
QA	ANALYSIS DATE:	6/4/20			CONTR	ACTOR'S				NR	<u> </u>	†
Q	A LABORATORY:	AMRO			CON	TRACTOR				STL, VT		Ī
	CTION METHOD:	NA					ACTION N			NA		
AN	ALYSIS METHOD:	410.4				AN	ALYSIS N	METHOD:		410.1		
		7.645	ERIAL DES	CRETION	AT A TOPOTO						_	ļ
		MA		SAMPLED:								 -
			DATE	UNITS:	mg/L			_ 			 	 -
				+							 	
												
	Target Analyte	AMI		AMRO	1	STL-VT		STL-VT	<u> </u>			
		QA I		RESULTS		NTRACT		RESULTS		C	OMPARIS	<u>ON</u>
		LR	L	QA LAB		LRL	CC	NTRACT	<u>UK</u>		CODE	
		 		-	l				 		 	
hemica	l Oxygen Demand (COD) < 5			!	< 5.0	 		 -		0	
	T T	1	<u> </u>	- 1	l	1					 	
		†										1
					ļ		ļ				<u> </u>	
	<u> </u>				ļ	ļ	ļ	ļ	ļ			
	 	 			 	-	ļ		 			
	 	 			 		ļ		 		 	
	 	 		SEE APP	ENDIX A	FOR KEY	TO COM	MENTS	-		 	
		1			REPORT		1		·		+	1
	1 [Detected a		rting Limit				1	
			1	1.12				- 				
							<u> </u>					

			<u> </u>					
			MPARISON OF					
		PRO	JECT: SHEPLE	Y'S HILL	LANDFILL	, SPRING 2002		
	04 041477 771	10005016 01			VED + CTO	DO O LA CONTRACT	400701	
	QA SAMPLE No.:	0205216-01		CC		RS SAMPLE No.:	488701	
	QA FIELD ID:	SHM-96-5B	-QA			TORS FIELD ID:	SHM-96-	5B
	ANALYSIS DATE:	5/23/02				NALYSIS DATE:	NR NR	
	A LABORATORY:	AMRO		CON		LABORATORY:	STL, VT	
	CTION METHOD:	NA 105 1				TION METHOD:	NA NA	
ANA	ALYSIS METHOD:	405.1			ANAI	LYSIS METHOD:	405.1	ļ
				 				
								L
			DESCRIPTION:					
		D	ATE SAMPLED:					ļ
			UNITS:	mg/L				ļ <u>.</u>
								
				ļ				
				ļ				
	Target Analyte	AMRO	AMRO	<u> </u>	STL-VT	STL-VT		
		QA LAB	RESULT		NTRACTO			OMPARISON
		LRL	QA LAB		LRL	CONTRACTO	R	CODE
								-
	10 D 10 D				1000			
siologica	Oxygen Demand (5 Day)	< 2.0			< 0.20			0
					 			
								-
								
***					-			
	 -			 				-
	<u> </u>		ODE ARE	PENTENTY 4	FOR KEV T	O COLO TENTE		
	<u> </u>					O COMMENTS		
_		1 1	NK=NO.	report	เก		l l	

	COMP	ARISON OF	QA & CON	TRACTO	R RESU	LTS			
	PROJE	CT: SHEPLE	Y'S HILL	LANDFIL	L, SPRIN	NG 2002			
QA SAMPLE No.:	0205216-01		CC	ONTRACT			488701	<u> </u>	
QA FIELD ID:	SHM-96-5B-QA			·	CTORS F		SHM-96-	5B	
QA ANALYSIS DATE:	5/31/02			ACTOR'S			NR		
QA LABORATORY:	AMRO		CONT	RACTOR			STL, VT	ļ	
EXTRACTION METHOD:	NA NA				CTION N		NA NA		
ANALYSIS METHOD:	310.1			AN	ALYSIS N	AETHOD:	310.1	<u> </u>	
						 		 	
	MATERIAL D	ECCLIPTION	WATED					 	
		TE SAMPLED:						 	
	DA	UNITS:						 	
		OIVII 3.	mg/L			 		 	
								 	
								 	
			1					 	
Target Analyte	AMRO	AMRO		STL-VT		STL-VT			
	QA LAB	RESULT		NTRACT	OR	RESULTS	C	OMPARISO	N
	LRL	QA LAI	3	LRL	CC	NTRACTOR		CODE	
									-
Total Alkalinity as Ca	CO3 < 5.0	3 B		< 1.0		FEN		0	
				<u> </u>					
						 			
					ļ	-			
						-			
			-	 	 	 		 	
				-					
	OPP -	APPENDIX A I	OP VEV	CO COMA	ENTE	+			
		OT REPORTE		TO COMM	ENIS	 		+	
	NK=I	TINOTAL TOP	رين		1				

	ļ				·						
		OMBARICON OF	04 % CO	VTD A CTC	n nrci	LIE TOO					
		OMPARISON OF OJECT: SHEPLE									
	PR	OJECT: SHEFLE	SHILL	LANDFIL							
	+					 					
											
QA SAMPLE No.:	0205216-01		CC	NTRACTO	ORC SAN	MPI F No	488701				
QA FIELD ID:	SHM-96-5B	LOA		CONTRA			SHM-96-	5R			
QA ANALYSIS DATE:	5/28/02	- VA	CONTR	ACTOR'S			NR	36			
QA LABORATORY:	AMRO						STL, VT				
EXTRACTION METHOD:	NA		CONTRACTOR'S LABORATORY: EXTRACTION METHOD:							NA	
ANALYSIS METHOD:	6010B (234	0B)				METHOD:	6010B (2:	340B)			
	100102 (25)	<u> </u>					00.02	102/			
						† • • • • • • • • • • • • • • • • • • •					
	MATERI.	AL DESCRIPTION:	WATER								
		DATE SAMPLED:	5/21/02								
		UNITS:	mg/L								
Target Analyte	AMRO'	AMRO		STL-VT		STL-VT		<u> </u>			
	QA LAB	RESULT		NTRACT		RESULTS	CC	MPARISON_			
	LRL	QA LAB		LRL	C	ONTRACTOR		CODE			
						_		<u> </u>			
Total Hardness as CaCO3*	< 33	4,41		NR				0			
				ļ							
		Line and a						 			
			 			-					
			 	-		 		 			
			-			+		 			
		OEE AD	DENIDIV A	FOR KEY	TO CO	MENTS		 			
			T REPORT		10 001	ATATEM 19		 			
					ny the se	parate determinatio	ns of calcium	and magnesium			
						O3/L by Method 2:					

	1		· · · · · · · · · · · · · · · · · · ·		<u>-</u>								
							-						
		COMPAR	RISON OF	OA & CO	NTRACT	OR RES	ULTS						
`		ROJECT:											
	· ·												
QA SAMPLE No.:	0205216-01			CC	NTRACT	ORS SA	MPLE No.:	488701	488701				
QA FIELD ID:	SHM-96-5	B-QA					FIELD ID:	SHM-96-5B					
QA ANALYSIS DATE:	5/24/02			CONTR			SIS DATE:	NR	T				
QA LABORATORY:	AMRO			CON	TRACTOR	'S LABO	RATORY:	STL, VT					
EXTRACTION METHOD:	NA				EXTR.	CTION	METHOD:	NA					
ANALYSIS METHOD:	160.1 and 1	60.2			AN.	ALYSIS	METHOD:	160.1 and	160.2				
									T T				
	MATER	UAL DES	CRIPTION:	WATER									
		DATE	SAMPLED:	5/21/02									
			UNITS:	mg/L									
				1									
Target Analyte	AMRO		AMRO		STL-VT		STL-VT						
	QA LAB		RESULTS	S CO	ONTRACT		RESULTS		OMPARIS	ON			
	LRL		QA LAB		LRL	C	ONTRACTOR		CODE				
Total Dissolved Solids (TDS by 160.1)	< 10	<u> </u>			< 5.0		,		0				
Total Suspended Solids (TSS by 160.2)	< 4.0				< 0.50				0	<u> </u>			
		<u> </u>			<u> </u>					<u> </u>			
						ļ	and the second second						
						ļ							
													
				<u> </u>	ļ								
		ļ				ļ			ļ	<u> </u>			
		1	_		1								
					1	<u> </u>				ļ			
			PENDIX A		TO COM	MENTS			 	ļ			
			T REPORTI		<u> </u>				1	ļ			
		LRL=La	boratory Rep	porting Lin	<u>nit</u>	<u></u>			1	1			

					····			
		COM	A DISON OD C	A CON	TD A CTOE	DESCRIPTION		
			PARISON OF C			, SPRING 2002		
	 	PROJE	CI: SHEFLE	SHILL	ANDFILL	, SPRING 2002		
								
	QA SAMPLE No.:	0205216-01		CC	NTR ACTO	ORS SAMPLE No.:	488701	
	QA FIELD ID:	SHM-96-5B-QA				CTORS FIELD ID:	SHM-96-	5B
OA	ANALYSIS DATE:	5/24/02		CONTR		ANALYSIS DATE:	NR	
	QA LABORATORY:	STL-Pittsgurgh (subcontracted)			S LABORATORY:	STL, VT	
	ACTION METHOD:	NA NA				CTION METHOD:	NA NA	
	NALYSIS METHOD:	9060.0				ALYSIS METHOD:	9060.0	
				TARABLE TO STATE OF THE STATE O				
		MATERIAL D	ESCRIPTION:	WATER				
		DA	TE SAMPLED:	5/21/02				
			UNITS:	mg/L				
								L
	Target Analyte	AMRO	AMRO		STL-VT	STL-VT		<u> </u>
		QA LAB	RESULTS	S CC	NTRACT(OMPARISON
		LRL	QA LAB		LRL	CONTRACT	UR	CODE
otal O	rganic Carbon (TOC)	< 1.0	1 12		< 1.0	74		0
			Markan San Co			Landing to the second s		
								<u> </u>
				ļ				ļ
				ļ				
					 			
	+							
				1	<u> </u>		L	ļ
		lenn	APPENDIX A F	γ γ γ γ γ γ γ γ	<u>ጉ ሥር እለአም</u>	NTC	ı ı	! !

