54/40C GRP 4,5,18 IA DV 1A MAR99 C 1/3 8.4

# **1998 ANNUAL REPORT**

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING & MAINTENANCE DEVENS, MASSACHUSETTS

March 1999

PREPARED BY:

DEPARTMENT OF ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS



US Army Corps of Engineers New England District 1A . 99031 USAS

# SHEPLEY'S HILL LANDFILL 1998 ANNUAL REPORT

# SHEPLEY'S HILL LANDFILL DEVENS, MASSACHUSETTS

March 1999

# SHEPLEY'S HILL LANDFILL 1998 ANNUAL REPORT

# TABLE OF CONTENTS

| Sectio     | on <u>Title</u>                                         | Page |
|------------|---------------------------------------------------------|------|
|            | EXECUTIVE SUMMARY                                       | 1    |
| 1.0        | INTRODUCTION                                            |      |
| 2.0        | LANDFILL CAP MAINTENANCE ACTIVITIES                     | 4    |
| 3.0        | LANDFILL CAP MONITORING ACTIVITIES                      | 5    |
| 4.0        | LANDFILL GAS MONITORING RESULTS                         |      |
| 5.0        | GROUNDWATER ELEVATIONS                                  |      |
| 6.0        | GROUNDWATER SAMPLING                                    |      |
| 6.1<br>6.2 | 1 Preparation for Sampling                              |      |
|            | 3 Equipment Decontamination                             |      |
| 7.0        | LABORATORY TESTING                                      |      |
|            | 1 Analyses                                              |      |
| 7.2        | 2 Results                                               | 14   |
| 8.0        | QUALITY CONTROL                                         | 21   |
| 8.1        |                                                         |      |
|            | 2 Laboratory Quality Control                            |      |
|            | 3 Data Evaluation                                       |      |
|            | 3.1 Data Evaluation for Samples Collected May 1998      |      |
| 8.3        | 3.2 Data Evaluation for Samples Collected November 1998 | 24   |
| 9.0        | CORRECTIVE ACTION                                       |      |

# SHEPLEY'S HILL LANDFILL ANNUAL REPORT

# TABLE OF CONTENTS (Cont.)

# TABLES

| Table 5-1 | Monitoring Wells and Elevations            | 10 |
|-----------|--------------------------------------------|----|
| Table 6-1 | Monitoring Well Designation                |    |
| Table 7-1 | Groundwater Sample Analysis and Procedures |    |
| Table 7-2 | Laboratory Results - May 1998              |    |
| Table 7-3 | Laboratory Results - November 1998         |    |
| Table 7-4 | Comparison of Historic Arsenic Results     |    |
| Table 8-1 | Sample Preperation and Analysis Methods    |    |
|           |                                            |    |

# FIGURES

| Figure 2-1 | Shepley's Hill Landfill - Repairs                                          |
|------------|----------------------------------------------------------------------------|
| Figure 3-1 | Shepley's Hill Landfill - Findings of Inspection Conducted 26 October 1998 |
| Figure 4-1 | Shepley's Hill Landfill - Groundwater Monitoring                           |

# APPENDICES

| Appendix A | Landfill Maintenance Checklist   |
|------------|----------------------------------|
| Appendix B | Landfill Gas Monitoring Form     |
| Appendix C | Groundwater Field Analysis Forms |
| Appendix D | Chain of Custody Forms           |
| Appendix E | Quality Assurance Reports        |
| Appendix F | Groundwater Analytical Data      |

Appendix G References

# EXECUTIVE SUMMARY

This annual report has been prepared to document the monitoring and maintenance activities conducted at the Shepley's Hill Landfill in Devens, Massachusetts as required by the Record of Decision (ROD) for areas of contamination 4, 5, and 18 (ABB-ES, Oct 1995). This report was developed by the U.S. Army Corps of Engineers (USCOE), New England District (NAE).

This report documents the results of the third year (1998) of the Long Term Monitoring and Maintenance conducted in accordance with the approved Long Term Monitoring and Maintenance Plan (SWEC, May 1996). Activities conducted as part of the Long Term Monitoring and Maintenance Plan include a yearly inspection of the landfill cover, yearly landfill gas vent monitoring, as well as semi-annual groundwater sampling. Post closure monitoring is required for a period of 30 years.

An annual landfill inspection was conducted and observations were made regarding vegetative cover, unwanted vegetation, erosion, settlement, and the condition of previously repaired areas. The cover surface is satisfactory with some minor areas of sparse vegetation and settlement. Erosion, intermittent standing water, overgrown areas and wetlands plants were observed in isolated areas within drainage swales. There were no conditions observed which would jeopardize the integrity of the landfill cap. Combustible gas readings were collected from 18 gas vents on the landfill. None of the vents indicated positive readings for methane, carbon dioxide, or Percent Lower Explosive Limit.

The third year of long term groundwater sampling was performed on the 14 compliance point monitoring wells located adjacent to the landfill on the north and east. Samples were collected in accordance with the *EPA's Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (July 1996). Samples were analyzed for volatile organic compounds, inorganics, and general water quality parameters.

In accordance with the Record of Decision, the effectiveness of Alternative SHL-2 is determined by evaluating groundwater sampling results from two groups of monitoring wells. Wells are designated as either Group 1 or Group 2 wells. Group 1 wells are wells where all chemical of concern concentrations have historically met or been below cleanup levels established in the Record of Decision. Group 2 wells are wells where chemical of concern concentrations have exceeded cleanup levels. In the Long Term Monitoing and Maintenance Plan, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated after the first round of sampling. During the first five year site review (August 1998) six monitoring wells (SHL-3, SHL-5, SHL-9, SHL-22, SHL-93-10C, and SHL-93-22C) achieved cleanup levels for all chemicals of concern and were reclassified as Group 1 wells. All other wells, including the three new wells, are classified as Group 2 wells. Monitoring will continue to assure that cleanup levels are maintained over time in Group 1 wells. Well designations will be reviewed again during the second five year review.

Of the chemicals of concern established in the Record of Decision, only those chemicals which present carcinogenic risk were considered trigger chemicals in the Long Term Monitoring and Maintenance Plan. The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. Therefore, the evaluation of effectiveness of Alternative SHL-2 is based on the reduction of carcinogenic risk rather than reduction of chemical concentrations as a measure of progress toward attainment of cleanup goals. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor contributor to risk

(i.e. 1,2-dichloroethane) overshadows the achievement of a 50 percent reduction of concentration of a higher carcinogenic risk (arsenic). Risk reduction was evaluated during the first five year review in August 1998. However, for the annual reports the contaminant concentrations will be referenced against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill Landfill is due to arsenic in the groundwater.

Arsenic was the only trigger chemical detected above cleanup levels during the 1998 sampling events. Analytical results from the 1998 groundwater sampling rounds (Tables 7-2 and 7-3) have indicated the presence of arsenic above the cleanup level in wells SHM-96-5B, SHM-96-22B, SHM-93-22C, SHL-11, SHL-20, SHL-19 and SHL-4. The 1998 monitoring year results were compared to previous years data. A comparison of arsenic concentrations during the 1998 period with historical data indicates that there was a general decrease in arsenic concentrations except for well SHM-96-5B.

The first five-year review to assess the protectiveness of the selected remedial action for Shepley's Hill Landfill was completed in 1998, in accordance with the Record of Decision. The review concluded that reductions of contaminant concentrations and corresponding risk satisfied the evaluation criteria at most, but not all, historical groundwater monitoring wells. However, data from monitoring well SHM-96-5B, at the north end of the landfill, showed arsenic concentrations up to two orders of magnitude greater than historical values in other wells. Therefore, supplemental groundwater investigations are being performed by the Army to assess whether arsenic contamination exists beyond the Devens Reserve Forces Training Area boundary, and to characterize its nature and location. In accordance with the *Final Work Plan, Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts* (HLA, February 1999) the work includes; a hydrogeologic assessment of groundwater recharge potential along the western edge of the landfill; characterization of groundwater flow and quality immediately north of Shepley's Hill Landfill; updating and refining the groundwater model for Shepley's Hill Landfill; and analyzing rock samples for naturally occurring arsenic.

Based on recommendations made from the 1996 and 1997 inspections, several landfill maintenance activities were performed during 1998 to properly maintain the landfill cap. The maintenance activities included repair of perimeter drainage swales, erosion control measures, filling rodent holes, regrading roads on and around the landfill, and mowing of the vegetative cover and drainage swales.

The 1998 landfill inspection identified additional corrective actions required to maintain the landfill cap. These include: placement of topsoil and reseeding of depressed areas; unwanted vegetation clearing; replacement and regrading catch basins and the repair of the perimeter fence. Corrective actions for landfill cap maintenance will be conducted within the next year. Overall the landfill is in fair condition and is functioning adequately.

The next round of groundwater sampling will be conducted in May 1999.

# 1.0 INTRODUCTION

This annual report has been prepared to document the monitoring and maintenance procedures conducted at the Shepley's Hill Landfill in Devens, Massachusetts based on the Record of Decision (ROD) (ABB-ES Oct 1995) for Shepley's Hill Landfill Areas of Contamination 4, 5, and 18. This report was developed by the U.S. Army Corps of Engineers (USCOE), New England District (NAE).

The Long Term Monitoring and Maintenance Plan (LTMMP) (SWEC, May 1996) for Shepley's Hill Landfill outlines the landfill closure monitoring and maintenance procedures. These procedures include a semi-annual groundwater sampling program to monitor contaminants, and an annual visual inspection and gas emission monitoring of the landfill cap. This report documents the third year of the long term monitoring. The first two years of monitoring were conducted by SWEC. The 1998 monitoring was conducted by NAE. Post closure monitoring is required for a period of 30 years.

# 2.0 LANDFILL CAP MAINTENANCE ACTIVITIES

The Record of Decision for the Shepley's Hill Landfill required monitoring and maintenance of the landfill cap based on observations made during the annual inspections. Based on recommendations made from the 1996 and 1997 inspections, improvements and repairs were performed during 1998 to properly maintain the cap. Periodic mowing was also performed on the landfill vegetative cover and drainage swales each year. The cap maintenance activities included repair of perimeter drainage swales, erosion control measures, filling rodent holes and regrading roads on and around the landfill. Landfill Cap improvements were conducted during the fall of 1998, by Roy F. Weston, Inc., under contract to the Army. Specific improvements were made as described below and as identified on Figure 2-1.

- Repaired erosion in the drainage swale to the northwest of gas vent #1, regrade, rip-rap, revegetate. Approximately 800 LF of drainage swale area was regraded to about 15 feet width (side slopes and bottom swale included). Filter fabric was placed on regraded areas and 6"-10" rip-rap was placed on top of the filter fabric to a depth of 12"-15".
- Restored entire access road. Approximately 1 mile of roadway was upgraded by placing 6 inches of ¾" crushed stone with up to 3 inches of graded base stone on top for an average width of 10 feet. Existing tire ruts were leveled and regraded.
- Installed new rip-rap adjacent to the previously repaired area east of Vent No. 8. Erosion downstream of rip-rap area was backfilled and regraded with stone dust. Additional filter fabric was placed and 6"-10" stone rip rap extended over the filter fabric.
- Installed new rip-rap curb in the drainage ditch which leads to Plow Shop Pond. The last 200
  feet at the downstream end of the drainage swale showed severe erosion on the southern bank
  which separated the stormwater drainage swale and the landfill drainage swale. This bank was
  reconstructed and compacted, topsoiled and erosion control mats were placed on the bank.
- Regraded and reseeded area adjacent to (west of) Plow Shop Pond drainage ditch. Approximately 800 LF of drainage swale in the sandy area was regraded. Flow direction was controlled by reshaping the curve to prevent supercritical flows which caused erosion of the sandy banks. Three trees were relocated outside the boundary of the landfill. Filter fabric was placed along the entire length of the drainage swale on the bottom and 1'-2' of either sideslope. 6"-10" stone rip rap was placed to a depth of 12"-15" over the fabric and 6" of the side slopes.
- · Revegetated selected areas of the cap to enhance vegetative growth.
- Removed overgrown vegetation and accumulated debris and sand in drainage swales.
- · Filled animal borrows at various locations on the cap.
- Mowed the landfill vegetative cover material and drainage swales.

# 3.0 LANDFILL CAP MONITORING ACTIVITIES

The Shepley's Hill Landfill at Devens, Massachusetts was inspected, and monitoring activities were performed, on 26 October 1998 by personnel from the U.S. Army Corps of Engineers, New England District (NAE). Features of the landfill inspected included the cap, the drainage system, the gas vent system, access roads, and the security fence. Observations were made regarding the vegetative cover, vegetation types, erosion, settlement, and general condition of the various features. Appendix A of this report contains the Landfill Maintenance Checklist which summarizes the findings of this inspection. All observations are also presented on Figure 3-1. A narrative of the findings of this inspection follows. Descriptions of observations begin at the northern extremity of the landfill and continue in a counter-clockwise direction.

- In the northwest extremity of the landfill cap, between gas vent #1 and #3, there is an eroded gully leading to the west drainage swale. It is about one to two feet wide and 15 feet long. The placement of topsoil and seed in the gully should be sufficient to repair this area.
- In the vicinity of gas vent #1, there is an oval-shaped area of erosion, about five by ten feet. The placement of topsoil and seed in the eroded area should be sufficient to repair this area.
- In the existing settled area between gas vents #3 and #4, 6 to 12 inches of standing water was
  observed and wetland species are becoming established. Woody species are just starting to grow
  on the periphery of this settled area. During a dry period, the settled area should be cleared and
  mowed to eliminate woody species and to slow the encroachment of wetland species. If the area
  does not dry out sufficiently to allow mowing, then hand clearing should be performed.
- On the west side between gas vent #3 and #6 there is a small area of settlement, about 15 feet by 15 feet, with about three inches of standing water. There is no erosion in this settled area, and upland vegetation types are still growing well. This area should be monitored for further settlement and wetland encroachment. No action is required at this time.
- On the west side near gas vent #9, a shallow sloped area is undergoing mild erosion. Vegetation is
  not well established and minor erosion is forming shallow gullies. The placement of topsoil and
  seed, with a surface treatment of broadcast hay or straw, should be sufficient to repair this area
  and stop the erosion process.
- Catch Basin #2 near the Cooke Street entrance to the site has a broken surface grate. A large
  piece of the corner of the grate is missing. This surface grate should be replaced.
- Catch Basin #3 near the Cooke Street entrance to the site is not set at grade. Soil excavation in this area has left the rim of the grate about six to eight inches higher than the surrounding ground. This rim of this catch basin should be lowered to the surrounding grade.

- Catch basin #7 near the southwest corner of the site is substantially overgrown by the adjacent vegetation and will soon be completely overgrown and hidden from view. The catch basin is partially filled with many small pieces of PVC pipe. This catch basin should be cleared of encroaching vegetation and the PVC pipe pieces should be removed.
- The concrete headwall drainage structure at the terminus of the catch basin and underground conduit system on the south side is overgrown with vegetation, including some larger woody species, and is silting in. The grade of the channel bottom is uneven and standing water is present. Wetland species are becoming established as well. The structure and channel immediately downstream should be cleared, accumulated sediment should be removed, and the channel should be regraded as required to properly drain. The channel should then be reseeded or riprap should be placed, depending on water velocities.
- Most of the drainage swale on the south side is being invaded by woody species. There are also
  intermittent zones of standing water indicating a lack of proper channel slope and drainage. The
  south side drainage swale should be cleared of woody vegetation and regraded as needed to
  properly drain all areas of standing water. Depending on water velocities, the channel should
  then be reseeded or riprap should be placed.
- Approximately midway along the south drainage swale, on the outside channel side slope, there is an area about 10 feet by 15 feet which lacks vegetation. It is just beginning to show signs of erosion. This area should be reseeded, with hay or straw placed on the surface, to prevent further erosion.
- In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the
  new rock-lined channel, the drainage swale is heavily overgrown with woody vegetation and
  wetland species. It appears to be heavily silted in and has a large area of standing water. There
  is an earth and vegetation obstruction just upstream of the new rock section preventing the
  drainage of water and turning the channel into a pond. This reach of the drainage swale should
  be cleared of the obstruction, all vegetation and accumulated silt and sand, and regraded to drain
  properly. Seeding, or riprap placement, should follow, depending on water velocities.
- In the vicinity of the new rock channel on the east side, there are large areas with very sparse or no vegetation. The soil in these bare areas is mostly sand. During the fall of 1998, hydroseeding of some of these barren areas was performed, but at the time of the site inspection very little germination had occurred. This area should be closely watched to see if adequate vegetation can become established in the sandy soils. Some evidence of natural revegetation can be seen, but there are still many areas vulnerable to erosion. Erosion in these areas would directly contribute to the sand delta that has accumulated in Plow Shop Pond. No action is recommended at this time, but if the hydroseeded areas do not vegetate, the application of topsoil and seed next season may be necessary.
- The access roads on the site are in good condition. Work was performed on these roads in the Fall of 1998 to upgrade the surface. There are no problems on access roads which warrant repair at this time.

- Portions of the perimeter chain-link security fence is in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at several locations. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the turfed cap area was seen. The security fence should be repaired, with all missing fence sections, including gates, replaced or repaired.
- The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time. Many of the vents have animal burrows adjacent to them which should be eliminated. The location of the burrows is noted on the gas vent monitoring result table which is in Section 4.0 Landfill Gas Monitoring Results.

A summary of Corrective Action measures for the Landfill Cap are included in Section 9.0

# 4.0 LANDFILL GAS MONITORING RESULTS

The purpose of the landfill gas monitoring program is to establish long-term trends with regard to gas production and venting. A combustible gas survey was performed to determine whether methane, hydrogen sulfide, or volatile organic compounds have accumulated in the subsurface of the landfill site.

The third annual landfill gas sampling was conducted on October 26, 1998. The weather at the time of sampling was sunny, with temperatures in the 40's to 50's (F) and the barometric pressure was 30.2 inches of mercury. Gas samples were field analyzed for the following parameters using the listed equipment:

| Parameter                              | Equipment                                                        |
|----------------------------------------|------------------------------------------------------------------|
| Total Volatile Organic Compounds (VOC) | HNu Photoionization Detector (PID)                               |
| Percent Oxygen                         | Industrial Scientific TMX 412 Combustible Gas Indicator<br>(CGI) |
| Hydrogen Sulfide (ppm)                 | CGI                                                              |
| Percent Lower Explosive Limit (LEL)    | CGI                                                              |
| Carbon Monoxide (ppm)                  | CGI                                                              |
| Percent Carbon Dioxide                 | Landtec GA-90 landfill gas monitor                               |
| Percent Methane                        | Landtec GA-90 landfill gas monitor                               |

The CGI and the Landtec GA-90 were both calibrated in the shop by U.S. Environmental. The PID was calibrated in the field to 251 ppm isobutylene.

Samples were collected by holding the monitoring equipment below the outlet of the vent with approximately four feet of intake hose inserted through the bird screen down into the vent. The pump in the gas monitoring equipment was then turned on and readings were obtained of the air in the vicinity of the tip of the intake hose, well inside the gas vent. Results were recorded on the Landfill Gas Monitoring form (Appendix B). The locations of the gas vents are depicted in Figure 4-1. In the previous gas sampling rounds, prior to gas sampling, two vent volumes were purged from the soil gas vents using an exhaust fan. Samples were then collected by holding the monitoring equipment in the exhaust stream of the fan. This gas sampling event provided readings representative of average, everyday conditions inside the vent, whereas prior years sampling events drew air from deeper within the gas vent system, which may not be representative of average conditions closer to the vent outlets. The different approaches used may explain the variability of the results obtained during this sampling event as compared to those of prior years.

Combustible gas readings were collected from 18 gas vents on the landfill. None of the vents indicated positive readings for methane, carbon dioxide, or Percent Lower Explosive Limit (LEL). Oxygen levels at the vents ranged from 21.0% to 21.6%.

No odors were noticed at any of the vent locations.

#### 5.0 GROUNDWATER ELEVATIONS

Groundwater elevations were collected from each well during groundwater sampling activities. The depth to groundwater was subtracted from the elevation of the reference point to determine the elevation of the groundwater at each location. Table 5-1 lists the water level elevations for each well for each sampling round. During each sampling event, groundwater elevations were recorded on the first day of sampling for all wells scheduled to be sampled. Locations of monitoring wells are shown in Figure 4-1. Groundwater levels measured during November 1998 were consistently lower than those measured in May 1998, which most likely reflects the seasonal differences. Except for a few anomalies, the mean difference is roughly 2 feet.

In addition to these semi-annual groundwater measurements, regular groundwater measurements of all Shepley's Hill Landfill wells have been conducted by ABB-ES and Harding Lawson Associates (HLA) since 1992. During the first 5-year review (SWEC, August 1998), groundwater elevations were reevaluated to identify hydraulic gradients and to confirm changes due to the construction of the landfill cap. It was determined that landfill cap has reduced the volume of water beneath the cap resulting in a more northerly groundwater flow (SWEC, 1998). Groundwater flow patterns will be re-evaluated during the next 5 year review.

In light of data collected for the first Five-Year Review performed in accordance with the Record of Decision for the Shepley's Hill Landfill Operable Unit, HLA is performing supplemental groundwater investigations which includes performing a hydrogeologic assessment at Shepley's Hill Landfill to obtain additional data to evaluate the effectiveness of the selected remedial action at minimizing groundwater elevation fluctuations within the capped area. In addition, the data will be used as inputs for refinement of the groundwater model for the landfill. Groundwater elevation data will be collected from new piezometers and existing piezometers/monitoring wells at approximately monthly intervals for one year. The data will be used to characterize groundwater flow, prepare groundwater elevation isopleths, and as input to the groundwater model. In addition, the Army plans to install continuous water level monitors in three wells at the landfill. These monitors will provide data concerning the response of the groundwater system to precipitation events both within and outside the area of the landfill.

| Groundwater Elevations (Ft NGVD) |              |                  |  |  |  |  |  |  |
|----------------------------------|--------------|------------------|--|--|--|--|--|--|
| Well Identification              | May 11, 1998 | November 2, 1998 |  |  |  |  |  |  |
| SHL-3                            | 218.70*      | 217.94           |  |  |  |  |  |  |
| SHL-4                            | 218.78       | 218.02           |  |  |  |  |  |  |
| SHL-5                            | 216.83       | 213.94           |  |  |  |  |  |  |
| SHL-9                            | 215.69       | 213.08           |  |  |  |  |  |  |
| SHL-10                           | 218.83       | 217.56           |  |  |  |  |  |  |
| SHM-93-10C                       | 218.84       | 218.20           |  |  |  |  |  |  |
| SHL-11                           | 218.15       | 217.44           |  |  |  |  |  |  |
| SHL-19                           | 219.34       | 217.96           |  |  |  |  |  |  |
| SHL-20                           | 218.31       | 217.54           |  |  |  |  |  |  |
| SHL-22                           | 215.29       | 213.08           |  |  |  |  |  |  |
| SHM-93-22C                       | 215.33       | 213.09           |  |  |  |  |  |  |
| SHM-96-22B                       | 215.23       | 213.02           |  |  |  |  |  |  |
| SHM-96-5B                        | 215.46       | 213.34           |  |  |  |  |  |  |
| SHM-96-5C                        | 215.45       | 213.33           |  |  |  |  |  |  |

# TABLE 5-1 Monitoring Wells and Elevations

\* Well SHL-3 was measured on May 13, 1998

# 6.0 GROUNDWATER SAMPLING

Groundwater sampling activities at the landfill are conducted semi-annually. Groundwater sampling activities for the third year were conducted in the spring (May 11 - 13, 1998) and in the fall (November 2 - 4, 1998). Wells are designated as either Group 1 or Group 2 wells. Wells which have historically attained cleanup goals are given a Group 1 designation. Wells which have not historically attained cleanup goals are designated as Group 2 wells. Initially, all existing wells were designated as Group 2 wells and the three new wells that were installed in 1996 were to be designated during the first five year site review (SWEC, August 1998). During the first five year site review six wells (SHL-3, SHL-5, SHL-9, SHL-22, SHL-93-10C, and SHL-93-22C) achieved cleanup levels for all COCs and were reclassified as Group 1 wells. All other wells, including the three new wells, were classified as Group 2 wells. These group designations are presented in Table 6-1, located at the end of this section. Well designations will be reviewed again during the second Five-Year review.

