30 Lepzer

# **2001 ANNUAL REPORT**

### SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

April 2002

PREPARED BY:

DEPARTMENT OF ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS 01742



US Army Corps of Engineers New England District

# 1A 02041 USAS

## SHEPLEY'S HILL LANDFILL 2001 ANNUAL REPORT

# SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS

April 2002

#### SHEPLEY'S HILL LANDFILL 2001 ANNUAL REPORT

#### TABLE OF CONTENTS

| Section                         | n <u>Title</u> Pa                                                                                   | ge             |
|---------------------------------|-----------------------------------------------------------------------------------------------------|----------------|
|                                 | EXECUTIVE SUMMARY                                                                                   | 1              |
| 1.0                             | INTRODUCTION                                                                                        | 3              |
| 2.0                             | LANDFILL CAP MAINTENANCE ACTIVITIES                                                                 | 4              |
| 3.0                             | LANDFILL CAP MONITORING ACTIVITIES                                                                  | 5              |
| 4.0                             | LANDFILL GAS MONITORING RESULTS                                                                     | 7              |
| 5.0                             | GROUNDWATER ELEVATIONS                                                                              | 9              |
| 6.0                             | GROUNDWATER SAMPLING                                                                                | 10             |
| 6.1<br>6.2<br>6.3               | Sampling                                                                                            | 11             |
| 7.0                             | LABORATORY TESTING                                                                                  | 13             |
| 7.1<br>7.2<br>7.2<br>7.2<br>7.3 | Results<br>1 Results for Samples Collected Spring 2001<br>2 Results for Samples Collected Fall 2001 | 13<br>14<br>14 |
| 8.0                             | QUALITY CONTROL                                                                                     | 17             |
| 8.1<br>8.2<br>8.3<br>8.3<br>8.3 | Laboratory Quality Control<br>Data Evaluation                                                       | 17<br>17<br>17 |
| 9.0                             | CORRECTIVE ACTION                                                                                   | 25             |

#### SHEPLEY'S HILL LANDFILL 2001 ANNUAL REPORT

#### TABLE OF CONTENTS (Cont.)

#### TABLES

- Table 4-1Landfill Gas Monitoring Form
- Table 5-1Monitoring Wells and Elevations
- Table 6-1Monitoring Well Designations
- Table 7-1
   Groundwater Sample Analysis and Procedures
- Table 7-2Groundwater Analytical Results May 2001
- Table 7-3
   Groundwater Analytical Results October 2001
- Table 7-4
   Comparison of Historic Arsenic Results
- Table 7-5
   Groundwater Analytical Results Well SHM-96-22B, Varying Depth
- Table 8-1
   Sample Preparation and Analysis Methods

#### FIGURES

- Figure 3-1 Findings of Inspection Shepley's Hill Landfill, Devens RFTA, Devens, MA
- Figure 5-1 Geologic Cross Section reprinted from:

Figure 5-2 Draft Shepley's Hill Landfill Supplemental Groundwater Investigation Location of Geologic Cross Sections - reprinted from:

- Draft Shepley's Hill Landfill Supplemental Groundwater Investigation
- Figure 6-1 Modeled Particle Tracks, Present Day Conditions reprinted from: Draft Shepley's Hill Landfill Supplemental Groundwater Investigation

#### **APPENDICES**

- Appendix A Landfill Maintenance Checklist
- Appendix B Groundwater Field Analysis Forms
- Appendix C Chain of Custody Forms
- Appendix D Comparison of Arsenic Results
- Appendix E Quality Assessment and Assurance Reports
- Appendix F Groundwater Analytical Data
- Appendix G Letter Regarding Installation of Landfill Gas Monitoring Probes
- Appendix H References

#### EXECUTIVE SUMMARY

This annual report has been prepared to document the monitoring and maintenance activities conducted at the Shepley's Hill Landfill in Devens, Massachusetts as required by the Record of Decision (ROD) for areas of contamination 4, 5, and 18 (ABB-ES, Oct 1995). This report was developed by the U.S. Army Corps of Engineers (USACE), New England District (NAE).

This report documents the results of the sixth year, 2001, of the Long Term Monitoring and Maintenance conducted in accordance with the approved Long Term Monitoring and Maintenance Plan (SWEC, May 1996). Activities conducted as part of this plan include an annual inspection of the landfill cover, annual landfill gas vent monitoring, and semi-annual groundwater monitoring. Post closure monitoring is required for a period of thirty years.

An annual landfill inspection was conducted and observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. In 2001, trees were removed from the edge of the cap, and vegetation was removed from the southern drainage swale. Presently, the landfill is in fair condition, and appears to be functioning adequately. The cover surface was noted to contain areas of sparse vegetation, intrusive vegetation and settlement. Intermittent standing water, erosion, overgrown areas and wetlands plants were observed in isolated areas within drainage swales. The access roads on the cap are in good condition. The security fence was noted to be in need of repair at various locations. There were no conditions observed which would immediately jeopardize the integrity of the landfill cap.

Also in 2001, four soil gas probes were installed just beyond the northwest limits of the landfill cap. Combustible gas readings were collected from eighteen gas vents on the landfill, plus the four new probes. No landfill gas was observed in the probes. The gas readings recorded from the vents were within the parameters of a mature landfill. The vents are functioning properly and are in good condition.

The sixth year of long term groundwater sampling was performed on the fourteen compliance point monitoring wells located adjacent to the landfill on the north and east. Samples were collected in accordance with the *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996). Samples were analyzed for volatile organic compounds, inorganics, and general water quality parameters.

In accordance with the ROD, only chemicals which present carcinogenic risk are considered trigger chemicals in the Long Term Monitoring Program. The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. The evaluation of effectiveness of the selected alternative, SHL-2, is based on the reduction of carcinogenic risk, rather than reduction of contamination as a measure of progress toward attainment of cleanup. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor contributor to risk (i.e., 1,2-dichlorobenzene) overshadows the achievement of a 50-percent reduction of concentration of a higher carcinogenic risk (i.e., arcenic). Risk reduction was evaluated during the first five-year review in August 1998. However, for annual reports, contaminant concentrations will be

referenced against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill Landfill is due to arsenic in the groundwater.

The effectiveness of the selected alternative, SHL-2, is determined by evaluating groundwater sampling results from two groups of monitoring wells, Group 1 and Group 2. Group 1 wells are wells where all chemical of concern concentrations have historically met or been below cleanup levels established in the Record of Decision. Group 2 wells are wells where chemical of concern concentrations have exceeded cleanup levels. In the Long Term Monitoring and Maintenance Plan, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated after the first round of sampling. During the first five-year site review (August 1998) six monitoring wells (SHL-3, SHL-5, SHL-9, SHM-93-10C, SHL-22, and SHM-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. All other wells, including the three new wells, are currently classified as Group 1 wells. It should be noted that two of the Group 1 wells (SHL-9 and SHM-93-22C) have exceeded a cleanup level for a trigger chemical (arsenic in both cases) since the first five-year review. No such exceedences occurred in 2001. The next round of groundwater monitoring will be conducted in May 2002.

Arsenic was the only trigger chemical detected above cleanup levels during the 2001 sampling events. Most wells indicate no definitive change over historic arsenic values. Wells SHM-96-5C, SHL-11, SHL-22 and SHM-96-22B all recorded new high arsenic levels in 2001. Of those, wells SHL-11 and SHM-96-22B are showing trends that may be expected to continue rising. Well SHL-20 is showing a slow decline in arsenic levels over the last five years. It should be noted that 8 of the 14 wells were below the arsenic cleanup level for the latest round of sampling. The wells below the cleanup levels are SHL-3, SHL-5, SHM-96-5C, SHL-9, SHL-10, SHM-93-10C, SHL-22, and SHM-93-22C.

The first five-year review to assess the protectiveness of the selected remedial action for Shepley's Hill Landfill was completed in 1998, in accordance with the Record of Decision. The review concluded that reductions of contaminant concentrations and corresponding risk satisfied the evaluation criteria at most, but not all, historical groundwater monitoring wells. However, data from monitoring well SHM-96-5B, at the north end of the landfill, showed arsenic concentrations up to two orders of magnitude greater than historical values in other wells. Therefore, supplemental groundwater investigations were performed by the Army to assess whether arsenic contamination exists beyond the Devens Reserve Forces Training Area boundary, and to characterize its nature and location. In accordance with the *Final Work Plan, Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts* (HLA, February 1999) the work included: a hydrogeologic assessment of groundwater recharge potential along the western edge of the landfill, characterization of groundwater flow and quality north of Shepley's Hill Landfill to Nonacoicus Brook, updating and refining the groundwater model for Shepley's Hill Landfill, and analyzing rock samples for naturally occurring arsenic. A draft report is presently under regulatory review.

#### 1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted at the Shepley's Hill Landfill in Devens, Massachusetts based on the Record of Decision (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18. This report was developed by the U.S. Army Corps of Engineers (USACE), New England District (NAE).

The Long Term Monitoring and Maintenance Plan (LTMMP) (SWEC, May 1996) for Shepley's Hill Landfill outlines the landfill closure monitoring and maintenance procedures. These procedures include a semi-annual groundwater sampling program to monitor contaminants, and an annual visual inspection and gas emission monitoring of the landfill cap. This report documents the sixth year of the long term monitoring program. The first two years of monitoring, 1996 and 1997, were conducted by Stone & Webster Environmental Technology & Services (SWEC). From 1998 through 2001, monitoring has been conducted by NAE. Post closure monitoring is required for a period of thirty years.

#### 2.0 LANDFILL CAP MAINTENANCE ACTIVITIES

The Record of Decision for the Shepley's Hill Landfill required monitoring and maintenance of the landfill cap based on observations made during the annual inspections. Based on a recommendation made in the previous annual report, the following improvements and repairs were made during 2001: trees were removed from the vicinity of Gas Vent #13, the southern perimeter, and the eastern perimeter of the landfill. Normally scheduled maintenance activities performed during 2001 included mowing of the landfill vegetative cover and cutting vegetative growth in drainage swales. Also in 2001, four landfill gas monitoring probes were installed outside the northwest edge of the landfill cap (details can be found in Appendix G). The remaining recommended maintenance items listed in the previous annual report did not pose an immediate risk to the integrity of the landfill cap, and are considered non-critical maintenance procedures. Maintenance activities of this non-critical nature will continue to be monitored and evaluated. In the event that repair needs are identified which would prevent immediate damage to the cap, they will be conducted expeditiously.

#### 3.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected on 5 December 2001 by personnel from the U.S. Army Corps of Engineers, New England District (NAE). Features of the landfill inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Appendix A of this report contains the Landfill Maintenance Checklist that summarizes the findings of this inspection. All observations are also presented on Figure 3-1. A narrative of the findings of this inspection follows.

- A topographic survey of the landfill will have to be conducted in the near future and compared to the as-built topography to determine settlement areas. In conjunction with the existing drainage system, the topography and settlement findings will be the basis of corrective action, if required for the areas which typically have exhibited standing water.
- Catch basin #3 near the Cook Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. This rim of this catch basin should be lowered to the surrounding grade.
- Catch basin #7 near the southwest corner of the site is substantially overgrown by the adjacent vegetation and will soon be completely overgrown and hidden from view. This catch basin should be cleared of encroaching vegetation.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation and is silting in. The grade of the channel bottom is uneven and standing water is present. Wetland species are becoming established as well. The structure and channel immediately downstream should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel should then be reseeded or riprap should be placed, depending on water velocities.
- Most of the drainage swale on the south side is being invaded by wetland species. There are also intermittent zones of standing water indicating a lack of proper channel slope and drainage. The south side drainage swale should be cleared of wetland vegetation and regraded as needed to properly drain all areas of standing water. Depending on water velocities, the channel should then be reseeded or riprap should be placed.
- In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the new rock-lined channel, the drainage swale is overgrown with wetland species. It appears to be silted in and has a large area of standing water. This reach of the drainage swale should be cleared of all vegetation and accumulated silt and sand, and regraded to drain properly. Seeding, or riprap placement, should follow, depending on water velocities.

- The northern reach of the eastern drainage swale has some minor vegetation growth and sand accumulation. The swale should be cleared.
- In the vicinity of gas vents #8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas, and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should cover areas at least twenty feet past the limits of the cap.
- The access roads on the site are in good condition. Work was performed on these roads in the Fall of 1998 to upgrade the surface. There are no problems on access roads that warrant repair at this time.
- Portions of the perimeter chain-link security fence are in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations, most notably at the Cook Street entrance, and continuing over to the dirt road at catch basin #7. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the cap area was observed. On the east side, near groundwater monitoring well SHL-11, the fence has been rolled back and is open. A gate and lock should be added here if permanent access is required. The security fence should be repaired, with all missing fence sections (including gates) replaced or repaired.
- The newly installed gas monitoring probes at the northwest edge of the landfill appear to be in excellent condition, and are secured with locked steel caps.
- The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time.

A summary of Corrective Action measures for the Landfill Cap is included in Section 9.

#### 4.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site or are migrating off-site. Four new landfill gas monitoring probes were installed on 7 November 2001. The purpose of the probes is to monitor landfill gas migration from Shepley's Hill Landfill towards Sculley Road. More detailed information on the installation and location of the probes is available in Appendix G of this report.

The sixth annual landfill gas sampling was conducted on 5 December 2001. The weather was warm and sunny, with temperatures in the 60's (F) and the barometric pressure was 29.9 inches of mercury and FALLING. Gas samples were field analyzed for the following parameters using the listed equipment:

| Parameter                              | Equipment                                                        |  |  |  |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Total Volatile Organic Compounds (VOC) | HNu Photoionization Detector (PID) with a 10.6 e lamp            |  |  |  |  |  |  |  |  |  |
| Percent Oxygen                         | Industrial Scientific TMX 412 Combustible Gas<br>Indicator (CGI) |  |  |  |  |  |  |  |  |  |
| Hydrogen Sulfide (ppm)                 | CGI                                                              |  |  |  |  |  |  |  |  |  |
| Percent Lower Explosive Limit (LEL)    | CGI                                                              |  |  |  |  |  |  |  |  |  |
| Carbon Monoxide (ppm)                  | CGI                                                              |  |  |  |  |  |  |  |  |  |
| Percent Carbon Dioxide                 | Landtec Gem 500, GA-90 landfill gas monitor                      |  |  |  |  |  |  |  |  |  |
| Percent Methane                        | Landtec Gem 500, GA-90 landfill gas monitor                      |  |  |  |  |  |  |  |  |  |

The CGI and the Landtec GA-90 were both calibrated in the shop by U.S. Environmental. The PID was calibrated in the field to 248 ppm isobutylene and 0 ppm.

Samples were collected by attaching a rubber Quik cap with a hose clamp to the gas vent pipe. A barbed fitting was placed in a drilled hole in the cap. Tubing was run from the barbed fitting to a MSA LC pump. The pump was operated for approximately 7 to 10 minutes to purge 2 vent pipe volumes and to ensure that the gases collected were representative of the gas collection layer. The gas monitoring equipment was then attached to the MSA pump and turned on. The readings were

recorded on the Landfill Gas Monitoring Form after they had stabilized. The locations of the gas vents are shown on Figure 3-1.

The results from the monitoring event can be found in Table 4-1. The following is a brief summary of the results. The perimeter landfill gas monitoring probes (LGP-01-01X, LPG-01-02X, LPG-01-03X, LPG-01-04X) tested negative (0) for VOC's, hydrogen sulfide, carbon monoxide, and methane. Minimal levels of carbon dioxide were detected, ranging from 0 % at LGP-01-01X to 0.8 % at LGP-01-02X. Oxygen levels ranged from 20.3 % at LGP-01-02X to 20.9 % at LGP-01-01X.

The following summarizes the gas vents: VOCs were not detected in any of the gas vent wells. The oxygen levels ranged from 20.8% (Vent # 1) to 0.3% (Vent # 15) using the GA-90. No gas vent wells tested positive for hydrogen sulfide, reading 0 for all wells. LEL readings ranged from 0% in V-1 to over 100% LEL in Vent Nos. 3, 9, 12, 13, 14, 15, 17, and 18. Carbon monoxide registered 0 in most of the gas vent wells to a high of 4 ppm in V-12. Carbon dioxide ranged from 22.9 ppm (Vent # 15) to 0 ppm (Vent # 1). Methane ranged from 33.1 ppm (Vent # 14) to 0 ppm in V-1.

The gas readings are within the parameters of a mature landfill. The vents are functioning properly. The scenario of high atmospheric pressure to low atmospheric pressure results in a venting of landfill gas into the atmosphere. The scenario of low atmospheric pressure to high atmospheric pressure results in air intrusion into upper portion landfill. The scenario during this inspection was likely somewhere in-between. The major concern with landfill gas is off-site migration. If the gas vents are functioning properly and are adequately spaced there should be no off-site migration of landfill gases; however, due to the high LEL readings and the proximity of residential housing and commercial development, gas monitoring probes should be installed along the property line where the landfill is adjacent to structures (note that this has been done at the northern end near Sculley Road). The deep screen should extend to just above the saturated zone. The top of shallow screen should be installed at approximately 3 to 5 feet below ground surface.

#### 5.0 GROUNDWATER ELEVATIONS

Groundwater elevations were collected from each well during groundwater sampling activities. The depth to groundwater was subtracted from the elevation of the reference point to determine the elevation of the groundwater at each location. Table 5-1 lists the water level elevations for each well for each sampling round. Also indicated on that table is the screened interval for each well, indicating where the surrounding groundwater interfaces with each well. Figure 5-1 shows a cross-section of the wells in the monitored area that has generally shown the highest levels of chemicals of concern, while Figure 5-2 shows the location of that cross-section relative to the landfill. During each sampling event, groundwater elevations were recorded on the first day of sampling for all wells scheduled to be sampled. Groundwater levels measured during May 2001 were consistently higher than those measured in October 2001, as is typical for the area. The mean drop in groundwater elevation (from spring to fall reading) was 1.3-feet for the fourteen wells. Compared to the year before, 2001 levels were typically lower than those in 2000, with spring levels receding 0.7-feet on average from the previous year, and fall levels receding 0.3-feet on average. This follows since the area's precipitation total for the year 2001 was one of the lowest on record (lowest 10-percent).

In addition to these semi-annual groundwater measurements, regular groundwater measurements of all Shepley's Hill Landfill wells have been conducted by Harding ESE (formerly ABB-ES and HLA) since 1992. During the first 5-year review (SWEC, August 1998), groundwater elevations were re-evaluated to identify hydraulic gradients and to confirm changes due to the construction of the landfill cap. Groundwater modeling has suggested that the landfill cap has reduced the volume of water beneath the cap, resulting in a more northerly groundwater flow (SWEC, 1998). Groundwater flow patterns will be re-evaluated during the next 5-year review.

In light of data collected for the first Five-Year Review performed in accordance with the Record of Decision for the Shepley's Hill Landfill Operable Unit, Harding ESE continues to perform supplemental groundwater investigations which include, in part, a hydrogeologic assessment to obtain additional data to evaluate the effectiveness of the selected remedial action.

#### 6.0 GROUNDWATER SAMPLING

Groundwater sampling activities at the landfill are conducted semi-annually. Groundwater sampling activities for the sixth year were conducted in the spring (May 14 and 15, 2001) and in the fall (October 29 and 30, 2001). There were no significant precipitation events during either sampling period. Wells are designated as either Group 1 or Group 2 wells. Wells which have historically attained cleanup goals are given a Group 1 designation. Wells which have not historically attained cleanup goals are designated as Group 2 wells. Initially, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated during the first five-year site review (SWEC, August 1998). During the first five-year site review, six wells (SHL-3, SHL-5, SHL-9, SHL-93-10C, SHL-22, and SHL-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. All other wells, including the three new wells, were classified as Group 2 wells. These group designations are presented in Table 6-1, located at the end of this section. Also recorded in that table are the occurrences of Group 1 wells that have exceeded cleanup levels since the first five-year site review. There were no such occurrences measured in 2001.

#### 6.1 Preparation for Sampling

Wells sampled as part of the long term monitoring program included SHL-3, SHL-4, SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHL-20, SHL-22, SHM-96-22B, and SHM-93-22C. Locations of the wells are shown on Figure 3-1. Of these fourteen long-term monitoring wells, the seven at the north end of the landfill (SHL-5, SHM-96-5B, SHM-96-5C, SHL-9, SHL-22, SHM-96-22B and SHM-93-22C) are located in the area predicted to experience the greatest intrusion of groundwater flow from the landfill, as suggested by the modeling results depicted in Figure 6-1.

Sampling activities were coordinated with the Devens BRAC Environmental Office and the contract laboratory prior to commencement of sampling. The contract laboratory was contacted approximately three weeks prior to sampling and was requested to prepare and deliver sampling bottles, quality assurance bottles and coolers to New England District approximately one week prior to the sampling event. Bottles were checked to insure that they complied with the requirements of the sampling program. Sampling equipment (including the YSI water quality meters and the teflon lined tubing) was reserved for rental/purchase from U.S. Environmental and picked up in the days preceding the sampling event. NAE used their own Grunfos Rediflow II pumps, controllers, Heron water level indicators, HF Scientific DRT-15CE turbidity meters, and portable generator for the sampling (NAE's equipment was occasionally supplemented with identical models rented from U.S. Environmental, as required – these instances were noted on the Groundwater Field Analysis Forms). All equipment was inventoried and tested to ensure it was accounted for and functioning. The well logs of each of the wells to be sampled were reviewed by the field team prior to the scheduled event to determine tubing requirements, and brought to the landfill during the sampling event to confirm the screened intervals.

#### 6.2 Sampling

The sixth year of sampling was conducted by NAE on May 14 and 15, 2001 and later on October 29 and 30, 2001. Monitoring wells were purged and sampled in accordance with *EPA's Low Stress* (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (July 1996) using an adjustable rate, low flow submersible pump. Teflon lined tubing was used for sample collection and was disposed after each well was sampled.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. YSI water quality meters and turbidity meters were calibrated at the beginning of each day of use. A calibration check was also performed at the end of each day. During sampling, the generator used to power the pumps was located at a downwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust. Upon initial opening of each well, initial water level measurements were collected. The pump intake was lowered to the middle of the screen of each well to be sampled when possible. When the water level was below the top of the screen, the pump was positioned to a depth between the top of the water level and the bottom of the screen.

Once the pumping was initiated, at least one volume greater than the stabilized drawdown volume plus the extraction tubing volume was purged. Water quality parameters, including temperature (temp), specific conductance, pH, oxidation reduction potential (ORP), turbidity, and dissolved oxygen (DO) were collected every 3 to 5 minutes to ensure proper purging of the wells before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix B. All water quality parameters, except turbidity, were monitored using a flow-thru cell and a Sonde-YSI water meter (YSI 600 XLM). Turbidity samples were not collected from the flow through cell due to the silt buildup which can occur in the cell. A Y-connector was set up before the flow through cell to take the turbidity readings. Sampling was conducted when required purge volumes were met and water quality parameters became stabilized for three consecutive readings. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during the sampling activities include:

- To ensure precision of water level measurements, well casings that had faded marks or no marks were remarked.
- None of the pre-preserved sample bottles required pH adjustments after they were filled with the water samples.
- In cases where the water level was lower than the top of the screen, the pumps were lowered to approximately midpoint between the water level and the bottom of the screen. This procedure occurred at several wells during each event.
- Although past difficulties with maintaining flowrates and achieving stabilization at wells SHL-3 and SHL-10 showed improvement in 2001, an attempt to redevelop both wells is planned prior to the spring sampling of 2002.

- The instrument calibration checks performed at the end of each day of sampling revealed that the oxidation reduction potential (ORP) readings taken with one of the YSI water meters on October 30, 2001 could be questionable. This meter was used to measure ORP at wells SHL-9, SHL-22, SHM-96-22B and SHM-93-22C on that day. However, the data collected at those wells does not appear suspect since the ORP was recorded as no higher than -51.4 mV at any of those wells, while dissolved oxygen (DO) was recorded as no higher than 1.18 mg/L. This data is in agreement with historical data and the relationship between the two parameters dictates that these values are reasonable.
- 6.3 Equipment Decontamination

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination between sampling points. The submersible pump was decontaminated using the following procedure:

- Upon removal of the pump from the well following sample collection, the pump was submersed in a 4-inch PVC riser containing potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (started the pump at a low flow rate, as in sampling, and increased to a higher speed).
- The pump was removed and sprayed with potable water to minimize the transfer of soap to the rinser.
- The pump was then submersed in a riser filled with potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in a riser filled with deionized water and at least 1 to 2 gallons were pumped through.
- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a hand held spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

#### 7.0 LABORATORY TESTING

Groundwater was sampled in fourteen monitoring well locations using the low-flow method in accordance with the procedures outlined in the approved Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill (SWEC, May 1996). Samples were sent to Severn Trent Laboratories in Colchester, Vermont for analysis. The samples were collected on May 14 and 15, 2001, and later on October 29 and 30, 2001. Samples were placed in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leakproof plastic bag and placed in a strong thermal ice chest (cooler) filled with bubble wrap packing material, or equivalent, to ensure sample integrity during shipment. Ice was added to cool samples to no more than 4° C. Chains of Custody (COCs) were used to identify and document the samples being shipped (copies are included in Appendix C). Sample custody was initiated by the sampling team upon collection of samples and COC forms were placed in waterproof plastic bags and taped to the inside lid of the cooler. The cooler was sealed with chain-of-custody seals and shipped to the laboratory via overnight delivery. Due to laboratory error that caused some sample to be disregarded, there was insufficient volume to analyze for Total Suspended Solids at well SHL-19 during the fall event.

#### 7.1 Analyses

Water analyses were conducted according to EPA methods 8260B for volatile organics, 6010B/7470A for TAL metals, and as follows for general chemistry analyses, including chemical oxygen demand by method 410.1, biochemical oxygen demand by method 405.1, hardness by method 130.2 for the spring event, hardness by method 2340B for the fall event, alkalinity by method 310.1, cyanide by method 335.4, anions by method 300.0, total organic carbon by method 9060, total dissolved solids by method 160.1, and total suspended solids by method 160.2. These analyses were conducted at all wells. Note that the change in method used to determine hardness was made in order to eliminate the interference to method 130.2 by other heavy metal ions typically present in some of the wells at the site. Table 7-1 indicates the analysis and procedures used for groundwater samples collected at Shepley's Hill Landfill.

#### 7.2 Results

The approach for evaluating the effectiveness of the remedy is presented in the Record of Decision (ABB-ES, 1995). Of the chemicals of concern identified in the Record of Decision, only those chemicals which present carcinogenic risk were considered trigger chemicals in the Long Term Monitoring and Maintenance Plan (SWEC, May 1996). The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. Therefore, the evaluation of effectiveness of Alternative SHL-2 is based on the reduction of carcinogenic risk, rather than reduction of contamination, as a measure of progress toward attainment of cleanup. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor contributor to risk (i.e., 1,2-dichloroethane) overshadows the achievement of a 50 percent reduction of concentration of a higher carcinogenic risk (arsenic). Risk reduction was evaluated during the first five-year review in August 1998. However, for the annual reports the contaminant concentrations will be referenced

against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill landfill is due to arsenic in the groundwater.

Arsenic was the only trigger chemical detected above cleanup levels at the site during the 2001 sampling events. Analytical results for groundwater analyses are presented in Tables 7-2 and 7-3, for the spring and fall rounds, respectively.

These tables present detectable concentrations of chemical contaminants. Where concentrations were not detected the value is recorded as less than the detection limit. These results are compared against the applicable cleanup level. Results of wet chemistry analyses are also included in the table. The results of sampling are summarized below.

#### 7.2.1 Results for Samples Collected Spring 2001

Volatile Organic Compounds (VOCs) were analyzed in the fourteen monitoring wells. None of the wells had detectable concentrations of VOCs above the established cleanup levels for any of the trigger chemicals (or any of the chemicals of concern). The only trigger VOC detected was 1,4-dichlorobenzene, which was found in monitoring wells SHL-11 (2.4 J  $\mu$ g/L) and SHL-20 (3.1 J  $\mu$ g/L). Non-trigger VOCs detected at levels below MCLs in groundwater samples include acetone (4.1 J  $\mu$ g/L or less), benzene (2.0 J  $\mu$ g/L or less), methyl-t-butyl ether (1.5 J  $\mu$ g/L or less), 1,1-dichloroethane (2.1 J  $\mu$ g/L or less), and total 1,2-dichloroethene (2.9 J  $\mu$ g/L or less).

Of the identified chemicals of concern for metals, only arsenic was identified as a trigger chemical. Arsenic was detected at concentrations greater than the cleanup level of 50 µg/L in the following monitoring wells: SHL-4 (50.8 µg/L), SHM-96-5B (3,800 µg/L), SHM-96-5C (80.5 µg/L), SHL-11 (487 µg/L), SHL-19 (129 µg/L), SHL-20 (186 µg/L), and SHM-96-22B (1,540 µg/L). A duplicate sample from well SHM-96-5B had a concentration of 3,900 µg/L. The only other chemicals of concern (non-trigger) detected at concentrations above the cleanup levels were iron, manganese, and sodium. Iron was detected at levels above its cleanup level of 9,100 µg/L at wells SHM-95-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-96-22B, with the maximum detected (92,700 µg/L) at well SHM-96-22B. Wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, and SHM-96-5B (found in the duplicate sample). Sodium was detected at levels above its cleanup level of 1,715 µg/L. The maximum value detected for manganese was 11,000 µg/L at SHM-96-5B (found in the duplicate sample). Sodium was detected at levels above its cleanup level of 20,000 µg/L at wells SHM-96-5C, SHL-11, SHL-20, SHL-22 and SHM-96-22B with the maximum detected (48,200 µg/L) at well SHL-20.

#### 7.2.2 Results for Samples Collected Fall 2001

Volatile Organic Compounds (VOCs) were analyzed in the fourteen monitoring wells. None of the wells had detectable concentrations of VOCs above the established cleanup levels for any of the trigger chemicals (or any of the chemicals of concern). In fact, none of the four trigger compounds (1,2-dichloroethane, 1,2-dichlorobenzene, 1,3-dichlorobenzene and 1,4-dichlorobenzene) were detected in the wells. Non-trigger VOCs detected at levels below MCLs in groundwater samples

include acetone (1.8 JN  $\mu$ g/L or less), benzene (1.9 J  $\mu$ g/L or less), methyl-t-butyl ether (1.2 J  $\mu$ g/L or less), 1,1-dichloroethane (2.0 J  $\mu$ g/L or less), and total 1,2-dichloroethene (2.6 J  $\mu$ g/L or less).

Of the identified chemicals of concern for metals, only arsenic was identified as a trigger chemical. Arsenic was detected at concentrations greater than the cleanup level of 50 µg/L in the following monitoring wells: SHL-4 (66.0 µg/L), SHM-96-5B (1,850 µg/L), SHL-11 (573 µg/L), SHL-19 (183 µg/L), SHL-20 (165 µg/L), and SHM-96-22B (1,670 µg/L). A duplicate sample from well SHM-96-5B had a concentration of 1,830 µg/L. The only other chemicals of concern (non-trigger) detected at concentrations above the cleanup levels were iron, manganese, and sodium. Iron was detected at levels above its cleanup level of 9,100 µg /L at wells SHL-4, SHM-96-5B, SHM-96-5C, SHL-11, SHL-19 and SHM-96-22B, with the maximum detected (82,200 µg/L) at well SHM-96-22B. Wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-96-22B had concentrations of manganese above the cleanup level of 1,715 µg /L. The maximum value detected for manganese was 12,900 µg /L at SHM-96-5B. Sodium was detected at levels above its cleanup level of 20,000 µg /L at wells SHM-96-5B, SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, SHL-22, SHM-96-22B, and SHM-93-22C with the maximum detected (45,600 µg/L) at well SHL-22.

Tables 7-2 and 7-3 summarize the monitoring wells that had contaminant concentrations above the cleanup levels during the 2001 monitoring period. These values were compared to previous year's data. A comparison of arsenic concentrations detected above the cleanup levels during the 2001 period with historical data is presented in Table 7-4. The comparison indicates the following:

Most wells indicate no definitive change over historic arsenic values. Wells SHM-96-5C, SHL-11, SHL-22 and SHM-96-22B all recorded new high arsenic levels in 2001. Of those, wells SHL-11 and SHM-96-22B are showing trends that may be expected to continue rising. Well SHL-20 is showing a slow decline in arsenic levels over the last five years. It should be noted that 8 of the 14 wells were below the MCL cleanup level for the last round of sampling. The wells below the cleanup levels are SHL-3, SHL-5, SHM-96-5C, SHL-9, SHL-10, SHM-93-10C, SHL-22, and SHM-93-22C. Refer to Appendix D for a graphical comparison of arsenic concentrations in monitoring wells for the previous and current sampling periods.

#### 7.3 Additional Investigation at Well SHM-96-22B

An EPA comment to the 2000 Annual Report noted that arsenic concentrations measured at well SHM-96-22B probably understate the actual highest concentrations in the northwest quadrant of the landfill since this well has a 30-foot screened interval. Therefore, during the fall sampling event of 2001, an additional investigation was attempted at this well.

A YSI 600 XLM water meter was slowly lowered through the entire screened interval of the well, with field readings of temperature, specific conductance, pH, oxidation reduction potential (ORP) and dissolved oxygen (DO) recorded at one-foot intervals, as readings appeared to equilibrate. In addition to the water samples typically collected from the middle of the wetted screen interval (results for which were reported, as usual, in this report), a second set of samples was collected approximately one-foot from the bottom of the screened interval. This location was chosen since

this was where the highest specific conductivity was found (potentially indicating higher concentrations of heavy metals). The intent was to collect samples from different depth intervals without physically sectioning off portions of the screen.

Unfortunately, results were similar between the two sample points for almost all parameters, with the only metal showing a significant change being manganese (1,960  $\mu$ g/L at the normal sampling location, and 3,730  $\mu$ g/L near the bottom of the well). Table 7-5 displays the results from the two sample depths, including the final equilibrated field parameter values found at those depths just prior to sampling.

#### 8.0 QUALITY CONTROL

Quality assurance/quality control (QA/QC) samples were collected to monitor the sample collection, transportation, and analysis procedures.

#### 8.1 Field Quality Control

One set of equipment (rinsate) blank samples was collected from the pump after decontamination had been conducted for each sampling event (spring and fall) and analyzed for the full suite of analytical parameters. Results of equipment blank samples are discussed below. One field duplicate groundwater sample was collected during each sampling round at well SHM-96-5B and analyzed for the full suite of analytical parameters. Results of duplicate samples are shown on Tables 7-2 and 7-3 and are also discussed below. One trip blank sample was collected per shipped cooler, and submitted for VOC analysis only to evaluate potential cross-contamination of samples during transport. No chemicals of concern were detected in the trip blanks.

#### 8.2 Laboratory Quality Control

One set of QA samples were also collected by the sampling team and sent to the designated QA laboratory (an independent testing laboratory) in the form of duplicates for each sampling round. The QA samples represent approximately 10% of the groundwater samples collected. A QA sample was collected during each sampling round at well SHM-96-5B and analyzed for the full suite of analytical parameters. QA samples were collected, packaged and shipped in the same manner as the other groundwater samples. Appendix E presents the Chemical Quality Assurance Report (CQAR) which provides a statistical comparison of the primary and QA laboratory results for each sampling round. Also presented in Appendix E is the Chemical Data Quality Assessment Report, which provides an overall assessment of results presented in the CQAR's, and their impact on data usability for both sampling rounds.

8.3 Data Evaluation

#### 8.3.1 Data Evaluation for Samples Collected Spring 2001

#### Introduction

Eighteen groundwater samples were collected from Shepley's Hill Landfill at Fort Devens, MA. Fourteen of these samples are reported in the Shepley's Hill Landfill 2001 Annual Report. The other four samples were collected at Molumco Road (off-site), and will be discussed in supplemental groundwater investigation reports. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Target Analyte List (TAL) Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on May 14, 15, and 16, 2001 (see Groundwater Analytical Results Table in Section 7).

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, standard EPA SW846 guidance and/or guidelines provided in the draft USACE Methods Compendium document.

#### Sample Shipment and Receipt

All sample coolers were packed with ice packs and ice in the field. Sample shipments were received at the laboratory on May 15, 16 and 17, 2001. All samples were appropriately preserved by the procedures shown in Table 1. There are no sample shipment or receipt anomalies associated with these samples.

#### **Holding Times**

Samples were extracted and analyzed in accordance with the methods and holding time requirements cited in Table 1, except for BOD in which the 48-hour holding time was exceeded by as much as thirteen hours for samples from sampling date 5/14/01. Affected samples are SHL-10, SHM-93-10C, SHL-3, SHL-19, SHL-4, SHL-11 and SHL-20. BOD results for these samples are all less than the reporting limit of 2,000 ug/L. This reporting limit is qualified as estimated "J" as a result of holding time exceedance.

#### Volatile Organic Compound (VOC) Analysis

Eighteen groundwater samples were analyzed for VOCs using SW846 method 8260B. In addition, the laboratory analyzed: one field duplicate (SHM-DUP), a duplicate of sample SHM-96-5B); three trip blanks (dated 05/14/01 05/15/01, and 05/16/01); and one equipment blank (SHL-EB, dated 05/15/01).

Laboratory Method Blank, Trip Blank and Equipment Blank Results: Target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for method blank, trip blank, and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: VOC results for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for all detected target analytes. The field duplicate sample shows acceptable comparative results.

<u>Surrogate Results</u>: All VOC sample surrogate recoveries are within the laboratory's stated acceptance limits. All results are acceptable.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results</u>: One set of matrix spike/matrix spike duplicate (MS/MSD) samples was analyzed for this project. Most MS/MSD recoveries and all relative percent differences (RPD) are within the laboratory's acceptance limits for VOC

analysis. Three out of 84 spiked compounds showed MS and MSD recoveries, which were slightly outside the acceptance range. All three of these exceedances are not considered to impact the results, as recoveries were not significantly outside of the acceptance range. These analytes were not detected in the field samples and are not site-specific contaminants (i.e., not summarized on the Groundwater Analytical Results Table in section 2). Therefore, no action was taken. The compound 2-Chloroethylvinylether showed 0% recovery in both the MS and MSD sample. As this analyte is not a site-specific contaminant (and not summarized on the Groundwater Analytical Results Table in section 2), no action was taken.

#### Target Analyte List (TAL) Metals Analysis

Eighteen groundwater samples were analyzed for TAL metals using SW846 method 6010B or 7000 series methods. In addition, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B), and one equipment blank (SHL-EB, dated 05/15/01).

Laboratory Preparation Blank and Equipment Blank Results: Target analytes were undetected at levels above the Contract Required Detection Limit (CRDL) for preparation blank and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: The results of the metals for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for all analytes detected above the CRDL. The field duplicate sample shows acceptable comparative results, except for Copper. The result for copper in the field duplicate (42.8 ug/L) differed greatly from the sample result (<11.0 ug/L). The laboratory was contacted by telephone and verified the values. Since both these results are far below the action level for copper (1,300 ug/L), no redigestion and reanalysis was warranted. As a result of this discrepancy, results for Copper on sample SHM-96-5B and its duplicate SHM-95-5B DUP are qualified with a "J", indicating that the values are estimated.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike (MS) and duplicate samples was analyzed for this project. All MS recoveries are within the 75-125 % recovery acceptance limits. For analytes, which showed concentrations above the CRDL, the duplicate RPDs are within the 20% acceptance limit for metals analysis.

#### **General Inorganic Analyses**

Eighteen groundwater samples were analyzed for general inorganic analyses, including Alkalinity by EPA method 310.1, Anions (Nitrate, Phosphate, Sulfate, and Chloride) by EPA method 300.0, Biochemical Oxygen Demand (BOD) by EPA method 405.1, Chemical Oxygen Demand (COD) by EPA method 410.1, Total Hardness by EPA method 130.2, Total Dissolved Solids (TDS) by EPA method 160.1, Total Suspended Solids (TSS) by EPA method 160.2, Total Organic Carbon (TOC) by SW846 method 9060 and Cyanide by SW846 method 9010. In addition, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B) and one equipment blank (SHL-EB, dated 05/15/01).

Laboratory Preparation Blank and Equipment Blank Results: All target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for preparation blank samples. The equipment blank sample showed detectable levels of TDS (6,000 ug/L), BOD (3,700 ug/L) and Alkalinity (1,000 ug/L). Sample values, which are within five times of the amount detected in the equipment blank, are qualified with a "B", indicating potential blank interference. Since all Alkalinity sample values are greater than five times the concentration found in the equipment blank, all results are unqualified for this parameter. Only two samples have TDS values which are within five times the concentration found in the equipment blank (SHL-3 and SHL-10). TDS values for these samples are qualified with a "B". BOD was reported at 3,700 ug/L in the equipment blank. Since BOD results for all samples were reported as less than the reporting limit, then all results are unqualified for this parameter.

<u>Field Duplicate Sample Results</u>: The results of the general inorganic analyses for sample SHM-96-5B, and its duplicate, sample SHM-DUP, showed less than 20 % relative percent difference for all detected analytes, except Hardness, which showed 46% RPD between the original and field duplicate sample result. As a result of the exceedance of RPD criteria for Hardness, all samples are qualified with a "\*", indicating that the duplicate sample RPD values are outside the acceptance limits. Other field duplicate results show acceptable comparative results.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike and duplicate samples was analyzed for Anions, TOC, COD, Total Hardness and Alkalinity. All MS recoveries are within the laboratory's acceptance limits except Chemical Oxygen Demand (45.5% recovery), which is below the control criteria. COD results are qualified with "N", indicating that the MS recovery is outside the control limits. One set of duplicate samples was analyzed for Anions, Alkalinity, Hardness, TDS, TSS and TOC. All RPD values are within the laboratory's acceptance limits (20% RPD) except for TSS (46% RPD). All samples are qualified with a "\*", indicating that the duplicate sample RPD values are outside the acceptance limits.

#### Conclusion

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, surrogate recoveries, and MS/MSD recoveries), all data may be reported without qualification, except as summarized below:

- <u>Biochemical Oxygen Demand Analyses</u>: Holding times for BOD were exceeded by as much as thirteen hours for samples from sampling date 5/14/01, SHL-10, SHM-93-10C, SHL-3, SHL-19, SHL-4, SHL-11 and SHL-20. All results are less than the reporting limit of 2,000 ug/L and are qualified as estimated "J" as a result of holding time exceedance.
- <u>Metals and General Inorganic Analyses</u>: All results for Hardness are qualified, "\*", indicating that duplicate sample RPD values are outside of the acceptance limits. These values should be considered as estimated due to these quality control exceedances. Field duplicate values

for Copper exhibited a discrepancy between the sample value (<11.0 ug/L) and its duplicate result (42.8 ug/L). These values are qualified as estimated "J".

General Inorganic Analyses: The equipment blank sample showed detectable levels of TDS (6,000 ug/L). Sample values, which are within five times of the amount detected in the equipment blank, are qualified with a "B", indicating potential blank interference, on the Groundwater Analytical Results table. All COD results are qualified with "N", indicating that the MS recovery is outside the control limits. All results for TSS are qualified with "\*", indicating that the duplicate sample RPD values are outside the acceptance limits.

#### 8.3.2 Data Evaluation for Samples Collected Fall 2001

#### Introduction

Eighteen groundwater samples were collected from Shepley's Hill Landfill at Fort Devens, MA. Fourteen of these samples are reported in the Shepley's Hill Landfill 2001 Annual Report. The other four samples were collected at Molumco Road (off-site), and will be discussed in supplemental groundwater investigation reports. One well (SHM-96-22B) was sampled at an additional depth for comparison of parameter variation within that well. The results of this investigation are presented in Section 7 of this report. The samples were analyzed at Severn Trent Laboratories (in Colchester VT) for Volatile Organic Compounds (VOCs), Target Analyte List (TAL) Metals, Alkalinity, Anions (Nitrate, Phosphate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Cyanide and Total Organic Carbon (TOC). The samples were collected on October 29, 30, and 31, 2001 (see Groundwater Analytical Results Table in section 2).

The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, standard EPA SW846 guidance and/or guidelines provided in the EPA Contract Laboratory Program (CLP) Data Validation Functional Guidelines.

#### Sample Shipment and Receipt

All sample coolers were packed with ice in the field. Sample shipments were received at the laboratory on October 30, 31, and November 1, 2001. All samples were appropriately preserved by the procedures shown in Table 1. There are no sample shipment or receipt anomalies associated with these samples.

#### **Holding Times**

Samples were extracted and analyzed in accordance with the methods and holding time requirements cited in Table 1, except for BOD in which the 48-hour holding time was exceeded by as much as twelve hours for samples from sampling dates 10/29/01 and 10/31/01. Affected samples are SHL-3, SHL-4, SHL-10, SHM-93-10C, SHL-11, SHL-19, SHM-99-31A, SHM-99-31B, SHM-99-31C, and SHM-99-32X. BOD results for these samples are all less than the

reporting limit of 1,300 - 1,400 ug/L. This reporting limit is qualified as "H" as a result of holding time exceedance.

#### Volatile Organic Compound (VOC) Analysis

Eighteen groundwater samples were analyzed for VOCs using SW846 method 8260B. In addition, the laboratory analyzed: one field duplicate (SHM-DUP), a duplicate of sample SHM-96-5B); three trip blanks (dated 10/29/01, 10/30/01, and 10/31/01); and one equipment blank (SHLF-EB, dated 10/31/01). One sample (SHM-96-22B-91.7) was collected at an additional depth not normally monitored for comparison of parameter variation within that well.

<u>Laboratory Method Blank, Trip Blank and Equipment Blank Results</u>: Target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for method blank, trip blank, and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: VOC results for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for all detected target analytes. The field duplicate sample shows acceptable comparative results.

<u>Surrogate Results</u>: All VOC sample surrogate recoveries are within the laboratory's stated acceptance limits. All results are acceptable.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results: One set of matrix spike/matrix spike duplicate (MS/MSD) samples was analyzed for this project. Most MS/MSD recoveries and all relative percent differences (RPDs) are within the laboratory's acceptance limits for VOC analysis. Seventeen out of 84 spiked compounds showed MS and/or MSD recoveries, which are slightly outside the acceptance range. These exceedances are not significantly outside of the acceptance range. Most of these analytes were not detected in the field samples and are not site-specific contaminants (i.e., not summarized on the Groundwater Analytical Results Table in section 2). For the affected compounds which are site-specific contaminants of concern (Acetone, 2-Butanone, 4-Methyl-2-Pentanone, and 1,2-Dichloroethane) any detected values are qualified with an "N" on the data summary table. The compound 2-Chloroethylvinylether showed 0% recovery in both the MS and MSD sample. As this analyte is not a site-specific contaminant (and not summarized on the Groundwater Analytical Results Table in section 2) and MSD sample. As this analyte is not a site-specific contaminant (and not summarized on the Groundwater Analytical Results Table in section 2).

#### Target Analyte List (TAL) Metals Analysis

Eighteen groundwater samples were analyzed for TAL metals using SW846 method 6010B or 7000 series methods. In addition, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B), and one equipment blank (SHLF-EB, dated 10/31/01). One sample (SHM-96-22B-91.7) was collected at an additional depth not normally monitored for comparison of parameter variation within that well.

Laboratory Preparation Blank and Equipment Blank Results: Target analytes were undetected at levels above the Contract Required Detection Limit (CRDL) for preparation blank and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: The results of the metals for sample SHM-96-5B, and its duplicate, sample SHM-DUP, show less than 20 % relative percent difference for most analytes except for Chromium, Copper, Lead, and Silver which show 22%, 123%, 38%, and 32% RPD, respectively. Results for these analytes in both samples are well below the associated regulatory standard. Due to this discrepancy, results for Chromium, Copper, Lead, and Silver in samples SHM-96-5B and SHM-DUP are qualified with a "\*", indicating that the RPD values are outside the acceptance limits.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike (MS) and duplicate samples was analyzed for this project. All MS recoveries are within the 75-125 % recovery acceptance limits for project analytes. For analytes, which showed concentrations above the CRDL, the duplicate RPDs are within the 20% acceptance limit for metals analysis.

#### **General Inorganic Analyses**

Eighteen groundwater samples were analyzed for general inorganic analyses, including Alkalinity by EPA method 310.1, Anions (Nitrate, Phosphate, Sulfate, and Chloride) by EPA method 300.0, Biochemical Oxygen Demand (BOD) by EPA method 405.1, Chemical Oxygen Demand (COD) by EPA method 410.1, Total Hardness by Standard Methods 2340B, Total Dissolved Solids (TDS) by EPA method 160.1, Total Suspended Solids (TSS) by EPA method 160.2, Total Organic Carbon (TOC) by SW846 method 9060 and Cyanide by EPA method 335.4. In addition, the laboratory analyzed one field duplicate (SHM-DUP, a duplicate of sample SHM-96-5B) and one equipment blank (SHLF-EB, dated 10/31/01). One sample (SHM-96-22B-91.7) was collected at an additional depth not normally monitored for comparison of parameter variation within that well.

Laboratory Preparation Blank and Equipment Blank Results: All target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for preparation blank samples. The equipment blank sample showed detectable levels of Alkalinity (1,000 ug/L), COD (23,600 ug/L), TDS (7,000 ug/L), TSS (500 ug/L), and TOC (1,400 ug/L). Detected sample values, which are within five times of the amount detected in the equipment blank, are qualified with a "B", indicating potential blank interference. Since all Alkalinity sample values are greater than five times the concentration found in the equipment blank, all results are unqualified for this parameter. All COD values are within fives times of the concentration in the equipment blank, therefore, all values are qualified with a "B". One sample has a TDS value which is within five times the concentration found in the equipment blank (SHL-10). The TDS value for this sample is qualified with a "B". Four samples have TSS values which are within five times the concentration found in the equipment blank (SHL-3, SHL-9, SHL-22, and SHL-93-22C). The TSS values for these samples are qualified with a "B". Thirteen samples have TOC values which are within five times the concentration found in the equipment blank (SHL-4, SHL-96-5B, SHM-DUP, SHM-96-5C, SHM-93-10C, SHL-11, SHL-19, SHL-20, SHL-22, SHL-93-22C, SHM-99-31A, SHM-99-31B, and SHM-99-32X). The TOC values for these samples are qualified with a "B".

<u>Field Duplicate Sample Results</u>: The results of the general inorganic analyses for sample SHM-96-5B, and its duplicate, sample SHM-DUP, showed less than 20 % relative percent difference for all detected analytes, except COD and TOC, which showed 22% and 32% RPD between the original and field duplicate sample results. As a result of the exceedance of RPD criteria for COD and TOC, samples SHM-96-5B and SHM-DUP are qualified with a "\*", indicating that the duplicate results are outside the RPD acceptance limits. Other field duplicate results show acceptable comparative results.

Matrix Spike (MS) and Duplicate Results: One matrix spike sample was analyzed for Alkalinity and Anions. All MS recoveries are within the laboratory's acceptance limits (75-125%). One set of duplicate samples was analyzed for Alkalinity, Anions, Hardness, and TDS. All RPD values are within the laboratory's acceptance limits (20% RPD).

#### Conclusion

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, surrogate recoveries, and MS/MSD recoveries), all data may be reported without qualification, except as summarized below:

- <u>BOD Analyses</u>: Holding times for BOD were exceeded by as much as twelve hours for samples from sampling dates 10/29/01 and 10/31/01. Affected samples are qualified with an "H" as a result of the holding time exceedance.
- <u>VOC Analyses</u>: MS/MSD recoveries are outside acceptance limits for the site-specific contaminants of concern, Acetone, 2-Butanone, 4-Methyl-2-Pentanone, and 1,2-Dichloroethane. Any detected values are qualified with an "N" on the data summary table.
- <u>Metals Analyses</u>: The results of duplicate samples analyzed for metals show greater than 20% RPD for Chromium, Copper, Lead, and Silver. Results for Chromium, Copper, Lead, and Silver in samples SHM-96-5B and SHM-DUP are qualified with a "\*", indicating that the RPD values are outside the acceptance limits.
- <u>General Inorganic Analyses</u>: The equipment blank sample showed detectable levels of Alkalinity, COD, TDS, TSS, and TOC. Sample values, which are within five times of the amount detected in the equipment blank are qualified with a "B", indicating potential blank interference.

<u>General Inorganic Analyses</u>: The results of duplicate samples analyzed for metals show greater than 20% RPD for COD and TOC. Results for COD and TOC in samples SHM-96-5B and SHM-DUP are qualified with a "\*", indicating that the duplicate results are outside the RPD acceptance limits.

#### 9.0 CORRECTIVE ACTION

Corrective actions consist primarily of regrading and reseeding eroded areas, and clearing unwanted vegetation in drainage channels (see Section 3 for details). The following items are the most critical and should be addressed before the next inspection: (1) Repair and replace the security fence and gates as required to control access to the site; and (2) Place topsoil over the sandy area lacking vegetation on the east side along the perimeter of the cap. Further recommendations include: (1) Place stone aprons around gas vents to discourage animals from burrowing; (2) Repair and regrade around the catch basins on the south side of the landfill; and (3) resurvey the landfill to 1-foot contours, and review in conjunction with existing drainage system to determine why water is ponding on the northern half, and if it is draining effectively.

With the exception of the repairs mentioned above, the landfill is in fair condition and appears to be functioning adequately.

TABLES

#### TABLE 4-1 Landfill Gas Monitoring Form

| INSPECTOR: Kullberg/Michalak | TITLE: Civil Engineer | DATE: <u>12/05/01</u> |
|------------------------------|-----------------------|-----------------------|
|                              |                       |                       |

ORGANIZATION: <u>CENAE-EP</u> WEATHER: <u>Sunny</u>, 60's,

BAROMETER: 29.9 in Hg TIME: 0900 BAROMETER: 29.8 in Hg TIME: 1200

| Vent           | VOC | O <sub>2</sub> | H <sub>2</sub> S | LEL  | CO  | CO <sub>2</sub> | CH4   | Remarks       |
|----------------|-----|----------------|------------------|------|-----|-----------------|-------|---------------|
| No.            | ppm | %              | ppm              | %    | ppm | %               | %     |               |
| ~~~            | PID | GA-90          | CGI              | CGI  | CGI | GA-90           | GA-90 |               |
| GV-1           | 0.0 | 20.8           | 0                | 0    | 0   | 0               | 0     | CGI O2 – 21.0 |
| GV-2           | 0.0 | 15.2           | 0                | 93   | 0   | 4.7             | 2.4   | CGI O2 – 15.0 |
| GV-3           | 0.0 | 10.3           | 0                | >100 | 0   | 8.3             | 6.3   | CGI O2 – 10.9 |
| GV-4           | 0.0 | 14.5           | 0                | 61   | 0   | 4.4             | 1.3   | CGI O2 – 15.0 |
| GV-5           | 0.0 | 15.3           | 0                | 5    | 0   | 3.6             | 0.1   | CGI O2 – 16.3 |
| GV-6           | 0.0 | 14.8           | 0                | 37   | 0   | 3.9             | 0.7   | CGI O2 – 15.1 |
| GV-7           | 0.0 | 16.4           | 0                | 31   | 0   | 2.4             | 0.7   | CGI O2 – 16.5 |
| GV-8           | 0.0 | 14.8           | 0                | 50   | 0   | 4.2             | 1.3   | CGI O2 – 15.2 |
| GV-9           | 0.0 | 6.7            | 0                | >100 | 0   | 10.2            | 9.2   | CGI O2 - 10.2 |
| GV-10          | 0.0 | 13.8           | 0                | 55   | 0   | 4.1             | 1.4   | CGI O2 – 14.4 |
| GV-11          | 0.0 | 14.7           | 0                | 69   | 0   | 3.4             | 2.5   | CGI O2 – 15.1 |
| GV-12          | 0.0 | 1.2            | 0                | >100 | 4   | 13.6            | 8.0   | CGI O2 – 2.5  |
| GV-13          | 0.0 | 4.3            | 0                | >100 | 1   | 10.1            | 11.3  | CGI O2 – 7.0  |
| GV-14          | 0.0 | 1.6            | 0                | >100 | 2   | 22.2            | 33.1  | CGI O2 – 3.6  |
| GV-15          | 0.0 | 0.3            | 0                | >100 | 0   | 22.9            | 23.4  | CGI O2 – 2.1  |
| GV-16          | 0.0 | 0.4            | 0                | 68   | 1   | 19.7            | 12.5  | CGI O2 – 2.3  |
| GV-17          | 0.0 | 2.2            | 0                | >100 | 3   | 19.6            | 17.1  | CGI O2 – 4.5  |
| GV-18          | 0.0 | 3.7            | 0                | >100 | 0   | 21.7            | 29.1  | CGI O2 – 6.1  |
| LGP-01-<br>01X | 0.0 | 20.9           | 0                | 0    | 0   | 0               | 0     | CGI O2 – 20.9 |
| LGP-01-<br>02X | 0.0 | 20.3           | 0                | 0    | 0   | 0.8             | 0     | CGI O2 – 20.6 |
| LGP-01-<br>03X | 0.0 | 20.7           | 0                | 0    | 0   | 0.3             | 0     | CGI O2 – 20.8 |
| LGP-01-<br>04X | 0.0 | 20.8           | 0                | 0    | 0   | 0.1             | 0     | CGI O2 – 20.9 |

CALIBRATION INFORMATION:

Instrument: PID, 10.6 eV lamp

Results: 0.0/248 ppm isobutylene

Calibrated by: Michalak

Instrument: Industrial Scientific TMX 412 CGI Results: 0.7% Pentane, 50% LEL, 14%/ 21% O<sub>2</sub>, 29ppm H<sub>2</sub>S, 50 ppm CO

Calibrated by: US Environmental Co

Instrument: Landtech Gem 500 GA-90 Results: <u>4% O2, 15% CO2, 15% CH4</u>

Calibrated by: US Environmental Co

|                     |                   | Groundwater E | levations (ft NGVD) |
|---------------------|-------------------|---------------|---------------------|
|                     | Screened Interval |               |                     |
| Well Identification | (ft NGVD)         | May 14, 2001  | October 29, 2001    |
| SHL-3               | 213.4-223.4       | 218.15        | 217.70              |
| SHL-4               | 213.0-223.0       | 218.11        | 218.03              |
| SHL-5               | 203.4-213.4       | 215.12        | 212.98              |
| SHM-96-5B           | 128.5-138.5       | 214.56        | 213.06              |
| SHM-96-5C           | 158.5-168.5       | 214.55        | 213.03              |
| SHL-9               | 197.8-207.8       | 214.43        | 212.71              |
| SHL-10              | 211.2*-231.0      | 217.81        | 217.44              |
| SHM-93-10C          | 192.7-202.7       | 218.64        | 214.62 <sup>#</sup> |
| SHL-11              | 206.5-221.5       | 217.64        | 217.42              |
| SHL-19              | 209.3-224.3       | 218.27        | 217.78              |
| SHL-20              | 185.8-195.8       | 217.82        | 217.43              |
| SHL-22              | 104.5-114.5       | 214.35        | 212.79              |
| SHM-96-22B          | 127.6-157.6       | 214.32        | 212.76              |
| SHM-93-22C          | 87.3-97.3         | 214.36        | 212.78              |

#### TABLE 5-1 Monitoring Wells and Elevations

\* Previous records show well SHL-10 having a bottom elevation of 207.0 NGVD. Recent field observations have revealed that refusal is met at 211.2 NGVD.

<sup>#</sup> This value is in question, due to observations of trends and a potential recording error.