APPENDIX C

SAMPLE RECEIPT & CUSTODY DOCUMENTATION

CHAIN OF CUSTODY RECORD

PROJ. NO. PROJECT NAME									,	7	7	7	\.	./	_/	7//	•		
EØ776 Shepley's HILL LTM							NO.		,	/ ,	/ ~ ~ /				/ /	///			
SAMPLER	RS: <i>(Sigr</i>	nature)							OF			(d)		9/0	*/	\/.		Y.o/	05114.000
7	Mark	R.	Ko	<u>un</u>	ig_				CON-			1/0	Y 28	%	λ''	3/%	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		REMARKS
STA. NO.	DATE		ا م	1 1	1	STATIO	IN LOCATION		TAINERS	120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T TO	A STATE OF THE PERSON OF THE P	n sy	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/1		<u> </u>	
	1/2/02	1606		X	SHm-9	76-51	3-QA		12	3	1	1		1	1	1	3		
	5/21/02	_		X	TRIP				1	1	_	_	-	-	_	-	_		
					·														
					v														
				1	0														
				Pa	aul														
		1																	
		1		Jours															
				7	7														
				A	U														
			A		1														
				\bigvee											-				**************************************
					<u> </u>														
					/														
Relinquis	hed by:	(Signatu	re)	T	Date / Ti	ime	Received by	: (Signatu	re)	Reli	inquis	hed b	y: (Si	ignatu	ıre)	\top	Da ¹	te / Time	Received by: (Signature)
Parel	Paul Joung 5/21/02 1900 82 195119 8605											2			Received by: (Signature)				
Relinquis	elinquished by: (Signature) Date / Time Received by: (Signature)				'e) -	Reli	inquisl	hed b	y: (Siį	gnatu	ire)		Dat	e / Time	Received by: (Signature)				
Relinquist	ned by:	(Signatui	·e)		Date / Ti	me	Received for (Signature)	Laborator	ry by:		Date	/ Tin	ne	R	Remari	ks	1	cooler	ShippoD
	Distribut	tion: Orig	inal A	ccowt	anies Shipm	ent; Cop	y 1 to Sample Co	ustodian; Cr	opy 2 to Coor	rdinato	or Field	d Files	j	7			,	- '	<i>,,</i>

42842

Office: (603) 424-2022 Fax: (603) 429-8496

Project No.: <u>E\$776</u>	Project Name:	SHEPLE)	15 HIL	Pro	Project Manager:								rs (Sig		re):	AMRO Project No.: 02052/6						
	Project State:	MA																				
Sample ID	Date/Time	Matrix	D .	Comp	Grab					A	naly	sis Re	quir	ed				Remarks				
	Sampled	A= Air	of Cont.			0										1		1				
·		S= Soil	& Size	l		0							ĺ	Ì	1	1		1				
	}	GW= Ground W.			1	30								1	1		1	l				
		WW= Waste W. DW= Drinking W.														1	l	ļ				
		O= Oil				100							l	l			}					
		Other= Specify				17			:				Ĺ				<u></u>					
OIH SHM-96-5B-QA	5/21/02/606	AQ	3-40 ML		V	1																
																		<u> </u>				
	. :																<u> </u>					
									-+									-				
								\dashv			\dashv						<u> </u>					
						_	\dashv	\dashv	-	\dashv	\neg											
Preservative: Cl-HCl, MeOH, N-HN	03, S-H2SO4,	Na-NaOH, O- Oth	er				一十	一十	-	一												
Container Type: P- Plastic, G-Glass	, V-Vial, T- Te	flon, O-Other																				
Send Results To:		FAX No.;	etion	Sea	al Intact?		P.	O. No:		GW-1* GW-2 GW-3												
AMRO ENVIRONMI	ENTHL	603 429 8	796				-		1										İ			
III WERRICK ST MERRIMACK NH	03054			Yes	No Needed I	N/A	ST)	<u> </u>		MCP I *= Ma				al co								
Relinquished By	00007	Date/ Time			eceived		-1-1									TME	AU'	ГНОІ	RIZATION			
C Cearley		5/23/02/64				MAN Kappan and San Land													ou must have requested			
C ceareing			- 1														ITON NUMBER.					
u u	Patrie	LA			4		B	_		-			yy no	on wi	ili be i	track	ed and billed as received					
	1 am	7COL		1				on the		_							BY:					
									_													
Please print clearly, legibly and co		NOTES: Presen	vatives.	, Special	reporti	ng lin	nits, Kı	nown	Conta	minat	ion, et	c;		AMRO	polic	y requ	ires no	tification in writing to				
ogged in and the turnaround time	start until any	& C PACKAGE													the laboratory in cases where the samples were							
mbiguities are resolved.																	collected from highly contaminated sites.					
White: Lab Copy	ellow: Accom	nanies Report		Pink: C	lient Co	inv	سسد	oson igalian	- T	ÇE		7		OF /								
				SHEET / OF /																		

Chemical Quality Assurance Report Fall 2002

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-011703

OCTOBER 30, 2002 SAMPLING EVENT

PREPARED BY
THE
GEOLOGY
AND
CHEMISTRY SECTION
ENGINEERING/PLANNING DIVISION

DEPARTMENT OF THE ARMY
NEW ENGLAND DISTRICT, CORPS OF ENGINEERS
CONCORD, MASSACHUSETTS

FEBRUARY 3, 2003

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2002 SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-011703

TABLE OF CONTENTS

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
	Executive Summary	1-2
	Table 1- Data Comparison Summary	3
	Table 2 - Analyses Performed by QA Laboratory	4
1.	QA sample shipping and chain-of-custody deficiencies	5
2.	Data comparison for volatiles by Method 8260B	5-6
3.	Data comparison for metals by Method 6010B and 7470	7-8
4.	Data comparison for cyanide by Method 9010B	8-9
5.	Data comparison for anions by Method 300.0	9-10
6.	Data comparison for COD by Method 410.4	10-11
7.	Data comparison for BOD by Method 405.1	11-12
8.	Data comparison for alkalinity by Method 310.1	12-13
9.	Data comparison for hardness by Method 2340B	13-14
10.	Data comparison for TDS and TSS by Methods 160.1 and 160.2	14-15
11.	Data comparison for total organic carbon (TOC) by Method 9060	15-16

TABLE OF CONTENTS (continued)

12. References		16
----------------	--	----

Appendix A - Key to Comments on Data Comparison Code

Appendix B - Data Comparison Tables

Appendix C - Custody Documentation

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2002 - QA SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-011703

Executive Summary

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 101 target analyte determinations. The shipment contained one QA water sample and one trip blank sample and was received in good condition. The data report from the QA laboratory, AMRO, Merrimack, NH, dated 1 January 2003, was used in the comparison. In 31 of these determinations target analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 12a). The primary and QA samples agreed overall in 101 out of 101 (100%) of the comparisons. Primary and QA samples agreed quantitatively in 31 out of 31 (100%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. No major or minor discrepancies between results from the primary and QA samples were noted. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's data report was evaluated based on the information that was provided. All of the data comparisons for Methods VOA's-8260B, TAL Metals-6010B, CN, Anions, COD, BOD, Alkalinity, TDS, TSS, hardness and TOC were in complete overall and quantitative agreement. There was very little bias to any of the QA laboratory's sample results and only a few minor QC deviations were noted in their case narrative. The data is complete, usable and satisfies the DQO's of the project.

The primary laboratory's data report was evaluated based on the information that was provided. As stated above, all of the data comparisons for all of the analyses were in excellent overall and quantitative agreement. The primary laboratory's wet chemistry data report has historically lacked some of the information necessary to completely evaluate the batch QC. The primary laboratory has changed their report format and most of the missing supporting QC information is now present in the report. STL-VT has responded to the Corps request to supply the missing information needed to perform a complete evaluation of the data quality.

The QA and primary laboratory's reporting limits were comparable, except for thallium and COD which were not detected in the QA sample. The primary laboratory reported the sample ID's in which tentatively identified compounds (TIC's) were detected. The QA sample SHM-96-5B was also reported to contain TIC's. This CQAR is based on the laboratory reporting limits because the detection limits were not always provided or well defined.

QA analyses were performed by AMRO Environmental Laboratories, Inc., 111 Herrick Street, Merrimack, NH, 03054 and Severn Trent Laboratories, Inc., 450 William Pitt Way, Pittsburgh, PA 15238-1330. The primary laboratory was Severn Trent Services, 208 South Park Drive, Suite 1, Colchester, VT, 05446.