### 6.1 Preparation for Sampling

Wells sampled as part of the long term monitoring program included SHL-3, SHL-4, SHL-5, SHL-9, SHL-10, SHL-11, SHL-19, SHL-20, SHL-22, SHM-93-10C, SHM-93-22C, SHM-96-22B, SHM-96-5B, and SHM-96-5C. Locations of the wells are shown on Figure 4-1. Sampling activities were coordinated with the Devens BRAC office and the contract laboratory prior to commencement of sampling. The contract laboratory was contacted approximately 3 weeks prior to sampling and was requested to prepare and deliver sampling bottles, quality assurance bottles and coolers to New England District approximately 1 week prior to the sampling event. Bottles were checked to insure that they complied with the requirements of the sampling program. Sampling equipment (including the YSI water quality meters, Heron water level indicators, and the teflon lined tubing) was reserved for rental from U.S. Environmental and picked up in the days preceding the sampling event. NAE used their own Grunfos Rediflow II pumps, controllers, DRT-15CE turbidity meters, and portable generator for the sampling. All equipment was inventoried and tested to ensure it was accounted for and functioning. The well logs of each of the wells to be sampled was reviewed by the field team prior to the scheduled event to determine tubing requirements, and brought to the landfill during the sampling event to confirm the screened intervals.

### 6.2 Sampling

The third year of sampling was conducted by USACE, New England District on May 11 - 13, 1998 and November 2 - 4, 1998. Monitoring wells were purged and sampled in accordance with *EPA's Low Stress* (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (July 1996) using an adjustable rate, low flow submersible pump. Teflon lined tubing was used for sample collection and was disposed after each well was sampled.

Before sampling activities commenced, groundwater elevations were measured at each well location to be sampled. YSI water quality meters and turbidity meters were calibrated at the beginning of each day of use. A calibration check was also performed at the end of each day. During sampling, the generator used to power the pumps was located at an upwind area at least 30 feet away from the well being sampled, to minimize potential contamination from the exhaust. Upon initial opening of each well, headspace readings

and initial water levels measurements were collected. The pump intake was lowered to the middle of the screen of each well to be sampled when possible. When the water level was below the top of the screen, the pump was positioned to a depth between the top of the water level and the bottom of the screen.

Once the pumping was initiated, at least one volume greater than the stabilized drawdown volume plus the extraction tubing volume was purged. Water quality parameters, including temperature (temp), specific conductance, pH, oxidation reduction potential (ORP), turbidity, and dissolved oxygen (DO) were collected every 3 to 5 minutes to ensure proper purging of the wells before each well was sampled. The results are listed on Groundwater Field Analysis Forms located in Appendix C. All water quality parameters, except turbidity, were monitored using a flow-thru cell and a Sonde-YSI water meter. Turbidity samples were not collected from the flow through cell due to the silt buildup which can occur in the cell. An Y-connector with a shut off valve was set up before the flow through cell to take the turbidity readings. Sampling was conducted when parameters became stabilized for three consecutive reading. The tubing was disconnected from the flow-through cell and samples were collected directly from the discharge tubing. Observations made during the sampling activities include:

- There were no headspace concentrations above background recorded from any of the sampled monitoring wells during both sampling events.
- To ensure precision of water level measurements, well casings that had faded marks or no marks were remarked during the May event.
- The locks on the three newer wells (SHM-96-5B, SHM-96-5C, and SHM-96-22B) were replaced with new locks in May 1998 to be keyed alike the rest of the monitoring wells.
- In cases where the water level was lower than the top of the screen, the pumps were lowered to approximately midpoint between the water level and the bottom of the screen. This procedure occurred at several wells during each event.
- During the November sampling the ORP readings for wells SHL-4, SHM-93-10C, SHL-10, SHL-20, and SHL-22 had to be disregarded as it was later learned that the ORP readings were off due to a malfunctioning sonde. That YSI meter was not used again after discovering this.

# 6.3 Equipment Decontamination

All non-disposable sampling and testing equipment that came in contact with the sampling medium was decontaminated to prevent cross contamination between sampling points. The submersible pump was decontaminated using the following procedure:

• Upon removal of the pump from the well following sample collection, the pump was submersed in a 4-inch PVC riser containing potable water and detergent (Alconox) solution. At least 1 to 2 gallons of the detergent solution was pumped through (started the pump at a low flow rate, as in sampling, and increased to a higher speed).

- The pump was removed and sprayed with potable water to minimize the transfer of soap to the rinser.
- The pump was then submersed in a riser filled with potable water and at least 1 to 2 gallons were pumped through.
- The pump was then submersed in a riser filled with deionized water and at least 1 to 2 gallons were pumped through.
- The submersible pump was sprayed with isopropyl alcohol (reagent grade) using a hand held spray bottle, over a tub. The pump was then submersed in a final deionized water rinse and at least 1 to 2 gallons were pumped through.
- The pump was air dried and wrapped in clean aluminum foil.

| Monitoring<br>Well Identification | Well Designation<br>(Based on Final Five Year Review, SWEC, Aug 1998) |
|-----------------------------------|-----------------------------------------------------------------------|
| SHL-3                             | Group 1                                                               |
| SHL-4                             | Group 2                                                               |
| SHL-5                             | Group 1                                                               |
| SHL-9                             | Group 1                                                               |
| SHL-10                            | Group 2                                                               |
| SHM-93-10C                        | Group 1                                                               |
| SHL-11                            | Group 2                                                               |
| SHL-19                            | Group 2                                                               |
| SHL-20                            | Group 2                                                               |
| SHL-22                            | Group 1                                                               |
| SHM-93-22C                        | Group 1                                                               |
| SHM-96-22B                        | Group 2                                                               |
| SHM-96-5B                         | Group 2                                                               |
| SHM-96-5C                         | Group 2                                                               |

# TABLE 6-1 Monitoring Well Designations

# 7.0 LABORATORY TESTING

Groundwater was sampled in fourteen monitoring well locations using the low-flow method in accordance with the procedures outlined in the approved Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill (SWEC, May 1996). Samples were sent to Severn Trent Laboratories (formerly Intertek Testing Services Environmental Laboratories) in Colchester, Vermont for analysis. The samples were collected on May 11-13 and November 2-4, 1998. Samples were placed in containers compatible with the intended analysis and properly preserved prior to shipment to the laboratory. Each sealed container was placed in a leakproof plastic bag and placed in a strong thermal ice chest (cooler) filled with foam packing material, or equivalent, to ensure sample integrity during shipment. Ice or equivalent was added to cool samples to at least 4<sup>o</sup> C. Chains of Custody (COCs) were used to identify and document the samples being shipped (copies are included in Appendix D). Sample custody was initiated by the sampling team upon collection of samples and COC forms were placed in waterproof plastic bags and taped to the inside lid of the cooler. The cooler was sealed with chain-of-custody seals and shipped to the laboratory via overnight delivery.

#### 7.1 Analyses

Water analyses were conducted according to EPA methods 8260B for volatile organics, 6010B for metals, and general inorganics analyses, including chemical oxygen demand by method 410.1, biochemical oxygen demand by method 405.1, hardness by method 130.2, alkalinity by method 310.1, cyanide by SW8946 method 9012A, anions by method 300, and total dissolved solids by method 160.1, and total suspended solids by method 160.2. These analyses were conducted at all wells. Table 7-1 indicates the analysis and procedures used for groundwater samples collected at Shepley's Hill Landfill.

#### 7.2 Results

The approach for evaluating the effectiveness of the remedy is presented in the Record of Decision (ABB-ES, 1995). Of the chemicals of concern identified in the ROD, only those chemicals which present carcinogenic risk were considered trigger chemicals in the Long Term Monitoring and Maintenance Plan (SWEC, May 1996). The trigger chemicals are arsenic, dichlorobenzenes, and 1,2-dichloroethane. Therefore, the evaluation of effectiveness of Alternative SHL-2 is based on the reduction of carcinogenic risk rather than reduction of contamination as a measure of progress toward attainment of cleanup. This approach prevents a situation in which failure to attain a concentration reduction goal for a minor contributor to risk (i.e. 1,2-dichloroethane) overshadows the achievement of a 50 percent reduction of concentration of a higher carcinogenic risk (arsenic). Risk reduction was evaluated during the first five year review in August 1998. However, for the annual reports the contaminant concentrations will be referenced against the cleanup levels as a benchmark. It should be noted that the majority of the risk present at Shepley's Hill landfill is due to arsenic in the groundwater.

Arsenic was the only trigger chemical detected above cleanup levels at the site during the 1998 sampling events. Analytical results for groundwater analyses are presented in the form of a hits only table for chemical contaminants, as presented in Tables 7-2 and 7-3, for the spring and fall rounds, respectively. This table presents only detectable concentrations of chemical contaminants, compared against the

# TABLE 7-1 Groundwater Sample Analysis and Procedures

| PARAMETERS                                                                                                                                                    | METHOD                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Volatile Organic Compounds                                                                                                                                    | USEPA 8260                              |
| xylenes<br>Acetone<br>2-butanone<br>2-methyl pentanone<br>1,2,-dichlorobenzene<br>1,3,-dichlorobenzene<br>1,4,-dichlorobenzene                                | USEPA 8260                              |
| Inorganics<br>Arsenic<br>Barium                                                                                                                               | EPA-SW 6010                             |
| Cadmium<br>Chromium<br>Cyanide (wet chemistry)<br>Iron<br>Lead<br>Manganese<br>Mercury<br>Selenium<br>Silver<br>Copper<br>Zinc                                |                                         |
| General Parameters (measured in Laboratory)<br>Total Dissolved Solids<br>Total Suspended Solids                                                               | NED METHODS<br>USEPA 160.2<br>USEPA 300 |
| Chloride<br>Hardness<br>Nitrite-Nitrate as N<br>Sulfate<br>Alkalinity<br>Biochemical Oxygen Demand<br>Chemical Oxygen                                         | USEPA 354.1<br>SW9056<br>USEPA 310.1    |
| General Parameters (measured in the field)<br>pH<br>Temperature<br>Specific Conductance<br>Dissolved Oxygen<br>Oxygen Reduction Potential<br>VOCs (Headspace) |                                         |

USEPA - U.S. Environmental Protection Agency

VOCs - Volatile Organic Compounds

#### TABLE 7-2 Groundwater Analytical Results - May 11 - 13, 1998 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (SHEET 1 of 1)

| Xylenes         10,000 (2)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHL-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | SHM-96-5B DUF |         | SHL-9      | SHL-10    | SHM-93-10C | SHL-11  | SHL-19    | SHL-20  | SHL-22  | SHM-96-22B |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|---------|------------|-----------|------------|---------|-----------|---------|---------|------------|---------|
| ug/L           VOLATILES (8260)           Xylenes         10,000 (2)           Acetone         3,000 (4)           Acetone         3,000 (4)           2-Butanone         -           4-Methyl-2-Pentanone         -           Benzene         5 (2)           Sold         -           Methyl-t-Butyl Ether         70 (4)           70 (4)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLEANUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/L ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L    | ug/L          | ug/L    | ug/L       | ug/L      | ug/L       | ug/L    | ug/L      | ug/L    | ug/L    | ug/L       | ug/L    |
| VOLATILES (8280)           Xylenes         10,000 (2)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEVEL (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1             |         | 1          |           |            | 1.00    |           |         |         |            |         |
| Acetone         3,000 (4)         <10.0           2-Butanone         -         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |         |            |           |            |         |           |         |         |            |         |
| Acetone         3,000 (4)         <10.0           2-Butanone         -         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |         |            |           |            |         |           |         |         | 1          |         |
| 2-Butanone         -         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,000 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0    | <5.0          | <5.0    | <5.0       | <5.0      | <5.0       | <5.0    | <5.0      | <5.0    | <5.0    | <5.0       | <5.0    |
| 4-Methyl-2-Pentanone         -         <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10.0 <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10.0   | <10.0         | <10.0   | 9.8 J      | <10.0     | 15         | <10.0   | <10.0     | <10.0   | <10.0   | <10.0      | 11      |
| Benzene         5 (2)         <5.0           Methyl-t-Butyl Ether         70 (4)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10.0 <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10.0   | <10.0         | <10.0   | <10.0      | <10.0     | <10.0      | <10.0   | <10.0     | <10.0   | <10.0   | <10.0      | <10.0   |
| Methyl-t-Butyl Ether         70 (4)         <5.0           1,1-Dichloroethane         70 (4)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10.0 <10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10.0   | <10.0         | <10.0   | <10,0      | <10.0     | <10.0      | <10.0   | <10.0     | <10.0   | <10.0   | <10.0      | <10.0   |
| 1,1-Dichloroethane         70 (4)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5 J   | 1.4 J         | 1.3 J   | <5.0       | <5.0      | <5.0       | 2.0 J   | <5.0      | <5.0    | <5.0    | 1.2 J      | <5.0    |
| 1,1-Dichloroethane         70 (4)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8 J   | 1.9 J         | <5.0    | <5.0       | <5_0      | <5.0       | <5.0    | <5.0      | <5.0    | 2.0 J   | 1.7 J      | <5.0    |
| 1.2-Dichloroethane         5         <5.0           1.3-Dichlorobenzene         600 (2)         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7 J   | 2.6 J         | <5.0    | <5.0       | <5.0      | <5.0       | <5.0    | <5.0      | <5.0    | <5.0    | 1.6 J      | <5.0    |
| 1,3-Dichlorobenzene         600 (2)         <5.0           1,4-Dichlorobenzene         5         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 J     | 3.1 J         | 2.2 J   | <5.0       | <5.0      | 1.6 J      | 3.1 J   | <5.0      | 2.3 J   | 2.4 J   | 2.2 J      | <5.0    |
| 1.3-Dichlorobenzene         600 (2)         <5.0           1,4-Dichlorobenzene         5         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0    | <5.0          | <5.0    | <5.0       | <5.0      | <5.0       | <5.0    | <5.0      | <5.0    | <5.0    | <5.0       | <5.0    |
| 1.2-Dichlorobenzene         600         <5.0           TAL METALS (6010)         -         -           Arsenic         50         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 600 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0    | <5.0          | <5.0    | <5.0       | <5.0      | <5.0       | <5.0    | <5.0      | <5.0    | <5.0    | <5.0       | <5.0    |
| TAL METALS (6010)           Arsenic         50         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0    | <5.0          | <5.0    | <5.0       | <5.0      | <5.0       | 2,1 J   | <5.0      | 4.7 J   | <5.0    | <5.0       | <5.0    |
| Barium         2,000 (2)         <7.6           Cadmium         5 (2)         1           Chromium         100         4.8           Copper         1,300 (3)         <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <5.0    | <5.0          | <5.0    | <5.0       | <5.0      | <5.0       | <5.0    | <5.0      | <5.0    | <5.0    | <5.0       | <5.0    |
| Barium         2,000 (2)         <7.6           Cadmium         5 (2)         1           Chromium         100         4.8           Copper         1,300 (3)         <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | TT CT         |         |            | 12.20     |            | in and  |           | 1       |         |            |         |
| Cadmium         5 (2)         1           Chromium         100         4.8           Copper         1,300 (3)         <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.4 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,300   | 4,330         | 49.5    | 15         | <5.0      | 7.5        | 346     | 77.5      | 238     | 10.6    | 365        | 31.6    |
| Chromium         100         4.8           Copper         1,300 (3)         <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,000 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63.5    | 64.2          | 57      | 12.5       | <7.6      | <7.6       | 123     | 9         | 105     | 14.5    | 86.1       | 86.8    |
| Copper         1,300 (3)         <3.4           Iron         9,100         177           Lead         15         <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.7 <0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.7    | <0.7          | <0.7    | <0.7       | <0.7      | <0.7       | <0.7    | <0.7      | <0.7    | <0.7    | <0.7       | <0.7    |
| Spin         Product           Iron         9,100         177           Lead         15         <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <2.0 <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3     | 3.7           | 2.9     | <2.0       | <2.0      | <2.0       | 2.2     | <2.0      | 3.8     | 3.7     | <2.0       | 2.8     |
| Lead         15         <2.6           Manganese         1,715         5.2           Mercury (7470A)         2 (2)         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,300 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <3.4 <3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <3.4    | <3.4          | <3.4    | <3.4       | <3.4      | <3.4       | <3.4    | <3.4      | <3.4    | <3.4    | 4.2        | <3.4    |
| Manganese         1,715         5.2           Mercury (7470A)         2 (2)         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,230 1,390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39,700  | 40,000        | 73,700  | 4,110      | <70.8     | <70.8      | 90,800  | 9,940     | 19,600  | 1,190   | 66,300     | 728     |
| Mercury (7470A)         2 (2)         <0.1           Nickel         100         3.6           Selenium         50 (2)         <3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2.6    | <2.6          | <2.6    | <2.6       | <2.6      | <2.6       | <2.6    | <2.6      | <2.6    | <2.6    | <2.6       | <2,6    |
| Nickel         100         3.6           Selenium         50 (2)         <3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 418 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,100  | 10,100        | 4,500   | 393        | 1.9       | 39.2       | 3,250   | 1,350     | 8,190   | 1,240   | 3,070      | 667     |
| Nickel         100         3.6           Selenium         50 (2)         <3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.1    | <0.1          | <0.1    | <0.1       | <0.1      | <0.1       | <0.1    | <0.1      | <0.1    | <0.1    | <0.1       | <0.1    |
| Silver         40 (4)         <2.6           Zinc         2,000 (4)         14           Aluminum         6,870         193           Sodium         20,000         1,620           GENERAL CHEMISTRY         -         -           Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <3.5 <3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.3    | 19            | 5.4     | <3.5       | <3.5      | <3.5       | 4.8     | <3.5      | 16,1    | 5.6     | 6.5        | <3.5    |
| Zinc         2,000 (4)         14           Aluminum         6,870         193           Sodium         20,000         1,620           GENERAL CHEMISTRY         -         -           Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <3.1 <3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1     | 4.6           | <3.1    | <3.1       | <3.1      | <3.1       | <3.1    | <3.1      | 5.3     | <3.1    | <3.1       | <3.1    |
| Aluminum         6,870         193           Sodium         20,000         1,620           GENERAL CHEMISTRY         -         -           Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <2.6 <2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2.6    | <2.6          | <2.6    | <2.6       | <2.6      | <2.6       | <2.6    | <2.6      | <2.6    | <2.6    | <2.6       | <2.6    |
| Sodium         20,000         1,620           GENERAL CHEMISTRY         -         -           Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,000 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.8 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.9    | 34.4          | 134     | 26.6       | 9.4       | 36.7       | 30.3    | 12.5      | 23.8    | 79.2    | 35.5       | 22.7    |
| GENERAL CHEMISTRY Alkalinity Alkalinity Biochemical Oxygen Demand Chloride Chemical Oxygen Demand Chemical Oxygen Demand Chemical Oxygen Demand Cyanide (Total) 200 (2) <5.0 Hardness 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.7 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.2    | 45.1          | 51.5    | 161        | 38.3      | 34.9       | 66.1    | 53.5      | 32.5    | <27.7   | 51.8       | 35.3    |
| Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,040 2,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45,700  | 46,300        | 31,300  | 2,200      | 1,600     | 9,030      | 44,100  | 2,380     | 54,100  | 51,900  | 74,700     | 23,700  |
| Alkalinity         -         7,000           Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |               |         |            |           | 1          |         | 1         |         | -       |            | -       |
| Biochemical Oxygen Demand         -         <2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56,000 34,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 358,000 | 358,000       | 334,000 | 49,000     | 16,000    | 198,000    | 306,000 | 32,000    | 398,000 | 436,000 | 396,000    | 248,000 |
| Chloride         -         600           Chemical Oxygen Demand         -         <5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2,000  | <2,000        | <2,000  | <4,000     | 3,900     | <2,000     | <2,000  | 5,200     | <2.000  | <2,000  | <2,000     | <2,000  |
| Chemical Oxygen Demand         -         <5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64,300  | 61,800        | 39,300  | 1,200      | 900       | 28,300     | 48,600  | 800       | 62,700  | 67,200  | 55,000     | 38,600  |
| Cyanide (Total)         200 (2)         <5.0           Hardness         10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29,000  | 30,000        | 31,000  | 19,000     | 6.000     | <5,000     | 38,000  | <5,000    | 34,000  | 16,000  | 30,000     | 13,000  |
| Hardness 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <5.0    | <5.1          | <5.0    | <5.0       | <5.0      | <5.1       | <5.0    | <5.0      | <5.0    | <5.0    | <5.0       | <5.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 365,000 | 355,000       | 235,000 | 50,000     | 18,000    | 242,000    | 195,000 | 35,000    | 400,000 | 455,000 | 255,000    | 305,000 |
| interesting to the last of the | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the set of the band of the set of the se | <100    | <100          | <100    | <100       | 300       | <100       | 200     | 200       | <100    | <100    | <100       | <100    |
| Sulfate 500,000 (2) 3,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,000   | 3,100         | 7.500   | 2,400      | 3,700     | 21,500     | 900     | 6,100     | 5,400   | 3,000   | 1.000      | 24,800  |
| Total Dissolved Solids - 34,000 JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 516,000 | 515.000       | 429,000 | 106,000 JB | 44,000 JB | 304,000    | 418,000 | 60,000 JB | 565,000 | 639,000 | 556,000    | 420,000 |
| Total Suspended Solids - 4,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76,600  | 74,800        | 111,000 | 26,700     | 1,700     | 900 JB     | 56,600  | 16,000    | 28,100  | 3,500   | 120,000    | 3,400   |

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance. -

25

J = Estimated value

B = Analyle Is also present in equipment blank sample

(1) Cleanup values as developed in the ROD (unless otherwised noted)

(2) No cleanup values were developed so the Maximum Contamination Level (MCLs) were used