#### TABLE 6-1 Monitoring Well Designations

| Monitoring<br>Well Identification | Well Designation<br>(Based on First Five-Year<br>Review, SWEC, Aug 1998) | Exceedances of Cleanup Levels<br>for Trigger Chemicals, Since<br>Achieving Group 1 Status |
|-----------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| SHL-3                             | Group 1                                                                  | None                                                                                      |
| SHL-4                             | Group 2                                                                  | NA                                                                                        |
| SHL-5                             | Group 1                                                                  | None                                                                                      |
| SHM-96-5B                         | Group 2                                                                  | NA                                                                                        |
| SHM-96-5C                         | Group 2                                                                  | NA                                                                                        |
| SHL-9                             | Group 1                                                                  | 71.3 mg/L As (Spring 1999)                                                                |
| SHL-10                            | Group 2                                                                  | NA                                                                                        |
| SHM-93-10C                        | Group 1                                                                  | None                                                                                      |
| SHL-11                            | Group 2                                                                  | NA                                                                                        |
| SHL-19                            | Group 2                                                                  | NA                                                                                        |
| SHL-20                            | Group 2                                                                  | NA                                                                                        |
| SHL-22                            | Group 1                                                                  | None                                                                                      |
| SHM-96-22B                        | Group 2                                                                  | NA                                                                                        |
| SHM-93-22C                        | Group 1                                                                  | 51.1 mg/L As (Fall 1998)                                                                  |

NA – Not Applicable

|                                               | e Analysis and Procedures                                         |
|-----------------------------------------------|-------------------------------------------------------------------|
| PARAMETERS                                    | METHOD                                                            |
| Volatile Organic Compounds                    |                                                                   |
| Xylenes                                       |                                                                   |
| Acetone                                       | U.S. Environmental Protection Agency (USEPA) 8260B                |
|                                               |                                                                   |
| 2-Butanone                                    |                                                                   |
| 2-Methyl-2-Pentanone                          |                                                                   |
| Benzene<br>Mattala E. Bastal Educa            |                                                                   |
| Methyl-t-Butyl Ether                          |                                                                   |
| 1,1-Dichloroethane                            |                                                                   |
| 1,2-Dichloroethene (total)                    |                                                                   |
| 1,2-Dichloroethane                            |                                                                   |
| 1,2-Dichlorobenzene                           |                                                                   |
| 1,3-Dichlorobenzene                           |                                                                   |
| 1,4-Dichlorobenzene                           |                                                                   |
| Inorganics                                    |                                                                   |
| Aluminum                                      | USEPA 6010B                                                       |
| Arsenic                                       |                                                                   |
| Barium                                        | except Cyanide by USEPA 335.4                                     |
| Cadmium                                       |                                                                   |
| Chromium                                      | and Mercury by USEPA 7470A                                        |
| Copper                                        |                                                                   |
| Cyanide (wet chemistry)                       |                                                                   |
| Iron                                          |                                                                   |
| Lead                                          |                                                                   |
| Manganese                                     |                                                                   |
| Mercury                                       |                                                                   |
| Nickel                                        |                                                                   |
| Selenium                                      |                                                                   |
| Sodium                                        |                                                                   |
| Silver                                        |                                                                   |
| Zinc                                          |                                                                   |
| General Parameters (laboratory determination) |                                                                   |
| Hardness                                      | USEPA 130.2 (spring 2001), USEPA 2340B (fall 2001)                |
| Total Dissolved Solids                        | USEPA 150.2 (spring 2001), USEPA 2540B (fail 2001)<br>USEPA 160.1 |
| Total Suspended Solids                        | USEPA 160.1<br>USEPA 160.2                                        |
| Chloride                                      | USEPA 100.2<br>USEPA 300.0                                        |
| Nitrate as N                                  | USEPA 300.0<br>USEPA 300.0                                        |
| Sulfate                                       | USEPA 300.0                                                       |
| Alkalinity                                    | USEPA 300.0<br>USEPA 310.1                                        |
| Biochemical Oxygen Demand – 5 day             | USEPA 310.1<br>USEPA 405.1                                        |
| Chemical Oxygen Demand                        | USEPA 405.1<br>USEPA 410.1                                        |
| Total Organic Carbon                          |                                                                   |
|                                               | USEPA 9060                                                        |
| General Parameters (field determination)      |                                                                   |
| рН                                            |                                                                   |
| Temperature                                   |                                                                   |
| Specific Conductance                          |                                                                   |
| Dissolved Oxygen                              |                                                                   |
| Oxygen Reduction Potential                    |                                                                   |
| Turbidity                                     |                                                                   |

 TABLE 7-1

 Groundwater Sample Analysis and Procedures

#### TABLE 7-2 Groundwater Analytical Results - May 14 & 15, 2001 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (SHEET 1 of 1)

|                                 | Well No.    | SHL-3    | SHL-4    | SHL-5     | SHM-96-5B | SHM-96-5B DUP | SHM-96-5C | SHL-9    | SHL-10   | SHM-93-10C | SHL-11    | SHL-19   | SHL-20   | SHL-22    | SHM-96-22B | SHM-93-22C |
|---------------------------------|-------------|----------|----------|-----------|-----------|---------------|-----------|----------|----------|------------|-----------|----------|----------|-----------|------------|------------|
| PARAMETERS                      | CLEANUP     | ug/L     | ug/L     | ug/L      | ug/L      | ug/L          | ug/L      | ug/L     | ug/L     | ug/L       | ug/L      | ug/L     | ug/L     | ug/L      | ug/L       | ug/L       |
|                                 | GOAL (1)    | [        | 1        | 1         | 1         | 1             |           |          | 1        | 1          | 1         |          | 1        |           | 1          |            |
|                                 | ug/L        |          |          | <u> </u>  |           |               |           |          | +        | 1          | 1         |          | 1        |           | <u> </u>   |            |
| VOLATILES (8260)                | +           |          |          | 1         | 1         |               |           |          | 1        |            |           |          | · · · ·  |           | 1          |            |
| Xylenes                         | 10,000 (2)  | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| Acetone                         | 3,000 (4)   | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | 2.9 J     | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | 2.3 J    | <5.0      | 4.1 J      | <5.0       |
| 2-Butanone                      |             | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| 4-Methyl-2-Pentanone            |             | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5,0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| Benzene                         | 5 (2)       | <5.0     | <5.0     | <5.0      | 1.1 J     | 1.1 J         | 1.6 J     | <5.0     | <5.0     | <5.0       | 2.0 J     | <5.0     | <5.0     | <5.0      | 1.7 J      | <5.0       |
| Methyl-t-Butyl Ether            | 70 (4)      | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | 1.5 J     | <5.0       | <5.0       |
| 1,1-Dichloroethane              | 70 (4)      | <5.0     | <5.0     | <5.0      | 1.8 J     | 1.8 J         | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | 2.1 J     | 2.1 J      | <5.0       |
| 1,2-Dichloroethene (total)      | 70 (2)      | <5.0     | <5.0     | <5.0      | 2.6 J     | 2.6 J         | 2.7 J     | <5.0     | <5.0     | <5.0       | 2.0 J     | <5.0     | 1.6 J    | 2.6 J     | 2.9 J      | <5.0       |
| 1,2-Dichloroethane              | 5           | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| 1,3-Dichlorobenzene             | 600 (2)     | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| 1,4-Dichlorobenzene             | 5           | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | 2.4 J     | <5.0     | 3.1 J    | <5.0      | <5.0       | <5.0       |
| 1,2-Dichlorobenzene             | 600         | <5.0     | <5.0     | <5.0      | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0      | <5.0     | <5.0     | <5.0      | <5.0       | <5.0       |
| METALS (6010)                   |             |          |          |           |           |               |           |          |          |            |           |          |          |           |            |            |
| Aluminum                        | 6,870       | <98.5    | <98.5    | 344       | <98.5     | <98.5         | <98.5     | <98.5    | <98.5    | <98.5      | <98.5     | <98.5    | <98.5    | <98.5     | <98.5      | <98.5      |
| Arsenic                         | 50          | <4.1     | 50.8     | 13.8      | 3,800     | 3,900         | 80.5~     | 15.1     | <4.1     | 6.9        | 487       | 129      | 186      | 47.6      | 1,540      | 19.7       |
| Barium                          | 2,000 (2)   | <3.6     | 61.5     | 9.6       | 57.8      | 59.0          | 62.8      | 15.6     | 4.3      | 7.2        | 102       | 8.3      | 99.5     | 13.4      | 96.8       | 70.0       |
| Cadmium                         | 5(2)        | 0.32     | 0.81     | 0.40      | 0.80      | 0.79          | 1.5       | 0.71     | 0.42     | 0.23       | 1.4       | 0.44     | 0.43     | 0.67      | 1.5        | 0.46       |
| Chromium                        | 100         | 2.0      | 2.2      | 1.6       | 6.2       | 5.9           | 3.6       | 1.6      | <1.4     | <1.4       | 2.0       | 1.7      | 3.6      | 1.5       | 1.4        | 2.5        |
| Соррег                          | 1,300 (3)   | <11.0    | <11.0    | <11.0     | <11.0 J   | 42.8 J        | 19.3      | <11.0    | <11.0    | <11.0      | 13.4      | <11.0    | <11.0    | <11.0     | 16.5       | <11.0      |
| Iron                            | 9,100       | <61.8    | 5,960    | 2,640     | 36,700    |               | 77,500    | 4,630    | <61.8    | <61.8      | 73,600    | 12,500   | 9,600    | 612       | 92,700     | 430        |
| Lead                            | 15          | <1.3     | <1.3     | <1.3      | 2.1       | 1.5           | <1.3      | <1.3     | <1.3     | <1.3       | <1.3      | <1.3     | <1.3     | 1.3       | 1.6        | <1.3       |
| Manganese                       | 1,715       | <3.9     | 1,680    | 400       | 10,800    | 11,000        | 4,700     | 444      | <3.9     | 41.1       | 2,460     | 1,590    | 7,840    | 1,040     | 2,780      | 376        |
| Mercury (7470A)                 | 2 (2)       | <0.10    | <0.10    | <0.10     | <0.10     | <0.10         | <0.10     | <0.10    | <0.10    | <0.10      | <0.10     | <0.10    | <0.10    | <0.10     | <0.10      | <0.10      |
| Nickel                          | 100         | <7.5     | 8.8      | <7.5      | 16.7      | 15.2          | <7.5      | <7.5     | <7.5     | <7.5       | <7.5      | <7.5     | 11.8     | <7.5      | <7.5       | <7.5       |
| Selenium                        | 50 (2)      | <3,9     | <3.9     | <3.9      | <3.9      | <3.9          | <3.9      | <3.9     | <3.9     | <3.9       | <3.9      | <3.9     | <3.9     | <3.9      | <3.9       | <3.9       |
| Silver                          | 40 (4)      | <2.4     | <2.4     | <2.4      | 2.6       | 2.4           | 3.9       | <2.4     | <2.4     | <2.4       | <2.4      | <2.4     | <2.4     | <2.4      | <2.4       | <2.4       |
| Sodium                          | 20,000      | 1,540    | 5,300    | 2,280     | 39,600    | 39,800        | 34,100    | 2,310    | <1540    | 8,530      | 35,300    | <1540    | 42,700   | 48,200    | 43,200     | 18,200     |
| Zinc                            | 2,000 (4)   | <3.4     | 8.0      | 4.9       | 10.7      | 12.9          | 15.3      | 6.6      | <3.4     | <3.4       | <3.5      | 7.3      | 4.8      | 16.1      | 18.0       | 5.8        |
| GENERAL CHEMISTRY               |             |          |          |           | l         |               |           |          |          |            |           |          |          |           |            |            |
| Alkalinity as CaCO <sub>3</sub> | -           | 20,000   | 52,000   | 30,000    | 360,000   | 376,000       | 376,000   | 65,000   | 21,000   | 15,000     | 256,000   | 83,000   | 380,000  | 460,000   | 404,000    | 188,000    |
| Biochemical Oxygen Demand       |             | <2,000 J | <2,000 J | <2,000    | <2,000    | <2.000        | <2.000    | <2.000   | <2.000 J | <2.000 J   | <2.000 J  | <2.000 J | <2.000 J | <2,000    | <2,000     | <2,000     |
| Chloride                        |             | 800      | 8,100    | 1,900     | 49,000    | 45.600        | 48,000    | 2,500    | 1,100    | 29,800     | 41,700    | 1,200    | 52,600   | 59,000    | 53,100     | 25,200     |
| Chemical Oxygen Demand          |             | 16,000 N | 8,000 N  | 16.000 N  | <5.000 N  | 20,000 N      | 22,000 N  | 12,000 N | 18,000 N | 10,000 N   | 83,000 N  | <5,000 N | 30,000 N | 10,000 N  | 30,000 N   | 10,000 N   |
| Cyanide (Total)                 | 200 (2)     | <10.0 N  | <10.0 N  | <10.0 N   | <10.0 N   | <10.0 N       | <10.0 N   | <10.0 N  | <10.0 N  | <10.0 N    | <10.0 N   | <10.0 N  | <10.0 N  | <10.0 N   | <10.0 N    | <10.0 N    |
| Hardness as CaCO3               | -           | 18,000 * | 82,000 * | 34,000 *  | 90,000 *  | 144,000 *     | 300,000 * | 76,000 * | 20,000 * | 232,000 *  | 184,000 * | 28,000 * | 20,000 * | 472,000 * | 150,000 *  | 196,000 *  |
| Nitrate as Nitrogen             | 10,000 (2)  | 210      | <200     | <200      | <200      | <200          | <200      | <200     | <200     | <200       | <200      | 200      | <200     | <200      | <200       | <200       |
| Sulfate                         | 500,000 (2) | 3,100    | 8,200    | 2,100     | 4,600     | 4,700         | 3,100     | 8,400    | 2,600    | 19,500     | 620       | 9,400    | 9,400    | 4,200     | 2,600      | 12,700     |
| Total Dissolved Solids          | 1 - 1       | 23,000 B | 116,000  | 60,000    | 467,000   | 466,000       | 434,000   | 107,000  | 23.000 B | 305,000    | 401,000   | 39,000   | 485,000  | 551,000   | 470,000    | 265,000    |
| Total Suspended Solids          | -           | 500 *    | 8,300 *  | 112,000 * | 44,100 *  | 40,400 *      | 15,500 *  | 16,300 * | 500 *    | 800 *      | 39,400 *  | 17,500 * | 19,100 * | 3,200 *   | 116,000 *  | 1,900 *    |
| Total Organic Carbon            | 1           | <1.000   | 1,700    | 8,200     | 6,700     | 7.200         | 8,900     | 6.500    | <1.000   | <1.000     | 5,400     | <1.000   | 3,700    | 4,900     | 7.800      | 4,900      |

| FIELD PARAMETERS                   |   | ,     |      |      |       |    |       |      |       |       |       |       |       |       |        |        |
|------------------------------------|---|-------|------|------|-------|----|-------|------|-------|-------|-------|-------|-------|-------|--------|--------|
| Dissolved Oxygen (mg/L)            | - | 11.79 | 0.18 | 0.19 | 0.43  | NA | 1.12  | 0.21 | 11.22 | 1.29  | 0.24  | 0.45  | 0.23  | 0.55  | 0.63   | 0.39   |
| Oxidation Reduction Potential (mV) | - | 215.5 | 74.1 | 69.4 | -92.5 | NA | -64.3 | 7.2  | 227.0 | 143.3 | -76.4 | -20.6 | -18.8 | -37.3 | -132.0 | -130.2 |

#### Notes:

Shaded areas with bold numbers indicate cleanup goal exceedance. - B = Value within 5 times of the amount detected in the equipment blank sample



(1) Cleanup values as developed in the ROD (unless otherwised noted)

(2) No cleanup value was developed so the Federal Maximum Contamination Level was used

(3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used

(4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

J = Estimated Value

N= Matrix Spike sample recovery outside acceptance limits \* = Duplicate analysis Relative Percent Difference outside acceptance limits

NA = Not analyzed

#### Table 7-3 Groundwater Analytical Results - October 29 & 30, 2001 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (SHEET 1 of 1)

|                               | Well No.    | SHL-3    | SHL-4    | SHL-5        | SHM-96-5B | SHM-96-5B DUP | SHM-96-5C | SHL-9    | SHL-10   | SHM-93-10C | SHL-11   | SHL-19   | SHL-20   | SHL-22   | SHM-96-22B | SHM-93-22C |
|-------------------------------|-------------|----------|----------|--------------|-----------|---------------|-----------|----------|----------|------------|----------|----------|----------|----------|------------|------------|
| PARAMETERS                    | CLEANUP     | ug/L     | ug/L     | ug/L         | ug/L      | ug/L          | ug/L      | ug/L     | ug/L     | ug/L       | ug/L     | ug/L     | ug/L     | ug/L     | ug/L       | ug/L       |
|                               | LEVEL (1)   |          | 1        |              | 1         | 1             |           | 1        |          |            | 1        | 1        |          |          |            |            |
|                               | ug/L        |          |          |              |           |               |           |          |          |            |          |          |          |          |            |            |
| VOLATILES (8260B)             | 1           | 1        |          | 1            |           | 1             |           | 1        | 1        | 1          | 1        | 1        | 1        | 1        |            |            |
| Xylenes                       | 10,000 (2)  | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| Acetone                       | 3,000 (4)   | <5.0     | <5,0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | 1.8 JN     | <5.0       |
| 2-Butanone                    | -           | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5,0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| 4-Methyl-2-Pentanone          | -           | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| Benzene                       | 5 (2)       | <5.0     | 1.3 J    | <5.0         | <5.0      | <5.0          | 1.2 J     | <5.0     | <5.0     | <5.0       | 1.9 J    | <5.0     | <5.0     | <5.0     | 1.1 J      | <5.0       |
| Methyl-t-Butyl Ether          | 70 (4)      | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | 1.2 J    | <5.0       | <5.0       |
| 1,1-Dichloroethane            | 70 (4)      | <5.0     | <5.0     | <5.0         | 1.8 J     | 1.8 J         | 1.7 J     | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | 2.0 J    | 1.4 J      | 1.4 J      |
| 1,2-Dichloroethene (total)    | 70 (2)      | <5.0     | 1.6 J    | <5,0         | 2.6 J     | 2.4 J         | 2.6 J     | <5.0     | <5.0     | <5.0       | 1.3 J    | <5.0     | 1.5 J    | 2.4 J    | 2.0 J      | 1.0 J      |
| 1,2-Dichloroethane            | 5           | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| 1,3-Dichlorobenzene           | 600 (2)     | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| 1,4-Dichlorobenzene           | 5           | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| 1,2-Dichlorobenzene           | 600         | <5.0     | <5.0     | <5.0         | <5.0      | <5.0          | <5.0      | <5.0     | <5.0     | <5.0       | <5.0     | <5.0     | <5.0     | <5.0     | <5.0       | <5.0       |
| METALS (6010B or as noted)    |             |          |          |              |           |               |           |          |          |            |          |          |          |          |            |            |
| Aluminum                      | 6,870       | <7.7     | 52.8     | 307          | <7.7      | <7.7          | <7.7      | 49.8     | <7.7     | 128        | <7.7     | <7.7     | <7.7     | <7.7     | <7.7       | 8.1        |
| Arsenic                       | 50          | <1.5     | 66.0     | <u>14</u> .8 | 1,850     | 1,830         | 41.1      | 28.1     | <1.5     | 10.1       | 573      | 183      | 165      | 44.2     | 1,670      | 31.6       |
| Barium                        | 2,000 (2)   | <9.0     | 91.8     | 13.8         | 44.6      | 45.1          | 52.7      | 14.0     | <9,0     | <9.0       | 104      | 23.2     | 102      | 11.7     | 96.5       | 74.8       |
| Cadmium                       | 5 (2)       | <0.20    | <0.20    | <0.20        | <0.20     | <0.20         | 0.51      | <0.20    | <0.20    | <0.20      | 1.0      | 0.35     | <0.20    | <0.20    | 1.3        | <0.20      |
| Chromium                      | 100         | 1.3      | <0.70    | <0.70        | 1.6 *     | 2.0 *         | <0.70     | <0.70    | 1.1      | 2.0        | <0.70    | 0.86     | 1.2      | <0.70    | <0.70      | <0.70      |
| Copper                        | 1,300 (3)   | 3.1      | 1.1      | <1.0         | <1.0 *    | 4.2 *         | 1.2       | <1.0     | <1.0     | <1.0       | <1.0     | 1.5      | <1.0     | 3.8      | 2.2        | 27.4       |
| Iron                          | 9,100       | 111      | 11,100 5 | 4,570        | 18,000    | 17,800        | 43,900    | 8,120    | <15.7    | 161        | 76,400   | 31,200   | 8,710    | 618      | 82,200     | 753        |
| Lead                          | 15          | 0.72     | 1.2      | <0.60        | 3.1 *     | 2.1 *         | 2.5       | <0.60    | <0.60    | 1.4        | 3.1      | 2.0      | 1.9      | 2.0      | 3.1        | 1.5        |
| Manganese                     | 1,715       | <1.4     | 824      | 349          | 12,900    | 12,900        | 4,320     | 412      | 1.5      | 39.7       | 2,880    | 4,100    | 7,720    | 1,220    | 1,960      | 444        |
| Mercury (7470A)               | 2(2)        | <0.10    | <0.10    | <0.10        | <0.10     | <0.10         | <0.10     | <0.10    | <0.10    | <0.10      | <0.10    | <0.10    | <0.10    | <0.10    | <0.10      | <0.10      |
| Nickel                        | 100         | <2.0     | 12.2     | 3.0          | 13.0      | 13.5          | 4.4       | <2.0     | <2.0     | 4.9        | <2.0     | 9.0      | 12.4     | 8.5      | 7.7        | <2.0       |
| Selenium                      | 50 (2)      | <1.2     | <1.2     | <1.2         | <1.2      | <1.2          | <1.2      | 1.7      | <1.2     | <1.2       | <1.2     | <1.2     | <1.2     | <1.2     | <1.2       | <1.2       |
| Silver                        | 40 (4)      | <1.5     | <1.5     | <1.5         | 3.3 *     | 2.4 *         | <1.5      | <1.5     | <1.5     | <1.5       | <1.5     | <1.5     | 2.7      | <1.5     | <1.5       | <1.5       |
| Sodium                        | 20,000      | 1,960    | 17,200   | 2,660        | 38,600    | 38,200        | 34,300    | 2,550    | 1,520    | 8,880      | 33,500   | 3,680    | 41,000   | 45,600   | 40,300     | 20,700     |
| Zinc                          | 2,000 (4)   | <0.90    | 4.1      | 3.2          | 2.7       | 2.8           | 1.3       | <0.90    | <0.90    | <0.90      | < 0.90   | 4.7      | 0.94     | 13.4     | 5.6        | <0.90      |
| GENERAL CHEMISTRY             |             |          |          |              |           |               |           |          |          |            |          |          |          |          |            |            |
| Alkalinity as CaCO3           | -           | 21,000   | 144,000  | 42,000       | 372,000   | 376,000       | 312,000   | 72,000   | 26,000   | 192,000    | 276,000  | 100,000  | 364,000  | 452,000  | 320,000    | 228,000    |
| Biochemical Oxygen Demands    | -           | <1,300 H | <1,300 H | 1,600        | <1,300    | <1,300        | <1,300    | <1,300   | <1,300 H | <1,300 H   | <1,300 H | <1,300 H | <1,300   | <1,300   | <1,300     | 1,900      |
| Chloride                      |             | 1,000    | 29,000   | 1,700        | 50,000    | 49,800        | 53,100    | 2,200    | 1,200    | 32,100     | <200     | 3,100    | 50,700   | 58,000   | 48,400     | 34,300     |
| Chemical Oxygen Demand        | -           | 19,800 B | 17,800 B | 40,000 B     | 24,000 B* | 30,000 B*     | 34,000 B  | 72,000 B | 9,900 B  | 11900 B    | 33,600 B | 15,800 B | 18,000 B | 22,000 B | 43,500 B   | 30,000 B   |
| Cyanide (Total)               | 200 (2)     | <10.0    | <10.0    | <10.0        | <10.0     | <10.0         | <10.0     | <10.0    | <10.0    | <10.0      | <10.0    | <10.0    | <10.0    | <10.0    | <10.0      | <10.0      |
| Hardness as CaCO <sub>3</sub> | -           | 25,900   | 142,000  | 37,000       | 330,000   | 329,000       | 252,000   | 72,100   | 26,400   | 235,000    | 183,000  | 63,100   | 340,000  | 429,000  | 249,000    | 259,000    |
| Nitrate as Nitrogen           | 10,000 (2)  | 420      | 590      | <200         | <200      | <200          | <200      | <200     | 240      | <200       | 200      | <200     | <200     | <200     | 220        | <200       |
| Sulfate                       | 500,000 (2) | 7,200    | 9,800    | 2,500        | 6,200     | 6,300         | 5,500     | 8,200    | 2,500    | 20,200     | <200     | 15,800   | 10,100   | 4,700    | 2,200      | 14,300     |
| Total Dissolved Solids        | -           | 47,000   | 216,000  | 70,000       | 480,000   | 490,000       | 367,000   | 105,000  | 34,000 B | 295,000    | 360,000  | 131,000  | 487,000  | 550,000  | 412,000    | 319,000    |
| Total Suspended Solids        | -           | 500 B    | 7,700    | 4,100        | 34,400    | 34,600        | 46,800    | 800 B    | <500     | 5,000      | 57,600   | NA       | 13,200   | 1,800 B  | 110,000    | 2,300 B    |
| Total Organic Carbon          | -           | <1,000   | 2,800 B  | 10,100       | 6,900 B*  | 5,000 B*      | 6,400 B   | 8,200    | <1,000   | 1.400 B    | 4,500 B  | 1,500 B  | 5,600 B  | 5,000 B  | 8,300      | 4,100 B    |

#### FIELD PARAMETERS

| THEFT                              |   |       |      |      |       |       |       |       |       |      |       |       |       |       |        |        |
|------------------------------------|---|-------|------|------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------|--------|
| Dissolved Oxygen (mg/L)            | _ | 8,13  | 0.36 | 0.25 | 0.14  | 0.14  | 0.15  | 1.18  | 8.71  | 1.25 | 0.26  | 0.51  | 0.19  | 0.86  | 0.83   | 1.09   |
| Oxidation Reduction Potential (mv) | • | 323.7 | 28.6 | 18.1 | -73.2 | -73.2 | -49.8 | -91.8 | 344.7 | 57.1 | -92.5 | -31.9 | -36.9 | -51.4 | -189.9 | -173.2 |
| Notes:                             |   |       |      |      |       |       |       |       |       |      |       |       |       |       |        |        |

Notes

Shaded areas with bold numbers indicate cleanup level exceedance. -

25

B = Value within 5 times of the amount detected in the equipment blank sample

J = Estimated Value

N = Matrix Spike sample recovery outside acceptance limits

\* = Duplicate analysis Relative Percent Difference outside acceptance limits

H = Holding time exceeded

NA = Not Analyzed

(1) Cleanup values as developed in the ROD (unless otherwised noted)

No cleanup value was developed so the Federal Maximum Contamination Level was used
 No cleanup value was developed so the Massachusetts Maximum Contamination Level was used

(4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

| Table 7-4                                      |
|------------------------------------------------|
| Comparison of Historic Arsenic Results         |
| Shepley's Hill Landfill Groundwater Monitoring |

|            |        | Arsenic ( <i>u</i> g/L) |        |        |              |         |        |        |        |        |        |        |        |        |          |
|------------|--------|-------------------------|--------|--------|--------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
| Well ID    | Aug-91 | Dec-91                  | Mar-93 | Jun-93 | Nov-96       | May-97  | Oct-97 | May-98 | Nov-98 | May-99 | Nov-99 | May-00 | Nov-00 | May-01 | Oct-01   |
|            |        |                         |        |        |              |         |        |        |        |        |        |        | •      |        | <b>,</b> |
| SHL-3      | 35     | 120                     | 6.5    | NS     | NS           | <10     | <10    | <5     | <5.4   | 2.7 B  | <1.9   | <2.5   | 17.4   | <4.1   | <1.5     |
| SHL-4      | 260    | 140                     | 2.54   | NS     | 48.8         | 73.6 J  | 180    | 37.4   | 89.1   | 78.2   | 61.3   | 116    | 91.5   | 50.8   | 66.0     |
| SHL-5      | 23     | 38                      | 11.4   | NS     | 12           | <10     | <10    | <5     | 11.5   | 5.0 B  | 6.5    | <2.5   | 13.8   | 13.8   | 14.8     |
| SHM-96-5B  | NS     | NS                      | NS     | NS     | 1,440        | 3,300 J | 2,040  | 4,300  | 3,080  | 3,490  | 2,700  | 5,110  | 2,500  | 3,800  | 1,850    |
| SHM-96-5C  | NS     | NS                      | NS     | NS     | 71           | 43.2    | 43.1   | 49.5   | 46.8   | 57.0   | 44.8   | 52.2   | 40.3   | 80.5   | 41.1     |
| SHL-9      | 37     | 67                      | 42.4   | NS     | 46.9         | 16.1 J  | 25.2   | 15     | 27.2   | 71.3   | 28.5   | 15.0   | 31.4   | 15.1   | 28.1     |
| SHL-10     | 67     | 120                     | 280    | NS     | <u>3.4 B</u> | <10     | 209    | <5     | <5.4   | 2.7 B  | <1.9   | <2.5   | <4.2   | <4.1   | <1.5     |
| SHM-93-10C | NS     | NS                      | 21.3   | 18.1   | 12.4         | <10     | 10.5   | 7.5    | 10.2   | 10.8 B | 8.7    | 5.9 J  | 8.8    | 6.9    | 10.1     |
| SHL-11     | 320    | 320                     | 340    | NS     | 332          | 252 J   | 366    | 346    | 376    | 431    | 492    | 404    | 523    | 487    | 573      |
| SHL-19     | 340    | 710                     | 390    | NS     | 138          | <10     | 298    | 77.5   | 145    | 156    | 176    | 41.4   | 154    | 129    | 183      |
| SHL-20     | 98     | 89                      | 330    | NS     | 244          | <10     | 227    | 238    | 218    | 216    | 215    | 216    | 172    | 186    | 165      |
| SHL-22     | 27     | 25                      | 32.9   | NS     | 24.8         | <10     | 34.8   | 10.6   | <5.4   | 12.2 B | 7.3    | 14.6   | 45     | 47.6   | 44.2     |
| SHM-96-22B | NS     | NS                      | NS     | NS     | 324          | 318 J   | 352    | 365    | 406    | 707    | 1,440  | 1,360  | 1,180  | 1,540  | 1,670    |
| SHM-93-22C | NS     | NS                      | 68.9   | 49.8   | 44.6         | 40.4    | <10    | 31.6   | 51.1   | 42.8   | 33.2   | 34.4   | 47.8   | 19.7   | 31.6     |

Notes:

J: Estimated value

B: Value within five times of the amount detected in the equipment blank sample

NS: Not sampled

Bold numbers indicate cleanup level exceedances (MCL cleanup level is 50 ug/L)

### Table 7-5 Groundwater Analytical Results - October 30, 2001 Well SHM-96-22B, Varying Depth Shepley's Hill Landfill Devens, Massachusetts

|                                        | Well No.    | SHM-96-22B        | SHM-96-22B         |
|----------------------------------------|-------------|-------------------|--------------------|
| PARAMETERS                             | CLEANUP     | mid-screen sample | near-bottom sample |
|                                        | LEVEL (1)   | at 142.3-ft NGVD  | at 128.6-ft NGVD   |
|                                        | ug/L        | ug/L              | ug/L               |
| VOLATILES (8260B)                      |             |                   |                    |
| Xylenes                                | 10,000 (2)  | <5.0              | <5.0               |
| Acetone                                | 3,000 (4)   | 1.8 JN            | <5.0               |
| 2-Butanone                             |             | <5.0              | <5.0               |
| 4-Methyl-2-Pentanone                   | -           | <5.0              | <5.0               |
| Benzene                                | 5 (2)       | 1.1 J             | 1.2 J              |
| Methyl-t-Butyl Ether                   | 70 (4)      | <5.0              | <5.0               |
| 1,1-Dichloroethane                     | 70 (4)      | 1.4 J             | 1.9 J              |
| 1,2-Dichloroethene (total)             | 70 (2)      | 2.0 J             | 2.7 J              |
| 1,2-Dichloroethane                     | 5           | <5.0              | <5.0               |
| 1,3-Dichlorobenzene                    | 600 (2)     | <5.0              | <5.0               |
| 1,4-Dichlorobenzene                    | 5           | <5.0              | <5.0               |
| 1,2-Dichlorobenzene                    | 600         | <5.0              | <5.0               |
| METALS (6010B or as noted)             | +           |                   |                    |
| Aluminum                               | 6,870       | <7.7              | <7.7               |
| Arsenic                                | 50          | 1,670             | 1,240              |
| Barium                                 | 2,000 (2)   | 96.5              | 91.0               |
| Cadmium                                | 5 (2)       | 1.3               | 0.91               |
| Chromium                               | 100         | <0.70             | <0.70              |
| Copper                                 | 1,300 (3)   | 2.2               | 2.1                |
| Iron                                   | 9,100       | 82,200            | 70,600             |
| Lead                                   | 15          | 3.1               | 3.0                |
| Manganese                              | 1,715       | 1,960             | 3,730              |
| Mercury (7470A)                        | 2 (2)       | <0.10             | <0.10              |
| Nickel                                 | 100         | 7.7               | 7.2                |
| Selenium                               | 50 (2)      | <1.2              | <1.2               |
| Silver                                 | 40 (4)      | <1.5              | <1.5               |
| Sodium                                 | 20,000      | 40,300            | 40,900             |
| Zinc                                   | 2,000 (4)   | 5.6               | 6.4                |
| GENERAL CHEMISTRY                      |             |                   |                    |
| Alkalinity as CaCO <sub>3</sub>        | -           | 320,000           | 348,000            |
| Biochemical Oxygen Demand <sub>5</sub> | -           | <1,300            | <1,300             |
| Chloride                               | -           | 48,400            | 51,100             |
| Chemical Oxygen Demand                 | -           | 43,500 B          | 83,000 B           |
| Cyanide (Total)                        | 200 (2)     | <10.0             | <10.0              |
| Hardness as CaCO <sub>3</sub>          | -           | 249,000           | 285,000            |
| Nitrate as Nitrogen                    | 10,000 (2)  | 220               | <200               |
| Sulfate                                | 500,000 (2) | 2,200             | 2,400              |
| Total Dissolved Solids                 | -           | 412,000           | 449,000            |
| Total Suspended Solids                 | -           | 110,000           | 93,200             |
| Total Organic Carbon                   | -           | 8,300             | 8,900              |

#### FIELD PARAMETERS

| Dissolved Oxygen (mg/L)            | -   | 0.83   | 0.66   |
|------------------------------------|-----|--------|--------|
| Oxidation Reduction Potential (mv) | - 1 | -189.9 | -176.6 |
| рН                                 | -   | 6.96   | 6.90   |
| Specific Conductivity (uS/cm)      | -   | 901    | 935    |
| Temperature (° C)                  | -   | 10.4   | 10.5   |
| Turbidity (NTU)                    | -   | 23.4   | 9.0    |

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance. -

25

B = Value within 5 times of the amount detected in the equipment blank sample

J = Estimated Value

N = Matrix Spike sample recovery outside acceptance limits

(1) Cleanup values as developed in the ROD (unless otherwised noted)

(2) No cleanup value was developed so the Federal Maximum Contamination Level was used

(3) No cleanup value was developed so the Massachusetts Maximum Contamination Level was used

(4) No cleanup value was developed so the Massachusetts Contingency Plan GW-1 standard was used

| TABLE 8-1                                    |
|----------------------------------------------|
| Sample Preparation and Analysis Methods,     |
| Containers, Holding Times, and Preservatives |

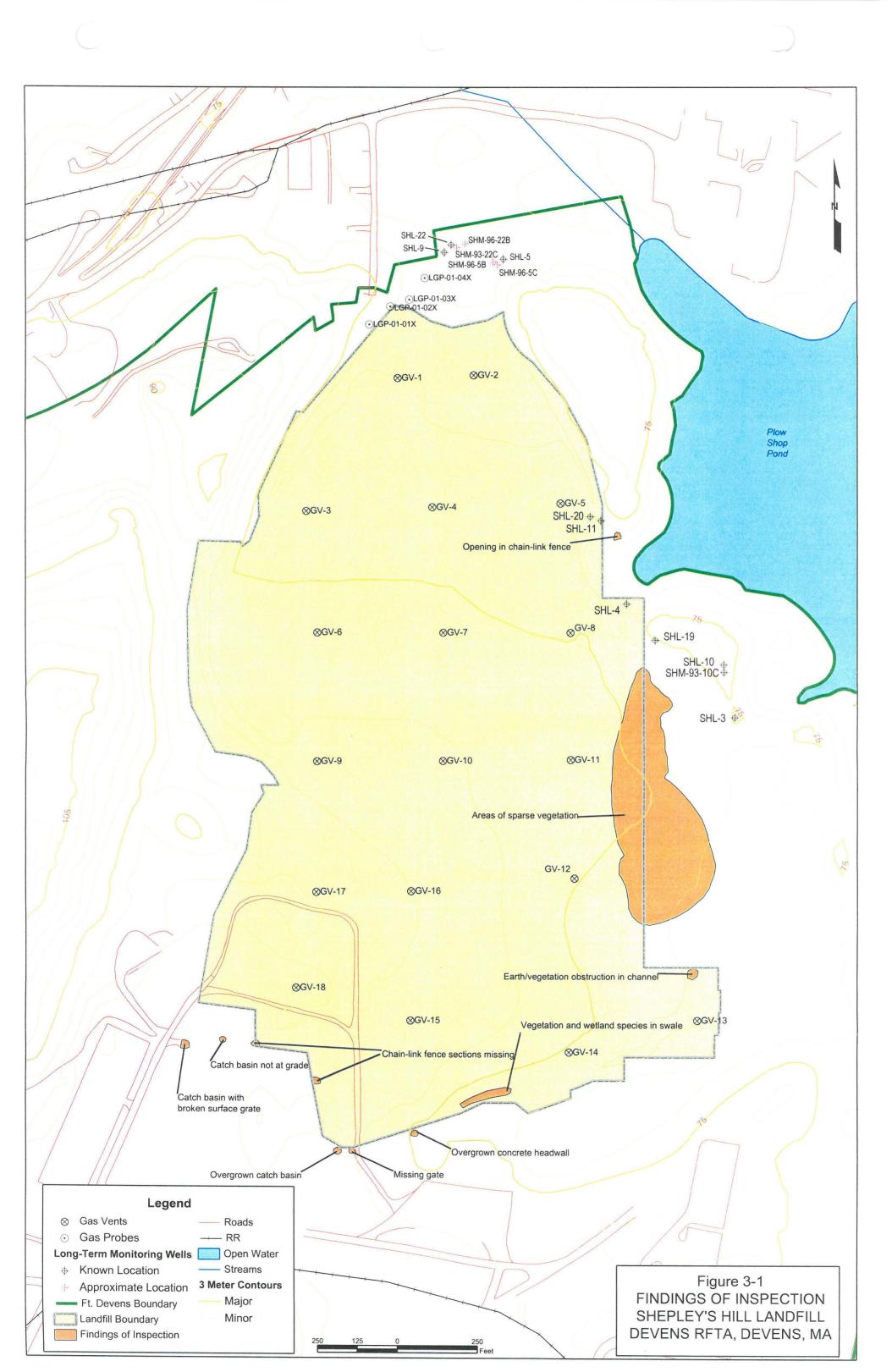
| Parameter             | Prepa-<br>ration<br>Method <sup>1</sup>                                 | Analysis<br>Method <sup>1</sup> | Sample<br>Container <sup>2</sup>                                | Minimum<br>Volume | Preservative                                              | Holding<br>Time (VTS) <sup>3</sup>                                                   |
|-----------------------|-------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|
| VOCs                  | with Te                                                                 |                                 | 3 X 40 mL vials<br>with Teflon septa<br>screw caps <sup>4</sup> | 40 mL             | 14 days                                                   |                                                                                      |
| Metals <sup>5</sup>   | Aetals <sup>5</sup> 3010A 6010B -<br>Trace<br>ICAP or<br>7000<br>series |                                 | 1-Liter HDPE                                                    | 300 mL            | HNO <sub>3</sub> to pH<br>< 2                             | 180 days (except Hg)<br>28 days (Hg)                                                 |
| Hardness <sup>6</sup> | NA                                                                      | 130.2/<br>SM2340B               |                                                                 | 100 mL            |                                                           | 180 days                                                                             |
| Cyanide               | NA                                                                      | 9010                            | 500-mL HDPE                                                     | 500 mL            | NaOH to pH<br>> 12, 4°+/-<br>2°C                          | 14 days                                                                              |
| Anions <sup>7</sup>   | NA                                                                      | 300                             | 500-mL HDPE                                                     | 100 mL            | 4°+/- 2°C                                                 | 48 hours for ortho-<br>Phosphate and Nitrate; 28<br>days for Sulfate and<br>Chloride |
| Alkalinity<br>TDS     | NA<br>NA                                                                | 310.1<br>160.1                  |                                                                 | 100 mL<br>100 mL  |                                                           | 14 days<br>48 hours                                                                  |
| COD                   | NA                                                                      | 410.1                           | 250-mL HDPE                                                     | 250 mL            | H <sub>2</sub> SO <sub>4</sub> to pH<br>< 2, 4°+/-<br>2°C | 28 days                                                                              |
| BOD                   | NA                                                                      | 405.1                           | 1-Liter HDPE                                                    | 1000 mL           | 4°+/-2°C                                                  | 48 hours                                                                             |
| TSS                   | NA                                                                      | 160.2                           | 1-Liter HDPE                                                    | 1000 mL           | 4°+/-2°C                                                  | 7 days                                                                               |
| TOC                   | NA                                                                      | 9060                            | 3 X 40 mL vials<br>with Teflon septa<br>screw caps <sup>4</sup> | 40 mL             | H2SO4 to pH<br>< 2, 4°+/-<br>2°C                          | 28 days                                                                              |

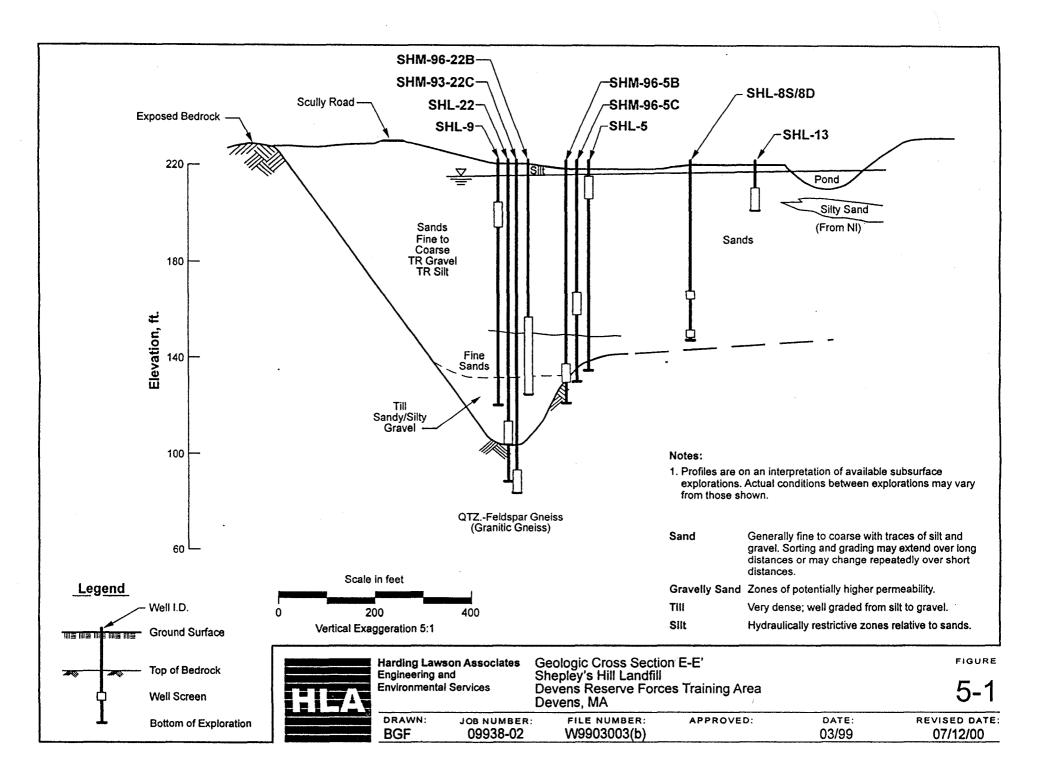
1 "Methods for Chemical Analysis of Water and Wastes", Cincinnati, OH, March 1979, EPA 600-4-79-020. "Test Methods for Evaluating Solid Waste, Physical and Chemical Methods", U.S. EPA SW-846, 3rd Edition.

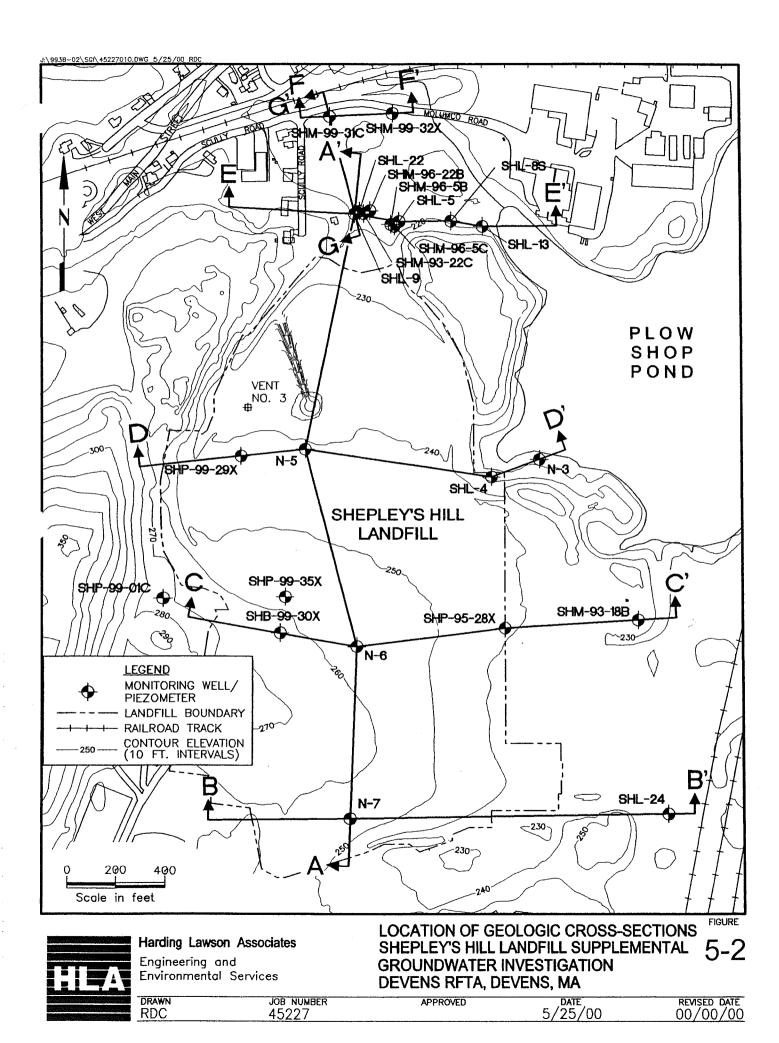
2 Additional sample containers/volume is required for matrix quality control samples.

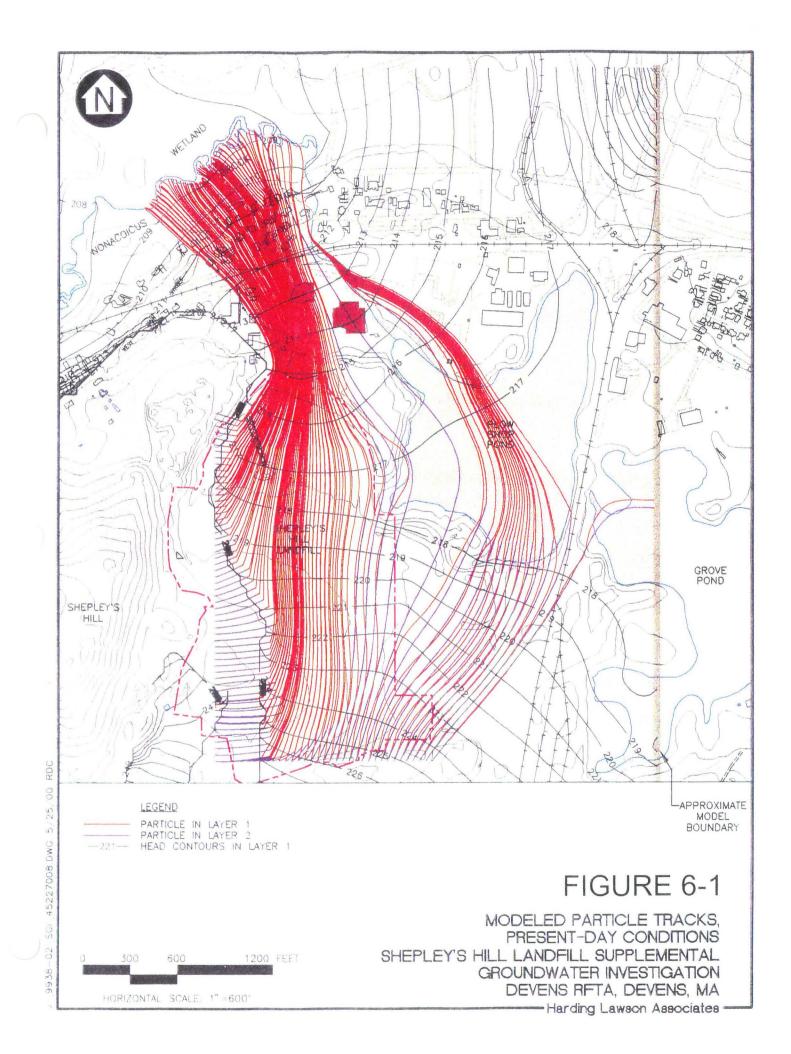
3 VTS - Verified Time when the Sample was collected.

4 Two vials will be shipped to the laboratory; one will be measured for pH in the field to verify that the sample has been preserved correctly (i.e. pH less than 2).


5 TAL metals include Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc.


6 Method 130.2 used Spring 2001, Method SM2340B used Fall 2001. Change in method was made to eliminate the interference to determining Hardness by Method 130.2 from other heavy metal ions.


7 Anions include Nitrate, Sulfate, Orthophosphate and Chloride.


NA = Not Applicable Hg = Mercury

**FIGURES** 









# APPENDIX A

## LANDFILL MAINTENANCE CHECKLIST

### APPENDIX A Landfill Maintenance Checklist

To be completed in indelible ink.

Inspections are to be performed annually.

DATE: 5 December 2001 INSPECTOR: Jonathan Kullberg & Scott Michalak

ORGANIZATION: U.S Army Corps of Engineers, New England District

| LANDFILL<br>ATTRIBUTE   | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                              | RECOMMENDATIONS                                                                                             | SAT/<br>UNSAT |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|
| Cover Surface           | 1. Vegetative cover is generally satisfactory except as noted in the comments that follow. Various species growing; mowed to about 8 inches height.                                                                                                                                                                                                                                                                       | 1. See specific comments under the sections that follow.                                                    | SAT           |
|                         | 2. There are several areas where possible settlement is occurring.                                                                                                                                                                                                                                                                                                                                                        | 2. Survey and compare to original.                                                                          | SAT           |
|                         | 3. Trees have been removed from the vicinity of GV-13, the southern perimeter, and the eastern perimeter                                                                                                                                                                                                                                                                                                                  | 3. Monitor for tree growth in future                                                                        | SAT           |
| Vegetative Growth       | 1. In the vicinity of gas vents 8, 11 and 12, the perimeter of the cap has some areas of sparse/eroded vegetation. The soil in the bare areas is mostly sand and is eroded in some areas. The area should be graded to fill in the eroded areas and topsoil should be placed to a depth of 6 inches over the sand to allow grass to grow. The grass should cover areas at least twenty feet beyond the limits of the cap. | 1. This area should be reseeded, with hay<br>or straw placed on the surface, to prevent<br>further erosion. | UNSAT         |
| Landfill Gas Vent Wells | 1. The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time.                                                                                                                                                                                                                                                                                       | 1. None                                                                                                     | SAT           |

| LANDFILL<br>ATTRIBUTE | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                  | RECOMMENDATIONS                                                                                                                                                                                                                                                                                                     | SAT/<br>UNSAT |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Drainage Swales       | 1. Most of the drainage swale on the south side is being invaded<br>by vegetation/wetland species. There are also intermittent zones of standing<br>water indicating a lack of proper channel slope and drainage.                                                                                                                                                                                                                             | 1. The south side drainage swale should be<br>cleared of vegetation and regraded as needed<br>to properly drain all areas of standing water.<br>Depending on water velocities, the channel<br>should then be reseeded or riprap should be<br>placed.                                                                | UNSAT         |
|                       | 2. In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the new rock-lined channel, the drainage swale is heavily overgrown with vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond. | 2. This reach of the drainage swale should<br>be cleared of the obstruction, all vegetation<br>and accumulated silt and sand, and regraded<br>to drain properly. Seeding, or riprap<br>placement, should follow, depending on<br>water velocities. Survey the swale to<br>determine how to promote proper drainage. | UNSAT         |
| Culverts              | 1. The concrete drainage structure at the terminus of the catch basin and<br>underground conduit system on the south side is overgrown with vegetation<br>and is silting in. Standing water is present and wetland species are becoming<br>established as well.                                                                                                                                                                               | 1. The structure and channel immediately<br>downstream should be cleaned out and the<br>channel regraded as required to properly<br>drain.                                                                                                                                                                          | UNSAT         |
| Catch Basins          | 1. Catch Basin #2 near the entrance to the site has a broken surface grate.                                                                                                                                                                                                                                                                                                                                                                   | 1. The surface grate should be replaced.                                                                                                                                                                                                                                                                            | UNSAT         |
|                       | 2. Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding ground.                                                                                                                                                                                                                                                                                    | 2. The rim of this catch basin should be lowered to meet the surrounding grade.                                                                                                                                                                                                                                     | UNSAT         |
|                       | 3. Catch basin #7 near the southwest corner of the site is substantially overgrown by the adjacent vegetation and will soon be completely overgrown and hidden from view.                                                                                                                                                                                                                                                                     | 3. This catch basin should be cleared of encroaching vegetation.                                                                                                                                                                                                                                                    | UNSAT         |

| Settlement                                              | 1. It appears that many areas of the landfill may be settling. The extent and its effect on the function of the landfill is unknown                                                                                                                                                                                 | 1. A topographic survey should be<br>conducted and compared to the original as-<br>built topo. This will indicate where and how<br>much settlement is taking place.                                      |           |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Erosion                                                 | 1. No substantial erosion observed. Areas along the east side perimeter in the vicinity of GV-8, 11 & 12 have sparse vegetation.       1. Reseed perimeter of cap and establish vegetative cover at least 20 feet beyond cap limits. Continue monitoring east perimeter of cap for advancing erosion in sandy areas |                                                                                                                                                                                                          | SAT       |  |  |  |
| Access Roads                                            | 1. The access roads on the site are in good condition.                                                                                                                                                                                                                                                              | 1. There are no problems on access roads which warrant repair at this time.                                                                                                                              | SAT       |  |  |  |
| Security Fencing                                        | 1. The perimeter chain-link security fence is in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at many locations. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the turfed cap area was seen.                                          | 1. The security fence should be repaired,<br>with all missing fence sections, including<br>gates, replaced or repaired.                                                                                  | UNSAT     |  |  |  |
| Wetland Encroachment                                    | 1. Wetland encroachment is taking place at several locations, but is not happening on a wide scale. Overall, the areas of encroachment are small. These locations have been noted in above comments.                                                                                                                | 1. Wetland encroachment should be<br>eliminated by simple mowing in some areas,<br>and by regrading channels in other areas.<br>The above comments address the actions to<br>take at specific locations. | UNSAT     |  |  |  |
|                                                         | : The following problem areas, from among those mentioned in the comments above<br>ing areas are the most critical and should be addressed before the next inspection:                                                                                                                                              | e, are the most critical and should be addressed b                                                                                                                                                       | efore the |  |  |  |
| (1) Repair and replace the                              | security fence and gates as required to control access to the site;                                                                                                                                                                                                                                                 |                                                                                                                                                                                                          |           |  |  |  |
| Along with the corrective a                             | actions listed in the report, the following is recommended:                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |           |  |  |  |
| (1) Repair and regrade aro                              | und the catch basins on the south side of the landfill,                                                                                                                                                                                                                                                             |                                                                                                                                                                                                          |           |  |  |  |
| (2) Conduct topographic su settlement or disturbance of | urvey of entire landfill and compare to original topo survey. Determine if corrective                                                                                                                                                                                                                               | action required for historic ponding areas due to                                                                                                                                                        | ,         |  |  |  |

General Comments: With the exception of the items mentioned above, and the other recommended repairs, the landfill is in fair condition and appears to be functioning adequately.

APPENDIX B

.

**GROUNDWATER FIELD ANALYSIS FORMS** 

.

| GWM      | WELL #           | SHL           | - 3                                          |                         |                    | US A                                                                                | rmy (       | Corps             | of Er       | igineers       | S                     |
|----------|------------------|---------------|----------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------|-------------|-------------------|-------------|----------------|-----------------------|
| SCREEN   | INTERVAL DEPTI   | 1. 25-1-35    | 33,5 0                                       | WELL DIAMETER:          | 2"                 | a a a a a a a a a a a a a a a a a a a                                               |             | •                 |             | -              |                       |
| H2O LEVE | EL: DEPTH, PRE P | UMP INSERTION | 30,80                                        |                         | ·                  | Groundwater Sampling Log Sheet<br>Project Name: Shepley's Hill Landfill, Devens, MA |             |                   |             |                |                       |
|          |                  | UMP INSERTION |                                              |                         | -                  | SAMPLE METH                                                                         |             |                   |             |                |                       |
| DEPTH SA |                  |               | $\frac{t+}{}$                                | REFERENCE POINT:        | PVC OR CASING      | Metals/Hardness                                                                     | 3 1 x 1L HI | DPE (ph<2)        |             | VOC'S 3x4      | 10ml glass vials (ph- |
| DATE:    | 290400)          |               | 0820                                         | DEPTHS RECORDED BENEATH | Cyanide 1 x 250    |                                                                                     |             | scAc)             | BOD 1 x 1L  | HDPE           |                       |
| SAMPLED  |                  | MODPY         | SIGNATURE:                                   | How The                 | Anions,Alkalinity  |                                                                                     |             |                   | COD 1 x 250 | mL HDPE (ph<2) |                       |
| RECORDE  | ED BY: JK NM K   | MODPY         | SIGNATURE: (                                 | Lewis Zu                | luc                | TSS 1 x 1L HDF                                                                      | ΡE          |                   |             | TOC 3 x 40n    | nl glass vials        |
| TIME     | WATER OPTH       | PUMP          | PURGE RATE                                   | CUM. VOLUME             | H20                | SPECIFIC                                                                            | рН          | ORP/Eh            | D. O.       | TURBIDITY      | COMMENTS              |
| 24hr     | BELOW MP feet    | SETTING       | ml/min                                       | PURGED                  | TEMP C             | CONDUCTANCE                                                                         |             | mv                | mg/L        | NTU's          |                       |
| 0855     | 31.16            | 1191          | 400                                          | 0.75 gal,               | 13,38              | 60.00                                                                               | 6.47        | 341.5             | 8:37        | 4.81           | clear                 |
| 0500     | 31.10            | 119.2         | 400                                          | 1.25 sal                | 15.54              | 60.00                                                                               | 6.42        | 300.3             | 8.18        | 2.43           |                       |
| 0505     | _31.09_          | 119.5         | 300                                          | 1.5 Sal                 | 16.90              | 62.00                                                                               | 6-40        | 340               | 8.08        | 1.84           |                       |
| 5910     |                  |               |                                              |                         |                    |                                                                                     |             |                   |             | 2.(=           | LOSF flour            |
| 5715     | 31.42            | 119.5         | 600                                          | 2.550l                  | 19,11              | 60.00                                                                               | 6.43        | 332.7             | 8.39        | 2.43           |                       |
| 2920     | 31.40            | 119.5         | 600                                          | 2.75gal,                | 17.37              | 63.00                                                                               | 6.38        | 336+Y             | B.10        | 0.80           |                       |
| 2725     | 31.27            | 119.5         | 500                                          | 3.0 gal.                | 16.84              | 63.00                                                                               | 6.37        | 339.2             |             | 0.79           | The three the second  |
| 1970     | 31.05            | 119.5         | 300                                          | 3.25 gat                | 16.70              | 64,00                                                                               | 6.37        | 739.9             | 8.05        | 0.52           | Lost flow             |
| 5942     | 31.05            | 1251          | 360                                          | 4.0 gal                 | 18,60              | 62:00                                                                               | 6.38        | 328.7             | 8.16        | 1.51           | to surget             |
| 2947     | 31.27            | 120.6         | 500                                          | 4.25 gal                | 19.21              | 62.00                                                                               | 6.35        | 316.1             | 8.16        | 1.80           | back flushi-          |
| 2950     | 30.41            | 120.6         | 300                                          | 4.5 gal                 | 19.91              | 63.00                                                                               | 6.36        | 313,3             | 8.03        | 1.63           |                       |
| 2953     | 31.19            | 120.6         | 200                                          | 4.73 c.a.               | 18.99              | 64.00                                                                               | 6.39        | 372.5             | 8.09        | 1.12<br>1.F7   | back Plushi           |
| 1003     | 31.43            | 120.0         | 500                                          | 500 val<br>5.28 sal     | 20.21              | 64.00                                                                               | 6.37        | 3/7.1             | 7097        | J.10           |                       |
| 1004     | 31.45            | 120.0         | 525                                          | In Ogal                 | 19.75              | 64.0                                                                                | 6.36        | 3/8.1             | 8.02        | 1.85           |                       |
| 1007     | 31,40            | 120.0         | 600                                          | (0.25gol                | 17.28              | 25.00                                                                               | 1.34        | 323.7             | 8.13        | 1.27           |                       |
|          | <u></u>          | 120.0         | <u> </u>                                     | (p. 25 get              |                    |                                                                                     | <u> </u>    | <u> </u>          |             |                |                       |
|          |                  |               | ······                                       |                         |                    |                                                                                     |             |                   |             |                |                       |
| <u> </u> |                  |               |                                              |                         |                    |                                                                                     |             |                   |             |                |                       |
| IOTES:   |                  | <u>L</u>      |                                              |                         | 3%                 | 30/                                                                                 | +0.1 unit   | +10 my            | 10%         | 10%            |                       |
|          | TAKEN AT: (      | 010           | matter 1                                     | Screen Volum            |                    | () <sup>2</sup> (35.1'-                                                             | 20.1 0.11   | )/1401            | 10/0        | n) = 0.7       | ant                   |
|          |                  |               | wedded                                       | Screen Volum            | <u>e - 11 / 12</u> | / (33.1                                                                             | له.بر       | <u>/ C 1.98/2</u> | al/tt       | <u></u> ,      | <u> J.a. (</u>        |
| XI       | and is not       | ing the el    | 1                                            |                         |                    |                                                                                     | 41=         | -ft               |             |                |                       |
|          | ven ser          |               | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> | ing inat screen         | fire la            |                                                                                     | <u> </u>    | <u> </u>          |             |                |                       |
|          |                  | -             |                                              |                         |                    |                                                                                     |             |                   |             |                |                       |
| SI# 17   | 15               | TURBIDITY #   | 76                                           | <u> </u>                | Pump - Grun        | fos Redi-flow II                                                                    |             | ,                 |             |                |                       |

| GWN      | 1 WELL #          | SHL           | -4           |                         |                | US A                                              | Army (                | Corps               | of En              | gineer         | S              |            |
|----------|-------------------|---------------|--------------|-------------------------|----------------|---------------------------------------------------|-----------------------|---------------------|--------------------|----------------|----------------|------------|
| SCREEN   | INTERVAL DEPTH    |               | -15'7"       | WELL DIAMETER           | : 3"           | 31                                                | -                     | -                   |                    | g Sheet        |                |            |
| H2O LEV  | 'EL: DEPTH, PRE P | UMP INSERTION | 10.68        | -                       | ·····          | Project Name: Shepley's Hill Landfill, Devens, MA |                       |                     |                    |                |                |            |
|          | DEPTH, POST P     |               | 1 10.81      |                         |                | SAMPLE METH                                       | OD: EPA I             | OW STRE             | SS METHO           | D              |                |            |
| DEPTH S  | SAMPLED:          | 14/ Ft        |              | REFERENCE POINT         |                |                                                   |                       |                     |                    | VOC'S 3x4      | 10ml glass vi  | als (ph<2) |
| DATE:    | 710ct 200         | TIME:         | 1410         | DEPTHS RECORDED BENEATH | 228.7) AGVD    |                                                   |                       |                     |                    | BOD 1 x 1L     |                |            |
| SAMPLE   |                   | M DL PY       | SIGNATURE: 7 | ancy Ma                 |                | Anions, Alkalinity                                |                       | 500ml HDPE          |                    | COD 1 x 250    |                | oh<2)      |
| RECORD   | ED BY: JK NM)K    | M DL PY       | SIGNATURE    | Masseyhm                | * CLEARE       | TSS 1 x 1L HDF                                    | PE                    |                     |                    | TOC 3 x 40n    | nl glass vials |            |
| TIME     | WATER DPTH        | PUMP          | PURGE RATE   | CUM. VOLUME             | H20            | SPECIFIC                                          | pН                    | ORP/Eh              | D. O.              | TURBIDITY      | COMN           | IENTS      |
| 24hr     | BELOW MP feet     | SETTING       | ml/min       | PURGED                  | TEMP C         | CONDUCTANCE                                       |                       | mv                  | mg/L               | NTU's          | 1              |            |
| 1428     | 10,81             | 73,0          | 150          |                         | 14.37          | 451                                               | 6.26                  | 7.8                 | 2.40               | 1301           | beige c        | olor -     |
| 1433     | 10,80             | 738           | 100          |                         | 14.91          | 451,                                              | 628                   | 14.2                | 2.46               | 41.6           |                |            |
| 1436     | 10,80             | 74,1          | 400          |                         | 15.86          | 450.<br>452                                       | 6.13                  | 20.6                | 1.48               | 29,8<br>18,5   |                |            |
| 1443     | 16.80             | 74.1          | 400          | 10,02                   | 15.54          | 443                                               | 6.12                  | 22.2                | 1.03               |                |                |            |
| 1446     | 10.86             |               | 400          | 1 yax                   | 15.46          | 442                                               | 6.10                  | 28.7                | 0.91               | 11.10          |                |            |
| 1450     | 10,81             | 74.1          | 400          |                         | 15,33          | 439                                               | 6.70                  | 29,3                | 0.82               | 8.             |                |            |
| 1453     | 10.8              | 74.1          | 400          | Zael                    | 15,30          | 433                                               | 6.10 *                | 28.7                | 0.76               | 54             |                |            |
| 456      | 10,80             | 741           | 450          | - aga                   | 15.07          | 432                                               | 6.11                  | JRIL                | 6.65               | 19             |                |            |
| 1500     | 10,80             | 74.1          | 450          | 3aal                    | 15,15          | 430                                               | 6.12                  | 25.1                | 0.63               | 4.9            |                |            |
| 1503     | 10,81             | 74.1          | 450          | 0                       | 15.1a          | 421,                                              | 614*                  | 23.4                | 0.57               | 3.2            |                |            |
| 150/1    | 10,81             | 74.5          | 450          | A                       | 15.09          | 421.0                                             | 613*                  | 255                 | 0.55               | 2.7            |                |            |
| 1309     | 10.81             | 741           | 450          | Ygal                    | 15.09          | 419                                               | 6.14*                 | 27.9                | 0.48               | 23             |                |            |
| 1512     | 10.80             | 741           | 450          | .0.                     | 15.07          | 417,                                              | 6,15*                 | 24.6                | 0.42               | 20             |                |            |
| 1515     | 10.80             | 74.1          | 450          | A                       | 15.04          | 416,                                              | 615¥                  | 25.4                | 0.40               | 1.8            |                |            |
| 1518     | 10.80             | 74,1          | 4.50         | Sael                    | 15.01          | 4140                                              | Gille !!              | 23.9                | 0.41               | 1.76           |                |            |
| 1521     | 10.80             | 741           | 450          | <u> </u>                | 14.95          | 413.                                              | bille                 | 25.3                | 0.39               | 1.4            |                |            |
| 1524     | 10,80             | 74.1          | . 450        |                         | 14.99          | 410                                               | 6.15                  | 28.6                | 6.36               | 1.8            |                |            |
|          |                   |               |              |                         |                |                                                   |                       |                     |                    |                |                |            |
| NOTES:   |                   |               | <u> </u>     | l                       |                |                                                   | 10.1                  | 110                 | 40%                | 100/           |                | J          |
|          |                   | 530           | Welter       | <u>l schen volum</u>    | $N_{e} = T(r)$ | 1/2 (15.                                          | +0.1 unit<br>7'- /0.1 | ~10 mv<br>\$8')(7.4 | 10%<br>181 act     | 10%<br>= (443) | 0.8 0          | s          |
|          |                   |               |              |                         |                |                                                   |                       | <u> </u>            | - <del>J - /</del> |                | J.             | <u></u>    |
| <u> </u> | off fluc          | hating        | wildhy Y     | rom 5.90                | - 7,14         | <u> </u>                                          |                       |                     |                    | <u></u>        |                |            |
|          | •                 |               | 1            |                         |                |                                                   |                       |                     |                    |                |                |            |
| V01# + + |                   |               |              |                         |                |                                                   |                       |                     |                    |                |                |            |