Table 1 Quality Assurance Split Sample Data Comparison Summary

Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, October 30, 2002 Sampling Event

Overall Agreement (1) Quantitative Agreement (2)

		Overall Agr	cement (1)	Quantitative	181 coment (2)
Method	Parameter	Number	Percent	Number	Percent
8260B	Volatiles	66/66	100	8/8	100
6020/7471	Metals/Mercury	23/23	100	15/15	100
9010B	Cyanide	1/1	100	NA	NA
300.0	Anions	4/4	100	2/2	100
410.1	COD	1/1	100	1/1	100
405.1	BOD	1/1	100	NA	NA
310.1	Alkalinity	1/1	100	1/1	100
130.2	Hardness	1/1	100	1/1	100
160.1	TDS	1/1	100	1/1	100
160.2	TSS	1/1	100	1/1	100
9060	TOC	1/1	100	1/1	100
Total		101/101	100	31/31	100

NOTES:

- (1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.
- (2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

TABLE 2

QA ANALYSES PERFORMED

Sample ID	Matrix	Sample Date	ANALYSIS
SHM-96-5B-QA	Water	10-30-02	5030B/8260B-Volatiles
			3010A/6010B-ICP Metals, 7470A-Mercury
			9010B-Cyanide
			300.0-Anions by Ion Chromatography
			410.1-COD
			405.1-BOD
			310.1-Total Alkalinity as CaCO3
			2340B-Total Hardness by Calculation
			160.1-Total Dissolved Solids (TDS)
			160.2-Total Suspended Solids (TSS)
			9060-Total Organic Carbon (TOC)
Trip Blank	Water	10-30-02	5030B/8260B-Volatiles

SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2002 QA SAMPLING EVENT

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-011703

BOOK ROUIRUS

QA Findings

1. QA sample shipping and chain-of-custody deficiencies.

AMRO Environmental Laboratories Corporation, Merrimack, NH, received one shipment containing one QA water sample and a trip blank. The samples were received in good condition on 31 October 2002. Proper sample handling protocols were followed for this shipment, except the cyanide sample container needed to be adjusted for pH at the lab to greater than 12 pH units. The sample SHM-96-5B-QA has historically required additional NaOH to be added by the QA laboratory in order to adjust the pH to greater than 12 pH units.

Copies of the chain-of-custody form document and the cooler receipt form are appended to this report for reference.

2. Data comparison for volatiles (VOC) by Method 8260B.

There were 66 volatile determinations. In seven of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 66 (100%) of the cases and quantitative agreement in eight out of eight (100%) of the cases. No data discrepancies were noted.

The QA laboratory's target analyte list consisted of 66 volatile compounds which were all analyzed by the primary laboratory whose target analyte list consisted of 84 volatile compounds. The primary laboratory was requested to report the presence of Tentatively Identified Compounds (TIC's) in all the samples. QA sample SHM-96-5B-QA was reported to exhibit the presence of TIC's. The pH of sample SHM-96-5B-QA was above the method recommended pH of < 2, at 5 pH units.

2a. Batch QC Evaluation for the QA Laboratory-AMRO.

<u>Holding Times</u>: All of the volatile samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: Results of all the method blanks that were associated with the QA split sample showed no contamination above the laboratory's reporting limit for any of the target analytes, except for methylene chloride which was reported at 0.89 J ug/l.

<u>Trip Blanks</u>: Results of the trip blank that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

<u>Laboratory Control Samples</u>: The QA laboratory spiked the LCS with all of their 66 target analytes. The spiking levels, percent recoveries and the QC limits were appropriately indicated in the report. The QA laboratory reported that the LCS, V-3 021105A, was within the acceptance limits for all of the target analytes.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the five target anlytes that were spiked in the MS and MSD were within the acceptance limits for accuracy and precision, except for the recovery of trichloroethene (83-118%) in the MSD at 79.6%. Trichloroethene was not detected in the sample SHM-96-5B-QA. The MS/MSD's samples reported were from another client's project.

<u>Surrogates</u>: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

2b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results associated with the QA sample showed contamination below the laboratory's reporting limits for the following target analytes; isobutyl alcohol at 100 J ug/L, 1,4-dioxane at 520 ug/L, 1,2,4-trichlorobenzene at 1.1 J ug/L, hexachlorobutadiene at 2.8 J ug/L, naphthalene at 1.3 J ug/L, and 1,2,3-trichlorobenzene at 1.2 J ug/L which were detected in the method blank sample VBLKY9. These target analytes were not detected in the QA sample SHM-96-5B-QA and were below the reporting limits for these target analytes. The sample results for SHM-96-5B-QA would not be affected.

<u>Trip Blanks</u>: All of the trip blank results for all of the target analytes showed no contamination above the laboratory's reporting limits.

<u>Laboratory Control Sample (LCS/LCSDs)</u>: The primary laboratory reported that all of the target analytes in the LCS/LCSD were within the acceptance limits for accuracy and precision. All 84 of the target analytes were spiked into the LCS samples. The amount spiked, percent recoveries and control limits were provided in the report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>: The primary laboratory did not report the results of the MS/MSD for sample SHL-19 which was requested on the chain-of-custody. Refer to the LCS/LCSD for accuracy and precision.

<u>Surrogates</u>: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

3. The data comparison for ICP metals by Methods 6010B and mercury by 7470A.

There were 22 ICP-metals determinations and one mercury determination. In 15 of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 23 (100%) of the cases and quantitative agreement in 15 out of 15 (100%) of the cases. No data discrepancies were noted.

3a. Batch QC Evaluation for the QA Laboratory-AMRO.

Holding times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limits, except for calcium, iron, magnesium, potassium, sodium and zinc which were all reported below the reporting limits.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that all of the LCS results were within the laboratory's acceptance limits of 80-120%. The QA laboratory provided the spike amount, percent recoveries and the QC limits in all the data reports.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the MS/MSDs were within the laboratory's acceptance limits for accuracy and precision for all the ICP-metal target analytes. All of the spike levels, percent recoveries and QC limits were provided in the reports.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results.

3b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

<u>Holding times</u>: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The primary laboratory reported that all of the target analytes were recovered within the assumed acceptance limits of 80-120% recoveries. The primary laboratory did not provide LCS acceptance limits in their report.

<u>Matrix Spike (MS):</u> The primary laboratory performed a matrix spike on sample SHL-19. The primary laboratory reported that all the target analytes in the MS recoveries were within the assumed acceptance limits (75-125%) for accuracy, except for thallium which was recovered at 69.6%. The primary laboratory did not provide acceptance limits for the MS sample results. The post digestion spike recovery for thallium was within the assumed acceptance limits at 88.6%.

<u>Laboratory Duplicate</u>: The primary laboratory reported the laboratory duplicate SHL-19D was within the assumed acceptance limits of 20% RPD for precision for all of the target analytes that were above the CRDL. The primary laboratory did not provide the acceptance limits for laboratory duplicates. The blind field duplicate sample SHM-DUP-02A was in close agreement with the original sample SHM-DUP-02A. Refer to the data comparison table for the RPD's.

4. Data comparison for cyanide by Method 9010B.

There was one cyanide determination. No cyanide was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

4a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank result for cyanide showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS result for cyanide was within the laboratory's acceptance limits of 90-110%, at 108%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory did not report any MS/MSD results for cyanide and they were not requested to on the C-O-C.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for cyanide.

4b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for cyanide.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported the LCS for cyanide was within the assumed acceptance limits of 90-110% at 100.9%. The spike amount added and the percent recoveries were all provided in the report, but no QC limits were provided.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered below the acceptance limits of 75-125% for cyanide at 57.5%. The primary lab suspects the low cyanide recovery was due to a matrix effect.

<u>Laboratory Duplicate</u>: The primary laboratory reported that the laboratory duplicate sample results (both non-detects) were within the laboratory's acceptance limits for cyanide.

5. Data comparison for anions by Method 300.0.

There were four anion determinations. In three of the determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in three out of three (100%) of the cases. No data discrepancies were noted.

5a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for anions showed no contamination above the laboratory's reporting limit. Ortho-phosphate was analyzed by Method 365.2. Chloride was detected below the reporting limit of 0.50 mg/l at 0.05 mg/l.

<u>Laboratory Control Samples (LCS)</u>: The QA laboratory reported that the LCS results for anions were within the laboratory's acceptance limits of 90-110%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS for anions were within the laboratory's acceptance limits for accuracy, except for ortho-phosphate at 0% recovery. The QA laboratory suspects a specific matrix interference. The sample was reanalyzed at a dilution with the same results and was qualified appropriately. The non-detect sample result should be considered biased low due to the poor recovery in the MS. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Laboratory Duplicate</u>: The QA laboratory reported that all the anions laboratory duplicate results were within the acceptance limits of 20% RPD.

5b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for anions.

<u>Laboratory Control Samples (LCSs)</u>: The primary laboratory reported that all the LCS/LCSD's for anions were within the laboratory acceptance limits for accuracy and precision. The spike amount added and percent recoveries were all provided in the report.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the acceptance limits of 80-120% for all the anions.

<u>Laboratory Duplicate</u>: The primary laboratory reported that the laboratory duplicate results were within reasonable acceptance limits for precision.

6. Data comparison for COD by Method 410.1.

There was one COD determination. The primary laboratory reported COD at 87.9 mg/L which was above the QA laboratory's reporting limit of 50 ug/L. There was 100% overall agreement for this determination, however the primary laboratory's reporting limit was ten times lower at 5.0 ug/L. No data discrepancy was noted based on the higher reporting limit.