(3) No cleanup values were developed so the MMCLs were used

(4) No cleanup values were developed so the MCP GW-1 standard was used

#### TABLE 7-3 Groundwater Analytical Results - November 2 - 4, 1998 Sampling Event Shepley's Hill Landfill Devens, Massachusetts (SHEET 1 of 1)

|                            | Well No.    | SHL-3        | SHL-4   | SHL-5     |         | SHM-96-5B DUP |         | SHL-9     | SHL-10     | SHM-93-10C | SHL-11  | SHL-19  | SHL-20  | SHL-22   | 1       | SHM-93-220 |
|----------------------------|-------------|--------------|---------|-----------|---------|---------------|---------|-----------|------------|------------|---------|---------|---------|----------|---------|------------|
| PARAMETERS                 | CLEANUP     | ug/L.        | ug/L    | ug/L      | ug/L    | ug/L          | ug/L    | ug/L      | ug/L       | ug/L       | ug/L    | ug/L    | ug/L    | ug/L     | ug/L    | ug/L       |
| No                         | LEVEL (1)   | -            |         | 1         | 12.2    |               |         |           |            |            |         |         |         |          |         |            |
| 1                          | ug/L        |              |         |           |         |               |         |           |            |            | -       |         | 1.00    |          |         |            |
| VOLATILES (8260)           |             | 1 Decision 1 | 1       |           | 1000    |               |         |           | 10 C C C C |            |         |         |         |          | 1       |            |
| Xylenes                    | 10,000 (2)  | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | 4.4 J   | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| Acetone                    | 3,000 (4)   | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 2-Butanone                 |             | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 4-Methyl-2-Pentanone       | - Ge - 1    | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| Benzene                    | 5(2)        | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| Methyl-t-Butyl Ether       | 70 (4)      | <5.0         | <5.0    | <5.0      | <5.0    | 1.9 J         | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 1,1-Dichloroethane         | 70 (4)      | <5.0         | <5.0    | <5.0      | 2.6 J   | 2.6 J         | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 1,2-Dichloroethene (total) | 70 (2)      | <5.0         | <5.0    | <5.0      | 3.2 J   | 3.0 J         | 2.7 J   | <5.0      | <5.0       | <5.0       | 3.8 J   | <5.0    | 2.8 J   | <5.0     | 3.0 J   | <5.0       |
| 1,2-Dichloroethane         | 5           | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 1,3-Dichlorobenzene        | 600 (2)     | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 1,4-Dichlorobenzene        | 5           | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| 1,2-Dichlorobenzene        | 600         | <5.0         | <5.0    | <5.0      | <5.0    | <5.0          | <5.0    | <5.0      | <5.0       | <5.0       | <5.0    | <5.0    | <5.0    | <5.0     | <5.0    | <5.0       |
| METALS (6010)              | -           | 10000        |         |           |         |               |         | 1         |            |            |         |         | -       |          |         |            |
| Arsenic                    | 50          | <5.4         | 89.1    | 11.5      | 3,080   | 3,100         | 46.8    | 27.2      | <5.4       | 10,2       | 376     | 145     | 218     | <5.4     | 406     | 51.1       |
| Barium                     | 2,000 (2)   | <6.6         | 176     | 9.3       | 53.5    | 53.8          | 56.6    | 11,9      | <6.6       | 8.9        | 111     | 26.3    | 100     | 11.2     | 97.3    | 68.7       |
| Cadmium                    | 5 (2)       | <0.3         | <0.3    | <0.3      | <0.3    | <0.3          | <0.3    | <0,3      | <0.3       | <0.3       | <0.3    | <0.3    | <0.3    | <0.3     | <0.3    | <0.3       |
| Chromium                   | 100         | 9.7          | <0.9    | 1.0 B     | 3.7 B   | 3.9 B         | 2.0 B   | 1.0 B     | 1.0 8      | 3.5 B      | <0,9    | 1.1 B   | 1.0 B   | <0.9     | <0.9    | 1.8 B      |
| Copper                     | 1,300 (3)   | 1.68         | <1.4    | <1.4      | 2.4 B   | 2.2 B         | 3.9 B   | <1.4      | <1.4       | <1.4       | <1.4    | <1.4    | <1.4    | <1.4     | 4.7 B   | <1.4       |
| Iron                       | 9,100       | 206          | 10,400  | 3,690     | 27,600  | 27,900        | 57,500  | 6,470     | <46.1      | 621        | 83,400  | 30,200  | 13,800  | 478      | 72,800  | 1,140      |
| Lead                       | 15          | <2.0         | <2.0    | <2.0      | <2.0    | <2.0          | <2.0    | <2.0      | <2.0       | <2.0       | <2.0    | <2.0    | <2.0    | <2.0     | <2.0    | <2.0       |
| Manganese                  | 1,715       | 5.8 B        | 552     | 598       | 13,300  | 13,400        | 6,590   | 368       | <0.6       | 43.7 B     | 2,760   | 4,070   | 9,080   | 722      | 4,530   | 648        |
| Mercury (7470A)            | 2 (2)       | <0.1         | <0,1    | <0.1      | <0,1    | <0.1          | <0.1    | <0.1      | <0.1       | <0.1       | <0.1    | <0.1    | <0.1    | <0.1     | <0.1    | <0.1       |
| Nickel                     | 100         | 7.5          | 8.3     | <2.1      | 12.4    | 11.3          | <2.1    | <2.1      | <2.1       | 3.9        | <2.1    | 9.5     | 14.2    | 5.7      | 3.2     | <2.1       |
| Selenium                   | 50 (2)      | <4.6         | <4.6    | <4.6      | <4.6    | <4.6          | <4.6    | <4.6      | <4.6       | <4.6       | <4.6    | <4.6    | <4.6    | <4.6     | <4.6    | <4.6       |
| Silver                     | 40 (4)      | <1.2         | <1.2    | <1.2      | <1.2    | <1.2          | <1.2    | <1.2      | <1.2       | <1.2       | <1.2    | <1.2    | <1.2    | <1.2     | <1.2    | <1.2       |
| Zinc                       | 2,000 (4)   | 26           | 23.9    | 27.5      | 41,3    | 40.4          | 63.2    | 17.6 B    | 31.9       | 20.5 B     | 39.5    | 28.9    | 41.0    | 45.3     | 11.1 B  | 77.6       |
| Aluminum                   | 6,870       | 127          | 21.7    | 261       | 108     | 126           | <21.1   | 65        | 37,2       | 520        | <21.1   | <21.1   | <21.1   | <21.1    | 33.5    | <21.1      |
| Sodium                     | 20,000      | 1,560        | 22,500  | 4,100     | 45,400  | 45,700        | 36,600  | 1,170     | 913        | 7,760      | 41,400  | 3,090   | 47,100  | 47,400   | 46,000  | 22,100     |
| GENERAL CHEMISTRY          |             |              |         | -         |         |               | and the |           |            |            |         |         |         | 1        | 1       |            |
| Alkalinity                 |             | 32,000       | 176,000 | 56,000    | 384,000 | 384,000       | 340,000 | 70,000    | 25,000     | 196,000    | 610,000 | 102,000 | 418,000 | 450,000  | 350,000 | 280,000    |
| Biochemical Oxygen Demand  | -           | <2,000       | <2,000  | <2,000    | <2,000  | <2,000        | <2,000  | <2,000    | <2,000     | <2,000     | <2,000  | <2,000  | <2,000  | <2,000   | <2,000  | <2,000     |
| Chloride                   | -           | 500          | 33,900  | 1,400     | 65,000  | 64,300        | 50,000  | 1,400     | 1,000      | 29,300     | 47,100  | 3,300   | 58,800  | 70,400   | 66,600  | 43,800     |
| Chemical Oxygen Demand     |             | <5,000       | 9,000   | 24,000    | 26,000  | 28,000        | 31,000  | 27,000    | <5,000     | <5,000     | 29,000  | <5,000  | 21,000  | 14,000   | 35,000  | 7,000      |
| Cyanide (Total)            | 200 (2)     | <5.1         | <5.0    | <5.3      | <5.0    | <5.0          | <5.0    | <5.3      | <5.0       | <5.0       | <5.0    | <5.1    | <5.0    | <5.1     | <5.3    | <5.0       |
| Hardness                   | 1.000       | 33,000       | 150,000 | 60,000    | 370,000 | 360,000       | 290,000 | 65,000    | 27,000     | 236,000    | 192,000 | 72,000  | 410,000 | 452,000  | 290,000 | 315,000    |
| Nitrate as Nitrogen        | 10,000 (2)  | 400          | 700     | <300      | <300    | <300          | <300    | <300      | 400        | <300       | <300    | <300    | <300    | <300     | <300    | <300       |
| Sulfate                    | 500,000 (2) | 5,100        | 8,500   | 5,700     | 3,600   | 3,700         | 2,500   | 900       | 3,900      | 21,100     | <300    | 14,000  | 6,300   | 3,300    | 900     | 25,000     |
| Total Dissolved Solids     |             | 50,000 JB    | 258,000 | 86,000 JB | 521,000 | 519,000       | 455,000 | 87,000 JB | 35,000 JB  | 299,000    | 416,000 | 150,000 | 585,000 | 561,000  | 491,000 | 380,000    |
| Total Suspended Solids     |             | 9,600        | 8,600   | 4,400     | 50,800  | 50,600        | 33,300  | 700 JB    | 600 JB     | 8,200      | 76,400  | 16,900  | 19,100  | 1,500 JB | 99,000  | 4,700      |

Notes:

Shaded areas with bold numbers indicate cleanup level exceedance. -

25

J = Estimated value

B = Analyte is also present in equipment blank sample

(1) Cleanup values as developed in the ROD (unless otherwised noted)

(2) No cleanup values were developed so the Maximum Contamination Level (MCLs) were used

(3) No cleanup values were developed so the MMCLs were used

(4) No cleanup values were developed so the MCP GW-1 standard was used

applicable cleanup level or MCL if there is no established cleanup level. Results of all wet chemistry analyses are also included in the table. The results of sampling are summarized below.

#### Results from the spring sampling round are described as follows:

Volatile Organic Compounds (VOCs) were analyzed in the fourteen monitoring wells. None of the wells had detectable concentrations above the established cleanup levels for any of trigger chemicals (or any of the chemicals of concern). The only trigger compound detected was 1,4-dichlorobenzene (2.1 J  $\mu$ g/L) in monitoring well SHL-11 and (4.7 J  $\mu$ g/L) in monitoring well SHL-20. The trigger compounds 1,2-dichloroethane and 1,2-dichlorobenze were not detected in any of the wells. Other volatile organic compounds detected at levels below MCLs in groundwater samples include 1,1-dichloroethane (at 2.7 J  $\mu$ g/L), 1,2-dichloroethene (total) (at 3.1 J  $\mu$ g/L), benzene (at 2 J  $\mu$ g/L), Methyl-t-Butyl Ether (at 2 J  $\mu$ g/L), and Acetone (at 15  $\mu$ g/L).

Of the identified chemicals of concern for metals, only arsenic was identified as a trigger chemical. Arsenic was detected at concentrations greater than the cleanup level of 50  $\mu$ g/L in the following monitoring wells: SHL-11 (346  $\mu$ g/L), SHL-19 (77.5  $\mu$ g/L), SHL-20 (238  $\mu$ g/L), SHM-96-22B (365  $\mu$ g/L), and SHM-96-5B (4,300  $\mu$ g/L). A duplicate sample of well SHM-96-5B had a concentration of 4,330  $\mu$ g/L. The only other chemicals of concern (non-trigger) detected at concentrations above the cleanup levels were Manganese, Iron and Sodium. Wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-20, and SHM-96-22B had concentrations of Manganese above the cleanup level of 1,715  $\mu$ g/L. The maximum value detected for Manganese was 10,100  $\mu$ g/L at SHM-96-5B. Iron was detected at levels above its cleanup level of 9,100  $\mu$ g/L at wells SHM-95-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-96-22B, with the maximum detected (90,800  $\mu$ g/L) at well SHL-11. Sodium was detected at levels above its cleanup level of 20,000  $\mu$ g/L at wells SHM-95-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, SHL-22, SHM-96-22B, and SHM-96-22C with the maximum detected (74,700  $\mu$ g/L) at well SHM-96-22B.

#### Results from the Fall sampling round are described as follows:

Volatile Organic Compounds (VOCs) were analyzed in the fourteen monitoring wells. None of the wells had detectable concentrations of the trigger chemicals (or any of the chemicals of concern). Other volatile organic compounds detected in groundwater samples include 1,1-dichloroethane (at 2.6 J  $\mu$ g/L), 1,2-dichloroethene (total) (at 3.8 J  $\mu$ g/L), Methyl-t-Butyl Ether (at 1.9 J  $\mu$ g/L), and Xylenes (at 4.4 J  $\mu$ g/L).

Of the identified chemicals of concern for metals, only arsenic was identified as a trigger chemical. Arsenic was detected at concentrations greater than the cleanup level of 50  $\mu$ g/L in the following monitoring wells: SHL-4 (89.1  $\mu$ g/L), SHL-11 (376  $\mu$ g/L), SHL-19 (145  $\mu$ g/L), SHL-20 (218  $\mu$ g/L), SHM-96-22C (51.1  $\mu$ g/L), SHM-96-22B (406  $\mu$ g/L), and SHM-96-5B (3,080  $\mu$ g/L). A duplicate sample of well SHM-96-5B had concentrations of 3,100  $\mu$ g/L. The only other chemicals of concern detected at concentrations above the cleanup levels were Manganese, Iron and Sodium. Wells SHM-96-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-96-22B had concentrations of Manganese above the cleanup level of 1,715  $\mu$ g/L. The maximum value detected for Manganese was 13,300  $\mu$ g /L at SHM-96-5B. Iron was detected at levels above its cleanup level of 9,100  $\mu$ g /L at wells SHL-4, SHM-95-5B, SHM-96-5C, SHL-11, SHL-19, SHL-20, and SHM-96-22B, with the maximum detected (83,400  $\mu$ g /L) at well SHL-11. Sodium was detected at levels above its cleanup level of 20,000  $\mu$ g /L at wells SHL-4, SHM-95-5B, SHM-96-5C, SHL-11, SHL-20, SHL-22, SHM-96-22B, and SHM-96-22C with the maximum detected (47,400  $\mu$ g /L) at well SHL-22.

Tables 7-2 and 7-3 summarize the monitoring wells that had contaminant concentrations above the cleanup levels during the 1998 monitoring period. These values were compared to previous years data. A comparison of arsenic concentrations detected above the cleanup levels during the 1998 period with historical data is presented in Table 7-4. The comparison indicates the following:

General decrease in arsenic concentrations except for well SHM-96-5B. Wells SHM-96-5C, SHL-11, SHL-20, SHM-96-22B, and SHM-93-22C indicated no definitive change over historic values.

# Table 7-4Comparison of Historic Arsenic ResultsShepley's Hill Landfill Groundwater Monitoring

|            | Arsenic (ug/L) |        |        |        |        |        |        |        |         |  |  |  |  |
|------------|----------------|--------|--------|--------|--------|--------|--------|--------|---------|--|--|--|--|
| Well ID    | Aug-91         | Dec-91 | Mar-93 | Jun-93 | Nov-96 | May-97 | Oct-97 | May-98 | Nov-98  |  |  |  |  |
|            |                | 100    |        |        |        |        |        |        |         |  |  |  |  |
| SHL-3      | 35             | 120    | 6.5    | NS     | NS     | <10 U  | < 10 U | < 5 U  | < 5.4 U |  |  |  |  |
| SHL-4      | 260            | 140    | 2.54   | NS     | 48.8   | 73.6 J | 180    | 37.4   | 89.1    |  |  |  |  |
| SHL-5      | 23             | 38     | 11.4   | NS     | 12     | < 10 U | < 10 U | < 5 U  | 11.5    |  |  |  |  |
| SHM-96-5B  | NS             | NS     | NS     | NS     | 1440   | 3300 J | 2040   | 4300   | 3080    |  |  |  |  |
| SHM-96-5C  | NS             | NS     | NS     | NS     | 71     | 43.2   | 43.1   | 49.5   | 46.8    |  |  |  |  |
| SHL-9      | 37             | 67     | 42.4   | NS     | 46.9   | 16.1 J | 25.2   | 15     | 27.2    |  |  |  |  |
| SHL-10     | 67             | 120    | 280    | NS     | 3.4 B  | < 10   | 209    | < 5 U  | < 5.4 U |  |  |  |  |
| SHM-93-10C | NS             | NS     | 21.3   | 18.1   | 12.4   | < 10 U | 10.5   | 7.5    | 10.2    |  |  |  |  |
| SHL-11     | 320            | 320    | 340    | NS     | 332    | 252 J  | 366    | 346    | 376     |  |  |  |  |
| SHL-19     | 340            | 710    | 390    | NS     | 138    | < 10 U | 298    | 77.5   | 145     |  |  |  |  |
| SHL-20     | 98             | 89     | 330    | NS     | 244    | < 10 U | 227    | 238    | 218     |  |  |  |  |
| SHL-22     | 27             | 25     | 32.9   | NS     | 24.8   | < 10 U | 34.8   | 10.6   | < 5.4 U |  |  |  |  |
| SHM-96-22B | NS             | NS     | NS     | NS     | 324    | 318 J  | 352    | 365    | 406     |  |  |  |  |
| SHM-93-22C | NS             | NS     | 68.9   | 49.8   | 44.6   | 40.4   | < 10 U | 31.6   | 51.1    |  |  |  |  |

Notes:

J: Estimated value below the quantitation limit

U: Not detected above the quantitation limit

B: Detected in associated blank

NS: Not sampled

Bold numbers indicate cleanup level exceedances (MCL cleanup level is 50 u g/L)

# 8.0 QUALITY CONTROL

Quality assurance/quality control (QA/QC) samples were collected to monitor the sample collection, transportation, and analysis procedures.

#### 8.1 Field Quality Control

One set of equipment (rinsate) blank samples was collected from the pump after decontamination had been conducted for each sampling event (May and November) and analyzed for the full suite of analytical parameters. All target analytes were undetected at levels above the laboratory's practical quanitication limits for the Spring equipment blanks, however, Fall blanks showed trace levels of Cadmium, Chromium, Copper, Manganese, and Zinc. All were well below the cleanup levels and are noted in the hits only table that they were present in the equipment blanks as required. One field duplicate groundwater sample was collected during each sampling round at well SHM-96-5B and analyzed for the full suite of analytical parameters. Results of duplicate samples are shown on Tables 7-2 and 7-3 and are also discussed below. One trip blank sample was collected per shipped cooler, and submitted for VOC analysis only to evaluate potential cross-contamination of samples during transport. No contaminants were detected in the trip blanks.

A Photoionization Detector (Hnu) was used to monitor ambient air conditions during the groundwater sampling. The instrument was calibrated prior to sampling on a daily basis. If the instrument calibration drift was evident at any time during sampling, the equipment was recalibrated.

#### 8.2 Laboratory Quality Control

One set of QA samples were also collected by the sampling team and sent to the designated QA laboratory (an independent testing laboratory) in the form of duplicates for each sampling round. The QA samples represent approximately 10% of the groundwater samples collected. A QA sample was collected during each sampling round at well SHM-96-5B and analyzed for the full suite of analytical parameters. QA samples were collected, packaged and shipped in the same manner as the other groundwater samples. Appendix E presents the Quality Assurance Report for each sampling round.

# 8.3 Data Evaluation

Fourteen groundwater samples were collected from Shepley's Hill Landfill at Devens, MA during each round of sampling. The samples were analyzed at Severn Trent Laboratories (formerly Intertek Testing Services) in Colchester VT for Volatile Organic Compounds (VOCs), Target Analyte List (TAL) Metals, Alkalinity, Anions (including Nitrate, Sulfate, and Chloride), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Hardness, Total Dissolved Solids (TDS), Total Suspended Solids (TSS), and Cyanide. The spring samples were collected on May 11-13, 1998 and the fall samples on November 2-4, 1998 (fall) (see Groundwater Analytical Results Tables in section 7). The results were evaluated for acceptability in accordance with the laboratory's defined acceptance limits, with standard EPA SW846 guidance and/or with guidelines provided in the draft USACE Methods Compendium document.

All sample coolers were packed with ice packs and ice in the field. Sample shipments were received at the laboratory on May 12, 13, and 14, 1998 for the spring samping, and November 3, 4, and 5, 1998 for the fall sampling. All samples were appropriately preserved by the procedures shown in Table 8-1. There are no sample shipment or receipt anomalies associated with these samples.

Samples were extracted and analyzed in accordance with the methods and holding time requirements cited in Table 8-1.

8.3.1 Data Evaluation for Samples Collected May 1998

# Volatile Organic Compound (VOC) Analysis

Fourteen groundwater samples were analyzed for VOCs using SW846 method 8260B. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-01, a duplicate of sample MW-SHL-5B-98-01); three trip blanks (dated 05/11/98, 05/12/98, and 05/13/98); and one equipment blank (MW-SHL-EB-01-98-01, dated 05/11/98).

Laboratory Method Blank, Trip Blank and Equipment Blank Results: Target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for method blank, trip blank, and equipment blank samples. Isopropyl alcohol (which is not a target analyte) was detected in the equipment blank sample. The presence of isopropyl alcohol was most likely an artifact of the decontamination process (i.e., insufficient rinsing). It was not detected in any other sample, therefore, no action was taken.

<u>Field Duplicate Sample Results</u>: The results of the VOCs for sample MW-SHL-5B-98-01, and its duplicate, sample MW-SHL-DUP-98-01, show less than 20 % relative percent difference for all detected analytes. The field duplicate sample shows acceptable comparative results.

<u>Surrogate Results</u>: All VOC sample surrogate recoveries are within the laboratory's stated acceptance limits. All results are acceptable.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results</u>: One set of matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed for this project. All MS/MSD recoveries and relative percent differences (RPD) are within the laboratory's acceptance limits for VOC analysis, except for 2-Chloroethylvinylether, which showed 0% recovery. As this analyte is not a sitespecific contaminant, no action was taken.

# Target Analyte List (TAL) Metals Analysis

Fourteen groundwater samples were analyzed for TAL metals using SW846 method 6010B or 7000 series methods. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-01, a duplicate of sample MW-SHL-5B-98-01); and one equipment blank (MW-SHL-EB-01-98-01, dated 05/11/98).

Laboratory Preparation Blank and Equipment Blank Results: All target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for preparation blank and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: The results of the metals for sample MW-SHL-5B-98-01, and its duplicate, sample MW-SHL-DUP-98-01, show less than 20 % relative percent difference for all detected analytes. The field duplicate sample shows acceptable comparative results.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike (MS) and duplicate samples was analyzed for this project. All MS recoveries are within the 75-125 % recovery acceptance limits, except for iron and manganese, which both had native sample concentrations greater than four times the concentration of the spike. All duplicate RPDs are within the 20% RPD acceptance limits for metals analysis, except for selenium and zinc. The values reported for selenium are less than five times the PQL. The RPD between the duplicate values reported for zinc is 52.7%. Since the field duplicate sample results showed acceptable RPD (see paragraph above), no action was taken. All results are acceptable.