YSI # 8055 TURBIDITY # 39575

Pump - Grunfos Redi-flow II

| GWM      | WELL #          | SHL                                                                                                            | <u>_</u> - 5 |                  |               | US Army Corps of Engineers |            |            |            |              |                                        |  |
|----------|-----------------|----------------------------------------------------------------------------------------------------------------|--------------|------------------|---------------|----------------------------|------------|------------|------------|--------------|----------------------------------------|--|
| CREEN    | INTERVAL DEPTH  | +: 5                                                                                                           | 15.1         | WELL DIAMETER    | 2"            | 🛛 Groι                     | undwate    | er Sam     | oling Lo   | og Sheet     |                                        |  |
| 120 LEVE | L: DEPTH, PRE P |                                                                                                                |              | 3                | - <i>Le</i> e | Project I                  | Name: S    | Shepley's  | s Hill Lar | ndfill, Deve | ns, MA                                 |  |
|          | DEPTH, POST P   | UMP INSERTION                                                                                                  | +++ . 5.     | 58               | SAMPLE METH   | OD: EPA                    | LOW STRE   | SS METH    | OD         |              |                                        |  |
| DEPTH SA |                 | 10!                                                                                                            |              | REFERENCE POINT: | PVC DR CASING | Metals/Hardnes             | s 1 x 1L H | DPE (ph<2) | I          | VOC'S 3 x 4  | 10ml glass vials (ph<2)                |  |
| ATE:     | 30 Oct 20       | OI TIME:                                                                                                       | 1025         |                  | 218.53 NGVD   | Cyanide 1 x 250            | oml HDPE   | (ph>12 + A | scAc)      | BOD 1 x 1L   | HDPE                                   |  |
| AMPLED   | BY: JK(NM)K     | M DL PY                                                                                                        | SIGNATURE:   | 7 Jancy Moll     | ally          | Anions,Alkalinity          | ,TDS 1 x   | 500ml HDP  | Ε          |              | mL HDPE (ph<2)                         |  |
| ECORDE   | D BY: JK NM K   | M DL PY                                                                                                        | SIGNATURE:   | Nancy tchal      | ly \          | TSS_1 x 1L HDF             | <u>РЕ</u>  |            |            | TOC 3 x 40n  | ni glass vials                         |  |
| TIME     | WATER DPTH      | PUMP                                                                                                           | PURGE RATE   | CUM. VOLUME      | H20           | SPECIFIC                   | рН         | ORP/Eh     | D. O.      | TURBIDITY    | COMMENTS                               |  |
| 24hr     | BELOW MP feet   | SETTING                                                                                                        | ml/min       | PURGED           | TEMP C        | CONDUCTANCE                |            | mv         | mg/L       | NTU's        |                                        |  |
| 0381     | _5.7/_          | 57.6                                                                                                           | 300          |                  | 12.54         | 101.0                      | 5.97       | 30,7       | 1.17       | 614          |                                        |  |
| 047      | 5.77            | 57.6                                                                                                           | 300          |                  | 13.47         | /00.0                      | 5.9.3      | 27.7       | 0.41       | 2.96         |                                        |  |
| 1046     | 5.75            | 59.2                                                                                                           | 400          | l                | 14.46         | 101.0                      | 5.94       | 26.8       | 0.44       | 2.28         |                                        |  |
| D501     | 5,85            | 591                                                                                                            | 400          | /gal             | 15.11         | 101.0                      | 5.93       | 24.9       | 0.32       | 1.8/         | · · · · · · · · · · · · · · · · · · ·  |  |
| 053      | 5.84            | 59.2<br>59.1                                                                                                   | 700          |                  | 15.06         | 101.0                      | 5.92       | 24.4       | 0.24       | 1.48         | ······                                 |  |
| 056      | <u> </u>        | 59.1                                                                                                           |              |                  | 15,30         | 101.0                      | 5.92       | 20.4       | 0.27       | 1.19         |                                        |  |
| 103      | 5.70            | the second s | /06          | 0.00             | 15.15         | 101.0                      | 5.91       | 18.1       | 0.25       | 1,37         |                                        |  |
| 105      | _2-10           | 60.7                                                                                                           | 100          | - age (          | 17:15         |                            | 2.1/       | 70.1       | 10:05      | 1.21         |                                        |  |
|          |                 |                                                                                                                |              | <u>_</u>         |               |                            | <u> </u>   |            |            |              | ······································ |  |
|          | ·····           |                                                                                                                |              |                  |               |                            |            |            | 1          |              |                                        |  |
|          |                 | ······································                                                                         |              |                  |               |                            | 1          |            | 1          |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            | 1          |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            |            |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            |            |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            |            |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            | ļ          |              | ······································ |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            |            |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            |            |            |            |              |                                        |  |
|          |                 |                                                                                                                |              |                  |               |                            | +0.1 unit  |            |            |              |                                        |  |

1

:

÷

| GV        | VM WELL #           | SHM-            | 76-5B      |                           | <u> </u>    | 11 .                    |            | •           |             | ngineers        | S                      |
|-----------|---------------------|-----------------|------------|---------------------------|-------------|-------------------------|------------|-------------|-------------|-----------------|------------------------|
| SCRI      | EEN INTERVAL DEPT   | H <u>: 81.3</u> | -91.3      | WELL DIAMETER:            | <u>4"</u>   | Grou                    | Indwat     | er Samp     | oling Lo    | og Sheet        |                        |
| H2O       | LEVEL: DEPTH, PRE F | UMP INSERTION   | <u> </u>   |                           | -           |                         |            |             |             | ndfill, Deve    | ns, MA                 |
|           | DEPTH, POST F       | UMP INSERTION   | 6.72       | )                         |             | SAMPLE METH             | OD: EPA    | OW STRE     | SS METHO    | DD              |                        |
| DEPT      | TH SAMPLED:         | 85              |            | REFERENCE POINT:          | VCOR CASING | Metais/Hardnes          | s 1 x 1L H | DPE (ph<2)  |             | VOC'S 3x4       | 0ml glass vials (ph<2) |
| DATE      |                     |                 | 1404       | (DEPTHS RECORDED BENEATH) | A THEVD     | Cyanide 1 x 250         | ml HDPE    | (ph>12 + As | scAc)       | BOD 1 x 1L      |                        |
|           |                     | KM DL PY        | SIGNATURE: | Manayhman                 |             | Anions, Alkalinity      | •          | 500ml HDPE  | Ē           |                 | mL HDPE (ph<2)         |
| RECO      | ORDED BY: JK NM K   |                 | SIGNATURE: | Nandehm                   | Melly       | TSS 1 x 1L HDF          | РЕ         |             | است المحدود | TOC 3 x 40n     | nl glass vials         |
| ТІМ       | E WATER DPTH        | PUMP            | PURGE RATE | CUM. VOLUME               | H20         | SPECIFIC                | рН         | ORP/Eh      | D. O.       | TURBIDITY       | COMMENTS               |
| 241       | r BELOW MP feet     | SETTING         | mi/min     | PURGED                    | TEMP C      | CONDUCTANCE             | <u> </u>   | mv          | mg/L        | NTU's           |                        |
| 140       |                     | 73.3            | 1/06       | <u> </u>                  | 10,74       | 631                     | 6.67       | -38,        | 3.41        | 1.70            |                        |
| 14        | 30 7:84             | 63.2            | 600        | >/aal                     | 10,96       | 828                     | 6.59       | -60.6       | 0.40        | 1.00            |                        |
| 14        |                     | 63.2            | 200        | Zbal.                     | 11.2        | 833                     | 6.61       | -63.1       | 0.39        | 0.69            |                        |
| 19        |                     | 645             | 800        | 5                         | 11.26       | 835                     | 6.62       | -64.8       | 0.37        | 1.91            |                        |
| 142       | 59 7.50             | 104.7           | 850        | 13000                     | 11.20       | 833                     | 6.63       | -66.7       | 0.26        | 1.65            |                        |
| 142       | 2 1,54              | 64.0            | 900        | 40al                      | 11.92       | 834.                    | 6.69       | -68.3       | 0.22        | 1.10            |                        |
| 144       | 5 7.49              | 64.0            | 800        | 5 Jal                     | 1(123       | 836                     | 6.69       | -69.4       | 0.21        | 9.72            |                        |
| 144       | 9 7.49              | 64.0            | 806        |                           | 11.24       | 837                     | 6.64       | -70.2       | 0.19        | 1.00            |                        |
| 145       | 2 7:49              | 640             | 800        | lagal                     | 11.23       | 833                     | 6.65       | -70.9       | 0.16        | 1.02            |                        |
| 145       |                     | 64.0            | 800        | - 0 1                     | 11.23       | 834                     | 6.65       | -71.2       | 0.16        | Q. 9/2          |                        |
| 144       |                     | 64.0            | 600        | 1gal                      | 11.22       | 836                     | 6:65       | ~71.9       | 0.15        | 0.99            |                        |
| 150       | 1 7.50              | 64-0            | 608        | 0                         | 11,22       | 837                     | 6.60       | -73.2       | 0.14        | 0,95            |                        |
|           |                     |                 |            |                           |             |                         |            |             |             |                 |                        |
| <b> </b>  |                     |                 |            |                           |             |                         |            |             |             |                 |                        |
| <b> </b>  |                     |                 |            |                           |             |                         |            |             |             |                 |                        |
|           |                     | ·····           |            |                           |             |                         |            |             |             |                 |                        |
| <u> </u>  |                     |                 |            |                           |             | ·····                   |            |             |             |                 |                        |
|           |                     |                 | <u></u>    |                           |             |                         |            |             |             |                 |                        |
| <b>  </b> |                     |                 |            |                           |             |                         |            |             |             |                 |                        |
| NOTE      | <br>: Q ·           |                 |            |                           | 3%          | 20/                     | +0.1 unit  | +10 my      | 10%         | <u> </u><br>10% |                        |
|           | LE TAKEN AT: )ろ     | m               | 1          | cen volume =              | +1/2/       | う <sup>2</sup> ( a, 2/- |            |             | 10%         | (10%)           | 001                    |
|           |                     |                 | wetted su  | cer volume =              | 11 (712     | $\int (71.3^{-1})$      | 01.3       | 1(1,4874    | ga1/++      | <u> </u>        | 7u                     |
|           |                     |                 |            |                           |             |                         |            | -           | -           |                 | <b>~</b>               |

YSI # 0134

TURBIDITY # 39575

|   |         | -                | SHW          | 1-96-5C                  |               |                                                                                                                |                   |             |             |            |              |                        |
|---|---------|------------------|--------------|--------------------------|---------------|----------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------|------------|--------------|------------------------|
|   | GWM     | 1 WELL #         | SH           | L-5C                     |               |                                                                                                                | US A              | Army (      | Corps       | of Er      | ngineers     | \$                     |
| - | SCREEN  | INTERVAL DEPTH   |              |                          | WELL DIAMETER | : 4"                                                                                                           | Grou              | undwate     | er Samp     | oling Lo   | og Sheet     |                        |
| 1 | H2O LEV | EL: DEPTH, PRE P | UMPINSERTION | 1 10,19                  | -             | -                                                                                                              |                   |             |             |            | ndfill, Deve | ns, MA                 |
|   |         | DEPTH, POST P    |              | · 6.2                    |               |                                                                                                                | SAMPLE METH       |             |             |            |              |                        |
|   |         | AMPLED:          | _55'         | ~~~~                     |               |                                                                                                                | Metals/Hardnes    | s 1 x 1L HI | DPE (ph<2)  |            |              | 0ml glass vials (ph<2) |
|   |         | 30 Oct 200       |              | 1150                     |               | 219.25 NGVD                                                                                                    | Cyanide 1 x 250   | )ml HDPE    | (ph>12 + As | scAc)<br>- | BOD 1 x 1L   |                        |
|   | SAMPLE  | ED BY: JK (NM)KI |              | SIGNATURE:<br>SIGNATURE: | Tanesh Me     | the second s | Anions,Alkalinity |             |             | 2          | TOC 3 x 40m  | mL HDPE (ph<2)         |
|   | TIME    | WATER DPTH       |              | PURGE RATE               | CUM. VOLUME   | H20 X                                                                                                          | SPECIFIC          | pH          | ORP/Eh      | D. O.      | TURBIDITY    | COMMENTS               |
|   | 24hr    | BELOW MP feet    | SETTING      | mi/min                   | PURGED        | TEMPC                                                                                                          | CONDUCTANCE       | pr          | mv          | ma/L       | NTU's        | COMMENTS               |
|   | 1212    | 6.2              | 58.7         | 350                      |               | 11.63                                                                                                          | 490               | 5.99        | -15.8       | 1.85       | 1.55         |                        |
|   | 1216    | 6.25             | 58.9         | 375                      |               | 10.98                                                                                                          | 759               | 6.32        | -37,7       | 0,79       | 1.37         |                        |
|   | 1220    | 6.25             | 60.2         | 600                      |               | 11.28                                                                                                          | 789'              | 6.39        | -42.9       | 0.62       | 1.19         |                        |
|   | 1203    | 6.27             | 60.2         | 600                      | lage          | 11.45                                                                                                          | 807               | 6.43        | -46.5       | 0.31       | 1.21         | ·                      |
|   | 1996    | 6.27             | 1012         | 575                      |               | 11.37                                                                                                          | 812               | 6.44        | -483        | 0.27       | 7.01         |                        |
|   | 1229    | Jeizle_          | 60.2         | 600                      | Lgal          | 11.36                                                                                                          | 817               | 6:45        | -50,1       | 0.22       | 1.08         |                        |
|   | 1332    | 6.26             | 60.2         | 600                      | 7.0           | (1,37)                                                                                                         | <u>823</u><br>825 | 6.46        |             | 0.18       | 0.87         |                        |
|   | 1238    | 6.29             | 60.2         | 600                      | <u> </u>      | 11.36<br>11.31                                                                                                 | 825               | 6.48        | -53.2       | 0.20       | 0.94         |                        |
|   | 1241    | 6,27             | 40.2         | 600                      | `             | 11.31                                                                                                          | 826               | 6.48        | -50.6       | 0.16       | 0.8          | <u></u>                |
|   | 1244    | 10127            | 60.2         | 600                      | 492           | 11.33                                                                                                          | 827               | GUB         | -49.8       | 0.15       | 0.77         |                        |
|   |         | Ψ ,              |              |                          | , <u> </u>    |                                                                                                                |                   |             |             |            |              |                        |
|   |         |                  |              |                          |               |                                                                                                                |                   |             |             |            |              |                        |
|   |         |                  |              |                          |               |                                                                                                                |                   |             |             |            |              |                        |
|   |         |                  |              |                          |               |                                                                                                                | ·····             |             |             |            |              |                        |
|   |         |                  | -            |                          |               |                                                                                                                |                   |             |             |            |              |                        |
|   |         |                  |              |                          |               |                                                                                                                |                   |             |             |            |              |                        |
|   |         |                  |              |                          |               |                                                                                                                |                   |             |             |            |              |                        |
| ľ |         |                  |              |                          |               |                                                                                                                |                   |             |             |            |              |                        |
|   | NOTES:  |                  | nua          |                          | neer volume   | 3%                                                                                                             | 3%                | +0.1 unit   | +10 mv      | 10%        | 10%          | - 1                    |
| - | SAMPLE  | TAKEN AT:        | 247          | wetted so                | reen volume   | $= T(\mathcal{Y}_{A})$                                                                                         | (60.8'-           | 50,81)      | (7.4812     | 9a1/ft     | 3) = 6,5     | 991                    |
|   |         |                  | · /          |                          |               |                                                                                                                |                   |             |             | , (        |              | J                      |

| GWN     | / WELL #          | SHL           | 1-9        |                           |               | "                  |            | •              |         | ngineers     | S                                     |
|---------|-------------------|---------------|------------|---------------------------|---------------|--------------------|------------|----------------|---------|--------------|---------------------------------------|
|         | NINTERVAL DEPTH   |               |            | WELL DIAMETER:            | _2"           | Grou               | undwat     | er Samp        | oling L | og Sheet     |                                       |
| H2O LEV | /EL: DEPTH, PRE P | UMP INSERTION | N 10,14'   |                           | _             | Project I          | Name: S    | Shepley's      | Hill La | ndfill, Deve | ns, MA                                |
|         | DEPTH, POST P     | UMP INSERTION | N 10.14'   |                           | -             | SAMPLE METH        | OD: EPA    | LOW STRE       | SS METH | OD           |                                       |
| DEPTH S | SAMPLED:          | 20 ft         |            | REFERENCE POINT:          |               | Metals/Hardnes     | s 1 x 1L H | DPE (ph<2)     |         | VOC'S 3x4    | 10ml glass vials (ph<2)               |
| DATE:   | 10/30/01          | TIME:         | 0750       | (DEPTHS RECORDED BENEATH) | 222.84NGVD    | Cyanide 1 x 250    | omi HDPE   | (ph>12 + As    | scAc)   | BOD 1 x 1L   | HDPE                                  |
| SAMPLE  | DBY: JK NM K      |               | SIGNATURE: | - Paul Young              |               | Anions, Alkalinity | TDS 1x     | 500ml HDPE     | Ξ       | COD 1 x 250  | )mL HDPE (ph<2)                       |
| RECORD  | DED BY: JK NM K   | MDLOY         | SIGNATURE: | Paul Young                |               | TSS 1 x 1L HDF     | PE         |                |         | TOC 3 x 40n  | nl glass vials                        |
| TIME    | WATER OPTH        | PUMP          | PURGE RATE | CUM. VOLUME               | H20           | SPECIFIC           | рН         | ORP/Eh         | D. O.   | TURBIDITY    | COMMENTS                              |
| 24hr    | BELOW MP feet     | SETTING       | mi/min     | PURGED                    | TEMP C        | CONDUCTANCE        |            | mv             | mg/L    | NTU's        |                                       |
| 0830    | 10.25             | 72.6          | 300        |                           | 10,57         | 173                | 6.30       | 86,5-          | 3.81    | 3,33         |                                       |
| 0835    | 10,23             | 72.6          | 300        |                           | 11165         | 173                | 6145       | -40,7          | 3,10    | 1,23         | <u></u>                               |
| 0840    | 10,23             | 72,6          | 300        |                           | 12,48         | 183                | 6.53       | -75,2          | 2,52    | 1.42         |                                       |
| 0845    | 10.23             | 72.6          | 300        | 4.56                      | 17,21         | 184                | 6.61       | -82,1          | 2,20    | 1,43         |                                       |
| 0350    | 10,23             | 72,6          | 300        |                           | 12,79         | 185-               | 6162       | - 85.6         | 1.71    | 1.03         |                                       |
| 0855    | 10.23             | 72.6          | 300        |                           | 12,84         | 185                | 6,65       | - 88,5         | 1,56    | 1,04         |                                       |
| 0900    | 10.23             | 72,6          | 300        | 9.02                      | 12,96         | 185                | 6.65       | -89.7          | 1,38    | 0.93         | · · · · · · · · · · · · · · · · · · · |
| 0905    | 10.23             | 72,6          | 300        |                           | 13,03         | 185                | 6.65       | -90,9          | 1.30    | 0,92         |                                       |
| 0910    | 10.23             | 72.6          | 300        |                           | 13,06         | 184                | 6.72       | -91,6          | 11/8    | 1.03         |                                       |
| 0915    | 10,23             | 72,6          | 300        |                           | 13,04         | 134                | Gilda      | -91,8          | 1,18    | 1.04         |                                       |
|         |                   |               |            | -                         |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   | ·             |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   | ·······       |            |                           | 1             |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
| NOTES:  |                   |               |            | screen valume             | 3%            | (1) 72-53%         | +0.1 unit  | +10 mv         | 10%     | 10%          | ·                                     |
| SAMPLE  | TAKEN AT: (       | 1920          | wetted     | screen volume             | $c_{i} = TT($ | 12) (25.           | 0'-15      | <u>'.o')(2</u> | 8.32    | 143)= 6      | 2/itres                               |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |
|         |                   |               |            |                           |               |                    |            |                |         |              |                                       |

YSI # 3 /116 TURBIDITY # 39576

Pump - Grunfos Redi-flow II

|              | ۱                |                  |            |                                        |                | · · · · · · · · · · · · · · · · · · · |           |             |              |                         |                        |
|--------------|------------------|------------------|------------|----------------------------------------|----------------|---------------------------------------|-----------|-------------|--------------|-------------------------|------------------------|
| GWM          | 1 WELL #         | SHL              | -10        |                                        |                | US A                                  | rmy (     | Corps       | of En        | gineers                 | 6                      |
| SCREEN       | INTERVAL DEPT    |                  | _          | WELL DIAMETER                          | : A"           | 📗 🛛 Grou                              | Indwate   | er Samp     | ling Lo      | og Sheet                |                        |
| H2O LEV      | EL: DEPTH, PRE P | UMP INSERTION    | 31.32 ft   |                                        |                | Project N                             | Name: S   | Shepley's   | Hill Lar     | ndfill, Deve            | ns, MA                 |
|              |                  |                  | - 31.32 ft |                                        | -              | SAMPLE METH                           | OD: EPA I | OW STRES    | SS METHO     |                         |                        |
| 11           | AMPLED:          | 34.5 f           | Ł          | REFERENCE POINT                        |                |                                       |           |             |              |                         | 0ml glass vials (ph<2) |
| н            | 2900-01          | TIME:            | 1120       | (DEPTHETRECORDED BENEATH)              | 248,76 NGVD    | Cyanide 1 x 250                       |           |             |              | BOD 1 x 1L I            |                        |
| SAMPLE       |                  | MDLPY            | SIGNATURE: | famid In                               | free           | Anions, Alkalinity                    |           | 500ml HDPE  |              |                         | mL HDPE (ph<2)         |
|              | ED BY: JK NM K   | 7                | SIGNATURE: | Claud Z                                | ling           | TSS 1 x 1L HDF                        | 1         |             |              | TOC 3 x 40m             |                        |
| TIME<br>24hr | WATER DPTH       | PUMP             | PURGE RATE | CUM. VOLUME                            | H20            | SPECIFIC                              | рН        | ORP/Eh      | D. O.        | TURBIDITY               | COMMENTS               |
| 1152         | BELOW MP feet    | SETTING<br>122.1 | <br>600    | PURGED                                 | темр с<br>11,3 | CONDUCTANCE                           | 6.48      | mv<br>389.9 | mg/L<br>6.56 | NTU'S                   |                        |
| 1157         | 31.41            | 122.2            | 600        | 1.75                                   | 12.59          | 65.00                                 | 6.99      | 369.0       | 8.48         | ومحصوبة كالمتكر سياسيها |                        |
| 1202         | 31.11            | 122.1            | 600        | 2.25                                   | 12,57          | 61.00                                 | 678       | 358.4       | 8.75         |                         |                        |
| 1207         | 31.42            | 122.1            | 650        | 3.0                                    | 13.20          | 61.00                                 | 6.58      | 348.2       | 8.73         | 0.24                    |                        |
| 1212         | 31.42            | 122.1            | 650        | 4.0                                    | 13.20          | 61,00                                 | 6.97      | 348.8       | 8.73         | 0.25                    |                        |
| 1217         | 71.41            | 121.7            | 550        | 5.0                                    | 13.18          | 60.00                                 | 6.26      | 349.4       |              | 0,21                    |                        |
| 1222         | 31.41            | 121.7            | 550        | 5.5                                    | 13,52          | 61.00                                 | 6.97      | 344.7       | 8.71         | 0.27                    |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           | · · · ·     |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            | ······································ |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            | 4                                      |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
|              |                  |                  |            |                                        |                |                                       |           |             |              |                         |                        |
| NOTES:       |                  |                  |            | creen volume                           | 3%             | 1/2/3%                                | +0.1 unit | +10 mv      | 10%          | 10%                     |                        |
| SAMPLE       | TAKEN AT:        | 1225             | wetted s   | creen volume                           | = 71 (1        | 2 ( 37.4                              | 5-31.3    | $2^{(7.4)}$ | 181 941      | <u> [++²)=</u>          | 1.0 991                |
|              |                  |                  |            |                                        |                |                                       |           |             | •            |                         | <u> </u>               |

YSI# 175

| GWM      | I WELL #         | SHM-                                  | 93-10C     |                                       |                           | US A              | rmy (      | Corps       | of Er       | gineers      | 5                       |
|----------|------------------|---------------------------------------|------------|---------------------------------------|---------------------------|-------------------|------------|-------------|-------------|--------------|-------------------------|
| SCREEN   | INTERVAL DEPTH   |                                       |            | WELL DIAMETER:                        | 411                       | Grou              | Indwate    | er Samp     | oling Lo    | og Sheet     |                         |
|          | EL: DEPTH, PRE P |                                       |            |                                       |                           | Project N         | Name: S    | Shepley's   | Hill Lar    | ndfill, Deve | ns, MA                  |
|          | DEPTH, POST P    | UMP INSERTION                         | 38.36      | 2                                     |                           | SAMPLE METH       | OD: EPA I  | OW STREE    | SS METHO    |              |                         |
| DEPTH S  |                  | 51-87                                 |            | REFERENCE POINT:                      | PVC OR CASING             | Metals/Hardness   | 5 1 x 1L H | DPE (ph<2)  |             |              | 10ml glass vials (ph<2) |
| DATE:    | 290ctor          | TIME:                                 | 6830       | (DEPTHS RECORDED BENEATH)             | 248.42194                 | Cyanide 1 x 250   | ml HDPE    | (ph>12 + As | cAc)        | BOD 1 x 1L   |                         |
| SAMPLE   |                  | M DL PY                               | SIGNATURE: | Manashm                               | enelly                    | Anions,Alkalinity | TDS 1x     | 500ml HDPE  | <u> </u>    |              | )mL HDPE (ph<2)         |
| RECORD   | ED BY: JKNMK     | M DL PY                               | SIGNATURE: | Manshr                                | 2 Mell                    | TSS 1 x 1L HDF    | РЕ         |             |             | TOC 3 x 40m  | nl glass vials          |
| TIME     | WATER DPTH       | PUMP                                  | PURGE RATE | CUM. VOLUME                           | H20 (                     | SPECIFIC          | pН         | ORP/Eh      | D. O.       | TURBIDITY    | COMMENTS                |
| 24hr     | BELOW MP feet    | SETTING                               | mi/min     | PURGED                                | TEMP C                    | CONDUCTANCE       | L          | m٧          | mg/L        | NTU's        |                         |
| 6850     | 33,32            | 119.9                                 | 450        | ·                                     | 10.41                     | 507,              | 7.02       | 170,2       | 3.63        | 17.27        |                         |
| 0855     | 30,90            | 119.5                                 | 200        |                                       | 10,41                     | 492,              | 7.17       | 7.17:6      |             | 14.88        |                         |
| 0900     | 30.87            | 119.5                                 | 200        |                                       | J. Ola                    | 487,              | 7.24       | 140.5       | 1.87        | 1112         |                         |
| 0909     | 30.90            | 119.5                                 | 200        |                                       | 11.39                     | 487               | 7.27       | 114.5       | <u>1.77</u> | 11.07        |                         |
| 0909     | 31.02            | 1195                                  | 300        | <u> </u>                              | 11.48                     | 487               | 7.27       | 99.0        | 1.74        | 8,68         |                         |
| 0913     | 31.01            | 19.5                                  | <u> </u>   | - gal                                 | 11,10                     | -487              | 7.28       | 79.9        | 1.51        | 8.31         |                         |
| 0915     | 30.9             | 119.5                                 | 200        | ~~~~                                  | 11:72                     | 488               | 7.28       | (deid       | 1.44        | 7.62         |                         |
| 0918     | 31.04            | 119.5                                 | 200        |                                       |                           | 487               | 7.27       | 59.6        | 1.50        | 437          |                         |
| 0921     | 31.01            | 117.5                                 | 200        |                                       | 11.94                     | 488               | 7.28       | 57.0        | 1.39        | 7.01         |                         |
| 0974     | 31.05            | 119.5                                 | 906        | -deel                                 | 1.74                      | 488               | 1.27       | 57.1        | 1.25        | 607          |                         |
| {        |                  | · · · · · · · · · · · · · · · · · · · |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
| {        |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  |                                       |            | · · · · · · · · · · · · · · · · · · · |                           |                   |            | {           |             |              |                         |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  | - <u></u>                             |            |                                       |                           |                   |            |             | {           |              |                         |
| $\vdash$ |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
| NOTES:   |                  |                                       |            | <u></u>                               | 20/                       |                   | +0 1 unit  | +10 my      | 10%         | 10%          |                         |
|          |                  | 928                                   | sarafted   | screen volun                          | $-\overline{T}$           | (2,1)             | 7440       |             | 46100       | (1023) -     | 10.5001                 |
|          |                  |                                       | VVCGCO     | Screen Volun                          | $\mathbf{x} = \mathbf{u}$ | 12/133            | . / - 73   | ./ /(/.     | (01 ga      | ·/TE-)-      | <u> </u>                |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |
|          |                  |                                       |            |                                       |                           |                   |            |             |             |              |                         |

YSI# 00.55

\$

| GWM       | WELL #           | SHL      | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |           | US A              | rmv (     | Corps         | of En          | igineers     | <br>}                  |
|-----------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|-----------|---------------|----------------|--------------|------------------------|
| 11        | INTERVAL DEPTH   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WELL DIAMETER:            | o ″       |                   |           |               |                | og Sheet     |                        |
| 11        | EL: DEPTH, PRE P |          | Contraction of the local division of the loc |                           |           |                   |           |               |                | ndfill, Deve | ns. MA                 |
|           | DEPTH, POST P    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | -         | SAMPLE METHO      |           |               |                |              |                        |
| DEPTH S   |                  | -        | $\frac{10,17}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REFERENCE POINT:          |           | 1                 |           |               |                |              | 0ml glass vials (ph<2) |
| 11        | 2900701          |          | 1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (DEPTHS RECORDED BENEATH) |           | Cyanide 1 x 250   |           |               | cAc)           | BOD 1 x 1L   | • • •                  |
| SAMPLE    |                  | MOU PY   | SIGNATURE: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I durid Zu                |           | Anions,Alkalinity |           |               |                |              | mL HDPE (ph<2)         |
| RECORD    |                  | <u> </u> | SIGNATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fran an                   |           | TSS 1 x 1L HDF    |           |               | -              | TOC 3 x 40m  |                        |
| TIME      | WATER DPTH       | PUMP     | PURGE RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CUM. VOLUME               | HZO       | SPECIFIC          | рН        | ORP/Eh        | D. O.          | TURBIDITY    | COMMENTS               |
| 24hr      | BELOW MP feet    | SETTING  | mi/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PURGED                    | TEMP C    | CONDUCTANCE       |           | mv            | mg/L           | NTU's        |                        |
| 1432      | 18:9             | 42.8     | 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                       | 13.42     | 797.0             | 5.85      | -38.5         | 0.87           | 39.2         |                        |
| 1437      | 18.95            | 92-8     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                       | 14.69     | 798,0             | 6.42      | -66.8         | 0.49           | 8,91         |                        |
| 1442      | 18,95            | 97.8     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5                       | 14.85     | 798,0             | 6.45      | -74.2         | 0.78           | 8.92         |                        |
| 1448      | 18.95            | 92.8     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                       | 14.93     | 798.0             | 6.46      | -78.1         | 0.34           | 5.57         |                        |
| 1453      | 18.95            | 92.8     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                       | 14.94     | 799.0             | 6.47      | -81.0         | 0.31           | 5.08         |                        |
| 1457      | 18.95            | 92.8     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>T</b> .O               | 14.98     | 500,0             | 6.47      | -82.7         | 0.30           | 3.68         |                        |
| 1502      | 18.95            | 72-8     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                       | 14.97     | 800.0             | 6.48      | -84.9         | 0.29           | 2.95         |                        |
| 1507      | 18.94            | 92.8     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                       | 15.02     | 5000              | 6.48      | -86-8         | 0.28           | 1.75         |                        |
| 1512      | 18.96            | 972.8    | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0                       | 14.54     | 800.0             | 6.48      | -87.8         | 0.25           | 7.36         |                        |
| 1515      | 18,95            | 92.2     | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5                       | 15,15     | 806.0             | 6.49      | -87.3         | 0.26           | 1.23         |                        |
| 1523      | 18.95            | 92.3     | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                      | 15,60     | 800.0             | 6.50      | -88.9         | 0.29           | 0-84         |                        |
| 1527      | 18.95            | 92,5     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5                      | 15.53     | 801.0             | 6.49      | - 29.6        | 0.28           | 0.89         |                        |
| 1532      | 18,95            | 97.5     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.0                      | 15.35     | 801.0             | 6.49      | -80.1         | 0.27           | 104          |                        |
| 1537      | 18.95            | 72.5     | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5                      | 15.27     | 820.0             | 6.49      | - 71.0        | 026            | 0:77         |                        |
| 1542      | 18.95            | 92,5     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.0                      | 15.32     | 800.0             | 6.49      | -92.3         | 0.27           | 0.49         | . <u></u>              |
| 1546      | 18,95            | 92.5     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.5                      | 15.20     | 802.0             | 6.49      | -82.5         | 0.26           | 0.34         |                        |
| ļ         |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |           |                   |           |               |                |              |                        |
| <u> </u>  |                  |          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |           |                   |           |               |                |              |                        |
| <b> </b>  |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |           |                   |           |               |                |              |                        |
| <u></u>   |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |           |                   |           |               |                |              |                        |
| NOTES:    | TAKEN AT: /      | 548      | . / !-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                         | 3%        | $(3)^{2}/20^{3}$  | +0.1 unit | +10 mv        | 10%            | 10%          | 18 - 1                 |
| JAINIF'LE | IARENAL /        | <u> </u> | wetteo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Screen volume             | 2 = 71(7) | (24.8)            | -18.9     | $2^{-})(7,4)$ | <u>181 gai</u> | /f43) =      | 1.8 gal                |
|           |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |           |                   |           |               | -              |              | 0                      |

YSI# 175

and a second and a s

| GWN       | I WELL #         | <u> &lt;+1 -19</u> |                                                                                                                 |                           |               | US A               | Army (     | Corps            | of Er    | ngineer      | S            |                    |
|-----------|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------|--------------------|------------|------------------|----------|--------------|--------------|--------------------|
|           | INTERVAL DEPTH   |                    | 370                                                                                                             | WELL DIAMETER:            | 11            | (ال                |            | •                |          | og Sheet     |              |                    |
|           | EL: DEPTH, PRE P |                    |                                                                                                                 |                           | ·             | Project I          | Name: S    | Sheplev's        | Hill Lar | ndfill, Deve | ens. MA      |                    |
|           | DEPTH, POST P    |                    | the second se | 3.60                      | -             | SAMPLE METH        |            |                  |          |              |              |                    |
| DEPTH S   |                  | 29.0               |                                                                                                                 |                           | PVC AR CASING | Metals/Hardnes     |            |                  |          | VOC'S 3 X    | 40ml glass v | /ials (ph<2)       |
| <b>II</b> | 290ctol          | TIME:              | 1045                                                                                                            | (DEPTHS RECORDED BENEATH) |               | Cyanide 1 x 250    |            | ·· /             | cAc)     | BOD 1 x 1L   | •            | , ang (þ <b></b> ) |
| SAMPLE    |                  | M DL PY            | SIGNATURE: <                                                                                                    | Manarh                    |               | Anjons, Alkalinity |            |                  |          | COD 1 x 25   |              | (ph<2)             |
| RECORD    | ~~~~             |                    | SIGNATURE:                                                                                                      | Vancer                    | Mamall        | TSE 1 x 1L HDF     | ΡE         |                  |          | TOC 3 x 40r  |              | . ,                |
| TIME      | WATER DPTH       | PUMP               | PURGE RATE                                                                                                      | CUM. VOLUME               | H20           | SPECIFIC           | рн         | ORP/Eh           | D. O.    | TURBIDITY    | COM          | MENTS              |
| 24hr      | BELOW MP feet    | SETTING            | ml/min                                                                                                          | PURGED                    | TEMPC         | CONDUCTANCE        | · ·        | mv               | mg/L     | NTU's        | [            |                    |
| 2104      | 23.60            | 103.3              | 75.                                                                                                             | -                         | 14.12         | 254                | 6.67       | -61.2            | 1,82     | 190.2        | outre        | colored            |
| 1108      | 23.59            | 103.7              | 150                                                                                                             |                           | 12.67         | 254.               | 6.37       | -52.6            | 0.23     | 147.9        | 11           | 11                 |
| 1111      | 23.60            | 104.3              | 350                                                                                                             |                           | 13.35         | 250                | 6,37       | -51,0            | 0.78     | 146.2        | 11           | 4                  |
| 1115      | 23.61            | 104.5              | 350                                                                                                             |                           | 14,75         | ∂5∂,               | 6.38       | -47.8            | 0.80     | 132.1        | L.           | 4                  |
| 119       | 23.60            | 104.5              | 350                                                                                                             |                           | 14.73         | 253.0              | 6.41       | .44.4            | 0.66     | 107.6        | 11           | 11                 |
| liaz      | 23.60            | 104.5              | 350                                                                                                             | laal                      | 14.87         | 253.               | 4.41       | -48.3            | 0.58     | 92.1         | ( <u>(</u>   | ·,                 |
| 1125      | 23.61            | 104.5              | 350                                                                                                             | U                         | 14-88         | 252.0              | 6.41       | -46.9            | 0.60     | 82.5         | <u> </u>     | <u>`</u> ,         |
| 11-281    | 23,60            | 104.5              | 350                                                                                                             |                           | 14.91         | 252.0              | 1.41       | -43.1            | 0.61     | 78.0         | (ر           | 1,                 |
| 1131      | 23.60            | 104,5              | 35D                                                                                                             | Zael                      | 14.95         | <u>ə51.</u>        | 6.39       | -44.le           | 0.59     | 70.8         | 11           |                    |
| 1134      | <u> </u>         | 104.5              | 350                                                                                                             | 0                         | 14.96         | 251.0              | 6.42       | -41.0            | 0.54     | 62.7         | <u> </u>     |                    |
| 1131      | -23.60           | 104.5              | 350                                                                                                             |                           | 15.01         | <u> </u>           | 6.4/       | -41.0            | 0.52     | 58.7         |              |                    |
| 1140      | 23.60            | 104.5              | 350                                                                                                             | 3 gel                     | 14.99         | <u> </u>           | 640        | -41.0            | 0.53     | 55.2         | 0 1          | usty the           |
| 1144      | -23.60           | 104.5              | 350                                                                                                             | <u>V</u>                  | 15.01         | <u>251.</u>        | 637        | -38,4            | 0.52     | 50.3         | i            |                    |
| 1147      | 23.60            | 104.5              | 350                                                                                                             |                           | 15.0          | 251,               | 6,39       | -36.2            | 0.52     | 47.2         | (-<br>(1     | 4                  |
| 1150      | 23.60            | 104.5              | 350                                                                                                             | - Ygel                    | 15.07         | 251.               | 6.38       | - 36,1<br>- 36,5 | 0.52     | 40.6         |              |                    |
| 1154      | 23,60            | 104.5              | <u>350</u><br>350                                                                                               | V                         | 15,07         | 251                | 6.30       |                  | 0.52     | 38.7         |              |                    |
| 1304      | 23,60            | 104,5              | 350                                                                                                             | 500                       | 15.05         | 252.               | 6.36       | - 33.4           | 9.53     | 30.2         |              |                    |
| 130       | 23,60            | -10415<br>-10415   | 350                                                                                                             | - u yer                   | 15.07         | 252                |            |                  | 8:30     | 28.0         |              |                    |
| 1311      | 23.160           | 1045               | 350                                                                                                             |                           | 15.12         | 252.               | 635        |                  | 0.51     | 2716         |              |                    |
| NOTES:    |                  | NUM                |                                                                                                                 |                           | 3%            |                    | +0.1 unit  |                  | 10%      | 10%          |              |                    |
|           | TAKEN AT:        | 24-1211            | Iniotta                                                                                                         | d soren vol               |               | $\pi(2/2)^{2}$     | (32 01-    | -23 5%           |          | 81 141/f     | 13) = (      | Sal                |
|           |                  | 214 WIL            | g vvrtte                                                                                                        | a source M                |               |                    | <u>JL.</u> | 0.50             | 7111     | 01 941/1     | <u> </u>     | - Jul              |
|           |                  |                    |                                                                                                                 |                           |               |                    |            |                  |          |              |              |                    |

YSI # 0055 TURBIDITY # 39575

1

| G        | WM V       | VELL #        | SHL-          | 20         |                           |               | US A               | rmy (       | Corps       | of Er            | gineers      | 5                                     |
|----------|------------|---------------|---------------|------------|---------------------------|---------------|--------------------|-------------|-------------|------------------|--------------|---------------------------------------|
| SCF      | REEN INT   | ERVAL DEPTH   |               | 51.0 f.t   | WELL DIAMETER             | 4"            |                    |             |             |                  | og Sheet     |                                       |
| H2C      | LEVEL:     | DEPTH, PRE P  | UMP INSERTION |            | $f_{\epsilon}$            | *******       | Project I          | Name: S     | Shepley's   | Hill Lar         | ndfill, Deve | ns, MA                                |
|          | I          | DEPTH, POST P | UMP INSERTION |            |                           | -             | SAMPLE METH        | OD: EPA I   | OW STRE     | SS METHO         | DD           |                                       |
| DEF      | TH SAM     | PLED:         | 46 F          | t          | REFERENCE POINT:          | PVC OR CASING | Metals/Hardness    | s 1 x 1L HI | OPE (ph<2)  |                  | VOC'S 3x4    | 0ml glass vials (ph<2)                |
| DAT      | E: 3       | \$ OC+\$      |               | 0815       | (DEPTHS RECORDED BENEATH) | 236, 8% ANGVD | Cyanide 1 x 250    | ml HDPE     | (ph>12 + As | scAc)            | BOD 1 x 1L   | HDPE                                  |
| SAN      | IPLED B    |               | M DL PY       | SIGNATURE: | Nancu Inal                | MOVVAS        | Anions, Alkalinity | TDS 1x5     | 500ml HDPE  | Ē                | COD 1 x 250  | )mL HDPE (ph<2)                       |
| REC      | ORDED      | BY: JK NM K   | M DL PY       | SIGNATURE: | Namentin                  | chall         | TŞS 1 x 1L HDF     | PE          |             |                  | TOC 3 x 40m  | nl glass vials                        |
| Т        | ME         | WATER DPTH    | PUMP          | PURGE RATE | CUM. VOLUME               | H20 9         | SPECIFIC           | рН          | ORP/Eh      | D. O.¥           | TURBIDITY    | COMMENTS                              |
| 11       |            | BELOW MP feet | SETTING       | ml/min     | PURGED                    | TEMP C        | CONDUCTANCE        |             | mv          | mg/L             | NTU's        |                                       |
| LD2      | 345        | 19.39         | 96.6          | 800        |                           | 12.17         | 626                | 6.34        | 183,1       | 8.23             | 68.4         |                                       |
|          | 51         | 19.44         | 75.5          | 600        |                           | 12.21         | 793                | 6.51        | -27.8       | 0.56             | 50,4         |                                       |
| 02       | 255        | 19.44         | 95.5          | 300        | 1 gal                     | 12.74         | 807                | 6.53        | -31.8       | 0.47             | 36.1         |                                       |
| 08       | 51         | 19,43         | 95,5          | 500        |                           | 13.00         | 800                | 6.54        | -33.4       | 0.41             | 30.7         |                                       |
| ŊЧ       | <u>0</u> 7 | 1942          | 15.5          | 550        | 2 gel                     | 13.02         | 814                | 6.54        | -34.6       | 0.35             | 25.9         |                                       |
| D        | 106        | 19.43         | 15.5          | 550        | 0                         | 13.11         | 802                | 6.54        | -35.6       | 0.31             | 27.4         |                                       |
| Qq       | 10         | 19.42         | 45.5          | 550        | Zaal                      | 13.08         | 806                | 6.55        | -36.2       | 0123             | 19,9         |                                       |
| 0        | 1151       | 19.42         | 95.5          | 550        |                           | 13,12         | 810                | 6.55        | -36D        | 0,23             | 13:51        |                                       |
| 09       | 26         | 19.42         | 95.S          | 550        | ygal                      | 13.12         | <u>810</u>         | 6.54        | -36.6       | 6.21             | 13,40        |                                       |
| 04       | 25         | 19.42         | 95.5          | 550        | Soal                      | 13.26         | 800                | 6.54        | -36.7       | 6.20             | 13.03        |                                       |
| DY       | 24         | 19.42         | 955           | 550        | 0                         | 13.33         | 804                | 6,55        | - 36,9      | 0.19             | 13.17        |                                       |
|          |            |               |               |            |                           |               |                    |             |             | /                | ,            |                                       |
|          |            |               |               |            |                           |               |                    |             |             |                  |              | · · · · · · · · · · · · · · · · · · · |
| <b> </b> |            |               |               |            |                           |               |                    |             |             |                  |              |                                       |
|          |            |               |               |            |                           |               |                    |             |             |                  |              |                                       |
| <b></b>  |            |               |               |            |                           |               |                    | · · ·       |             |                  |              |                                       |
| <b> </b> |            |               |               |            |                           |               |                    |             |             |                  |              |                                       |
|          | ļ          |               |               |            |                           |               | ······             |             |             |                  |              |                                       |
| <b> </b> |            |               |               |            |                           |               |                    |             |             |                  |              |                                       |
|          |            |               |               |            |                           |               |                    |             |             |                  |              |                                       |
| NOT      |            |               | 1933          |            |                           | 3%            | 3%                 | +0.1 unit   | +10 mv      | 10%              | 10%          | - 1                                   |
| SAN      | IPLE TA    | KENAI:        | 12/           | wetted .   | screen volume             | $e_{i} = -T($ | 1/2) (51,          | 0-41,0      | ~)(7.48     | <u>'1921/+</u> 1 | (-2) = (-5)  | gal                                   |
|          |            |               |               |            |                           |               |                    |             |             | ~ 1              |              | 0                                     |
| j        |            |               |               |            |                           | <u> </u>      |                    |             |             |                  |              | ······                                |

YSI # 0134 TURBIDITY # 39575

| GVVM VVELL#       SHL-22         SCREEN INTERVAL DEPTH:       JOG.0-116.0ft       WELL DIAMETER:       Y''       US Army Corps of Engineers         H20 LEVEL:       DEPTH, PRE PUMP INSERTION       7.166.ft       WELL DIAMETER:       Y''       OS Army Corps of Engineers         H20 LEVEL:       DEPTH, PRE PUMP INSERTION       7.166.ft       WELL DIAMETER:       Y''       OS Army Corps of Engineers         DEPTH, POST PUMP INSERTION       7.166.ft       WELL DIAMETER:       Y''       Sample Diametric Stress Method         DEPTH SAMPLED:       111 ft       REFERENCE POINT:       Frodor Casing       Sample Metals/Hardness 1 x 1L HDPE (ph<2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| DEPTH, POST PUMP INSERTION       7.54 £±       SAMPLE METHOD: EPA LOW STRESS METHOD         DEPTH SAMPLED:       1/1 ££       REFERENCE POINT: FVOOR CASING       Metals/Hardness 1 x 1L HDPE (ph<2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| DEPTH SAMPLED:       111 ft       REFERENCE POINT:       Propose casing       Metals/Hardness 1 x 1L HDPE (ph<2)       VOC'S 3 x 40ml glass vials         DATE:       3d 2ct \$\overline{d}1\$       TIME:       1220       (DEPTHS RECORDED BENEATH)       TZO, 45 MGVD       Cyanide 1 x 250ml HDPE (ph>12 + AscAc)       BOD 1 x 1L HDPE         SAMPLED BY:       JK NM KM DL \$\overline{V}\$       SIGNATURE:       fourly fourng       Anions, Alkalinity, TDS 1 x 500ml HDPE       COD 1 x 250mL HDPE (ph         RECORDED BY:       JK NM KM DL \$\overline{V}\$       SIGNATURE:       fourly fourng       TSS 1 x 1L HDPE       COD 1 x 250mL HDPE (ph         TIME       WATER DPTH       PUMP       PURGE RATE       CUM/VOLUME       H20       SPECIFIC       pH       ORP/Eh       D. 0.       TURBIDITY       COMMENT         24hr       BELOW MP feet       SETTING       mi/min       PURGED       TEMP C       CONDUCTANCE       mv       mg/L       NTU's         1233       7.54       CC.G       400       4/L       11.02       8/9       C.27       -3.3       1.22       1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| DATE:       3 d 201 di Imme       TIME:       1 2 2 0       (DEPTHS RECORDED BENEATH)       TZO, 45 NGVD       Cyanide 1 x 250ml HDPE (ph>12 + AscAc)       BOD 1 x 1L HDPE         SAMPLED BY:       JK NM KM DL DY       SIGNATURE:       faul young       Anions, Alkalinity, TDS 1 x 500ml HDPE       COD 1 x 250mL HDPE (ph         RECORDED BY:       JK NM KM DL PY       SIGNATURE:       faul young       TSS 1 x 1L HDPE       COD 1 x 250mL HDPE (ph         TIME       WATER DPTH       PUMP       PURGE RATE       CUNVOLUME       H20       SPECIFIC       pH       ORP/Eh       D. 0.       TURBIDITY       COMMENT         24hr       BELOW MP feet       SETTING       ml/min       PURGED       TEMP C       CONDUCTANCE       mv       mg/L       NTU's         [233       7,54       CG.G       400       4/L       11.55       437       7.67       6/.9       3.09       0.51         [123]       8,15       GG.G       4/00       4/L       11.02       899       C.27       -3.3       1.22       /170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| DATE: $33$ $327$ $61$ IIME: $/220$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$ $720$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •     |
| Toc 3 x 40ml glass vials         TOC 3 x 40ml glass vials         TIME       WATER DPTH       PUMP       PURGE RATE       CUM/VOLUME       H20       SPECIFIC       PH       ORP/Eh       D. O.       TURBIDITY       COMMEN         24hr       BELOW MP feet       SETTING       mi/min       PURGED       TEMP C       CONDUCTANCE       mv       mg/L       NTU's         [233       7,54       CC.G       400       11.55       437       7.67       61.9       3.09       0.51         [1233       8,15       GC.G       400       42       11.02       899       C.27       -32.3       1.22       /170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )     |
| TIME         WATER DPTH         PUMP         PURGE RATE         CURAVOLUME         H20         SPECIFIC         pH         ORP/Eh         D. O.         TURBIDITY         COMMENT           24hr         BELOW MP feet         SETTING         ml/mln         PURGED         TEMP C         CONDUCTANCE         mv         mg/L         NTU's         NTU's         1233         7,54         CC.C         4000         11.55         437         7,67         G1.9         3.09         0.51         1239         8,15         GC.G         4000         4/L         11.02         899         C.27         -32.3         1.22         170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 24hr         BELOW MP feet         SETTING         mi/min         PURGED         TEMP C         CONDUCTANCE         mv         mg/L         NTU's           1233         7,54         66.6         400         11.55         437         7.67         61.9         3.09         0.51           1238         8,15         66.6         400         42         11.02         899         6.27         -36.3         1.22         1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 1233     7,54     66.6     400     11.55     437     7.67     61.9     3.09     0.51       1238     8,15     66.6     400     42     11.02     899     6.27     -36.3     1.22     1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 1238 8,15 66.6 400 46 11.02 899 6.27 -36.3 1.22 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 1243 8.18 65.1 300 11.08 933 6.19 -62.1 1.06 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1248 8.06 65.1 300 71 11.36 933 6.29 -66.4 1.02 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1253 8,04 65,1 300 11,32 940 6,39 -65,2 1,02 0,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1258 8.04 65.1 300 11.27 944 6.41 -63.3 0.97 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 1303 8.04 65.1 300 11.27 944 646 -60.8 0.94 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 1308 8.04 65.1 300 11.34 944 6.43 - 56.0 0.94 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1313 8,04 65,1 300 11,34 944 6,42 - 53,2 0,89 0,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1319 8,04 65,1 300 11,32 944 6.43 -51.4 0.86 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| ┝ <del>╶──┤</del> ────┤───┤───┤────┤────┤────┤────┤─                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| ┝╼╍╍┠╍╍╍╍╍┟╍╍╍╍┟╍╍╍╍┟╍╍╍╍┟╍╍╍╍┟╍╍╍╍┟╍╍╍┟╍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| NOTES: 3% 3% +0.1 unit +10 mv 10% 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | اليحص |
| SAMPLE TAKEN AT: 1325 wetted screen volume = TT (3/2') (116,0'-106.0') (28.32 )/ft3) = 25 ) itres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| $\frac{1}{12} = \frac{1}{12} + \frac{1}{12} $ |       |

TURBIDITY # 39576

YSI# 2 /16

4

4 --

ŧ.

| CREEN   | INTERVAL DEPTH   | 1: 62,7-9     | 2.7'       | WELL DIAMETER:            | 4 "        | Groι               | undwat   | er Samp     | oling Lo | og Sheet     |                       |
|---------|------------------|---------------|------------|---------------------------|------------|--------------------|----------|-------------|----------|--------------|-----------------------|
| 20 LEVE | EL: DEPTH, PRE P | UMP INSERTION | 7.511      | =T                        | (2" screen | Project I          | Name:    | Shepley's   | Hill Lar | ndfill, Deve | ns, MA                |
|         | DEPTH, POST P    | UMP INSERTION | 7,50       | FT                        |            | SAMPLE METH        | OD: EPA  | LOW STRE    | SS METH  | DD           |                       |
| EPTH SA | MPLED:           | 78'           |            | REFERENCE POINT:          |            |                    |          |             |          | VOC'S 3x4    | l0ml glass vials (ph< |
| ATE:    | 10/30/01         | TIME:         | 1435       | (DEPTHS RECORDED BENEATH) |            | Cyanide 1 x 250    | 0ml HDPE | (ph>12 + As | scAc)    | BOD 1 x 1L   | HDPE                  |
| AMPLED  | BY: JK NM K      | MDLØ          | SIGNATURE: | Paul Jour                 | 4          | Anions, Alkalinity | ,TDS 1 x | 500ml HDPE  | 2        | COD 1 x 250  | )mL HDPE (ph<2)       |
| ECORDE  | D BY: JK NM K    | M DLPY        | SIGNATURE: | faul Jours                |            | TSS 1 x 1L HDI     | РЕ       |             |          | TOC 3 x 40n  | nl glass vials        |
| TIME    | WATER DPTH       | PUMP          | PURGE RATE |                           | H20        | SPECIFIC           | рН       | ORP/Eh      | D. O.    | TURBIDITY    | COMMENTS              |
| 24hr    | BELOW MP feet    | SETTING       | mi/min     | PURGED                    | TEMP C     | CONDUCTANCE        |          | mv          | mg/L     | NTU'S        |                       |
| 440     | 7,51             | 63.1          | 250        |                           | 10,95      | 868                | 9,12     | 119.4       | 2,76     | 7,13         | LIGHTBRAN COLON       |
| 1445    | 7,51             | 63,1          | 250        |                           | 10.68      | 875                | 9.41     | 101.2       | 1,69     | 12,6         |                       |
| 1450    | 7,55             | 63,1          | 250        |                           | 10,51      | 871                | 9,33     | 94.2        | 0.97     | 22,3         |                       |
| 455     | 7,51             | 63.           | 250        | 34                        | 10.52      | 867                | 9.07     | 95.1        | 0.66     | 28,6         |                       |
| 500     | 7,51             | 63,1          | 250        |                           | 10,57      | 852                | 858      | 54.8        | 0,63     | 24,2         |                       |
| 505     | 7,51             | 63.1          | 250        |                           | 10,50      | 857                | 8.08     | -324,0      | 0,70     | 24.4         |                       |
| 510     | 7,51             | 63,1          | 250        | 61                        | 10,50      | 869                | 7.61     | -291,8      | 0,76     | 22,2         |                       |
| 515     | 7,51             | 63.1          | 250        |                           | 10,48      | 878                | 7,33     | -255.0      | 0.78     | 21,8         |                       |
| 1570    | 7.51             | 63,1          | 250        |                           | 10.45      | 839                | 7.01     | -220,9      | 0.82     | 29:55        |                       |
| 525     | 7,51             | 63.1          | 250        | 9L                        | 10.44      | 891                | 7.04     | -208.1      | 0.79     | 20,9         |                       |
| 530     | 7,51             | 63,1          | 250        |                           | 10.42      | 395                | 7.00     | -196-0      | 0.73     | 72,1         |                       |
| 535     | 7,51             | 63.1          | 250        |                           | 10,40      | 818                | 6.98     | -192.0      | 0,73     | 23,6         |                       |
| 540     | 7,51             | 63,1          | 250        | 171                       | 10:39      | 900                | 6.96     | -19/13      | 0.72     | 23.4         |                       |
| 545     | 7.51             | 63.1          | 250        |                           | 10:39      | 901                | 6.96     | -189.9      | 0.83     | 23,4         |                       |
|         |                  |               |            |                           |            |                    |          |             |          |              |                       |
|         |                  |               |            |                           |            |                    |          |             |          |              |                       |
|         |                  |               |            |                           |            |                    |          |             |          |              |                       |
|         |                  |               |            |                           |            |                    |          |             |          |              |                       |
|         |                  |               |            |                           |            |                    |          |             |          |              |                       |
| DTES:   |                  |               |            |                           |            |                    |          |             |          |              |                       |

YSI# 3/16

| GWN          | 1 WELL #         | SHM-                                | - 93 - 22   | C                       |              | US A                     | \rmy      | Corps            | of Er        | ngineer      | S                                      |
|--------------|------------------|-------------------------------------|-------------|-------------------------|--------------|--------------------------|-----------|------------------|--------------|--------------|----------------------------------------|
| SCREEN       | INTERVAL DEPTH   |                                     | - 134.3 ft  | WELL DIAMETER           | : 4"         | Grou                     | Indwat    | er Samp          | oling Lo     | og Sheet     |                                        |
| H2O LEV      | EL: DEPTH, PRE P |                                     |             | 2                       |              | Project N                | Name:     | Shepley's        | Hill La      | ndfill, Deve | ens, MA                                |
|              | DEPTH, POST PI   | UMP INSERTION                       | ~           |                         |              | SAMPLE METH              | OD: EPA   | LOW STRE         | SS METH      | OD           |                                        |
| DEPTH S      | AMPLED:          | 13                                  | 0'          | REFERENCE POINT         |              |                          |           |                  |              | VOC'S 3 x    | 40ml glass vials (ph<2)                |
|              | 30 OCT \$1       |                                     | _1030       | OEPTHS RECORDED BENEATH | 221,55 HGVD  | Cyanide 1 x 250          |           |                  |              | BOD 1 x 1L   |                                        |
| SAMPLE       |                  | MDLOY                               | SIGNATURE:  | Paul young              |              | Anions, Alkalinity       |           | 500ml HDPE       | =            |              | 0mL HDPE (ph<2)                        |
| RECORD       | ED BY: JK NM KI  | M DL(EY)                            | SIGNATURE:  | Paul young              |              | TSS 1 x 1L HDF           | РЕ<br>    |                  | 1            | TOC 3 x 40r  | mi glass vials                         |
| TIME         | WATER DPTH       | PUMP                                | PURGE RATE  | CUM.VOLUME              | H20          | SPECIFIC                 | рН        | ORP/Eh           | D. O.        | TURBIDITY    | COMMENTS                               |
| 24hr         | BELOW MP feet    | SETTING                             | ml/min      | PURGED                  | TEMP C       | CONDUCTANCE              |           | mv               | mg/L_        | NTU's        | and the state                          |
| 1038         | 25.04            | 109.7                               | 400         |                         | 11.52        | 580                      | 7,18      | -/33             | 2,44         | 2,46         | STARTING WATER<br>DEPTH 13 25,04 Fi    |
| 1043         | 25,85            | 109.0                               | 200         | 26                      | 11.20        | 581                      | 7.37      | -170.6           | 1.01         | 2,03         |                                        |
| 1048         | 25,88            | 109.0                               | 200         |                         | . 11.31      | 583                      | 7,48      | -178.1           | 1,25         | 1.92         |                                        |
| 1053         | 25.88            | 109.0                               | 150         |                         | 11.49        | 586                      | 7.52      | -174G            | 1.10         | 1.77_        |                                        |
| 1058         | 25,87            | 109.0                               | 150         |                         | 11.54        | 594                      | 7,53      | -970.7           | 1.04         | 1,61         |                                        |
| 1103         | 25,87            | 109.0                               | 200         |                         | 11.47        | 596                      | 7,54      | -174.7           | 1.06         | 1.59         |                                        |
| 110B         | 25,84<br>25,84   | 109.0                               | 200         |                         | 11.47        | 596                      | 7,54      | -174.6           | 1,07         | 1,53         |                                        |
| 1113         | 25,85            | 109.0                               | 200         |                         | 11,40        | 592<br>590               | 7,54      | -175,9           | 1,13<br>1,12 | 1.38         | <u> </u>                               |
| 1118<br>1123 | 25,86            | 109.0<br>109.0                      | ······      |                         | 11.42        | 588                      | 7,53      | -175,0<br>-173,2 | 1.09         | 1.37         |                                        |
| 1102         | ~~.66            | 101.0                               | 150         |                         | 11176        | 500                      | 1.50      | -1/312           | 1.07         | 1131         | · · · · · · · · · · · · · · · · · · ·  |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              |                                        |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              |                                        |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              | · · · · · · · · · · · · · · · · · · ·  |
|              |                  |                                     |             |                         | ·            |                          |           | ·                |              |              |                                        |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              |                                        |
| +            |                  | · · · · · · · · · · · · · · · · · · |             |                         |              |                          |           |                  |              |              |                                        |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              | <u></u>                                |
|              |                  |                                     |             |                         |              |                          |           |                  |              |              |                                        |
|              |                  |                                     |             |                         |              | ······                   |           |                  |              |              |                                        |
| OTES:        |                  | ,                                   |             |                         | 3%           | _ 3%                     | +0.1 unit | +10 mv           | 10%          | 1,0%         |                                        |
| SAMPLE       | TAKEN AT: //     | 30                                  | wetted si   | neer volume             | = TT (3)     | (134) <sup>2</sup> (134) | 3-124     | 3/)(2            | 8.32 /       | 1/£43) =     | 25 litres                              |
| *            |                  | . <u></u>                           |             |                         |              |                          |           |                  |              | <i> </i>     |                                        |
| T We         | Il has histor    | of mini                             | nal to no   | re-charge u             | ntil draw    | in Nowin 2               | 0-30      | ft bok           | ow Pr        | 1C. The      | refore, well                           |
|              | ~ ~              |                                     |             | 5                       |              |                          |           |                  |              |              | ······································ |
| wil          | 1 be drawn       |                                     | before atte |                         | tabilize p   | xaremeters               | at_       | a low            | <u>e 100</u> | rge vate     | 2,                                     |
| /SI# 3/      | 16               | FURBIDITY #                         | 26-24       | · )                     | Pump - Grunt | tos Redi-flow II         | -         |                  | -            | σ            |                                        |
|              | •                |                                     | 39576       |                         |              |                          |           |                  |              |              |                                        |