6a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for COD showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS)</u>: The QA laboratory reported that the LCS result for COD was within the laboratory's acceptance limits of 80-120%, at 100%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for COD were within the laboratory's acceptance limits of 80-120% for accuracy and precision, at 99.9% and 101% with a RPD of 1.35%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate result for COD.

6b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for COD.

<u>Laboratory Control Sample (LCS/LCSD)</u>: The primary laboratory reported that the LCS/LCSD for COD were within the acceptance limits for accuracy and precision. The spike amount added and percent recoveries were all provided in the report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The primary laboratory was not requested to

perform MS/MSD's on any of the samples for COD and no evaluation of accuracy and precision based on matrix effects could be made.

<u>Laboratory Duplicate</u>: The primary laboratory did not report any laboratory duplicate results for COD.

7. Data comparison for BOD by Method 405.1.

There was one BOD determination. No BOD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

7a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for BOD showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The QA laboratory reported that the LCS/LCSD recoveries for BOD were within the laboratory's acceptance limits for accuracy and precision at 95.9% and 94.2% recoveries, with a RPD of 1.78%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis. Refer to LCS/LCSD data for accuracy and precision verification.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for BOD.

7b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for BOD.

<u>Laboratory Control Sample (LCS/LCSD's)</u>: The primary laboratory reported that all the LCS's for BOD were within the acceptance limits for accuracy and precision. The spike amount added and percent recoveries were all provided in the report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis and were not requested on the C-O-C. Refer to LCS for accuracy verification.

<u>Laboratory Duplicate</u>: The primary laboratory did not provide any laboratory duplicate results for BOD.

8. Data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. Both laboratories detected alkalinity in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted.

8a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for alkalinity showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for alkalinity was within the laboratory's acceptance limits of 80-120% at 98.9%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that the MS/MSD's for alkalinity were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 97% and 95.7% recoveries with an RPD of 1.08%.

<u>Laboratory Duplicate</u>: The QA laboratory reported that the sample duplicate result for alkalinity was within the 20% RPD acceptance limit at 8.65%.

8b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for alkalinity.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that the LCS for alkalinity was within the acceptance limits of 80-120%. The spike amount added, percent recoveries and QC limits were all provided in the report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The primary laboratory reported that the MS for alkalinity was recovered within the acceptance limits of 75-125% at 98.8%.

<u>Laboratory Duplicate</u>: The primary laboratory reported the laboratory duplicate results for sample SHL-19 were within the acceptance limits of 80-120% at 2.0% RPD.

9. Data comparison for hardness by calculation by Method 2340B.

There was one hardness determination. Both laboratories detected hardness in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination and no data discrepancy was noted.

9a. Batch QC Evaluation for the QA laboratory-AMRO.

<u>Holding Times</u>: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for hardness showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for hardness was within the laboratory's acceptance limits of (80-120%) at 99.4%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory did not report any MS/MSD results for hardness and accuracy and precision based on matrix effects could not be determined.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for hardness.

9b. Batch OC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for hardness.

<u>Laboratory Control Samples (LCS/LCSD's)</u>: The primary laboratory did not report any LCS results for hardness. No evaluation of method performance (accuracy and precision) on an interference free matrix could be made.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory did not report any MS/MSD results for hardness. No evaluation of accuracy and precision based on matrix effects could be made. The primary laboratory did not provide hardness results on the samples SHL-19MS and MSD which were requested on the chain-of-custody.

<u>Laboratory Duplicate</u>: The primary laboratory did not report any laboratory duplicate results for hardness for SHL-19. No QC limits for precision were provided.

10. Data comparison for TDS and TSS by Methods 160.1 and 160.2.

There was one total dissolved solids determination (TDS) and one total suspended solids (TSS) determination. Both laboratories reported detectable levels of TDS and TSS in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for the TDS determination and 100% overall and quantitative agreement for the TSS determination. No data discrepancies were noted for the TDS and TSS determinations.

10a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for TDS and TSS showed no contamination above the laboratory's reporting limits.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recoveries for TDS and TSS were within the laboratory's acceptance limits at 91.4% and 92%, respectively. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable for TDS and TSS.

<u>Laboratory Duplicate</u>: The QA laboratory reported that the TDS and TSS laboratory duplicates were within the laboratory's acceptance limits of 20% RPD at 10.4% and 13.3%, respectively.

10b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TDS and TSS.

<u>Laboratory Control Sample (LCS/LCSD)</u>: The primary laboratory reported that all the LCS/LCSD's for TDS and TSS were within the acceptance limits of 80-120% for accuracy and precision. The spike amount added and percent recoveries were all provided in the report.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: MS/MSD's are not applicable for TDS and TSS.

<u>Laboratory Duplicate</u>: The primary laboratory reported the duplicate sample results for SHL-19 were within the acceptance limits of 20% RPD for TDS at 2.0% RPD. No duplicate sample result for TSS was provided.

11. Data comparison for total organic carbon (TOC) by Method 9060.

There was one TOC determination. Both laboratories detected TOC in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted. The cooler was at the proper temperature when received at the subcontracted laboratory, STL Pittsburgh, PA.

11a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for TOC showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for TOC was within the laboratory's acceptance limits at 100%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for TOC were within the laboratory's acceptance limits for accuracy (75-125%) and precision (25%RPD), at 96% and 104% recoveries with an RPD of 1.9%.

<u>Laboratory Duplicate</u>: The QA laboratory did not report any laboratory duplicate results for TOC.

11b. Batch QC Evaluation for the Primary-Sub Laboratory-STL-Pittsburgh.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TOC.

<u>Laboratory Control Samples (LCSLCSD's)</u>: The primary laboratory reported that the LCS/LCSD's for TOC were within the acceptance limits for accuracy and precision. The spike amount added, percent recoveries and the QC limits were all provided in the report.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory did not report any MS/MSD results for TOC and no evaluation of accuracy or precision based on matrix effects could be made. Refer to the LCS/LCSD for accuracy and precision verification.

<u>Laboratory Duplicate</u>: The primary laboratory reported the duplicate sample results for SHL-19 were above the acceptance limits at 200% RPD. No QC limits for precision were provided.

12. References.

- a. Data Reports for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by the primary laboratory, Severn Trent Laboratories, Inc., 208 South Park Drive, Suite 1, Colchester, VT, 05446, were received 20 December 2002. The QA laboratory's data report, prepared by AMRO Environmental Laboratories Corporation, 111 Herrick Street, Merrimack, NH. 03054, were received 3 January 2003.
- b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.
 - c. Shell for Analytical Chemistry Requirements, Version 1.0, USACE, 2 November 1998.

APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

- 0 Data agrees if any one of the following apply:
 - both values are less than respective detection limit (N<MDL)
 - N₁<MDL₁ and N₂>MDL₂ but <MDL₁*
- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in soil:

<2X difference

For all other analyses:

≤4X difference

- 1 Minor contamination by laboratory contaminant
- 2 Not tested by both laboratories
- 3 Minor data discrepancy, disagreement not serious, if any one of the following apply:
- N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂* does not exceed the upper limit (described below) defining a minor data discrepancy
- both values are above respective detection limit (N>MDL*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil:

2X<difference<3X

For all other analyses:

4X<difference<5X

- 4 Major data discrepancy, disagreement serious, if any one of the following apply:
- N₁<MDL₁ and N₂>MDL₂ and the difference between values N₂ and MDL₁* exceeds the limit (described below) defining a major data discrepancy
- both values are above respective detection limit (N>MDL*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil:

>3X difference

For all other analyses:

>5X difference

MDL = Method Detection Limit

N = Analytical result

* - not all < values are MDLs. Values which are not MDLs will be noted.

Key to data qualifiers:

B - detected in method blank

DO - Diluted out

J - estimated value, above MDL but below practical quantitation limit

NA - Not analyzed

ND - Not detected

NR - Not reported

APPENDIX B DATA COMPARISON TABLES

P						
	4				 	
		COMPARISON OF	OA & CONTRAC	TOR RESULTS	Page 1 o	f 2
	P	ROJECT: SHEPLE			Tage 10	
				T		
	<u> </u>					
	10010000					
QA SAMPLE No.: QA FIELD ID:	0210278-0 SHM-96-			ORS SAMPLE No.: ACTORS FIELD ID:		5D
QA ANALYSIS DATE:	11/5/02	SB-QA		ANALYSIS DATE		-36
QA LABORATORY:	AMRO			'S LABORATORY		
EXTRACTION METHOD:	5030B		EXTRA	CTION METHOD:	5030B	·
ANALYSIS METHOD:	8260B		AN	ALYSIS METHOD:	8260B	
					_	
	MATER	IAL DESCRIPTION:	WATED		,	
	WATER	DATE SAMPLED:			<u> </u>	+
		UNITS:	ug/L			
Target Analyte	AMRO	AMRO	STL-VT	STL-VT		
raiget Analyte	QA LAB					OMPARISON
	LRL	QA LAB		CONTRACT		CODE
District 100						
Dichlorodifluoromethane Chloromethane	< 5.0	(58)	< 5.0 < 5.0			0
Vinyl Chloride	< 2.0	silvii.is	< 5.0			0
Bromomethane	< 2.0		< 5.0		<u> </u>	0
Chloroethane	< 5.0		< 5.0			0
Trichlorofluoromethane	< 2.0		< 5.0			0
Acrolein Freon TF	NR NR		< 5.0 < 5.0			2 2
1,1-Dichloroethene	$\frac{NR}{< 1.0}$		< 5.0			$\frac{2}{0}$
Acetone	< 10		< 5.0			0
Methyl Iodide	NR		< 5.0			2
Carbon Disulfide	< 2.0		< 5.0			0
Allyl Chloride Methylene Chloride	NR (50		< 5.0			2
Acrylonitrile	< 5.0 NR		< 5.0 < 5.0			2
trans-1,2-Dichloroethene	< 2.0		< 5.0			0
1,2-Dichloroethene (total)	NR		< 5.0			2
Methyl-t-Butyl Ether	< 2.0	10000	< 5.0			0
1,1-Dichloroethane	< 2.0		< 5.0		1	0
Vinyl Acetate Chloroprene	NR NR		< 5.0 < 5.0			2 2
cis-1,2-Dichloroethene	< 2.0		< 5.0			0
2-Butanone	< 10		< 5.0			0
Proionitrile	NR		< 20			2
Methacrylonitrile	NR		< 5.0			2
Bromochloromethane Tetrahydrofuran	< 2.0 NR		< 5.0 < 50			2
Chloroform	< 2.0		< 5.0			0
1,1,1-Trichloroethane	< 2.0		< 5.0			0
Carbon Tetrachloride	< 2.0		< 5.0			0
Isobutyl Alcohol	NR		< 250			2
Benzene	< 1.0		< 5.0			0
1,2-Dichloroethane Trichloroethene	< 2.0		< 5.0 < 5.0			0 .
1,2-Dichloropropane	< 2.0 < 2.0		< 5.0			0
Methyl Methacrylate	NR		< 5.0			2
Dibromomethane	< 2.0		< 5.0			0
1,4-Dioxane	NR		< 250			2
Bromodichloromethane	< 2.0		< 5.0			0
2-Chloroethyl Vinyl Ether	NR		< 5.0			2
cis-1,3-Dichloropropene	< 1.0		< 5.0			0
		(1	
		SEE APP	ENDIX A FOR KEY	TO COMMENTS		
		NR=NOT	REPORTED			
			ed value greater than		ng limit.	
		B=Analyt	e was detected in met	hod blank.	<u> </u>	

		,		····			
			.			:	
	COMPA	RISON OF QA &	CONTRACTO	PESITE	Page 2 of 2		
	PROJECT:	SHEPLEY'S HIL	L LANDFILL.	FALL 2002	1 age 2 01 2		
	1777		T===1=1	T		· · · · † ·	
	:						
	0210278-01A	C	ONTRACTORS	SAMPLE No.:	508311		
	SHM-96-5B-QA		CONTRACTO	RS FIELD ID:	SHM-96-5B		
	11/5/02	CONTR	RACTOR'S ANA	LYSIS DATE:	11/5/02		
QA LABORATORY:	AMRO	CON	TRACTOR'S LA	BORATORY:	STL, VT		
	5030B		EXTRACTIO	ON METHOD:	5030B		
ANALYSIS METHOD:	8260B		ANALYS	SIS METHOD:	8260B		
i							
		RIPTION: WATE					
	DATE S	AMPLED: 10/30/02	2				
		UNITS: ug/L					
		 					
			1				
		<u> </u>					
							
Target Analyte	AMRO	AMRO	STL-VT	STL-VT			
	QA LAB		ONTRACTOR	RESULTS CONTRACTOR		PARISON	
	LRL	QA LAB	LRL	CUNTRACTOR		CODE	
	· · - · · · 	-00000	 				<u> </u>
4-Methyl-2-pentanone	< 10	-7/4/4/4	< 5.0				
Toluene Toluene	< 2.0		< 5.0			0	
trans-1,3-Dichloropropene	< 1.0		< 5.0				
Ethyl Methacrylate	NR NR		< 5.0			2	
1,1,2-Trichloroethane	< 2.0		< 5.0			0	1
Tetrachloroethene	< 2.0	Light Control	< 5.0	Washing the	1 !	0 +	!
2-Hexanone	< 10		< 5.0				
Dibromochloromethane	< 2.0		< 5.0			0	
1,2-Dibromoethane	< 2.0	640.00	< 5.0			0	
Chlorobenzene	< 2.0		< 5.0			0	
1,1,1,2-Tetrachloroethane	< 2.0		< 5.0			0	
Ethylbenzene	< 2.0		< 5.0			0	
Xylene (m,p)	< 2.0		< 5.0	li de la companie de la companie de la companie de la companie de la companie de la companie de la companie de		0	
Xylene (total)	< 2.0		< 5.0			0	
Xylene (o)	< 2.0		< 5.0			0	
Styrene	< 2.0		< 5.0			0	
Bromoform	< 2.0	_14 (24.3)	< 5.0			0	<u> </u>
Isopropylbenzene	< 2.0		< 5.0			0	
cis-1,4-Dichloro-2-butene	NR	-1000001	< 5.0			2	
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	< 2.0 < 2.0		< 5.0	 /****		0	
trans-1,4-Dichloro-2-butene	NR NR	-MARKA	< 5.0 < 5.0				
1,3-Dichlorobenzene	< 2.0		< 5.0		 i	2 0	
1,4-Dichlorobenzene	< 2.0	1.00	< 5.0			0	
1,2-Dichlorobenzene	< 2.0		< 5.0			0	
1,2-Dibromo-3-Chloropropane	< 5.0		< 5.0			0 !	
1,2,4-Trichlorobenzene	< 2.0		< 5.0			0	
Hexachlorobutadiene	< 2.0		< 5.0			0	
Naphthalene	< 5.0		< 5.0			0	
2,2-Dichloropropane	< 2.0		< 5.0			0	
1,1-Dichloropropene	< 2.0		< 5.0			0	
1,3-Dichloropropane	< 2.0		< 5.0			0	
Bromobenzene	< 2.0		< 5.0			0	
n-Propylbenzene	< 2.0		< 5.0			0	
2-Chlorotoluene	< 2.0		< 5.0			0	
4-Chlorotoluene	< 2.0		< 5.0	,		0	
1,3,5-Trimethylbenzene	< 2.0		< 5.0			0	
tert-Butylbenzene	< 2.0		< 5.0			0	
1,2,4-Trimethylbenzene	< 2.0		< 5.0			0	
sec-Butylbenzene	< 2.0		< 5.0			0	ļ
4-Isopropyltoluene	< 2.0		< 5.0			0	
n-Butylbenzene	< 2.0		< 5.0			0 - ;	
1,2,3-Trichlorobenzene	< 2.0		< 5.0			0	
CUPPOCATE PECCUES.	FG (9()	+			DDING	i <u> </u>	
SURROGATE RECOVERIE	ES (%) QA				PRIMARY		
Dibromoficament (05 120	,	 -	Tol 10 (2)	2 110)	100		
Dibromofloromethane (85-120		 	Toluene-d8 (88		108		
1,2-Dichloroethane-d4 (80-124		 		hane-d4 (72-141)			
Toulene-d8 (88-109)	90.8			enzene (72-122)	105		
4-Bromofluorobenzene (77-11	7) 85.8	- 	1,2-Dichiorobe	enzene-d4 (69-124)	106		
		CEE ADDENDES	A FOR VEV TO	COMMENTE			
		SEE APPENDIX		COMMEN 18			
		NR=NOT REPOR		half the range in a li-	ie :		
					11.		
							
			greater than one tected in method		it.		