# **General Inorganic Analyses**

Fourteen groundwater samples were analyzed for general inorganic analyses, including Alkalinity by EPA method 310.1, Anions (including Nitrate, Sulfate, and Chloride) by EPA method 300, Biochemical Oxygen Demand (BOD) by EPA method 405.1, Chemical Oxygen Demand (COD) by EPA method 410.1, Total Hardness by EPA method 130.2, Total Dissolved Solids (TDS) by EPA method 160.1, Total Suspended Solids (TSS) by EPA method 160.2, and Cyanide by SW846 method 9012A. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-01, a duplicate of sample MW-SHL-5B-98-01); and one equipment blank (MW-SHL-EB-01-98-01, dated 05/11/98).

Laboratory Preparation Blank and Equipment Blank Results: All target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for preparation blank sample. The equipment blank sample showed elevated levels of BOD (2,800 ug/L) and COD (227,000 ug/L). These values are higher than most of the sample results and are most likely caused by the elevated level of isopropyl alcohol present in the sample (see Volatile Organic Compound (VOC) Analysis - Laboratory Method Blank, Trip Blank and Equipment Blank Results section, above). Since detectable levels of isopropyl alcohol were not detected in the field samples, no action was taken. The equipment blank also showed detectable levels of TDS (30,000 ug/L) and TSS (300 ug/L). Sample values which are within five times of the amount detected in the equipment blank are qualified with JB as estimated (J) with potential blank interference (B).

<u>Field Duplicate Sample Results</u>: The results of the general inorganic analyses for sample MW-SHL-5B-98-01, and its duplicate, sample MW-SHL-DUP-98-01, show less than 20 % relative percent difference for all detected analytes. The field duplicate sample shows acceptable comparative results.

<u>Matrix Spike/Duplicate (MS/MSD) Results</u>: One set of matrix spike/matrix spike duplicate (MS/MSD) samples was analyzed for Cyanide and one MS sample was analyzed for Anions. All MS/MSD and MS recoveries and RPDs are within the laboratory's acceptance limits (75-125 % recovery; 20% RPD) for these analyses. All results are acceptable.

# Conclusion

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, surrogate recoveries, and MS/MSD recoveries), all data may be reported without qualification, except as summarized below:

- <u>General Inorganic Analyses</u>: The equipment blank showed detectable levels of TDS (30,000 ug/L) and TSS (300 ug/L). Sample values which are within five times of the amount detected in the equipment blank are qualified with JB as estimated (J) with potential blank interference (B) in the sample summary table (Table 7-2).
- 8.3.2 Data Evaluation for Samples Collected November 1998

# Volatile Organic Compound (VOC) Analysis

Fourteen groundwater samples were analyzed for VOCs using SW846 method 8260B. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-02, a duplicate of sample MW-SHL-5B-98-02); three trip blanks (dated 11/02/98, 11/03/98, and 11/04/98); and one equipment blank (MW-SHL-EB-98-02, dated 11/04/98).

Laboratory Method Blank, Trip Blank and Equipment Blank Results: Target analytes were undetected at levels above the laboratory's practical quantitation limit (PQL) for method blank, trip blank, and equipment blank samples. Acetone, Methylene Chloride, and Chloroform (which are not target analytes) were detected in equipment blank sample. Methylene Chloride (which is not a target analyte) and Acetone, both common laboratory contaminants, were detected in the equipment blank at concentrations 8.4 ug/L and 6.9 ug/L respectively, which exceed the laboratory 's PQLs (5 ug/L). Also, Chloroform (which is not a target analyte) was detected in the equipment blank sample at the concentration 5.0 ug/L, which exceeded the laboratory's PQL 5 ug/L. These three compounds were not detected in any other sample, therefore, no action was taken.

<u>Field Duplicate Sample Results</u>: The results of the VOCs for sample MW-SHL-5B-98-02 and its duplicate MW-SHL-DUP-98-02, show less than 20 % relative percent difference (RPD) for all the detected analytes, except for Methyl-t-Butyl Ether, which showed 89.8% RPD. Although the RPD for Methyl-t-Butyl Ether exceeds the acceptance limit, it was not detected above the laboratory's PQL (5 ug/L). Methyl-t-Butyl Ether was not detected in the sample MW-SHL-5B-98-02 (5 U ug/L) but, in its duplicate sample, the analyte was detected 1.9 J ug/L, an estimated value below the laboratory's PQL, and no further action was taken. The field duplicate samples show acceptable comparative results.

<u>Surrogate Results</u>: All VOC sample surrogate recoveries are within the laboratory's stated acceptance limits. All results are acceptable.

<u>Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results</u>: One set of matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed for this project. All MS/MSD recoveries and relative percent differences (RPD) are within the laboratory's acceptance limits for VOC analysis, except for 2-Chloroethylvinylether (and a few other non-target compounds), which showed 0% recovery. As this analyte is not a site-specific contaminant, no action was taken. For the other compounds, Bromochloromethane, 1,3,5-Trimethylbenzene, Chloroethane, Chloroform, Methylene Chloride, and Styrenen, the MS/MSD recoveries are marginally outside the acceptance limits, which are not site-specific contaminants. These compounds were not detected in any of the samples and no further action was taken. All the MS/MSD recoveries are within acceptable limits.

# Target Analyte List (TAL) Metals Analysis

Fourteen groundwater samples were analyzed for TAL metals using SW846 method 6010B or 7000 series methods. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-02, a duplicate of sample MW-SHL-5B-98-02); and one equipment blank (MW-SHL-EB-98-02, dated 11/04/98).

<u>Laboratory Preparation Blank and Equipment Blank Results</u>: All target analytes were undetected at levels above the laboratory's PQL for preparation blank and equipment blank samples. All results are acceptable.

<u>Field Duplicate Sample Results</u>: The results of the metals for sample MW-SHL-5B-98-02, and its duplicate, sample MW-SHL-DUP-98-02, show less than 20 % relative percent difference for all detected analytes. The field duplicate sample shows acceptable comparative results.

Matrix Spike (MS) and Duplicate Results: One set of matrix spike (MS) and duplicate samples was analyzed for this project. All MS recoveries are within the 75-125 % recovery acceptance limits, except for iron and manganese, which had native sample concentrations greater than four times the concentration of the spike. All duplicate RPDs are within the 20% RPD acceptance limits for metals analysis, except for thallium and zinc. The RPD between the duplicate values reported for thallium is 23.3%, which is not a target analyte. The RPD between the duplicate values reported for zinc is 33.6%. Since the field duplicate sample results showed acceptable RPD (see paragraph above), no action was taken. All the results are acceptable.

# **General Inorganic Analyses**

Fourteen groundwater samples were analyzed for general inorganic analyses, including Alkalinity by EPA method 310.1, Anions (including Nitrate, Sulfate, and Chloride) by EPA method 300, Biochemical Oxygen Demand (BOD) by EPA method 405.1, Chemical Oxygen Demand (COD) by EPA method 410.1, Total Hardness by EPA method 130.2, Total Dissolved Solids (TDS) by EPA method 160.1, Total Suspended Solids (TSS) by EPA method 160.2, and Cyanide by SW846 method 9012A. In addition, the laboratory analyzed: one field duplicate (MW-SHL-DUP-98-02, a duplicate of sample MW-SHL-5B-98-02); and one equipment blank (MW-SHL-EB-98-02, dated 11/04/98).

Laboratory Preparation Blank and Equipment Blank Results: All target analytes were undetected at levels above the laboratory's PQL for preparation blank samples. The equipment blank sample showed all target analytes were undetected at levels above the laboratory's PQLs except for TDS (23,000 ug/l) and TSS (400 ug/L). Sample values which are within five times of the amount detected in the equipment blank are qualified with JB as estimated (J) with potential blank interference (B).

<u>Field Duplicate Sample Results</u>: The results of the general inorganic analyses for sample MW-SHL-5B-98-02, and its duplicate, sample MW-SHL-DUP-98-02, show less than 20 % relative percent difference for all detected analytes. The field duplicate sample shows acceptable comparative results.

<u>Matrix Spike/Duplicate (MS/MSD) Results</u>: One set of matrix spike/matrix spike duplicate (MS/MSD) samples was analyzed for Anions and one MS sample was analyzed for Cyanide. All MS/MSD and MS recoveries and RPDs are within the laboratory's acceptance limits (75-125 % recovery; 20% RPD) for these analyses, except for Orthophoshate (126.2%), which marginally exceeded the acceptance limits. All results are acceptable.

# Conclusion

Laboratory reports were reviewed for adherence to acceptable laboratory practices. Based on the data evaluation elements reviewed (including holding times, blank sample results, surrogate recoveries, and MS/MSD recoveries), all data may be reported without qualification, except as summarized below:

- <u>General Inorganic Analyses</u>: The equipment blank showed detectable levels of TDS (23,000 ug/L) and TSS (400 ug/L). Sample values which are within five times of the amount detected in the equipment blank are qualified with JB as estimated (J) with potential blank interference (B) in the sample summary table (Table 7-3). All the results are acceptable.
- <u>Target Analyte List (TAL) Metals Analyses</u>: The equipment blank showed detectable levels of Aluminum (21.1 ug/L), Cadmium (0.42 ug/L), Copper (1.4 ug/L), Manganese (8.9 ug/L), and Zinc (4.3 ug/L). Cadmium was not detected in any of the field sample and no qualification of results is required. Sample values which are within five times of the amount detected in the equipment blank are qualified with JB as estimated (J) with potential blank interference (B) in the sample summary table (Table 7-3). All the results are acceptable.

# TABLE 8-1

# Sample Preparation and Analysis Methods, Containers, Holding Times, and Preservatives

| Parameter                                | Prepar-<br>action<br>Method <sup>1</sup> | Analysis<br>Method <sup>1</sup>                     | Sample<br>Container <sup>2</sup>                                   | Minimum<br>Volume          | Preservative                                                  | Holding<br>Time (VTS) <sup>3</sup>                                                                          |
|------------------------------------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| VOCs                                     | 5030B                                    | 8260B                                               | 3 X 40 mL vials<br>with Teflon<br>septa screw<br>caps <sup>4</sup> | 40 mL                      | HCl to pH less than<br>2 (No Headspace)<br>4+/- 2°C           | 14 days                                                                                                     |
| Metals <sup>5</sup><br>Hardness          | 3010A<br>NA                              | 6010B -<br>Trace ICAP<br>or 7000<br>series<br>130.2 | · · · · · · · · · · · · · · · · · · ·                              |                            | -Liter HDPE 300 mL HNO <sub>3</sub> to pH less than 2         |                                                                                                             |
| Cyanide                                  | NA                                       | 9012A                                               | 500-mL HDPE                                                        | 500 mL                     | NaOH to pH greater<br>than 12, 4+/- 2°C                       | 14 days                                                                                                     |
| Anions <sup>6</sup><br>Alkalinity<br>TDS | NA<br>NA<br>NA                           | 300<br>310.1<br>160.1                               | 500-mL HDPE                                                        | 100 mL<br>100 mL<br>100 mL | 4+/-2°C                                                       | 48 hours for ortho-<br>Phosphate and<br>Nitrate; 28 days for<br>Sulfate and Chloride<br>14 days<br>48 hours |
| COD                                      | NA                                       | 410.1                                               | 250-mL HDPE                                                        | 250 mL                     | H <sub>2</sub> SO <sub>4</sub> to pH less<br>than 2, 4+/- 2°C | 28 days                                                                                                     |
| BOD                                      | NA                                       | 405.1                                               | 1-Liter HDPE                                                       | 1000 mL                    | 4+/-2°C                                                       | 48 hours                                                                                                    |
| TSS                                      | NA                                       | 160.2                                               | 1-Liter HDPE                                                       | 1000 mL                    | 4+/-2°C                                                       | 7 days                                                                                                      |

1 "Methods for Chemical Analysis of Water and Wastes", Cincinnati, OH, March 1979, EPA 600-4-79-020. "Test Methods for Evaluating Solid Waste, Physical and Chemical Methods", U.S. EPA SW-846, 3rd

Edition.

2 Additional sample containers/volume is required for matrix quality control samples.

3 VTS - Verified Time when the Sample was collected.

4 Two vials will be shipped to the laboratory; one will be measured for pH in the field to verify that the sample has been preserved correctly (i.e. pH less than 2)).

5 TAL metals include Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, and Zinc.

6 Anions include Nitrate, Sulfate, and Chloride.

NA = Not Applicable Hg = Mercury

# 9.0 CORRECTIVE ACTION

Corrective action required for the landfill cover is focused primarily on regrading and reseeding eroded areas along with clearing unwanted vegetation in drainage channels. Along with the corrective actions listed in the report, the following problem areas are the most critical and should be addressed before the next inspection: (1) Clear the earth and vegetation obstruction in the east side drainage swale just upstream of the new riprap section. Drain the area of standing water in the channel upstream of the obstruction and clear, regrade, and reseed or riprap the channel; (2) Clear and mow the existing settled area between gas vents #3 and #4 during a dry period. If it does not dry out it should be cleared by hand to eliminate woody and wetland species; (3) Repair the eroded gully between gas vents #1 and #3; (4) Repair and replace the security fence and gates as required to control access to the site; and (5) monitor the lack of vegetation on the east side near the new riprap channel..

With the exception of the repairs mentioned above, and the other repairs recommended in the report, the landfill is in fair condition and appears to be functioning adequately.

APPENDIX A

LANDFILL MAINTENANCE CHECKLIST

# APPENDIX A Landfill Maintenance Checklist

To be completed in indelible ink.

Inspections are to be performed annually.

DATE: 26 October 1998 INSPECTOR: Thomas J. Marcotte

ORGANIZATION: U.S Army Corps of Engineers, New England District

| LANDFILL<br>ATTRIBUTE   | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECOMMENDATIONS                                                                                                                                                                                                                                                                          | SAT/<br>UNSAT |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Monitoring Wells        | 1. Inspection performed by groundwater monitoring team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                     | SAT           |
| Piezometers             | 1. Inspection performed by groundwater monitoring team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                                                                     | SAT           |
| Cover Surface           | 1. Vegetative cover is generally satisfactory except as noted in the comments that follow. Various species growing; recently mowed to about 6 inches height.                                                                                                                                                                                                                                                                                                                                                                                                 | See specific comments under the sections that follow.                                                                                                                                                                                                                                    | SAT           |
| Vegetative Growth       | 1. Approximately midway along the south drainage swale, on the upper part of the outside channel side slope, there is an area about 10 feet by 15 feet which lacks adequate vegetation. It is just beginning to show signs of erosion.                                                                                                                                                                                                                                                                                                                       | 1. This area should be reseeded, with hay or straw placed on the surface, to prevent further erosion.                                                                                                                                                                                    | UN-<br>SAT    |
|                         | 2. In the vicinity of the new rock channel on the east side, there are large areas with very sparse or no vegetation. The soil in these bare areas is mostly sand. During the fall of 1998, hydroseeding of some of these barren areas was performed, but at the time of the site inspection very little germination had occurred. Some evidence of natural revegetation can be seen, but there are still many areas vulnerable to erosion. Erosion in these areas would directly contribute to the large sand delta that has accumulated in Plow Shop Pond. | 2. This area should be closely watched to see<br>if adequate vegetation can become established<br>in the sandy soils. No action is<br>recommended at this time, but if the<br>hydroseeded areas do not vegetate, the<br>application of topsoil and seed next season<br>may be necessary. | SAT           |
| Landfill Gas Vent Wells | 1. The gas vents are in good condition. All screens and pipes are in functional condition and no repairs are required at this time. Many of the vents had animal burrows adjacent to them. The location of the burrows is noted on the gas vent monitoring result table.                                                                                                                                                                                                                                                                                     | 1. All animals should be eliminated with suitable repellents and then the burrow holes should be backfilled, with reseeding as required.                                                                                                                                                 | UN-<br>SAT    |

| LANDFILL<br>ATTRIBUTE | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECOMMENDATIONS                                                                                                                                                                                                                                            | SAT/<br>UNSAT            |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Drainage Swales       | 1. Most of the drainage swale on the south side is being invaded<br>by woody species. There are also intermittent zones of standing water<br>indicating a lack of proper channel slope and drainage.                                                                                                                                                                                                                                                | 1. The south side drainage swale should be<br>cleared of woody vegetation and regraded as<br>needed to properly drain all areas of standing<br>water. Depending on water velocities, the<br>channel should then be reseeded or riprap<br>should be placed. | UN-<br>SAT               |
|                       | 2. In the east side drainage swale, in the vicinity of gas vent #13 and continuing downstream to the new rock-lined channel, the drainage swale is heavily overgrown with woody vegetation and wetland species. It appears to be heavily silted in and has a large area of standing water. There is an earth and vegetation obstruction just upstream of the new rock section preventing the drainage of water and turning the channel into a pond. | 2. This reach of the drainage swale should be<br>cleared of the obstruction, all vegetation and<br>accumulated silt and sand, and regraded to<br>drain properly. Seeding, or riprap<br>placement, should follow, depending on water<br>velocities.         | UN-<br>SAT               |
| Culverts              | 1. The concrete drainage structure at the terminus of the catch basin and<br>underground conduit system on the south side is overgrown with vegetation,<br>including some larger woody species, and is silting in. Standing water is present<br>and wetland species are becoming established as well.                                                                                                                                               | 1. The structure and channel immediately<br>downstream should be cleaned out and the<br>channel regraded as required to properly<br>drain.                                                                                                                 | UN-<br>SAT               |
| Catch Basins          | <ol> <li>Catch Basin #2 near the entrance to the site has a broken surface grate.</li> <li>Catch Basin #3 near the entrance to the site is not set at grade. The rim of the basin is about six to eight inches higher than the surrounding ground.</li> </ol>                                                                                                                                                                                       | <ol> <li>The surface grate should be replaced.</li> <li>The rim of this catch basin should be<br/>lowered to the surrounding grade as it is<br/>ineffective as is.</li> </ol>                                                                              | UN-<br>SAT<br>UN-<br>SAT |
|                       | 3. Catch basin #7 near the southwest corner of the site is substantially<br>overgrown by the adjacent vegetation and will soon be completely overgrown<br>and hidden from view. The catch basin is partially filled with many small pieces<br>of PVC pipe.                                                                                                                                                                                          | 3. This catch basin should be cleared of<br>encroaching vegetation and the PVC pipe<br>pieces should be removed.                                                                                                                                           | UN-<br>SAT               |
| Settlement            | 1. In the settled area between gas vents #3 and #4, 6 to 12 inches of standing water was observed and wetland species are becoming established. No areas of erosion were seen, however. Woody species are just starting to grow on the periphery of this settled area.                                                                                                                                                                              | 1. During a dry period, the settled area<br>should be mowed to eliminate woody species<br>and to slow the encroachment of wetland<br>species.                                                                                                              | UN-<br>SAT               |
|                       | 2. On the west side between gas vent #3 and #6 there is a small area of settlement, about 15 feet by 15 feet, with about three inches of standing water. There is no erosion in this settled area, and vegetation is still growing well.                                                                                                                                                                                                            | 2. This area should be monitored for further settlement and wetland encroachment. No action is requird at this time.                                                                                                                                       | SAT                      |

| LANDFILL<br>ATTRIBUTE | OBSERVATIONS                                                                                                                                                                                                                                                                                               | RECOMMENDATIONS                                                                                                                                                                                                                  | SAT/<br>UNSAT            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Erosion               | <ol> <li>In the northwest extremity, between gas vent #1 and #3, there is an eroded gully leading to the west drainage swale. It is about one to two feet wide and 15 feet long.</li> <li>In the vicinity of gas vent #1, there is an oval-shaped area of erosion, about five feet by ten feet.</li> </ol> | <ol> <li>The placement of topsoil and seed in the<br/>gully should be sufficient to repair this area.</li> <li>The placement of topsoil and seed in the<br/>eroded area should be sufficient to repair this<br/>area.</li> </ol> | UN-<br>SAT<br>UN-<br>SAT |
|                       | 3. On the west side near gas vent #9, a shallow sloped area is undergoing mild erosion. Vegetation is not well established and minor erosion is forming shallow gullies.                                                                                                                                   | <ol> <li>The placement of topsoil and seed, with a<br/>surface treatment of broadcast hay or straw,<br/>should be sufficient to repair this area and<br/>stop the erosion process.</li> </ol>                                    | UN-<br>SAT               |
| Access Roads          | 1. The access roads on the site are in generally fair to good condition. Some work was performed on these roads in the Fall of 1998 to upgrade the surface.                                                                                                                                                | <ol> <li>There are no problems on access roads<br/>which warrant repair at this time.</li> </ol>                                                                                                                                 | SAT                      |
| Security Fencing      | 1. The perimeter chain-link security fence is in poor condition. Fence sections and gates are missing and unrestricted access to the site is available at many locations. Some evidence of off-road vehicles (ATV's, dirt bikes, etc.) using the turfed cap area was seen.                                 | 1. The security fence should be repaired,<br>with all missing fence sections, including<br>gates, replaced or repaired.                                                                                                          | UN-<br>SAT               |
| Wetland Encroachment  | 1. Wetland encroachment is taking place at several locations, but is not happening on a wide scale. Overall, the areas of encroachment are small. These locations have been noted in above comments.                                                                                                       | 1. Wetland encroachment should be<br>eliminated by simple mowing in some areas,<br>and by draining and regrading channels in<br>other areas. The above comments address<br>the actions to take at specific locations.            | UN-<br>SAT               |

Immediate Action Required: The following problem areas, from among those mentioned in the comments above, are the most critical and should be addressed before the next inspection;

1. Clear the earth and vegetation obstruction in the east side drainage swale just upstream of the new riprap section. Drain the area of standing water in the channel upstream of the obstruction and clear, regrade, and reseed or riprap the channel.

2. Clear and mow the existing settled area between gas vents #3 and #4 during a dry period. If it does not dry out it should be cleared by hand to eliminate woody and wetland species.

3. Repair the eroded gully between gas vents #1 and #3.

4. Repair and replace the security fence and gates as required to control access to the site.

General Comments: With the exception of the four items mentioned in the above paragraph, and the other repairs recommended, the landfill fair condition and appears to be functioning adequately. Several items were noted which should be monitored closely, especially the lack of vegetation on the east side near the new riprap channel, but no other action is required at this time.

## APPENDIX B

LANDFILL GAS MONITORING FORM

## APPENDIX B Landfill Gas Monitoring

Monitoring is to be performed annually

To be completed in indelible ink. DATE: 26 October 1998

ORGANIZATION: U.S. Army Corps of Engineers, New England District INSPECTOR: T.J. Marcotte, E. Iorio BAROMETRIC PRESSURE: 30.2 "/Hg WEATHER: (Temp, rain, sun, etc.): 45 to 50 degrees F, Full Sun

| Vent<br>Number | VOCs<br>(ppm) | <u>O2</u><br>(%) | H <sub>2</sub> S<br>(ppm) | LEL<br>(%) | CO<br>(ppm) | CO2<br>(%) | CH4<br>(%) | REMARKS<br>(Visual observations, |
|----------------|---------------|------------------|---------------------------|------------|-------------|------------|------------|----------------------------------|
|                | PID           | CGI              | CGI                       | CGI        | CGI         | GA-90      | GA-90      | odor, etc.)                      |
| Vent - 1       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          | animal burrow                    |
| Vent - 2       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          | animal burrows                   |
| Vent - 3       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          | animal burrow                    |
| Vent - 4       | Ó             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 5       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 6       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 7       | 0             | 21.1             | 0                         | 0          | 0           | 0          | 0          | animal burrows                   |
| Vent - 8       | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          | animal burrows                   |
| Vent - 9       | 0             | 21.1             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 10      | 0             | 21.1             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 11      | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          | animal burrow                    |
| Vent - 12      | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 13      | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 14      | 0             | 21.2             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 15      | 0             | 21.6             | 0                         | 0          | 0           | 0          | 0          | animal burrows                   |
| Vent - 16      | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 17      | 0             | 21.0             | 0                         | 0          | 0           | 0          | 0          |                                  |
| Vent - 18      | 0             | 21.1             | 0                         | 0          | 0           | 0          | 0          |                                  |

Note: See grid for well identifiers and locations.