Groundwater Field Analysis Forms Fall 2001

| SCREEN      | <b>WELL #</b><br>NINTERVAL DEPTI<br>/EL: DEPTH, PRE F | H: 124.3 -  | 134.3           |                         | R: 411            | Grou<br>Proiect N  | Indwat<br>Name: 3 | er Samp<br>Sheplev's | bling Lo<br>Hill Lai | og Sheet<br>ndfill, Deve | ens, MA                               |
|-------------|-------------------------------------------------------|-------------|-----------------|-------------------------|-------------------|--------------------|-------------------|----------------------|----------------------|--------------------------|---------------------------------------|
|             |                                                       |             | 1 5,95          |                         |                   | SAMPLE METH        |                   |                      |                      |                          | . <u></u>                             |
| DEPTH S     | SAMPLED:                                              | 129 fe      |                 | REFERENCE POIN          |                   | Metals/Hardnes     | s 1 x 11 H        | DPF (nh<2)           | Not 2 grave          | VOC'S 3x                 | 40ml VOA's (ph<2)                     |
| DATE:       | 5/15/01                                               | TIME:       | 0500            | (DEPTHS RECORDED BENEAT |                   | Cvanide 1 x 250    |                   | (nh>12 + A)          | scAc)                |                          |                                       |
| SAMPLE      |                                                       |             | SIGNATURE:      | - 11                    | <u>721,331600</u> | Anions, Alkalinity |                   | 500ml HDP            | = ~                  | COD 1 x 25               | 0mL HDPE (ph<2)                       |
|             | DED BY: SUK P                                         |             | SIGNATURE:      |                         | · · ·             | TSS 1 x 1L HDF     | -                 | 00011111011          | -                    |                          | in' VOAE                              |
| TIME        | WATER DPTH                                            | PUMP        | PURGE RATE      | CUM. VOLUME             | H20               | SPECIFIC           |                   | ORP/Eh               | D. O.                | TURBIDITY                | COMMENTS                              |
| 24hr        | BELOW MP feet                                         | SETTING     | mi/min          | PURGED                  | TEMP C            | CONDUCTANCE        |                   | mv                   | mg/L                 | NTU's                    | Gommento                              |
| 0532        | 7.45                                                  | 72.2        | 1500            | 1961                    | 9.24              | 287                | 6.42              | 161.4                | 3.95                 | 4.8                      | Sulfur edar                           |
| 0836        | 5,50                                                  | 72.2        | 1100            | 2921                    | 9,93              | 410                | 7.16              | -56.6                | 0.58                 | 2,8                      | 50 10 0 001                           |
| 0830        | 11,10                                                 | 72.2        | 300             | 3.5 %                   | 9.65              | 402                | 7.45              | -102.2               | 0.45                 | 3.2                      | Strang Sulling Odu                    |
| 050         | 13.20                                                 | 87.9        | 1800            | 4 2-1                   | 10.51             | 315                | 7.50              | -111.1               | 0.40                 | 3.1                      | Variable Flow                         |
| 2855        | 16.50                                                 | 104.5       | 7200            | 7 941                   | 10.51             | 376                | 7.54              | -122,4               | 0.19                 | 5,3                      | as well drive                         |
| 0900        | 19.85                                                 | 108,2       | 2000            | 9 9 21                  | 10.52             | 37"                | 7.55              | -172.3               | 0,19                 | 4.7                      |                                       |
| 0905        | 22.50                                                 | 108.2       | 1200            | // 901                  | 10.55             | 369                | 7.56              | (23.3                | 0.19                 | 4.8                      |                                       |
| 0910        | 24,60                                                 | 108.2       | 700             | 12 ge 1                 | 10.36             | 371                | 7.57              | -173.8               | 0.23                 | 4.6                      | 1                                     |
| 0915        | 25.25                                                 | 108.2       | 400             | 12.5 921                | 10.14             | 372                | 7.55              | -124,2               | 0,26                 | 5,2                      | Cuntinger Sully                       |
| 0920        | 25.70                                                 | 105.2       | 325             | 13.19.1                 | 9.50              | 375                | 7.58              | -124.9               | 0.29                 | 5.1                      |                                       |
| 0925        | 25.95                                                 | 105.2       | 200.4           | 13.5 541                | 9.47              | 362                | 7.99              | -176.7               | 0.33                 | 3.8                      | 1                                     |
| 6930        | 26.05                                                 | 108.2       | 250             | 1 <b>3.</b> 9ge 1       | 9.33              | 385                | 7.60              | -127.7               | 0.3-1                | 2.1                      | 1                                     |
| 0935        | 26.05                                                 | 108.2       | 200             | 14.2 gcl                | 9.28              | 388                | 7.60              | -129.0               | 0.35                 | 3.4                      |                                       |
| 0940        | 26.05                                                 | 105.7       | 700             | 14.5 yr 1               | 9.00              | 351                | 761               | -130.1               | 0.35                 | 3.1                      |                                       |
| 0945        | 26.05                                                 | 108.2       | 200             | 14.8561                 | 4107              | 391                | 7.61              | -130 2               | 0.34                 | 2.9                      |                                       |
| 0950        | 76.05                                                 | 108,2       | 200             | 15.0 401                | 9.05              | 392                | 7.60              | -130,2               | 0.34                 | 3.0                      | Senvela fak                           |
|             | 1                                                     | 1.          |                 |                         |                   |                    |                   | T                    |                      |                          |                                       |
|             |                                                       |             |                 |                         |                   |                    |                   |                      |                      |                          |                                       |
|             |                                                       |             |                 |                         |                   |                    |                   |                      |                      |                          |                                       |
|             |                                                       |             |                 |                         |                   |                    | L                 |                      |                      |                          |                                       |
| NOTES:      |                                                       | -           |                 |                         | 10.3 3%           | ¥ / 3%             | +0.1 uni          | t +10 mv             | 10%                  | 10%                      | )                                     |
| SAMPLE      | E TAKEN AT: 09                                        | 150         |                 |                         | - V               | 11 376             | V                 | 1                    | ± 0.03               | 5                        |                                       |
|             |                                                       |             |                 |                         |                   |                    |                   |                      |                      |                          |                                       |
| Note:       | Well has                                              | history 1   | Slow/           | minina or               | charge u          | intil rum          | red               | dow-                 | ħ                    | churt                    | 20 feet                               |
|             | •                                                     |             |                 | dum to                  | <b>•</b>          | 1                  | i                 | wetted               | screen               | volume                   | · · · · · · · · · · · · · · · · · · · |
|             |                                                       |             | ,               | <u> </u>                |                   |                    | =                 | TT (3/1              | ·)2(13               | 4.3'-124.3               | 5)[7.48] ga                           |
| YSI#<br>15} | 1472                                                  | TURBIDITY # | <sup>‡</sup> 75 |                         | Pump - Gru        | nfos Redi-flow II  |                   |                      | -                    |                          |                                       |
| $m^{15}$    | 1 - ( 1 -                                             |             |                 |                         |                   |                    | =                 | 6.5                  | ga                   | -1                       |                                       |

| GWN    | 1 WELL #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SIAM- 90      | - 72B       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      | ~            | -         |            | ngineer      |                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------|-----------|------------|--------------|-------------------|
| CREEN  | I INTERVAL DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:62.7- 9     | 2.7 lect    | WELL DIAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ε:</b> μ" | Grou                 | undwat       | er Sam    | oling Lo   | og Sheet     |                   |
| 20 LEV | EL: DEPTH, PRE P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UMP INSERTION | 1 G. DD fee | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2"seml)     | Project N            | Name:        | Shepley's | s Hill Lai | ndfill, Deve | ens, MA           |
|        | DEPTH, POST P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | SAMPLE METH          | OD: EPA      | LOW STRE  | SS METH    | OD           |                   |
| EPTH S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78 feet       | <u></u>     | REFERENCE POIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 11                   |              |           |            |              | 40ml VOA's (ph<2) |
|        | 5/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIME:         | (0:0)       | DEPTHE RECORDED BENEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | Cyanide 1 x 250      |              |           |            | BOD 1 x 1L   | HDPE              |
| AMPLE  | Tenders in the second se | •             | SIGNATURE:  | - VA L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200          | Anions, Alkalinity   |              |           |            | COD 1 x 25   | 0mL HDPE (ph<2)   |
|        | ED BY: SJK P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | SIGNATURE:  | - The second sec |              | TSS 1 x 1L HDF       |              |           |            | TOC 3x4      | ~~ <b>`</b>       |
| TIME   | WATER DPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PUMP          | PURGE RATE  | CUM. VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H20          | SPECIFIC             | PH           | ORP/Eh    | D. O.      | TURBIDITY    | COMMENTS          |
| 24hr   | BELOW MP feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SETTING       | ml/min      | PURGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMP C       | CONDUCTANCE          |              | mv        | mg/L       | NTU'S        |                   |
| 610    | 6.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.7          | 850         | 0.8 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.65         | 776.0                | 7.41         | 186.1     | 3.07       | 37           | Brunish high      |
| 015    | 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.7          | \$50        | 1.59-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.20         | 760.0                | 8.81         | -254.1    | 0.28       | 29           |                   |
| 520    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.7          | 875         | 2.5 yel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.42         | 851.0                | 6.82         | -134.5    | 0.34       | 30           | 1                 |
| 25     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 3.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.34         | 893.0                | 6.79         | -129.8    | 0,31       | 31           | Red-ud fyrr       |
| 3.     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 44 561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.42         | 865.2                | 6.79         | -130.9    | 0.31       | 29           |                   |
| >35    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 705         | 5.5 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.42         | \$79.0               | 6.81         | -137 8    | 0.31       | 78           |                   |
| 40     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 760         | 6.5 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.41         | 383                  | 6.81         | -139.1    | 030        | 26           |                   |
|        | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 7.5 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.43         | £82                  | 652          | 138.9     | 0.33       | 24           |                   |
| 53     | 6.612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.3          | 700         | 8.5 cgel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.41         | 852                  | 6.51         | -137.1    | 6.35       | 22           |                   |
| 55     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 9.3 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.41         | 883                  | 6,80         | -136.1    | 0.44       | 22           | Clarer un         |
| 100    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 10.2 gul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.43         | 883                  | 6.7          | -135.1    | 0.47       | 19           |                   |
| 05     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 11.4 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.47         | 882                  | 6.78         | -134.5    | 0.51       | 15           |                   |
| 110    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 760         | 12.0 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.51         | 881                  | 6.77         | -133.7    | 0.55       | 14           |                   |
| 115    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 12.9 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.50         | 882                  | 6.77         | -133.5    | 0.56       | 13           |                   |
| 20     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 13.8 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.55         | 851                  | 677          | -133.1    | 0.58       | 11           |                   |
| 125    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | To E        | 147gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.61         | 880                  | 6.76         | 432.8     | 0.59       | 10           |                   |
| 130    | 4.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.7          | 700         | 15.6 gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.65         | 880                  | 6.76         | -132.4    | 0.61       | 8            |                   |
| 135    | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 16.5 gul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.65         | 380                  | 6.76         | -137.2    | 6.62       | 7            |                   |
| 40     | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.3          | 700         | 17.4 gm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.66         | 800                  | 6-76         | 132.0     | 6.63       | 8            | marph forthe      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |              | <u> </u>  |            | <u> </u>     | <u> </u>          |
| DTES:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3%           | ± 761 3%             | +0.1 unit    | +10 mv    | 10%        | 10%          |                   |
| MPLE   | TAKEN AT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 <i>C</i>    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.3         | = 260                | $\checkmark$ | V         | 50.05      |              |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | wetted      | scheen Uduy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne = T       | $(\frac{1}{12})^2(q$ | 2.7'-1       | 52.7')(   | 7.481 g    | a1/ft3)      | = 4.9 ga)         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      |              |           | -          |              | -                 |
| 1#     | 581472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TURBIDITY #   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump - Gru   | nfos Redi-flow II    |              |           |            | ·····        |                   |

•

| SCREEN   | WELL #                                 | 1:106-116     |                                       | WELL DIAMETER           | : 4"         | Groundwater Sampling Log Sheet<br>Project Name: Shepley's Hill Landfill, Devens, MA |            |             |          |            |          |  |  |
|----------|----------------------------------------|---------------|---------------------------------------|-------------------------|--------------|-------------------------------------------------------------------------------------|------------|-------------|----------|------------|----------|--|--|
|          | EL: DEPTH, PRE P                       |               |                                       | oet                     |              |                                                                                     |            |             |          |            |          |  |  |
|          | DEPTH, POST P                          | UMP INSERTION |                                       | ee.t                    |              | SAMPLE METHOD: EPA LOW STRESS METHOD                                                |            |             |          |            |          |  |  |
| DEPTH SA |                                        | 11 Reef       |                                       | REFERENCE POINT:        | EVOOR CASING | NG Metals/Hardness 1 x 1L HDPE (ph<2) VOC'S 3 x 40ml VOA's (ph<2)                   |            |             |          |            |          |  |  |
|          | 5/15/01                                | TIME:         | 8:15                                  | DEPTHS RECORDED BENEATH | 220.45NGVC   | Cyanide 1 x 250                                                                     | 0ml HDPE ( | (ph>12 + As | icAc)    | BOD 1 x 1L |          |  |  |
|          | BÝ: SS JK P                            |               | SIGNATURE:                            | Ducult. fi              | E A          | Anions,Alkalinity,TDS 1 x 500ml HDPE COD 1 x 250mL HDPE (ph<2)                      |            |             |          |            |          |  |  |
| RECORDE  | ED BY: SS JK P                         | (BW)          | SIGNATURE:                            | Buch.                   | 9/a          | TSS 1 x 1L HDI                                                                      | PE         |             |          | TOC 3×40   | mL       |  |  |
| TIME     | WATER DPTH                             | PUMP          | PURGE RATE                            | CUM. VOLUME             | (BEO         | SPECIFIC                                                                            | рH         | ORP/Eh      | D. O.    | TURBIDITY  | COMMENTS |  |  |
| 24tır    | BELOW MP feet                          | SETTING       | mi/min                                | PURGED                  | TEMP C       | CONDUCTANCE                                                                         |            | mv          | mg/L     | NTU's      |          |  |  |
| 955      | 6.45                                   | 62.5          | 450                                   |                         | 8.29         | 374.0                                                                               | 7.29       | -23,1       | 6.54     | 3,30       |          |  |  |
| 959      | 6.67                                   | 62.1          | 400                                   | 1 gal                   | 8.78         | 791                                                                                 | 6.64       | -34,4       |          | 1:36       |          |  |  |
| 1004     | 6.67                                   | 62.1          | 400                                   |                         | 8.76         | 833.0                                                                               | 6.67       | - 40.9      |          |            |          |  |  |
| 1008     | 6,67                                   | 62.4          | 400                                   | 1.75 gal                | 8,83         | 841.0                                                                               | 6.69       |             | 0,80     | 1.07       |          |  |  |
| 012      | 6.67                                   | 62.2          | 400                                   | <u> </u>                | 8.91         | 842.0                                                                               | 6.71       | -42,1       | 0.73     |            |          |  |  |
| 1016     | 6.67                                   | 62.1          | 400                                   | 2 gal                   | 8.92         | 843.0                                                                               | 6,71       |             | 0.68     |            | <u> </u> |  |  |
| 1020     | 6.67                                   | 62.1          | 4/00                                  | 2.5 gal.                | 9.00         | 843.0                                                                               | 6.71       | -38.1       |          | 0.55       |          |  |  |
| 10 25    | 6.67                                   | 62,1          | 400                                   | 3 gal,                  | 9.02         | 843.0                                                                               | 6.72       | -37.3       | 0.33     | 0.00       |          |  |  |
|          |                                        |               |                                       | +                       |              |                                                                                     |            |             | <u> </u> |            |          |  |  |
|          |                                        |               |                                       |                         | ļ            |                                                                                     |            |             | <u> </u> |            | <u> </u> |  |  |
|          |                                        |               |                                       |                         |              |                                                                                     |            |             |          |            |          |  |  |
|          | · · · · · · · · · · · · · · · · · · ·  |               | · · · · · · · · · · · · · · · · · · · |                         |              |                                                                                     | <u> </u>   |             | <u> </u> |            |          |  |  |
|          |                                        |               |                                       | <u></u>                 | <u> </u>     |                                                                                     |            |             | <u> </u> |            |          |  |  |
|          |                                        |               |                                       |                         |              |                                                                                     |            |             |          |            |          |  |  |
|          |                                        |               |                                       |                         | <b> </b>     |                                                                                     | <b></b>    |             | İ        |            |          |  |  |
|          |                                        |               | 1                                     |                         |              |                                                                                     |            |             | t        |            |          |  |  |
|          | ·····                                  |               | 1                                     |                         |              |                                                                                     | 1          |             |          |            |          |  |  |
|          |                                        |               | L                                     |                         | <b> </b>     |                                                                                     | 1          |             |          |            | ······   |  |  |
|          |                                        |               |                                       | 1                       | 1            |                                                                                     |            |             |          |            |          |  |  |
| NOTES:   | ************************************** |               | · · · ·                               |                         | 3%           | ,z 3%                                                                               | +0.1 unit  | +10 mv      | 10%      | 10%        |          |  |  |
| SAMPLE   | TAKEN AT: /                            | 025           | welted                                | screen volum            | $i = \pi ($  | 2/12') ( 1110.                                                                      | 0'-101     | 0)(7        | HRI AA   | (1/43) =   | 65901    |  |  |
|          |                                        |               |                                       |                         |              |                                                                                     |            |             | J        |            | <u> </u> |  |  |
|          |                                        |               |                                       |                         |              |                                                                                     |            |             |          |            |          |  |  |
|          |                                        |               | <u></u>                               |                         | ·····        |                                                                                     |            |             |          |            |          |  |  |

|         | WELL#          |          |                      |                            |                                                                                                    | US Army Corps of Engineers<br>Groundwater Sampling Log Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|---------|----------------|----------|----------------------|----------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
|         | INTERVAL DEPTH |          | <u>51.0</u><br>19.02 | WELL DIAMETER:             | 4"                                                                                                 | Project N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nowate<br>Jame: S | heolev's   | Hill Lar            | ndfill, Dever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ns. MA           |  |
|         | DEPTH, POST PL | •        | 19.02                | Ft Ft                      | ,                                                                                                  | SAMPLE METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| EPTH SA | MPLED:         | 46 fee   |                      | REFERENCE POINT:           |                                                                                                    | Metals/Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 1 x 1L HE       | )PE (ph<2) |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0ml ∨OA's (ph<2) |  |
| ATE:    | 5/ 14/01       | TIME:    | 12145                | (DEPTHS RECORDED BENEATH). | <sup>th</sup> <b>23</b> (c, <b>s /</b> Ngvo Cyanide 1 x 250ml HDPE (ph>12 + AscAc) BOD 1 x 1L HDPE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     | IDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |
| AMPLED  |                | BW Dw    | SIGNATURE:           | Deford                     | 1                                                                                                  | Anions,Alkalinity,TDS 1 x 500ml HDPE COD 1 x 250mL HDPE (ph<2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| ECORDE  | D BY: SS JK PY | ́ вW     | SIGNATURE:           | Aldon                      | -0                                                                                                 | Anions, Alkalinity, TDS 1 x 500ml HDPE       COD 1 x 250mL         TOC $3 \times 40 - 1$ SPECIFIC       pH       ORP/Eh       D.O.       TURBIDITY         SPECIFIC       mW       mg/L       NTU's       STUT         COD 1 x 250mL       TURBIDITY         SECIFIC       MITU's      STUT         COD 1 S 2       C         COD 1 S 2       C         1       C       < |                   |            | 42                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| TIME    | WATER DPTH     | PUMP     | PURGE RATE           | CUM. VOLUME                | H20                                                                                                | SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | рН                | ORP/Eh     | D. O.               | TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMMENTS         |  |
| 24hr    | BELOW MP feet  | SETTING  | ml/min               | PURGED                     | TEMP C                                                                                             | CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | mv         | mg/L                | NTU's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |
| 12:55   | 19.13          | 98.5     | 1400                 |                            |                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | START PLAPING    |  |
| 13:02   | 19.09          | 96.2     | 1000                 |                            |                                                                                                    | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHANGE STREE     |  |
| 3:05    | 19.09          | 96.2     | 1000                 | 2,5 god                    | 12,42                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 37.0       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORANGE COLOR     |  |
| 3:08    | 19.09          | 96.2     | 1050                 | 3, Sgal                    | 12.48                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 1.1        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| 13:11   | 19.09          |          | 1050                 |                            | 12,61                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| 3:14    | 19.09          | 96.2     | 1050                 | 4,7gal                     | 12,55                                                                                              | ويحتمد وببرية الاستعادية المتعاد ومستعيرة كالتعا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| 3:17    | 19.09          | 96.2     | 1050                 |                            | 12.64                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>          |  |
| 3:20    | 19,10          | 76.2     | 10.50                | 6.3 Gal                    | 12,60                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| 3,25    | 19,10          | 96.2     | 1050                 | 810 Gal                    | 12,55                                                                                              | 718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······            | -18,9      | <u>0,26</u><br>0,25 | the statement of the st |                  |  |
| 3:29    | 19.10          | 96.2     | 1050                 | 9.0 Gal                    | 12,64                                                                                              | 719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.38              | -18.8      |                     | 8,21<br>6,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |  |
| 3:32    | 11.10          | <u> </u> | 1050                 | 710 gal                    | 12:66                                                                                              | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.38              | -19.7      | 0.23                | 6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |
| 3,35    | 1910           | 96.22    | 1050                 | 10,5gal                    | 12,64                                                                                              | 719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,39              | -18,8      | 0,23                | 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······           |  |
| 3:40    |                |          | 10.50                | 1010 gra                   | 12107                                                                                              | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 601               | 1010       | 0,0                 | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAKE SAME        |  |
| 2.20    |                |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|         |                |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|         |                |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|         |                |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|         | <u></u>        |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
|         |                |          |                      |                            |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·····            |  |
| IOTES:  | l              | 3:40     |                      | screen volum               |                                                                                                    | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0.1 unit -       | 10 mv      | 10%                 | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |

YSI# 472

|        | GWN     | NWELL#           | SI+L -                                | 19                                    |                          |             | 8                   |           | •           |          | gineers                                                                                                        | 5                                     |
|--------|---------|------------------|---------------------------------------|---------------------------------------|--------------------------|-------------|---------------------|-----------|-------------|----------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|        |         | I INTERVAL DEPTH |                                       |                                       | WELL DIAMETER            | 4           |                     |           |             |          | og Sheet                                                                                                       |                                       |
|        | H2O LEV | EL: DEPTH, PRE P | UMP INSERTION                         | 23.00 fa                              | 4                        | _           | Project N           | lame: S   | Shepley's   | Hill Lan | dfill, Deve                                                                                                    | ns, MA                                |
| ý<br>X |         | DEPTH, POST P    | UMP INSERTION                         | 23.07 f                               | eet                      | -           | SAMPLE METHO        | DD: EPAL  | OW STRES    | SS METHO | D                                                                                                              | <u></u>                               |
| ė      | DEPTH S | SAMPLED:         | 25 feet                               | · · · · · · · · · · · · · · · · · · · | REFERENCE POINT:         |             | Metals/Hardness     | 1 x 1L H  | DPE (ph<2)  |          | VOC'S 3x4                                                                                                      | l0ml VOA's (ph<2)                     |
|        | DATE:   | 5/14/01          | TIME:                                 | 10:00 .0                              | (DEPTHS RECORDED BENEATH | 241.34 NOVD | Cyanide 1 x 250     | mi HDPE   | (ph>12 + As | cAc)     | BOD 1 x 1L                                                                                                     | HDPE                                  |
|        | SAMPLE  | D BY: SS JK P    | YBW                                   | SIGNATURE: X                          | buau A. H.               | a /         | Anions,Alkalinity   | TDS 1 x 5 | 500ml HDPE  |          | COD 1 x 250                                                                                                    | )mL HDPE (ph<2)                       |
| 2      | RECORD  | DED BY: SS JK PI | (BW)                                  | SIGNATURE:                            | Buan 4.7                 | cu          | TSS 1 x 1L HDF      | Έ         |             |          | TOC 3~ 40                                                                                                      | mL                                    |
|        | TIME    | WATER DPTH       | PUMP                                  | PURGE RATE                            | CUM. VOLOME              | H20         | SPECIFIC            | рН        | ORP/Eh      | D. O.    | TURBIDITY                                                                                                      | COMMENTS                              |
|        | 24hr    | BELOW MP feet    | SETTING                               | ml/min                                | PURGED                   | TEMP C      | CONDUCTANCE         |           | mv          | mg/L     | NTU's                                                                                                          |                                       |
|        |         | 23.08            | 101.5                                 | 450                                   |                          | 10.30       | 114.0               | 6.94      | -52.2       | 2.63     | 260                                                                                                            | rery turbid                           |
|        | 1028    | 23.08            | 102.6                                 | 600                                   |                          | 10:45       | 110.0               | 6.44      |             | 0,78     | 234                                                                                                            | · · · · · · · · · · · · · · · · · · · |
|        | 1631    | 23.08            | 102.6                                 | 600                                   | 1 gal.                   | 10.69       | 109.0               | 6.37      | -41.8       | 0,44     | 210                                                                                                            |                                       |
|        | 1035    | 23.08            | 102.6                                 | 600                                   |                          | 10.95       | 109.0               | 6.32      |             | 0.35     | 183                                                                                                            |                                       |
|        | 1039    | 23.08            | 102.6                                 | 600                                   | 2 gal.                   | 10,90       | 106.0               | 6.28      | -30-6       | 0.27     | 134                                                                                                            | · · ·                                 |
|        | 1043    | 23.08            | 102.6                                 | 600                                   |                          | 10.92       | 105.0               | 6.25      | -36.3       | 6.25     | 116                                                                                                            |                                       |
|        | 1046    |                  | 102.6                                 | 600                                   | <u>3 gal,</u>            | 10.87       | 106.0               | 6.21      | -37.Z       | 0.23     | 99                                                                                                             |                                       |
|        | 1049    |                  | 102.6                                 | 600                                   | <u> </u>                 | 10.89       | 104.0               | 6.18      | -37.9       | 0.22     | 79                                                                                                             |                                       |
|        | 1054    |                  | 102.6                                 | 600                                   | 4 gal                    | 10.96       | 97.00               | 6.16      | -30.5       | 0.22     | 63.4                                                                                                           |                                       |
|        | 1058    |                  | 102.6                                 | 600                                   |                          | 10.88       | 94.00               | 6.15      | -32.8       | 0,24     | 53,7                                                                                                           |                                       |
|        | 101/02  |                  | 102.6                                 | 600                                   | 5 gel.                   | 10.75       | 94.00               | 6.14      | -31.4       | 0,27     | 39.5                                                                                                           |                                       |
|        | 1105    | 23.09            | 102.6                                 | 660                                   |                          | 10,78       | 92.0                | 6,17      |             | 6.29     | 35,7                                                                                                           |                                       |
|        | 1109    | 23.09            | 102.6                                 | 600                                   | 6gal.                    | 10.76       | 89.0                | 6.19      | -26,3       | 6.33     | 30,5                                                                                                           | · · · · · · · · · · · · · · · · · · · |
|        | 11/2    | 23.09            | 102,6                                 | 600                                   | 1gal.                    | 10,83       | 89.0                | 6,17      | - 23,8      | 0.37     | 26,1                                                                                                           | -                                     |
|        | 1115    | 23.09            | 102.6                                 | 600                                   |                          | 10.79       | 85.0                | 6,17      | -21.9       | 0.42     | the second s |                                       |
|        | 8111    | 23.09            | 102.6                                 | 600                                   | 1.75 gal                 | 10.78       | 84.0                | 6.18      | - 20.6      | 0.45     | 24.8                                                                                                           |                                       |
|        |         |                  | ·                                     |                                       | · · · · ·                |             |                     |           |             |          |                                                                                                                |                                       |
|        |         |                  |                                       |                                       |                          |             |                     |           |             |          |                                                                                                                |                                       |
|        |         |                  | · · · · · · · · · · · · · · · · · · · |                                       | ·                        |             |                     |           |             |          |                                                                                                                |                                       |
| l      | NOTES:  | 1                |                                       |                                       |                          | 3%          | 20/                 | +0.1 unit | +10         | 10%      | 400/                                                                                                           |                                       |
|        |         |                  | 20                                    | 1201207                               | Screen volume            |             | $(2/1)^2 (2)^{3\%}$ |           |             | 10%      | 10%                                                                                                            | - 5 8 - 1                             |
| •      |         |                  |                                       | wenea                                 | Screen voiume            | <u> </u>    | (12) (32.0          |           |             | 1.781 9  | @/++°) =                                                                                                       | - 3, 0 gal                            |
|        |         |                  |                                       |                                       |                          |             |                     |           |             |          |                                                                                                                | •                                     |

2

×

47

| SWM                      | WELL#                                 | SHL - 11         |                                                                            | 24 .                      |              | 14                                    | -         | •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gineers     | 5                                       |
|--------------------------|---------------------------------------|------------------|----------------------------------------------------------------------------|---------------------------|--------------|---------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|
| CREEN                    | INTERVAL DEPTH                        | 1: 148 -         | 29.8                                                                       | WELL DIAMETER:            | 2"           | Grou                                  | Indwate   | er Samp                                                                                                        | oling Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g Sheet     |                                         |
| 20 LEVI                  | EL: DEPTH, PRE PI                     | JMP INSERTION    | 18.70                                                                      | -                         | · · ·        | Project N                             | Name: S   | Shepley's                                                                                                      | Hill Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dfill, Deve | ns, MA                                  |
|                          | DEPTH, POST P                         | JMP INSERTION    |                                                                            |                           |              | SAMPLE METHO                          | OD: EPA I | OW STRES                                                                                                       | SS METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D           |                                         |
| EPTH SAMPLED: <u>ZZ'</u> |                                       | REFERENCE POINT: | REFERENCE POINT: Progr CASING Metals/Hardness 1 x 1L HDPE (ph<2) VOC'S 3 x |                           |              |                                       |           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         |
|                          | 5-14-01                               | TIME:            | 1300                                                                       | (DEPTHS RECORDED BENEATH) | 1236.34 NGVD | Cyanide 1 x 250                       | ml HDPE   | (ph>12 + As                                                                                                    | cAc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BOD 1 x 1L  | HDPE                                    |
| AMPLEC                   |                                       |                  | SIGNATURE                                                                  | Succe A.H.                | 2-           | Anions,Alkalinity                     | TDS 1x5   | 500ml HDPE                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | mL HDPE (ph<2)                          |
| ECORD                    | ED BY: SS JK PY                       | (BW)             | SIGNATURE:                                                                 | Burnt. 7                  | any          | TSS 1 x 1L HDF                        | РЕ        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOC 3×40    | mL                                      |
| TIME                     | WATER OPTH                            | PUMP             | PURGE RATE                                                                 | CUM. VOLUME               | H20          | SPECIFIC                              | рН        | ORP/Eh                                                                                                         | D. O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TURBIDITY   | COMMENTS                                |
| 24hr                     | BELOW MP feet                         | SETTING          | ml/min                                                                     | PURGED                    | TEMP C       | CONDUCTANCE                           |           | mv                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NTU's       |                                         |
| 300                      | 18,71                                 | 92.5             | 600                                                                        | 19a/                      | 11,53        | 627.0                                 | 6.09      | -41.4                                                                                                          | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.5        | slug of rust                            |
| 309                      | 18.71                                 | 92.5             | 600                                                                        |                           | 12.83        | 649                                   | 6.12      | -52.4                                                                                                          | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.5        | ~                                       |
| 308                      | 18,71                                 | 92.5             | 600                                                                        | 2 gal,                    | 13.04        | 649                                   | 6.13      | the second s | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.5        |                                         |
| 1312                     | 18.71                                 | 92.5             | 600                                                                        |                           | 13.18        | 66Z                                   | 6.14      | -62.0                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.3        |                                         |
| 316                      | 18.71                                 | 92.5             | 600                                                                        | J gal.                    | 13.04        | 662                                   | 6.16      | -64.0                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.0        |                                         |
| 323                      | 18,71                                 | 92.5             | 600                                                                        |                           | 13,30        |                                       | 6,15      | -67,5<br>-69.8                                                                                                 | 0,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19,4        |                                         |
| 326                      | 18,71                                 | 92.5<br>92.5     | 600                                                                        | 4 gal.                    | 13.28        | 671                                   | 6.16      | -71.5                                                                                                          | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.3        | · _ · · · · · · · · · · · · · · · · · · |
| 329                      | 18,71                                 | 92.5             | 600                                                                        | 5 cal.                    | 13,28        | 674                                   | 6.14      | -73.0                                                                                                          | and the second division of the second divisio | 14,3        | <del></del>                             |
| 352                      | 18.71                                 | 92.5             | 600                                                                        | Jeer.                     | 13.24        | 676                                   | 6,13      |                                                                                                                | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,4        |                                         |
| 335                      | 18.71                                 | 92.5             | 600                                                                        |                           | 13,31        | 676                                   | 6.14      | -75.0                                                                                                          | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8        | <u></u>                                 |
| 338                      | 18.71                                 | 92.5             | 600                                                                        | 6 gal.                    | 13.32        | 678                                   | 6,14      | - 76,4                                                                                                         | 0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,2        | ····                                    |
|                          |                                       |                  |                                                                            |                           |              | · · · · · · · · · · · · · · · · · · · |           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ·····                                   |
|                          | · · · · · · · · · · · · · · · · · · · |                  |                                                                            |                           |              |                                       |           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         |
|                          |                                       |                  |                                                                            |                           |              |                                       |           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         |
|                          |                                       |                  |                                                                            |                           |              |                                       |           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         |
| OTES:                    |                                       | 1                |                                                                            |                           | 3%           | <u></u> २%                            | +0.1 unit | +10 my                                                                                                         | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10%         |                                         |

Pump - Grunfos Redi-flow II

YSI# 158

TURBIDITY# 576

|                 | GWN        | WELL #            | SHM-9         | 3-10 C                                |                                       |              | US A                                              | rmy (     | Corps       | of En          | gineers      | <u> </u>                              |  |
|-----------------|------------|-------------------|---------------|---------------------------------------|---------------------------------------|--------------|---------------------------------------------------|-----------|-------------|----------------|--------------|---------------------------------------|--|
|                 |            | I INTERVAL DEPTH  |               |                                       | WELL DIAMETER:                        | 4"           |                                                   |           |             |                | g Sheet      |                                       |  |
|                 | H2O LEV    | EL: DEPTH, PRE PU | JMP INSERTION | 29.78 fee                             | -+                                    |              | Project Name: Shepley's Hill Landfill, Devens, MA |           |             |                |              |                                       |  |
|                 |            | DEPTH, POST PU    | JMP INSERTION | 29.55 f                               | eet                                   | -            | SAMPLE METHO                                      | DD: EPA L | OW STRES    | SS METHO       | D            |                                       |  |
|                 | DEPTH S    | SAMPLED:          | 50 -          | et                                    | REFERENCE POINT:                      | PVOOR CASING | Metals/Hardness                                   | 1 x 1L H  | DPE (ph<2)  |                | VOC'S 3×4    | 0ml VOA's (ph<2)                      |  |
| 28 - 2 <b>1</b> | DATE:      | 5/14/101          | TIME:         | 0815                                  | (DEPTHS RECORDED BENEATH)             | 248.42NGVD   | Cyanide 1 x 250                                   | ml HDPE   | (ph>12 + As | cAc)           | BOD 1 x 1L I | HDPE                                  |  |
| *               | SAMPLE     |                   |               | SIGNATURE:                            | Buan, Ha                              | rg-          | Anions, Alkalinity                                | TDS 1 x 5 | 500ml HDPE  |                | COD 1 x 250  | mL HDPE (ph<2)                        |  |
| 1               | RECORD     | ED BY: SS JK PY   | (BW)          | SIGNATURE: (                          | Buan J. H.                            | ig           | TSS 1 x 1L HDP                                    | È         |             |                | TOC 3 > 40   | m 2                                   |  |
|                 | TIME       | WATER DPTH        | PUMP          | PURGE RATE                            | CUM. VOLUME                           | H20          | SPECIFIC                                          | рН        | ORP/Eh      | D. O.          | TURBIDITY    | COMMENTS                              |  |
|                 | 24hr       | BELOW MP feet     | SETTING       | ml/min                                | PURGED                                | TEMP C       | CONDUCTANCE                                       |           | mv          | mg/L           | NTU's        |                                       |  |
|                 | 835        | 30.16             | 117.62        | 300                                   |                                       | 10.15        | 454                                               | 6.72      | 184.6       | 3.27           | 1.55         |                                       |  |
|                 | 840        | 30.27             | 117.2         | 300                                   |                                       | 10,64        | 444                                               | 7.04      | 173.7       | 1.92           | 1.83         |                                       |  |
|                 | 845        | 30.33             | 118.8         | 200                                   | 19a1.                                 | 11.37        | HZZ                                               | 7.19      | 162.4       | 1.76           | 1:50         |                                       |  |
|                 | 850        | 30.33             | 116.8         | 200                                   | 5                                     | 11.60        | 422                                               | 7.24      | 160.0       | 1.72           | 1.62         |                                       |  |
|                 | 853        | 30.33             | 116.8         | 200                                   |                                       | 11.49        | 423                                               | 7,25      | 160.0       | 1.69           | 1.24         | ·<br>·                                |  |
|                 | 857        | 30.33             | 116.8         | 200                                   |                                       | 11.31        | 423                                               | 7,28      | 155.1       | 1.53           | 1.22         |                                       |  |
|                 | 900        | 30.33             | 116.8         | 200                                   |                                       | 11.26        | 423                                               | 7.28      | 152.6       | 1.57           | 1.20         |                                       |  |
|                 | 904        | 30,33             | 116,8         | 260                                   | 1.5 gal                               | 11.34        | 422                                               | 7,29      | 150.Z       | 1,45           | 1,24         |                                       |  |
|                 | 907        | 30.33             | 116.8         | 200                                   | <u> </u>                              | 11,44        | 422                                               | 7.30      | 148.7       | 1.44           | 1,20         | l                                     |  |
|                 | 910        | 30.33             | 116.8         | 200                                   | 1.75 gal                              | 11.65        | 421                                               | 7.30      | 146.2       | 1.46           | 1.23         | <u></u>                               |  |
|                 | 915        | 30.33             | 116.8         | 200                                   |                                       | 11.85        | 422                                               | 7.31      | 144.8       |                | 1.22         | · · · · · · · · · · · · · · · · · · · |  |
|                 | <u>918</u> | 30.33             | 116.8         | 200                                   | 2 gal.                                | 12.01        | 422                                               | 7,30      | 143.3       | 1.29           | 1.20         |                                       |  |
|                 |            | il                | ,<br>         |                                       | ~                                     |              |                                                   |           |             |                |              |                                       |  |
|                 |            | · · · · ·         |               |                                       |                                       |              |                                                   |           |             |                |              |                                       |  |
|                 |            |                   |               |                                       |                                       |              |                                                   |           |             |                |              |                                       |  |
|                 |            |                   |               |                                       | ·                                     |              |                                                   |           |             |                |              |                                       |  |
|                 |            |                   | · ·           |                                       |                                       |              |                                                   |           |             |                |              |                                       |  |
| 1               |            |                   |               |                                       |                                       |              |                                                   |           |             |                |              | <u></u>                               |  |
| 3               |            |                   |               |                                       |                                       |              |                                                   |           |             |                |              |                                       |  |
| High.           | NOTES:     |                   |               |                                       |                                       | 3%           | 20/                                               | +0.1 unit | +10 my      | 10%            | 10%          |                                       |  |
| • -             |            |                   | 20            | sealts 1                              | screen volum                          |              | $\frac{3}{2}$                                     | -U.I UHIL | ····)/~     | 10%            | 10%          | 65001                                 |  |
|                 |            |                   | ····          | wethe                                 | creen volum                           | e = 11(      | 12/(33.                                           | 1 - 75    | 1 / ().     | <u>781 981</u> | /++-) -      | wis gai                               |  |
| i in            |            |                   |               |                                       |                                       |              |                                                   |           |             |                |              |                                       |  |
|                 |            |                   |               | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |              |                                                   |           |             |                |              |                                       |  |

ar terdide Address Made

YSI# 158

TURBIDITY# 76

Pump - Grunfos Redi-flow II

| SCREEN I | INTERVAL DEPTH | 1: 17.8 - 3" | 7.6        | WELL DIAMETER:            | 2"            | Groundwater Sampling Log Sheet                    |             |            |       |              |                  |  |  |
|----------|----------------|--------------|------------|---------------------------|---------------|---------------------------------------------------|-------------|------------|-------|--------------|------------------|--|--|
|          |                |              |            |                           | D             | Project Name: Shepley's Hill Landfill, Devens, MA |             |            |       |              |                  |  |  |
|          | DEPTH, POST P  |              |            |                           | ~~            | SAMPLE METHOD: EPA LOW STRESS METHOD              |             |            |       |              |                  |  |  |
| DEPTH SA | MPLED:         | 35 feer      |            | REFERENCE POINT           | PVC OR CASING | Metals/Hardness                                   | 5 1 x 1L HC | 0PE (ph<2) |       | VOC'S 3x4    | 0ml VOA's (ph<2) |  |  |
| DATE:    | 5/14/01        | TIME:        | 0800       | (DEPTHS RECORDED BENEATH) | 249,76 NGVD   | Cyanide 1 x 250                                   | ml HDPE (   | ph>12 + As | cAc)  | BOD 1 x 1L H | IDPE             |  |  |
| SAMPLED  | BY: SS JK P    | YBW DW       | SIGNATURE: | Sword 1                   |               | Anions,Alkalinity                                 | ,TDS 1 x 5  | 00ml HDPE  |       | COD 1 x 250  | mL HDPE (ph<2)   |  |  |
| RECORDE  | DBY: SSJKP     | ( BW         | SIGNATURE: | OSNor                     |               | TSS 1 x 1L HDF                                    | РЕ          |            |       | TOC 3×40     | m2               |  |  |
| TIME     | WATER DPTH     | PUMP         | PURGE RATE | CUM, VOLUME               | H20           | SPECIFIC                                          | рH          | ORP/Eh     | D. O. | TURBIDITY    | COMMENTS         |  |  |
| 24hr     | BELOW MP feet  | SETTING      | mi/min     | PURGED                    | TEMP. C       | CONDUCTANCE                                       |             | mv         | mg/L  | NTU's        |                  |  |  |
| 0846     | 31.28          | 121.7        | 1000       | 3.592                     | 9,95          | 38,00                                             | 6.37        | 2.02.7     | 11.06 | 0,17         |                  |  |  |
| 0852     | 31.27          | 127,7        | 1000       | 4,5gel                    | 10,14         | 26.00                                             | 6.41        | 210,3      | 14.27 | 0:44         |                  |  |  |
| 08:55    | 31.25          | 121.8        | 1000       | 6,0 gol                   | 10,23         | 36.00                                             | 643         | 217.7      | 11,23 |              |                  |  |  |
| 08 39    | 31.25          | 121.8        | 1000       | 61 Pgil                   | 10,24         | 37,0                                              | 6.42        | 220.6      | 11,22 | 0.28         |                  |  |  |
| 0902     | 31,25          | 121.8        | 1000       |                           | 10.24         | 37,0                                              | 6.43        | 222,4      | 11,22 | 0.32         |                  |  |  |
| 0905     | 31.25          | 128.8        | 1,600      | 7.8 gal                   | 10,19         | 37.0                                              | 6,42        | 223.0      |       |              |                  |  |  |
| 0908     | 31,25          | 12/18        | 1000       | 8,0 42                    | 10.27         | 37.0                                              | 6146        | 225,0      |       | 0.31         |                  |  |  |
|          | 31.25          | 121.8        | 1000       | 9 a gal                   | 10.25         | 37.0                                              | 6.41        | 227,0      | 11.22 | 0,36         |                  |  |  |
| 0913     |                |              |            |                           |               |                                                   |             |            |       |              | TOOK SAMPL       |  |  |
|          | ·              |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
| ļ.       |                |              |            |                           |               |                                                   | ļļ          |            |       |              |                  |  |  |
|          |                |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
| <u> </u> |                |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
|          |                |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
|          |                |              |            |                           | ·             |                                                   |             |            |       |              |                  |  |  |
|          |                |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
|          |                | · ·          |            |                           |               | · · · · · · · · · · · · · · · · · · ·             |             |            |       |              |                  |  |  |
|          |                |              |            |                           |               |                                                   |             |            |       |              |                  |  |  |
| <u> </u> |                |              |            |                           |               |                                                   |             |            |       |              | <u></u>          |  |  |
| IOTES:   |                |              |            | ·                         |               |                                                   | 10.4        | 10         |       | 400/         |                  |  |  |
|          | TAKEN AT: ()   |              |            | sincen ushw               | 3%            | 3%                                                | +0.1 unit · | +10 mv     | 10%   | 10%          | \                |  |  |

YSI# 0000472 TURBIDITY# 39575

Pump - Grunfos Redi-flow II

|   | GWN     | 1 WELL #         | SHL-9       |                                       |                           |                 | US A                | .rmy (          | Corps           | of En    | gineers     | S                 |
|---|---------|------------------|-------------|---------------------------------------|---------------------------|-----------------|---------------------|-----------------|-----------------|----------|-------------|-------------------|
|   | SCREEN  | INTERVAL DEPTH   | 1:15-25     | feed                                  | WELL DIAMETER             | Ζ″              | Grou                | ndwate          | er Samp         | oling Lo | g Sheet     |                   |
|   | H2O LEV | EL: DEPTH, PRE P |             |                                       |                           | -               |                     |                 | <u> </u>        |          | dfill, Deve | ns, MA            |
| : |         | DEPTH, POST P    |             |                                       |                           | <b>-</b> .      | SAMPLE METHO        |                 |                 |          | D           |                   |
|   |         | AMPLED:          | 20 feet     |                                       | REFERENCE POINT           |                 |                     |                 |                 |          | VOC'S 3 x 4 | 10ml VOA's (ph<2) |
|   |         | 5/15/01          |             | 0800                                  | (DEPTHS RECORDED BENEATH) | 222.84NGVD      | Cyanide 1 x 250     |                 |                 |          | BOD 1 x 1L  | HDPE              |
|   | SAMPLE  |                  | $\sqrt{-1}$ | SIGNATURE:                            | berne A. Hig              |                 | Anions, Alkalinity, |                 | 500ml HDPE      | E        |             | )mL HDPE (ph<2)   |
|   | RECORD  | ED BY: SS JK P   | (BW/        | SIGNATURE: \                          | Buand. H                  | 4               | TSS 1 x 1L HDP      | E               |                 |          | TOC 3×40    | mL                |
|   | TIME    | WATER DPTH       | PUMP        | PURGE RATE                            | CUM. VOLUME               | H20             | SPECIFIC            | рН              | ORP/Eh          | D. O.    | TURBIDITY   | COMMENTS          |
| , | 24hr    | BELOW MP. feet   | SETTING     | mi/min                                | PURGED                    | TEMP C          | CONDUCTANCE         |                 | mv              | mg/L     | NTU's       |                   |
|   | 8288    | 38 8.74          | 63.6        | 350                                   |                           | 7.63            | 93.0                | 6.10            | 110.6           | 1.76     | 31.5        | Slug of rust      |
|   | 842     | 8,81             | 64.3        | 500                                   | 19a1                      | 8;27            | 92.0                | 6.06            | 88.4            | 0,70     | 29.8        | @ initial stort   |
|   | 846     | 8.81             | 64,2        | 500                                   |                           | 8.84            | 94.0                | 6.11            | 72.3            | 0.54     | 18.2        |                   |
|   | 849     | 8.81             | 64.3        | 500                                   |                           | 8.96            | 96.0                | 6.14            | 61,1            | 0.46     | 14,4        |                   |
|   | 853     | 8.81             | 64,3        | 500                                   | 2 gal.                    | 9.09            | 96.0                | 6,17            | 48.9            | 0.39     | 13.2        | ·                 |
|   | 856     | 8.81             | 44,3        | 500                                   | 3                         | 9,19            | 106.0               | 6.19            | 33.6            | 0.31     | 9,33        |                   |
|   | 859     | 8.81             | 64,3        | 500                                   | 3 gal.                    | 9,28            | 111.0               | 6.22            | 22.0            | 0.25     | 10,5        |                   |
|   | 902     | 8.81             | 64.3        | 500                                   | 5                         | 9,30            | 119.0               | 6.24            | 15.8            | 0.25     | 7,24        |                   |
|   | 905     | 8.81             | 64.3        | 500                                   |                           | 9.31            | 120.0               | 6.25            | 12.4            | 0.21     | 7.02        |                   |
|   | 908     | 8.91             | 64.3        | 500                                   | 4 gal,                    | 9,33            | 129.0               | 6.26            | 9,3             | 0.21     | 7,40        |                   |
|   | 911     | 8.81             | 64.3        | 500                                   | <u> </u>                  | 9.38            | 134.0               | 6.27            | 7.2             | 0.21     | 7.0Z        |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
| ł |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
| l |         |                  |             | ·                                     |                           |                 |                     |                 |                 |          |             |                   |
| · |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |
|   |         |                  |             |                                       | · · · ·                   |                 |                     |                 |                 |          |             |                   |
|   | NOTES:  |                  |             |                                       | neen volume               | 3%              | 3%                  | +0.1 unit       | +10 mv          | 10%      | 10%         |                   |
|   | SAMPLE  | TAKEN AT: 9      | 15          | wetted se                             | neer volume               | <u>= T / /;</u> | (25.0               | <u>1-15</u> , « | <u>5')(7.41</u> | siga1/-  | ft3) = 1,4  | ogal              |
| 1 |         |                  |             |                                       | •                         |                 |                     |                 |                 | 0 7      |             | 5                 |
|   |         |                  | ·····       | · · · · · · · · · · · · · · · · · · · |                           |                 | ······              |                 |                 |          |             |                   |
|   |         |                  |             |                                       |                           |                 |                     |                 |                 |          |             |                   |

YSI# 157

|                | INTERVAL DEPTH<br>EL: DEPTH, PRE P                                                           | UMP INSERTION         | 4.75 G                                |                       | -                  | Project I                                                                                | Name:                               | Shepley's                  | s Hill La      | og Sheet<br>ndfill, Deve |                    |
|----------------|----------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-----------------------|--------------------|------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|----------------|--------------------------|--------------------|
| ATE:<br>AMPLE  | DEPTH, POST P<br>AMPLED:<br><u>5 [14(0)</u><br>D BY: <b>69</b> JK P<br>ED BY: <b>59</b> JK P | 55 (<br>TIME:<br>Y BW |                                       |                       | 219.25 NGVD        | SAMPLE METH<br>Metals/Hardness<br>Cyanide 1 x 25(<br>Anions,Alkalinity<br>TSS 1 x 1L HDF | s 1 x 1L H<br>Oml HDPE<br>/,TDS 1 x | IDPE (ph<2)<br>(ph>12 + As | scAc)          | VOC'S 3x<br>BOD 1x1L     | 0mL HDPE (ph<2)    |
| TIME<br>24hr   | WATER DPTH<br>BELOW MP feet                                                                  | PUMP                  | PURGE RATE                            | CUM, VOLUME<br>PURGED | H20<br>TEMP. C     | SPECIFIC<br>CONDUCTANCE                                                                  | рН                                  | ORP/Eh                     | D, O.<br>mg/L  | TURBIDITY<br>NTU's       | COMMENTS           |
| 220            | 4,90                                                                                         | 59.0<br>56.5          | 1300                                  | [94]<br>2.5941        | 9.34<br>10.0F      | 261<br>853                                                                               | 6.66                                | -24.2                      | 2.44           | 16                       | reduced purp speed |
| 230            | 4.86                                                                                         | 54.2                  | 900<br>\$00                           | 3.5 gcl<br>4 gal      | 10.12              | 861<br>860                                                                               | 6.36                                | -58.3                      | 0.94           | 3.6                      | L <i>i</i>         |
| 240<br>245     | 4.83                                                                                         | 53.1                  | 800                                   | 5 gcl<br>6 gcl        | 10.22              | 860<br>863                                                                               | 6.36                                | -62.1<br>-62.8             | 1.08           | 41.0                     |                    |
| 250            | 4.83                                                                                         | 52.7                  | 750                                   | 7501                  | 10,21              | 855<br>855                                                                               | 6.35                                | -63.4<br>-63.8             | 1.07           | 3.6                      |                    |
| 300            | 4.83                                                                                         | 52.7                  | 750                                   | 8 yel<br>9 sel        | 10.23              | 850                                                                                      | 6.34                                | -64.1                      | 1,09           | 3,0                      |                    |
| 305<br>1310    | 4.83<br>4.83                                                                                 | 52.7<br>52.7          | 750<br>750                            | 10 gal<br>11 gal      | 10,24              | \$51<br>\$51                                                                             | 6.34                                | -64.3                      | 1,11<br>1,12   | 3.3<br>3.2               | Sengel. Joka       |
|                |                                                                                              |                       | · · · · · · · · · · · · · · · · · · · |                       |                    |                                                                                          |                                     | · · · · ·                  |                |                          |                    |
|                | · · · · · · · · · · · · · · · · · · ·                                                        |                       |                                       |                       |                    |                                                                                          |                                     |                            |                |                          |                    |
|                |                                                                                              |                       |                                       |                       |                    |                                                                                          |                                     |                            |                |                          |                    |
|                |                                                                                              |                       |                                       |                       |                    |                                                                                          |                                     |                            |                |                          |                    |
| OTES:<br>AMPLE | TAKEN AT: (                                                                                  | 210                   |                                       |                       | ±0.3 <sup>3%</sup> | + Z& 3%                                                                                  | +0.1 unit                           | t +10 mv                   | <br>10%<br>1۰۱ |                          |                    |

YSI# 158/47 TURBIDITY# 75

Pump - Grunfos Redi-flow II

|          |                  |                                        |                                       |                                       |               |                           | -          | 20100            |          | ainear      |                  |
|----------|------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------|---------------------------|------------|------------------|----------|-------------|------------------|
| GVVIVI   | WELL #           | <u> 5HM -</u>                          | <u>96 - 5B</u>                        |                                       |               |                           |            |                  |          | gineers     | 5                |
| SCREEN   | INTERVAL DEPTH   | 1: <u>81.3-9</u>                       | 1.3                                   | WELL DIAMETER:                        | 4"            | Grou                      | Indwate    | er Samp          | oling Lo | og Sheet    |                  |
| H2O LEVE | EL: DEPTH, PRE P | UMP INSERTION                          | 5.30'                                 | -                                     |               | Project N                 | Name: S    | Shepley's        | Hill Lar | dfill, Deve | ns, MA           |
|          | DEPTH, POST P    | UMP INSERTION                          | 4.751                                 |                                       |               | SAMPLE METH               |            |                  |          | D           |                  |
| DEPTH S  | AMPLED           | 85 fe                                  | et                                    | REFERENCE POINT:                      | PVE OR CASING | Metals/Hardness           | s 1 x 1L H | DPE (ph<2)       |          | VOC'S 3x4   | 0ml VOA's (ph<2) |
| DATE:    | 5 15 01          | TIME:                                  | 1130 C                                | (DEPTHS RECORDED BENEATH)             | 219.8 INGVD   | Cyanide 1 x 250           | ml HDPE    | (ph>12 + As      | cAc)     | BOD 1 x 1L  | HDPE             |
| SAMPLED  |                  |                                        | SIGNATURE:                            | Ducar A Ma                            | nd and        | Anions,Alkalinity         | TDS 1 x    | 500ml HDPE       | E        | COD 1 x 250 | )mL HDPE (ph<2)  |
| RECORD   | ED BY: SS JK P   | <u>r (</u> św)                         | SIGNATURE:                            | Bucut 7                               | Pu -          | TSS 1 x 1L HDF            | 2E         |                  |          | TOC 3×4     | ome              |
| TIME     | WATER DPTH       | PUMP                                   | PURGE RATE                            | CUM. VOLUME                           | / H20         | SPECIFIC                  | рН         | ORP/Eh           | D. O.    | TURBIDITY   | COMMENTS         |
| 24hr     | BELOW MP feet    | SETTING                                | m!/min                                | PURGED                                | TEMP C        | CONDUCTANCE               |            | mv               | mg/L     | NTU's       |                  |
| 1135     | 5.56             | 52.7                                   | 300                                   |                                       | 9.31          | 621.0                     | 5.87       | -42.4            | 3.26     | 3.55        |                  |
| 1140     | 5.58             | 53.5                                   | 400                                   | ·                                     | 9.14          | 741.0                     | 6.48       | -77.7            | 1.55     | 1,75        |                  |
| 1145     | 5,60             | 53.5                                   | 400                                   | Igal.                                 | 9.48          | 760.0                     | 6.56       | -83.3            | 0.83     | 1.68        |                  |
| 1148     | 5,60             | 53.5                                   | 400                                   | <u> </u>                              | 9.57          | 764.0                     | 6.59       |                  | 0.72     | 1.55        |                  |
| 1152     | 5,61             | 53.5                                   | 400                                   | 2 gal.                                | 9.64          | 0.07                      | 6.62       | -88.6            |          | 0.80        |                  |
| 1156     | 5.61             | 53.5                                   | 400                                   |                                       | 9,65          | 772.00                    | 6.64       | -90.0            |          |             |                  |
| 1200     | 5.61             | 53.5                                   | 400                                   | 2.5 gal.                              | 9,69          | 769.0                     | 6.64       | - 91.3           |          |             |                  |
| 1204     | 5.61             | 53.5                                   | 400                                   | <u> </u>                              | 9.72          | 771.0                     | 6.65       |                  | 0,45     | <b>9</b> 7  |                  |
| 1208     | 5.61             | 53.5                                   | 400                                   | 3 gal                                 | 9.71          | 772.0                     | 6.65       | -92.5            | 0.43     | . 91        |                  |
|          | <u></u>          |                                        |                                       | <u> </u>                              |               |                           | ļ          |                  |          |             |                  |
| <b> </b> |                  |                                        |                                       |                                       |               |                           | ļ          |                  |          |             |                  |
|          |                  |                                        | · · · · · · · · · · · · · · · · · · · |                                       |               |                           | Ļ          |                  |          |             |                  |
|          |                  |                                        |                                       |                                       |               |                           |            |                  |          |             |                  |
| ∥∤       |                  |                                        |                                       |                                       |               |                           |            |                  |          |             |                  |
|          | 4                | L                                      |                                       |                                       |               |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       | · · · · · · · · · · · · · · · · · · · |               |                           |            |                  |          |             |                  |
|          |                  | [                                      |                                       |                                       |               |                           |            |                  |          |             |                  |
|          | ····             |                                        |                                       |                                       |               |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       |                                       |               |                           |            |                  |          | <u> </u>    |                  |
| NOTES:   |                  | L                                      | 1                                     |                                       | 3%            |                           |            | 140              | 400/     | 400/        |                  |
|          | TAKEN AT. 10     | νó                                     | (1 1 .                                | creen volume.                         |               | $(1)^2 (\alpha \alpha)^2$ | +0.1 unit  | +10 mv           | 10%      | 10%         | - 1              |
| SAWFLE   | TAKEN AT: 12     |                                        | wetted s                              | creen volume.                         | = 1 [7        | 2)(71,3-                  | 81.37      | [ <u>1.481</u> G | A1/+++-  | - 6.5       | gal              |
|          |                  |                                        |                                       | •                                     |               |                           |            |                  |          |             | 0                |
|          |                  | ······································ |                                       |                                       |               |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       |                                       |               |                           |            |                  |          |             |                  |
| YSI# 1   | r1               | TURBIDITY #                            | Fal                                   | <u></u>                               | Pump - Gru    | nfos Redi-flow II         |            |                  | ·        | <u></u>     |                  |
|          | 57               |                                        | 576                                   |                                       | , any ora     |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       |                                       |               |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       | ,                                     |               |                           |            |                  |          |             |                  |
|          |                  |                                        |                                       | . /                                   |               |                           |            |                  |          |             |                  |

|          | WELL #           |               |            |                          |                  | 11                |              | •             |                      | gineer           | 5                 |
|----------|------------------|---------------|------------|--------------------------|------------------|-------------------|--------------|---------------|----------------------|------------------|-------------------|
|          | INTERVAL DEPTH   |               |            | WELL DIAMETER            | :_2"             |                   |              |               |                      | og Sheet         |                   |
| 120 LEVI | EL: DEPTH, PRE P | UMP INSERTION | 3.50 feet  |                          |                  | Project N         | Name: S      | Shepley's     | Hill Lar             | ndfill, Deve     | ns, MA            |
|          | DEPTH, POST P    |               |            |                          |                  | SAMPLE METH       | OD: EPAI     | OW STRE       | SS METHO             | D                |                   |
|          | AMPĻED:          | 10 fee        | e 1        | REFERENCE POINT          |                  | Metals/Hardness   | s 1 x 1L H   | DPE (ph<2)    |                      | VOC'S 3x4        | 40ml VOA's (ph<2) |
|          | 5/15/01          | TIME:         | 1300       | (DEPTHS RECORDED BENEATH | 218.53 NGVO      | Cyanide 1 x 250   | mi HDPE      | (ph>12 + As   | cAc)                 | BOD 1 x 1L       | HDPE              |
| SAMPLED  |                  |               | SIGNATURE: | buan A- M.               | · · · · ·        | Anions,Alkalinity | TDS 1x       | 500ml HDPE    |                      | COD 1 x 250      | mL HDPE (ph<2)    |
| RECORDI  | ED BY: SS JK P   | (BW)          | SIGNATURE: | Buan A. A                | 9                | TSS 1 x 1L HDF    | <u>E</u>     |               |                      | TOC 3×40         | m C               |
| TIME     | WATER DPTH       | PUMP          | PURGE RATE | CUM. VOLUME              | H20              | SPECIFIC          | рН           | ORP/Eh        | <sup>···</sup> D. O. | TURBIDITY        | COMMENTS          |
| 24hr     | BELOW MP feet    | SETTING       | mi/min     | PURGED                   | TEMP. C          | CONDUCTANCE       |              | mv            | mg/L                 | NTU's            |                   |
| 1305     | 3.96             | 49,0          | 750        |                          | 8.05             | 67.0              | 6,37         | 61.7          | 2,74                 | 60.5             |                   |
| 1310     | 3.95             | 47.8          | 500        | 1 qal                    | 9,14             | 64.0              | 5.88         | 81.1          | ,50                  | 14.8             |                   |
| 1314     | 3.91             | 47.8          | 500        | <u> </u>                 | 9,48             | 65.0              | 5,79         | 79.1          | ,40                  | 6.15             |                   |
| 318      | 3.91             | 47.8          | 500        | 2gal                     | 9.65             | 66.0              | 5.75         | 77.Z          | · 30                 | 4.02             |                   |
| 322      | 3,91             | 47,8          | 500        | J                        | 9,80             | 66.0              | 5.73         | 75.1          | -25                  | 4.87             |                   |
| 326      | 3.91             | 47,8          | 500        | 3 gal.                   | 9.86             | 66.0              | 5.72         | 72.7          |                      | 5.13             |                   |
| 1330     | 3.91             | 47.8          | 500        | 3.5 gal.                 | 9.88             | 69.8              | 5.71         | 69.4          | · 19                 | 4.79             |                   |
|          |                  |               |            | <u> </u>                 |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          | ·                |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               | ·          |                          |                  |                   |              |               |                      |                  |                   |
|          |                  | •             |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          | -ند<br>          |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          | · · · · · ·      |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
|          |                  |               |            |                          |                  |                   |              |               |                      |                  |                   |
| OTEO     |                  |               | ll         |                          |                  |                   |              |               | لي الم               |                  |                   |
| OTES:    | -                | ,             |            | •                        | 3%               | 3%                | +0.1 unit    | +10 mv        | 10%                  | 10%              | •                 |
| AMPLE    | TAKEN AT: /      | 55            | wetted s   | icreen volume            | <u>= = TT (-</u> | 12 ) [ (15.)      | <u>- 5.1</u> | <u>)[7.48</u> | 1gal/4               | +1) = <b>1</b> . | egal              |
|          |                  |               |            |                          |                  |                   |              |               | 0 '                  |                  | 0                 |

YSI# 157

 $\mathcal{O}$ 

.