	: !			[T	7	1	<u> </u>	7	
								 					
	1			COMPARI	SON OF	OA & CO	NTRACT	OR RESU	LTS		†		
	1			PROJECT:						1			
	1					1 2 2		T	T				:
					:			ļ		1			
	+									 	+	+	
04 644	(DI E Nie		210278-01	- :			ONTO	TORCCAI	MDI E N.		508311	-	3
	APLE No.:			L.,				CTORS SAI				6 D	
	FIELD ID:		HM-96-5B	-QA				RACTORS		ļ	SHM-96-	-2R	
QA ANALYS			1/5/02	<u> </u>				'S ANALY		ļ	11/1/02		
QA LABO			MRO			CON		OR'S LABO			STL, VT		
XTRACTION N			010A	<u></u>				RACTION			3010A	<u></u>	;
ANALYSIS N	METHOD:)60	010B,Hg-74	170A			A	NALYSIS	METHOD:		6010, Hg	-7470	
				1.						l		1	:
	1		MATE	RIAL DESCR	RIPTION:	WATER							1
				DATE SA	MPLED:	10/30/02			1				
				T	UNITS:	ug/L						T	1
	1								T			1	1
	1									 	1		1
												Ť	
	 			 	- 1						CC	OMPARIS	ON
Target A	nalyte		AMRO	 	AMRO		STL-VT	 	STL-VT	 	† <u>-</u>	CODE	1
Tai Set	, indigite		QA LAB		QA LAB	CO	NTRACT		ONTRACT		Dup-	+	
	+		LRL		RESULT		LRL		RESULTS		RPD's		
			LICL		RESOLI	3	LICE	ļ	RESULTS	Dup	10 03		
Aluminu	1.77		< 200	 	33 5181 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ļ	16.1 U		SOME DESIGNATION OF THE PARTY O	19.0 B	NC	+0	i
Antimon			< 200	 			3.5 U			3.5 U	NC	0	-
	y			(011/70(0.4)	PERSONAL PROPERTY OF CO			 		1960	0.51		-i
Arsenic	+	+-	< 5.0	(SW7060A)	Control of the San Property		3.2 U	 			0.31	0	
Barium			< 200	 	(3.0)		9.2 U	ļ	de ou	45.6 B		0	1
Berylliur			< 5.0				0.20 U	ļ	0,200	0.20 U	NC	$\frac{1}{1}$	
Cadmiur			< 5.0		504		0.30 U	ļ	0.3004.0	0.30 U	NC	0	÷
Calciuu			< 2500		93000		155 U		24.020.00	102000	0	0	4
Chromiu	ım		< 10		iű		4.6 U		746 U.	4.6 U	NC	0	ļ
Colbolt			< 50		100		2.2 U		11/42/11	12.4 B	0.81	0	
Copper			< 25		1.5		1.8 U		45 S.B.	1.8 U	NC	0	<u> </u>
Iron			< 100		Same,		22.6 U		(1870)	18700	0	0	
Lead			< 5.0	(SW7421)	g, spinitte		1.2 U		3811111	1.1 U	NC	0	<u> </u>
Magnes	ium		< 2500		(3000)		218 U		i etalju s	14500	0.69	0	
Mangan	ese		< 15	T	\$20000°		2.5 U		e ismil)	12800	1.55	0	
Mercury			< 0.20	(SW7470A)			0.10 U	(11-6-02)	(0.10.16)	0.10 U	NC	0	1
Nickel			< 40	T`			13.5 U	<u> </u>		13.5 U	NC	0	!
Potassiu	m		< 2500	 	(8000)		275 U			8760	0	0	::
Seleniun			< 5.0	(SW7740)			3.9 U		958114 27	6.0	2.47	0	
Silver	-		< 7.0	1 (2 , , , , 3)	377		1.4 U	 		1.4 U	NC	0	-
Sodium	1		< 2500	 	35000		539 U	 	- 36200	35800	1.11	0	
Thallium			< 5.0	(SW7841)		<u> </u>	3.0 U	 		3.0 U	NC	0	÷
Vanadiu			< 50	(317/641)	50.0		2.8 U	 		2.8 U	NC	0	!
Zinc	''		< 20	+			6.9 U		8.84	7.3 B	NC	0	· · · · · ·
ZIIIC				 	12.3.3		0.9 0	 		1.3 B	1VC	¥ - ·	i
	+										-	 	!
	· ·			4			non	. mo ====	 		 	+	
			·	1				TO COM	MENTS		1	ļ. <u>.</u>	·
				1		REPORT		<u> </u>	<u> </u>		ļ	<u> </u>	t ;
				1		etected at t			1	<u> </u>	<u> </u>		
				1				uired Detec		(CRDL),		1	
					but greate	r than the I	nstrument	Detction L	imit (IDL).				į.
								ntitation lin		T		1	

	:				!							
			1								ļ	
		COMPAR	ISON OF	QA & CO	NTRACI	OR RES	ULTS					<u> </u>
		PROJECT	: SHEPLE	Y'S HILI	LANDF	LL, FAL	L 2002		J			L
					i		.]			L		<u></u>
					: 1				1			
		•	1		1							
QA SAMPLE No.:	0210278-	-01		CC	NTRACT	ORS SAN	MPLE No.:		508311			T
QA FIELD ID:	SHM-96-						FIELD ID:		SHM-96-	5B		
QA ANALYSIS DATE:	11/6/02	1					SIS DATE:		NR	Ī -	 	
QA LABORATORY:	AMRO						RATORY:		STL, VT			
TRACTION METHOD:	NA	-		CON			METHOD:		NA			
ANALYSIS METHOD:	9010B						METHOD:		335.4		 	
ANALTSIS METHOD:	90108	_			AIN	ALYSIS P	METHOD:		333.4		ļ	ļ
			1		ļ		 		 		ļ	
							-		ļ			ļ
	MAT	ERIAL DESC				ļ				ļ	<u> </u>	1
		DATES	AMPLED:									1
			UNITS:	mg/L	i		<u> </u>		1			
					1	1						
	1]						
				-	1						1	
						†	 		 	 		
Target Analyte	AMRO	, 	AMRO		STL-VT	†	STL-VT				ļ	1
1 mget i maryte	QA LAI		RESULT	s cc	NTRACT		RESULTS			MPARIS	ON	
	LRE	-	QA LAB		LRL		DNTRACT			CODE	7	
	LKE		QA LAB		LILL		ALIKAEI	OK.		COBE	1	
						ļ	- *					
					L				-		ļ	
Cyanide (CN)	< 0.020	<u> </u>			< 0.010	ļ				0	ļ	
									1			
												<u> </u>
					T					1		
		SEE APPE	NDIX A F	OR KEY 1	O COMM	IENTS						1
			REPORTE		T	T			†	l		1
			anide sampl		sted for ni-	I to >12 u	entil it was r	eceived a	at the lah	 	<u> </u>	1
			tected at or				1	00011001	tile lab.	 	ļ	 -
		0-1100 00	iccicu at or	above the	Leporting	Limit	+		 	 		
									· -	 	 	
		 					 		 	 	 	
					 		 		+		 	
				<u> </u>		ļ	4		<u> </u>	ļ	ļ	
											ļ	L
						1			<u> </u>			<u> </u>
]							1		L	
											1	
											L	
												1
					1							
					1							

			1								
		1				-					
			COMPA	RISON OF	QA & CO	ONTRACT	OR RES	ULTS			
				SHEPLEY							1
]								
		1									
QA SAMPLE No.:		0210278-0	01		C	ONTRACT	ORS SAI	MPLE No.:	508311		
QA FIELD ID:		SHM-96-	5B-QA			CONTR	ACTORS	FIELD ID:	SHM-96-5B		
QA ANALYSIS DATE:		See Below	V			RACTOR'S			10/31/02		
QA LABORATORY:		AMRO			CON	TRACTOR	R'S LABO	RATORY:	STL, VT		
XTRACTION METHOD:		NA				EXTR	ACTION	METHOD:	NA		
ANALYSIS METHOD:		300.0				AN	ALYSIS	METHOD:	300.0		
		†~~ · ···	1	1							
		MATER	IAL DES	CRIPTION:	WATER						
				SAMPLED:							
				UNITS:	mg/L						
			1	T							
	<u> </u>										
											
Target Analyte		AMRO		AMRO		STL-VT		STL-VT			
		QA LAB		RESULTS	CC	ONTRACTO	OR	RESULTS	CO	MPARISO	ON
		LRL		QA LAB		LRL	CC	ONTRACTOR		CODE	
				Brandy after a Printed the proper states				TO THE STATE OF TH			
		i	1						[
				-							
Chloride, CL	(11-1-02)					< 0.20				0	
Nitrate, as N	(11-1-02)	< 0.20		100		< 0.20 < 0.20				0	
										0	
Nitrate, as N	(10-31-02)	< 0.20		100		< 0.20		Na Zeve		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20		102000		0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	SEE API		FOR KEY	< 0.20 < 0.20 < 0.20	ARISON			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10		100		< 0.20 < 0.20 < 0.20	ARISON (0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO	PENDIX A I	ED	< 0.20 < 0.20 < 0.20				0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not o	PENDIX A IT REPORT	ED r above the	< 0.20 < 0.20 < 0.20 TO COMPA	Limit			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not of J= Estim	PENDIX A IT REPORT letected at o ated value, b	ED r above the pelow the R	< 0.20 < 0.20 < 0.20 TO COMPA Reporting Li	Limit			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not of J= Estim	PENDIX A IT REPORT	ED r above the pelow the R	< 0.20 < 0.20 < 0.20 TO COMPA Reporting Li	Limit			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not of J= Estim	PENDIX A IT REPORT letected at o ated value, b	ED r above the pelow the R	< 0.20 < 0.20 < 0.20 TO COMPA Reporting Li	Limit			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not of J= Estim	PENDIX A IT REPORT letected at o ated value, b	ED r above the pelow the R	< 0.20 < 0.20 < 0.20 TO COMPA Reporting Li	Limit			0	
Nitrate, as N Othophosphate, as P	(10-31-02) (11-1-02)	< 0.20 < 0.10	NR= NO U= Not of J= Estim	PENDIX A IT REPORT letected at o ated value, b	ED r above the pelow the R	< 0.20 < 0.20 < 0.20 TO COMPA Reporting Li	Limit			0	