Mark all vents with appropriate number during initial sampling.

APPENDIX C

GROUNDWATER FIELD ANALYSIS FORMS

Groundwater Field Analysis Forms Spring 1998

|                                    | ITERVAL DEP                |                              | the second se | from top casir |        | Grou                                                  | indwater S                                                   | rps of En<br>ampling Lo                                                        | g Sheet                                       |                                                |          |
|------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|--------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|----------|
| DEPTH SAMP<br>DATE:<br>SAMPLED BY: | LED:<br>05/13/98<br>B. Waz | IP INSERTION<br>33 feet (fro |                                                                                                                 |                |        | SAMPLE MET<br>SAMPLE BOT<br>CYANIDE<br>Anions,Alkalin | HOD:<br>LES: METALS<br><u>1 - 500ml HD</u><br>ity,TDS 1- 500 | <u>Pley's Hill Land<br/>EPA LOW STR</u><br>/HARDNESS<br>PE (ph>12)<br>Dml HDPE | <u>ess methol</u><br>1 - 1L H<br>VOC'S<br>COD | DPE (ph<2)<br>2 - 40mi VOA's<br>1 - 500 mi HDF |          |
| RECORDED B                         | Y: B. VVaz<br>WATER DPTH   | PUMP                         | PURGE RATE                                                                                                      | CUM. VOLUME    | H20    | BOD                                                   | <u>1 - 1L HDPE</u><br>рн                                     | ORP/Eh                                                                         | TSS<br>D. O.                                  | 1 - 1L HDPE                                    | COMMENTS |
| 24hr                               | BELOW MP feet              | SETTING                      | ml/min                                                                                                          | PURGED         | TEMP C | CONDUCTANCE                                           |                                                              | mv                                                                             | mg/L                                          | NTU's                                          |          |
| 1404                               | 30.40                      | 117.6                        | 400                                                                                                             |                | 11.04  | 0.023                                                 | 6.87                                                         | 156.8                                                                          | 11.58                                         | 14.8                                           |          |
| 1408                               | 30.30                      | 118.3                        | 300                                                                                                             |                | 12.36  | 0.022                                                 | 7.13                                                         | 147.5                                                                          | 11.09                                         | 9.4                                            |          |
| 1412                               | 30.25                      | 119.1                        | 300                                                                                                             | 1 gallon       | 13.45  | 0.022                                                 | 7.12                                                         | 146.0                                                                          | 11.04                                         | 6.4                                            | 1000     |
| 1418                               | 30.25                      | 125.0                        | 200                                                                                                             |                | 15.06  | 0.022                                                 | 7.07                                                         | 148.8                                                                          | 10.83                                         | 5.8                                            |          |
| 1420                               | 30.25                      | 166.0                        | 300                                                                                                             |                | 14.77  | 0.022                                                 | 7.07                                                         | 149.0                                                                          | 10.91                                         | 5.2                                            |          |
| 1422                               | 30.25                      | 186.0                        | 175                                                                                                             | 2 gallon       | 14.60  | 0.022                                                 | 7.04                                                         | 148.7                                                                          | 10.72                                         | 5.0                                            |          |
| 1425                               | 30.25                      | 201.0                        | 100                                                                                                             |                | 14.88  | 0.022                                                 | 7.03                                                         | 147.9                                                                          | 10.62                                         | 4.8                                            | 1        |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                | 1        |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                | -        |
| 1                                  |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                |          |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                |          |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                |          |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                |          |
|                                    |                            |                              |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               |                                                |          |
|                                    |                            | ~                            |                                                                                                                 |                |        |                                                       |                                                              |                                                                                |                                               | -                                              |          |
| NOTES                              |                            |                              |                                                                                                                 | 4              |        |                                                       |                                                              |                                                                                |                                               |                                                | L        |

SAMPLE TAKEN AT 1430

YSI GROUP #1

| GWM well     | #                           | SHL-4                                                                                                           |                            |                       |               | US A             | rmy Co       | rps of En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gineer        | S                  |             |
|--------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|---------------|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|-------------|
|              | INTERVAL DEP<br>PRE PUMP IN |                                                                                                                 | 5.8 - 15.8 fe<br>9.69 feet | et                    |               | Grou             | indwater S   | ampling Lo<br>bley's Hill Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g Sheet       |                    |             |
|              |                             |                                                                                                                 | N 9.69 feet                |                       |               | SAMPLE MET       |              | EPA LOW STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                    |             |
| DEPTH SAM    | a character of cases.       | 12 feet                                                                                                         |                            |                       |               | SAMPLE BOT       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | DPE (ph<2)         |             |
| DATE:        | 05/13/98                    | a start | 1030                       | 10000                 |               | CYANIDE          | 1 - 500ml HD | and the second se | VOC'S         | 2 - 40ml VOA       | 's (ph<2)   |
|              | Y: S. Simmer                | - Alexandre                                                                                                     |                            |                       |               | Anions, Alkalini |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COD           | 1 - 500 ml HE      | 54          |
|              | BY: S. Simmer               |                                                                                                                 |                            |                       | BOD           | 1 - 1L HDPE      |              | TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 1L HDPE   |                    |             |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet | PUMP                                                                                                            | PURGE RATE                 | CUM. VOLUME<br>PURGED | H20<br>TEMP C | SPECIFIC         | рН           | ORP/Eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D. O.<br>mg/L | TURBIDITY<br>NTU's | COMMENTS    |
| 1100         | 9.69                        | 70.3                                                                                                            | 300                        |                       | 10.78         | 0.135            | 6.48         | 255.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.30          | 25.0               | orange colo |
| 1105         | 9.70                        | 70.3                                                                                                            | 350                        |                       | 12.22         | 0.135            | 6.62         | 228.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.99          | 15.3               |             |
| 1110         | 9.70                        | 70.3                                                                                                            | 325                        | 1 gallon              | 12.83         | 0.131            | 6.59         | 216.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.84          | 10.4               | clear color |
| 1115         | 9.70                        | 70.3                                                                                                            | 400                        |                       | 12.87         | 0.128            | 6.57         | 203.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.38          | 6.0                |             |
| 1120         | 9.70                        | 70.3                                                                                                            | 400                        |                       | 12.74         | 0.126            | 6.58         | 196.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.22          | 3.5                |             |
| 1125         | 9.70                        | 70.3                                                                                                            | 400                        | 2 gallon              | 12.57         | 0.125            | 6.58         | 188.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.92          | 4.6                | 1           |
| 1130         | 9.70                        | 70.3                                                                                                            | 450                        | 1212                  | 12.52         | 0.124            | 6.56         | 184.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.74          | 5.5                | 125         |
| 1135         | 9.70                        | 70.3                                                                                                            | 450                        | 3 gallon              | 12.28         | 0.122            | 6.56         | 180.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.58          | 4.9                | 1           |
| 1140         | 9.70                        | 70.3                                                                                                            | 450                        |                       | 12.26         | 0.122            | 6.54         | 176.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.45          | 2.6                | 1           |
| 1145         | 9.70                        | 70.3                                                                                                            | 475                        | 4 gallon              | 12.16         | 0.122            | 6.53         | 174.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.34          | 3.9                |             |
|              |                             |                                                                                                                 |                            |                       |               |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |             |
|              |                             |                                                                                                                 |                            |                       |               |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |             |
|              |                             |                                                                                                                 |                            |                       |               |                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                    |             |

SAMPLE TAKEN AT 1145

YSI GROUP #2

| GWM well # | ŧ                           | SHL-5      |                                |                           |         |                   |                         | rps of En                     |                         | S             |              |
|------------|-----------------------------|------------|--------------------------------|---------------------------|---------|-------------------|-------------------------|-------------------------------|-------------------------|---------------|--------------|
|            | NTERVAL DEP<br>PRE PUMP INS |            | 5.2 - 15.2 fe<br>1.62 feet (fr | et (from top o<br>om pvc) | casing) | Grou<br>Project I | ndwater S<br>Name: Shep | ampling Lo<br>bley's Hill Lan | g Sheet<br>dfill, Dever | ns, MA        |              |
|            | POST PUM                    | P INSERTIO | N 1.63 feet (fr                | om pvc)                   |         | SAMPLE MET        |                         | EPA LOW STR                   |                         |               |              |
| DEPTH SAM  |                             |            | m top casing)                  |                           |         | SAMPLE BOT        | LES: METALS             | /HARDNESS                     | 1-1LH                   | IDPE (ph<2)   |              |
| DATE:      | 05/12/98                    | TIME:      | 1230                           |                           |         | CYANIDE           | 1 - 500ml HD            | PE (ph>12)                    | VOC'S                   | 2 - 40ml VOA  | 's (ph<2)    |
| SAMPLED B  | : S. Simmer                 |            |                                |                           |         | Anions, Alkalin   | ity, TDS 1- 500         | ml HDPE                       | COD                     | 1 - 500 ml HD |              |
| RECORDED   | BY: S. Simmer               |            |                                |                           | _       | BOD               | 1 - 1L HDPE             |                               | TSS                     | 1 - 1L HDPE   |              |
| TIME       | WATER DPTH                  | PUMP       | PURGE RATE                     | CUM. VOLUME               | H20     | SPECIFIC          | pН                      | ORP/Eh                        | D. O.                   | TURBIDITY     | COMMENTS     |
| 24hr       | BELOW MP feet               | SETTING    | ml/min                         | PURGED                    | TEMP C  | CONDUCTANCE       |                         | ту                            | mg/L                    | NTU's         |              |
| 1230       | 1.80                        | 36.3       | 200                            |                           | 12.12   | 0.070             | 5.87                    | 75.0                          | 6.44                    | 105           | orange colo  |
| 1235       | 1.78                        | 36.3       | 200                            |                           | 11.32   | 0.069             | 5.94                    | 25.9                          | 3.06                    | 51            |              |
| 1240       | 1.90                        | 37.3       | 400                            |                           | 10.69   | 0.068             | 5.93                    | 5.6                           | 1.59                    | 21            | color cleare |
| 1245       | 1.91                        | 36.8       | 400                            | 1 gallon                  | 11.19   | 0.066             | 5.83                    | 4.6                           | 1.12                    | 14.7          |              |
| 1250       | 1.85                        | 36.6       | 300                            |                           | 11.37   | 0.066             | 5.84                    | 1.8                           | 1.09                    | 4.3           |              |
| 1255       | 1.85                        | 37.0       | 300                            |                           | 11.66   | 0.067             | 5.79                    | -0.3                          | 1.08                    | 2.7           |              |
| 1300       | 1.85                        | 37.0       | 300                            | 2 gallon                  | 11.74   | 0.067             | 5.82                    | -4.5                          | 0.90                    | 3.7           |              |
| 1305       | 1.85                        | 37.0       | 300                            |                           | 11.80   | 0.068             | 5.80                    | -8.5                          | 0.77                    | 3.9           |              |
| 1310       | 1.85                        | 37.0       | 300                            |                           | 11.86   | 0.069             | 5.80                    | -11.0                         | 0.64                    | 2.9           |              |
| 1315       | 1.85                        | 37.0       | 300                            | 3 gallon                  | 11.88   | 0.069             | 5.80                    | -12.9                         | 0.63                    | 3.1           | 1            |
| 1320       | 1.85                        | 37.0       | 300                            |                           | 11.85   | 0.069             | 5.80                    | -13.7                         | 0.63                    | 2.7           | 12           |
| -          | -                           |            |                                |                           |         |                   |                         |                               |                         |               |              |
| 2.2.2      |                             |            |                                |                           | -       |                   |                         |                               |                         |               |              |
|            |                             |            |                                |                           |         |                   |                         |                               |                         |               |              |
| -          |                             |            | -                              |                           |         |                   |                         |                               |                         |               | -            |
| 10750      |                             |            |                                |                           |         |                   |                         |                               |                         |               |              |

SAMPLE TAKEN AT 1320

YSI GROUP #1

| GWM well # | E I I                       | SHL-9        |                 |                                  |        |                  |                 | rps of En                      | the second s | S             |              |
|------------|-----------------------------|--------------|-----------------|----------------------------------|--------|------------------|-----------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------|
|            | NTERVAL DEP<br>PRE PUMP INS |              |                 | feet (from top<br>op pvc) time C |        |                  |                 | Sampling Lo<br>pley's Hill Lan |                                                                                                                | ns, MA        |              |
|            | POST PUM                    | P INSERTIO   | N 7.20 feet (to | p pvc) time 1                    | 200    | SAMPLE MET       |                 | EPA LOW STR                    |                                                                                                                |               |              |
| DEPTH SAMP |                             | 22 feet (top |                 |                                  |        | SAMPLE BOT       | LES: METALS     | HARDNESS                       | 1-1LH                                                                                                          | IDPE (ph<2)   |              |
| DATE:      | 05/12/98                    | TIME:        | 1200            |                                  |        | CYANIDE          | 1 - 500ml HE    | PE (ph>12)                     |                                                                                                                | 2 - 40ml VOA  | 's (ph<2)    |
| SAMPLED BY | B. Waz                      |              |                 |                                  |        | Anions, Alkalini | ity, TDS 1- 500 | Dml HDPE                       | COD                                                                                                            | 1 - 500 ml HE | )PE (ph<2)   |
| RECORDED   | BY: B. Waz                  |              |                 |                                  |        | BOD              | 1 - 1L HDPE     |                                | TSS                                                                                                            | 1 - 1L HDPE   |              |
| TIME       | WATER DPTH                  | PUMP         | PURGE RATE      | CUM. VOLUME                      | H20    | SPECIFIC         | рН              | ORP/Eh                         | D. O.                                                                                                          | TURBIDITY     | COMMENTS     |
| 24hr       | BELOW MP feet               | SETTING      | ml/min          | PURGED                           | TEMP C | CONDUCTANCE      |                 | mv                             | mg/L                                                                                                           | NTU's         |              |
| 1246       | 7.50                        | 63.2         | 400             | 1 gallon                         | 9.69   | 0.080            | 6.21            | 219.3                          | 1.51                                                                                                           | 39.5          | considerable |
| 1250       | 7.50                        | 63.2         | 400             |                                  | 9.96   | 0.084            | 6.24            | 212.6                          | 1.38                                                                                                           | 30.0          | rust         |
| 1253       | 7.50                        | 63.2         | 400             |                                  | 9.99   | 0.084            | 6.27            | 207.6                          | 1.26                                                                                                           | 14.3          |              |
| 1256       | 7.50                        | 63.2         | 400             | 2 gallon                         | 10.18  | 0.086            | 6.26            | 202.6                          | 1.22                                                                                                           | 14.4          |              |
| 1259       | 7.50                        | 63.2         | 400             |                                  | 10.23  | 0.088            | 6.28            | 194.8                          | 0.96                                                                                                           | 14.0          |              |
| 1302       | 7.50                        | 63.2         | 400             |                                  | 10.23  | 0.089            | 6.29            | 188.8                          | 0.88                                                                                                           | 7.3           |              |
| 1306       | 7.50                        | 63.2         | 400             | 3 gallon                         | 10.28  | 0.092            | 6.30            | 179.5                          | 0.76                                                                                                           | 4.9           |              |
| 1309       | 7.50                        | 63.2         | 400             | 1.5                              | 10.28  | 0.093            | 6.31            | 173.8                          | 0.77                                                                                                           | 4.7           |              |
| 1312       | 7.50                        | 63.2         | 400             |                                  | 10.32  | 0.094            | 6.31            | 168.9                          | 0.78                                                                                                           | 4.3           |              |
| 1315       | 7.50                        | 63.2         | 400             | 4 gallon                         | 10.27  | 0.095            | 6.32            | 163.4                          | 0.75                                                                                                           | 3.9           |              |
| 1318       | 7.50                        | 63.2         | 400             |                                  | 10.29  | 0.095            | 6.33            | 158.9                          | 0.73                                                                                                           | 3.6           |              |
|            | -                           |              |                 |                                  |        |                  |                 |                                |                                                                                                                |               |              |
|            |                             |              |                 |                                  |        |                  |                 |                                |                                                                                                                |               |              |
|            |                             |              |                 |                                  |        |                  |                 |                                |                                                                                                                |               |              |
|            |                             |              |                 | 1                                | -      |                  |                 |                                |                                                                                                                |               |              |
|            |                             |              |                 |                                  |        |                  |                 |                                |                                                                                                                |               |              |

SAMPLE TAKEN AT 1320

YSI GROUP #2

| GWM well           | #             | SHL-10         |              |             |                 | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Army Co        | rps of En        | gineers               | S                        |           |
|--------------------|---------------|----------------|--------------|-------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------|--------------------------|-----------|
| SCREENED           | INTERVAL DEF  | PTH:           | 17.8 - 41.8  | feet        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | ampling Lo       |                       |                          |           |
| H20 LEVEL:         | PRE PUMP IN   |                | 31.01 feet   |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | oley's Hill Land |                       |                          |           |
|                    | POST PUN      |                | N 30.35 feet |             |                 | SAMPLE MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | EPA LOW STR      |                       | The second second second |           |
| DEPTH SAM          |               | 37 feet        |              |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LES: METALS    |                  | 1-1LH                 | IDPE (ph<2)              |           |
| DATE:              | 05/13/98      | TIME:          | 1500         | -           |                 | CYANIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 - 500ml HD   |                  | VOC'S                 | 2 - 40ml VOA's           |           |
| SAMPLED B          | Y: B. Waz     |                |              |             |                 | and the second se | ity, TDS 1-500 | ml HDPE          | COD                   | 1 - 500 ml HDI           | PE (ph<2) |
| RECORDED BY:B. Waz |               |                |              |             |                 | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 1L HDPE    |                  | TSS                   | 1 - 1L HDPE              |           |
| TIME               | WATER DPTH    | PUMP           | PURGE RATE   | CUM. VOLUME | H20             | SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рН             | ORP/Eh           | D. O.                 | TURBIDITY                | COMMENTS  |
| 24hr               | BELOW MP feet | SETTING        | mt/min       | PURGED      | темр с<br>11.07 | CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.22           | mv<br>165.0      | mg/L                  | NTU's                    |           |
| 1507               | 30.50         | 121.0<br>122.1 | 300          |             | 10.88           | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.13           | 155.4            | <u>11.58</u><br>11.10 | 2.9                      |           |
| 1510               | 30.50         |                | 575          | 1 collen    | 12.81           | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.13           | 153.5            |                       | 6.8                      |           |
| 1513               | 30.50         | 122.1          | 600          | 1 gallon    | 13.13           | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.97           | 155.1            | 10.83                 | 1.9                      |           |
| 1515               | 30.50         | 122.1          |              | O melles    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.90           |                  |                       |                          | -         |
| 1518               | 30.50         | 122.1          | 600<br>600   | 2 gallon    | 13.25<br>13.26  | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.88           | 158.0<br>160.8   | 10.79<br>10.79        | 1.8                      |           |
| 1521               | 30.50         | 122.1          | 600          |             | 13.20           | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.85           | 160.8            | 10.79                 | 1.8                      |           |
| 1524               | 30.50         |                | 600          | 2 mallan    | 13.34           | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.83           | 164.4            | 10.76                 | 1.0                      |           |
| 1527               | 30.50         | 122.1          | 600          | 3 gallon    | 13.34           | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03           | 104.4            | 10.76                 | 1.9                      |           |
|                    | -             |                |              |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       |                          |           |
|                    |               |                | -            |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  |                       | -                        |           |
|                    |               |                |              |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       | -                        |           |
|                    |               |                | -            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       | 1                        |           |
|                    | -             | -              |              |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  |                       | -                        |           |
|                    |               |                | -            | -           |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  |                       | -                        |           |
|                    |               | -              | -            |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1                |                       |                          |           |
|                    | -             |                |              |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | -                |                       | -                        | -         |
|                    |               |                | -            | 1           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       |                          |           |
|                    |               |                | -            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       | -                        |           |
|                    | -             |                |              |             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  |                       | -                        |           |
| IOTES:             | dia and       | -              | 1            | 1           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                  |                       |                          | 1         |

NOTES:

SAMPLE TAKEN AT 1530

YSI GROUP #1

| GWM well # |                              | SHL-11                |                             |             |        |                                             |              | rps of En                         | · · · · · · · · · · · · · · · · · · · | S             |             |
|------------|------------------------------|-----------------------|-----------------------------|-------------|--------|---------------------------------------------|--------------|-----------------------------------|---------------------------------------|---------------|-------------|
|            | ITERVAL DEPT<br>PRE PUMP INS |                       | 14.8 - 29.8 1<br>18.05 feet | feet        |        |                                             |              | ampling Lo<br>bley's Hill Land    |                                       | ns MA         |             |
|            |                              |                       | N 18.05 feet                |             |        | SAMPLE MET                                  |              | EPA LOW STR                       |                                       |               | _           |
| DEPTH SAMP |                              | 22 feet               |                             |             |        | SAMPLE BOT                                  |              | and a second second second second |                                       | DPE (ph<2)    |             |
| DATE:      | 05/13/98                     | and the second second | 800                         |             |        | 107 108 0 C 10 C 10 C 10 C 10 C 10 C 10 C 1 | 1 - 500ml HD |                                   | VOC'S                                 | 2 - 40ml VOA  | 's (ph<2)   |
| SAMPLED BY |                              |                       |                             |             |        | Anions, Alkalini                            |              |                                   | COD                                   | 1 - 500 ml HD |             |
| RECORDED   |                              |                       |                             |             |        | BOD                                         | 1 - 1L HDPE  |                                   | TSS                                   | 1 - 1L HDPE   | <u> </u>    |
| TIME       | WATER DPTH                   | PUMP                  | PURGE RATE                  | CUM. VOLUME | H20    | SPECIFIC                                    | pH           | ORP/Eh                            | D. O,                                 | TURBIDITY     | COMMENTS    |
| 24hr       | BELOW MP feet                | SETTING               | ml/min                      | PURGED      | TEMP C | CONDUCTANCE                                 |              | mv                                | mg/L                                  | NTU's         |             |
| 832        | 18.10                        | 87.6                  | 400                         |             | 10.66  | 0.703                                       | 3.97         | 280.3                             | 0.68                                  | 169.0         | very orange |
| 836        | 18.10                        | 89.5                  | 400                         | 1 gallon    | 11.72  | 0.737                                       | 6.05         | 49.1                              | 0.73                                  | 54.0          | rusty water |
| 841        | 18.10                        | 89.5                  | 400                         |             | 12.89  | 0.751                                       | 6.23         | 32.3                              | 0.61                                  | 28.0          |             |
| 844        | 18.10                        | 88.0                  | 500                         | 2 gallon    | 12.37  | 0.749                                       | 6.29         | 24.9                              | 0.52                                  | 18.8          |             |
| 848        | 18.10                        | 89.1                  | 500                         |             | 12.10  | 0.748                                       | 6.31         | 21.8                              | 0.56                                  | 16.2          |             |
| 850        | 18.10                        | 89,1                  | 650                         | 3 gallon    | 12.94  | 0.744                                       | 6.31         | 20.3                              | 0.61                                  | 18.9          |             |
| 854        | 18.10                        | 89.1                  | 500                         |             | 12.71  | 0.750                                       | 6.33         | 17.7                              | 0.57                                  | 20.2          |             |
| 857        | 18.10                        | 89.1                  | 500                         |             | 12.18  | 0.752                                       | 6.33         | 16.5                              | 0.56                                  | 18.8          |             |
| 900        | 18,10                        | 89.1                  | 500                         | 4 gallon    | 12.24  | 0.750                                       | 6.34         | 15.3                              | 0.6                                   | 16.9          |             |
| 905        | 18.10                        | 89,1                  | 475                         | 1           | 12.36  | 0.750                                       | 6.34         | 15.2                              | 0.62                                  | 17.2          |             |
| 908        | 18.10                        | 89,1                  | 475                         |             | 12.40  | 0.749                                       | 6.34         | 15.3                              | 0.66                                  | 15,9          |             |
|            |                              |                       |                             |             | _      |                                             |              |                                   |                                       | -             |             |
|            |                              |                       |                             |             |        |                                             |              |                                   | _                                     |               |             |
|            |                              |                       |                             |             |        | -                                           |              |                                   |                                       |               |             |
|            |                              | -                     |                             |             |        |                                             |              |                                   |                                       | 1             | -           |
|            |                              | _                     |                             | 1           |        |                                             |              |                                   |                                       |               |             |