| GWM     | WELL #                                | SHL - 4       | 4          |                           |              | US A               | rmy C       | Corps                 | of En    | gineers        | <u> </u>             |
|---------|---------------------------------------|---------------|------------|---------------------------|--------------|--------------------|-------------|-----------------------|----------|----------------|----------------------|
| SCREEN  | INTERVAL DEPTH                        | 1:5,7-15      | 7 feet     | WELL DIAMETER:            | 2"           |                    |             |                       |          | g Sheet        |                      |
| H2O LEV | EL: DEPTH, PRE PU                     | JMP INSERTION | 10.60 le   |                           |              | Project N          | lame: S     | hepley's              | Hill Lan | dfill, Dever   | ns, MA               |
|         | DEPTH, POST PU                        | JMP INSERTION |            | ent                       |              | SAMPLE METHO       | OD: EPA L   | OW STRES              | SS METHO | D              |                      |
| DEPTH S | AMPLED:                               | 13 Fort       |            | REFERENCE POINT:          | PVCOR CASING | Metals/Hardness    | s 1 x 1L HC | 0PE (ph<2)            |          | VOC'S 3x4      | 0ml VOA's (ph<2)     |
| DATE:   |                                       |               | 10:15      | (DEPTHS RECORDED BENEATH) | 228.7 INGVD  | Cyanide 1 x 250    | ml HDPE (   | ph>12 + As            | cAc)     | BOD 1 x 1L I   | HDPE                 |
| SAMPLE  |                                       |               | SIGNATURE: | Hwood                     |              | Anions, Alkalinity | ,TDS 1 x 5  | 00ml HDPE             |          |                | mL HDPE (ph<2)       |
| RECORD  | ED BY: SS JK PY                       | <u> BW</u>    | SIGNATURE: | Arrived                   |              | TSS 1 x 1L HDF     | PE          |                       |          | TOC 304        | omt                  |
| TIME    | WATER DPTH                            | PUMP          | PURGE RATE | CUM. VOLUME               | H20          | SPECIFIC           | ₽Н          | ORP/Eh                | D. O,    | TURBIDITY      | COMMENTS<br>2 " WEED |
| 24hr    | BELOW MP feet                         | SETTING       | ml/min     | PURGED                    | TEMP C       | CONDUCTANCE        |             | vm                    | mg/L     | NTU's          | • =•                 |
| 11:01   | 10,72                                 | 72.6          | 1600 ml    |                           | 1071         | 1.0-5              |             |                       |          | JIAK FUNC      | MGBROWN INTHUY       |
| 11:05   | 10,68                                 | 69.6          | 850        |                           | 10.71        | 185                | 5,90        | 70.3                  | 0.32     |                | ADJUSTED SETTING     |
| 11:08   | 10.68                                 | 68.4          | 850        |                           | 11:07        | 185                | 5.89        | 70,7                  | 0:31     | 5,65           | <u></u>              |
| 11:01   | 10:68                                 | 68.8          | 850        | 11 liters                 | 11:18        | 185                | 5.88        | 70:4                  | 0,27     | 6.52           |                      |
| 1114    | 10.68                                 | 68.8          | 850        | 13 1,tes<br>16 1,tes      | 11.18        | 185                | 5,87        | 71,1<br>7 <b>1</b> ,9 | 0.24     | 5,71           |                      |
| 11:17   | 10.68                                 | 60.0          | 850<br>850 | 1610405                   | 11,02        | 185                | 5,85        | 73.6                  |          | 7,17           | <u></u>              |
| 11:23   | 10:68                                 | 6.8.8         | 850        | 20 liters                 | 11.15        | 185                | 5,86        | 73.7                  | 0,19     | 1,97           | <u></u>              |
| 11:26   | 10168                                 | 68.8          | 850        | 2 Y Lifes                 | 11.71        | 186                | 5.85        | 73,1                  | 0,18     |                |                      |
| 11:29   | 10.68                                 | 1.8.8         | 950        | 26 liters                 | 11,21        | 186                | 5.84        | 74.1                  | 0,18     | 1,63           |                      |
| 11:30   |                                       |               |            |                           |              | · · · · ·          |             |                       |          |                | TAKE SAMPIK          |
|         |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
| ·       |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
|         |                                       |               |            |                           |              |                    |             |                       |          | ,              |                      |
|         |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
|         |                                       |               |            |                           |              | ·                  |             |                       |          |                |                      |
| []      |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
|         |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
| <b></b> |                                       |               |            |                           |              |                    |             |                       |          |                |                      |
| NOTES:  |                                       |               |            | []                        | 3%           | 29/                | +0.1 unit   | +10 m                 | 10%      | 10%            |                      |
|         | TAKEN AT: //;                         | 30            | 11         | een volume =              |              | $()^{2}(1-2)^{2}$  |             | 10 mv                 | 10%      | $) = 3^{10\%}$ | litres               |
|         |                                       | <u> </u>      | Wetter Sci | een volme:                | = 11 (72     | J (15.7-           | 10.00       | 1 20.36               | 1/74     | <u> </u>       | 11/182               |
|         | <b>A</b> .                            |               |            |                           |              |                    |             |                       |          |                |                      |
|         | · · · · · · · · · · · · · · · · · · · | <u> </u>      |            | ····                      | <u> </u>     |                    |             |                       |          |                |                      |

|         | WELL#            |               | بلغائد فترجي ومستعد ويستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد والمستعد وال |                         |               | 31                 | -             | •          |          | ngineer      | S                 |
|---------|------------------|---------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|---------------|--------------------|---------------|------------|----------|--------------|-------------------|
| SCREEN  | INTERVAL DEPTH   | 1:25.1 - 3    | 35.1 feet                                                                                                       | WELL DIAMETER:          | 2"            |                    |               |            |          | og Sheet     |                   |
|         | EL: DEPTH, PRE P |               |                                                                                                                 |                         |               | Project N          | Name: S       | Shepley's  | Hill Lar | ndfill, Deve | ns, MA            |
|         | DEPTH, POST P    | UMP INSERTION | 3035                                                                                                            |                         |               | SAMPLE METH        | OD: EPA L     | OW STRES   | SS METHO |              |                   |
| DEPTH S | AMPLED:          | 34 feet       |                                                                                                                 | REFERENCE POINT:        | PVC OF CASING | Metals/Hardness    | s 1 x 1L H    | DPE (ph<2) |          | VOC'S 3 x 4  | 10ml VOA's (ph<2) |
| DATE:   | 5/14/01          | TIME:         | 0400                                                                                                            | DEPTHS RECORDED BENEATH |               | Cyanide 1 x 250    |               |            | cAc)     | BOD 1 x 1L   | HDPE              |
| SAMPLED | DBY: SS JK P     | YBWD          | SIGNATURE:                                                                                                      | Subod                   | 0             | Anions, Alkalinity |               |            |          | COD 1 x 250  | )mL HDPE (ph<2)   |
| RECORD  | ED BY: SS JK P   | r BW          | SIGNATURE:                                                                                                      | Down                    | r t           | TSS 1 x 1L HDF     | ΡE            | ·          |          | TOC 3× 4     | onl               |
| TIME    | WATER DPTH       | PUMP          | PURGE RATE                                                                                                      | CUM. VOLUME             | H20           | SPECIFIC           | pН            | ORP/Eh     | D. O.    | TURBIDITY    | COMMENTS          |
| 24hr    | BELOW MP feet    | SETTING       | mi/min                                                                                                          | PURGED                  | TEMP C        | CONDUCTANCE        |               | vm         | mg/L     | NTU'S        | z"puell           |
| 0945    | 30.99            | 125.1         | 400.                                                                                                            |                         | 10,83         | 33.0               | 6,54          | 20615      | 12.06    |              | START PUMPING     |
| 0951    |                  |               | < SOM                                                                                                           |                         | 11,34         | 32.0               | 6150          | 204.6      | 11,64    | 7.72         | CLOUDY            |
| 0955    | 31,25            | 181.3         | looone                                                                                                          |                         | 11.53         | 31.0               | 6.47          | 171,2      | 11.45    |              | Pump Stoppedi     |
| 003     |                  |               | 2100 me                                                                                                         |                         |               |                    |               |            |          |              | Pion Scowing      |
| 1008    | 32.38            | 124.0         | 1100.                                                                                                           | 16 LITERS               | 9.85          | 29,0               | 6.46          | 171.8      | 11,83    |              | WE FUNE SILL      |
| 10'B    | 32,25            |               |                                                                                                                 |                         | 9.41          | 29,0               | 6.43          | 184.1      | 11.85    | Swedt Pump   | rum sources       |
| 10:16   | 32,23            |               | 1100                                                                                                            |                         | 9.35          | 29,0               | 6.43          | 192,7      | 11.80    | 0,84         | CLEAR             |
| 0119    | ·····            | 1240          | 1100                                                                                                            | 25 Diters               | 935           | 29.0               | 1.45          | Z.01, 3    | M, 79    |              |                   |
| 6:22    | 32.23            | 124.0         | 1100                                                                                                            |                         | 9.32          | 29.0               | 638           | 206,8      | 11.82    |              |                   |
| 10:25   | 32.23            | 124.0         | 1160                                                                                                            | 33 lites                | 9.28          | 2.9.0              | 6,40          | 2083       | 11.75    | 0.35         |                   |
| 10:28   | 32,23            | 124.0         | 1100                                                                                                            | 34liters                | 9.29          | 29.0               | 6.41          | 212,2      | 11,79    | 0.26         |                   |
| 10:30   | 32.23            | 124.0         | 1100                                                                                                            | 38 LITERS               | 9,23          | 29.00              | 6.40          | 215.5      | 11.79    | 0.27         | A PANA -          |
| 0:32    |                  | <u> </u>      |                                                                                                                 |                         |               |                    |               |            |          |              | TAKE SAMPLE       |
|         |                  |               |                                                                                                                 |                         |               |                    |               |            |          |              |                   |
|         |                  | · · · · · ·   |                                                                                                                 |                         | <u> </u>      |                    |               | ·          |          |              |                   |
|         |                  |               |                                                                                                                 | ·                       |               |                    |               |            |          |              |                   |
|         |                  |               |                                                                                                                 |                         | ·             |                    |               |            |          |              |                   |
|         |                  |               |                                                                                                                 |                         |               |                    |               |            |          |              |                   |
|         |                  |               | · · · · · · · · · · · · · · · · · · ·                                                                           |                         |               |                    |               |            |          |              | ·····             |
|         |                  |               |                                                                                                                 |                         |               |                    |               | <u></u>    |          |              |                   |
| OTES:   |                  | . 7 7         | • • •                                                                                                           |                         | 3%            | $\frac{3\%}{2}$    | +0.1 unit     | +10 mv     | 10%      | 10%          | 1- <b>n</b> 11    |
| WILF    | TAKEN AT: ) ど    | 32            | wetted                                                                                                          | Streen Volim            | ne. = TT      | $(1_{12})^{-1}$    | <u>35./^-</u> | 30.35'     | )(20.)   | ~ ~ ~ ? # 3  | )= 3 litres       |

YSI#0000472

·· .

TURBIDITY# -

Pump - Grunfos Redi-flow II

Groundwater Field Analysis Forms Spring 2001 **APPENDIX C** 

## **CHAIN OF CUSTODY FORMS**

| Severn Trent Laborato<br>208 South Park Drive, Suite 1, 0                  |                                                        | 802) 6           | <u>55-</u> 12-  | ~         |                   |                   |             |         |            |               |             |        |     |            | С   | HAI      | N OF                                  | CUS   | STOE                |                       | COR   |
|----------------------------------------------------------------------------|--------------------------------------------------------|------------------|-----------------|-----------|-------------------|-------------------|-------------|---------|------------|---------------|-------------|--------|-----|------------|-----|----------|---------------------------------------|-------|---------------------|-----------------------|-------|
| Report to:                                                                 | Invoice                                                |                  |                 |           |                   | AN                | IALY        | SIS     |            | 1             | A.          | /-     | -/  |            | /   | /        |                                       |       | .ab use<br>Due Da   |                       | •     |
| Company: US Army Corps of Eng.                                             | Company:                                               |                  |                 |           |                   |                   |             | STE     | Ð          | 30            |             | 60     | 5/  |            | / / |          | / /                                   |       |                     | ile.                  |       |
| Address: 696 Virginia Rd.                                                  | Address:                                               |                  |                 |           |                   |                   |             |         |            | 4             |             |        | ' / | ' /        |     |          |                                       | /     |                     |                       |       |
| Concord, MA 01742                                                          | •                                                      |                  |                 |           |                   |                   |             |         |            | S and sz      |             | sal    |     |            |     |          |                                       |       | •                   | f coolers<br>ceived ( |       |
| Contact: Marie Woitas                                                      | Contact:                                               |                  |                 | į         | ·····             |                   |             |         | 13         | ц<br>s        |             |        | ·./ | /          | /   | /        |                                       | 1     | 2                   | 3 4                   | 5     |
| Phone: 978-318-8175                                                        | Phone:                                                 |                  |                 |           |                   |                   |             | /       | ter/       |               | 2           | )<br>O | / , |            | ' / | / /      | (                                     | C     | Custody             | Seal                  | N / Y |
| Fax: 978-318-8663                                                          | PO/SO #:                                               |                  |                 |           |                   |                   |             |         | 4          | $\mathcal{A}$ | Ă           | 0      |     |            |     |          |                                       |       | ntact               |                       | N / Y |
| Contract/<br>Quote #:                                                      | <i>c</i>                                               |                  |                 |           |                   |                   | ,           | Y [     | M.         | El Int        | Ę           | 6      | / c | ୪/ _       | /   |          |                                       |       | creened<br>or Radio |                       |       |
| ampler's Name<br>Brian WAZ                                                 | Sampler's Signature                                    | -                |                 | i         |                   |                   | 2           |         | žà         | )<br>2        |             | :/ >   | 10  | $\sqrt{1}$ | Y   |          | /                                     | L     |                     |                       |       |
| Don WOOD NOWFOUL                                                           | V 7                                                    | `<br>            |                 |           | <u> </u>          |                   | 83,00       | 9       | / <b>,</b> | R             | \$          | 15     | 10  | $\sqrt{2}$ |     | ' /      |                                       |       |                     |                       |       |
| roj. No. Proje <b>gt</b> Name                                              |                                                        | No./T            | ype of C        | Contai    | ners <sup>2</sup> |                   | ÿ           | s/      | a.         | 300           |             | $\gg$  |     | .)         |     |          |                                       |       |                     |                       |       |
| 6776 Shepley's Hill L                                                      | Imim                                                   | -                | 40m2            | <u>.</u>  | 1                 |                   |             | ¥,      | unide.     |               | <b>ب</b> /د |        |     | J/         | /   | /        |                                       |       |                     |                       |       |
| trix <sup>1</sup> Date Time or r<br>m a Identifying Marks of<br>p b        | Sample(s)                                              | VOA              | 40m2<br>A/G     | 250<br>ml | P/0               | 2                 | <u>ک</u> لا | Curtals | 74         | CON 300. A 11 |             | 31     | F   | )<br>7     |     | <u> </u> | Lab S                                 | Sampl | e ID (La            | ab Use (              | Only) |
| 1 5-14-010915 X SHL-10                                                     | ·                                                      | 3                | 3               |           | 5                 | 3                 | ۱           | 1       | ١          | Í             | 1           | 1      | 3   |            |     |          | <u> </u>                              |       |                     |                       |       |
| 1 5-14-010920 X SHM-93-10                                                  | C                                                      | 3                | 3               | 1         | 5                 | 3                 |             | 1       | 1          | i             | ۱           | 1      | 3   |            |     |          | · · · · · · · · · · · · · · · · · · · |       |                     | 1                     | ,<br> |
| 15-4-09032 X SHL-3                                                         | -<br>                                                  | 3                | 3               | 1         | 5                 | 3                 | 1           | ١       | 1          | 1             | ١           | 1      | 3   |            |     |          | ?<br>                                 | i     |                     | ·                     |       |
| 1 5-1401/120 X SHL-19                                                      |                                                        | 3                | 3               | 1         | 5                 | 3                 | ١_          | 1       | 1          | 1             | 1           | 1      | 3   |            |     |          | - 1,                                  |       |                     |                       | •     |
| V 5-14-01/120 X SHL-19ms                                                   | >                                                      | 3                | 3               | 1         | 2                 | 3                 | 1           | ı       | ١          | -             |             | -      | 3   |            |     |          |                                       | ì     | <u> </u>            |                       |       |
| V 514-01120 X 3142-19ms                                                    |                                                        | 3                | 3               | 1         | 1                 | 3                 | 1           | 1       |            |               | _           | -      | 3   |            |     |          |                                       |       |                     |                       |       |
| V 574-01130 X SHL-4                                                        |                                                        | 3                | 3               | 1         | 5                 | 3                 |             | 1       | 1          | 1             | 1           | 1      | 3   |            |     |          |                                       |       |                     |                       |       |
| 1 51401390 X SHL-11                                                        |                                                        | 3                | 3               | 1         | 5                 | 3                 | 1           |         |            | 1             | 1           | 1      | 3   |            |     |          |                                       |       |                     |                       |       |
| 1 574-01 1540 X SHL-20                                                     |                                                        | 3                | 3               | 1         | 5                 | 3                 | ١           | ١       | ١          | ۱             | ١           | ۱      | 3   |            |     |          |                                       |       |                     |                       |       |
| 1514-01 - X Trip Blar                                                      | 1K                                                     | 31               |                 |           |                   | 3                 |             |         |            |               |             |        |     |            |     |          |                                       |       |                     |                       |       |
|                                                                            |                                                        |                  |                 |           |                   |                   |             |         |            |               |             |        |     |            |     |          |                                       |       |                     |                       |       |
|                                                                            | ime: Received by: (Signa                               | ture) <i>j</i>   | EDE             | ×         | Date              | : 1               | Tin         | ne:     | R          | emarl         |             |        |     |            |     |          | -,                                    |       |                     | ,                     |       |
|                                                                            | 15 81480526                                            |                  | 70              |           | D-1               |                   | <del></del> |         | _          |               | χ /         | 7      | 210 | R          | s   | S        | hil.                                  | p     | ec L                |                       |       |
| elinquished by: (Signature) Date: T                                        | ime: Received by: (Signa                               | iure)            |                 |           | Date              | :                 | Tin         | ie:     |            | $\sim$        |             |        | אנ  |            | -   |          |                                       | •     |                     | -                     |       |
| elinquished by: (Signature) Date: T                                        | me: Received by: (Signa                                | ture)            |                 |           | Date              | <u> </u><br>:<br> | Tin         | ne:     |            |               |             |        |     |            |     |          | s accepti<br>Itained ir               |       |                     |                       |       |
| Matrix WW - Wastewater W - Water<br>Container VOA - 40 ml vial A/G - Amber | S - Soil SD - Solid L - L<br>/ Or Glass 1 Liter 250 ml | -iquid<br>- Glas | A - A<br>s wide |           | •                 |                   |             | oal tu  |            |               |             |        |     |            |     |          | . cannot<br>lease Fa                  | ax wr |                     | nanges                |       |

1

1、11日日の一日の日本

U.S. معمر CORPS OF ENGINEERS

- 411.76

ACT OF COMPANY



| PROJ. N          |                  |            |         | ME         |            |             |                                                          |               | 1      |        | 7            | -      | 0 7         |       |          | ,          |           | 17  | · · · · · · · · · · · · · · · · · · · |
|------------------|------------------|------------|---------|------------|------------|-------------|----------------------------------------------------------|---------------|--------|--------|--------------|--------|-------------|-------|----------|------------|-----------|-----|---------------------------------------|
|                  |                  | PROJEC     |         |            | 2<br>      |             |                                                          |               |        |        |              | Ŕ      | ° /         | A     |          | 2/         | · / /     | ' / |                                       |
| EØ77             | 6                | SHEP       | (EY     | <u>s /</u> | 11/12      | 711 +       | m                                                        | NO.           |        |        | m            | 1.5 %  | 1.8         | A.    | 105      | <u>}</u> / |           |     |                                       |
| SAMPLERS         | S: ( <i>Sigi</i> | nature)    | "XA-    | M          | the        | <b></b>     |                                                          | OF            |        | /      | , o k        | ? N/   | (10) X      | ~~~~/ | 8/       | $\sim$     | Nol       |     |                                       |
| ENTO<br>SAMPLERS | 7                | Suit       | w,      | ð.         | Na         |             |                                                          | CON-          |        | 12     |              | 5/ (   |             | :/\$  | \$/\$    | 5/5        |           |     | REMARKS                               |
| 1                | DATE             | TIME       | 4       | GRAB       | 0          | ,<br>,      | ION LOCATION                                             | TAINERS       | /3     |        | - N.W. R. 60 | AL AL  | Sol Willing | 5/2   | ;<br>}/, |            |           |     |                                       |
| 5                | 115/01           | 0915       |         | X          | SH         | 1-9         |                                                          | 12.           | 3      | 1      | 1            | 1      | 1           | 1     | 1        | 3          |           |     |                                       |
| 5                | lisloj           | 0950       |         | X          | SHM        | -93-2       | 2 <b>2</b> C                                             | 12            | 3      | 1      | 1            | 1      | 1           | l     | 1        | 3          |           |     |                                       |
|                  |                  | 1025       |         | X          | SHL        | -22         |                                                          | 12            | 3      | 1      | 1            | ١      | 1           | ١     | 1 .      | 3          |           |     |                                       |
| 51               | 115/01           | 1140       |         | X          | SHM        | - 96-       | 22B                                                      | 12            | 3      | 1      | 1            | 1      | 1           | 1     | 1        | 3          |           |     | ·                                     |
|                  | 115/01           | 1          |         | X          | SHM        | -96-        | 5B                                                       | 12            | 3      | 1      | 1            | 1      | (           | 1     | 1        | 3          |           |     |                                       |
| 5/               | lisloi           | 1210       |         | X          | SHM        | -DUP        | -01                                                      | 12            | 3      | 1      | 1            | 1      | 1           | ۱     | 1        | 3          |           |     |                                       |
|                  | lisloi           | 1          |         |            |            | 96-5        |                                                          | 12            | 3      | 1      | 1            | 1      | 1           | (     | ١        | 3          |           |     |                                       |
| \$1.             | 15/01            | 1335       |         | x          | SHL        | - 5         |                                                          | 12            | 3      | 1      | 1            | 1      | 1           | (     | 1        | 3          |           |     |                                       |
| s).              | Isloi            | 1400       |         | X          | GB-        | SB          |                                                          | 12            | 3      | 1      | (            | (      | 1           | 1     | 1        | 3          |           |     | 1                                     |
| - di             | 15/01            | -          | -       | -          | TRIF       | BLA         | NK                                                       | 1             | 1      |        |              |        |             |       |          |            |           |     |                                       |
|                  |                  |            | nie     |            | •          |             |                                                          |               |        |        |              |        |             |       |          |            |           |     |                                       |
|                  | :                | Pa         | 24      | oren       | 1          | L           |                                                          |               |        |        |              |        |             |       |          |            |           |     |                                       |
|                  |                  |            | η       |            | 5 15       | 01          |                                                          |               |        |        |              |        |             |       |          |            |           |     |                                       |
|                  |                  |            |         |            | 2.<br>1    |             |                                                          |               |        |        |              |        |             |       |          |            |           |     |                                       |
|                  |                  |            |         |            |            | ·.          |                                                          |               |        |        |              |        |             |       |          |            |           |     |                                       |
| Relinquish       | Jou              | мИ         |         | 5          | 1 1        | Time        | Received by: (Signat<br>Fed. Express AIN<br>814805265364 |               | Rei    | linqui | shed l       | oy: (S | Signatu     | ıre)  |          | C          | ate / Tim | e   | Received by: <i>(Signature)</i>       |
| Relinquish       | V                | <b>1</b> - |         |            | Date /     | / Time      | Received by: (Signat                                     | ure)          | Rel    | linqui | shed t       | oy: (S | Signatu     | ire)  |          | D          | ate / Tim | e   | Received by: <i>(Signeture)</i>       |
| Relinquishe      | ed by:           | (Signatu   | ire)    |            | Date /     | / Time      | Received for Laborat<br>(Signature)                      | ory by:       |        | Dat    | e / Ti       | me     | F           | lemar |          | 3          | Cool      | ÉRS | shipped                               |
| C                | Distribut        | tion: Orio | ainal A | ccomr      | oanies Shi | ioment · Ci | ppy 1 to Sample Custodian;                               | Copy 2 to Coc | rdinat | or Fie | ld File      | s      |             |       |          |            |           |     |                                       |

|            | s. AM                   | YCORP                            | SOF          | ENG          | INEERS                                 | СНАП                                                        | N OF Co           |     | )Y R   | ECO                          | RD                   |                 |       |        |          |          |         | $\bigcirc$               |
|------------|-------------------------|----------------------------------|--------------|--------------|----------------------------------------|-------------------------------------------------------------|-------------------|-----|--------|------------------------------|----------------------|-----------------|-------|--------|----------|----------|---------|--------------------------|
| PROJ       | 76                      | PROJEC<br>SHE<br>Tatarei<br>Marz |              |              | HILL LTM                               | + M                                                         | NO.<br>OF<br>CON- |     | 60     | 612-02-3<br>5-12-3<br>5-12-3 | - 11, 1, 2000        |                 |       |        | $\sim$ / | ¥ 05     |         | REMARKS                  |
| STA. NO.   | DATE                    | тіме                             | COMP.        | GRAB         | STATIO                                 | N LOCATION                                                  | TAINERS           |     |        | a Span                       | A A                  | e alle          | é/s   |        |          | ý/       |         |                          |
|            | 5/15/01                 | 1210                             |              | Х            | SHM-96-                                | 5B-9A                                                       | 12                | 3   | 1      | 1                            | 1                    | 1               | 1     | 1      | 3        |          |         |                          |
|            | stistor                 | -                                |              | ×            | SHM-96-<br>TRIPBLAN                    | uk                                                          | 1                 | 1   | -      |                              | -                    | -               | -     | -      | _        |          |         |                          |
| $\searrow$ | _                       |                                  |              |              |                                        |                                                             |                   |     | <br>   | ļ                            |                      |                 |       |        |          |          |         |                          |
| $- \not$   |                         |                                  |              |              |                                        |                                                             |                   |     |        |                              |                      |                 |       |        | -+       |          |         |                          |
|            | $\lambda$               |                                  |              |              |                                        |                                                             |                   |     |        |                              |                      |                 |       |        |          |          |         |                          |
|            | $\downarrow \downarrow$ |                                  | p.           | A-G          | rent                                   |                                                             | <u> </u>          |     | <br>   |                              |                      |                 |       |        |          |          |         |                          |
|            |                         | K /                              | lui          | ľ            | /                                      | · · · · · · · · · · · · · · · · · · ·                       |                   |     |        |                              |                      |                 |       | -      |          |          |         |                          |
|            |                         |                                  |              | <u> </u>     | 5/15/01                                | · · · · · · · · · · · · · · · · · · ·                       |                   |     |        |                              |                      |                 |       |        | -+       |          |         |                          |
| •          |                         | $\vdash$                         |              |              | ,<br>                                  |                                                             | +                 |     |        |                              |                      |                 |       |        | -        |          |         |                          |
|            |                         |                                  | $\mathbf{h}$ |              |                                        |                                                             |                   |     |        |                              |                      |                 |       | _      | -        | <u>.</u> |         |                          |
|            |                         |                                  |              |              |                                        |                                                             |                   |     |        |                              |                      |                 |       |        |          |          |         |                          |
|            |                         |                                  |              | $\mathbf{+}$ | ······································ | ·                                                           | · · · ·           |     |        |                              |                      |                 |       |        | -+       |          |         |                          |
|            |                         |                                  |              |              | $\overline{\mathbf{N}}$                |                                                             |                   |     |        |                              |                      |                 |       | {      | -+       |          | <u></u> |                          |
|            |                         |                                  |              |              |                                        |                                                             |                   |     |        |                              |                      |                 |       |        |          |          |         |                          |
| Relingu    | ished by:               | (Signatu<br>Mg                   | re)          | 5            | Date / Time<br> 15 01  1700            | Received by: (Signary<br>FGDERAL CXP. AY.<br>814 80 5726532 | 1888111 #<br>80   | Rel | inqui: | shed t                       | ц <u></u><br>by: (Si | ign <b>a</b> tu | ure)  |        | Di       | ate / T  | ïme     | Received by: (Signature) |
| Relinqui   | ished by:               | (Signatu                         | re)          |              | Date / Time                            | Received by: (Signetu                                       |                   | Rei | inquis | hed b                        | ογ: ( <i>Si</i>      | ignatu          | ire)  |        | Di       | ate / T  | ime     | Received by: (Signature) |
| Relinqui   | ished by:               | (Signatu                         | re)          |              | Date / Time                            | Received for Laborato (Signature)                           | ry by:            |     | Dat    | e / Ti                       | me                   | F               | lemar | <br>ks |          |          |         | <u> </u>                 |

Distribution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2 to Coordinator Field Files

# Committee To Jour Surcess 208 South Park Drive, Suite 1, Colchester, VT 05446 Tel: (802) 655-1203

.

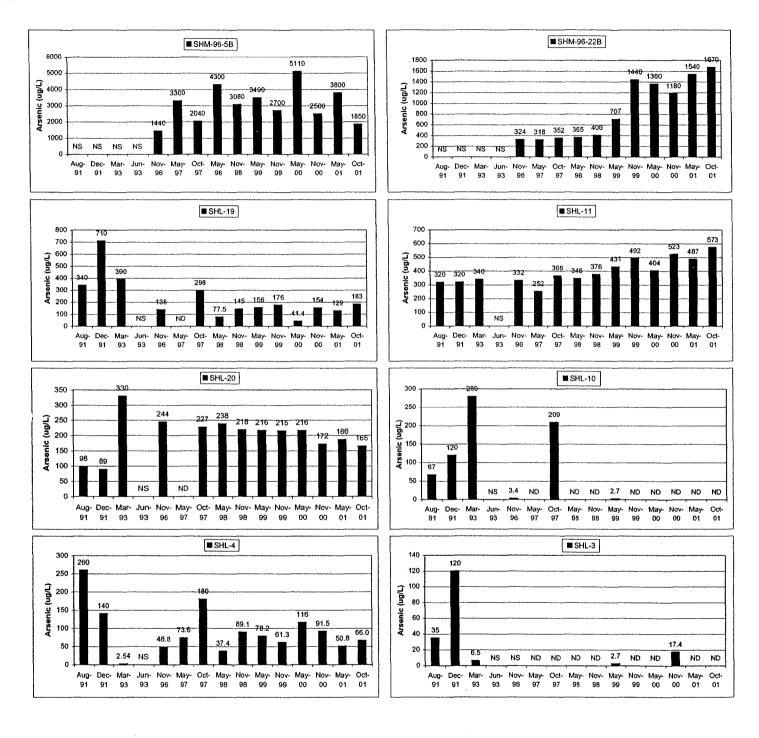
÷...

## CHAIN OF CUSTODY RECORD

| Report to:                                                                                | Invoice                                              | e to    |                   |           |              | AN              | ALY  | sis           |                   | 1      | Ta         |                      | 7                  | 3             | 7   | 7            | 77                         | La       | o use on<br>e Date:      | ly              |          |
|-------------------------------------------------------------------------------------------|------------------------------------------------------|---------|-------------------|-----------|--------------|-----------------|------|---------------|-------------------|--------|------------|----------------------|--------------------|---------------|-----|--------------|----------------------------|----------|--------------------------|-----------------|----------|
| Company: U.S. Army Corps of Eng.                                                          | Company:                                             |         |                   |           |              | 1               | QUE  |               | D /               | /      | 08         | 1                    | 1                  |               | /   | /            |                            |          | e Dale.                  | x               |          |
| Address: 696 Virginia Rd.                                                                 | Address:                                             |         |                   |           |              |                 |      |               | /                 | /      | 2340.      |                      | 2                  | ' /           |     | ' /          |                            | /        |                          |                 |          |
| Concord, MA01742                                                                          | ······································               |         |                   |           |              |                 |      |               |                   |        | 3          | 1 -                  | 1                  |               |     |              |                            |          | np. of coo<br>en receive |                 |          |
| Contact: Marie Woitas                                                                     | Contact:                                             |         |                   |           |              |                 |      |               | /                 | Hardne | 5/         | (m)                  | š/                 | /             | /   |              |                            | 1        | 2 3                      | 4 5             |          |
| Phone: 978-318-8175                                                                       | Phone:                                               |         |                   |           |              |                 |      | ./            | / /               | 2      | /          | (")<br>7             | d                  | / /           | / / | / /          | / /                        | Cu       | stody Sea                | al N/           | ۲        |
| Fax:                                                                                      | PO/SO #:                                             |         |                   |           |              |                 |      |               | K                 | $\leq$ | $\Delta$   | 12                   | মূ                 | /             |     |              |                            | Inta     | act                      | N / `           | <u> </u> |
| Contract/<br>Quote #:                                                                     |                                                      |         |                   |           |              |                 |      | 1             | 90                | d      | 3-         | o E                  | $\vec{\mathbf{y}}$ | $\overline{}$ | ./. | g            |                            |          | ened<br>Radioactivi      | tv              | j l      |
| Sampler's Name Nancy Mc Nally                                                             | Sampler's Signature                                  | in a    | Jer,              | ia        | ig           |                 |      | / \           | $\mathcal{J} \in$ | 10     | ŢŽ         | ₹ ₹                  |                    |               |     | $\mathbb{Y}$ | /                          |          |                          |                 | _        |
| Sampler's Name Nancy MC Nully<br>Davi B Lubiantz<br>Tack Keenan<br>Proj. No. Project Name | Zura in Mchal                                        | L.      |                   |           |              |                 |      | 20            | l J               | J      | AN 300 MIL | , A                  | 17                 | 5             | / Y | / /          | /                          |          |                          |                 |          |
| Proj. No. Project Name                                                                    |                                                      | No./T   | ype of C          | Contair   | ners²        |                 |      | 2             | s/                |        | P          |                      | a                  | n/            | J   | /            |                            | 14 - Y   |                          |                 |          |
| EU 776 Shepley's Hill L                                                                   | TM                                                   |         | 4000              | 1         | T            |                 | 1    | $\int d$      | _ [ع              | ġ      |            | $\frac{1}{\sqrt{2}}$ | 5//                | K             | 5/  |              |                            |          |                          |                 |          |
| Matrix <sup>t</sup> Date Time O r<br>m a Identifying Marks of<br>P b                      | Sample(s)                                            | VOA     | A/Q<br>1Lt<br>G1W | 250<br>ml | P/0          | ••• 1           |      | $\mathcal{E}$ | 10                | Z.     | 7 Y        |                      |                    | .             |     | •            | , Lab S                    | Sample I | D (Lab U                 | se Only)        |          |
| W 02001 0928 X SHM - 93 -                                                                 | 101.                                                 | 3       | 3                 | 1         | 5            |                 | 3    | 4             | 1                 | 1      | 1          | ı                    | ١                  | 3             |     |              |                            |          |                          |                 |          |
| W 1010 X SHL - 3 .                                                                        |                                                      | 3       | 3                 | 1         | 5            |                 | 3`   | 1             | ١                 | ١      | 1          | $\mathcal{F}$        | ١                  | 3             |     |              |                            |          |                          |                 |          |
| W 1210 X SHL-19                                                                           | *                                                    | 3       | 3                 | 1         | 5            |                 | 3.   | 1             | 1                 | • 1    | l          | 1                    | 1                  | 3             |     |              |                            |          |                          |                 |          |
| W 1216 X SHL-19MS                                                                         | · · · · · · · · · · · · · · · · · · ·                | 3       | -                 | 0         | 3            |                 | 3    | i             | ٢                 | J      | -          | -                    | -                  | 1             |     | · ,          |                            |          |                          |                 |          |
| W 1216 X SHL-19m                                                                          |                                                      | 3       | -                 | υ         | 2            |                 | 3    | 1             | 1                 | -      | -          | -                    | -                  | -             |     |              |                            |          |                          |                 | 1        |
| W 1225 X SHL-10                                                                           |                                                      | 3       | 3                 | 1         | 5            |                 | 3    | ,             | î                 | ć      | r 1        | 1                    | 1                  | 7             |     |              |                            | 1        |                          |                 | 7        |
| W 1530 X SHL-4                                                                            | · · · · · · · · · · · · · · · · · · ·                | 3       | 3                 |           | 5            |                 | 3    | 1             | l                 | 1      | 1          | 1                    | 1                  | 3             | ~   |              |                            |          |                          |                 | 1        |
| W 1548 X SHL-11                                                                           |                                                      | 3       | 3                 | 1         | 5            |                 | 3    | 1             | 1                 | 1      |            | 1                    | 1                  | 3             |     |              |                            |          | · · · ·                  |                 |          |
| W - X TRIP BLA                                                                            | 1. Tr                                                | 1       |                   |           | -            |                 | 1    |               |                   |        |            |                      |                    | _             |     |              | P                          |          | 1                        | · <u></u> ,     | 1        |
| Yom har our                                                                               | ··· ··                                               |         |                   |           | 1            |                 |      |               |                   |        |            |                      |                    |               |     |              | <del></del>                |          |                          | 1944)<br>1944   | 1        |
|                                                                                           |                                                      |         | ł                 | J         | <b>k</b> .k. |                 |      | 1             |                   |        |            |                      |                    |               |     |              |                            |          |                          |                 | -        |
|                                                                                           | ne: Received by: (Signat                             | ure) Fi | EDEX              | Alaria    | Date         | : 1             | Tim  | e:            | Re                | mark   | s          |                      |                    | ÷             |     |              |                            |          |                          | :               | -        |
| Kuthense Miller 10-29-01 16.                                                              |                                                      |         | 9857              |           |              |                 |      |               |                   |        | _          | ~                    |                    |               |     |              |                            |          | 1                        |                 |          |
| Relinquished by: (Signature) Date: Til                                                    | ne: Received by: (Signat                             | ure)    |                   |           | Date         | :               | Tim  | e:            |                   | 0      | 2          | Ċ                    | 00                 | ler           | 22  |              | Shi                        | pec      | L                        |                 |          |
| Relinquished by: (Signature) Date: Ti                                                     | ne: Received by: (Signat                             | ure)    |                   |           | Date         | <br>:<br>       | Time | e:            |                   |        |            |                      |                    |               |     |              |                            |          | Severn Tro<br>æ Schedu   |                 |          |
|                                                                                           | S - Soil SD - Solid L - L<br>Or Glass 1 Liter 250 ml | ,       | Λ· '-Ά<br>1       | ir Bag    | -            | C - Cł<br>P/O - |      |               |                   |        | Slud       | •                    |                    | Oil           | ··  |              | . cannot<br>lease Fa<br>(8 |          | н зе                     | anges.<br>es to | 1        |

| Severn Trent Laboratorie                                                                                                     | B j                                          |             |                   |           |                   |                             |          |               |         |               |                                 |                  |               |           |             |          |                                      |                    | <u>}</u> |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------|-------------------|-----------|-------------------|-----------------------------|----------|---------------|---------|---------------|---------------------------------|------------------|---------------|-----------|-------------|----------|--------------------------------------|--------------------|----------|
| ammitted To Jour Success 208 South Park Drive, Suite 1, Colch                                                                |                                              |             | 55-120            | 15        |                   |                             |          |               |         |               |                                 | <del>.</del>     | <del>ò'</del> | <u></u> C | HAI         | N OF (   |                                      |                    |          |
| Report to:                                                                                                                   | Invoice                                      | to          |                   |           | á.                | ANALYS                      | sis      |               | /       | 12            | /                               | The's            | )             | /         | /           |          | /Lab L                               | use only<br>Date:  |          |
| Company: US Army Cosps of Erg. Co                                                                                            | ompany:                                      |             |                   |           | -                 | REQUES                      | STE      | D /           | '<br>/  | //            | /                               | $ \mathcal{R} $  | / /           |           |             | / /      | /                                    |                    |          |
| Company: US Army Cosps of Engr<br>Address: 696 Virginia Rd.<br>Concord, MA01742                                              | Address:                                     |             |                   |           | _                 |                             |          |               |         | e dire        |                                 | 7                | /             |           |             |          | Tomp                                 | . of coole         |          |
| Concord, MADI742                                                                                                             | •                                            |             |                   |           |                   |                             |          |               | /:      | 7/            | 100                             |                  |               |           |             |          |                                      | received           |          |
|                                                                                                                              | Contact:                                     |             | <u>``.</u>        |           | _                 |                             |          | /             | Nardner | ×/ ,          | رب<br>این (                     | K                | /             | /         | /           |          | 1 2                                  |                    | 4 5      |
| Phone: 978-318-8175                                                                                                          | Phone:                                       |             |                   | <u>.</u>  |                   |                             |          |               | × v     | ୬             | 12:1                            | 0                | '             | / /       | [ ]         |          |                                      | dy Seal            |          |
|                                                                                                                              | D/SO #:                                      |             |                   | ~         | _                 |                             |          | $\sim$        | . 1     | $\mathcal{O}$ | 9/(                             | $\delta$         | $\checkmark$  |           |             | /        | Intact                               |                    | N / Y    |
| Contract/<br>Quote #:                                                                                                        |                                              |             |                   | <b>-</b>  |                   |                             | /~       | $\sqrt{x}$    |         | $\sqrt{4}$    | \$/&                            | $\left  \right $ | 0<br>0<br>0   | M (       | $\gamma$    | /        | Screen<br>For Ra                     | ed<br>idioactivity |          |
| Sampler's Name<br>Nancy me Nally Manuf War                                                                                   | ler's Bifnature                              |             |                   |           |                   | /                           | d'all    | 13            | ) Q     | Jec. X        | $\left  \sum_{i \in I} \right $ | 19               |               |           | $\tilde{p}$ | /        | L                                    |                    |          |
| Paul young fail foreng                                                                                                       |                                              | <del></del> |                   |           |                   |                             | 3        | S.            | J       | "nd           |                                 |                  |               | ( d)      | ' /         |          |                                      |                    |          |
|                                                                                                                              | 6                                            | No./Ty      | pe of C           | ontain    | ners <sup>2</sup> |                             |          | -             | 1       | 2/2           | $\frac{1}{2}$                   | 2/1              | 3/2           | J         |             |          |                                      |                    |          |
|                                                                                                                              | TM                                           |             | unt               | 050       |                   | LOC.                        |          |               | \$      | €) (Ô         | $ \mathcal{A} $                 | 3/14             | ·/            | J         |             |          |                                      |                    |          |
| atrix <sup>1</sup> Date Time o r a Identifying Marks of Sam                                                                  | ole(s)                                       | VOA         | unt<br>Li         | 250<br>ml | P/O               | 2                           | Ē        | Cy Charleolow | 2       | 201           |                                 | /                |               |           | [           | Lab S    | ample ID                             | (Lab Use           | Only)    |
| N 2510933 X SHL-20                                                                                                           |                                              | 3           | 3                 |           | 5                 | 3                           | <u>۱</u> | 1             | 1       | ١             | 1                               |                  | 3             |           |             |          |                                      |                    |          |
| N 1 0920 X SHL-9                                                                                                             | ·····                                        | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | )       | 1             | 1                               | ١                | 3             |           |             |          |                                      |                    |          |
| 1 - X TRIP BIG                                                                                                               | INIC                                         |             |                   |           |                   |                             |          |               |         |               | _                               |                  |               |           |             |          |                                      |                    |          |
| 1 1119 X SHL-5                                                                                                               | ······                                       | 3           | 3                 | ١         | 5                 | 3                           | 1        | 1             | 7       |               |                                 | 1                | 3             |           |             |          |                                      |                    |          |
| V 1130 X SHM-93-                                                                                                             | ZZC                                          | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | 1       | 1             | 1                               | 1                | 3             |           |             |          |                                      |                    |          |
| J 1249 X SHM-96-                                                                                                             |                                              | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | 1       | 1             | 1                               | 1                | 3             |           |             |          |                                      |                    |          |
| V 1325 X SHL-22                                                                                                              |                                              | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | 1       | 1             | 1                               | 1                | 3             |           |             |          |                                      |                    |          |
| N 1510 X SHM-96-                                                                                                             | 5B                                           | 3           | 3                 | 1         | 5                 | 3                           | 1        | (             | 1       | 1             | 1                               | ۱                | 3             |           |             |          |                                      |                    |          |
| N ISIO X SHM-DU                                                                                                              | P-01-02                                      | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | 1       | 1             | ١                               | 1                | 3             |           |             |          |                                      |                    |          |
| N. 1550 X SHM.96-                                                                                                            | 223-78'                                      | 3           | 3                 | 1         | 5                 | 3                           | 1        | 1             | 1       | 1             | 1                               | /                | 3             |           |             |          |                                      |                    |          |
| N V NU X SHM-96-S                                                                                                            |                                              | 3           | 3                 | 1         | 51                | 3                           | 1        | 1             | 1       | 1             | 1                               | 1                | 3             |           |             |          |                                      |                    |          |
| Relinquished by: (Signature) Date: Time:                                                                                     | Received by: (Signat                         | lure) F     | EDEX              | 1         | Date:             | Time                        | ə:       | Re            | mark    | ks l          | •                               |                  | <b>†</b>      | 1         | £.          |          |                                      |                    |          |
| Katheure Miller 10-30-01 1720<br>Relinguished by: (Signature) Date: Time:                                                    | Received by: (Signat                         | a65         | 347               |           | Date:             | Time                        | <u></u>  | 4             |         |               |                                 |                  |               |           |             |          |                                      |                    |          |
|                                                                                                                              |                                              |             |                   |           | Juic.             |                             | ••       |               |         |               |                                 |                  |               |           |             |          |                                      |                    |          |
| Relinquished by: (Signature) Date: Time:                                                                                     | Received by: (Signa                          | ture)       | -                 |           | Date:             | Time                        | ə:       |               |         |               |                                 |                  |               |           |             |          | ince of Se<br>the Price              |                    |          |
| <sup>1</sup> Matrix WW - Wastewater W <sup>3</sup> - Water S - S<br><sup>2</sup> Container VOA - 40 ml vial A/G - Amber / Or | oil SD - Solid L - L<br>Glass 1 Liter 250 ml |             | Á - Á<br>s wide i |           | 5                 | C - Charcon<br>P/O - Plasti |          |               |         |               | ~                               |                  | Oil           |           |             | lease Fa | accept vo<br>x written<br>102) 655-1 | change             |          |

| PROJ.      |             | PROJEC       |            |       |                         |              |                                  |                        |     |         | 7           | 7.               | Š          | 2      | Y  | 5    | TT            | /                                     |     |
|------------|-------------|--------------|------------|-------|-------------------------|--------------|----------------------------------|------------------------|-----|---------|-------------|------------------|------------|--------|----|------|---------------|---------------------------------------|-----|
|            |             | Stler        | OLÊ I      | jis   | HIL                     | LIT          | MAM                              | NO                     | .   |         | / ¢         | 7                | 1 - 3<br>3 |        |    | 1/   | 8/0/          | /                                     |     |
| SAMPLEF    | RS: (Sigr   | nature)<br>A | • A        | . 1.  | NA                      |              |                                  | OF                     |     | /       | Ì           | 5                | Ň          |        |    | 5    | $\frac{1}{3}$ |                                       |     |
|            | MA          | <u> </u>     | <u>V1(</u> | 2/1   | <u>NL</u>               | , <u> </u>   |                                  | CON                    | 1   | 10      |             |                  |            |        |    | 1.7  | 9/            | REMARKS                               |     |
| STA. NO.   | DATE        | TIME         | COMP.      | GRAB  | 1                       | STATI        | ON LOCATION                      | TAINE                  | RS  | ¥/.₹    |             |                  |            | 3] ×   |    |      |               | ·                                     |     |
|            | 3U OCT ZUOL | 1510         | /          | Х     | Sii                     | m-9          | 6-573-QA                         | 19                     | - 2 | ,       |             |                  | 1          | 1      | 1  | 3    |               |                                       |     |
|            | -           | -            |            | X     | TK                      | -17          | BLANK                            |                        | 1   |         |             |                  |            |        |    |      |               | •                                     |     |
| <u>.</u>   |             |              |            |       |                         |              |                                  |                        |     |         | ļ           |                  |            |        |    |      |               |                                       |     |
|            |             |              | ļ          |       |                         |              |                                  |                        |     |         |             |                  |            |        | {  |      |               |                                       |     |
|            |             |              |            |       |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               | · · · · · · · · · · · · · · · · · · · |     |
| · .<br>    |             |              |            |       |                         | $\square$    |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             | ,            |            | - 0   | $\sim$                  |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             |              |            | Y Y   | <u>*</u>                | <u> </u>     | na                               |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             |              |            | 2     |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             |              | K          |       |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             | /            |            | · · · |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             |              |            |       |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
|            |             |              |            |       | <u></u>                 |              | ····                             |                        |     |         |             |                  |            |        | -+ |      | . <u> </u>    | ·····                                 |     |
|            |             |              |            |       |                         |              |                                  |                        |     |         |             |                  |            |        |    |      |               |                                       |     |
| Relinquist |             |              |            |       | Date /                  |              | Received by: (Sig                | nature)<br>A ; rLI3122 | # R | linqui  | shed b      | γ: (Sig          | gnatu      | ire)   |    | Date | / Time        | Received by: (Signatu                 | re) |
| Relinquist | ied by:     | Signatu      | re)        |       | <u>1-30-0</u><br>Date / | Time         | 831 95119<br>Received by: (Sig   | nature)                | R   | linquis | hed b       | γ: ( <b>Si</b> g | gnatu      | ire)   |    | Date | / Time        | Received by: (Signatu                 | re) |
| Relinquist | ned by:     | (Signatu     | re)        |       | Date /                  | <br>Time<br> | Received for Labo<br>(Signature) | pratory by:            |     | Dat     | e / Tir<br> | ne               | R          | lemark | s  |      |               | Simple c 10                           |     |


oution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2

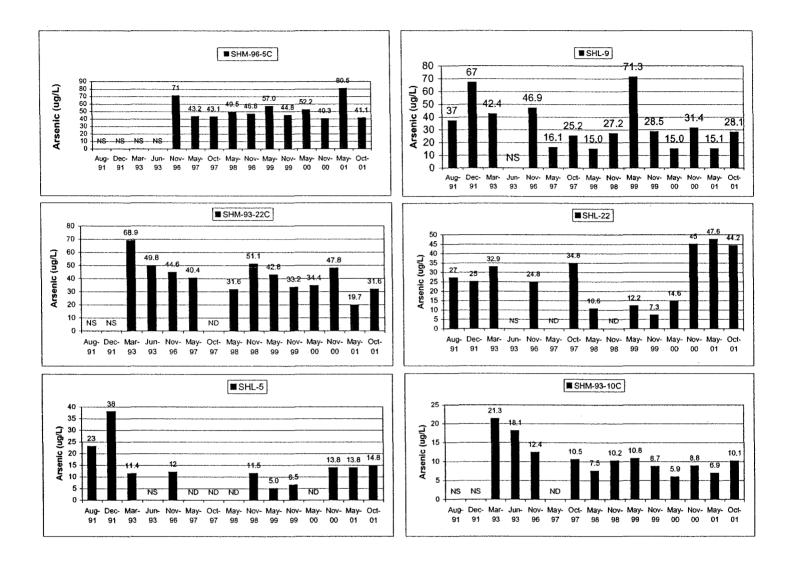
# APPENDIX D

# **COMPARISON OF ARSENIC RESULTS**

ł

#### SHEPLEY'S HILL LANDFILL GROUNDWATER MONITORING HISTORIC ARSENIC CONCENTRATION CHARTS (CLEANUP LEVEL = 50 ug/l)




NOTES:

NS: Not Sampled

ND: Not Detected

Charts are displayed in order of decreasing historical maximum arsenic concentrations

#### SHEPLEY'S HILL LANDFILL GROUNDWATER MONITORING HISTORIC ARSENIC CONCENTRATIONS CHARTS (CLEANUP LEVEL = 50 ug/l)



NOTES:

NS: Not Sampled ND: Not Detected

Charts are displayed in order of decreasing historical maximum arsenic concentrations

**APPENDIX E** 

# QUALITY ASSESSMENT AND ASSURANCE REPORTS

Chemical Data Quality Assessment Report 2001

## NEW ENGLAND DISTRICT – HTRW/GEOTECHNICAL ENGINEERING BRANCH CHEMICAL DATA QUALITY ASSESSMENT REPORT

| Project:     | Shepley's Hill Landfill, Long Term Groundwater Monitoring        |
|--------------|------------------------------------------------------------------|
|              | (Samples collected May and October 2001)                         |
| Location:    | Devens, MA                                                       |
| Reference:   | Chemical Quality Assurance Report No. E766-062701, dated 29 June |
|              | 2001 and No. E766-020802, dated 8 February 2002                  |
| Contractor:  | New England District, US Army Corps of Engineers, Concord, MA    |
| Prepared By: | Marie Wojtas, project chemist, CENAE-EP-HC                       |
| CDQAR Date:  | 18 March 2002                                                    |
|              |                                                                  |

The Chemical Quality Assurance Reports (CQAR) No. E0766-062701 and E0766-020802 for the long term groundwater monitoring project at Shepley's Hill Landfill, Devens, MA were reviewed. The following comments apply to the overall data assessment for two field sampling events which occurred in May and October 2001. The CQARs include comparison of two groundwater samples (one from each sampling event) analyzed for Volatile Organic Compounds (VOCs), Total Metals, Cyanide, Anions, Chemical Oxygen Demand, Biological Oxygen Demand, Alkalinity, Hardness, Total Dissolved Solids, Total Suspended Solids, and Total Organic Carbon.

1. <u>Data Useability</u>: The primary laboratory and quality assurance (QA) laboratory data show adequate comparability. The primary laboratory data is useable for the intended purpose. The project objective for this data is for long term groundwater monitoring purposes, and data is compared to the Record of Decision (ROD) and other associated regulatory cleanup goals. The primary contaminant of concern at this site is Arsenic. The QA laboratory data support the primary laboratory data which was used by USACE-NAE to prepare the annual and semi-annual groundwater analytical reports.

2. <u>Data Quality Objectives (DQOs</u>): DQOs for the project have been satisfied. The following paragraphs summarize the most significant data comparability issues. Corrective action for the Hardness issue has been implemented (as shown in the October 2001 sampling event). No further corrective action is necessary for the data discrepancies. Future sampling events will continue to be compared to QA laboratory data to verify the accuracy of the primary laboratory data, as described below.

a. <u>Metals Analysis – Data Discrepancies</u>: There is one major data discrepancy for Zinc. Both laboratories are reporting values which are significantly below the cleanup goal. Therefore, this discrepancy is not considered to be significant and is attributed to sample matrix and laboratory variability.

Corrective Action: The data discrepancy noted is not considered significant with

respect to interpretation of trends or actions. No corrective action is needed.

b. <u>Total Hardness – Data Discrepancies</u>: There is one major data discrepancy for Total Hardness for the samples collected in May 2001. The discrepancy was attributed to differences in methodology between the primary and QA laboratory. There is no associated regulatory standard for Hardness and the discrepancy is not considered to significantly impact the data interpretation with respect to site objectives.

<u>Corrective Action</u>: Due to the data discrepancy attributed to differences in methodology between the primary and QA laboratory, the primary laboratory was directed to use the same method as the QA laboratory after the first round (May 2001) of sampling. The QA laboratory's method is considered to be more accurate and better suited to groundwater samples at this site. The data showed acceptable comparison in the second round of sampling (October 2001). This method will continue to be used by both laboratories for future sampling events.

b. <u>Total Suspended Solids (TSS) Analysis – Data Discrepancies</u>: There is one major data discrepancy for TSS. There is no associated regulatory standard for TSS and the discrepancy is not considered to be significant with respect to site actions. The discrepancy is attributed to sample matrix and laboratory variability.

<u>Corrective Action</u>: The data discrepancy noted is not considered to significantly impact the data interpretation with respect to site objectives. No corrective action is needed.

3. <u>Contract Compliance</u>: The primary and QA laboratory met contractual obligations for this project. The primary laboratory was directed to change their methodology for Hardness analysis for the second round of sampling due to data discrepancies noted after the first round of sampling. Overall, the primary and QA laboratory results compare satisfactorily, and the results obtained from the May and October 2001 sampling events are consistent and reasonable. Both laboratories reported satisfactory supporting quality control data.

# Chemical Quality Assurance Report Spring 2001

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

۰.

i.

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-062701

### MAY 15, 2001 SAMPLING EVENT

PREPARED BY

THE GEOLOGY AND CHEMISTRY SECTION

#### ENGINEERING/PLANNING DIVISION

## DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

3. . . . .

G

JUNE 29, 2001

## SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS MAY 15, 2001 SAMPLING EVENT

٠.

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-062901

## TABLE OF CONTENTS

| Paragraph | Title                                                         | Page  |
|-----------|---------------------------------------------------------------|-------|
|           | Executive Summary                                             | 1-2   |
|           | Table 1- Data Comparison Summary                              | 3     |
|           | Table 2 - Analyses Performed by QA Laboratory                 | 4     |
| 1.        | QA sample shipping and chain-of-custody deficiencies          | 5     |
| 2.        | Data comparison for volatiles by Method 8260                  | 5-7   |
| 3.        | Data comparison for metals by Method 6010 and 7470            | 7-8   |
| 4.        | Data comparison for cyanide by Method 9010B                   | 8-9   |
| 5.        | Data comparison for anions by Method 300.0                    | 9-10  |
| 6.        | Data comparison for COD by Method 410.4                       | 10-11 |
| 7.        | Data comparison for BOD by Method 405.1                       | 11-12 |
| 8.        | Data comparison for alkalinity by Method 310.1                | 12-13 |
| 9.        | Data comparison for hardness by Method 130.2                  | 13-15 |
| 10.       | Data comparison for TDS and TSS by Methods 160.1 and 160.2    | 15-16 |
| 11.       | Data comparison for total organic carbon (TOC) by Method 9060 | 16-17 |

## References

12.

Appendix A - Key to Comments on Data Comparison Code

्र सम्पद्धः

epairist. a

Doctro-

: /

Prine Bas

1 Martin 1

. . . . . . . .

ý

Appendix B - Data Comparison Tables

Appendix C - Custody Documentation

## SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS MAY 15, 2001 SAMPLING EVENT

#### CHEMICAL QUALITY ASSURANCE REPORT No. E0776-062901

#### **Executive Summary**

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 100 target analyte determinations. The shipment contained one QA water sample and one trip blank sample and was received in good condition. The data report from the QA laboratory, AMRO, Merrimack, NH, dated 15 June 2001, was used in the comparison. In 32 of these determinations target analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 12a). The primary and QA samples agreed overall in 98 out of 100 (98.0%) of the comparisons. Primary and QA samples agreed quantitatively in 30 out of 32 (93.8%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. Two major and no minor discrepancies between results from the primary and QA samples were noted. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's data report was evaluated based on the information that was provided. All of the data comparisons for Methods VOA's-8260, TAL Metals-6010, CN, Anions, COD, BOD, Alkalinity, TDS and TOC were in good overall and quantitative agreement. There were two major data discrepancies noted in the hardness and TSS comparisons. The major discrepancy for hardness occurred in sample SHM-96-5B in which the QA laboratory reported 300 mg/L hardness and the primary laboratory reported 90 mg/L. The QA laboratory reported hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B, expressed as mg equivalents of calcium carbonate per liter. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2 which employs an EDTA titration method. Also, some metal ions interfere by causing fading or indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation. Since calcium and magnesium were requested for all the samples, it is highly recommended that hardness be determined from the 6010B calcium and magnesium metals results to avoid this possible interference in the future monitoring. No reasonable explanation could be offered for the major discrepancy noted in the TSS comparison. All the other quantitative results for all analyses compared closely. There was very little bias to any of the QA laboratory's sample results and only a few minor QC deviations were noted in their case narrative. The data appears to be complete and useable.

The primary laboratory's data report was evaluated based on the information that was provided. As stated above, all of the data comparisons for the majority of the analyses were in good overall and quantitative agreement. The primary laboratory's wet chemistry data report lacked some of the information necessary to completely evaluate the batch QC. Their data report lacked the analysis dates needed to verify holding time compliance and the QC limits for accuracy and precision were not provided for most wet chemistry methods. The primary laboratory did provided the missing information upon request by the USACE. Although there were numerous minor QC outages documented in the primary laboratory's case narrative, the sample results appear to be comparable, reasonably complete and useable.

The QA and primary laboratory's reporting limits were comparable, except for thallium and COD which were not detected in the QA sample. The primary laboratory reported the sample ID's in which tentatively identified compounds (TIC's) were detected. This CQAR is based on the laboratory reporting limits because the detection limits were not always provided or well defined.

QA analyses were performed by AMRO Environmental Laboratories, Inc., 111 Herrick Street, Merrimack, NH, 03054 and Severn Trent Laboratories, Inc., 450 William Pitt Way, Pittsburgh, PA 15238-1330. The primary laboratory was Severn Trent Services, 208 South Park Drive, Suite 1, Colchester, VT, 05446.

> > ana. The Gel

## <u>Table 1</u> <u>Quality Assurance Split Sample</u> Data Comparison Summary

ς.

## Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, May 15, 2001 Sampling Event

|           |                | <b>Overall Agreement (1)</b> |          | Quantitative Agreement (2) |         |
|-----------|----------------|------------------------------|----------|----------------------------|---------|
| Method    | Parameter      | Number                       | Percent  | Number                     | Percent |
| 8260B     | Volatiles      | 65/65                        | 100      | 7/7                        | 100     |
| 6020/7471 | Metals/Mercury | 23/23                        | 100      | 17/17                      | 100     |
| 9010B     | Cyanide        | 1/1                          | 100      | NA                         | NA      |
| 300.0     | Anions         | 4/4                          | 100      | 3/3                        | 100     |
| 410.1     | COD            | 1/1                          | 100      | NA                         | NA      |
| 405.1     | BOD            | 1/1                          | 100      | NA                         | NA      |
| 310.1     | Alkalinity     | 1/1                          | 100      | 1/1                        | 100     |
| 130.2     | Hardness       | 0/1                          | 0        | 0/1                        | 0       |
| 160.1     | TDS            | 1/1                          | 100      | 1/1                        | 100     |
| 160.2     | TSS            | 0/1                          | 0        | 0/1                        | 0       |
| 9060      | TOC            | 1/1                          | 100      | 1/1                        | 100     |
| Total     |                | 98/100                       | 98.0     | 30/32                      | 93.8    |
|           |                |                              | <u> </u> |                            | L       |

#### NOTES:

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

y a chaire

ar Da Agric 3

•. •

# TABLE 2

# QA ANALYSES PERFORMED

۲.

| Sample ID    | Matrix | Sample Date | ANALYSIS                              |
|--------------|--------|-------------|---------------------------------------|
| SHM-96-5B-QA | Water  | 5-15-01     | 5030B/8260B-Volatiles                 |
|              |        |             | 3010A/6010B-ICP Metals, 7470A-Mercury |
|              |        |             | 9010B-Cyanide                         |
|              |        |             | 300.0-Anions by Ion Chromatography    |
|              |        |             | 410.1-COD                             |
|              | ĺ      |             | 405.1-BOD                             |
|              |        | ·           | 310.1-Total Alkalinity as CaCO3       |
|              |        |             | 130.2-Total Hardness                  |
|              |        |             | 160.1-Total Dissolved Solids (TDS)    |
|              |        |             | 160.2-Total Suspended Solids (TSS)    |
|              |        | · -         | 9060-Total Organic Carbon (TOC)       |
| Trip Blank   | Water  | 5-15-01     | 5030B/8260B-Volatiles                 |

1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997

 $\sim -60$ 

... Set €

sti .

- . -

## SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS MAY 15, 2001 QA SAMPLING EVENT

÷

#### CHEMICAL QUALITY ASSURANCE REPORT No. E0776-062901

#### QA Findings

#### 1. QA sample shipping and chain-of-custody deficiencies.

AMRO Environmental Laboratories Corporation, Merrimack, NH, received one shipment containing one QA water sample and a trip blank. The samples were received in good condition on 16 May 2001. Proper sample handling protocols were followed for this shipment.

Copies of the chain-of-custody form document and the cooler receipt form are appended to this report for reference.

#### 2. Data comparison for volatiles (VOC) by Method 8260B.

There were 65 volatile determinations. In seven of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 65 (100%) of the cases and quantitative agreement in seven out of seven (100%) of the cases. No data discrepancies were noted.