										ļ <u>-</u>	ļ
								į			
+			COMPARISON	OF QA & CO	UNTRAC	TORKES	OLIS			<u> </u>	 -
		P.	ROJECT: SHEPI	LEY'S HILL	LANDFIL	L, FALL	2002	·			
			 					1	1		
		.,						1		 	-
	QA SAMPLE No.:	0210278-01			ONITOACT	TODECAL	MPLE No.:	1	508311	ļ	
	QA FIELD ID:	SHM-96-5E					FIELD ID:		SHM-96-5		
OA /	ANALYSIS DATE:	11/13/02	S-QA	CONTE			SIS DATE:		11/4/02	D	
	A LABORATORY:	AMRO					RATORY:	}	STL, VT	<u> </u>	
	CTION METHOD:	NA	 				METHOD:		NA	·	
	ALYSIS METHOD:	410.4					METHOD:		410.1	 	····
		, , , , , , , , , , , , , , , , , , , ,						l .	-	 	
		,			†•••••••••••••••••••••••••••••••••••••	·	 	1 ***	1 · · · · · · · · · · · · · · · · · · ·	1	
		MATER	IAL DESCRIPTION	N: WATER		 		1		1	
			DATE SAMPLE		t			1		t	1
			UNI						1	†	
								1	!	1	1
						1		1	1.		
									:		
								1	1		
	Target Analyte	AMRO	AMR		STL-VT		STL-VT				
		QA LAB	RESUI		NTRACT		RESULTS		CO	OMPARIS	ON
		LRL	QA L	AB	LRL	CC	NTRACT	OR		CODE	
						ļ					
hemical	l Oxygen Demand (COD)	< 50		¥\$\$	< 5.0	ļ	1.00		· · · · · · · · · · · · · · · · · · ·	0	ļ
				XI		ļ			ļ		
		_	.5.333		<u> </u>	<u> </u>			ļ	ļ	<u> </u>
			ļ			<u> </u>	<u> </u>	<u> </u>			ļ
			ļ					<u> </u>		ļ	
			-								ļ
			 					ļ	ļ	-	
						<u> </u>		 		 	
		· 	-		-	 		 	- 	 	
1	· ·		SEE A	PPENDIX A F	OB KEA	TO COM	JENITS	ļ. -		 	
				I I PHOLY VI		I O COMI	VILITIS	 		 	
				OT REPORTE	(I)	ı				1	1
			NR=N	OT REPORTE		Reporting	Limit		· 		<u> </u>
			NR=N	OT REPORTE t detected at or		Reporting	Limit				
			NR=N			Reporting	Limit				
			NR=N			Reporting	Limit				
			NR=N			Reporting	Limit				
			NR=N			Reporting	Limit				

							1	
		;					+	
	COM	PARISON O	F 04 & C	ONTRAC	TOR RESULTS			
					L, FALL 2002			
	110020	SILDI EL			55,171,25,2002			
							†	
		:						
QA SAMPLE No.:	0210278-01	r	CO	NTRACTO	RS SAMPLE No.:	508311	1	
QA FIELD ID:	SHM-96-5B-QA	\			CTORS FIELD ID:	SHM-96-5	В	
QA ANALYSIS DATE:	11/1/02				NALYSIS DATE:	11/1/02	T	
QA LABORATORY:	AMRO				LABORATORY:	STL, VT		
EXTRACTION METHOD:	NA	1		EXTRAC	CTION METHOD:	NA		
ANALYSIS METHOD:	405.1	1		ANA	LYSIS METHOD:	405.1	1	
							T	
	MATERIAL DE	SCRIPTION:	WATER					
		SAMPLED:						
		UNITS:	mg/L					
								•
Target Analyte	AMRO	AMRO		STL-VT	STL-VT			
	QA LAB	RESULTS	S CO	NTRACTO	OR RESULTS	CC	OMPARISON	
	LRL	QA LAB		LRL	CONTRACTO	R	CODE	
Biological Oxygen Demand (5 Day)	< 2.0	2.9		< 0.20			0	
		-						
								-
		SEE APP	ENDIX A	FOR KEY	TO COMMENTS			
			REPORT					
		U= Not de	etected at o	r above the	Reporting Limit			

	ļ					
				D DOLLI CO		
		PARISON OF QA				
	PROJ	ECT: SHEPLEY'S	HILL LANDFILL,	FALL ZUUZ		. —
QA SAMPLE No.:	0210278-01		CONTRACTORS	CAMPLENG	508311	
QA FIELD ID:	SHM-96-5B-QA			ORS FIELD ID:	SHM-96-5B	
QA FIELD ID.	11/5/02	CO	NTRACTOR'S ANA		11/11/02	
QA LABORATORY:	AMRO		CONTRACTOR'S L		STL, VT	
XTRACTION METHOD:	NA			ON METHOD:	NA	
ANALYSIS METHOD:	310.2			SIS METHOD:	310.1	
THAILISIS METHOD.	310.2		AITALI	OIG METHOD.	710.1	
		· ! · · · · 				
	MATERIAL	DESCRIPTION: WA	TER			
		TE SAMPLED: 10/				
	+		ng/L			
			9-			
				i		
Target Analyte	AMRO	AMRO	STL-VT	STL-VT		
	QA LAB	RESULTS	CONTRACTOR			ARISON
	LRL	QA LAB	LRL	CONTRACTOR	C	ODE
Total Alkalinity as CaCO3	< 10		< 1.0			0
	ļ					
	<u> </u>	(Section 2)		30 September 1		
	 					
	 					
	CEE .	APPENDIX A FOR K	VEV TO COMMUNICATION	re		
			ET TO COMMEN	10		
	1 NK=N	NOT REPORTED		1 1	1	

							
	 						:
	CC	OMPARISON OF	OA & CONT	TRACTOR E	FSIII TS		
		DJECT: SHEPLE					
	 	Direct. Giler Er	1 3 III DD D	ANDI IDE, I	ADL 2002		
	 						
	 						
QA SAMPLE No.:	0210278-01	***	CONT	TRACTORS S	SAMPLE No	508311	
QA FIELD ID:	SHM-96-5B-	-OA		ONTRACTOR		SHM-96-	5B
QA ANALYSIS DATE:	11/5/02	- · ·	·	TOR'S ANAI		11/21/02	
QA LABORATORY:	AMRO			CTOR'S LA		STL, VT	
XTRACTION METHOD:	NA	T 1	·	EXTRACTIO		NA	
ANALYSIS METHOD:	2340B				IS METHOD:	2340B	
	25.02						
	 						
	MATERIA	L DESCRIPTION:	WATER				
		DATE SAMPLED:					
	 	UNITS:	mg/L				
	1						
	-						
Target Analyte	AMRO	AMRO	S	TL-VT	STL-VT		
- Indiana de la companya del companya de la companya del companya de la companya	QA LAB	RESULTS		TRACTOR	RESULTS	CO	MPARISON
	LRL	QA LAB			CONTRACTOR		CODE
		1777					
	 		1				
Total Hardness as CaCO3*	< 33			< 1.3	3165		0
	 						
		· - · · · · ·					
		- 1000 may 1 200 may 1					
	1						
		SEE APP	ENDIX A FO	R KEY TO C	COMMENTS		
			REPORTED				<u>-</u>
		*Note: Ha	rdness as cale	culated by the	separate determinati	ions of calcium	and magnesi
					CaCO3/L by Method		

	T						,
				:			· i ·
	COM	IPARISON OF	QA & CO	NTRACTO	R RESULTS	1 A. M	
		CT: SHEPLEY					1
							1
QA SAMPLE No.:	0210278-01				S SAMPLE No.:	508311	1
QA FIELD ID:	SHM-96-5B-QA	<u> </u>			ORS FIELD ID:	SHM-96-5B	.l
QA ANALYSIS DATE:	11/1/02				ALYSIS DATE:	11-5+4-02	1
QA LABORATORY:	AMRO		CONTI		ABORATORY:	STL, VT	1
EXTRACTION METHOD:	NA				ION METHOD:	NA	1
ANALYSIS METHOD:	160.1 and 160.2			ANAL	YSIS METHOD:	160.1 and 160.2	1
]			
				1			
	MATERIAL	DESCRIPTION:	WATER	i			
	DA	TE SAMPLED:	10/30/02				
		UNITS:	mg/L				T
				Ī			
				1-			
				i i			
				1			
Target Analyte	AMRO	AMRO	L	STL-VT	STL-VT		
	QA LAB	RESULTS	CO CO	NTRACTOR		COMPARIS	
	LRL	QA LAB		LRL	CONTRACTOR	RPD CODE	
otal Dissolved Solids (TDS by 160.1)	< 10	· · · · · · · · · · · · · · · · · · ·		< 5.0	167	8.80% 0	
otal Suspended Solids (TSS by 160.2)	< 4.0	i i i		< 0.50	200	50.80% 0	1
1							
	SEE	APPENDIX A F	OR KEY T	O COMMEN	ITS		
	NR=	NOT REPORTE	D				T .
	LRL	Laboratory Rep	orting Limi	t			

		 1				T
			•			
	СОМ	PARISON OF	QA & CONTRAC	FOR RESULTS		†
			Y'S HILL LANDFI			
				T		
			:			
QA SAMPLE No.:	C2K010332-001			CTORS SAMPLE No.:	508311	
QA FIELD ID:	SHM-96-5B-QA	<u>\</u>		RACTORS FIELD ID:	SHM-96-5I	3
QA ANALYSIS DATE:	11/7/02			'S ANALYSIS DATE:	11/21/02	ļ
QA LABORATORY:	STL-Pittsgurgh	(subcontracted)		OR'S LABORATORY:	STL, VT	L
EXTRACTION METHOD:	NA NA			RACTION METHOD:	NA .	ļ
ANALYSIS METHOD:	9060.0		A	NALYSIS METHOD:	9060.0	
	MATERIALI	DESCRIPTION:	WATER			ļ
		TE SAMPLED:	10/30/02			
		UNITS	mg/L		· · ·	
		Olilis.	""B'L			
				 		