SAMPLE TAKEN AT 0910

YSI GROUP #1

| GWM well   | #             | SHL-19      |              |             |        | US A             | rmy Co          | rps of En       | gineer  | S              |          |
|------------|---------------|-------------|--------------|-------------|--------|------------------|-----------------|-----------------|---------|----------------|----------|
| SCREENED   | NTERVAL DEP   | TH:         | 17 - 32 feet | 1200        |        | Grou             | indwater S      | ampling Lo      | a Sheet |                |          |
| H20 LEVEL: | PRE PUMP INS  | BERTION     | 21.75 feet   |             |        |                  |                 | oley's Hill Lan |         | ns, MA         |          |
|            | POST PUM      | P INSERTION | 21.76 feet   |             |        | SAMPLE MET       |                 | EPA LOW STR     |         |                |          |
| DEPTH SAMP | PLED:         | 23 feet     |              |             |        | SAMPLE BOT       | LES: METALS     |                 |         | DPE (ph<2)     |          |
| DATE:      | 05/13/98      | TIME:       | 1100         |             |        | CYANIDE          | 1 - 500ml HDI   | PE (ph>12)      | VOC'S   | 2 - 40ml VOA's | (ph<2)   |
| SAMPLED BY | : B. Waz      |             |              |             |        | Anions, Alkalini | ty, TDS 1- 500r | nl HDPE         | COD     | 1 - 500 ml HDF |          |
| RECORDED   | BY: B. Waz    |             |              |             |        | BOD              | 1 - 1L HDPE     |                 | TSS     | 1 - 1L HDPE    |          |
| TIME       | WATER DPTH    | PUMP        | PURGE RATE   | CUM. VOLUME | H20    | SPECIFIC         | рН              | ORP/Eh          | D, O,   | TURBIDITY      | COMMENTS |
| 24hr       | BELOW MP feet | SETTING     | ml/min       | PURGED      | TEMP C | CONDUCTANCE      |                 | mv              | mg/L    | NTU's          |          |
| 1106       | 21.80         | 100.3       | 400          |             | 9.26   | 0.155            | 6.43            | 78.5            | 2.22    | 23.1           |          |
| 1111       | 21.80         | 100.3       | 400          | 1 gallon    | 11.62  | 0.152            | 6.56            | 44.2            | 0.93    | 4.3            |          |
| 1116       | 21.80         | 100.3       | 400          |             | 12.92  | 0.153            | 6.56            | 36.6            | 0.84    | 3.4            |          |
| 1120       | 21.80         | 100.3       | 400          |             | 13.14  | 0.150            | 6.56            | 33.9            | 0.85    | 3.4            |          |
| 1122       | 21.80         | 100.3       | 400          | 2 gallon    | 13.18  | 0.148            | 6.57            | 33.0            | 0.75    | 4.5            |          |
| 1126       | 21.80         | 100.3       | 400          | 12224114    | 13.21  | 0.142            | 6.52            | 32.8            | 0.77    | 3.7            | 1        |
| 1130       | 21.80         | 100.3       | 400          |             | 13.17  | 0.139            | 6.54            | 32.6            | 0.79    | 1.0            | 1        |
| 1133       | 21.80         | 100.3       | 400          | 3 gallon    | 13,19  | 0.137            | 6.56            | 33.4            | 0.80    | 1.0            | -        |
| 1136       | 21.80         | 100.3       | 400          |             | 13.20  | 0.136            | 6.56            | 33.9            | 0.88    | 0.9            |          |
| 1139       | 21.80         | 100.3       | 400          | 4 gallon    | 13.25  | 0.134            | 6.56            | 35.0            | 0.92    | 0.8            |          |
|            |               |             |              |             |        |                  |                 |                 |         |                |          |
|            |               |             |              |             |        |                  |                 |                 |         |                |          |
|            |               |             |              |             |        |                  |                 |                 |         |                |          |
| IOTES:     |               |             |              |             |        |                  |                 |                 |         |                |          |

SAMPLE TAKEN AT 1140

YSI GROUP #1

| GWM well i               | ¥. <u>s</u>                  | SHL-20  | La contra da con           |             |        |                               | and the second sec | rps of En                     | -          | 5                                                                                                                |           |
|--------------------------|------------------------------|---------|----------------------------|-------------|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|------------------------------------------------------------------------------------------------------------------|-----------|
|                          | NTERVAL DEPT                 |         | 41 - 51 feet<br>18.42 feet |             |        | Grour<br>Broinct N            | ndwater S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ampling Lo<br>bley's Hill Lan | g Sheet    |                                                                                                                  |           |
| 120 LEVEL:               | PRE PUMP INSI                |         | 18.42 feet                 |             |        | SAMPLE METH                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            |                                                                                                                  |           |
|                          |                              | 46 feet | 10.42 1001                 |             | 0.50   | 3.0 Set 6. 1.6-21 3.0-2-3.5.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA LOW STR                   |            | And the second |           |
| DEPTH SAMP               | Contraction of the second    |         | 000                        |             |        | SAMPLE BOTL                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            | DPE (ph<2)                                                                                                       | 1.1       |
| DATE:                    | 05/13/98 1                   | IME:    | 800                        |             |        |                               | 1 - 500ml HD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | VOC'S      | 2 - 40ml VOA's                                                                                                   |           |
| SAMPLED BY<br>RECORDED I | : S. Simmer<br>BY: S. Simmer |         |                            |             |        | Anions,Alkalinity<br>BOD      | 1 - 1L HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIHDPE                        | COD<br>TSS | 1 - 500 ml HDF<br>1 - 1L HDPE                                                                                    | 2E (ph<2) |
| TIME                     | WATER DPTH                   | PUMP    | PURGE RATE                 | CUM. VOLUME | HZO    | SPECIFIC                      | pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ORP/Eh                        | D. O.      | TURBIDITY                                                                                                        | COMMENTS  |
| 24hr                     | BELOW MP feet                | SETTING | mi/min                     | PURGED      | TEMP C | CONDUCTANCE                   | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mv                            | mg/L       | NTU's                                                                                                            |           |
| 820                      | 18.46                        | 95.5    | 600                        |             | 10.8   | 0.860                         | 6.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 230.6                         | 0.87       | 17.5                                                                                                             | slight    |
| 825                      | 18.47                        | 95.5    | 750                        | 1 gallon    | 11.2   | 0.871                         | 6.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 212.3                         | 0.48       | 13.8                                                                                                             | brownish  |
| 830                      | 18.47                        | 95.5    | 700                        |             | 11.7   | 0.871                         | 6.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200.1                         | 0.35       | 11.1                                                                                                             | color     |
| 835                      | 18.47                        | 95.1    | 650                        | 2 gallon    | 11.9   | 0.869                         | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 183.1                         | 0.29       | 7.0                                                                                                              |           |
| 840                      | 18.47                        | 95.1    | 700                        |             | 11.9   | 0.868                         | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170.5                         | 0.25       | 7.5                                                                                                              |           |
| 845                      | 18.47                        | 95.1    | 650                        | 3 gallon    | 12.0   | 0.869                         | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160.1                         | 0.23       | 6.9                                                                                                              |           |
| 850                      | 18.47                        | 95.1    | 650                        | 4 gallon    | 12.1   | 0.869                         | 6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152.8                         | 0.22       | 6.2                                                                                                              |           |
| 855                      | 18.47                        | 95.1    | 650                        | 5 gallon    | 12.1   | 0.869                         | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148.0                         | 0.21       | 5,9                                                                                                              |           |
| 900                      | 18.47                        | 95.1    | 650                        | 6 gallon    | 12.2   | 0.869                         | 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143.1                         | 0.21       | 6.1                                                                                                              |           |
|                          |                              |         |                            |             |        | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            |                                                                                                                  |           |
|                          |                              |         |                            |             |        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            | -                                                                                                                |           |
|                          |                              |         |                            |             |        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            | -                                                                                                                |           |
|                          |                              |         |                            |             |        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            |                                                                                                                  | -         |
|                          |                              |         |                            |             |        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            | -                                                                                                                |           |
| NOTES:                   |                              |         |                            | r           |        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |            |                                                                                                                  |           |

YSI GROUP #2

| GWM well ;            | #                 | SHL-22   |                           |             |        | USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rmy Col       | rps of En                     | gineer  | s              |           |
|-----------------------|-------------------|----------|---------------------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------|---------|----------------|-----------|
| - A CICENER AND POINT | NTERVAL DEPT      |          | 106 - 116 fe<br>5.98 feet | et          |        | Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndwater S     | ampling Lo<br>bley's Hill Lan | g Sheet |                |           |
| 120 LEVEL.            | POST PUM          |          |                           |             |        | SAMPLE METH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | EPA LOW STR                   |         |                |           |
| DEPTH SAMP            |                   | 111 feet | 4.00 1001                 |             |        | SAMPLE BOTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                               |         | DPE (ph<2)     |           |
| DATE:                 | 05/12/98          |          | 1400                      | 1           |        | And a second sec | 1 - 500ml HDI |                               | VOC'S   | 2 - 40ml VOA's | (nh<2)    |
| SAMPLED BY            | 12 × 12 0 × 10 €  | , inter  |                           |             |        | Anions, Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                               | COD     | 1 - 500 ml HDF |           |
|                       | CORDED BY: B. Waz |          |                           |             |        | the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 1L HDPE   |                               | TSS     | 1 - 1L HDPE    | E (811:4) |
| TIME                  | WATER DPTH        | PUMP     | PURGE RATE                | CUM. VOLUME | H20    | SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH            | ORP/Eh                        | D. O.   | TURBIDITY      | COMMENTS  |
| 24hr                  | BELOW MP feet     | SETTING  | ml/min                    | PURGED      | TEMP C | CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00          | ww<br>OOT O                   | mg/L    | NTU'S          |           |
| 1420                  | 5.25              | 61.3     | 375                       |             | 10.28  | 0.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.99          | 297.0                         | 3.52    | 7.5            |           |
| 1423                  | 5.26              | 61.3     | 300                       | (           | 10.19  | 0.738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.76          | 240.6                         | 2.92    | 3.5            |           |
| 1427                  | 5.29              | 61.3     | 300                       | 4           | 10.08  | 0.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.76          | 191.8                         | 2.59    | 1.7            |           |
| 1430                  | 5.30              | 61.3     | 325                       | 1 gallon    | 10.02  | 0.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.79          | 153.0                         | 2.22    | 1.0            |           |
| 1434                  | 5.30              | 61.3     | 325                       |             | 10.08  | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.81          | 127.9                         | 2.06    | 1.1            |           |
| 1438                  | 5.32              | 61.3     | 325                       | 0           | 10.16  | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.81          | 114.6                         | 1.94    | 1.1            |           |
| 1441                  | 5.32              | 61.3     | 300                       | 2 gallon    | 10.20  | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83          | 108.5                         | 1.90    | 1.0            |           |
| 1445                  | 5.32              | 61.3     | 300                       |             | 10.21  | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.82          | 103.2                         | 1.76    | 1.0            |           |
| 1448                  | 5.32              | 61.3     | 300                       |             | 10.19  | 0.897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83          | 99.8                          | 1.55    | 1.0            |           |
| 1451                  | 5.32              | 61.3     | 300                       |             | 10.20  | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83          | 95.0                          | 1.60    | 1.0            |           |
| 1453                  | 5.32              | 61.3     | 300                       | 3 gallon    | 10.23  | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83          | 92.4                          | 1.57    | 0.9            |           |
| 1457                  | 5.32              | 61.3     | 300                       |             | 10.22  | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83          | 87.6                          | 1.55    | 1.0            |           |
| _                     |                   |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |                |           |
|                       |                   |          | -                         |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |                               |         |                |           |
|                       |                   |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                               |         |                |           |
|                       |                   |          |                           |             |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | -                             |         |                |           |

SAMPLE TAKEN AT 1500

YSI GROUP #2

| GWM well     | #                                                                   | SHM-93-1        | 00                         |                       |               | US A                                | rmy Co                                                                                                         | rps of En                     | gineer        | s                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|---------------------------------------------------------------------|-----------------|----------------------------|-----------------------|---------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | INTERVAL DEP                                                        |                 | 46 - 56 feet<br>29.33 feet |                       |               | Grou<br>Project N                   | ndwater S<br>lame: Sher                                                                                        | ampling Lo<br>bley's Hill Lan | g Sheet       | ns. MA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Contraction in Name and State                                       |                 | N 28.98 feet               |                       |               | SAMPLE METH                         | the second s | EPA LOW STR                   |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DEPTH SAM    | PLED:                                                               | 51 feet         |                            |                       |               | SAMPLE BOTL                         |                                                                                                                |                               |               | DPE (ph<2)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DATE:        | 05/13/98                                                            | TIME:           | 1330                       | S                     |               | CYANIDE                             | 1 - 500ml HD                                                                                                   | PE (ph>12)                    | VOC'S         | 2 - 40ml VOA'      | s (ph<2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAMPLED B    | r: S. Simmer                                                        |                 |                            |                       |               | Anions, Alkalinit                   | y,TDS 1- 500                                                                                                   | mI HDPE                       | COD           | 1 - 500 ml HD      | and the second sec |
| RECORDED     | CORDED BY: S. Simmer<br>Time Water dpth pump purge rate cum. volume |                 |                            |                       |               | and the second second second second | 1 - 1L HDPE                                                                                                    |                               | TSS           | 1 - 1L HDPE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet                                         | PUMP<br>SETTING | PURGE RATE<br>mVmln        | CUM. VOLUME<br>PURGED | H20<br>TEMP C | SPECIFIC<br>CONDUCTANCE             | рН                                                                                                             | ORP/Eh<br>mv                  | D. O.<br>mg/L | TURBIDITY<br>NTU'S | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1355         | 29.80                                                               | 118.2           | 150                        |                       | 14.01         | 0.445                               | 7.70                                                                                                           | 187.5                         | 6.48          | 7.3                | fairly clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1400         | 29.85                                                               | 120.3           | 350                        |                       | 11.71         | 0.444                               | 7.63                                                                                                           | 189.7                         | 3.83          | 5.3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1405         | 29.95                                                               | 120.3           | 275                        |                       | 11.65         | 0.444                               | 7.59                                                                                                           | 187.3                         | 3.43          | 4.9                | very clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1410         | 30.00                                                               | 120.3           | 275                        | 1 gallon              | 13.21         | 0.441                               | 7.58                                                                                                           | 178.4                         | 3.32          | 3.6                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1415         | 30.05                                                               | 120.3           | 300                        |                       | 13.85         | 0.444                               | 7.59                                                                                                           | 172.8                         | 3.12          | 3.4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1420         | 30.05                                                               | 120.2           | 225                        |                       | 14.04         | 0.445                               | 7.58                                                                                                           | 168.9                         | 3.05          | 2.8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1425         | 30.05                                                               | 120.2           | 275                        | 2 gallon              | 14.08         | 0.446                               | 7.62                                                                                                           | 164.3                         | 2.81          | 3.2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1430         | 30.05                                                               | 120.2           | 250                        |                       | 14.18         | 0.445                               | 7.58                                                                                                           | 159.5                         | 2.58          | 2.8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1435         | 30.05                                                               | 120.2           | 250                        |                       | 13.94         | 0.446                               | 7.60                                                                                                           | 155.3                         | 2.22          | 2.7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1440         | 30.06                                                               | 120.2           | 250                        | 3 gallon              | 14.06         | 0.444                               | 7.61                                                                                                           | 152.7                         | 2.10          | 2.0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1445         | 30.06                                                               | 120.2           | 250                        |                       | 14.20         | 0.445                               | 7.61                                                                                                           | 150.7                         | 2.05          | 2.1                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1450         | 30.06                                                               | 120.2           | 250                        | 4 gallon              | 14.22         | 0.445                               | 7.54                                                                                                           | 148.7                         | 1.95          | 1,7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1455         | 30.06                                                               | 120.2           | 275                        |                       | 14.24         | 0.445                               | 7.55                                                                                                           | 145.2                         | 1.71          | 1.6                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1500         | 30.06                                                               | 120.2           | 250                        |                       | 14.37         | 0.446                               | 7.56                                                                                                           | 142.2                         | 1.55          | 1.6                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1505         | 30.06                                                               | 120.2           | 250                        | 5 gallon              | 14.47         | 0.446                               | 7.56                                                                                                           | 141.2                         | 1.52          | 1.5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                     |                 |                            |                       |               |                                     |                                                                                                                |                               |               | 1.000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                     | 1               |                            |                       |               |                                     |                                                                                                                |                               |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

SAMPLE TAKEN AT 1505

YSI GROUP # 2

| GWM well   | #             | SHM-93-2 | 2C                        |             |        | US A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rmy Co       | rps of En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gineer | S              |             |
|------------|---------------|----------|---------------------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------|
|            | INTERVAL DEPT |          | 124 - 134 fe<br>6.03 feet | et          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | ampling Lo<br>pley's Hill Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ns MA          |             |
| IZO LEVEL. |               |          | N 3.61 feet               |             |        | SAMPLE MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | EPA LOW STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                |             |
| DEPTH SAM  |               | 125 feet | 1 0.01 1001               |             |        | SAMPLE BOTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | DPE (ph<2)     |             |
| DATE:      | 05/12/98      |          | 1540                      |             |        | and the second | 1 - 500ml HD | Address of the second sec | VOC'S  | 2 - 40ml VOA's | = (nh<2)    |
| SAMPLED BY |               | ( inite. |                           |             |        | Anions, Alkalinit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COD    | 1 - 500 ml HDI |             |
| RECORDED   |               |          |                           |             |        | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 - 1L HDPE  | or roar c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TSS    | 1 - 1L HDPE    | (pii+2)     |
| TIME       | WATER DPTH    | PUMP     | PURGE RATE                | CUM. VOLUME | H20    | SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | рH           | ORP/Eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. O.  | TURBIDITY      | COMMENTS    |
| 24hr       | BELOW MP feet | SETTING  | mi/min                    | PURGED      | TEMP C | CONDUCTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | m¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L   | NTU'S          |             |
| 1548       | 4.60          | 41.5     | 400                       |             | 9.67   | 0.406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.98         | -65.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.64   | 3.2            | sulfur odor |
| 1551       | 5.20          | 46.7     | 300                       |             | 9.69   | 0.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.52         | -116.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.15   | 3.5            |             |
| 1555       | 5.32          | 47.8     | 300                       |             | 9.96   | 0.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.58         | -123.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96   | 2.7            | 1.1         |
| 1559       | 5.60          | 50.1     | 200                       | 1 gallon    | 10.02  | 0.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.63         | -126.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.87   | 2.4            | 1           |
| 1601       | 6.20          | 54.5     | 450                       |             | 9.26   | 0.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.65         | -126.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96   | 1.7            |             |
| 1604       | 6.30          | 54.5     | 400                       |             | 9.83   | 0.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.65         | -126.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89   | 1.5            |             |
| 1607       | 6.32          | 54.5     | 375                       | 2 gallon    | 10.14  | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.65         | -127.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85   | 1.0            |             |
| 1609       | 6.35          | 54.5     | 350                       |             | 10.17  | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.65         | -128.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88   | 1.1            |             |
| 1611       | 6.40          | 54.7     | 350                       |             | 10.20  | 0.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.66         | -128.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88   | 1.0            |             |
| 1614       | 6.45          | 54.7     | 350                       |             | 10.21  | 0.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.66         | -128.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85   | 1.0            |             |
|            |               |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                |             |
|            |               |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                |             |
|            |               |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                |             |
| NOTES      |               |          |                           |             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                |             |