The QA laboratory's target analyte list consisted of 65 volatile compounds which were all analyzed by the primary laboratory's whose target analyte list consisted of 84 volatile compounds.

#### 2a. Batch QC Evaluation for the QA Laboratory.

<u>Holding Times</u>: All of the volatile samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: Results of all the method blanks that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

<u>*Trip Blanks*</u>: Results of the trip blank that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

Laboratory Control Samples: The QA laboratory spiked the LCS with all of their 65 target analytes. The spiking levels, percent recoveries and the QC limits were appropriately indicated in the report. The QA laboratory reported that the LCS, V-3 010517A, was within the acceptance

5

limits for all target analytes except in three out of 65 of the cases. According to the "Shell for Analytical Chemistry Requirements", Version 1.0, 2 November 1998, a target analyte list of 65 compounds would allow five sporadic marginal failures (SMF) to fall in the expanded recovery range of (60-140%). The sample results would not be affected, since this requirement was met and the outages were only slightly above and below the acceptance limits.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the five target anlytes that were spiked in the MS and MSD were within the acceptance limits for accuracy and precision.

<u>Surrogates</u>: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

#### 2b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank result associated with the QA sample showed no contamination above the laboratory's reporting limits, except for 1,2,4-trichlorobenzene at 1.0 J ug/L, hexachlorobutadiene at 1.8 J ug/L, naphthalene at 1.5 ug/L and 1,2,3-trichlorobenzene at 1.4 J ug/L which were detected in VBLKC3. These target analytes were not detected in the QA sample SHM-96-5B-QA.

<u>*Trip Blanks*</u>: All of the trip blank results for all of the target analytes showed no contamination above the laboratory's reporting limits.

Laboratory Control Sample (LCS/LCSDs): The primary laboratory reported that all of the target analytes in the LUTB-LCS/LCSD, were within the acceptance limits for accuracy and precision, except for the following:

| LUTB-LCS/LCSD (water) 5-15-01 | RDP=0 out of 84 outside QC limits              |
|-------------------------------|------------------------------------------------|
|                               | % Recoveries= 2 out of 168 outside QC limits,  |
|                               | 1,1-dichloropropene (72-124%) at 126% and 126% |

All 84 of the target analytes were spiked into the LCS and LCSD samples. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were outside of the acceptable limits were detected in any of the associated samples.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>: The primary laboratory reported that all of the five target analytes were within the acceptance limits for accuracy and precision, except for the following:

6

C. A. LAN

| SHL-19-MS/MSD (water) 5-15-01 | RDP= 0 out of 84 outside QC limits                 |
|-------------------------------|----------------------------------------------------|
|                               | % Recoveries= 8 out of 168 below outside QC limits |

All 84 of the target analytes were spiked into the MS/MSD's. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were outside of the acceptable limits were detected in any of the associated samples.

*Surrogates*: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

#### 3. The data comparison for ICP metals by Methods 6010B and mercury by 7470A.

There were 22 ICP-metals determinations and one mercury determination. In 17 of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 23 (100%) of the cases and quantitative agreement in 17 out of 17 (100%) of the cases. No data discrepancies were noted.

#### 3a. Batch QC Evaluation for the QA Laboratory.

Holding times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limit. Iron was detected below the reporting limit of 100 ug/L, at 66.1 ug/L.

Laboratory Control Samples (LCS/LCSDs): The QA laboratory reported that all of the LCS results were within the laboratory's acceptance limits of, 80-120%. The primary laboratory provided the spike amount, percent recoveries and the QC limits in all the data reports.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the MS/MSDs were within the laboratory's acceptance limits for accuracy and precision for all the ICP-metal target analytes, except for arsenic and selenium. The arsenic outages were due to the high sample concentration relative to the spike concentration and the selenium outages were possibly due to a matrix interference. All of the spike levels, percent recoveries and QC limits were provided in the reports.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate results.

# 3b. Batch QC Evaluation for the Primary Laboratory.

Holding times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The primary laboratory reported that all of the target analytes were recovered within the acceptance limits.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The primary laboratory reported that all the target analytes in the MS/MSD's results were within the acceptance limits for accuracy and precision.

*Laboratory Duplicate:* The primary laboratory reported the laboratory duplicate SHL-19D was within the acceptance limits for precision for all of the target analytes.

#### 4. Data comparison for cyanide by Method 9010B.

There was one cyanide determination. No cyanide was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

#### 4a. Batch QC Evaluation for the QA laboratory.

<u>Holding Times</u>: The QA sample SHM-96-5B-QA was analyzed two days outside the method prescribed holding time. This should not significantly affect the sample results.

<u>Method Blanks</u>: The method blank result for cyanide showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS): The QA laboratory reported that the LCS result for cyanide was within the laboratory's acceptance limits of 90-110%, at 101%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for cyanide were within the laboratory's acceptance limits for accuracy and precision. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Laboratory Sample: The QA laboratory did not report any laboratory duplicate results for cyanide.

#### 4b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for cyanide.

<u>Laboratory Control Samples (LCS)</u>: The primary laboratory reported that all the LCS's for cyanide were within the acceptance limits at 104.2% and 105.8%. The spike amount added and the percent recoveries were all provided in the report, but no QC limits were provided.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered below the acceptance limits of 75-125% for cyanide at 58.4%.

<u>Duplicate Sample</u>: The primary laboratory reported that the duplicate sample results were within the laboratory's acceptance limits.

#### 5. Data comparison for anions by Method 300.0.

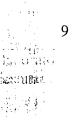
There were four anion determinations. In three of the determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in three out of three (100%) of the cases. No data discrepancies were noted.

# 5a. Batch QC Evaluation for the QA laboratory.

<u>Holding Times</u>: The QA sample was analyzed one hour beyond the 48 hour method prescribed holding time for nitrate and o-phosphate. This should not affect the sample results.

<u>Method Blanks</u>: The method blank results for anions showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Samples (LCS)</u>: The QA laboratory reported that the LCS results for anions were within the laboratory's acceptance limits of 80-120%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.


Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for anions were within the laboratory's acceptance limits for accuracy and precision. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for anions.

#### 5b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for anions.



<u>Laboratory Control Samples (LCS/LCSDs)</u>: The primary laboratory reported that all the LCS's for anions were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the assumed acceptance limits of 80-120% for all the anions.

*Laboratory Duplicate*: The primary laboratory reported that the laboratory duplicate results were within reasonable acceptance limits for precision.

#### 6. Data comparison for COD by Method 410.1.

There was one COD determination. No COD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

#### 6a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for COD showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS): The QA laboratory reported that the LCS result for COD was within the laboratory's acceptance limits of 80-120%, at 106%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for COD were within the laboratory's acceptance limits of 80-120% for accuracy and precision, at 96.3% and 99.4% with a RPD of 3.18%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate result for COD.

## 6b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

Method Blanks: All of the method blank results showed no contamination above the laboratory's reporting limit for COD.

Laboratory Control Samples (LCS/LCSDs): The primary laboratory reported that all the LCS's for COD were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided.

10

Jul II.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS wasrecovered below the assumed acceptance limits of 80-120% at 45.5%. The laboratory suspects this anomaly is due to the nature of the sample matrix. This would indicate a low bias to this sample result.

*Laboratory Duplicate*: The primary laboratory reported the laboratory duplicate precision at 0% RPD, but the laboratory's RPD acceptance limits were not provided.

#### 7. Data comparison for BOD by Method 405.1.

There was one BOD determination. No BOD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

#### 7a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for BOD showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS/LCSDs): The QA laboratory reported that the LCS/LCSD recoveries for BOD (98.6%/76.8%) were outside the laboratory's RPD acceptance limits of 20% at 24.9% due to a low recovery in the LCSD. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis. Refer to LCS/LCSD data for accuracy and precision verification.

*Laboratory Duplicate*: The QA laboratory reported that the laboratory duplicate BOD was within the laboratory's acceptance limits of 20% at 11.8%. The duplicate for the BOD batch QC was performed on another clients sample.

#### 7b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

S (3)

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for BOD.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The primary laboratory reported that all the LCS/LCSD's for BOD were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision.

<u>Matrix Spike (MS)</u>: MS/MSD's are not applicable to BOD analysis. Refer to LCS/LCSD for accuracy and precision verification.

*Laboratory Duplicate*: The primary laboratory did not provide any laboratory duplicate results for BOD.

### 8. Data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. Both laboratories detected alkalinity in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted.

### 8a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for alkalinity showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for alkalinity was within the laboratory's acceptance limits at 104%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for alkalinity were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 93% and 94% recoveries with an RPD of 0.242%.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for alkalinity.

Contra d

### 8b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for alkalinity.

Laboratory Control Samples (LCS/LCSDs): The primary laboratory reported that all the LCS/LCSD's for alkalinity were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision.

Matrix Spike/Matrix Sipke Duplicate(MS/MSDs): The primary laboratory reported that the MS for alkalinity was recovered within the assumed acceptance limits of 80-120% at 97.1%.

<u>Duplicate Sample</u>: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits at 1.2% RPD. No QC limits for precision were provided.

### 9. Data comparison for hardness by Method 130.2.

There was one hardness determination. Both laboratories detected hardness in the QA sample SHM-96-5B. There was 0% overall and quantitative agreement for this determination and a major data discrepancy was noted.

The major discrepancy occurred in sample SHM-96-5B in which the QA laboratory reported 300 mg/L hardness and the primary laboratory reported 90 mg/L. The QA laboratory reported hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B, expressed as mg equivalents of calcium carbonate per liter. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2 which employs an EDTA titration method. Also, some metal ions interfere by causing fading or indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation. Since calcium and magnesium were requested for all the samples, it is highly recommended that hardness be determined from the 6010B calcium and magnesium metals results to avoid this possible interference in the future monitoring. The following table compares the primary labs hardness by Method 130.2 to hardness by calculation:

| Sample ID  | 6010B Calculated Hardness (mg/L) | Hardness by 130.2 (mg/L) |
|------------|----------------------------------|--------------------------|
| SHL-10     | 17.6                             | 20.0                     |
| SHM-93-10C | . 240                            | 232                      |
| SHL-3      |                                  | 18.0                     |
| SHL-19     | 23.0                             | 28.0                     |
| SHL-4      | 80.8                             | 82.0                     |
| SHL-11     | 193                              | .184                     |
| SHL-20     | 341                              | 20.0                     |
| SHL-9      | 68.2                             | 76.0                     |
| SHM-93-22C | 201                              | 196                      |
| SHL-22     | - 10 A 50                        | 472                      |
| SHM-96-22B | 289                              | 150                      |
| SHM-96-5B  | 313                              | 90.0                     |
| SHM-DUP-01 | 316                              | 144                      |
| SHM-96-5C  | 288                              | 300                      |
| SHL-5      | 30.3                             | 34.0                     |
| EB-5B      | 0                                | < 2.0                    |

. 13

### 9. (continued)

| Sample ID  | 6010B Calculated Hardness (mg/L) | Hardness by 130.2 (mg/L) |
|------------|----------------------------------|--------------------------|
| SHM-99-32X | 349                              | 356                      |
| SHM-99-31C | 392                              | 400                      |
| SHM-99-31A | 27.6                             | 28.0                     |
| SHM-99-31B | 128                              | 124                      |

The four samples in **bold-faced** print represent data discrepancies that are most likely the result of heavy metal interference with the EDTA titration Method 130.2.

### 9a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for hardness showed no contamination above the laboratory's reporting limit.

Laboratory Control Sample (LCS): The QA laboratory reported that the LCS recovery for hardness was within the laboratory's acceptance limits of (80-120%) at 102%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for hardness were within the laboratory's acceptance limits for accuracy (75-125%) and precision (20%RPD), at 95.9% and 93.8% recoveries with an RPD of 0.639%.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate results for hardness.

### 9b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for hardness.

<u>Laboratory Control Samples (LCS/LCSDs)</u>: The primary laboratory reported that all the LCS's for hardness was within the assumed acceptance limits of 90-110% at 100%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory reported that the MS for hardness was recovered within the assumed acceptance limits of 80-120% at 93.3%. The primary laboratory did not perform hardness on the sample SHL-19MSD which was requested on the chain-of-custody and no evaluation of precision could be made on this sample.

*Laboratory Duplicate*: The primary laboratory reported the laboratory duplicate results for SHL-19 were within reasonable acceptance limits at 6.9% RPD. No QC limits for precision were provided.

### 10. Data comparison for TDS and TSS by Method 310.1.

There was one total dissolved solids determination (TDS) and one total suspended solids (TSS) determination. Both laboratories reported detectable levels of TDS and TSS in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for the TDS determination and 0% overall and quantitative agreement for the TSS determination. One major data discrepancy was noted for the TSS determination.

The major discrepancy occurred in sample SHM-96-5B-QA in which the QA laboratory reported TSS at 14 mg/L and the primary laboratory reported 44.1 mg/L.

### 10a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for TDS and TSS showed no contamination above the laboratory's reporting limits.

Laboratory Control Sample (LCS): The QA laboratory reported that the LCS recoveries for TDS and TSS were within the laboratory's acceptance limits at 98.1% and 100%, respectively. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): MS/MSD's are not applicable for TDS and TSS.

*Laboratory Duplicate*: The QA laboratory reported that the TDS and TSS laboratory duplicates were within the laboratory's acceptance limits of 20% RPD at 11.8% and 0%, respectively.

# 10b. Batch QC Evaluation for the Primary Laboratory.

*Holding Times*: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

Method Blanks: All of the method blank results showed no contamination above the laboratory's

reporting limit for alkalinity.

Laboratory Control Samples (LCS/LCSDs): The primary laboratory reported that all the LCS/LCSD's for TDS and TSS were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision.

Matrix Spike/Matrix Sipke Duplicate(MS/MSDs): MS/MSD's are not applicable for TDS and TSS.

Laboratory Duplicate: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits for TDS at 0% RPD. The duplicate sample results for SHL-19 were above the assumed RPD QC limit of 20% at 45.6%. The laboratory suspects this anomaly was due to the nature of the sample matrix. The laboratory also stated that the sample volume from another container was used for the TSS duplicate analysis and may have contributed to the elevated RPD. No QC limits for precision were provided.

### 11. Data comparison for total organic carbon (TOC) by Method 9060.

There was one TOC determination. Both laboratories detected TOC in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted. The cooler was at ambient temperature when received at the sub-contracted laboratory, STL Pittsburgh, PA

#### 11a. Batch QC Evaluation for the QA laboratory.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for TOC showed no contamination above the laboratory's reporting limit.

Laboratory Control Sample (LCS): The QA laboratory reported that the LCS recovery for TOC was within the laboratory's acceptance limits at 103%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for TOC were within the laboratory's acceptance limits for accuracy (72-136%) and precision (20%RPD), at 108% and 106% recoveries with an RPD of 1.9%.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for TOC.

1.1.1

### 11b. Batch QC Evaluation for the Primary Laboratory.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TOC.

<u>Laboratory Control Samples (LCS)</u>: The primary laboratory reported that the LCS for TOC was within the assumed acceptance limits of 90-110% at 108.1. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory reported that the MS for TOC was recovered within the assumed acceptance limits of 80-120% at 101%. The primary laboratory did not perform TOC on the sample SHL-19MSD which was requested on the chain-of-custody and no evaluation of precision could be made on this sample.

Laboratory Duplicate: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits at 0% RPD. No QC limits for precision were provided.

### 12. References.

a. Data Reports for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by the primary laboratory, Severn Trent Laboratories, Inc., 208 South Park Drive, Suite 1, Colchester, VT, 05446, were received 19 June 2001. The QA laboratory's data reports, prepared by AMRO Environmental Laboratories Corporation, 111 Herrick Street, Merrimack, NH. 03054, were received 20 June 2001.

We Fixed

b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.

c. Shell for Analytical Chemistry Requirements, Version 1.0, USACE, 2 November 1998.

## APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

0 - Data agrees if any one of the following apply:

- both values are less than respective detection limit (N<MDL)

-  $N_1$  < MDL<sub>1</sub> and  $N_2$  > MDL<sub>2</sub> but < MDL<sub>1</sub>\*

- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in : <2X difference

For all other analyses: <4X difference

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

3 - Minor data discrepancy, disagreement not serious, if any one of the following apply:

-  $N_1$  <MDL<sub>1</sub> and  $N_2$  >MDL<sub>2</sub> and the difference between values  $N_2$  \* does not exceed the upper limit (described below) defining a minor data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in

2X<difference<3X

For all other analyses: 4X<difference<5X

4 - Major data discrepancy, disagreement serious, if any one of the following apply:

3 N.

-  $N_1 < MDL_1$  and  $N_2 > MDL_2$  and the difference between values  $N_2$  and  $MDL_1^*$  exceeds the limit (described below) defining a major data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in

>3X difference

For all other analyses: >5X difference

MDL = Method Detection Limit
N = Analytical result
\* - not all < values are MDLs. Values which are not MDLs will be noted.</li>

۰.

Key to data qualifiers:

B - detected in method blank
DO - Diluted out
J - estimated value, above MDL but below practical quantitation limit
NA - Not analyzed
ND - Not detected
NR - Not reported

i la Policia

.. ji

(1, 1)

ę

# APPENDIX B

# DATA COMPARISON TABLES

|                            |             |           | <b>[</b>     | İ          |            |                      |               |           |                |          |                                              |
|----------------------------|-------------|-----------|--------------|------------|------------|----------------------|---------------|-----------|----------------|----------|----------------------------------------------|
|                            |             | COMPARIS  |              |            |            |                      |               |           | Page 1 of      | 2        |                                              |
|                            |             | PROJECT:  | SHEPLEY      | rs HILL L  | ANDFILL    | , SPRING             | 2001          |           |                |          |                                              |
|                            |             |           |              |            |            |                      |               |           | . <u>ļ</u>     |          |                                              |
|                            |             |           |              |            |            |                      |               |           |                |          |                                              |
|                            |             |           |              |            |            | l                    |               |           |                |          |                                              |
| QA SAMPLE No.:             | 0105167-01A |           |              | CC         | NTRACT     |                      |               |           | 453837         |          |                                              |
| QA FIELD ID:               | SHM-96-5B-  | QA        |              |            |            | CTORS F              |               |           | SHM-96-        | SB       |                                              |
| QA ANALYSIS DATE:          | 5/17/01     |           | [            |            | ACTOR'S    |                      |               |           | 5/22/01        |          |                                              |
| QA LABORATORY:             | AMRO        |           |              | CON        | TRACTOR    |                      |               |           | STL, VT        |          |                                              |
| TRACTION METHOD:           | 5030B       |           | <u> </u>     | ļ          |            | ACTION N<br>ALYSIS N |               |           | 5030B<br>8260B |          |                                              |
| ANALYSIS METHOD:           | 8260B       |           | }            | <u> </u>   |            | ALISISI              | IEINUD.       |           | 0200B          |          |                                              |
|                            |             |           |              |            |            |                      |               |           |                | {        |                                              |
|                            | MATE        | RIAL DESC | RIPTION      | WATER      |            |                      |               |           |                |          |                                              |
|                            |             |           | AMPLED:      |            |            |                      |               |           | - <u> </u>     |          |                                              |
|                            |             | DATES     | UNITS:       |            | <u> </u>   |                      |               |           |                |          |                                              |
|                            |             |           | Units.       | ug/L       |            |                      |               |           |                | <u> </u> |                                              |
|                            |             | <u> </u>  |              | ╞───       | <u> </u>   |                      |               |           |                | +        |                                              |
|                            |             |           | <u> </u>     |            | <u> </u>   |                      |               |           | +              | 11       |                                              |
|                            |             | <u> </u>  | RESULTS      | L<br>S     | <u> </u>   | <u> </u>             | RESULTS       |           |                | OMPARIS  | )N                                           |
| PARAMETER                  | QA LAB      |           | QA LAB       |            | ONTRACT    |                      | DNTRACTO      | DR        |                | CODE     | <u> </u>                                     |
|                            | LRL         | <u> </u>  | 1 XA LAD     |            | LRL        |                      |               |           |                |          | <u> </u>                                     |
|                            |             | <u> </u>  | <u> </u>     | 1          |            | <u> </u>             | tt            |           |                | 1        |                                              |
|                            |             | <u> </u>  |              | +          | †          | <u> </u>             | t{            |           |                | +        |                                              |
|                            |             | <u> </u>  | <del> </del> | +          |            | t                    | tI            |           |                | 1        |                                              |
| Dichlorodifluoromethane    |             | <u> </u>  | 1.9 J        | +          | < 5.0      | t                    | <u>├</u>      |           |                | 0        | <u> </u>                                     |
| Chloromethane              | < 5.0       | <u> </u>  |              | +          | < 5.0      | 1                    | tł            |           | -              | 0        | t                                            |
| Vinyl Chloride             | < 2.0       | <u> </u>  | <u> </u>     | +          | < 5.0      | 1                    | tt            |           |                | 0        | <u> </u>                                     |
| Bromomethane               | < 2.0       |           | +            | 1          | < 5.0      | f                    | tl            |           |                | 0        | <u>†</u>                                     |
| Chloroethane               | - 2.0       | <u>}</u>  | 2.9 J        | +          |            | 1                    | 2.5 J         |           |                | 0        | ţ                                            |
| Trichlorofluoromethane     | < 2.0       | t         |              | +          | < 5.0      | 1                    | 1             |           |                | 0        | t                                            |
| Acrolein                   | NR          |           |              | +          | < 5.0      | 1                    | †             |           |                | 2        | t                                            |
| Freon TF                   | NR NR       |           |              | 1          | < 5.0      | 1                    | ti            |           | +              | 2        | <u>†                                    </u> |
| 1,1-Dichloroethene         | < 1.0       | <u> </u>  | +            | + .        | < 5.0      | 1                    | 1             |           |                | 0        | t                                            |
| Acetone                    | < 10        | <u> </u>  |              | +          | < 5.0      | 1                    | t             |           |                | 0        | 1-                                           |
| Methyl Iodide              | NR          | 2.5       |              | +          | < 5.0      | 1                    | 1             |           |                | 2        | t                                            |
| Carbon Disulfide           | <2.0        |           | 8            | 1          | < 5.0      | 1                    | 1             |           |                | 0        | t                                            |
| Allyl Chloride             | NR          | <u> </u>  |              | +          | < 5.0      | 1                    | 1             |           | -              | 2        | t                                            |
| Methylene Chloride         | < 5.0       | †         | † <u> </u>   | 1          | < 5.0      | 1                    | 1             |           |                | 0        | †-                                           |
| Acrylonitrile              | NR          |           | <u> </u>     | 1          | < 5.0      | 1                    | 1             |           |                | 2        | t                                            |
| trans-1,2-Dichloroethene   | < 2.0       | 1         | 1            | 1          | < 5.0      | 1                    | 1             |           |                | 0        | $t^{-}$                                      |
| 1,2-Dichloroethene (total) | NR          | 1         |              | 1          | 1          | 1                    | 2.6 J         |           |                | 2        | <u>†</u>                                     |
| Methyl-t-Butyl Ether       |             | 1         | 0.97 J       | 1          | < 5.0      | 1                    | 1             |           | 1              | 0        | 1                                            |
| 1,1-Dichloroethane         |             | 1         | 2.2          | 1          | 1          | 1                    | 1.8 J         |           |                | 0        | 1                                            |
| Vinyl Acetate              | NR          | 1         |              | 1          | < 5.0      | 1                    | 1             |           |                | 2        | 1                                            |
| Chloroprene                | NR          | 1         |              | 1          | < 5.0      | 1                    | 1             |           | -              | 2        | 1                                            |
| cis-1,2-Dichloroethene     |             | 1         | 2.8          | 1          | 1          | 1                    | 2.4 J         |           |                | 0        | 1                                            |
| 2-Butanone                 | < 10        | 1         | -            | 1          | < 5.0      | 1                    |               |           |                | 0        | 1                                            |
| Proionitrile               | NR          | 1         | 1            | 1          | < 20       | 1                    | 1             |           |                | 2        | 1                                            |
| Methacrylonitrile          | NR          | 1         |              | •          | < 5.0      | 1                    | 1             |           |                | 2        | 1                                            |
| Bromochloromethane         | < 2.0       |           | 1            |            | < 5.0      | 1                    | 1             |           |                | 0        | T                                            |
| Tetrahydrofuran            | NR          |           | . 9.4        |            | < 50       |                      |               |           |                | 2        | T                                            |
| Chloroform                 | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | Γ                                            |
| 1,1,1-Trichloroethane      | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | Τ                                            |
| Carbon Tetrachloride       | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | Ι                                            |
| Isobutyl Alcohol           | NR          |           |              |            | < 250      |                      |               |           |                | 2        | I                                            |
| Benzene                    |             |           | 0.96 J       |            |            |                      | 1.1 J         | •         |                | 0        | Γ                                            |
| 1,2-Dichloroethane         | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | Γ                                            |
| Trichloroethene            | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | T                                            |
| 1,2-Dichloropropane        | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        | T                                            |
| Methyl Methacrylate        | NR          |           |              |            | < 5.0      |                      |               |           |                | 2        | Ι                                            |
| Dibromomethane             | < 2.0       |           |              |            | < 5.0      |                      |               |           |                | 0        |                                              |
| 1,4-Dioxane                | NR          |           |              |            | < 250      |                      |               |           |                | 2        | Ι                                            |
| Bromodichloromethane       | < 2.0       |           | 1            |            | < 5.0      |                      |               |           |                | 0        | ]                                            |
| 2-Chloroethyl Vinyl Ether  | NR          |           |              |            | < 5.0      |                      |               |           |                | 2        | T                                            |
| cis-1,3-Dichloropropene    | < 1.0       |           |              |            | < 5.0      |                      |               | <u> </u>  |                | 0        | 1                                            |
|                            |             | 1         | 1            | 1          | 1          |                      | 1             | 1         |                | 1        | 1                                            |
|                            |             | 1         | 1 .          |            |            |                      |               |           |                |          | 1                                            |
|                            |             | 1         | SEE AP       | PENDIX     | A FOR KE   | Y TO CON             | MENTS         | 1         |                | 1        | +                                            |
|                            |             | 1         |              | T REPOR    |            | 1                    |               |           | ·· [           |          | 1                                            |
|                            | 1           | 1         | J=Estim      | ated value | greater th | an one half          | f the reporti | ng limit. |                |          | +                                            |
|                            |             |           |              | yte was de |            |                      |               | T         |                |          | +                                            |

.

|                                       |                                               | <u>├</u> ─── <b>└</b> |            |          |            | ANDFILL       |            |               |            |            |         |          |
|---------------------------------------|-----------------------------------------------|-----------------------|------------|----------|------------|---------------|------------|---------------|------------|------------|---------|----------|
|                                       |                                               |                       |            |          |            |               |            |               |            |            |         |          |
|                                       |                                               |                       |            |          | •-•        | 1             |            |               |            |            | 1       |          |
| (                                     | QA SAMPLE No.:                                | 0105167-              | DIA        |          | CC         | NTRACT        | ORS SAM    | PLE No .:     |            | 453837     |         |          |
|                                       | QA FIELD ID:                                  | SHM-96-               | 5B-QA      |          |            | CONTRA        | CTORS F    | IELD ID:      |            | SHM-96-5   | B       |          |
| QA A                                  | NALYSIS DATE:                                 | 5/17/01               |            |          |            | ACTOR'S       |            |               |            | 5/22/01    | ~       |          |
| QA                                    | LABORATORY:                                   | AMRO                  |            |          | CONT       | RACTOR        |            |               |            | STL, VT    |         |          |
|                                       | CTION METHOD:                                 | 5030B                 |            | ļ        |            |               |            | IETHOD:       |            | 5030B      |         |          |
| ANAI                                  | LYSIS METHOD:                                 | 8260B                 | ļ          | L        |            | AN/           | ALYSISN    | IETHOD:       |            | 8260B      |         |          |
|                                       |                                               |                       | ļ          |          |            |               |            | }             |            |            |         |          |
|                                       |                                               | MATERI                | AL DESC    | RIPTION: | WATED      |               |            | <u>├</u>      |            | l          |         |          |
|                                       |                                               | MATERI                |            | AMPLED:  |            |               |            | <u> </u> ;    |            | <u>↓</u>   |         |          |
|                                       |                                               |                       | DAILS      | UNITS:   | ug/L       |               |            | <u>├</u>      |            |            |         |          |
|                                       |                                               | +                     | <u> </u>   |          |            |               |            | f {           |            | []         |         |          |
|                                       |                                               |                       | <u> </u>   |          |            | 1             |            | 1             |            |            | ·       |          |
|                                       |                                               | -                     | 1          | 1        |            |               |            | 1             |            |            |         |          |
|                                       |                                               |                       |            | RESULTS  | 3          |               |            | RESULTS       |            | CO         | MPARISC | )N       |
| Р                                     | PARAMETER                                     | QA LAB                |            | QA LAB   | C          | ONTRACT       | OR CO      | ONTRACTO      | )R         |            | CODE    |          |
|                                       |                                               | LRL                   |            |          |            | LRL           |            |               |            |            |         |          |
|                                       |                                               |                       |            |          | ļ          | <u> </u>      | <b> </b>   |               |            | <u> </u>   |         |          |
|                                       |                                               |                       | <b>_</b>   | 1        | <b> </b>   | <b> </b>      | <u> </u>   | <u> </u>      |            | <b>_</b>   |         | <b> </b> |
|                                       |                                               | +                     |            | +        | <b> </b>   |               |            | +             |            | +          |         |          |
|                                       | 4-Methyl-2-pentanone                          | < 10                  | +          | +        |            | < 5.0         | <u> </u>   | ╂────┨        |            | +          | 0       |          |
|                                       | trans-1,3-Dichloropropene                     | < 1.0                 | +          |          | +          | < 5.0         | <b> </b>   | ╂             |            | +          | 0       | <u>├</u> |
|                                       | Ethyl Methacrylate                            | NR                    | +          | -        | +          | < 5.0         | <u> </u>   | <u>+</u>      |            | +          | 2       | <u> </u> |
|                                       | 1,1,2-Trichloroethane                         | < 2.0                 | +          |          | 1          | < 5.0         | 1          | 1             |            | +          | 0       |          |
|                                       | Tetrachloroethene                             | < 2.0                 | 1          |          | 1          | < 5.0         | t          | +             |            | 1          | 0       | ţ        |
|                                       | 2-Hexanone                                    | < 10                  | 1          |          |            | < 5.0         | 1          |               |            | 1          | 2       | 1        |
| I                                     | Dibromochloromethane                          | < 2.0                 |            |          |            | < 5.0         |            |               |            | 1          | 0       |          |
| 1                                     | 1,2-Dibromoethane                             | < 2.0                 |            |          |            | < 5.0         |            |               |            |            | 0       |          |
|                                       | Chlorobenzene                                 | < 2.0                 |            |          |            | < 5.0         | l          |               |            |            | 0       |          |
|                                       | 1,1,1,2-Tetrachloroethane                     | < 2.0                 |            | •        | ļ          | < 5.0         | <b>_</b>   | <u> </u>      |            | 4          | 0       |          |
|                                       | Ethylbenzene                                  | < 2.0                 |            | 1        | 4          | < 5.0         |            |               |            | - <u> </u> | 0       | ļ        |
|                                       | Xylene (m,p)                                  | < 2.0                 |            |          | - <u> </u> | < 5.0         | ┨          |               |            |            | 0       | <u> </u> |
|                                       | Xylene (total)<br>Xylene (o)                  | < 2.0                 |            |          |            | < 5.0         |            |               |            | +          | 0       |          |
|                                       | Styrene (0)                                   | < 2.0                 |            | · [      |            | < 5.0         | +          |               |            |            | 0       | +        |
|                                       | Bromoform                                     | < 2.0                 |            |          | +          | < 5.0         |            | +             |            | +          | 0       | +        |
|                                       | Isopropylbenzene                              | < 2.0                 |            |          |            | < 5.0         | +          |               |            |            | 0       |          |
|                                       | cis-1,4-Dichloro-2-butene                     | NR                    |            | -        | 1          | < 5.0         | 1          | 1             |            | 1          | 2       | 1        |
|                                       | 1,1,2,2-Tetrachloroethane                     | < 2.0                 |            |          |            | < 5.0         |            |               |            |            | 0       |          |
|                                       | 1,2,3-Trichloropropane                        | < 2.0                 |            |          |            | < 5.0         |            |               |            |            | 0       |          |
|                                       | trans-1,4-Dichloro-2-butene                   |                       |            |          |            | < 5.0         |            |               | L          |            | 2       |          |
|                                       | 1,3-Dichlorobenzene                           | < 2.0                 | _ <b>_</b> |          |            | < 5.0         |            |               |            | ļ          | 0       |          |
| · · · · · · · · · · · · · · · · · · · | 1,4-Dichlorobenzene                           |                       |            | 1.4.J    | _ <b>_</b> | < 5.0         | +          |               |            |            | 0       | ļ        |
|                                       | 1,2-Dichlorobenzene                           | < 2.0                 |            |          | +          | < 5.0         |            |               | ł          | +          | 0       | +        |
|                                       | 1,2-Dibromo-3-Chloropropa                     |                       |            |          |            | < 5.0         |            |               | <b> </b>   | +          | 0       | +        |
|                                       | 1,2,4-Trichlorobenzene<br>Hexachlorobutadiene | < 2.0                 |            |          | +          | < 5.0         |            |               | ·{         | +          | 0       |          |
| *                                     | Naphthalene                                   | < 5.0                 |            |          | +          | < 5.0         | 1          | +             | <u> </u>   | +          | 0       | +        |
|                                       | 2,2-Dichloropropane                           | < 2.0                 |            |          | +          | < 5.0         |            | +             | 1          |            | 0       | +        |
|                                       | 1,1-Dichloropropene                           | < 2.0                 |            | 1 .      | -          | < 5.0         | 1          | -1            | 1          | +          | 0       | 1        |
|                                       | 1,3-Dichloropropane                           | < 2.0                 |            |          | 1          | < 5.0         |            |               | 1          |            | 0       | 1        |
|                                       | Bromobenzene                                  | < 2.0                 |            |          |            | < 5.0         |            |               |            |            | 0       |          |
|                                       | n-Propylbenzene                               | < 2.0                 |            |          |            | < 5.0         | 1          |               |            |            | 0       |          |
|                                       | 2-Chlorotoluene                               | < 2.0                 |            |          | _          | < 5.0         |            |               | <u> </u>   |            | 0       |          |
| ]                                     | 4-Chlorotoluene                               | < 2.0                 |            |          | ·          | < 5.0         |            |               | · [        |            | 0       |          |
|                                       | 1,3,5-Trimethylbenzene                        | < 2.0                 |            | ·        |            | < 5.0         |            |               | +          |            | 0       |          |
|                                       | tert-Butylbenzene                             | < 2.0                 |            |          | <u></u>    | < 5.0         |            |               | +          |            | 0       |          |
|                                       | 1,2,4-Trimethylbenzene                        | < 2.0                 |            |          |            | < 5.0         |            |               | +          |            | 0       | +        |
| ·                                     | sec-Butylbenzeue<br>4-Isopropyltoluene        | < 2.0                 |            |          |            | < 5.0         |            |               | +          |            | 0       |          |
|                                       | n-Butylbenzene                                | < 2.0                 |            |          |            | < 5.0         |            |               | +          |            | 0       | +        |
|                                       | 1,2,3-Trichlorobenzene                        | < 2.0                 |            | -        |            | < 5.0         |            |               | +          |            | 0       | +        |
|                                       |                                               |                       |            |          |            |               | _          |               | <u>+</u>   | +          |         | +        |
|                                       | SURROGATE RECOVER                             | IES (%)               | QA         |          |            |               |            |               |            | PRIMA      | RY      |          |
|                                       |                                               |                       |            |          |            |               | 1          |               | -          |            |         |          |
|                                       | Dibromofloromethane (85-                      |                       | 105        |          |            |               | e-d8 (88-1 |               |            | 99         |         |          |
|                                       | 1,2-Dichloroethane-d4 (75-                    |                       | 101        |          |            |               |            | ne-d4 (72-14  |            | 104        |         |          |
|                                       | Toulene-d8 (86-111)                           |                       | 101        |          |            |               |            | cene (72-122  |            | 103        | _       |          |
|                                       | 4-Bromofluorobenzene (76                      | -113)                 | 97.4       | <u> </u> |            | 1,2-Dic       | hlorobenz  | ene-d4 (69-   | 124)       | 104        |         |          |
| ·                                     | +                                             |                       |            |          | 1          |               | 1          |               |            |            |         |          |
| •                                     | ┼───┼───                                      |                       | _ <u>_</u> |          |            |               | TO CC      | MMENTS        |            |            |         |          |
|                                       |                                               |                       |            |          | OT REPO    |               |            | 164           |            |            |         |          |
|                                       |                                               | 1                     | - I        | J=Estin  | nāted valu | ie greater th | uan one ha | If the report | ing limit. | 1          |         | 1        |

|                   |            | COMPARIS  | SON OF O                              | A & CON     | TRACTO     | R RESULT    | S              |        |               |          |              |
|-------------------|------------|-----------|---------------------------------------|-------------|------------|-------------|----------------|--------|---------------|----------|--------------|
|                   |            | PROJECT:  |                                       |             |            |             |                |        |               |          |              |
|                   |            |           |                                       |             |            | 1           |                |        |               |          |              |
|                   |            |           |                                       |             |            |             | ····           |        | -             |          |              |
|                   |            |           |                                       |             |            |             |                |        |               |          | <u> </u>     |
| QA SAMPLE No.:    | 0105167-01 | 1<br>P    |                                       |             | NTP A CT   | ORS SAM     | PI E No ·      | 15     | 3837          |          | ┢            |
| QA FIELD ID:      | SHM-96-5B  |           |                                       |             |            | CTORS F     |                |        | IM-96-        | CD       |              |
| A ANALYSIS DATE:  | 5/22/01    |           |                                       | CONTR       |            | ANALYSI     |                |        | 1/01          |          |              |
| QA LABORATORY:    | AMRO       | <b>.</b>  |                                       |             |            | 'S LABOR    |                |        |               |          | ┝            |
| RACTION METHOD:   |            |           |                                       | CONI        |            | CTION M     |                |        | TL, VT<br>10A |          |              |
| ANALYSIS METHOD:  | 3010A      | L         |                                       |             |            | ALYSIS M    |                |        |               | 7470     | _            |
| INAL ISIS METHOD: | 6010B,Hg-7 | 470A      |                                       |             | AN.        | ALYSIS M    | ETHOD:         | 01     | )10, Hg       | ·/4/0    | ļ.,          |
|                   |            |           |                                       |             |            |             |                |        |               |          | Ļ_           |
|                   |            | DILL DECC | DIDITION                              | WATED       |            |             |                |        |               |          | Ļ            |
|                   | MATE       | RIAL DESC |                                       |             |            |             |                |        |               |          | _            |
|                   |            | DATES     | AMPLED:                               | 5/15/01     |            |             |                |        |               |          | _            |
|                   |            |           | UNITS:                                | ug/L        | ļ          |             |                |        |               | ļ        | -            |
|                   |            |           |                                       |             |            |             |                |        |               |          | $\vdash$     |
|                   |            |           | <u> </u>                              |             | ļ          |             |                |        |               | <u> </u> | ╀            |
|                   |            |           | DECIT                                 | ļ           | ļ          | ļ!          |                |        |               |          | Ľ            |
| PARAMETER         |            |           | RESULTS                               |             | NITE A CT  | L           | RESULTS        |        | C             | MPARIS   | JI<br>T      |
| PARAMETER         | QA LAB     |           | QA LAB                                | <u> </u>    | NTRACI     | OR CO       | NTRACTOR       |        |               | CODE     | ┞            |
|                   | LRL        |           | · · · · · ·                           |             | LRL        |             |                |        |               | <u> </u> | 1            |
|                   |            |           |                                       |             | ļ          | {           |                |        |               | <u> </u> | ╞            |
|                   |            |           |                                       |             |            |             |                |        |               | <u> </u> | ╞            |
| Aluminum          | < 200      |           |                                       |             | < 98.5     |             |                |        |               | 0        | +            |
| Antimony          | < 20       |           |                                       |             | < 3.1      | ļ           |                |        |               | 0        | ╞            |
| Arsenic           |            |           | 4300                                  |             |            |             | 3800           |        |               | 0        | Ļ            |
| Barium            |            |           | 60 J                                  |             |            | · · · · ·   | 57.8 B         |        |               | 0        | Ļ            |
| Beryllium         | < 5.0      |           |                                       | ļ           | Į          | <u> </u>    | 0.33 B         |        |               | 0        | Ļ            |
| Cadmium           | < 5.0      |           |                                       | ļ           | L          | <u> </u>    | 0.80 B         |        |               | 0        | 1            |
| Calciuum          | 95000      |           |                                       | L           |            |             | 99900          |        |               | 0        | Ļ            |
| Chromium          | < 10       |           |                                       | L           |            | ļ           | 6.2 B          |        |               | 0        | ╀            |
| Colbolt           |            |           | 19 J                                  | L           |            |             | 17.5 B         |        |               | 0        | ∔            |
| Copper            | < 25       |           | C4                                    |             | <11.0      | l           |                |        |               | 0        | 1            |
| Iron              |            |           | 35000                                 |             | L          |             | 36700          |        |               | 0        | $\downarrow$ |
| Lead              | < 5.0      |           | · ·                                   | <u> </u>    | <u> </u>   | ļ           | 2.1 B          |        |               | 0        | 1            |
| Magnesium         |            |           | 15000                                 |             |            |             | 15400          |        |               | 0        | 1            |
| Manganese         |            | -         | -11000                                | ļ           | <u> </u>   | 1           | 10800          |        |               | 0        | 1            |
| Mercury           | < 0.20     | (5-18-01) |                                       | ļ           | < 0.10     | (5-29-01)   |                |        | <u> </u>      | 0        | 4            |
| Nickel            |            |           | 19 J                                  | <b></b>     | <b>_</b>   | ļ           | 16.7 B         |        |               | 0        | 4            |
| Potassium         | 9800       |           |                                       | ·           |            | l           | 11600          |        |               | 0        | 4            |
| Selenium          | < 5.0      |           | · · · · · · · · · · · · · · · · · · · | <u> </u>    | < 3.9      |             |                |        |               | 0        | 4            |
| Silver            | < 7.0      |           | <u> </u>                              | ļ           |            | <b></b>     | 2.6 B          |        |               | 0        | 4            |
| Sodium            | 38000      |           |                                       | ļ           |            |             | 39600          |        |               | 0        | 4            |
| Thallium          | < 5.0      |           |                                       | ļ           | < 73.0     | <u> </u>    | ļ              |        |               | 0        | $\downarrow$ |
| Vanadium          | < 50       |           | 1                                     |             | 1          | ļ           | 2.3 B          |        |               | 0        | 1            |
| Zinc              |            |           | 20                                    | ļ           |            |             | 10.7 B         |        |               | 0        | $\downarrow$ |
|                   |            |           | 3357                                  | ļ           |            |             |                |        |               |          | $\downarrow$ |
|                   |            |           |                                       | 1           | 1          |             |                |        |               |          | 1            |
|                   |            |           |                                       |             |            | Y TO COM    | IMENTS         |        |               |          | $\downarrow$ |
|                   |            |           |                                       | r repor     |            |             | •              |        |               |          | ſ            |
|                   |            |           | B= Less                               | than the C  | ontract Re | quired Det  | ection Limit ( | CRDL), |               |          |              |
|                   |            |           | but great                             | er than the | Instrume   | nt Detction | Limit (IDL).   |        |               |          | J            |
|                   |            |           |                                       |             |            | antitation  |                |        |               |          | T            |

1 4 1.000

1314

1.11

|                    |             | MPARISON OF Q  | A & CONT  | TRACTOR   | RESINT  | 19            |          | +             |                                               |
|--------------------|-------------|----------------|-----------|-----------|---------|---------------|----------|---------------|-----------------------------------------------|
|                    |             | OJECT: SHEPLEY |           |           |         |               | <u> </u> |               |                                               |
|                    |             |                | 5 IIILL L | ANDFILL,  | SININC  | 52001         |          |               |                                               |
|                    |             |                |           |           |         |               |          |               |                                               |
|                    |             |                |           |           |         |               |          | ·             |                                               |
| QA SAMPLE No.:     | 0105167-01C |                |           | NTRACTO   | RSSAM   | IPI E No ·    | 453837   |               |                                               |
| QA FIELD ID:       | SHM-96-5B-C |                |           | CONTRAC   |         |               | SHM-96-  | 58            |                                               |
| QA ANALYSIS DATE:  | 5/31/01     |                |           | ACTOR'S A |         |               | 5/22/01  |               |                                               |
| QA LABORATORY:     | AMRO        |                |           | RACTOR'S  |         |               | STL, VT  | ├ <b>-</b>    |                                               |
| EXTRACTION METHOD: | NA          |                |           |           |         | IETHOD:       | NA       |               |                                               |
| ANALYSIS METHOD:   | 9010B       |                |           |           |         | AETHOD:       | 335.4    | +             | ,,, <u>,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                    |             |                |           |           |         |               |          |               |                                               |
|                    |             |                |           |           |         |               |          | <u>├</u>      |                                               |
|                    | MATERIAI    | L DESCRIPTION: | WATER     |           |         |               |          | tt            |                                               |
|                    |             | DATE SAMPLED:  | 5/15/01   |           |         |               |          |               |                                               |
|                    |             | UNITS:         | mg/L      |           |         |               |          | <u>├</u> ───┤ |                                               |
|                    |             |                |           |           |         |               |          |               |                                               |
|                    |             |                |           |           | <u></u> |               |          |               |                                               |
|                    | 25          |                |           |           |         |               |          | <u> </u> {    |                                               |
|                    |             | RESULTS        | 5         |           |         | RESULTS       | co       | OMPARISC      | <b>DN</b>                                     |
| PARAMETER          | QA LAB      | QA LAB         |           | NTRACTO   |         | ONTRACTOR     |          | CODE          |                                               |
|                    | LRL         |                |           | LRL       |         |               |          |               |                                               |
|                    |             |                |           |           |         | t             |          |               |                                               |
|                    |             |                | <u> </u>  |           |         |               |          | +             | <u> </u>                                      |
|                    |             |                |           |           |         |               |          | 1             |                                               |
| Cyanide (CN)       | < 0.010*    |                |           | < 0.010   |         | 1             |          | 0             |                                               |
|                    |             |                |           |           |         |               |          | 1             |                                               |
|                    |             |                |           |           |         |               |          | 1.            |                                               |
|                    |             |                |           | 1         |         |               |          | 1             | <b></b>                                       |
|                    |             |                |           | 1 1       |         |               |          |               |                                               |
|                    |             |                |           |           |         |               |          |               |                                               |
|                    |             | SEE APP        | ENDIX A   | FOR KEY   | TO COM  | <b>IMENTS</b> |          |               |                                               |
|                    |             | ND-NOT         | REPORT    | PD        |         |               |          | 1             | 1                                             |

••

-

|           | i           |          |           |            |             |                   | +        |                                                                                                                |           |             |                                       | <u>.</u> |             | L        |
|-----------|-------------|----------|-----------|------------|-------------|-------------------|----------|----------------------------------------------------------------------------------------------------------------|-----------|-------------|---------------------------------------|----------|-------------|----------|
|           |             |          |           |            | COMPARI     | SON OF O          | A & CON  | TRACTOF                                                                                                        | RESULT    | S           |                                       | 1        |             |          |
|           |             |          |           |            | PROJECT:    |                   |          |                                                                                                                |           |             |                                       |          |             |          |
|           |             |          |           |            |             |                   | T        |                                                                                                                |           |             |                                       |          |             |          |
|           |             |          |           |            |             |                   |          |                                                                                                                |           |             |                                       |          | -           |          |
|           |             |          |           |            |             |                   |          |                                                                                                                |           |             |                                       |          | ······      |          |
|           | QA SAM      |          |           | 0105167-0  | )ID         |                   | CC       | ONTRACT                                                                                                        | ORS SAM   | IPLE No.:   |                                       | 453837   |             |          |
|           |             | IELD ID: |           | SHM-96-5   |             |                   |          |                                                                                                                | CTORS F   |             |                                       | SHM-96-  | 5B          |          |
|           | ANALYSI     |          |           | See Below  | 1           |                   |          | ACTOR'S                                                                                                        |           |             |                                       | NR       |             |          |
|           | A LABOR     |          |           | AMRO       |             | []                | CONT     | RACTOR                                                                                                         |           |             |                                       | STL, VT  |             |          |
|           | ACTION M    |          |           | NA         |             | L                 |          | the second second second second second second second second second second second second second second second s |           | IETHOD:     |                                       | NA       |             |          |
| <u>AN</u> | ALYSISM     | ETHOD:   |           |            | 04 by 300.0 |                   |          | AN                                                                                                             | ALYSIS N  | IETHOD:     |                                       | 300.0    |             | L        |
|           |             |          |           | Nitrate by | 353.2, o-P( | 04 by 365.2       |          |                                                                                                                |           |             |                                       | <u> </u> |             |          |
|           | ļļ          |          |           |            |             | DIDOTONI          | NV CONT  |                                                                                                                |           |             |                                       |          |             | ļ        |
|           | ļ           |          |           | MATE       | UAL DESC    |                   |          |                                                                                                                |           |             |                                       | +        |             | <u> </u> |
|           |             |          |           |            | DATES       | AMPLED:<br>UNITS: | 5/15/01  |                                                                                                                |           | -           |                                       | <u> </u> |             | <b> </b> |
|           |             |          |           |            |             |                   | mg/L     |                                                                                                                |           |             |                                       |          | <u> </u>    |          |
|           | ╂────┤      |          |           |            |             |                   |          |                                                                                                                |           |             |                                       |          |             | <u> </u> |
|           |             |          |           |            |             |                   |          |                                                                                                                |           |             |                                       |          |             |          |
|           | <u>├</u> ── |          |           |            |             | RESULTS           |          |                                                                                                                |           | RESULTS     |                                       | C(       | )<br>MPARIS |          |
|           | PARAME      | TER      |           | QA LAB     |             | QA LAB            |          | NTRACT                                                                                                         |           | ONTRACTO    | )R                                    | <u> </u> | CODE        | T        |
|           |             |          |           | LRL        |             | QILLED            |          | LRL                                                                                                            |           |             |                                       | +        | CODE        | +        |
|           |             |          |           | 2.02       |             |                   | ·····    |                                                                                                                |           | <u>}</u> }  |                                       | 1        | <u> </u>    | +        |
|           |             |          |           |            |             |                   |          |                                                                                                                |           | t           |                                       | 1        | 1           | +        |
|           |             |          |           |            |             |                   |          |                                                                                                                |           |             |                                       | 1        | <u> </u>    | 1        |
|           | Chloride,   | CL       | (5-25-01) |            |             | 42                |          |                                                                                                                |           | 49.0        |                                       | 1        | 0           |          |
|           | Nitrate, as |          | (5-17-01) | < 0.20*    |             |                   |          | < 0.20                                                                                                         |           |             |                                       |          | 0           |          |
| Oth       | ophosphat   |          | (5-17-01) |            |             | 0.25*             |          | < 0.30                                                                                                         |           |             |                                       |          | 0           | }        |
|           | Sulfate, S  | 04       | (5-18-01) |            |             | 4.3               |          |                                                                                                                |           | 4.6         |                                       |          | 0           |          |
|           |             |          |           |            |             |                   | L        | ļ                                                                                                              | ļ         |             |                                       | 1        |             |          |
|           | ļ           |          |           | ļ          | L           | ļ                 |          | ļ                                                                                                              | ļ         | ļ           |                                       | <u> </u> | ļ           | <u> </u> |
|           | ļ           |          |           |            | ļ           |                   |          | ļ                                                                                                              | ļ         | ļ           |                                       |          | ļ           | <u> </u> |
|           | <b> </b>    |          |           |            | <b> </b>    |                   |          |                                                                                                                |           | <u> </u>    |                                       |          | <b> </b>    |          |
|           | <u> </u>    | ······   | ļ         | <u> </u>   | <u> </u>    | ļ                 |          | <u> </u>                                                                                                       | <b> </b>  |             |                                       |          | <u> </u>    |          |
|           |             |          | ļ         | ļ          |             |                   |          |                                                                                                                |           | <u> </u>    |                                       |          |             | +        |
|           |             | <u> </u> |           | <u> </u>   |             | <u></u>           | ļ        | <b>+</b>                                                                                                       | <b> </b>  | <u> </u>    |                                       |          | +           | +        |
|           | <u> </u>    |          |           |            |             | +                 | <u> </u> |                                                                                                                | <u> </u>  | +           |                                       |          |             | +        |
|           | +           |          |           |            |             |                   |          | <u> </u>                                                                                                       | +         | <u> </u>    |                                       |          | +           |          |
| <u> </u>  | +           |          |           |            | ł           | SEE APP           |          | FOR KEY                                                                                                        |           | MENTS       |                                       | +        | +           |          |
|           |             |          |           |            | <u> </u>    |                   | REPORT   |                                                                                                                |           |             |                                       | +        | +           | +        |
|           | +           |          |           |            | +           |                   |          |                                                                                                                | as exceed | ed by 1 hou | г.                                    |          | +           |          |
|           |             |          |           |            |             | +                 |          |                                                                                                                |           |             |                                       | -        | +           |          |
|           | +           |          | ·         | +          | +           | -+                | ł        | 4                                                                                                              | +         |             | · · · · · · · · · · · · · · · · · · · |          | +           |          |

-

-

ţ

| ······································ |              |                            | i             |            |            |                                               |         |                    |          |
|----------------------------------------|--------------|----------------------------|---------------|------------|------------|-----------------------------------------------|---------|--------------------|----------|
|                                        | 10010        |                            |               |            |            |                                               | ·       |                    |          |
|                                        |              | ARISON OF Q<br>CT: SHEPLEY |               |            |            |                                               |         |                    |          |
| İ                                      | PROJI        | ECT: SHEPLET               | S HILL L      | ANDFILL    | , SPRINC   | 5 2001                                        |         |                    |          |
|                                        | ·····        |                            |               |            |            |                                               |         |                    | +        |
|                                        |              |                            |               |            |            |                                               |         |                    | +        |
| QA SAMPLE No.:                         | 0105167-01E  |                            | l             | NTRACT     | ORSSAN     | API E No                                      | 4538    | 7                  | +        |
| QA FIELD ID:                           | SHM-96-5B-QA |                            |               |            |            | FIELD ID:                                     |         | -96-5B             | +        |
| QA ANALYSIS DATE:                      | 5/24/01      |                            | CONTR         | ACTOR'S    |            |                                               | NR      | - <del>70-56</del> | <u> </u> |
| QA LABORATORY:                         | AMRO         |                            |               |            |            | RATORY:                                       | STL,    | VT                 | +        |
| EXTRACTION METHOD:                     | NA           |                            |               |            |            | METHOD:                                       | NA      |                    |          |
| ANALYSIS METHOD:                       | 410.4        |                            |               |            |            | METHOD:                                       | 410.1   |                    | 1        |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              | ESCRIPTION:                |               |            |            |                                               |         |                    |          |
|                                        | DA           | TE SAMPLED:                |               |            |            |                                               |         |                    |          |
|                                        |              | UNITS:                     | mg/L          |            |            | L                                             |         |                    |          |
| i                                      |              |                            | (             |            | ļ          | ļ                                             |         |                    |          |
|                                        |              |                            | ļ             |            |            | ₋                                             |         |                    |          |
|                                        |              |                            | ļ             |            |            |                                               |         |                    |          |
|                                        |              | RESULTS                    |               | NITE A CYT |            | RESULTS                                       | <u></u> | COMPARI            |          |
| PARAMETER                              | QA LAB       | QA LAB                     | <u> </u>      | NTRACT     | OR CO      | ONTRACTO                                      | K       | CODE               | <u> </u> |
|                                        | LRL          |                            |               | LKL        |            | ┨─────┤-                                      |         |                    |          |
|                                        |              |                            | <u> </u>      |            | <b> </b>   | +                                             |         |                    |          |
|                                        |              |                            |               | <u> </u>   | <u> </u> - | ł                                             |         |                    |          |
| hemical Oxygen Demand (COD)            | < 50         |                            | <u> </u>      | < 5.0      |            | 11                                            |         | 0                  |          |
|                                        |              |                            |               |            | <u> </u>   | +                                             |         |                    |          |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              |                            | 1             |            | 1          |                                               |         |                    |          |
|                                        |              |                            |               |            | 1          |                                               |         |                    | 1        |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              |                            |               |            |            |                                               |         |                    |          |
|                                        |              |                            | 1             |            | ļ          |                                               |         |                    |          |
|                                        |              | <u>_</u>                   | ·             | ļ          | ļ          | <u>                                      </u> |         |                    |          |
|                                        |              |                            |               | ļ          | <u> </u>   |                                               |         |                    |          |
|                                        |              |                            |               | <b> </b>   | ·}         | ++                                            |         |                    |          |
|                                        |              |                            |               |            | +          |                                               |         |                    |          |
|                                        |              |                            | +             |            |            |                                               |         |                    |          |
|                                        |              | SEE AD                     | )<br>PENDIX A | FORKEY     |            | IMENTS                                        |         |                    |          |
|                                        |              |                            | T REPORT      |            |            |                                               |         |                    |          |
| 1 1                                    | 1 1          | 1.110                      |               |            | 1          | - Luzzan i                                    |         |                    |          |
|                                        |              |                            |               |            |            |                                               | 1       |                    |          |

|                                 | l                       | 1          |                |          |          |          | <b>.</b>  |   | - <b> </b> |          |          |
|---------------------------------|-------------------------|------------|----------------|----------|----------|----------|-----------|---|------------|----------|----------|
|                                 |                         |            |                |          |          | D DECLU  |           |   |            |          |          |
|                                 |                         |            | OMPARISON OF   |          |          |          |           |   |            |          |          |
|                                 | <u>├</u>                |            | OJECI. SHEFLEI | SHILLL   | ANDFILL  | , SFRINC |           |   |            |          |          |
|                                 |                         |            |                |          |          |          |           |   |            |          |          |
| $7^{\circ}$ $\overline{\gamma}$ |                         |            |                |          |          |          |           |   |            |          |          |
|                                 | QA SAMPLE No.:          | 0105167-01 | IF             | CC       | ONTRACT  | ORS SAN  | APLE No.: |   | 453837     |          |          |
|                                 | QA FIELD ID:            | SHM-96-51  |                |          |          |          | FIELD ID: |   | SHM-96-:   | 5B       |          |
| QA                              | ANALYSIS DATE:          | 5/17/01    | ~~             | CONTR    | ACTOR'S  |          |           |   | NR         |          |          |
|                                 | QA LABORATORY:          | AMRO       |                |          |          |          | RATORY:   |   | STL, VT    |          |          |
| EXTR                            | ACTION METHOD:          | NA         |                |          | EXTRA    | ACTION I | METHOD:   |   | NA         |          |          |
| Al                              | ALYSIS METHOD:          | 405.1      |                |          | AN       | ALYSIS I | METHOD:   |   | 405.1      |          |          |
|                                 |                         |            |                |          |          |          |           |   |            |          |          |
|                                 |                         |            |                |          |          |          |           |   |            |          |          |
|                                 |                         |            | L DESCRIPTION: |          |          |          |           |   |            |          |          |
|                                 | l                       |            | DATE SAMPLED:  | 5/15/01  |          |          |           |   |            |          |          |
|                                 |                         |            | UNITS:         | mg/L     | <u> </u> |          | ļ         |   |            |          |          |
|                                 | <u></u>                 |            |                |          |          |          |           |   |            |          |          |
|                                 | <u> </u>                |            | ·····          |          | ļ        | ļ        |           |   |            |          |          |
|                                 |                         |            |                |          |          |          | DECLUSION |   |            |          | [        |
|                                 | PARAMETER               |            | RESULTS        |          |          |          | RESULTS   |   | <u> </u>   | MPARIS   |          |
|                                 | PARAMETER               | QA LAB     | QA LAB         | <u> </u> | NTRACT   |          | ONTRACT   |   |            | CODE     | <b> </b> |
|                                 | +                       |            |                | <u> </u> | LRL      |          |           |   |            |          |          |
|                                 | +                       |            |                |          |          | <u></u>  | 1         |   |            | <u> </u> |          |
|                                 | <u> </u>                |            |                | <u> </u> | <u> </u> | <u> </u> | +         |   |            |          | <u> </u> |
| Biologic                        | al Oxygen Demand (5 Day | () < 2.0   |                | <u> </u> | < 2.0    | <u> </u> | +         |   | -+         | 0        | t        |
|                                 |                         |            |                | 1        | +        |          |           |   |            |          | t        |
|                                 |                         |            |                |          | 1        |          | 1         |   |            | 1        | 1        |
|                                 |                         |            |                |          | 1        |          |           |   |            |          |          |
|                                 |                         |            |                |          | <u> </u> |          |           |   |            |          |          |
| ]                               |                         |            |                |          |          |          |           |   |            |          |          |
| <br>                            | ·                       |            |                | [        | 1        | <u> </u> |           |   |            |          | l        |
| ļ                               |                         |            |                |          | FOR KEY  | TO COM   | IMENTS    | ļ |            |          | ļ        |
| L                               |                         |            | NR=NOT         | REPORT   | ED       | <u> </u> | 1         | l |            | <u> </u> | <u> </u> |

· ·

|                    |         |            | <u> </u>  |          |         |         |             |          |         |        |    |
|--------------------|---------|------------|-----------|----------|---------|---------|-------------|----------|---------|--------|----|
|                    | ļ       | 00100100   |           |          |         | DDQ     |             | · · ·    |         |        |    |
|                    |         |            | ISON OF Q |          |         |         |             |          |         |        |    |
|                    |         | PROJECT    | SHEPLEY   | S HILL I | LANDFIL | L, SPRI | NG 2001     |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    | ļ       |            |           |          |         |         |             |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
| QA SAMPLE No.:     | 010516  |            |           | C(       |         |         | AMPLE No.:  |          | 453837  |        |    |
| QA FIELD ID:       |         | 6-5B-QA    |           |          |         |         | S FIELD ID: |          | SHM-96- | 5B     |    |
| QA ANALYSIS DATE:  | 5/29/01 |            |           |          |         |         | YSIS DATE:  |          | NR      |        |    |
| QA LABORATORY:     |         |            |           | CONT     |         |         | ORATORY:    |          | STL, VT |        |    |
| EXTRACTION METHOD: | NA      |            |           |          |         |         | METHOD:     |          | NA      |        |    |
| ANALYSIS METHOD:   | 310.1   |            |           |          | AN      | ALYSI   | S METHOD:   |          | 310.1   |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    | MAT     | ERIAL DESC |           |          |         |         |             |          |         |        |    |
|                    |         | DATE S     | SAMPLED:  |          |         |         |             |          |         |        |    |
|                    |         |            | UNITS:    | mg/L     |         |         |             |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        |    |
|                    |         |            | RESULTS   | 5        |         |         | RESULTS     | 3        | CC      | MPARIS | ON |
| PARAMETER          | QA LA   | B          | QA LAB    | CC       | ONTRACI | OR      | CONTRACT    | OR       |         | CODE   | 1  |
|                    | LRL     | ,          | 1         |          | LRL     |         |             |          |         |        |    |
|                    |         |            |           | 1        |         |         |             |          |         |        |    |
|                    |         |            | 1         |          | 1       | 1       |             | 1        |         | 1      | 1  |
|                    |         |            |           |          |         |         |             |          |         |        | 1  |
| Total Alkalinity a | s CaCO3 |            | 370       | 1        |         | 1       | 360         |          |         | 0      |    |
|                    | 1       |            |           |          | 1       |         |             |          |         | 1      | 1  |
|                    |         |            |           | 1        | 1       |         |             |          |         |        |    |
|                    |         |            |           | 1        | 1       | 1       |             |          |         |        |    |
|                    | 1       |            |           |          |         | 1       |             |          |         |        | 1  |
|                    | 1       |            |           |          |         | 1       |             |          |         |        | 1  |
|                    | 1       |            |           | 1        |         |         |             | 1        |         | 1      | 1  |
|                    |         |            |           |          | +       |         |             | 1        |         | 1      | 1  |
|                    |         |            |           | 1        |         |         |             |          |         |        |    |
|                    |         |            | N         | 1        | 1       | 1       |             |          |         |        |    |
|                    | 1       |            | -         | 1        |         |         | 1.          | 1        |         | 1      | 1  |
|                    | +       |            |           | 1        | 1       | 1       |             | 1        |         | 1      | 1  |
|                    | +       |            |           | 1        | -       | 1       |             | <u> </u> |         |        | 1  |
|                    | -       |            |           | 1        | 1       |         |             |          |         |        | 1  |
|                    | +       |            | · · · · · | 1        | 1       |         |             | 1        |         |        | +  |
|                    |         |            | -         |          | 1       | 1       |             | 1        |         | +      | +  |
|                    |         |            |           | 1        | +       | +       |             |          |         | -      | +  |
|                    |         |            |           |          | +       |         |             | +        |         |        |    |
|                    |         |            |           |          | 1       |         |             | +        |         |        |    |
|                    |         |            |           |          |         |         |             |          |         |        | +  |
|                    | +       |            | SEE API   | PENDIX 4 | FORKE   | Y TO C  | OMMENTS     | +        |         | +      | +  |
|                    |         |            |           |          |         |         |             |          |         |        | 1  |

.