Target Analyte	AMRO	AMRO	STL-V			
	QA LAB	RESULTS				OMPARISON
	LRL	QA LAB	LRL	CONTRACTOR	RPD	CODE
					5.100	
Total Organic Carbon (TOC)	< 1.0		< 1.0		7.14%	0
						
			<u> </u>		<u>i</u>	
						 -
						-
			· · - 			
	SEE A	APPENDIX A F	OR KEY TO COMN	ÆNTS		
		NOT REPORTE				

APPENDIX C

SAMPLE RECEIPT & CUSTODY DOCUMENTATION

SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054

Client: ARMY CORP Project Name: SHEPLEX'S HILL LAND FILL	AMRO I		(603) 424-20; 0 2 10278 10-31-02 11-12-02				
	Date Re						
Ship via: (circle one) Fed Ex), UPS, AMRO Courier, Hand Del., Other Courier, Other:	Date Du	ie:					
nand Del., Other Couner, Other:							
Items to be Checked Upon Receipt	Yes	No	NA.	Commonto			
Army Samples received in individual plastic bags?		140	- NA	Comments			
Custody Seals present?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		 				
	I V	}	 				
3. Custody Seals Intact?	1		<u> </u>				
4. Air Bill included in folder if received?	1		 -				
5. Is COC included with samples?		<u> </u>	 				
 6. Is COC signed and dated by client? 7. Laboratory receipt temperature. / TEMP = 4 	-	ļ	ļ				
	<u> </u>	ļ					
Samples rec. with ice ice packs neither							
8. Were samples received the same day they were sampled?	L		<u> </u>				
Is client temperature 4°C ± 2°C?	V	<u> </u>	<u> </u>				
If no obtain authorization from the client for the analyses.	<u> </u>		<u> </u>				
Client authorization from: Date: Obtained by:		ļ					
Is the COC filled out correctly and completely?	1						
10. Does the info on the COC match the samples?	V						
11. Were samples rec. within holding time?	V		<u> </u>				
12. Were all samples properly labeled?	~						
13. Were all samples properly preserved?		V	<u> </u>	CN sought pH=10			
14. Were proper sample containers used?				, ,			
15. Were all samples received intact? (none broken or leaking)	·V						
16. Were VOA vials rec. with no air bubbles?							
17. Were the sample volumes sufficient for requested analysis?	1		<u> </u>				
18. Were all samples received?	V		<u> </u>				
19. VPH and VOA Soils only:			V				
Sampling Method VPH (circle one): M=Methanol, E=EnCore (air-tight		-		•			
Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfat	e, E=EnC	ore, B=B	ulk				
If M or SB:							
Does preservative cover the soil?							
If NO then client must be faxed.							
Does preservation level come close to the fill line on the vial?							
if NO then client must be faxed.							
Were vials provided by AMRO?							
If NO then weights MUST be obtain	ned from	client					
Was dry weight aliquot provided?	<u></u>						
If NO then fax client and inform the	VOA lat	ASAP.					
20. Subcontracted Samples:	<u></u>						
What samples sent: $O(\frac{\lambda}{2})$ Where sent: $STL - PITTSBURG$							
Date: 10-31-02							
Analysis: TOC							
TAT: STL,							
TAT: STL,							
TAT: 574, 21. Information entered into:	~		/				
TAT: 57d, 21. Information entered into: Internal Tracking Log?	\(\tau_{\text{\texit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\tinit}\\ \text{\tin}\}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\tint{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\texit{\texit{\texi}\tint{\tiint{\texit{\texi}\titt{\texitit}}\\text{\texit{\texi{\texi{\texi{\texi{\tet		/				
TAT: 57d, 21. Information entered into: Internal Tracking Log? Dry Weight Log? Client Log?			1 1 1				
TAT: 57d, 21. Information entered into: Internal Tracking Log? Dry Weight Log?	7						

U.S. ARMY CORPS OF ENGINEERS Amro # 02 10278 Concord MA 01742 Mark Foeig 918 318 8312 CHAIN OF CUSTODY RECORD
PROJ. NO. PROJECT NAME SAMPLERS: (Signature)
William Mullen July July NO. OF REMARKS CON-**TAINERS** COMP. STATION LOCATION STA. NO. DATE TIME 30 007 5HM-96-5B-QA 12 1141 2002 Trip Blank Relinquished by: (Signature) Received by: (Signature)
Fed Ex Airbill Date / Time Relinquished by: (Signature) Date / Time Received by: (Signature) " neil 30 OCT 1530 835310231158 Received by: (Signature)
0900 10/31/02 Relinquished by: (Signature) Date / Time Relinquished by: (Signature) Date / Time. Received by: (Signature)

Date / Time

Remarks

Relinquished by: (Signature)

Date / Time

Received for Laboratory by:

(Signature)

Distribution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2 to Coordinator Field Files

CASE NARRATIVE

Amro Environmental Laboratories Shepley's Hill

STL Lot #: C2K010332

Sample Receiving:

STL Pittsburgh received one sample on November 1, 2002. The cooler temperature was within the proper temperature range.

General Chemistry:

There were no problems associated with the analysis.

CHAIN-OF-CUSTODY RECORD

43699

Office: (603) 424-2022 Fax: (603) 429-8496

Project No.:	Project Name:	ect Name: SHEPCEY'S WILL LTM					Project Manager: Sa						Samplers (Signature):					AMRO Project No.: 0210278
	Project State:	MA																
Sample ID	Date/Time	Matrix	Total #	Comp	mp Grab					Analysis Re			ed .					Remarks
	Sampled	A= Air	of Cont.			0				1								
		S= Soil	& Size			9060					1.]	·		,		
		GW= Ground W. WW= Waste W.				8	- 1	1										
		DW= Drinking W.	,			الإرا]										
		O= Oil			.	15												
		Other= Specify				<u> </u>		_	_ -		-	<u> </u>					-	
01D SHM-96- 5B-QA	10/30/02	AQ.	3-40M/	L		1		-			<u> </u>	 						
5B-QA	@ 1141					<u> </u>		_										
							1	}	1					<u> </u>				
										1	1			· ·				
								1			1							·
							$\neg \uparrow$		一	\dashv	1	1						
					†		$\neg +$	+	\dashv	1	+-	†		<u> </u>		 	1	
			,	 			-+	十	+	+-	 	1	\vdash	ļ,	 		T	
				 			\dashv	+	_	1-	+	1	 					
						 		-		 	+	1	-	 		 	 	
Preservative: Cl-HCl, MeOH, N-H	N03, S-H2SO4	Na-NaOH, O- Orl	ner	 		3	+	+	+	+-	+	+	+-	-		-	 -	
Container Type: P- Plastic, G-Gla					İ.	V	二十				Ĭ	Ī		Ĺ				
Send Results To:		FAX No.:	- A.1-1	Seal Intact? P.O. No:						GW-1* GW-2 GW-3								
AMRO ENVIRONMI	ENTAL	603 42																
111 Herrick St.		 		Yes	No	N/A				CP Leve								,
Merrimack, NH 03054				Results Needed By: S77)							*= May require additional cost							
Relinquished By Date/ Time			Received By							PRIORITY TURNAROUND TIME AUTHORIZATION								
Graco Shwaldi 10/3/02			1 1	F-	f f		4-1	2										you must have requested TION NUMBER.
process of the same	10/31/02	1-6-6		TX/		ب در	<u>y</u>											
			1	,					- 41	Samples arriving after 12:00 noon will be tracked and billed as received on the following day.								
										AUTHORIZATION No.							BY:	
				مراضع والمستحدد				,	I_	·					·.			
Please print clearly, legibly and completely. Samples can not be logged in and the turnaround time clock will not start until any ambiguities are resolved.			NOTES: Preservatives, Special reporting limits, Know					nown Contamination, etc;									otification in writing to	
			H250 4							·				4				where the samples were
														collected from highly contaminated sites.				
White: Lab Copy Yellow: Accompanies Report			Pink: Client Copy SHEET									or /						

APPENDIX F

GROUNDWATER ANALYTICAL DATA

3.5 inch diskette (not included in all reports)

APPENDIX G REFERENCES

REFERENCES

- Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March.
- Stone & Webster Environmental Technology & Services, 1997. *Shepley's Hill Landfill, Annual Report 1996*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April.
- Stone & Webster Environmental Technology & Services, 1998. Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August.
- Harding Lawson Associates, 1999. Final Work Plan Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.
- Harding ESE, A MACTEC Company, 2002. Revised Draft Shepley's Hill Landfill Supplemental Groundwater Investigation, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February.
- U.S. Army Corps of Engineers, New England District (CENAE), 2002. Semi-Annual Groundwater Analytical Data Report, Spring 2002, Shepley's Hill Landfill, Long Term Monitoring, Devens, Massachusetts. August.
- U.S. Army Corps of Engineers, New England District (CENAE), 2002. 2001 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts. April.
- U.S. Army Corps of Engineers, New England District (CENAE), 2003. *Draft Cap Drainage Report*, Shepley's Hill Landfill, Devens RFTA, Ayer, Massachusetts. January.
- U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.
- ABB Environmental Services, Inc. (ABB-ES), 1993. Final Remedial Investigation Addendum Report, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.
- ABB Environmental Services, Inc. (ABB-ES), 1995a. Final Feasibility Study, Shepley's Hill Landfill Operable Unit, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.
- ABB Environmental Services, Inc. (ABB-ES), 1995b. *Record of Decision, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.