SAMPLE TAKEN AT 1615

YSI GROUP #1

| GWM well     | #                           | SHM-96-5        | В            |             |               | US A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rmy Co       | rps of En       | gineer        | S                  |            |
|--------------|-----------------------------|-----------------|--------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|---------------|--------------------|------------|
|              | INTERVAL DEPT               |                 | 80 - 90 feet |             |               | Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | indwater S   | ampling Lo      | g Sheet       |                    |            |
| H2O LEVEL:   | PRE PUMP INS                |                 | 4.35 feet    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | oley's Hill Lan | dfill, Deve   | ns, MA             |            |
|              | POST PUMP                   |                 | N 4.32 feet  |             |               | SAMPLE MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | EPA LOW STR     |               |                    |            |
| DEPTH SAM    |                             | 85 feet         |              |             |               | SAMPLE BOTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                 |               | OPE (ph<2)         |            |
| DATE:        | 05/11/98                    | TIME:           | 1015         | 2           |               | A CONTRACTOR OF A CONTRACTOR O | 1 - 500ml HD |                 | VOC'S         | 2 - 40ml VOA'      |            |
| SAMPLED B    | Y: S. Simmer                |                 |              |             |               | Anions, Alkalinit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ml HDPE         | COD           | 1 - 500 ml HD      | PE (ph<2)  |
| RECORDED     | BY: S. Simmer               |                 |              |             |               | BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 - 1L HDPE  |                 | TSS           | 1 - 1L HDPE        |            |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet | PUMP<br>SETTING | PURGE RATE   | CUM. VOLUME | H20<br>TEMP C | SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH           | ORP/Eh<br>mv    | D. O.<br>mg/L | TURBIDITY<br>NTU's | COMMENTS   |
| 1325         | 4.50                        | 53.1            | 500          |             | 8.70          | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.03         | 24.1            | 9.02          | 7.3                | Rain delay |
| 1330         | 4.60                        | 52.4            | 350          |             | 9.14          | 0.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.83         | -38.5           | 4.12          | 5.0                | from pump  |
| 1335         | 4.60                        | 52.4            | 350          | 1 gallon    | 9.23          | 0.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.90         | -62.0           | 1.37          | 2.5                | insertion  |
| 1340         | 4.60                        | 52.4            | 350          |             | 9.41          | 0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.91         | -70.6           | 0.96          | 1.5                |            |
| 1345         | 4.61                        | 50.8            | 350          | 2 gallon    | 9.45          | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.92         | -74.1           | 0.95          | 1.8                |            |
| 1350         | 4.62                        | 50.8            | 400          |             | 9.53          | 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.92         | -72.1           | 0.75          | 1.0                |            |
| 1355         | 4.62                        | 49.8            | 350          | 3 gallon    | 9.45          | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.93         | -80.7           | 0.69          | 0.9                |            |
| 1400         | 4.62                        | 49.8            | 400          |             | 9.56          | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.93         | -83.7           | 0.57          | 1.0                |            |
| 1405         | 4.62                        | 49.8            | 400          | 4 gallon    | 9.58          | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.93         | -85.2           | 0.55          | 1.1                |            |
| 1410         | 4.63                        | 49.8            | 400          |             | 9.62          | 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.93         | -86.7           | 0.50          | 0.9                |            |
| 1415         | 4.64                        | 49.8            | 425          | 5 gallon    | 9.67          | 0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.93         | -86.7           | 0.46          | 1.0                |            |
| 1420         | 4.64                        | 49.8            | 425          |             | 9.73          | 0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.94         | -90.0           | 0.42          | 0.8                |            |
| 1425         | 4.65                        | 49.8            | 425          | 6 gallon    | 9.73          | 0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.94         | -91.1           | 0.39          | 1.2                |            |
| 1430         | 4.66                        | 49.8            | 425          |             | 9.78          | 0.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.94         | -93.0           | 0.38          | 1.1                |            |
|              |                             |                 |              |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |               |                    |            |
|              |                             |                 |              |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |               |                    |            |
| IOTEO.       |                             |                 |              |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |               |                    |            |

SAMPLE TAKEN AT 1430 QA AND DUPLICATE SAMPLES ALSO TAKEN

## EQUIPMENT BLANK SAMPLES WERE TAKEN AFTER EQUIPMENT WAS DECONTAMINATED FOLLOWING THIS WELL

YSI GROUP #1

| GWM well   | #             | SHM-96-50 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        | US A             | rmy Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rps of En                                                                                                       | gineer  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|            | NTERVAL DEPT  |           | 50 - 60 feet<br>3.80 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        | Grou             | indwater S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ampling Lo<br>bley's Hill Lan                                                                                   | g Sheet |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|            | POST PUM      |           | and the second s |             |        | SAMPLE MET       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA LOW STR                                                                                                     |         | Contraction of the Contraction o |           |
| DEPTH SAM  |               | 55 feet   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | SAMPLE BOT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |         | OPE (ph<2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| DATE:      | 05/11/98      |           | 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |        | CYANIDE          | 1 - 500ml HDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A Contract of the second se | VOC'S   | 2 - 40ml VOA's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ph<2)    |
| SAMPLED BY |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | Anions, Alkalini | the second secon |                                                                                                                 | COD     | 1 - 500 ml HDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|            | BY: B. Waz    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | BOD              | 1 - 1L HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | TSS     | 1 - 1L HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>  |
| TIME       | WATER DPTH    | PUMP      | PURGE RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CUM. VOLUME | H20    | SPECIFIC         | pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORP/Eh                                                                                                          | D. O.   | TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMMENTS  |
| 24hr       | BELOW MP feet | SETTING   | mVmln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PURGED      | TEMP C | CONDUCTANCE      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mv                                                                                                              | mg/L    | NTU'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 1337       | 3.85          | 44.8      | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 gallon    | 9.45   | 0.840            | 6.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129.4                                                                                                           | 0.37    | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 1341       | 3.85          | 44.8      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.47   | 0.840            | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102.7                                                                                                           | 0.27    | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.        |
| 1346       | 3.85          | 44.6      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 gallon    | 9.66   | 0.831            | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.6                                                                                                            | 0.26    | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UT        |
| 1350       | 3.85          | 44.6      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.29   | 0.833            | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.4                                                                                                            | 0.24    | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |
| 1354       | 3.85          | 44.6      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.15   | 0.830            | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66.1                                                                                                            | 0.24    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 1358       | 3.85          | 44.6      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 gallon    | 9.16   | 0.828            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61.5                                                                                                            | 0.25    | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 × 2 × 1 |
| 1402       | 3.85          | 45.2      | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.23   | 0.820            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.0                                                                                                            | 0.27    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         |
| 1405       | 3.85          | 45.2      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.65   | 0.809            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.9                                                                                                            | 0.25    | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 1410       | 3.85          | 45.2      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 gallon    | 9.67   | 0.810            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.9                                                                                                            | 0.23    | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 1415       | 3.85          | 45.2      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.71   | 0.808            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.5                                                                                                            | 0.20    | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 1420       | 3.85          | 45.2      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 gallon    | 9.75   | 0.808            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7                                                                                                            | 0.19    | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| 1425       | 3.85          | 45.2      | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 9.77   | 0.807            | 6.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                            | 0.19    | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|            |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|            |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|            |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|            |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |
|            |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | _      | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 1       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |

SAMPLE TAKEN AT 1429

YSI GROUP #2

| GWM well     | #                             | SHM-96-22   | 2B            |             |               | USA               | rmy Co                  | rps of En                     | gineer                 | S                  |              |
|--------------|-------------------------------|-------------|---------------|-------------|---------------|-------------------|-------------------------|-------------------------------|------------------------|--------------------|--------------|
|              | INTERVAL DEPT<br>PRE PUMP INS | ERTION      | 4.85 feet (fr |             | d surface)    | Grou<br>Project N | ndwater S<br>lame: Shep | ampling Lo<br>bley's Hill Lan | g Sheet<br>dfill, Deve | ns, MA             |              |
|              | POST PUM                      | P INSERTION | 4.85 feet (fr | om top pvc) |               | SAMPLE METH       | HOD:                    | EPA LOW STR                   | ESS METHO              | 00                 |              |
| DEPTH SAM    | PLED:                         | 87 feet (be | low ground su | urface)     |               | SAMPLE BOTL       | ES: METALS              | HARDNESS                      | 1 - 1L HI              | DPE (ph<2)         |              |
| DATE:        | 05/12/98                      | TIME:       | 1400          |             |               | CYANIDE           | 1 - 500ml HD            | PE (ph>12)                    | VOC'S                  | 2 - 40ml VOA'      | s (ph<2)     |
| SAMPLED B    | r: S. Simmer                  |             |               |             |               | Anions, Alkalinit | y,TDS 1-500             | nl HDPE                       | COD                    | 1 - 500 ml HD      | PE (ph<2)    |
| RECORDED     | BY: S. Simmer                 |             |               |             |               | BOD               | 1 - 1L HDPE             |                               | TSS                    | 1 - 1L HDPE        |              |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet   | PUMP        | PURGE RATE    | CUM. VOLUME | H20<br>TEMP C |                   | рН                      | ORP/Eh                        | D, O.<br>mg/L          | TURBIDITY<br>NTU'S | COMMENTS     |
| 1415         | 4.85                          | 60.2        | 550           |             | 8.19          | 1.128             | 8.94                    | 176.0                         | 8.44                   | 11.3               | yellow tint  |
| 1420         | 4.90                          | 60.2        | 600           | 1 gallon    | 8.80          | 0.993             | 6.50                    | -112.7                        | 5.09                   | 19.7               | green tint   |
| 1425         | 4.88                          | 60.2        | 550           | 2 gallon    | 8.86          | 1.037             | 6.65                    | -105.2                        | 4.70                   | 6.6                | clearer colo |
| 1430         | 4.90                          | 60.2        | 550           |             | 8.95          | 1.037             | 6.74                    | -105.9                        | 4.02                   | 5.7                |              |
| 1435         | 4.90                          | 60.2        | 550           | 3 gallon    | 8.96          | 1.026             | 6.72                    | -105.6                        | 3.70                   | 5.8                |              |
| 1440         | 4.90                          | 60.2        | 550           |             | 9.01          | 1.019             | 6.78                    | -108.7                        | 3.48                   | 4.4                |              |
| 1445         | 4.90                          | 60.2        | 550           | 4 gallon    | 9.02          | 1.016             | 6.81                    | -110.8                        | 3.26                   | 4.5                |              |
| 1450         | 4.90                          | 60.2        | 550           |             | 9.05          | 1.013             | 6.85                    | -119.1                        | 3.08                   | 3.4                |              |
| 1455         | 4.90                          | 60.2        | 550           | 5 gallon    | 9.09          | 1.010             | 6.92                    | -120.2                        | 2.96                   | 3.8                |              |
| 1500         | 4.90                          | 60.2        | 550           | 6 gallon    | 9.12          | 1.009             | 6.94                    | -127.6                        | 2.87                   | 3.4                |              |
|              |                               |             |               |             |               |                   |                         |                               |                        |                    |              |
| _            |                               |             |               |             |               |                   |                         |                               |                        |                    |              |
|              |                               |             |               |             |               |                   |                         |                               |                        |                    |              |

SAMPLE TAKEN AT 1500

YSI GROUP #1

Groundwater Field Analysis Forms Fall 1998

| VOA's (ph<2) |
|--------------|
| PE (ph<2)    |
| E            |
| COMMENTS     |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
| 1            |

SAMPLE TAKEN AT 0955

Note: Disregard ORP readings - it was later found that ORP probe was off.

YSI GROUP # 108

| GWM well  | #                      | SHL-3       |                               |                       |                |                    |             | rps of E        |            | rs             |                              |
|-----------|------------------------|-------------|-------------------------------|-----------------------|----------------|--------------------|-------------|-----------------|------------|----------------|------------------------------|
|           | INTERVAL DEP           |             | 25.1-35.1 fe<br>30.56 feet (f | et (from top          | casing)<br>ng) |                    |             | ampling Lo      |            | ens, MA        |                              |
|           | POST PUM               | P INSERTIO  | N 30.54 feet (f               |                       |                | SAMPLE METH        |             | EPA LOW ST      |            |                |                              |
| DEPTH SAM | PLED:                  | 33.5 feet ( | from top casin                | ig)                   |                | SAMPLE BOTL        | ES: METALS  | S/hardnss 1 - 1 | L HDPE (ph | <2)            |                              |
| DATE:     | 11/02/98               | TIME:       | 0830                          |                       |                | CYANIDE 1-5        | 00ml HDPE ( | (ph>12)         | 1000       | VOC'S 2-40m    | VOA's (ph<2)                 |
| SAMPLED B | Y: S. Acone            |             |                               |                       |                | Anions, Alkalinity | ,TDS 1-500  | Iml HDPE        |            | COD 1 - 1L HE  | )PE (ph<2)                   |
| RECORDED  | BY: S. Acone           |             |                               |                       |                | BOD 1 - 1L HD      | PE          |                 |            | TSS 1 - 1L HDI | PE                           |
| TIME      | WATER DPTH             | PUMP        | PURGE RATE                    | CUM, VOLUME           | H20            | SPECIFIC           | рH          | ORP/Eh          | D. O.      | TURBIDITY      | COMMENTS                     |
| 24hr      | BELOW MP feel<br>30.70 | SETTING     | m/min<br>150                  | PURGED                | TEMP C         | CONDUCTANCE        |             | mv              | mg/L       | NTU'S          |                              |
| 0855      | 30.70                  | 119.1       | 150                           |                       | 12.43          | 105                | 6.57        | 231.3           | 33.9       | 12.10          | (date)                       |
| 0900      | 30.68                  | 118.9       | 100                           |                       | 12.45          | 105                | 6.60        |                 | 33.9       | 13.10          | clear                        |
| 0905      | 30.68                  | 121.0       | Flow stopped                  | flush pump            | 12.33          | 100                | 0.00        | 218.5           | 33.9       | 8.56           |                              |
| 0915      | 30.84                  | 121.0       | 275                           | iusi punp             | 17.26          | 98                 | 6.63        | 179.0           | 34.9       | 7.97           | four dranned                 |
| 0915      | 30.60                  | 128.8       | 125                           |                       | 17.20          | 102                | 6.64        | 165.1           | 34.9       | 7.88           | flow dropped                 |
| 0920      | 30.60                  | 120.0       | 75                            |                       | 11.12          | 102                | 0,04        | 103.1           | 34.9       | 1.00           | flow dropped<br>flow dropped |
| 0922      | 30.66                  | 143.6       | 50                            | 1 gallon              |                | 1                  |             | -               | -          |                | flow dropped                 |
| 0925      | 31.00                  | 119.5       | 350                           | 1 gailon              | 19.75          | 103                | 6.66        | 157.7           | 35.9       | 6.59           | flushed pump                 |
| 0930      | 30.71                  | 119.5       | 200                           |                       | 10.10          | 105                | 0.00        | 151.1           | 55.5       | 0.03           | flow stopped                 |
| 0931      | 30.70                  | 131.9       | 100                           |                       | 18.61          | 107                | 6.65        | 163.9           | 34.9       | 6.07           | flow dropped                 |
| 0933      | 30.74                  | 142.3       | 125                           |                       | 10.01          | 101                | 0.00        | 100.0           | 04.0       | 0.01           | flow stopped                 |
| 0934      | 30.72                  | 165.2       | 250                           |                       | 1              |                    |             |                 |            |                | non otopped                  |
| 0935      | 30.80                  | 165.2       | 250                           | 1.5 gallons           | 17.70          | 108                | 6.66        | 172.5           | 33.9       | 5.43           | flow dropped                 |
| 0936      | 30.80                  | 167.5       | 175                           | and <b>P</b> rivation |                | 1                  |             |                 |            |                | flow stopped                 |
| 0937      | 30.79                  | 210.6       | 75                            | flush pump            | 4 times        |                    |             |                 |            |                | and such here                |
| 0940      | 30.90                  | 118.7       | 200                           | 2 gallons             | 20.36          | 103                | 6.63        | 164.5           | 34.9       | 4.87           | flow dropped                 |
| 0945      | 30.75                  | 118.7       | 50                            |                       | 18.58          | 109                | 6.66        | 172.9           | 33.9       | 4.96           | flow stopped                 |
| 0950      | 30.82                  | 163.7       |                               |                       | 17.20          | 109                | 6.66        | 182.1           | 33.9       | 4.21           | flow stopped                 |
| 1000      | 31.15                  | 217.7       | 125                           | 3 gallons             | and the second |                    |             |                 |            |                | CONTRACTOR DE LA CONTRACTA   |

SAMPLE TAKEN AT

0924 - Flushed pump 3 times - flow constantly decreasing w/incresased pump speed - some recharge evident

0955 - Flow dropping, pump up to 275.8 w/no flow, then flow surged, pump seed turned down

YSI GROUP # 100

TURBIDITY GROUP #75

SHEET 1 OF 2

| GWM well     | # 5                          | SHL-3 (Co       | ont.)                                                                                                           |                 | 3.5           |                                     |            | rps of Er                     |              | 61.           |                 |
|--------------|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------------------------|------------|-------------------------------|--------------|---------------|-----------------|
|              | INTERVAL DEPT                |                 | the second se | et (from top of |               |                                     |            | ampling Lo<br>pley's Hill Lan |              | , MA          |                 |
| EPTH SAN     | POST PUMP                    | <b>INSERTIO</b> | 30.54 feet (from top casin                                                                                      | from top casi   |               | SAMPLE METH                         | HOD:       | EPA LOW STE                   | RESS METHOD  | 9             |                 |
| ATE:         | 11/02/98 1                   |                 | 0830                                                                                                            | 9)              | 1.4           | CYANIDE 1-5                         |            |                               | - HUPE (phsz |               | nl VOA's (ph<2) |
|              | BY: S. Acone<br>BY: S. Acone |                 |                                                                                                                 |                 |               | Anions, Alkalinity<br>BOD 1 - 1L HD | ,TDS 1-500 |                               |              | COD 1 - 1L H  | DPE (ph<2)      |
| TIME<br>24br | WATER DPTH<br>BELOW WP feet  | PUMP            | PURGE RATE                                                                                                      | CUM, VOLUME     | H20<br>TEMP C |                                     | pH         | ORP/Eh                        | D. O.        | TURBIDITY     | CONNENTS        |
| 1001         | 30.61                        | 217.7           | 50                                                                                                              |                 | 17.68         | 107                                 | 6.67       | 181.6                         | 33.9         | 4.87          | Flow dropped    |
| 1002         | 30.68                        | 277.4           | 100                                                                                                             |                 |               |                                     |            |                               |              | 1.1.1.1.1.1.1 |                 |
| 1005         | 30.71                        | 277.6           | 150                                                                                                             |                 | 18.23         | 109                                 | 6.66       | 182.3                         | 33.9         | 3.91          |                 |
| 1010         | Sample taken                 |                 |                                                                                                                 |                 |               |                                     |            |                               |              |               |                 |
|              |                              |                 |                                                                                                                 |                 |               |                                     |            |                               |              |               |                 |
|              |                              |                 |                                                                                                                 |                 |               |                                     |            |                               |              |               |                 |
|              |                              |                 |                                                                                                                 |                 |               |                                     |            |                               |              |               |                 |

SAMPLE TAKEN AT 1010

YSI GROUP # 100

TURBIDITY GROUP #75

SHEET 2 OF 2

| GWM well  | #             | SHL-10                                   |             |            |        | USA               | rmy Co      | orps of E      | ngine     | ers           |                 |
|-----------|---------------|------------------------------------------|-------------|------------|--------|-------------------|-------------|----------------|-----------|---------------|-----------------|
| SCREENED  | INTERVAL DEPT | TH:                                      | 17.8 - 41.8 | feet       |        | Grou              | ndwater     | Sampling L     | og She    | et            |                 |
| 120 LEVEL | PRE PUMP INS  | ERTION                                   | 31.20 feet  |            |        |                   |             | epley's Hill L |           |               |                 |
|           | POST PUM      | P INSERTIO                               | 31.20 feet  |            |        | SAMPLE METH       | HOD:        | EPA LOW S      | TRESS ME  | THOD          |                 |
| DEPTH SAM | PLED:         | 37 feet                                  |             |            |        | SAMPLE BOTL       | ES: METAL   | S/hardnss 1 -  | 1L HDPE ( | ph<2)         |                 |
| DATE:     | 11/02/98      | TIME:                                    | 0930        |            |        | CYANIDE 1-5       | 500ml HDPE  | E (ph>12)      |           | VOC'S 2-40n   | nl VOA's (ph<2) |
| SAMPLED B | Y: B. Waz     |                                          |             |            |        | Anions, Alkalinit | ty, TDS 1-5 | 00ml HDPE      |           | COD 1 - 1L H  | OPE (ph<2)      |
| RECORDED  | BY:B. Waz     |                                          |             |            |        | BOD 1 - 1L HD     | PE          |                |           | TSS 1 - 1L HD | PE              |
| TIME      | WATER DPTH    | PUMP                                     | PURGE RATE  | CUM VOLUME | H20    | SPECIFIC          | рН          | ORP/Eh         | D, O,     | TURBENTY      | COMMENT8        |
| 24hr      | BELOW MP feet | SETTING                                  | milimin     | PURGED     | TEMP C | CONDUCTANCE       |             | mv             | mg/L      | NTU'S         |                 |
| 1022      | 31.30         | 121.3                                    | 500         |            | 11.4   | 89.0              | 7.09        | see note       | 43.1      | 9.4           |                 |
| 1025      | 31.30         | 121.3                                    | 500         | 1 gallon   | 12.95  | 86.0              | 7.03        | below          | 43.1      | 4.7           |                 |
| 1028      | 31.30         | 121.3                                    | 500         |            | 13.95  | 85.0              | 7.00        |                | 44.1      | 3.6           |                 |
| 1031      | 31.30         | 121.3                                    | 500         |            | 14.84  | 85.0              | 6.98        | 110            | 44.1      | 2.6           |                 |
| 1033      | 31.30         | 121.3                                    | 500         | 2 gallons  | 15.14  | 85.0              | 6.96        | 1 ( I          | 44.1      | 2.0           |                 |
| 1036      | 31.30         | 121.3                                    | 500         |            | 15.25  | 85.0              | 6.95        |                | 44.1      | 2.0           |                 |
| 1039      | 31.30         | 121.3                                    | 350         |            | 15.36  | 85.0              | 6.95        |                | 44.1      | 2.1           | Adjusted        |
| 1043      | 31.30         | 121.3                                    |             |            | 16.93  | 83.0              | 6.92        |                | 44.1      |               | pump rate       |
| 1045      | pump shut off | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |             |            |        |                   |             |                |           |               | pump shut off   |
| 1050      | 31.30         | 121.3                                    | 600         | 3 gallons  | 14.32  | 85.0              | 7.01        |                | 44.1      | 3.0           |                 |
| 1053      | 31.30         | 121.3                                    | 600         |            | 13.82  | 84.0              | 6.95        | 4              | 43.1      | 3.5           |                 |
| 1056      | 31.30         | 121.3                                    | 600         | 4 gallons  | 14.18  | 84.0              | 6.94        |                | 43.1      | 3.2           |                 |
| 1059      | 31.30         | 121.3                                    | 600         |            | 14.09  | 85.0              | 6.93        |                | 44.1      | 2.6           |                 |
| 1101      | 31.30         | 121.3                                    | 600         |            | 14.38  | 86.0              | 6.93        |                | 44.1      | 1.8           |                 |
| 1104      | 31.30         | 121.3                                    | 600         | 5 gallons  | 14.68  | 87.0              | 6.93        |                | 44.1      | 1,8           |                 |
| 1107      | 31.30         | 121.3                                    | 600         |            | 14.74  | 88.0              | 6.93        |                | 44.1      | 1.6           |                 |
| 1110      | 31.30         | 121.3                                    | 600         |            | 14.73  | 88.0              | 6.93        |                | 44.1      | 1.0           |                 |
| 1113      | 31.30         | 121.3                                    | 600         | 6 gallons  | 14.77  | 89.0              | 6.93        |                | 44.1      | 1.1           |                 |
| 1116      | 31.30         | 121.3                                    | 600         |            | 14.84  | 89.0              | 6.93        |                | 44.1      | 1.0           |                 |

SAMPLE TAKEN AT 1120

Note: Disregard ORP readings - it was later found that ORP probe was off.