- -

÷

| i                       |           |                      |         |           |             |          |                                  |                 |          |           |          |
|-------------------------|-----------|----------------------|---------|-----------|-------------|----------|----------------------------------|-----------------|----------|-----------|----------|
|                         |           |                      |         | A & CON   | TDACTO      | D D D    |                                  |                 |          |           |          |
|                         |           | COMPARIS<br>PROJECT: |         |           |             |          |                                  | ~~~~~           |          |           |          |
|                         |           | RUJECI               | SHEPLET | 5 HILL I  | LANDFIL     | L, SPF   | CING 2001                        | ~               |          |           |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         | ··{·····  |                      |         |           |             |          |                                  |                 |          |           | <u></u>  |
| QA SAMPLE No.:          | 0105167-0 | 1D                   |         | CC        | NTRACT      | ORS      | SAMPLE No.:                      |                 | 453837   |           |          |
| QA FIELD ID:            | SHM-96-5  |                      |         |           |             |          | RS FIELD ID:                     |                 | SHM-96-  | 5B        |          |
| QA ANALYSIS DATE:       | 5/22/01   |                      |         | CONTR     | ACTOR'S     | ANA      | LYSIS DATE:                      |                 | NR       |           |          |
| QA LABORATORY:          | AMRO      |                      |         | CONT      | RACTOR      | 'S LA    | BORATORY:                        |                 | STL, VT  |           |          |
| EXTRACTION METHOD:      | NA        |                      |         |           | EXTRA       | ACTIC    | ON METHOD:                       |                 | NA       |           |          |
| ANALYSIS METHOD:        | 6010B     |                      |         |           | AN          | ALYS     | SIS METHOD:                      |                 | 130.2    |           |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         | MATER     | IAL DESCR            |         |           |             |          |                                  |                 |          |           |          |
|                         |           | DATE SA              |         | 5/15/01   |             |          |                                  |                 |          |           |          |
|                         |           |                      | UNITS:  | mg/L      |             | ļ        |                                  |                 |          |           |          |
|                         |           |                      |         |           | ļ           | <u> </u> |                                  |                 |          |           |          |
|                         |           |                      |         |           |             | ļ        |                                  |                 |          |           |          |
|                         |           | <u>.:</u>            | RESULTS |           |             |          | RESULTS                          | ļ               |          | <br>      |          |
| PARAMETER               | QA LAB    |                      | QA LAB  |           | L<br>NTRACI |          | CONTRACT                         |                 | <u> </u> | CODE      |          |
|                         | LRL       |                      | QA LAD  |           | LRL         |          |                                  |                 |          | CODE      |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         |           |                      |         |           | <u> </u>    | <u> </u> |                                  |                 |          |           | <u> </u> |
|                         |           | ~~~~                 |         |           |             | <u>†</u> |                                  |                 |          |           |          |
| Total Hardness as CaCO3 |           |                      | 300     |           | t           |          | 90*                              |                 |          | 4         |          |
|                         |           |                      |         |           |             | <u> </u> |                                  |                 |          |           |          |
|                         |           |                      |         |           |             | 1        |                                  |                 |          |           |          |
|                         |           |                      |         |           |             |          |                                  | }               |          |           |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         |           |                      |         |           |             |          |                                  |                 |          |           |          |
|                         |           |                      |         |           |             | <u> </u> |                                  | ļ               |          | ļ         | ļ        |
|                         |           |                      |         |           |             | TO       | COMMENTS                         | ļ               |          |           | ļ        |
|                         |           | ·                    |         | REPORT    |             | 1        |                                  | L               |          | <b>1</b>  |          |
|                         |           |                      |         |           |             |          | te separate dete<br>CaCO3/L equa |                 |          | m and mag | gnesiu   |
|                         |           | L                    | e>      | pressed a | s mg equiv  | alent    | CaCU3/L equa                     | <u>is 312 m</u> | ig/L.    | l         |          |

no la t parte (OF e productoria)

......

.....

1

. .....

ł

shl(spring01)inorganics.xls

•

. \_...

|                                       | 1 :                  |             | 1         |           |             |           | Í           |            |               |    |           |          | I        |
|---------------------------------------|----------------------|-------------|-----------|-----------|-------------|-----------|-------------|------------|---------------|----|-----------|----------|----------|
|                                       |                      |             |           |           |             |           |             |            |               |    |           |          |          |
|                                       |                      |             |           | COMPARI   |             |           |             |            |               |    |           |          |          |
|                                       |                      |             |           | PROJECT:  | SHEPLEY     | 'S HILL I | ANDFILI     | L, SPRINC  | <b>3</b> 2001 | ·  |           |          |          |
|                                       |                      |             |           |           |             |           |             |            |               |    |           | ·····    |          |
|                                       | <u></u>              |             |           |           |             | ····      |             |            |               |    |           | · ·      |          |
|                                       |                      |             |           |           |             |           |             |            |               |    |           |          |          |
|                                       | QA SAMPLE No.:       |             |           | 01D and G |             | CC        | NTRACT      |            |               |    | 453837    |          |          |
|                                       | QA FIELD ID:         |             | SHM-96-   |           |             |           |             | ACTORS F   |               |    | SHM-96-   | 5B       | L        |
|                                       | ANALYSIS DATE:       |             | 5-(19+16) | -2001     |             |           | ACTOR'S     |            |               |    | NR        |          |          |
|                                       | QA LABORATORY:       |             | AMRO      |           |             | CONT      | RACTOR      |            |               |    | STL, VT   |          |          |
|                                       | ACTION METHOD:       |             | NA        |           |             |           |             | ACTION N   |               |    | NA        |          |          |
| AN                                    | ALYSIS METHOD:       |             | 160.1 and | 160.2     |             |           | AN          | ALYSIS N   | IETHOD:       |    | 160.1 and | 160.2    | <u> </u> |
|                                       |                      |             |           |           |             |           |             |            |               |    |           |          | <u> </u> |
|                                       |                      |             |           |           |             |           | L           |            |               |    |           |          | ļ        |
|                                       | L                    |             | MATER     | IAL DESC  |             |           |             |            |               |    |           | L        |          |
|                                       |                      |             |           | DATE SA   | AMPLED:     | 5/15/01   |             | L          |               |    |           |          | ļ        |
|                                       | <u> </u>             |             |           |           | UNITS:      | mg/L      |             |            |               |    |           | ļ        | <u> </u> |
|                                       | <u></u>              |             |           | ļ         |             |           | ļ           | ļ          |               |    |           | l<br>    |          |
| · · • • • · · · · · · · · · · · · · · | <u> </u>             | ļ           |           |           | [·          |           | ļ           | l          | ļ             |    |           | ļ        |          |
|                                       |                      |             |           |           | L           | l         |             | l          |               |    |           |          | <u> </u> |
|                                       |                      |             |           |           | RESULTS     |           |             |            | RESULTS       |    |           | MPARIS   | ON       |
|                                       | PARAMETER            |             | QA LAB    |           | QA LAB      | CC        | ONTRACI     | TOR CO     | DNTRACI       | OR |           | CODE     |          |
|                                       |                      |             | LRL       | ļ         | <u> </u>    |           | LRL         | ļ          | <u> </u>      |    |           | ļ        |          |
|                                       | +                    |             |           | ļ         |             | ļ         | <u> </u>    | . <u> </u> | <u> </u>      |    |           | <u> </u> |          |
|                                       |                      |             |           |           |             |           |             |            | <u> </u>      |    |           | ļ        |          |
|                                       |                      |             |           | <u> </u>  |             | ļ         |             |            |               |    |           |          |          |
|                                       | issolved Solids (TDS |             |           |           | 500         | ļ         |             |            | 467           |    |           | 0        |          |
| 1 otal Su                             | spended Solids (TSS  | 5 by 160.2) |           |           | 14          | ·         |             |            | 44.1          |    |           | 4        |          |
|                                       |                      |             |           |           | · · ·       |           |             |            |               |    |           |          |          |
|                                       | +                    |             |           |           |             |           | +           |            |               |    |           | +        |          |
|                                       |                      |             |           |           |             |           |             |            | +             |    |           |          |          |
|                                       | +                    |             |           | <u> </u>  | <u> </u>    | ļ         |             |            |               |    |           | +        |          |
|                                       |                      |             |           |           |             |           |             |            |               |    |           |          |          |
|                                       | +                    | +           |           | +         | 1 1 1 1 1 1 |           | +           |            | +             |    |           | +        |          |
|                                       |                      |             |           | <u> </u>  | 1.1.        | <u> </u>  |             |            |               |    |           | -        |          |
|                                       | +                    | +           | <u> </u>  | +         | +           | <u> </u>  |             | +          | +             | +  |           | +        |          |
| <b> </b>                              | +                    | +           |           |           | +           |           | +           |            | +             |    |           | +        |          |
|                                       |                      |             |           | +         | +           |           | +           | •          |               | +  |           | +        |          |
|                                       | +                    | +           |           | +         |             |           | +           | +          |               |    |           |          |          |
| <u> </u>                              |                      | +           |           |           | · · · ·     | +         | +           |            |               |    |           |          |          |
|                                       | -+                   |             |           |           |             | +         | +           |            | +             |    |           |          |          |
|                                       | +                    | +           |           | +         | +           |           |             |            |               | +  |           | -+       |          |
| h                                     |                      | +           | +         | · ·       | +           | +         |             |            |               | +  |           | -        |          |
|                                       |                      | +           | +         | +         |             |           | +           |            | +             |    |           |          |          |
|                                       |                      | +           |           | +         |             |           |             |            |               | +  |           |          |          |
| [                                     |                      | +           | -         | +         | SEE API     | PENDIX    | L<br>FOR KE | Y TO CO    | MMENTS        | 1  |           |          |          |
| <b> </b>                              |                      |             | <u> </u>  |           | ~           | T REPOR   |             |            |               | +  |           | -        |          |
| L                                     |                      | <u> </u>    | .L        |           | 111/-110    | INDIOK    |             |            |               | 1  |           | <u> </u> |          |

ŝ

....

|                          | CO            | MPARISON OF Q  | A & CON  | TPACTOPP   | FUITS         |         |                                       |
|--------------------------|---------------|----------------|----------|------------|---------------|---------|---------------------------------------|
|                          |               | DJECT: SHEPLEY |          |            |               |         |                                       |
|                          |               | JECT: SHEFLET  |          | ANDFILL, S |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
| QA SAMPLE No.:           | C1E210170-0   |                |          |            | S SAMPLE No.: | 453837  |                                       |
| QA FIELD ID:             | SHM-96-5B-0   | QA             |          |            | ORS FIELD ID: | SHM-96- | 5 <b>B</b>                            |
| QA ANALYSIS DATE:        | 5/24/01       |                |          |            | ALYSIS DATE:  | NR      |                                       |
| QA LABORATORY:           | STL, Pittsbur | gh             | CONT     |            | ABORATORY:    | STL, VT |                                       |
| EXTRACTION METHOD:       | NA            |                |          |            | ION METHOD:   | NA      |                                       |
| ANALYSIS METHOD:         | 9060          |                |          | ANALY      | YSIS METHOD:  | 9060    |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          | MATERIAL      | DESCRIPTION:   | WATER    |            |               |         |                                       |
|                          | D             | ATE SAMPLED:   | 5/15/01  |            |               |         |                                       |
|                          |               | UNITS:         | mg/L     |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          | ·          |               |         |                                       |
|                          |               |                |          |            |               | ~       |                                       |
|                          | ~             | RESULTS        | 3        |            | RESULTS       | CC      | MPARISON                              |
| PARAMETER                | QA LAB        | QA LAB         |          | NTRACTOR   |               |         | CODE                                  |
|                          | LRL           |                |          | LRL        |               |         | CODD                                  |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         | {                                     |
|                          |               |                |          |            |               |         |                                       |
| tal Organic Carbon (TOC) |               | 6.7            |          |            | 6.7           |         | 0                                     |
| tai organic Carbon (TOC) |               | 0.7            |          |            |               |         |                                       |
|                          |               |                | <u> </u> |            |               |         |                                       |
|                          |               |                | <u> </u> |            |               |         |                                       |
|                          | ~             |                |          |            |               |         |                                       |
|                          |               |                | <u> </u> |            |               |         |                                       |
| ·                        |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                | <u> </u> | ļ          |               |         |                                       |
|                          |               | 11<br>1114 - A | <b> </b> |            |               |         | l                                     |
|                          |               |                |          | <b>  </b>  |               |         | <u> </u>                              |
|                          |               | ·····          |          | ļ          |               |         | ļ                                     |
|                          |               |                |          | L          |               |         | <u> </u>                              |
|                          |               |                |          |            |               | ··      | · · · · · · · · · · · · · · · · · · · |
|                          |               |                |          |            |               |         | ļ                                     |
|                          |               |                |          |            |               |         | 1                                     |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                |          |            |               |         |                                       |
|                          |               |                | 1        |            |               |         |                                       |
|                          |               |                | 1        |            |               |         |                                       |
|                          |               |                | -        |            |               |         |                                       |
|                          |               | SEE API        | PENDIX A | FOR KEY T  | O COMMENTS    |         |                                       |

• •

5

.

ан 1917 — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — 1917 — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар — Алар —

# APPENDIX C

# SAMPLE RECEIPT & CUSTODY DOCUMENTATION

÷.

)

|                                   | ` ARM\   | CORPS                | SOF            | ENG          | NEERS                   | ۰.     | -                          | CHAII     | NOF 5           | TO   | DY R        | ECO                  | RD              |        |            |           |          |              | 01   | 0516                                  |                     | 7, .     |
|-----------------------------------|----------|----------------------|----------------|--------------|-------------------------|--------|----------------------------|-----------|-----------------|------|-------------|----------------------|-----------------|--------|------------|-----------|----------|--------------|------|---------------------------------------|---------------------|----------|
| PROJ. 1<br>2077<br>AMPLER<br>BUCH | 6        | SHE<br>SHE<br>Aturei |                |              | HILL I                  | (7M +  | -M                         |           | NO.<br>OF       |      |             | 2)<br>2)<br>2)<br>2) | 10000 C         |        |            |           | 8/<br>5/ | 0° al        |      | /                                     | IEMARKS             |          |
| TA. NO.                           | DATE     | ТІМЕ                 | COMP.          | GRAB         | ST                      | ATION  | LOCATION                   |           | CON-<br>TAINERS | 4    | 200<br>12/2 |                      | A A A           |        | \$<br>\$/. | 7)<br>3/1 | 5/       | \$],]<br>\$] |      |                                       |                     |          |
| ÷                                 | 5/15/01  | 1210                 |                | X            | SHM-9                   | 76 - 5 | B-QA                       |           | 12              | 3    | 1           | l                    | 1               | 1      | 1          | 1         | 3        |              |      |                                       |                     |          |
|                                   | รุ่าร่อา | _                    |                | X            | TRIPB                   | SLAN   | K                          |           | l               | ļ    | -           | -                    | -               | -      | -          | -         | -        |              |      |                                       |                     |          |
| $\overline{\}$                    |          |                      |                |              |                         |        |                            |           |                 |      |             |                      |                 |        |            |           |          |              |      |                                       |                     |          |
| -                                 |          | A                    | Ju             | Q Y          | rieng                   |        | ****                       |           |                 |      |             |                      | ,               |        |            |           |          |              | ,    |                                       |                     |          |
|                                   |          | $\mathbf{X}$         |                | /            | 5/15/01                 |        |                            |           |                 |      |             |                      |                 |        |            |           |          |              |      | · · · · · · · · · · · · · · · · · · · |                     | ·        |
|                                   |          |                      | $\overline{\}$ |              |                         |        | <u>.</u>                   |           |                 |      |             |                      | -               |        |            |           |          |              |      |                                       |                     |          |
|                                   | ·        |                      |                | $\mathbf{A}$ |                         |        |                            |           |                 |      |             |                      |                 |        |            |           |          |              |      |                                       |                     |          |
|                                   |          |                      | · .            |              | <u> </u>                |        |                            |           |                 |      |             |                      |                 |        |            |           |          |              |      |                                       |                     |          |
| inquist<br>Jul                    |          | Signatur<br>Aj       | i<br>rej       | 5            | Date / Time<br>15/01 17 |        | Received by:<br>FGDGRAC    |           |                 | Rel  | inquis      | hed b                | iy: <i>(S</i> i | ignatu | ire)       |           |          | )ate / 1     | î me | Receive                               | ed by: <i>(Sig</i>  | nature)  |
|                                   | (]       | Bignatur             | e)             |              | Date / Time             |        | Received by:               |           |                 | Reli | inquis      | hed b                | γ: (Si          | ignatu | ire)       |           | D        | )ate / T     | ime  | Receive                               | d by: <i>(Sig</i> i | nature)  |
| linquish                          | ed by: ( | Signatur             | e)             |              | Date / Time             | 6      | leceived for<br>Signature) | Laborator |                 | 5//  | Date        |                      | ne<br>: 0 :     |        | emar       | <br>ks    |          | 1            |      |                                       |                     | <u> </u> |

۰,

AMIKU Environmental Laboratories Corporation

, ` , `

# SAMPLE RECEIPT CHECKLIST

111 Herrick Street Merrimack, NH 03054

|                                                                                                                                    | AMRO I     | <u>)</u> . | <u> </u>                | 5167 (603) 424-2022                    |
|------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|----------------------------------------|
| Client: <u>USACE</u>                                                                                                               | Date Red   | -          |                         |                                        |
| Project Name: <u>E0776</u> <u>SHEPLEY'S</u> HILL<br>Ship via: (circle one) Fed Ex., UPS, AMRO Courier, LTM + M                     | Date Du    | -          | <u></u>                 | -16-01                                 |
| Hand Del., Other Courier, Other: $LTM + M$                                                                                         |            | -          |                         | 21-01                                  |
| Hang Dei., Onner Counci, Onner                                                                                                     |            |            | <u>مند التي المفكات</u> | · · · · · · · · · · · · · · · · · · ·  |
| Items to be Checked Upon Receipt                                                                                                   | Yes        | No         | NA                      | Comments                               |
| 1. Army Samples received in individual plastic bags?                                                                               |            |            |                         |                                        |
| 2. Custody Seals present?                                                                                                          | V          |            |                         | and a all                              |
| 3. Custody Seals Intact?                                                                                                           |            |            |                         | The place                              |
| 4. Air Bill included in folder if received?                                                                                        |            |            |                         |                                        |
| 5. Is COC included with samples?                                                                                                   |            |            |                         |                                        |
|                                                                                                                                    | L L        |            |                         |                                        |
| 6. Is COC signed and dated by client?                                                                                              | 1P         |            |                         |                                        |
| 7. Laboratory receipt temperature. TEMP = 3                                                                                        |            | <u> </u>   | •                       |                                        |
| Samples rec. with ice <u>/</u> ice packs neither                                                                                   |            |            |                         |                                        |
| <ol> <li>Were samples received the same day they were sampled?<br/>Is client temperature 4°C ± 2°C?</li> </ol>                     | 1          |            | -                       |                                        |
| If no obtain authorization from the client for the analyses.                                                                       |            |            |                         |                                        |
| Client authorization from: Date: Obtained by:                                                                                      |            |            |                         |                                        |
| 9. Is the COC filled out correctly and completely?                                                                                 | V          |            | · ·                     |                                        |
| 10. Does the info on the COC match the samples?                                                                                    | V          | 1          |                         |                                        |
| 11. Were samples rec. within holding time?                                                                                         | V          |            |                         |                                        |
| 12. Were all samples properly labeled?                                                                                             | 1          | +          |                         |                                        |
| 13. Were all samples properly preserved?                                                                                           | V          | +          |                         |                                        |
| 14. Were proper sample containers used?                                                                                            | 1.7        |            |                         |                                        |
| 15. Were all samples received intact? (none broken or leaking)                                                                     |            | +          |                         |                                        |
| 16. Were VOA vials rec. with no air bubbles?                                                                                       |            |            |                         |                                        |
| 17. Were the sample volumes sufficient for requested analysis?                                                                     |            |            |                         |                                        |
| 18. Were all samples received?                                                                                                     | 14         | +          | <u> </u>                |                                        |
| 19. VPH and VOA Soils only:                                                                                                        |            | ╬╦╤┿╼┯═    | 12                      |                                        |
| Sampling Method VPH (circle one): M≍Methanol, E=EnCore (air-tigh                                                                   | t containe |            |                         | ]                                      |
| Sampling Method VOA (circle one): M=Methanol, E=Encore (all agr<br>Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfa |            |            | Rulle                   |                                        |
| If M or SB:                                                                                                                        |            | 1          |                         | · · · · · · · · · · · · · · · · · · ·  |
| Does preservative cover the soil?                                                                                                  |            | +          | <u> </u>                |                                        |
| If NO then client must be faxed.                                                                                                   |            | -{         |                         |                                        |
| Does preservation level come close to the fill line on the vial?                                                                   |            |            |                         |                                        |
|                                                                                                                                    |            |            | +                       |                                        |
| If NO then client must be faxed.                                                                                                   |            |            |                         |                                        |
| Were vials provided by AMRO?                                                                                                       | . L        | <u> </u>   | <u> </u>                | <u>1</u>                               |
| If NO then weights MUST be obta                                                                                                    | ained fron | n client   |                         | ······································ |
| Was dry weight aliquot provided?                                                                                                   |            |            | <u> </u>                |                                        |
| If NO then fax client and inform t                                                                                                 | he VOA la  | AD ASAP    | •<br>•                  |                                        |
| 20. Subcontracted Samples:                                                                                                         | <u> </u>   |            | <u> </u>                |                                        |
| What samples sent: $\mathcal{O}/\mathcal{H}$                                                                                       |            |            | _                       |                                        |
| Where sent: 5TL - PITTSBURGH                                                                                                       |            |            |                         |                                        |
| Date: 5-18-01                                                                                                                      |            |            |                         |                                        |
| Analysis: TOC                                                                                                                      |            |            |                         |                                        |
| TAT: STD                                                                                                                           |            |            |                         |                                        |
| 21. Information entered into:                                                                                                      |            |            |                         |                                        |
| Internal Tracking Log?                                                                                                             |            |            | 1                       |                                        |
|                                                                                                                                    |            |            | V                       | 1                                      |
| Dry Weight Log?                                                                                                                    | h-         | +          | 1                       |                                        |
| Client Log?                                                                                                                        | 1          |            | 1                       |                                        |
| Client Log?                                                                                                                        |            | +~         |                         |                                        |
|                                                                                                                                    |            |            | 17                      |                                        |

NA= Not Applicable

Chemical Quality Assurance Report Fall 2001

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-020802

### OCTOBER 30, 2001 SAMPLING EVENT

いは基本

1 AL

# PREPARED BY THE GEOLOGY AND CHEMISTRY SECTION ENGINEERING/PLANNING DIVISION

DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

FEBRUARY 8, 2002

uto setta o no suto: taggen

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2001 SAMPLING EVENT

~

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-020802

# TABLE OF CONTENTS

| Paragraph | Title                                                         | Page  |
|-----------|---------------------------------------------------------------|-------|
|           | Executive Summary                                             | 1-2   |
|           | Table 1- Data Comparison Summary                              | 3     |
|           | Table 2 - Analyses Performed by QA Laboratory                 | 4     |
| 1.        | QA sample shipping and chain-of-custody deficiencies          | 5     |
| 2.        | Data comparison for volatiles by Method 8260B                 | 5-7   |
| 3.        | Data comparison for metals by Method 6010B and 7470           | 7-8   |
| 4.        | Data comparison for cyanide by Method 9010B                   | 8-9   |
| 5.        | Data comparison for anions by Method 300.0                    | 9-10  |
| 6.        | Data comparison for COD by Method 410.4                       | 10-11 |
| 7.        | Data comparison for BOD by Method 405.1                       | 11-12 |
| 8.        | Data comparison for alkalinity by Method 310.1                | 12-13 |
| 9.        | Data comparison for hardness by Method 2340B                  | 13-15 |
| 10.       | Data comparison for TDS and TSS by Methods 160.1 and 160.2    | 15-16 |
| 11.       | Data comparison for total organic carbon (TOC) by Method 9060 | 16-17 |

د. 1. ومعمل وروحه

Sec. 3 Stores

# TABLE OF CONTENTS (continued)

References

12.

Appendix A - Key to Comments on Data Comparison Code

Appendix B - Data Comparison Tables

Appendix C - Custody Documentation

eest and с. С. С. С. a goran and 

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2001 - QA SAMPLING EVENT

## CHEMICAL QUALITY ASSURANCE REPORT No. E0776-020802

#### **Executive Summary**

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 101 target analyte determinations. The shipment contained one QA water sample and one trip blank sample and was received in good condition. The data report from the QA laboratory, AMRO, Merrimack, NH, dated 14 December 2001, was used in the comparison. In 32 of these determinations target analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 12a). The primary and QA samples agreed overall in 100 out of 101 (99.0%) of the comparisons. Primary and QA samples agreed quantitatively in 29 out of 30 (96.7%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. One major and no minor discrepancies between results from the primary and QA samples were noted. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's data report was evaluated based on the information that was provided. All of the data comparisons for Methods VOA's-8260, TAL Metals-6010B, CN, Anions, COD, BOD, Alkalinity, TDS, TSS, hardness and TOC were in good overall and quantitative agreement. There was one major data discrepancies noted in the metals comparison which occurred in sample SHM-96-5B in which the QA laboratory reported zinc at 21 ug/L and the primary laboratory reported 2.7 B ug/L. This should not significantly affect the usability of the metals data.

The primary laboratory (STL-VT) was requested by the Corps to report hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B, expressed as mg equivalents of calcium carbonate per liter. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2, which employs an EDTA titration method. It appears that the previous discrepancies noted in the hardness results were caused by certain metal ions which interfere by causing fading, indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation. This method change appears to have resolved the past hardness data discrepancies noted between the QA and primary laboratories. Refer to Section 9, page 13, Data Comparison

1

for hardness by calculation by Method 2340B, for a more detailed discussion. All the other quantitative results for all analyses compared closely. There was very little bias to any of the QA laboratory's sample results and only a few minor QC deviations were noted in their case narrative. The data appears to be complete and useable.

The primary laboratory's data report was evaluated based on the information that was provided. As stated above, all of the data comparisons for the majority of the analyses were in good overall and quantitative agreement. The primary laboratory's wet chemistry data report lacked some of the information necessary to completely evaluate the batch QC. Their data report lacked the analysis dates needed to verify holding time compliance, and the QC limits for accuracy and precision were not provided for most wet chemistry methods. The primary laboratory did not provide the missing information. Although there were numerous minor QC outages documented in the primary laboratory's case narrative, the sample results appear to be comparable, reasonably complete, and useable. The missing information is most likely available, but it just wasn't included in STL-VT's report format. The Corps has requested that the missing information be included in their future reports so that a more complete evaluation can be performed.

The QA and primary laboratory's reporting limits were comparable, except for thallium and COD which were not detected in the QA sample. The primary laboratory reported the sample ID's in which tentatively identified compounds (TIC's) were detected. The QA sample SHM-96-5B was also reported to contain TIC's. This CQAR is based on the laboratory reporting limits because the detection limits were not always provided or well defined.

QA analyses were performed by AMRO Environmental Laboratories, Inc., 111 Herrick Street, Merrimack, NH, 03054 and Severn Trent Laboratories, Inc., 450 William Pitt Way, Pittsburgh, PA 15238-1330. The primary laboratory was Severn Trent Services, 208 South Park Drive, Suite 1, Colchester, VT, 05446.



# Table 1Quality Assurance Split SampleData Comparison Summary

# Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, October 30, 2001 Sampling Event

|           |                | <b>Overall</b> Agre | ement (1) | Quantitative A | Agreement (2) |
|-----------|----------------|---------------------|-----------|----------------|---------------|
| Method    | Parameter      | Number              | Percent   | Number         | Percent       |
| 8260B     | Volatiles      | 66/66               | 100       | 6/6            | 100           |
| 6020/7471 | Metals/Mercury | 22/23               | 95.7      | 15/16          | 93.8          |
| 9010B     | Cyanide        | 1/1                 | 100       | NA             | NA            |
| 300.0     | Anions         | 4/4                 | 100       | 3/3            | 100           |
| 410.1     | COD            | 1/1                 | 100       | NA             | NA            |
| 405.1     | BOD            | 1/1                 | 100       | NA             | NA            |
| 310.1     | Alkalinity     | 1/1                 | 100       | 1/1            | 100           |
| 130.2     | Hardness       | 1/1                 | 100       | 1/1            | 100           |
| 160.1     | TDS            | 1/1                 | 100       | 1/1            | 100           |
| 160.2     | TSS            | 1/1                 | 100       | 1/1            | 100           |
| 9060      | TOC            | 1.1.1/1             | 100       | 1/1            | 100           |
| Total     |                | 100/101             | 99.0      | 29/30          | 96.7          |
|           | I              |                     |           |                | 1             |

NOTES:

.

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

anda ye Tafi ye

pairs. đ in gras 1 - 1 - <u>1</u> 3 

# TABLE 2

۰

# QA ANALYSES PERFORMED

| Sample ID    | Matrix | Sample Date     | ANALYSIS                              |
|--------------|--------|-----------------|---------------------------------------|
| SHM-96-5B-QA | Water  | 10-30-01        | 5030B/8260B-Volatiles                 |
|              |        |                 | 3010A/6010B-ICP Metals, 7470A-Mercury |
|              |        | <i>2</i> 1 - 1  | 9010B-Cyanide                         |
|              |        |                 | 300.0-Anions by Ion Chromatography    |
|              |        |                 | 410.1-COD                             |
|              |        |                 | 405.1-BOD                             |
|              |        |                 | 310.1-Total Alkalinity as CaCO3       |
|              |        | e<br>La versión | 2340B-Total Hardness by Calculation   |
|              |        |                 | 160.1-Total Dissolved Solids (TDS)    |
|              |        |                 | 160.2-Total Suspended Solids (TSS)    |
|              |        |                 | 9060-Total Organic Carbon (TOC)       |
| Trip Blank   | Water  | 10-30-01        | 5030B/8260B-Volatiles                 |

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS OCTOBER 30, 2001 QA SAMPLING EVENT

## CHEMICAL QUALITY ASSURANCE REPORT No. E0776-020802

# QA Findings

### 1. QA sample shipping and chain-of-custody deficiencies.

AMRO Environmental Laboratories Corporation, Merrimack, NH, received one shipment containing one QA water sample and a trip blank. The samples were received in good condition on 31 October 2001. Proper sample handling protocols were followed for this shipment, except the cyanide sample container needed to be adjusted for pH at the lab.

Copies of the chain-of-custody form document and the cooler receipt form are appended to this report for reference.

### 2. Data comparison for volatiles (VOC) by Method 8260B.

There were 66 volatile determinations. In seven of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 66 (100%) of the cases and quantitative agreement in six out of six (100%) of the cases. No data discrepancies were noted.

The QA laboratory's target analyte list consisted of 66 volatile compounds which were all analyzed by the primary laboratory whose target analyte list consisted of 84 volatile compounds. The primary laboratory was requested to report the presence of Tentatively Identified Compounds (TIC's) in all the samples. QA sample SHM-96-5B-QA was reported to contain TIC's.

### 2a. Batch QC Evaluation for the QA Laboratory-AMRO.

*Holding Times*: All of the volatile samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: Results of all the method blanks that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes, except for carbon disulfide which was detected below the reporting limit of 2.0 ug/L at 0.74 J ug/L.

<u>*Trip Blanks*</u>: Results of the trip blank that were associated with the QA split samples showed no contamination above the laboratory's reporting limit for any of the target analytes.

5 

Laboratory Control Samples: The QA laboratory spiked the LCS with all of their 66 target analytes. The spiking levels, percent recoveries and the QC limits were appropriately indicated in the report. The QA laboratory reported that the LCS, V-3 011106A, was within the acceptance limits for all of the target analytes. According to the "Shell for Analytical Chemistry Requirements", Version 1.0, 2 November 1998, a target analyte list of 66 compounds would allow five sporadic marginal failures (SMF) to fall in the expanded recovery range of (60-140%). The sample results would not be affected, since this requirement was met.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the five target anlytes that were spiked in the MS and MSD were within the acceptance limits for accuracy and precision. The MS/MSD's samples reported were from another client's project.

*Surrogates*: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

# 2b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results associated with the QA sample showed no contamination above the laboratory's reporting limits, except for 1,2,4-trichlorobenzene at 1.0 J ug/L, hexachlorobutadiene at 1.6 J ug/L, naphthalene at 1.6 ug/L, and 1,2,3-trichlorobenzene at 1.8 J ug/L which were detected in the method blank samples VBLKK4 and VBLKK7. These target analytes were not detected in the QA sample SHM-96-5B-QA and were below the reporting limit of 5.0 ug/L. Method blank VBLKK7 also contained isobutyl alcohol at 11 J ug/L.

<u>*Trip Blanks*</u>: All of the trip blank results for all of the target analytes showed no contamination above the laboratory's reporting limits.

<u>Laboratory Control Sample (LCS/LCSDs)</u>: The primary laboratory reported that all of the target analytes in the LSQC/LSQD-LCS/LCSD, were within the acceptance limits for accuracy and precision, except for the following:

| NSQC-LCS/LCSD (water) 10-30-01                                                                                  |                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| dige of the second second second second second second second second second second second second second second s | % Recoveries= 1 out of 168 outside QC limits,  |
| NSQD-LCS/LCSD (water) 10-30-01                                                                                  |                                                |
|                                                                                                                 | % Recoveries= 11 out of 168 outside QC limits, |

All 84 of the target analytes were spiked into the LCS and LCSD samples. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were marginally below the acceptable limits were detected in any of the associated samples. This may indicate a slight low bias to these analytes around the reporting limit. According to the

"Shell for Analytical Chemistry Requirements", Version 1.0, 2 November 1998, a target analyte list of 84 compounds would allow six sporadic marginal failures in the range of 60-140% recoveries before re-extraction and analysis of the entire analytical batch should occur. This requirement was met.

.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>: The primary laboratory reported that all of the five target analytes were within the acceptance limits for accuracy and precision, except for the following:

| SHL-19-MS/MSD (water) 10-30-01 | RDP= 0 out of 84 outside QC limits                  |  |
|--------------------------------|-----------------------------------------------------|--|
|                                | % Recoveries= 26 out of 168 below outside QC limits |  |

All 84 of the target analytes were spiked into the MS/MSD's. The amount spiked, percent recoveries and control limits were provided in the report. None of the target analytes that were below the acceptable limits were detected in any of the associated samples and the outages may be attributed to matrix effects.

*Surrogates*: All of the surrogate recoveries for the samples and the QC samples were within the laboratory's acceptance limits.

### 3. The data comparison for ICP metals by Methods 6010B and mercury by 7470A.

There were 22 ICP-metals determinations and one mercury determination. In 16 of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 22 (95.7%) of the cases and quantitative agreement in 15 out of 16 (93.8%) of the cases. One major data discrepancy was noted.

The major data discrepancy occurred in sample SHM-96-5B-QA in which the primary laboratory reported zinc at 2.7 B ug/L and the QA laboratory reported 21 ug/L.

# 3a. Batch QC Evaluation for the QA Laboratory-AMRO.

Holding times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limits.

Laboratory Control Sample (LCS): The QA laboratory reported that all of the LCS results were within the laboratory's acceptance limits of 80-120%. The QA laboratory provided the spike amount, percent recoveries and the QC limits in all the data reports.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that all of the MS/MSDs were within the laboratory's acceptance limits for accuracy and precision for all the

ICP-metal target analytes, except for thallium which was recovered at 57.0% and 56.7%. The thallium outages were possibly due to a matrix interference. All of the spike levels, percent recoveries and QC limits were provided in the reports.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate results.

# 3b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank sample results for all of the target analytes showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS/LCSDs): The primary laboratory reported that all of the target analytes were recovered within the assumed acceptance limits of 80-120% recoveries. The primary laboratory did not provide LCS acceptance limits in their report.

<u>Matrix Spike (MS)</u>: The primary laboratory performed a matrix spike on sample SHL-19. The primary laboratory reported that all the target analytes in the MS recoveries were within the acceptance limits (75-125%) for accuracy, except for thallium which was recovered at 58.0%. The post digestion spike recovery also indicated a slight low recovery for thallium at 63.9%. The data indicates a low bias to the sample results for thallium at the reporting limit, since thallium was not detected in any of the samples.

Laboratory Duplicate: The primary laboratory reported the laboratory duplicate SHL-19D was within the assumed acceptance limits of 20% RPD for precision for all of the target analytes. The primary laboratory did not provide the acceptance limits for laboratory duplicates.

# 4. Data comparison for cyanide by Method 9010B.

There was one cyanide determination. No cyanide was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

# 4a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: All the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank result for cyanide showed no contamination above the laboratory's reporting limit.

Laboratory Control Sample (LCS): The QA laboratory reported that the LCS result for cyanide was within the laboratory's acceptance limits of 90-110%, at 97.5%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Eser Mr.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory did not report any MS/MSD results for cyanide and they were not requested on the C-O-C.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for cyanide.

# 4b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for cyanide.

Laboratory Control Sample (LCS): The primary laboratory reported the LCS for cyanide was within the assumed acceptance limits of 90-110% at 106.9%. The spike amount added and the percent recoveries were all provided in the report, but no QC limits were provided.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the acceptance limits of 75-125% for cyanide at 91.1%.

*Laboratory Duplicate*: The primary laboratory reported that the laboratory duplicate sample results were within the laboratory's acceptance limits.

### 5. Data comparison for anions by Method 300.0.

There were four anion determinations. In three of the determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in three out of three (100%) of the cases. No data discrepancies were noted.

# 5a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for anions showed no contamination above the laboratory's reporting limit, except for ortho-phosphate which was detected below the reporting limit of 0.10 mg/L at 0.02mg/L.

Laboratory Control Samples (LCS): The QA laboratory reported that the LCS results for anions were within the laboratory's acceptance limits of 90-110%, except that no LCS results for othophosphate were provided. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS for

anions were within the laboratory's acceptance limits for accuracy. The QA laboratory did not provide any MSD results and precision could not be determined. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

*Laboratory Duplicate*: The QA laboratory reported that all the anions laboratory duplicate results were within the acceptance limits of 20% RPD.

#### 5b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for anions.

<u>Laboratory Control Samples (LCSs)</u>: The primary laboratory reported that all the LCS's for anions were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD was provided and no evaluation of precision could be made.

<u>Matrix Spike (MS)</u>: The primary laboratory reported that the MS sample SHL-19MS was recovered within the assumed acceptance limits of 80-120% for all the anions. No acceptance limits were provided for the matrix spike.

*Laboratory Duplicate*: The primary laboratory reported that the laboratory duplicate results were within reasonable acceptance limits for precision, but no acceptance limits were provided.

#### 6. Data comparison for COD by Method 410.1.

There was one COD determination. No COD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

## 6a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for COD showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS): The QA laboratory reported that the LCS result for COD was within the laboratory's acceptance limits of 80-120%, at 98%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that the MS/MSD's for COD were within the laboratory's acceptance limits of 80-120% for accuracy and

10

precision, at 102% and 102% with a RPD of 0.433%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Laboratory Duplicate: The QA laboratory did not report any laboratory duplicate result for COD.

#### 6b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: All of the samples were analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for COD.

Laboratory Control Sample (LCS): The primary laboratory reported that the LCS for COD was within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD was provided and no evaluation of precision could be made.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The primary laboratory was not requested to perform MS/MSD's on any of the samples and no evaluation of accuracy and precision based on matrix effects could be made.

*Laboratory Duplicate*: The primary laboratory did not report any laboratory duplicate results for COD and no evaluation of precision could be made.

#### 7. Data comparison for BOD by Method 405.1.

There was one BOD determination. No BOD was detected by either laboratory. There was 100% overall agreement for this determination. No data discrepancy was noted.

## 7a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for BOD showed no contamination above the laboratory's reporting limit.

Laboratory Control Samples (LCS/LCSDs): The QA laboratory reported that the LCS/LCSD recoveries for BOD were within the laboratory's acceptance limits for accuracy and precision at 95.5% and 98.8% recoveries, with a RPD of 3.43%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

11

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: MS/MSD's are not applicable to BOD analysis. Refer to LCS/LCSD data for accuracy and precision verification.

erzij.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for BOD and no evaluation of precision could be made.

# 7b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for BOD.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that all the LCS's for BOD were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. Precision could not be evaluated because no LCSD was performed for the BOD analysis.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): MS/MSD's are not applicable to BOD analysis and were not requested on the C-O-C. Refer to LCS for accuracy verification.

*Laboratory Duplicate*: The primary laboratory did not provide any laboratory duplicate results for BOD.

## 8. Data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. Both laboratories detected alkalinity in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted.

## 8a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for alkalinity showed no contamination above the laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for alkalinity was within the laboratory's acceptance limits of 80-120% at 104%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for alkalinity were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 104% and 104% recoveries with an RPD of 0%.

• 12

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for alkalinity.

## 8b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for alkalinity.

<u>Laboratory Control Sample (LCS)</u>: The primary laboratory reported that the LCS for alkalinity was within the assumed acceptance limits of 90-110% at 106.3. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision. Precision could not be evaluated because no LCSD was performed for alkalinity.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The primary laboratory reported that the MS for alkalinity was recovered within the assumed acceptance limits of 80-120% at 86.8%. No acceptance limits were provided for accuracy and precision. Precision could not be evaluated because no MSD was requested on the C-O-C for alkalinity.

*Laboratory Duplicate*: The primary laboratory reported the laboratory duplicate results for sample SHL-19 were within reasonable acceptance limits at 4.1% RPD. No QC limits for precision were provided.

#### 9. Data comparison for hardness by calculation by Method 2340B.

There was one hardness determination. Both laboratories detected hardness in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination and no data discrepancy was noted.

The primary laboratory was requested to perform hardness by the calculation of the separate determinations of calcium and magnesium from the ICP-metals by 6010B (Method 2340B), expressed as mg equivalents of calcium carbonate per liter. The results of the 15 May 2001 QA sampling event indicated a major discrepancy which occurred in sample SHM-96-5B in which the QA laboratory reported 300 mg/L hardness and the primary laboratory reported 90 mg/L. The QA laboratory reported hardness by Method 2340B. This is the preferred method for determining hardness and yields the higher accuracy compared to Method 130.2 which employs an EDTA titration method. Also, some metal ions interfere by causing fading or indistinct end points or by stoichiometric consumption of EDTA. If higher concentrations of heavy metals are present (Al, Ba, Cd, Co, Cu, Fe, Pb, Mn, Ni, Sr and Zn), the method recommends determining calcium and magnesium by a non-EDTA method and obtain hardness by calculation. Previous sampling events have indicated several data discrepancies when the calculated hardness was

compared to hardness by titration, Method 130.2. Hardness will be determined from the 6010B calcium and magnesium metals (Method 2340B) results to avoid this possible interference in the future long term monitoring testing. The following table compares the primary lab's hardness by Method 130.2 to hardness by calculation and to the October 2001 sampling event results:

.

|                  | Calculated Hardness | Hardness by 130.2 | <b>Calculated Hardness</b> |
|------------------|---------------------|-------------------|----------------------------|
| Sample ID        | 5-15-01 (mg/L)      | 5-15-01 (mg/L)    | 10-30-01 (mg/L)            |
| SHL-10           | 17.6                | 20.0              | 26.4                       |
| SHM-93-10C       | 240                 | 232               | 235                        |
| SHL-3            | 13.3                | 18.0              | 25.9                       |
| SHL-19           | 23.0                | 28.0              | 63.1                       |
| SHL-4            | 80.8                | 82.0              | 142                        |
| SHL-11           | 193                 | 184               | 183                        |
| SHL-20           | 341                 | 20.0              | 340 (As=165)               |
| SHL-9            | 68.2                | 76.0              | 72.1                       |
| SHM-93-22C       | 201                 | 196               | 259                        |
| SHL-22           | 450                 | 472               | 429                        |
| SHM-96-22B-91.7' |                     | 150               | 285 (As=1240)              |
| SHM-96-5B        | 313                 | 90.0              | 330 (As=1850)              |
| SHM-DUP-01       | 316                 | 144               | 329 (As=1830)              |
| SHM-96-5C        | 288                 | 300               | 252                        |
| SHL-5            | 30.3                | 34.0              | 37.0                       |
| EB-5B            | 0                   | < 2.0             | < 1.6                      |
| SHM-99-32X       | 349                 | 356               | 373                        |
| SHM-99-31C       | 392                 | 400               | 408                        |
| SHM-99-31A       | 27.6                | 28.0              | 29.4                       |
| SHM-99-31B       | 128                 | 124               | 122                        |

The four samples in bold-faced print represent the historical data discrepancies that were most likely the result of heavy metal interference with the EDTA titration Method 130.2. The results from the hardness by calculation from 15 May 2001 compare reasonably close to the results from the hardness by calculation from 30 October 2001.

## 9a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding time.

<u>Method Blanks</u>: The method blank results for hardness showed no contamination above the laboratory's reporting limit.

Laboratory Control Sample (LCS): The QA laboratory reported that the LCS recovery for hardness was within the laboratory's acceptance limits of (80-120%) at 102%. All of the spike

levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): The QA laboratory reported that the MS/MSD's for hardness were within the laboratory's acceptance limits for accuracy (75-125%) and precision (20%RPD), 102% and 103% recoveries with an RPD of 0.284%.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for hardness.

#### 9b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for hardness.

Laboratory Control Samples (LCS/LCSD's): The primary laboratory did not report any LCS results for hardness. No evaluation of method performance (accuracy and precision) on an interference free matrix could be made.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory did not report any MS/MSD results for hardness. No evaluation of accuracy and precision based on matrix effects could be made. The primary laboratory did not provide hardness results on the samples SHL-19MS and MSD which were requested on the chain-of-custody.

*Laboratory Duplicate*: The primary laboratory did not report any laboratory duplicate results for hardness for SHL-19. No QC limits for precision were provided.

## 10. Data comparison for TDS and TSS by Methods 160.1 and 160.2.

There was one total dissolved solids determination (TDS) and one total suspended solids (TSS) determination. Both laboratories reported detectable levels of TDS and TSS in the QA sample SHM-96-5B. There was 100% overall and quantitative agreement for the TDS determination and 100% overall and quantitative agreement for the TSS determination. No data discrepancies were noted for the TDS and TSS determinations.

## 10a. Batch QC Evaluation for the QA laboratory-AMRO.

Holding Times: The QA sample was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: The method blank results for TDS and TSS showed no contamination above the laboratory's reporting limits.



Laboratory Control Sample (LCS): The QA laboratory reported that the LCS recoveries for TDS and TSS were within the laboratory's acceptance limits at 102% and 105%, respectively. All of the spike levels, percent recoveries and OC limits were appropriately indicated in the OA laboratory's report.

Matrix Spike/Matrix Spike Duplicate (MS/MSDs): MS/MSD's are not applicable for TDS and TSS.

Laboratory Duplicate: The QA laboratory reported that the TDS and TSS laboratory duplicates were within the laboratory's acceptance limits of 20% RPD at 0.426% and 10%, respectively.

## 10b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

Holding Times: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

Method Blanks: All of the method blank results showed no contamination above the laboratory's reporting limit for TDS and TSS. stand to be

Laboratory Control Sample (LCS): The primary laboratory reported that all the LCS's for TDS and TSS were within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided for accuracy and precision. No LCSD's were performed and no evaluation of precision could be made.

Matrix Spike/Matrix Sipke Duplicate(MS/MSDs): MS/MSD's are not applicable for TDS and TSS. Sec. Buch

Laboratory Duplicate: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits for TDS at 1.5% RPD. No duplicate sample result for TSS was provided. No QC limits for precision were provided.

#### 1 . . . . 11. Data comparison for total organic carbon (TOC) by Method 9060.

There was one TOC determination. Both laboratories detected TOC in the OA sample SHM-96-5B. There was 100% overall and quantitative agreement for this determination. No data discrepancy was noted. The cooler was at the proper temperature when received at the subcontracted laboratory, STL Pittsburgh, PA.

16

## 11a. Batch QC Evaluation for the QA laboratory-AMRO.

ar thu

 $\approx (1+\sqrt{2})^{1/2}$ 

Holding Times: The QA sample was analyzed within the method prescribed holding time.

Method Blanks: The method blank results for TOC showed no contamination above the

#### laboratory's reporting limit.

<u>Laboratory Control Sample (LCS)</u>: The QA laboratory reported that the LCS recovery for TOC was within the laboratory's acceptance limits at 97%. All of the spike levels, percent recoveries and QC limits were appropriately indicated in the QA laboratory's report.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSDs)</u>: The QA laboratory reported that the MS/MSD's for TOC were within the laboratory's acceptance limits for accuracy (80-120%) and precision (20%RPD), at 99% and 103% recoveries with an RPD of 3.5%.

*Laboratory Duplicate*: The QA laboratory did not report any laboratory duplicate results for TOC.

#### 11b. Batch QC Evaluation for the Primary Laboratory-STL-VT.

1.15 6.15

1. 1. 2. 2.

*Holding Times*: The QA split sample SHM-96-5B was analyzed within the method prescribed holding times.

<u>Method Blanks</u>: All of the method blank results showed no contamination above the laboratory's reporting limit for TOC.

Laboratory Control Samples (LCS's): The primary laboratory reported that the LCS's for TOC was within the assumed acceptance limits of 90-110%. The spike amount added and percent recoveries were all provided in the report, but the QC limits were not provided. No LCSD's were provided and no evaluation of precision could be made.

<u>Matrix Spike/Matrix Sipke Duplicate(MS/MSDs)</u>: The primary laboratory did not provide any MS/MSD results for TOC and no evaluation of accuracy and precision based on matrix effects could be made.

*Laboratory Duplicate*: The primary laboratory reported the duplicate sample results for SHL-19 were within reasonable acceptance limits at 0% RPD. No QC limits for precision were provided.

#### 12. References.

a. Data Reports for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by the primary laboratory, Severn Trent Laboratories, Inc., 208 South Park Drive, Suite 1, Colchester, VT, 05446, were received 28 November 2001. The QA laboratory's data report, prepared by AMRO Environmental Laboratories Corporation, 111 Herrick Street, Merrimack, NH. 03054, were received 17 December 2001.

u Multi III (1997) Mali III (1997) Marakan Ulay

b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.

c. Shell for Analytical Chemistry Requirements, Version 1.0, USACE, 2 November 1998.

## APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

0 - Data agrees if any one of the following apply:

- both values are less than respective detection limit (N<MDL)

-  $N_1$  < MDL<sub>1</sub> and  $N_2$  > MDL<sub>2</sub> but < MDL<sub>1</sub>\*

- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in :  $\leq 2X$  difference

For all other analyses: <4X difference

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

3 - Minor data discrepancy, disagreement not serious, if any one of the following apply:

-  $N_1 \le MDL_1$  and  $N_2 \ge MDL_2$  and the difference between values  $N_2^*$  does not exceed the upper limit (described below) defining a minor data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in

2X<difference<3X

For all other analyses: 4X<difference<5X

4 - Major data discrepancy, disagreement serious, if any one of the following apply:

annailte an t-taist Altaiste an t-taiste

-  $N_1 < MDL_1$  and  $N_2 > MDL_2$  and the difference between values  $N_2$  and  $MDL_1^*$  exceeds the limit (described below) defining a major data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in

>3X difference

For all other analyses: >5X difference

MDL = Method Detection LimitN = Analytical result

\* - not all < values are MDLs. Values which are not MDLs will be noted.

s. Second

and the strength

a had an an an

۰.

Key to data qualifiers:

B - detected in method blank

DO - Diluted out

J - estimated value, above MDL but below practical quantitation limit

NA - Not analyzed

ND - Not detected

NR - Not reported

and the second second Sector Sector S. Sayar  $\mathcal{L}_{\mathcal{M}} = \mathcal{L}_{\mathcal{M}} = \mathcal{L}_{\mathcal{M}}$ and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec A Second 



•

# APPENDIX B

## DATA COMPARISON TABLES

 $(1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)} = (1,1)^{(1,1)$ 

an an taon an taon 1975 - Anna Aonaich 1977 - Anna Aonaich

and Saintean Saintean Saintean Saintean

4 - P

р 1947 — Ал

.

|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                | 1           |
|----------------------------------------|--------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|---------------------------------------|--------|----------------|-------------|
|                                        |                                                        | СОМ           | PARISON OF                                                                                                       | QA&CC       | ONTRACT      | OR RES     | ULTS                                  | P      | age 1 of       | 2           |
|                                        |                                                        |               | ECTSHEPLE                                                                                                        |             |              |            |                                       |        |                | 1           |
| au                                     |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                |             |
|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                |             |
|                                        |                                                        |               | and an and a second second second second second second second second second second second second second second s |             |              |            |                                       |        |                |             |
|                                        | QA SAMPLE No.:                                         | 0110296-01A   |                                                                                                                  | <u> </u>    | ONTRACTO     |            |                                       |        | 59923          |             |
|                                        | QA FIELD ID:                                           | SHM-96-5B-QA  |                                                                                                                  |             | CONTRA       |            |                                       |        | HM-96          | -5B         |
| Not and the other second second second | ANALYSIS DATE:                                         | 11/6/01       | and as a manual                                                                                                  |             | ACTOR'S      |            |                                       |        | 1/6/01         |             |
|                                        | A LABORATORY:<br>CTION METHOD:                         | AMRO<br>5030B | •                                                                                                                | CON         | TRACTOR      |            | ATORY:                                |        | TL, VT<br>030B |             |
|                                        | LYSIS METHOD:                                          | 8260B         | a the second                                                                                                     | +           |              |            | AETHOD:                               |        | 260B           | +           |
|                                        |                                                        | 02000         |                                                                                                                  |             |              | 1.10101    |                                       |        | 2000           |             |
|                                        |                                                        |               |                                                                                                                  |             | ††           |            |                                       |        |                |             |
|                                        |                                                        | MATERIAL D    | ESCRIPTION                                                                                                       | WATER       |              |            |                                       |        |                | 1           |
|                                        |                                                        | DA1           | <b>FE SAMPLED</b>                                                                                                | : 10/30/01  |              |            |                                       |        |                |             |
|                                        |                                                        |               | UNITS                                                                                                            | : ug/L      |              |            |                                       |        |                |             |
|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                |             |
|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                |             |
|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                |             |
|                                        | T                                                      | AMRO          | AMRO                                                                                                             |             | STL-VT       |            | STL-VT                                |        |                |             |
|                                        | Target Analyte                                         | QA LAB        | RESULT                                                                                                           |             | ONTRACT(     | )B         | RESULTS                               |        |                | <br>OMPARIS |
|                                        |                                                        | LRL           | QALAI                                                                                                            |             |              |            | NTRACTO                               | R      |                | CODE        |
|                                        |                                                        |               |                                                                                                                  |             |              |            |                                       |        |                | +           |
|                                        |                                                        |               |                                                                                                                  |             | 11           |            |                                       |        |                |             |
|                                        | Dichlorodifluoromethane                                | < 5.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Chloromethane                                          | < 5.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Vinyl Chloride                                         | < 2.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Bromomethane                                           | < 2.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Chloroethane                                           |               |                                                                                                                  |             |              |            |                                       |        |                | 0           |
|                                        | Trichlorofluoromethane                                 | < 2.0<br>NR   |                                                                                                                  | <b>.</b>    | < 5.0        |            |                                       |        |                | 0           |
|                                        | Acrolein<br>Freon TF                                   | NR NR         |                                                                                                                  | <b>I</b>    | < 5.0        |            | -                                     |        |                | 2           |
| 1                                      | 1,1-Dichloroethene                                     | < 1.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Acetone                                                | < 10          |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Methyl Iodide                                          | NR            |                                                                                                                  | ř.<br>N     | < 5.0        |            |                                       |        |                | 2           |
|                                        | Carbon Disulfide                                       | < 2.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Allyl Chloride                                         | NR            |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 2           |
|                                        | Methylene Chloride                                     | < 5.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Acrylonitrile                                          | NR            |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 2           |
|                                        | trans-1,2-Dichloroethene<br>1,2-Dichloroethene (total) | < 2.0<br>NR   |                                                                                                                  | <u></u>     | < 5.0        |            | -                                     |        |                | 0           |
|                                        | Methyl-t-Butyl Ether                                   |               | <br>                                                                                                             | <b>M</b>    | < 5.0        |            |                                       |        |                | 0           |
|                                        | 1,1-Dichloroethane                                     |               |                                                                                                                  | 烈<br>令      |              |            |                                       |        |                | 0           |
|                                        | Vinyl Acetate                                          | NR            |                                                                                                                  | •1          | < 5.0        |            |                                       |        |                | 2           |
|                                        | Chloroprene                                            | NR            |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 2           |
|                                        | cis-1,2-Dichloroethene                                 |               |                                                                                                                  |             |              |            |                                       |        |                | 0           |
|                                        | 2-Butanone                                             | < 10          |                                                                                                                  |             | < 5.0        | Į          |                                       |        |                | 0           |
|                                        | Proionitrile                                           | NR            |                                                                                                                  | <b>d</b>    | < 20         | <b> </b>   |                                       |        |                | 2           |
|                                        | Methacrylonitrile<br>Bromochloromethane                | NR            |                                                                                                                  |             | < 5.0        | <b> </b>   | -                                     |        |                | 2           |
|                                        | Bromochloromethane<br>Tetrahydrofuran                  | < 2.0<br>NR   |                                                                                                                  | <b>1</b>    | < 5.0        |            |                                       |        |                | 0           |
|                                        | Chloroform                                             | < 2.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | 1,1,1-Trichloroethane                                  | < 2.0         |                                                                                                                  | 復.<br>      | < 5.0        | <u>†</u>   | -                                     |        | ·              | 0           |
|                                        | Carbon Tetrachloride                                   | < 2.0         |                                                                                                                  | 27<br>117   | < 5.0        |            |                                       |        | ·,             | 0           |
|                                        | Isobutyl Alcohol                                       | NR            |                                                                                                                  |             | < 250        |            |                                       |        |                | 2           |
|                                        | Benzene                                                |               |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | 1,2-Dichloroethane                                     | < 2.0         |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 0           |
|                                        | Trichloroethene                                        | < 2.0         |                                                                                                                  | ð           | < 5.0        |            |                                       |        |                | 0           |
|                                        | 1,2-Dichloropropane                                    | < 2.0         |                                                                                                                  | <u> </u>    | < 5.0        | ļ          |                                       |        |                | 0           |
|                                        | Methyl Methacrylate                                    | NR            |                                                                                                                  |             | < 5.0        |            |                                       |        |                | 2           |
|                                        | Dibromomethane                                         | < 2.0         |                                                                                                                  | <u>.</u>    | < 5.0        | <u> </u>   | -                                     |        |                | 0           |
|                                        | 1,4-Dioxane<br>Bromodichloromethane                    | NR<br>< 2.0   |                                                                                                                  |             | < 250        | +          |                                       |        |                | 2           |
|                                        | 2-Chloroethyl Vinyl Ether                              | < 2.0<br>NR   |                                                                                                                  |             | < 5.0        | ł          | -                                     |        |                | 2           |
|                                        | cis-1,3-Dichloropropene                                | < 1.0         |                                                                                                                  |             | < 5.0        | +          |                                       |        |                | 0           |
|                                        |                                                        | ~ 1.0         |                                                                                                                  |             |              | +          |                                       |        |                |             |
|                                        | <u> </u>                                               |               |                                                                                                                  |             |              |            | REAL PROPERTY AND INC.                |        |                |             |
|                                        | <u>├───</u>                                            |               | SEE AI                                                                                                           | PENDIX      | A FOR KEY    | TO CON     | MMENTS                                |        |                |             |
|                                        | <u> </u>                                               |               |                                                                                                                  | DT REPOR    |              |            |                                       |        |                |             |
|                                        |                                                        |               | J=Estin                                                                                                          | nated value | greater than | n one half | f the reporting                       | limit. |                |             |
|                                        | t                                                      |               |                                                                                                                  |             | tected in me |            | · · · · · · · · · · · · · · · · · · · |        |                |             |

| MPLE No.:<br>FIELD ID:<br>SIS DATE:<br>RATORY:                                                                                                                       |                                       |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| FIELD ID:<br>SIS DATE:                                                                                                                                               |                                       | ·                                |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ·                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······                                                                |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               |                                       |                                  |                                                                                                               | ÷                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               | 1 1                                   | COMPA                            | RISON OF                                                                                                      | OA & C                                                                           | ONTRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOR RES                  | ULTS                     | Page 2 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f 2                                                                   |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               |                                       |                                  | SHEPLE                                                                                                        |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                     |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               | 1                                     |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               |                                       |                                  | :                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| FIELD ID:<br>SIS DATE:                                                                                                                                               |                                       |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| SIS DATE:                                                                                                                                                            | 0110296-0                             |                                  |                                                                                                               | CO                                                                               | NTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                          | 469923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      | SHM-96-                               | 5B-QA                            |                                                                                                               | 00.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTORS F                  |                          | SHM-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5B                                                                   |                                                                                 |                                                                                 |                                                                                 |
| 17 a 17 111 V - 1                                                                                                                                                    | 11/6/01<br>AMRO                       |                                  |                                                                                                               |                                                                                  | ACTOR'S<br>RACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                          | 11/6/01<br>STL, VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>,</u>                                                              |                                                                                 |                                                                                 |                                                                                 |
| METHOD:                                                                                                                                                              | 5030B                                 |                                  |                                                                                                               | CONT                                                                             | and all design in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | ACTION N                 |                          | 5030B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| METHOD:                                                                                                                                                              | 8260B                                 |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALYSIS                   |                          | 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                     |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      | -                                     |                                  |                                                                                                               | 1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      |                                       |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      | MATERI                                |                                  | RIPTION:                                                                                                      |                                                                                  | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | <u> </u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      |                                       | DATE S                           | AMPLED:                                                                                                       |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      |                                       |                                  | UNITS:                                                                                                        | ug/L                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| +                                                                                                                                                                    |                                       | <u> </u>                         |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                     |                                                                                 |                                                                                 |                                                                                 |
| +                                                                                                                                                                    |                                       | 1                                | 1                                                                                                             | 1.1.1.1.1.1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        | <u>+</u> +-              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
|                                                                                                                                                                      |                                       |                                  | 1                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| Analyte                                                                                                                                                              | AMRO                                  |                                  | AMRO                                                                                                          | بالمستحد المساجلة                                                                | STL-VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | STL-VT                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 1                                                                               |                                                                                 |                                                                                 |
|                                                                                                                                                                      | QA LAB                                | ļ                                | RESULT                                                                                                        |                                                                                  | INTRACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | RESULTS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OMPARIS                                                               | ON                                                                              |                                                                                 |                                                                                 |
|                                                                                                                                                                      | LRL                                   |                                  | QA LAB                                                                                                        | 1 <u>1</u> -1                                                                    | LRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | ONTRACTO                 | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CODE                                                                  |                                                                                 |                                                                                 |                                                                                 |
| +                                                                                                                                                                    |                                       | <u> </u>                         |                                                                                                               |                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ł                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | +                                                                               |                                                                                 |                                                                                 |
| yl-2-pentanone                                                                                                                                                       | < 10                                  | +                                |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     | 1                                                                               |                                                                                 |                                                                                 |
| e l                                                                                                                                                                  | < 2.0                                 | 1                                |                                                                                                               | स्ट्रेस्ट्रस्                                                                    | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| 3-Dichloropropene                                                                                                                                                    | < 1.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| lethacrylate                                                                                                                                                         | NR                                    |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                     |                                                                                 |                                                                                 |                                                                                 |
| richloroethane                                                                                                                                                       | < 2.0                                 | ļ                                |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | - 600                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| loroethene                                                                                                                                                           | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| none<br>ochloromethane                                                                                                                                               | < 10                                  |                                  |                                                                                                               | <u> </u>                                                                         | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| romoethane                                                                                                                                                           | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| penzene                                                                                                                                                              | < 2.0                                 | 1                                |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     | -                                                                               |                                                                                 |                                                                                 |
| Tetrachloroethane                                                                                                                                                    | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| inzene                                                                                                                                                               | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| (m,p)                                                                                                                                                                | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| (total)                                                                                                                                                              | < 2.0                                 |                                  |                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                            | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| (o)<br>:                                                                                                                                                             | < 2.0                                 |                                  | -                                                                                                             |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | <u> </u>                                                                        |                                                                                 |
| form                                                                                                                                                                 | < 2.0                                 | +                                | -                                                                                                             | <b>.</b>                                                                         | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | <u> </u>                                                                        |
| oylbenzene                                                                                                                                                           | < 2.0                                 |                                  |                                                                                                               |                                                                                  | . < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| Dichloro-2-butene                                                                                                                                                    | NR                                    | 1                                |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                     |                                                                                 |                                                                                 |                                                                                 |
| -Tetrachloroethane                                                                                                                                                   | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| richloropropane                                                                                                                                                      | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | ļ                                                                               |
| ,4-Dichloro-2-butene                                                                                                                                                 |                                       |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                     |                                                                                 |                                                                                 | ļ                                                                               |
| chlorobenzene                                                                                                                                                        | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| chlorobenzene                                                                                                                                                        | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | ŀ                                                                               |
| bromo-3-Chloropropa                                                                                                                                                  |                                       |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | 1                                                                               |
| frichlorobenzene                                                                                                                                                     | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| hlorobutadiene                                                                                                                                                       | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| nalene                                                                                                                                                               | < 5.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| chloropropane                                                                                                                                                        | < 2.0                                 |                                  | -                                                                                                             |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | <b> </b>                                                                        |
| chloropropene<br>chloropropane                                                                                                                                       | < 2.0                                 |                                  |                                                                                                               | <b>1</b>                                                                         | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | +                                                                               | <u> </u>                                                                        |
| benzene                                                                                                                                                              | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | 1                                                                               | <u> </u>                                                                        |
| ylbenzene                                                                                                                                                            | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 | 1                                                                               |
| protoluene                                                                                                                                                           | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| protoluene                                                                                                                                                           | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 |                                                                                 |                                                                                 |
| P                                                                                                                                                                    | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | - <u> </u>                                                                      | 1                                                                               |
| Trimethylbenzene                                                                                                                                                     | < 2.0                                 |                                  |                                                                                                               | M                                                                                | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | +                                                                               |                                                                                 |
| utylbenzene                                                                                                                                                          | < 2.0                                 |                                  |                                                                                                               |                                                                                  | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     | _                                                                               | +                                                                               | +                                                                               |
| utylbenzene<br>Frimethylbenzene                                                                                                                                      |                                       |                                  |                                                                                                               | <b>.</b>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 | +                                                                               |
| utylbenzene<br>Trimethylbenzene<br>utylbenzene                                                                                                                       |                                       |                                  |                                                                                                               | M                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | +                                                                               | +                                                                               |
| atylbenzene<br>Frimethylbenzene<br>atylbenzene<br>ropyltoluene                                                                                                       |                                       |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                     |                                                                                 | 1                                                                               |                                                                                 |
| utylbenzene<br>Trimethylbenzene<br>utylbenzene                                                                                                                       |                                       |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene Trimethylbenzene atylbenzene atylbenzene pyltoluene pyltoluene Trichlorobenzene                                                                          |                                       | QA                               | ·                                                                                                             | 1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | PRIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RY                                                                    | 1                                                                               |                                                                                 |                                                                                 |
| atylbenzene Trimethylbenzene atylbenzene atylbenzene pyltoluene pyltoluene Trichlorobenzene                                                                          | RIES (%)                              |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene Trimethylbenzene atylbenzene tylbenzene Trichlorobenzene COGATE RECOVER                                                                                  |                                       | 105                              |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 | - <b> </b>                                                                      |                                                                                 |
| atylbenzene Trimethylbenzene atylbenzene Trichlorobenzene ROGATE RECOVER mofloromethane (85-1                                                                        | 118)                                  |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          | for an and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | -                                                                     |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene Trimethylbenzene atylbenzene Trichlorobenzene ROGATE RECOVER mofloromethane (85-1 ichloroethane-d4 (75-                                                  | 118)                                  |                                  |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LUBOTODEB2               | cne (72-122)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene<br>Trimethylbenzene<br>atylbenzene<br>ylbenzene<br>Trichlorobenzene<br>COGATE RECOVER<br>mofloromethane (85-1<br>ichloroethane-d4 (75-<br>ne-d8 (86-111) | 118)<br>124)                          | 103                              |                                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ene dA (40 1             | 24) L +0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>,</b>                                                              |                                                                                 | 1                                                                               | 1                                                                               |
| atylbenzene Trimethylbenzene atylbenzene Trichlorobenzene ROGATE RECOVER mofloromethane (85-1 ichloroethane-d4 (75-                                                  | 118)<br>124)                          | 103                              |                                                                                                               |                                                                                  | 1,2-Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | ene-d4 (69-1)            | 24) 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                     |                                                                                 |                                                                                 | -                                                                               |
| atylbenzene<br>Trimethylbenzene<br>atylbenzene<br>ylbenzene<br>Trichlorobenzene<br>COGATE RECOVER<br>mofloromethane (85-1<br>ichloroethane-d4 (75-<br>ne-d8 (86-111) | 118)<br>124)                          | 103                              |                                                                                                               |                                                                                  | 1,2-Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chlorobenz               |                          | 24) 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                     |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene<br>Trimethylbenzene<br>atylbenzene<br>ylbenzene<br>Trichlorobenzene<br>COGATE RECOVER<br>mofloromethane (85-1<br>ichloroethane-d4 (75-<br>ne-d8 (86-111) | 118)<br>124)                          | 103                              | SEE A                                                                                                         |                                                                                  | 1,2-Did<br>A FOR K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | chlorobenz               | ene-d4 (69-1)            | 24) 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                     |                                                                                 |                                                                                 |                                                                                 |
| atylbenzene<br>Trimethylbenzene<br>atylbenzene<br>ylbenzene<br>Trichlorobenzene<br>COGATE RECOVER<br>mofloromethane (85-1<br>ichloroethane-d4 (75-<br>ne-d8 (86-111) | 118)<br>124)                          | 103                              | SEE A<br>NR=N                                                                                                 | PPENDIX<br>OT REPOI                                                              | 1,2-Did<br>A FOR KI<br>TED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EY TO CC                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                     |                                                                                 |                                                                                 |                                                                                 |
| uty<br>Tri                                                                                                                                                           | oyltoluene<br>enzene<br>chlorobenzene | byltoluene < 2.0<br>enzene < 2.0 | yltoluene < 2.0<br>enzene < 2.0<br>chlorobenzene < 2.0<br>GATE RECOVERIES (%) QA<br>floromethane (85-118) 105 | yltoluene < 2.0<br>enzene < 2.0<br>chlorobenzene < 2.0<br>GATE RECOVERIES (%) QA | vyltoluene         < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vyltoluene         < 2.0 | vyltoluene         < 2.0 | vyltoluene         < 2.0         < 5.0           enzene         < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vyltoluene         < 2.0         < 5.0           enzene         < 2.0 | vyltoluene         < 2.0         < 5.0         0           enzene         < 2.0 | vyltoluene         < 2.0         < 5.0         0           enzene         < 2.0 | vyltoluene         < 2.0         < 5.0         0           enzene         < 2.0 |

) --1

|                      |             | COMPARI    | SON OF O                                | A & COM                               | TRACT           | OR PESII       | TS               |              |           |
|----------------------|-------------|------------|-----------------------------------------|---------------------------------------|-----------------|----------------|------------------|--------------|-----------|
|                      |             | PROJECT    |                                         |                                       |                 |                |                  |              | <u>├</u>  |
|                      |             | - NOVEL I  |                                         |                                       | Lini (JTI)      |                |                  |              | <u>├</u>  |
|                      |             |            |                                         |                                       |                 |                | <b> </b>         |              | <b> </b>  |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
| QA SAMPLE No.:       | 0110296-011 | 3          |                                         | (                                     | ONTRAC          | TORS SAN       | APLE No.:        | 469923       |           |
| QA FIELD ID:         | SHM-96-5B   | -QA        |                                         |                                       | CONTI           | RACTORS        | FIELD ID:        | SHM-96-      | 5B        |
| A ANALYSIS DATE:     | 11/6/01     |            |                                         |                                       |                 | S ANALYS       |                  | 11/7/01      |           |
| QA LABORATORY:       | AMRO        |            |                                         | COl                                   |                 | R'S LABOI      |                  | STL, VT      |           |
| ACTION METHOD:       | 3010A       |            |                                         |                                       |                 | RACTION N      |                  | 3010A        |           |
| NALYSIS METHOD:      | 6010B,Hg-7- | 470A       |                                         |                                       | A               | NALYSIS N      | METHOD:          | 6010, Hg     | 7470      |
|                      |             |            |                                         |                                       |                 | ······         |                  |              |           |
|                      | MATE        | RIAL DESCI | RIPTION                                 | WATER                                 |                 |                |                  |              |           |
|                      | IMATE.      |            |                                         | 10/30/01                              |                 |                |                  |              |           |
|                      |             | DITLO      | UNITS:                                  | ug/L                                  |                 |                |                  |              |           |
|                      |             |            |                                         | 8                                     |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  | C            | OMPARISON |
| Target Analyte       | AMRO        | 1          | AMRO                                    |                                       | STL-VT          |                | STL-VT           |              | CODE      |
|                      | QA LAB      | i          | QA LAB                                  |                                       | NTRACI          | OR CO          | DNTRACTOR        |              | ļļ.       |
|                      | LRL         | ļ          | RESULTS                                 |                                       | LRL             | <br>           | RESULTS          |              |           |
|                      |             | <u> </u>   |                                         |                                       | 7.7 U           | <b> </b>       | SEN SER          |              | 0         |
| Aluminum<br>Antimony | < 200       |            | 65                                      |                                       | 2.2 U           |                |                  |              | 0         |
| Arsenic              | < 5.0       | (SW7060A)  |                                         |                                       | 1.5 U           |                |                  |              | 0         |
| Barium               | < 200       | (3W /000A) |                                         |                                       | 9.0 U           |                |                  |              | 0         |
| Beryllium            | < 5.0       |            |                                         |                                       | 0.20 U          |                |                  |              | 0         |
| Cadmium              | < 5.0       | +          |                                         |                                       | 0.20 U          |                |                  |              | 0         |
| Calciuum             | < 2500      |            | . Thinking                              |                                       | 319 U           |                | Ren unit         |              | 0         |
| Chromium             | < 10        |            |                                         |                                       | 0.70 U          |                |                  |              | 0         |
| Colbolt              | < 50        |            |                                         |                                       | 2.5 U           |                |                  |              | 0         |
| Copper               | < 25        |            |                                         |                                       | 1.0 U           |                |                  |              | 0         |
| Iron                 | < 100       |            |                                         |                                       | 15.7 U          |                |                  |              | 0         |
| Lead                 | < 5.0       | (SW7421)   | Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec. |                                       | 0.60 U          |                |                  |              | 0         |
| Magnesium            | < 2500      |            |                                         |                                       | 195 U           |                |                  |              | 0         |
| Manganese<br>Mercury | < 15        | (SW7470Å   |                                         |                                       | 1.4U            | (11-13-01)     |                  |              | 0         |
| Nickel               | < 0.20      | (SW/4/0A)  |                                         |                                       | 2.0 U           | (11-13-01)     |                  |              | 0         |
| Potassium            | < 2500      |            |                                         |                                       | NR              |                |                  |              | 0         |
| Selenium             | < 5.0       | (SW7740)   |                                         |                                       | 1.2 U           | +              |                  |              | 0         |
| Silver               | < 7.0       | 1          |                                         | · · · · · · · · · · · · · · · · · · · | 1.5 U           | †              |                  |              | 0         |
| Sodium               | < 2500      | 1          | 20000                                   |                                       | 570 U           |                |                  |              | 0         |
| Thallium             | < 5.0       | (SW7841)   |                                         |                                       | 4.8 U           |                |                  |              | 0         |
| Vanadium             | < 50        |            |                                         |                                       | 2.1 U           |                |                  |              | 0         |
| Zinc                 | < 20        |            |                                         |                                       | 0.90 U          |                |                  |              | 4         |
|                      |             |            |                                         |                                       | <u> </u>        | ļ              |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 | TO COM         | AENTS            |              |           |
|                      |             |            |                                         | REPORT                                |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 | orting Limit   |                  | i            |           |
|                      |             |            |                                         |                                       |                 | ting Limit     | tion Limit (CRD) | ()           | ++        |
|                      |             |            |                                         |                                       |                 | t Detction L   |                  | ~ <u>)</u> , |           |
|                      |             | +          |                                         |                                       |                 | antitation lir |                  |              | ++        |
| <u> </u>             | I           |            |                                         |                                       | 22.0 / <b>4</b> |                |                  | L            | <u></u>   |
|                      |             |            | 1                                       |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |
|                      |             |            | 4                                       |                                       |                 |                |                  |              |           |
|                      |             |            |                                         |                                       |                 |                |                  |              |           |

|                   |           | COMPARISON OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101 & CO                              | NTRACTOR       | RESILTS            |          | ++       |            |          |            |
|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|--------------------|----------|----------|------------|----------|------------|
|                   |           | ROJECT: SHEPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                |                    |          |          |            |          |            |
|                   |           | RUJECI: SHEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ET SHILL                              | LANDFILL       | , FALL 2001        |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    | ,        |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          | l          |
| QA SAMPLE No.:    | 0110296-0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                | RS SAMPLE No.:     |          | 469923   |            |          |            |
| QA FIELD ID:      | SHM-96-5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                | TORS FIELD ID:     |          | SHM-96-  | 5 <b>B</b> |          |            |
| QA ANALYSIS DATE: | 11/9/01   | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                | NALYSIS DATE:      |          | 11/6/01  |            |          |            |
| QA LABORATORY:    | AMRO      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CON                                   |                | LABORATORY:        |          | STL, VT  |            |          |            |
| XTRACTION METHOD: | NA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                | TION METHOD:       |          | NA       |            |          |            |
| ANALYSIS METHOD:  | 9010B     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | ANAI           | YSIS METHOD:       |          | 335.4    |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   | MATE      | RIAL DESCRIPTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N: WATER                              |                |                    |          | 1        |            |          |            |
|                   |           | DATE SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D: 10/30/01                           |                |                    |          |          |            |          |            |
|                   |           | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |          |          |            |          | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | <u> </u>       |                    |          | 1        |            |          | 1          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | ++             |                    |          | -        |            |          | 1          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | +              |                    |          |          |            |          | <b>+</b>   |
|                   |           | Nor arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | ╂              |                    | ·,       |          |            |          | <b>+</b>   |
| Torest Anality    |           | AMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | STL-VT         | STL-VT             |          |          | <u> </u>   |          | +          |
| Target Analyte    | AMRO      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          | . <u> </u> |
|                   | QA LAB    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | ONTRACTO       |                    |          | <u> </u> | MPARIS     |          | <b>_</b>   |
|                   | LRL       | QA LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AB                                    | LRL            | CONTRACT           | OR       |          | CODE       |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                               |                |                    |          |          |            |          |            |
| Cyanide (CN)      | < 0.010   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | < 0.010        |                    |          |          | 0          |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 1 1            |                    |          |          |            |          | 4          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | +              |                    |          |          | +          |          |            |
|                   |           | SEE APPENDIX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FORKEY                                | TO COMME       | NTS                |          |          |            | +        | 1          |
|                   |           | NR=NOT REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | T              |                    |          | -        | -          | +        | +          |
|                   |           | *Note: Cyanide sar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | usted for pH t | o > 12 at the lab. |          |          |            |          | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | T              |                    |          |          | -          |          | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          | +          |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    | ·        |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · | ++             |                    |          |          | +          |          | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          | _        |            |          | +          |
|                   |           | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                |                    | <u> </u> |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | +              |                    |          |          |            | +        | +          |
|                   | <u>_</u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            | +        | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                               | ++             |                    |          |          | - <b> </b> |          |            |
|                   |           | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                                       |                |                    | <b> </b> |          | ·          | <u> </u> | - <b> </b> |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    | ļ        |          |            | l        | 4          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    | <b> </b> |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          | 1          | 1        |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          | 1          |          |            |
|                   |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in a da card                          |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a sta                                 |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·)                                    |                |                    | 1        |          |            | 1        | 1          |
|                   |           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 1 1            |                    | 1        |          |            | 1        | 1          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | -              |                    | 1        |          |            | 1        |            |
|                   |           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·····                                 | + +            |                    | 1        |          |            | +        | +          |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                           | -              |                    | +        |          | +          | +        |            |
| 1 1 1             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    |          |          |            |          |            |
|                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                |                    | +        |          |            | -        |            |

- rat en r

|          |                  |            |           |          | 1                         | l           |          |                                                                                                                 |           |    |         | ++       |            |
|----------|------------------|------------|-----------|----------|---------------------------|-------------|----------|-----------------------------------------------------------------------------------------------------------------|-----------|----|---------|----------|------------|
|          |                  |            |           |          | RISON OF                  |             |          |                                                                                                                 |           |    |         | L        |            |
|          |                  |            | PR        | OJECT:   | SHEPLEY                   | 'S HILL I   | LANDFILI | J, FALL 2                                                                                                       | 001       |    |         |          |            |
| +        |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
| <u> </u> |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         | <b> </b> |            |
|          | QA SAMPLE No.:   |            | 0110296-0 | 10       | · · · · ·                 |             | ONTRACT  | TODE EAN                                                                                                        | (PLE No.) |    | 469923  |          |            |
|          | QA SAMPLE NO.:   |            | SHM-96-5  |          |                           |             |          | ACTORS 1                                                                                                        |           |    | SHM-96- | 5 D      |            |
|          | ANALYSIS DATE:   |            | See Below |          | <u> </u>                  | CONT        | RACTOR'S |                                                                                                                 |           |    | NR      | 30       |            |
|          | A LABORATORY:    |            | AMRO      |          |                           |             | ITRACTO  |                                                                                                                 |           |    | STL, VT |          |            |
|          | CTION METHOD     |            | NA        |          |                           |             |          | ACTION N                                                                                                        |           |    | NA NA   |          |            |
|          | ALYSIS METHOD    |            | 300.0     |          |                           |             |          | ALYSIS                                                                                                          |           |    | 300.0   | }        |            |
|          |                  | <u> </u>   |           | · · ·    |                           |             |          |                                                                                                                 |           |    |         | t1       |            |
|          |                  | <b> </b>   |           |          |                           |             |          |                                                                                                                 |           |    |         |          | <u> </u>   |
|          |                  |            | MATER     | AL DES   | CRIPTION:                 | WATER       |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           | DATE S   | SAMPLED:                  | 10/30/01    |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          | UNITS:                    | mg/L        |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
|          | Target Analyte   |            | AMRO      |          | AMRO                      |             | STL-VT   | the second second second second second second second second second second second second second second second se | STL-VT    |    |         |          |            |
|          |                  |            | QA LAB    |          | RESULTS                   |             | ONTRACT  |                                                                                                                 | RESULTS   |    | CC      | MPARISC  | <u>NC</u>  |
|          |                  | ļ          | LRL       |          | QA LAB                    | ·•          | LRL      |                                                                                                                 | NTRACT    | JR |         | CODE     | <b> </b>   |
|          |                  | <u> </u>   | ļ         |          |                           |             |          |                                                                                                                 |           |    |         | <u> </u> | ļ          |
|          | Chloride, CL     | (11-1-01)  | < 10      |          |                           |             | < 0.20   |                                                                                                                 |           |    |         | 0        |            |
|          | Nitrate, as N    | (10-31-01) |           | <u> </u> |                           |             | < 0.20   |                                                                                                                 |           |    |         | 0        | <u> </u>   |
| Oth      | ophosphate, as P | (11-1-01)  |           |          |                           |             | < 0.20   |                                                                                                                 |           |    |         | 0        |            |
|          | Sulfate, SO4     | (10-31-01) |           |          |                           |             | < 0.20   |                                                                                                                 |           |    |         | 0        | +          |
|          |                  | (          |           |          |                           |             |          |                                                                                                                 |           |    |         | 1        | $\uparrow$ |
|          | <u> </u>         |            |           | <u> </u> | 200                       |             | 1        |                                                                                                                 |           |    |         | +        | †          |
|          |                  | 1          | 1         | +        | Provide the Provide State |             | 1        |                                                                                                                 |           |    |         | 1        |            |
|          |                  |            | 1         |          |                           |             |          | <b> </b>                                                                                                        |           |    |         |          | 1          |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           |          | REFER                     |             |          |                                                                                                                 |           |    |         |          |            |
|          |                  |            |           | SEE AP   | PENDIX A                  | FOR KEY     | TO COMP  | ARISON                                                                                                          | CODES     |    |         |          |            |
|          |                  |            |           |          | OT REPORT                 |             |          |                                                                                                                 |           |    |         |          | L          |
|          | L                |            |           |          | t detected at             |             |          | l                                                                                                               |           |    |         |          |            |
|          | ļ                |            |           |          | ated value,               |             |          | imit                                                                                                            |           |    |         |          |            |
|          |                  |            |           | LRL = L  | aboratory R               | eporting Li | imit     | <u> </u>                                                                                                        |           |    |         |          |            |
|          |                  |            |           |          | · · · · · · ·             | <u> </u>    | <u> </u> | <u> </u>                                                                                                        |           | ·· |         |          | +          |
|          |                  |            |           |          |                           |             |          |                                                                                                                 |           |    |         |          |            |



|         |                |       |           |          | ·                         |            |             |           |           |     |          |            |    |
|---------|----------------|-------|-----------|----------|---------------------------|------------|-------------|-----------|-----------|-----|----------|------------|----|
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          | RISON OF                  |            |             |           |           |     |          |            |    |
|         |                |       | PF        | ROJECT:  | SHEPLEY                   | 'S HILL I  | LANDFIL     | L, FALL   | 2001      |     |          |            |    |
|         |                |       |           |          | <i>.</i>                  |            |             |           |           |     |          |            |    |
|         |                |       |           |          | ina<br>2 Sector Anna      |            |             |           |           |     |          |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         | QA SAMPLE NO   |       | 0110296-0 |          |                           | C          |             |           | MPLE No.: | _   | 469923   |            |    |
|         | QA FIELD I     |       | SHM-96-   | 5B-QA    |                           |            | CONTRA      | ACTORS    | FIELD ID: |     | SHM-96-5 | 5 <b>B</b> |    |
|         | ANALYSIS DAT   |       | 11/6/01   |          |                           |            |             |           | SIS DATE: |     | NR       |            |    |
|         | A LABORATOR    |       | AMRO      | :        | ·· :                      | CON        |             |           | RATORY    |     | STL, VT  |            |    |
|         | ACTION METHO   |       | NA        |          |                           |            |             |           | METHOD    | :   | NA       |            |    |
| AN      | ALYSIS METHO   | D:    | 410.4     |          |                           |            | AN          | ALYSIS    | METHOD    |     | 410.1    |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          | ·          |    |
|         |                |       |           |          | · · · · · · · · · · · · · |            |             |           |           |     |          |            |    |
|         |                |       | MATER     | IAL DESC | CRIPTION:                 | WATER      |             |           |           |     |          |            |    |
|         |                |       |           |          | SAMPLED:                  |            |             |           |           |     |          | ······     |    |
|         |                |       |           |          | UNITS:                    | mg/L       |             |           |           |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           | 1   |          |            | 1  |
|         |                |       |           |          |                           | ·          |             |           |           |     |          |            | 1  |
|         | Target Analyte |       | AMRO      |          | AMRO                      |            | STL-VT      |           | STL-VT    |     |          |            | 1  |
|         |                |       | QA LAB    | 1        | RESULTS                   | CC         | NTRACT      | OR        | RESULT    | S   | CO       | MPARIS     | ON |
|         |                |       | LRL       |          | <b>QA LAB</b>             |            | LRL         | C         | ONTRACI   | FOR |          | CODE       |    |
|         |                |       | 1         | 1        |                           |            |             |           | 18 18 A   |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           |     |          |            | 1  |
| hemical | Oxygen Demand  | (COD) | < 50      |          |                           |            | < 5.0       |           |           |     | 1        | 0          |    |
|         |                |       |           | 1        |                           |            |             |           |           |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           |     |          |            | 1  |
|         | 1              |       |           |          |                           |            |             |           |           |     |          |            | 1  |
|         |                |       |           |          | 1                         |            |             |           |           | 1   |          |            | 1  |
|         |                |       |           | 1        |                           | 1          |             |           |           |     |          |            | 1  |
|         |                |       |           | 1        |                           |            |             |           |           |     |          |            | 1  |
|         | 1              |       |           |          | 1                         |            |             |           |           | -   |          |            | 1  |
|         |                |       |           | 1        |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          | · · · · · · · ·           | • •        | 1           |           |           |     |          |            |    |
|         |                |       |           |          | SEE APPI                  | ENDIX A    | FOR KEY     | TO COM    | MENTS     |     |          | 1          |    |
|         |                |       |           |          | NR=NOT                    |            |             |           |           |     |          |            | 1  |
|         |                |       |           |          | ND= Not                   | Detected a | t the Repor | ting Limi | t         |     |          |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          | a carda a com             |            |             |           |           |     |          |            |    |
|         |                |       |           |          |                           |            | T           | 1         | 1         |     |          |            | 1  |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |
|         |                |       |           |          |                           |            |             |           |           |     |          |            |    |

.



shl(spring01)inorganics.xls

|   | <br>-1 |
|---|--------|
| - | <br>!  |

| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------------------------|----------|----------|----------------|------------------------------------------------------------------------------------------------------------------|---------|-----------|---------------|---------|---------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              | -        | COMPAI   | RISON OF       | 0180                                                                                                             | ONTRAC  |           | an re         |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | SHEPLE         |                                                                                                                  |         |           |               |         |         |          |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |             |          |                              |          | (OJECT)  | SHELDE         |                                                                                                                  | LANDFI  |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QA SAMP     | I F No · |                              | 0110296- | 118      | a da terre de  | CC                                                                                                               | ONTRACT | A A 2 SUN | ADI E No :    | 469923  |         | ·        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QA DAMI     |          | ··                           | SHM-96-  |          |                |                                                                                                                  |         |           | FIELD ID:     | SHM-96- | SR      |          |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALYSIS    |          |                              | 11/1/01  | JU-QA    |                | CONTR                                                                                                            |         |           | SIS DATE:     | NR      | 5.00    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A LABORA    |          |                              | AMRO     |          |                | and the second second second second second second second second second second second second second second second |         |           | RATORY:       | STL, VT |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACTION ME   |          |                              | NA       |          |                |                                                                                                                  |         |           | METHOD:       | NA      |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALYSIS ME   |          |                              | 405.1    |          |                |                                                                                                                  |         |           | METHOD:       | 405.1   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  | 2118    |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           | +             |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              | MATERI   | AL DESC  | RIPTION:       | WATER                                                                                                            |         |           | ·             |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | AMPLED:        |                                                                                                                  |         |           | +             |         |         |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |                              |          | 0/112.0  | UNITS:         | mg/L                                                                                                             |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                | ing is                                                                                                           |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | to a farmer of |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Target Anal | vte      | ~ ~ ~ ~                      | AMRO     |          | AMRO           | ·                                                                                                                | STL-VT  |           | STL-VT        |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <u> </u> |                              | QA LAB   |          | RESULT         | S CC                                                                                                             | NTRACT  | OR        | RESULTS       |         | MPARISC | )N       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              | LRL      |          | QA LAB         |                                                                                                                  | LRL     |           | ONTRACTOR     |         | CODE    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  |         |           | 1000 A 1000 A |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              | 1        |          |                | ·····                                                                                                            |         |           |               |         |         |          |
| Biologica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l Oxygen De | mand (5  | Day)                         | < 2.0    |          |                |                                                                                                                  | < 0.20  |           |               |         | 0       | <u> </u> |
| Ÿ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | `I       |                              |          |          |                |                                                                                                                  |         |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          | 1874 - Constant and a second |          | İ        |                | -                                                                                                                | 1       |           |               |         |         | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          | <b> </b> |                |                                                                                                                  | 1       | 1         |               |         | 1       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          |                |                                                                                                                  | 1       |           |               |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | 1              | 1                                                                                                                |         |           |               |         | 1       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          | 1        |                |                                                                                                                  |         |           |               |         |         | [        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | SEE APP        | ENDIX A                                                                                                          | FOR KEY | TO COM    | IMENTS        |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                              |          |          | NR=NOT         | REPORT                                                                                                           | ED      |           |               |         |         |          |

.x41.

na na se

shl(spring01)inorganics.xls

|                          |           | COMPARISON OF                                                                                                   | QA & CO  | NTRACT  | OR RES   | ULTS      |         |                                       |  |
|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|----------|---------|----------|-----------|---------|---------------------------------------|--|
|                          |           | ROJECT: SHEPLE                                                                                                  |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          | 1         |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         | <u> </u> |           |         |                                       |  |
| QA SAMPLE No.:           | 0110296-0 | 1D                                                                                                              | CC       | NTRACT  | ORS SAN  | MPLE No.: | 469923  |                                       |  |
| QA FIELD ID:             | SHM-96-5  | B-QA                                                                                                            |          | CONTRA  | CTORS    | FIELD ID: | SHM-96- | 5 <b>B</b>                            |  |
| QA ANALYSIS DATE:        | 11/2/01   | · · ·                                                                                                           | CONTR    | ACTOR'S | ANALYS   | SIS DATE: | NR      |                                       |  |
| QA LABORATORY:           | AMRO      |                                                                                                                 | CONT     | RACTOR  | 'S LABO  | RATORY:   | STL, VT |                                       |  |
| EXTRACTION METHOD:       | NA        |                                                                                                                 |          | EXTRA   | CTION    | METHOD:   | NA      |                                       |  |
| ANALYSIS METHOD:         | 310.1     | si de la                                                                                                        |          | AN      | ALYSIS   | METHOD:   | 310.1   | · · · · · · · · · · · · · · · · · · · |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          | MATER     | IAL DESCRIPTION:                                                                                                | WATER    |         |          |           |         |                                       |  |
|                          |           | DATE SAMPLED:                                                                                                   | 10/30/01 |         |          |           |         |                                       |  |
|                          |           | UNITS:                                                                                                          | mg/L     |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 | 1        |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         | 1                                     |  |
|                          |           |                                                                                                                 | 1        |         |          |           |         |                                       |  |
| Target Analyte           | AMRO      | AMRO                                                                                                            | 1.       | STL-VT  |          | STL-VT    |         | 1                                     |  |
|                          | QA LAB    | RESULT                                                                                                          | S CC     | ONTRACT | OR       | RESULTS   | C       | MPARISON                              |  |
|                          | LRL       | QA LAE                                                                                                          | B        | LRL     | C        | ONTRACTOR |         | CODE                                  |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
| Total Alkalinity as CaCC | )3 < 2.0  |                                                                                                                 |          | < 1.0   |          |           |         | 0                                     |  |
|                          |           |                                                                                                                 |          |         |          |           |         | 1                                     |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          | 1       |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         |                                       |  |
|                          |           |                                                                                                                 |          |         |          |           |         | 1                                     |  |
|                          |           |                                                                                                                 |          |         |          |           |         | 1                                     |  |
|                          |           |                                                                                                                 | 1        |         |          |           |         |                                       |  |
|                          |           | in the second second second second second second second second second second second second second second second |          |         |          |           |         |                                       |  |
|                          |           | SEE APPENDIX A I                                                                                                | OR KEY   | TO COMM | IENTS    |           |         |                                       |  |
|                          |           | NR=NOT REPORTE                                                                                                  | ED       | T       |          |           |         |                                       |  |

, on , . .

shl(spring01)inorganics.xls

| `                      |                          |               |            |                |           |                          |                  |               |
|------------------------|--------------------------|---------------|------------|----------------|-----------|--------------------------|------------------|---------------|
|                        |                          | COMP          | DISON OF   |                | NTRACTO   |                          |                  |               |
|                        |                          |               |            |                |           | R RESULTS                |                  |               |
|                        |                          | PROJEC        | 1: SHEPLE  | Y'S HILL       | LANDFILL  | L, FALL 2001             |                  |               |
| anos 1 <mark>51</mark> |                          |               |            |                |           |                          |                  |               |
|                        |                          |               |            |                |           |                          |                  |               |
|                        |                          |               |            |                |           |                          |                  |               |
|                        | QA SAMPLE No.:           | 0110296-01B   |            | CC             |           | RS SAMPLE No.:           | 469923           |               |
|                        | QA FIELD ID:             | SHM-96-5B-QA  |            |                |           | CTORS FIELD ID:          | SHM-96-          | 5B            |
|                        | ANALYSIS DATE:           | 11/6/01       |            |                |           | NALYSIS DATE:            | NR               |               |
|                        | A LABORATORY:            | AMRO          |            | CONT           |           | LABORATORY:              | STL, VT          |               |
|                        | ACTION METHOD:           | NA            |            |                |           | CTION METHOD:            | NA               |               |
| AN                     | ALYSIS METHOD:           | 6010B (2340B) |            |                | ANA       | LYSIS METHOD:            | 6010B (2         | 340B)         |
|                        |                          |               |            |                |           |                          |                  |               |
|                        |                          |               |            |                |           |                          |                  |               |
|                        |                          | MATERIAL DE   | SCRIPTION: | WATER          |           |                          |                  |               |
|                        |                          | DATI          | ESAMPLED:  | 10/30/01       |           |                          |                  |               |
|                        |                          |               | UNITS:     | mg/L           |           |                          |                  |               |
|                        |                          |               |            |                |           |                          |                  |               |
|                        |                          |               |            | 1              |           |                          |                  |               |
|                        |                          |               |            | 1              |           |                          |                  |               |
| •••                    |                          |               |            |                |           |                          |                  |               |
|                        | Target Analyte           | AMRO          | AMRO       | 1              | STL-VT    | STL-VT                   |                  |               |
|                        |                          | QA LAB        | RESULT     | S CC           | ONTRACTO  | R RESULTS                | CC               | MPARISON      |
|                        |                          | LRL           | QA LAB     |                | LRL       | CONTRACTOR               |                  | CODE          |
|                        |                          |               | 1775 AL    |                |           |                          |                  |               |
|                        |                          |               |            |                |           |                          |                  |               |
|                        | Total Hardness as CaCO3* | < 33          |            |                | NR        |                          |                  | 0             |
|                        |                          |               |            |                |           |                          |                  |               |
|                        | · ·                      |               |            | (<br>          |           |                          |                  |               |
|                        | ++++                     |               |            | 8 <b>1</b>     | <u> </u>  |                          |                  |               |
|                        |                          |               |            |                | <u> </u>  |                          |                  | ·             |
| ;                      |                          |               |            |                | +         |                          |                  | <u> </u>      |
| $\vdash$               |                          |               |            |                |           |                          |                  | +             |
| <u> </u>               | 1 1                      |               | SEE APP    | PENDIX A       | FOR KEY 1 | TO COMMENTS              |                  |               |
|                        | 1                        |               |            | <b>FREPORT</b> |           |                          |                  |               |
|                        | <u> </u>                 |               |            |                |           | y the separate determina | tions of calciun | and magnesium |
|                        | - <u>+</u>               |               |            |                |           | ent CaCO3/L by Method    |                  | 1 1           |

and the second

## shl(spring01)inorganics.xls

| · · · · · · · · · · · · · · · · · · · |             |          |             |            |         |              |           |                       |           |          |  |
|---------------------------------------|-------------|----------|-------------|------------|---------|--------------|-----------|-----------------------|-----------|----------|--|
|                                       |             |          | USON OF     |            |         |              |           |                       |           |          |  |
|                                       | PF          | ROJECT:  | SHEPLEY     | 'S HILL    | LANDFIL | L, FAL       | L 2001    |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
| QA SAMPLE No.:                        | 0110296-0   |          | 1G) · · · · | CC         | NTRACTO |              |           |                       | 469923    |          |  |
| QA FIELD ID:                          | SHM-96-5    |          |             |            | CONTRA  |              |           |                       | SHM-96-   | 5B       |  |
| QA ANALYSIS DATE:                     | 11-(2 and 5 | )-01     |             |            |         |              | SIS DATE: |                       | NR        |          |  |
| QA LABORATORY:                        | AMRO        |          |             | CONI       |         |              | RATORY:   |                       | STL, VT   |          |  |
| EXTRACTION METHOD:                    | NA          |          |             |            |         |              | METHOD:   |                       | NA        |          |  |
| ANALYSIS METHOD:                      | 160.1 and 1 | 60.2     |             |            | ANA     | LYSIS        | METHOD:   |                       | 160.1 and | 160.2    |  |
|                                       |             | 21 A     | 20.2        |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       | MATER       |          | RIPTION:    |            |         |              |           |                       |           |          |  |
|                                       |             | DATE S   | AMPLED:     |            |         |              |           |                       |           |          |  |
|                                       |             |          | UNITS:      | mg/L       |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             | 1.1      |             |            |         |              |           |                       |           |          |  |
|                                       |             | ·        |             |            |         |              |           |                       |           |          |  |
|                                       |             |          | · · · · · · |            |         |              |           |                       |           |          |  |
| Target Analyte                        | AMRO        |          | AMRO        |            | STL-VT  |              | STL-VT    | doctor and the second |           | <u> </u> |  |
|                                       | QA LAB      |          | RESULTS     |            | ONTRACT |              | RESULT    |                       |           | MPARISON |  |
|                                       | LRL         |          | QA LAB      | L          | LRL     | <u> </u>     | ONTRAC    | ror                   |           | CODE     |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
| Total Dissolved Solids (TDS by 160.1) | < 10        | 1.12<br> |             |            | < 5.0   |              |           |                       |           | 0        |  |
| Total Suspended Solids (TSS by 160.2) | < 4.0       |          |             |            | < 0.50  |              |           |                       |           | 0        |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            |         |              |           |                       |           |          |  |
|                                       |             | 4.5      |             |            |         |              |           |                       |           |          |  |
|                                       |             |          | Laure in    |            |         |              |           |                       |           |          |  |
|                                       |             |          |             |            | ļ       |              |           | <u> </u>              |           |          |  |
|                                       |             |          |             | ļ          |         |              |           |                       |           |          |  |
|                                       |             |          | d           |            |         |              |           | L                     |           |          |  |
|                                       |             |          | ENDIX A     |            | TO COM  | <b>IENTS</b> |           | <u> </u>              |           |          |  |
|                                       |             | 1        | REPORTI     |            | I       |              |           |                       |           |          |  |
|                                       |             | IRI=Lal  | oratory Re  | porting Li | mit     |              |           |                       |           | 1        |  |

| يېد.<br>د هغه دغې د همه ده د و                                                                                   |
|------------------------------------------------------------------------------------------------------------------|
| يلفح بالإي الانتخاف وال                                                                                          |
|                                                                                                                  |
| **                                                                                                               |
| ar na an fh                                                                                                      |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| · ·                                                                                                              |
| 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State 1 State  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| a grag and the Constraints and                                                                                   |
|                                                                                                                  |
|                                                                                                                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                            |
|                                                                                                                  |
| and the second second second second second second second second second second second second second second second |
|                                                                                                                  |
| : -                                                                                                              |
|                                                                                                                  |
| 1 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 1997 A. 19  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| ing Coordinates                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| Apple and south                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| 1 M 2 M 4 M                                                                                                      |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| · · · · · ·                                                                                                      |
| 2 T                                                                                                              |
| in the second second                                                                                             |
| 1997) an 1997<br>1997                                                                                            |
| 4                                                                                                                |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
| ··· · · ·                                                                                                        |
| and the second second                                                                                            |
| shl(spring01)inorg                                                                                               |
| ann opringer priorg                                                                                              |

×

shi(spring01)inorganics.xls

|                            |               | 1. 1. M. S                                                                                                      |            |          |          |                   |          |              |  |
|----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|----------|-------------------|----------|--------------|--|
| •                          |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               | OMPARISON OF                                                                                                    |            |          |          |                   |          |              |  |
|                            | PR            | OJECT: SHEPLI                                                                                                   | EY'S HILL  | LANDFI   | LL, FALI | L 2001            |          |              |  |
| prime 1949 -               |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               | • • • • •                                                                                                       |            |          |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
| QA SAMPLE No.:             | C1K020329     |                                                                                                                 | CC         | NTRACT   |          |                   | 469923   |              |  |
| QA FIELD ID:               | SHM-96-51     | B-QA                                                                                                            |            | CONTRA   |          |                   |          | SHM-96-5B    |  |
| QA ANALYSIS DATE:          | 11/6/01       |                                                                                                                 |            | ACTOR'S  |          |                   | NR       |              |  |
| QA LABORATORY:             | STL-Pittsbu   | rgh(Sub)                                                                                                        | CONT       | RACTOR   |          |                   | STL, VT  |              |  |
| EXTRACTION METHOD:         | NA            |                                                                                                                 |            |          |          | METHOD:           | NA       |              |  |
| ANALYSIS METHOD:           | 9060.0        |                                                                                                                 |            | AN       | ALYSIS N | METHOD:           | 9060.0   |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               | AL DESCRIPTION                                                                                                  |            |          |          |                   |          | -            |  |
|                            |               | DATE SAMPLED                                                                                                    |            |          |          |                   |          | -            |  |
|                            |               | UNITS                                                                                                           | : mg/L     |          |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               | · · · · · · · · · · · · · · · · · · ·                                                                           |            |          |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          | ·                 |          |              |  |
| Transat A solution         |               |                                                                                                                 |            | OTT VT   |          | COPI AND          |          |              |  |
| Target Analyte             | AMRO          | AMRO<br>RESULT                                                                                                  |            | STL-VT   |          | STL-VT<br>RESULTS |          | )<br>MPARISO |  |
|                            | QA LAB<br>LRL | QA LA                                                                                                           |            |          |          | DNTRACTOR         | <u> </u> | CODE         |  |
|                            | LRL           |                                                                                                                 |            |          |          | MIRACIOR          |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
| Fotal Organic Carbon (TOC) | < 1.0         |                                                                                                                 |            | < 1.0    |          |                   |          | 0            |  |
|                            | ~ 1.0         |                                                                                                                 | <u> </u>   | ~ 1.0    |          |                   |          |              |  |
|                            |               |                                                                                                                 |            | <u> </u> |          |                   |          |              |  |
|                            |               |                                                                                                                 | 3 <u>.</u> | <b> </b> |          |                   |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          | <u> </u>     |  |
|                            |               |                                                                                                                 |            |          |          | +                 |          |              |  |
|                            |               |                                                                                                                 | +          |          | <u> </u> |                   |          |              |  |
|                            |               | in the second second second second second second second second second second second second second second second | ·          |          |          |                   |          | +            |  |
|                            |               |                                                                                                                 |            |          | <u> </u> | +                 |          |              |  |
|                            |               |                                                                                                                 |            |          |          |                   |          |              |  |
|                            |               | SEE APPENDIX A                                                                                                  | FORKEY     |          | AENTS    | +                 |          | 1            |  |
|                            |               | THE ADDENTITY A                                                                                                 | FORKEY     |          | AENTS    |                   |          |              |  |

shi(spring01)inorganics.xls

## APPENDIX C

## SAMPLE RECEIPT & CUSTODY DOCUMENTATION

Ì

· · · ·

. .

| U.S. /     | AMY     | CORP     | S OF | ENG  | INEERS       | ji u                                      | ,                                           | CHA                                   | IN OF CL          | ١٢  | DY R                                                        | Froi                                    | חר                  |               | i.<br>Z     | <i>c</i> . | 18.      |              | ,    | 17022                  | 1 Comment |
|------------|---------|----------|------|------|--------------|-------------------------------------------|---------------------------------------------|---------------------------------------|-------------------|-----|-------------------------------------------------------------|-----------------------------------------|---------------------|---------------|-------------|------------|----------|--------------|------|------------------------|-----------|
|            |         |          |      |      |              |                                           |                                             |                                       |                   | سرچ |                                                             |                                         | ~                   | -1 <u>0</u> - | <del></del> | <u>_</u>   |          | · /          |      |                        |           |
| AMPLERS    | : (Sign | ature)   | ΕŶ   | LE   | Y'S H<br>lly | <u>  </u>                                 | LTM                                         | + M                                   | NO.<br>OF<br>CON- |     | 100.<br>100.<br>11.<br>100.<br>100.<br>100.<br>100.<br>100. | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |                     |               |             |            | 201 10 3 |              |      | REMARKS                |           |
| IA. NO D   | DATE    | TIME     | COMP | GRAE |              | STATIO                                    | NEOCATIC                                    | 111                                   | TAINERS           |     |                                                             | EP (                                    | No Contraction      | and a         | 9/~         | 7/ Ľ       | 3/2/     | /            |      |                        |           |
| 30         | sool    | 1510     |      | X    | St           | 1M-90                                     | ,-5B                                        | -QA                                   | 12                | 1   | 1                                                           | 1                                       | ſ                   | 1             | (           | 1          | 3        |              |      |                        |           |
|            |         |          |      | X    |              |                                           | 31 AN                                       |                                       | 1                 | 1   |                                                             |                                         |                     |               |             |            | :        |              |      |                        |           |
|            |         |          |      |      |              |                                           | ****                                        |                                       | 1                 |     |                                                             |                                         |                     |               |             |            |          |              |      |                        |           |
|            |         |          | <br> |      | -            | wir ige dages am alle "Manderstreen of ba |                                             |                                       |                   |     |                                                             |                                         |                     |               |             | <br>       |          |              |      |                        |           |
|            |         |          |      |      |              |                                           |                                             |                                       |                   |     |                                                             |                                         |                     |               |             | ĺ<br>!     |          |              |      |                        |           |
|            |         |          |      |      | ••···, · ·   | /                                         |                                             |                                       |                   |     |                                                             |                                         |                     |               |             |            |          |              |      |                        |           |
|            | .       |          |      |      | ñΛ           |                                           |                                             | <b>.</b>                              |                   |     |                                                             |                                         |                     |               |             |            | ·        |              |      |                        |           |
|            |         |          |      | KA   |              |                                           |                                             |                                       |                   |     |                                                             |                                         |                     |               |             |            |          |              |      | 1                      |           |
|            |         |          |      |      | 919          |                                           |                                             |                                       | 1<br>2<br>201     |     |                                                             |                                         |                     |               |             |            |          |              |      |                        |           |
|            |         | . /.     |      |      |              |                                           |                                             |                                       |                   |     | 1 - 1 <b>-</b> 1 - 1                                        |                                         |                     |               |             |            |          |              |      |                        |           |
|            |         | /        | 1    |      | · . ·        |                                           |                                             |                                       |                   |     |                                                             |                                         |                     |               |             |            |          |              |      |                        |           |
|            |         | ÷        |      |      |              |                                           |                                             | · · · · · · · · · · · · · · · · · · · |                   |     |                                                             | - <b>-</b>                              |                     |               |             |            |          |              |      |                        |           |
|            |         |          |      |      |              |                                           | e i an anna an an an an an an an an an an a |                                       |                   |     |                                                             |                                         | ·                   |               |             |            |          |              |      | <del> </del>           |           |
| /          |         | ••••     |      |      | *** n. ·     | i i sinese en en                          |                                             |                                       | -                 |     |                                                             |                                         |                     |               |             |            |          | <u></u>      |      |                        |           |
| Kathe      |         |          |      |      | Date /       | ]                                         |                                             | by: (Signatu<br>DEX AH<br>951196      |                   | Rel | inquis                                                      | hed by                                  |                     | gnatui        | 1<br>re)    |            | Date     | / Time       | Rec  | eived by: <i>(Sig</i>  | gnatura)  |
| linquished | d by: / | Signatu  | re)  |      | Date /       |                                           |                                             | by: (Signati                          |                   | Rel | iŋquis                                                      | hed by                                  | ; (Sig              | gnatui        | re)         |            | Date     | / Time       | Rece | eived by: <i>(Si</i> g | nature)   |
| linguished | lby: f  | Signatui | re)  |      | Date / 1     | I<br>Time                                 | Received<br>(Signature                      | for Laborato                          | ory by:           | 10  | Date<br>31/01                                               | / Tim                                   | 1e<br>7 <i>14</i> 0 |               | emark       |            | / (      | Toole<br>A/M | n sh | ipped &                | 0         |

| AMRO Environmental SAMPLE RECEIPT (<br>Laboratories Corporation                                      | CHECH      | KLIST    | -                                                   | 111 Herrick Street<br>Merrimack, NH 03054 |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|----------|-----------------------------------------------------|-------------------------------------------|--|--|--|
|                                                                                                      | AMRO I     | <u>.</u> |                                                     | 110296603) 424-2022                       |  |  |  |
|                                                                                                      | Date Red   |          |                                                     | 10-31-01                                  |  |  |  |
| Project Name: <u>Sharpley's HIII L</u> TME, M<br>Ship via: (circle one) Fed Ex., UPS , AMRO Courier, | Date Du    |          |                                                     | 11-12-01                                  |  |  |  |
| Hand Del., Other Courier, Other:                                                                     | 00.000     | <b>.</b> |                                                     | 11-12-01                                  |  |  |  |
|                                                                                                      |            |          |                                                     |                                           |  |  |  |
| Items to be Checked Upon Receipt                                                                     | Yes        | No       | NA                                                  | Comments                                  |  |  |  |
| 1. Army Samples received in individual plastic bags?                                                 |            |          |                                                     |                                           |  |  |  |
| 2. Custody Seals present?                                                                            |            |          |                                                     |                                           |  |  |  |
| 3. Custody Seals Intact?                                                                             |            |          |                                                     |                                           |  |  |  |
| 4. Air Bill included in folder if received?                                                          |            |          |                                                     |                                           |  |  |  |
| 5. Is COC included with samples?                                                                     | V          |          |                                                     |                                           |  |  |  |
| 6 Is COC signed and dated by client?                                                                 |            | [        |                                                     |                                           |  |  |  |
| 7. Laboratory receipt temperature. $TEMP = 4^{\circ}$                                                |            | <u> </u> | +                                                   |                                           |  |  |  |
| Samples rec. with ice <u></u> ice packs neither                                                      |            | <u> </u> |                                                     |                                           |  |  |  |
| 8. Were samples received the same day they were sampled?                                             |            |          | +                                                   |                                           |  |  |  |
| Is client temperature 4°C ± 2°C?                                                                     |            | <u> </u> | +                                                   |                                           |  |  |  |
| If no obtain authorization from the client for the analyses.                                         |            |          |                                                     |                                           |  |  |  |
| Client authorization from: Date: Obtained by:                                                        |            |          | +                                                   |                                           |  |  |  |
| 9. Is the COC filled out correctly and completely?                                                   | V          |          |                                                     |                                           |  |  |  |
| 10. Does the info on the COC match the samples?                                                      | V          |          |                                                     |                                           |  |  |  |
| 11. Were samples rec. within holding time?                                                           |            |          |                                                     |                                           |  |  |  |
| 12. Were all samples properly labeled?                                                               |            | +        |                                                     |                                           |  |  |  |
| 13. Were all samples properly preserved?                                                             |            |          |                                                     | all via la a Rivert                       |  |  |  |
| 14. Were proper sample containers used?                                                              |            |          |                                                     | CN needs adjust                           |  |  |  |
| 15. Were all samples received intact? (none broken or leaking)                                       | V          |          | +                                                   |                                           |  |  |  |
| 16. Were VOA vials rec. with no air bubbles?                                                         |            |          | +                                                   | · · · · · · · · · · · · · · · · · · ·     |  |  |  |
| 17. Were the sample volumes sufficient for requested analysis?                                       | 1V         | +        | +                                                   |                                           |  |  |  |
| 18. Were all samples received?                                                                       | K          |          |                                                     |                                           |  |  |  |
| 19. VPH and VOA Soils only:                                                                          |            | +        | +                                                   |                                           |  |  |  |
| Sampling Method VRH (sircle one): M=Methanol, S=EnCore (sir-fight                                    | t containe |          |                                                     |                                           |  |  |  |
| Sampling Method VOA (circle one): M=Methanol, SB=Sodium Bisulfa                                      |            |          | Bulk                                                |                                           |  |  |  |
| If M or SB:                                                                                          |            | 1        | 1                                                   | T                                         |  |  |  |
| Does preservative cover the soil?                                                                    |            |          |                                                     |                                           |  |  |  |
| If NO then client must be faxed.                                                                     |            | +        |                                                     |                                           |  |  |  |
| Does preservation level come close to the fill line on the vial?                                     | }          |          |                                                     |                                           |  |  |  |
| If NO then client must be faxed.                                                                     |            |          |                                                     |                                           |  |  |  |
| Were vials provided by AMRO?                                                                         |            | +;       |                                                     |                                           |  |  |  |
| If NO then weights MUST be obta                                                                      | uned from  | n client |                                                     | L.,                                       |  |  |  |
| Was dry weight aliquot provided?                                                                     | ·          |          | T                                                   | [                                         |  |  |  |
| If NO then fax client and inform t                                                                   | he VOA I   |          |                                                     | L                                         |  |  |  |
| 20. Subcontracted Samples:                                                                           |            |          | ÷ <del>,                                     </del> |                                           |  |  |  |
|                                                                                                      |            |          |                                                     | ·                                         |  |  |  |
| What samples sent: C/H                                                                               |            |          |                                                     |                                           |  |  |  |
| Where sent: STL - PITTSBUREH                                                                         |            |          | <u></u>                                             |                                           |  |  |  |
| Date: //-/-0/                                                                                        |            |          |                                                     |                                           |  |  |  |
| Analysis: TCC                                                                                        |            |          |                                                     |                                           |  |  |  |
| TAT: STD                                                                                             |            | +        |                                                     |                                           |  |  |  |
| 21. Information entered into:                                                                        |            |          |                                                     |                                           |  |  |  |
| Internal Tracking Log?                                                                               |            |          |                                                     |                                           |  |  |  |
| Dry Weight Log?                                                                                      |            |          |                                                     |                                           |  |  |  |
| Client Log?                                                                                          |            |          |                                                     | <u> </u>                                  |  |  |  |
| Composite Log?                                                                                       |            |          | V                                                   |                                           |  |  |  |
| Filtration Log?                                                                                      |            |          | 1v                                                  | <u> </u>                                  |  |  |  |
| Received By: $NB$ Date: $(0-3)/-0/$ Logged in By:                                                    | CC         | ÷        | Date:                                               | 11-1-9                                    |  |  |  |
| Labeled By: CC Date: //-/-O/ Checked By:                                                             | MG         |          | Date:                                               | 11-2-01                                   |  |  |  |

NA= Not Applicable

...

qc/qcmemos/forms/samplerec Rev. 18 06/00

## **APPENDIX F**

## **GROUNDWATER ANALYTICAL DATA**

3.5 inch diskette (not included in all reports)

## **APPENDIX G**

## LETTER REGARDING INSTALLATION OF LANDFILL GAS MONITORING PROBES



 Harding ESE, Inc.

 511 Congress Street

 P.O. Box 7050

 Portland, ME 04112-7050

 Telephone:
 207/775-5401

 Fax:
 207/772-4762

 Home Page:
 www.mactec.com

January 11, 2002

Mr. David Margolis U.S. Army Corps of Engineers 696 Virginia Road Concord, Massachusetts 01742-2751

#### Subject: Installation of Landfill Gas Monitoring Probes Shepleys Hill Landfill Devens RFTA, Devens, MA

Dear Mr. Margolis:

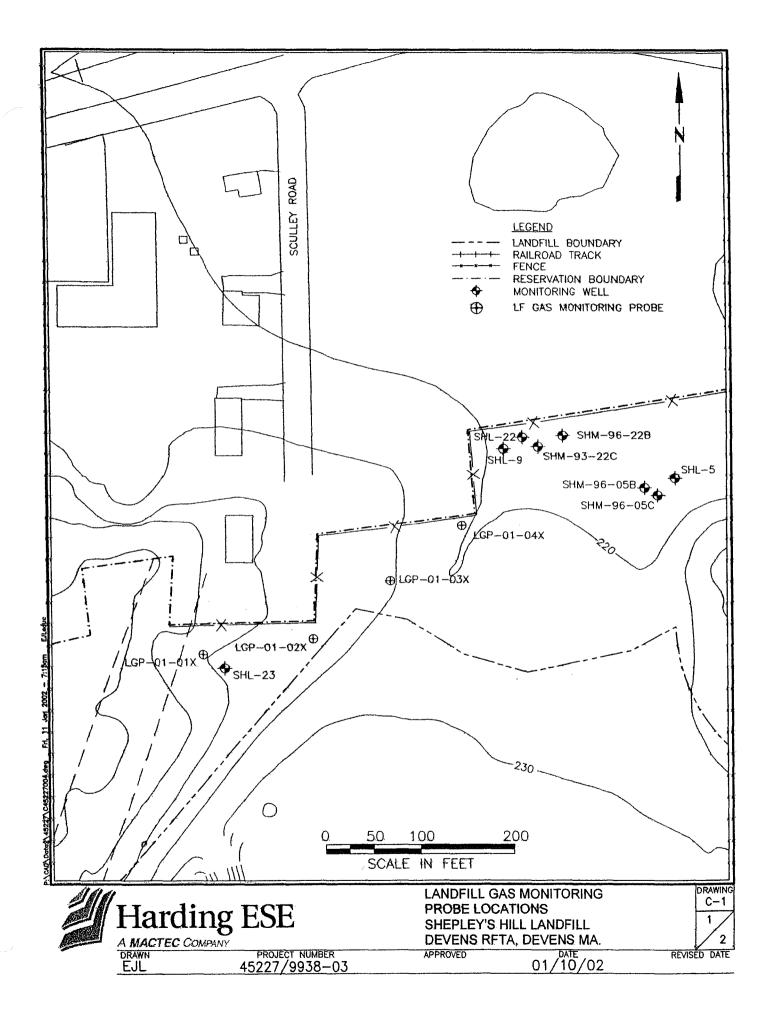
On November 7, 2001, Harding ESE and its subcontractor, Environmental Drilling, Inc., installed four landfill gas monitoring probes at the northwest edge of Shepley's Hill Landfill as directed by USACE. These probes were located to monitor landfill gas migration from Shepley's Hill Landfill towards Sculley Road in Ayer. The probes were installed by Geoprobe at depths and at a horizontal spacing consistent with the Massachusetts Landfill Technical Guidance Manual, revised May 1997.

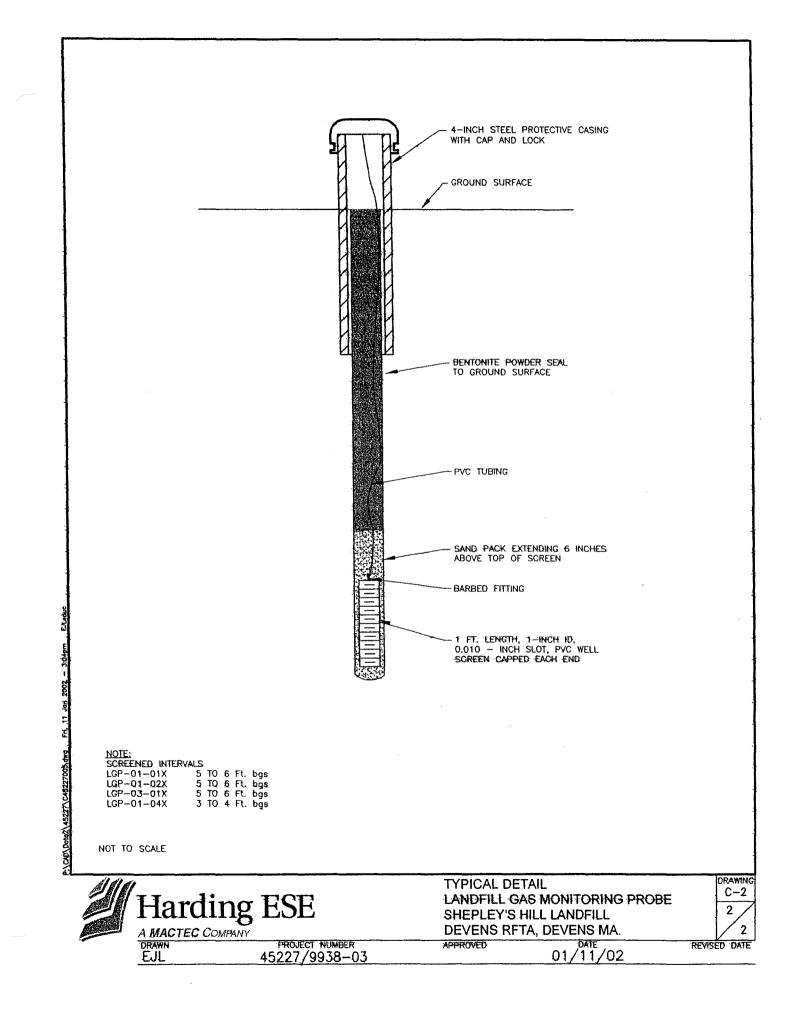
Enclosed is a figure showing the surveyed locations of the probes and a second figure showing typical construction details. The location and elevation coordinates of the points are listed below.

| Description | North       | East        | <b>Ground Elevation</b> |  |  |
|-------------|-------------|-------------|-------------------------|--|--|
| LGP-01-01X  | 567264.5354 | 573388.7461 | 241.80                  |  |  |
| LGP-01-02X  | 567281.4696 | 573505.5082 | 235.01                  |  |  |
| LGP-01-03X  | 567344.7430 | 573587.1202 | 231.30                  |  |  |
| LGP-01-04X  | 567405.3548 | 573663.4810 | 222.69                  |  |  |

1. Survey by Martinage Engineering Associates, Inc. Reading, Massachusetts, January 2002.

2. Coordinates based on survey points established by Golden Land Survey and noted as Massachusetts Coordinate System. Elevations are NGVD Datum.


Please contact me if you have any questions concerning the landfill gas monitoring points, this leter, or the enclosed figures.


Sincerely, Harding ESE, Inc. A MACTEC Company

oncur

Stanley W. Reed, P.E. Project Manager

enc.





**APPENDIX H** 

REFERENCES

#### **APPENDIX H**

#### REFERENCES

Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March

Stone & Webster Environmental Technology & Services, 1997. *Shepley's Hill Landfill, Annual Report 1996*, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April

Stone & Webster Environmental Technology & Services, 1998. *Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring,* Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August

Harding Lawson Associates, 1999. *Final Work Plan – Supplemental Groundwater Investigation at Shepley's Hill Landfill*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February

Harding Lawson Associates, 2000. *Draft Shepley's Hill Landfill Supplemental Groundwater Investigation*, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. July

U.S. Army Corps of Engineers, New England District (CENAE), 2000. Semi-Annual Groundwater Analytical Report, Spring 2000, Shepley's Hill Landfill, Long Term Monitoring, Devens, Massachusetts, September

U.S. Army Corps of Engineers, New England District (CENAE), 2000. 1999 Annual Report, Shepley's Hill Landfill, Long Term Monitoring and Maintenance, Devens, Massachusetts, March

U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.

ABB Environmental Services, Inc. (ABB-ES), 1993. *Final Remedial Investigation Addendum Report*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.

ABB Environmental Services, Inc. (ABB-ES), 1995a. *Final Feasibility Study, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

ABB Environmental Services, Inc. (ABB-ES), 1995b. *Record of Decision, Shepley's Hill Landfill Operable Unit*, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.