YSI GROUP # 108

| Anions,Alkalinity,TDS 1-500ml HDPE         COD 1 - 1L HDPE (ph-2)           CONDED BY: S. Simmer         COD 1 - 1L HDPE         COMERTS           THE BETTINE PURCE NATE CUN VOLUME PURCE NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GWM well                                                                                                                                                                                                  | #             | SHL-19      |                       |           |       | US A               | rmy Co      | rps of EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nginee      | rs           |                     |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------------|-----------|-------|--------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------------|------------------|
| POST PUMP INSERTION 23.39 feet           SAMPLE D: 27 feet           SAMPLE D: 27 feet           SAMPLE METHOD: 27 feet           SAMPLE METHOD: 20 VOC'S 2 - 40ml VOA's (ph~2)           SAMPLE METHOD: 20 VOC'S 2 - 40ml VOA's (ph~2)           MPLE DEY: S. Simmer         COD 1 - 1L HOPE (ph~2)         VOC'S 2 - 40ml VOA's (ph~2)           THE WATER OTH         PUMP         PUMCE MATE         CON VOLUME         SAMPLE METHOD: EXAMPLE DEY S. Simmer           THE WATER OTH         PUMP         PUMCE MATE         CON VOLUME         MATE OTH HOPE (ph~2)           TORE WATE METHON: 23.40         POS2         ROTH TEAPE C         CON 1 - 1L HOPE         TORE WE ME METHOD: TORE WATE METHOD: T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CREENED                                                                                                                                                                                                   | INTERVAL DEP  | TH:         | 17 - 32 feet          |           |       | Grour              | idwater S   | ampling Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g Sheet     |              |                     |                  |
| PTH SAMPLED:       27 feet       SAMPLE BOTLES: METALS/hardnes 1 - 1L HDPE (ph<2)         TE:       11/02/98 TIME:       1050       CYANIDE 1 - 500ml HDPE (ph>12)       VOC'S 2 - 40ml VOA's (ph<2)         DRUED BY: S. Simmer       PURE BATE       Cuk volume       Ka       Percenc       PM       OPC'S 1 - 500ml HDPE (ph>12)       VOC'S 2 - 40ml VOA's (ph<2)         THE       WKTEG PTH       PURE BATE       Cuk volume       Ka       Percenc       PM       OPRIL       D. 0.       TUBER PT       Stat 1 - 1L HDPE (ph<2)         THE       WKTEG PTH       PURE BATE       Cuk volume       Ka       PERCEnc       PM       OPRIL       D. 0.       TUBER PT       Stat 1 - 1L HDPE         THE       WKTEG PTH       PURE BATE       Cuk volume       Ka       PERCEnc       PM       OPRIL       D. 0.       TUBER PT       D. 0.       TUBER PT       Commercence       PM       OPRIL       D. 0.       TUBER PT       Consecres       PM       PURE PT       Stat 1 - 1L HDPE       Consecres       PM       PURE PT       D. 0.       TUBER PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120 LEVEL:                                                                                                                                                                                                | PRE PUMP INS  | ERTION      | 23.38 feet            |           |       | Project N          | ame: She    | pley's Hill La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndfill, Dev | ens, MA      |                     |                  |
| 11/02/98 TIME: 1050       CYANIDE 1 - 500ml HDPE (ph>12)       VOC'S 2 - 40ml VOA's (ph<2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | POST PUM      | P INSERTIO  | N 23.39 feet          |           |       | SAMPLE METH        | IOD:        | EPA LOW ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RESS METH   | DD           |                     |                  |
| Anions,Alkalinity,TDS 1-500ml HDPE         COD 1 - 1L HDPE (ph~2)           CORDED BY: S. Simmer         COD 1 - 1L HDPE         COD 1 - 1L HDPE <td>DEPTH SAM</td> <td>PLED:</td> <td>27 feet</td> <td>And the second second</td> <td></td> <td></td> <td>SAMPLE BOTL</td> <td>ES: METALS</td> <td>S/hardnss 1 - 1L</td> <td>HDPE (ph-</td> <td>(2)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPTH SAM                                                                                                                                                                                                 | PLED:         | 27 feet     | And the second second |           |       | SAMPLE BOTL        | ES: METALS  | S/hardnss 1 - 1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HDPE (ph-   | (2)          |                     |                  |
| BOD 1 - 1L HDPE         TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 1L HDPE           TSS 1 - 112 MDPE           CONDUCTANCE           mm         mm         TSS 1 - 1L HDPE           TSS 1 - 112 MDPE         CONDUCTANCE         mm         TSS 1 - 11 HDPE           CONDUCTANCE         mm           TSS 1 - 112         306 <th colsp<="" td=""><td>DATE:</td><td>11/02/98</td><td>TIME:</td><td>1050</td><td></td><td></td><td>CYANIDE 1-5</td><td>00ml HDPE (</td><td>ph&gt;12)</td><td></td><td>VOC'S 2-40</td><td>Iml VOA's (ph&lt;2)</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <td>DATE:</td> <td>11/02/98</td> <td>TIME:</td> <td>1050</td> <td></td> <td></td> <td>CYANIDE 1-5</td> <td>00ml HDPE (</td> <td>ph&gt;12)</td> <td></td> <td>VOC'S 2-40</td> <td>Iml VOA's (ph&lt;2)</td> | DATE:         | 11/02/98    | TIME:                 | 1050      |       |                    | CYANIDE 1-5 | 00ml HDPE (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ph>12)      |              | VOC'S 2-40          | Iml VOA's (ph<2) |
| THE         WATER DPTH         PUMP         PURGE NATE         CUR VOLUME         HZ0         SPECIFIC         pH         ORMEN         D.O.         TUBBIOTY         COMBENTS           204         BELOWIP Fed         BETTINO         minima         PURGED         TEMP C         CONDUCTANCE         mov         mov<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLED B                                                                                                                                                                                                 | Y: S. Simmer  |             |                       |           |       | Anions, Alkalinity | TDS 1-500   | ml HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | COD 1 - 1LH  | IDPE (ph<2)         |                  |
| zer         section we find         setting         minima         PURGED         TEMP c         conductance         minima         model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RECORDED                                                                                                                                                                                                  | BY: S. Simmer |             |                       |           |       | BOD 1 - 1L HD      | PE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | TSS 1 - 1L H | DPE                 |                  |
| 1110       23.40       105.2       800       12.56       396       6.36       -10.4       26.7       228       very orange in colo         1115       23.40       105.2       850       1 gallon       13.21       396       6.35       27.7       28.8       187         1120       23.39       104.8       775       13.80       401       6.35       27.7       28.8       162       orange color         1125       23.39       104.8       775       2 gallons       14.12       402       6.35       4.7       29.8       117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |               |             | a contra terret       |           |       |                    | pH          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              | COMMENTS            |                  |
| 1115       23.40       105.2       850       1 gallon       13.21       396       6.35       27.7       28.8       187         1120       23.39       104.8       775       13.80       401       6.34       -3.4       29.8       162       orange color         1125       23.39       104.8       775       2 gallons       14.12       402       6.35       -4.7       29.8       117         1130       23.39       104.8       775       3 gallons       14.28       399       6.34       -10.0       30.8       78       orange tint         1135       23.39       104.8       775       4 gallons       14.21       397       6.34       -12.7       29.8       67         1138       23.39       104.8       775       4 gallons       14.21       397       6.33       -12.7       29.8       67         1141       23.39       104.8       775       6 gallons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 gallons       14.42       395       6.32       -7.9       30.8       29         1153       23.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |               |             |                       | - Shoup   |       |                    | 6.36        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              | very orange in colo |                  |
| 1120       23.39       104.8       775       13.80       401       6.34       -3.4       29.8       162       orange color         1125       23.39       104.8       775       2 gallons       14.12       402       6.35       -4.7       29.8       117         1130       23.39       104.8       775       3 gallons       14.28       399       6.34       -10.0       30.8       78       orange color         1135       23.39       104.8       775       4 gallons       14.21       397       6.34       -12.7       29.8       67         1138       23.39       104.8       775       4 gallons       14.11       397       6.33       -12.7       29.8       67         1141       23.39       104.8       775       4 gallons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 gallons       14.36       395       6.32       31.3       30.8       36       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |               |             |                       | 1 gallon  |       |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |                     |                  |
| 1125       23.39       104.8       775       2 gallons       14.12       402       6.35       -4.7       29.8       117         1130       23.39       104.8       775       3 gallons       14.28       399       6.34       -10.0       30.8       78       orange tint         1135       23.39       104.8       775       4 gallons       14.21       397       6.34       -12.7       29.8       67         1138       23.39       104.8       775       4 gallons       14.21       397       6.33       -12.9       30.8       57         1141       23.39       104.8       775       6 gallons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 gallons       14.36       395       6.32       31.3       30.8       36         1147       23.39       104.8       775       7 gallons       14.46       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 gallons       14.46       395       6.31       -10.2       30.8       23         1153       23.39 <t< td=""><td></td><td></td><td>104.8</td><td>775</td><td></td><td></td><td>401</td><td>6.34</td><td>and the second se</td><td></td><td></td><td>orange color</td></t<> |                                                                                                                                                                                                           |               | 104.8       | 775                   |           |       | 401                | 6.34        | and the second se |             |              | orange color        |                  |
| 1135       23.39       104.8       775       4 gallons       14.21       397       6.34       -12.7       29.8       67         1138       23.39       104.8       775       14.09       397       6.33       -12.9       30.8       57         1141       23.39       104.8       775       14.09       397       6.33       -12.9       30.8       57         1141       23.39       104.8       775       6 gallons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 gallons       14.36       395       6.32       31.3       30.8       36         1147       23.39       104.8       775       7 gallons       14.42       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 gallons       14.46       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       8 gallons       14.42       395       6.31       -10.2       30.8       23         1159       23.39       104.8       775       8 gallons       14.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1125                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 2 gallons | 14.12 | 402                | 6.35        | -4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.8        | 117          |                     |                  |
| 1138       23.39       104.8       775       14.09       397       6.33       -12.9       30.8       57         1141       23.39       104.8       800       5 gallons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 gallons       14.36       395       6.32       31.3       30.8       36         1147       23.39       104.8       775       6 gallons       14.42       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 gallons       14.42       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       7 gallons       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       8 gallons       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1130                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 3 gallons | 14.28 | 399                | 6.34        | -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.8        | 78           | orange tint         |                  |
| 1141       23.39       104.8       800       5 galons       14.31       396       6.31       -8.8       30.8       40         1144       23.39       104.8       775       6 galons       14.36       395       6.32       31.3       30.8       36         1147       23.39       104.8       775       6 galons       14.42       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 galons       14.42       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       7 galons       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 galons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       8 galons       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20         1205       23.39       104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1135                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 4 gallons | 14.21 | 397                | 6.34        | -12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.8        | 67           | 1                   |                  |
| 1144       23.39       104.8       775       6 gallons       14.36       395       6.32       31.3       30.8       36         1147       23.39       104.8       775       7 gallons       14.42       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 gallons       14.46       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       7 gallons       14.42       395       6.31       -10.2       30.8       29         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -7.9       30.8       26         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       9 gallons       14.28       390       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1138                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   |           | 14.09 | 397                | 6.33        | -12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.8        | 57           |                     |                  |
| 1147       23.39       104.8       775       14.42       395       6.32       -4.1       30.8       31         1150       23.39       104.8       775       7 gallons       14.46       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       7 gallons       14.42       395       6.31       -10.2       30.8       29         1156       23.39       104.8       775       8 gallons       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       8 gallons       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20       -         1202       23.39       104.8       775       9 gallons       14.21       391       6.32       -11.9       30.8       18       sample taken          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1141                                                                                                                                                                                                      | 23.39         | 104.8       | 800                   | 5 gallons | 14.31 | 396                | 6.31        | -8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.8        | 40           |                     |                  |
| 1150       23.39       104.8       775       7 gallons       14.46       395       6.32       -7.9       30.8       29         1153       23.39       104.8       775       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 gallons       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       8 gallons       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1144                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 6 gallons | 14.36 | 395                | 6.32        | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.8        | 36           |                     |                  |
| 1153       23.39       104.8       775       14.42       395       6.31       -10.2       30.8       26         1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       9 gallons       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20         1205       23.39       104.8       775       9 gallons       14.21       391       6.32       -11.9       30.8       18       sample taken         1205       23.39       104.8       775       14.21       391       6.32       -11.9       30.8       18       sample taken         MS/MSD samples also taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1147                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   |           | 14.42 | 395                | 6.32        | -4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.8        | 31           |                     |                  |
| 1156       23.39       104.8       775       8 gallons       14.36       392       6.32       -12.0       30.8       23         1159       23.39       104.8       775       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20         1205       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20         1205       23.39       104.8       775       9 gallons       14.21       391       6.32       -11.9       30.8       18       sample taken         1205       23.39       104.8       775       9 gallons       14.21       391       6.32       -11.9       30.8       18       sample taken         1205       23.39       104.8       775       14.21       391       6.32       -11.9       30.8       18       sample taken         1205       MS/MSD samples also taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1150                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 7 gallons | 14.46 | 395                | 6.32        | -7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.8        | 29           |                     |                  |
| 1159       23,39       104.8       775       14.30       391       6.31       -3.5       30.8       19       clear in color         1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1153                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   |           | 14.42 | 395                | 6.31        | -10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30,8        | 26           |                     |                  |
| 1202       23.39       104.8       775       9 gallons       14.28       390       6.31       -10.6       30.8       20         1205       23.39       104.8       775       9 gallons       14.21       391       6.32       -11.9       30.8       18       sample taken         MS/MSD samples also taken         Image: Samples also taken          Image: Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1156                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   | 8 gallons | 14.36 | 392                | 6.32        | -12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.8        | 23           |                     |                  |
| 1205       23.39       104.8       775       14.21       391       6.32       -11.9       30.8       18       sample taken         MS/MSD samples also taken <td< td=""><td>1159</td><td></td><td></td><td></td><td></td><td></td><td>391</td><td>1997 316</td><td>-3.5</td><td>30.8</td><td>19</td><td>clear in color</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1159                                                                                                                                                                                                      |               |             |                       |           |       | 391                | 1997 316    | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.8        | 19           | clear in color      |                  |
| MS/MSD samples also taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1202                                                                                                                                                                                                      |               |             |                       | 9 gallons | 14.28 | 390                | 6.31        | -10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.8        | 20           |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1205                                                                                                                                                                                                      | 23.39         | 104.8       | 775                   |           | 14.21 | 391                | 6.32        | -11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.8        | 18           | sample taken        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           | MS/MS         | D samples a | lso taken             |           |       |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           |               |             |                       |           | _     |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |                     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OTES                                                                                                                                                                                                      |               |             |                       |           |       |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 1            |                     |                  |

SAMPLE TAKEN AT 1205

MS/MSD Samples taken at 1210

YSI GROUP # 100

| GWM well     | #                           | SHL-4   |               |                       |               | USA             | rmy C | orps of l     | Engine                                                                                                          | ers                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------------|---------|---------------|-----------------------|---------------|-----------------|-------|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | INTERVAL DEP                |         | 5.7 - 15.7 fe | et                    |               |                 |       | r Sampling    |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H20 LEVEL:   | PRE PUMP IN                 |         | 10.69 feet    |                       |               |                 |       | hepley's Hill | and a second a state of the second |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         | 10.69 feet    |                       |               | SAMPLE MET      |       | EPA LOW ST    |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DEPTH SAM    |                             | 13 feet | 1000          |                       |               |                 |       | ALS/hardnss 1 | - 1L HOPE                                                                                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DATE:        | 11/02/98                    | TIME:   | 1230          |                       |               | CYANIDE 1 -     |       |               |                                                                                                                 | VOC'S 2-40m        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLED B    |                             |         |               |                       |               | Anions, Alkalin |       | 500ml HDPE    |                                                                                                                 | COD 1 - 1L H       | and the second se |
| RECORDED     | BY: B. Waz                  | _       |               |                       |               | BOD 1 - 1L HE   |       | T             |                                                                                                                 | TSS 1 - 1L HDI     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet | PUMP    | PURGE RATE    | CUM, VOLUME<br>PURGED | H20<br>TEMP C | SPECIFIC        | рH    | ORP/Eh        | D. O.<br>mg/L                                                                                                   | TURBIDITY<br>NTU's | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1315         | 10.80                       | 71.5    |               |                       | 13.64         | 700             | 4.51  | see note      | 99.2                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1320         | 10.80                       | 71.5    | 900           | 2 gallon              | 13.60         | 693             | 5.75  | below         | 99.2                                                                                                            | 123.2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1324         | 10.80                       | 71.5    | 900           | 3 gallon              | 13.49         | 689             | 6.02  | 1             | 100.2                                                                                                           | 12.2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1327         | 10.80                       | 71.5    | 900           | 1.                    | 13.45         | 685             | 6.12  |               | 100.2                                                                                                           | 5.27               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1330         | 10.80                       | 71.5    | 900           | 4 gallon              | 13.52         | 680             | 6.20  |               | 100.2                                                                                                           | 2.56               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1333         | 10.80                       | 71.5    | 1000          |                       | 13.41         | 675             | 6.21  |               | 100.2                                                                                                           | 1.67               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1336         | 10.80                       | 71.5    | 950           | 5 gallon              | 13.42         | 671             | 6.22  |               | 100.2                                                                                                           | 1.17               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1339         | 10.80                       | 71.5    | 1000          | 6 gallon              | 13.43         | 668             | 6.23  |               | 100.2                                                                                                           | 1.51               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1342         | 10.80                       | 71.5    | 950           | 114.377 (101)         | 13.43         | 666             | 6.23  |               | 100.2                                                                                                           | 1.38               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1345         | 10.80                       | 71.5    | 950           |                       | 13.42         | 664             | 6.24  |               | 100.2                                                                                                           | 1.52               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         |               |                       |               |                 |       |               |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         |               |                       |               |                 |       |               |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         |               |                       |               |                 |       |               |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         |               |                       |               |                 |       | -             |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                             |         |               |                       |               |                 |       |               |                                                                                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

SAMPLE TAKEN AT 1347

Note: Disregard ORP readings - it was later found that ORP probe was off.

YSI GROUP # 108

| GWM well a   | #                           | SHL-11     |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US A              | rmy Co      | rps of Er      | nginee        | rs                 |                     |  |
|--------------|-----------------------------|------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|----------------|---------------|--------------------|---------------------|--|
| CREENED      | NTERVAL DEPT                | rH:        | 14.8 - 29.8 | feet                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Grou              | ndwater S   | ampling Lo     | og Sheet      |                    |                     |  |
| 120 LEVEL:   | PRE PUMP INS                | ERTION     | 18.90 feet  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | oley's Hill La |               |                    |                     |  |
|              | POST PUM                    | P INSERTIO | 18.90 feet  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE METH       |             | EPA LOW ST     |               |                    |                     |  |
| DEPTH SAM    | PLED:                       | 25 feet    |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE BOTL       | ES: METALS  | /hardnss 1 - 1 | L HDPE (ph    | <2)                |                     |  |
| DATE:        | 11/02/98                    | TIME:      | 1315        | L                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CYANIDE 1-5       | 500ml HDPE  | (ph>12)        | -             | VOC'S 2-4          | 0ml VOA's (ph<2)    |  |
| SAMPLED BY   | Y: S. Simmer                |            |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anions, Alkalinit | y,TDS 1- 50 | Oml HDPE       |               | COD 1 - 1L         | HDPE (ph<2)         |  |
| RECORDED     | BY: S. Simmer               |            |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOD 1 - 1L HD     | PE          |                |               | TSS 1 - 1L HDPE    |                     |  |
| TIME<br>24hr | WATER DPTH<br>BELOW MP fest | PUMP       | PURGE RATE  | CUML VOLUME<br>PURGED | H20<br>TEMP C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | pH          | ORP/Eh<br>mv   | D. O.<br>mg/L | TURBIDITY<br>NTU's | COMMENTS            |  |
| 1320         | 18.91                       | 93.5       | 900         | 1 gallon              | 13.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1170              | 5.85        | 13.5           | 38.0          | 36.0               | Brown/Orange color  |  |
| 1325         | 18.92                       | 93.1       | 875         |                       | 14.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1223              | 6.34        | -41.6          | 42.0          | 23.0               |                     |  |
| 1330         | 18.91                       | 93,1       | 850         | 2 gallons             | 14.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1244              | 6.41        | -55.4          | 41.0          | 12.0               |                     |  |
| 1335         | 18.91                       | 93.1       | 850         | 3 gallons             | 14.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1251              | 6.42        | -60.3          | 42.0          | 7.1                | clear in color      |  |
| 1340         | 18.91                       | 93.1       | 850         | 4gallons              | 14.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1270              | 6.43        | -65.8          | 41.0          | 5.5                |                     |  |
| 1345         | 18.91                       | 93.1       | 825         | 5 gallons             | the state of the s |                   | -           |                |               | 4.6                | YSI readout stopped |  |
| 1350         | 18.91                       | 93.1       | 800         | 6 gallons             | 14.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1274              | 5.86        | -16.2          | 39.0          | 3.8                | YSI reset - back on |  |
| 1355         | 18.91                       | 93.1       | 800         | 7 gallons             | 14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1271              | 6.39        | -57.7          | 39.0          | 2.0                |                     |  |
| 1358         | 18.91                       | 93.1       | 800         |                       | 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1261              | 6.41        | -61.6          | 39.0          | 2.5                |                     |  |
| 1401         | 18.91                       | 93.1       | 800         | 8 gallons             | 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1263              | 6.43        | -63.9          | 39.0          | 2.3                |                     |  |
| 1404         | 18.91                       | 93.1       | 800         | 8.5 gallons           | 14.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1260              | 6.43        | -67.1          | 39,0          | 2.1                |                     |  |
| 1405         |                             |            |             | 1000000               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                |               |                    | Sample taken        |  |
|              |                             |            |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                |               |                    |                     |  |
|              |                             |            |             | in a start            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                |               |                    |                     |  |
|              |                             |            |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                |               |                    | 1                   |  |
|              |                             |            | 1           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |                |               |                    |                     |  |
| _            |                             |            |             |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |             |                |               |                    |                     |  |

SAMPLE TAKEN AT 1405

YSI GROUP # 100

| GWM well #   | 4                                     | SHL-20  |              |                                           |               | US A              | rmy Co     | rps of Er        | gineer        | S                  |                |
|--------------|---------------------------------------|---------|--------------|-------------------------------------------|---------------|-------------------|------------|------------------|---------------|--------------------|----------------|
| SCREENED I   | TERVAL DEPT                           | H:      | 41 - 51 feet |                                           |               |                   |            | Sampling Lo      |               |                    |                |
|              | PRE PUMP INS                          |         | 19.30 feet   |                                           |               |                   |            | pley's Hill La   |               |                    |                |
|              | Contract Station and Contract Station |         | N 19.30 feet |                                           |               | SAMPLE METH       |            | EPA LOW ST       |               |                    |                |
| DEPTH SAMP   | LED:                                  | 46 feet |              |                                           |               | SAMPLE BOTL       | ES: METALS | S/hardnss 1 - 1L | HDPE (ph<     | 2)                 |                |
| DATE:        | 11/02/98                              | TIME:   | 1345         |                                           |               | CYANIDE 1-5       | 00ml HDPE  | (ph>12)          | 2             | VOC'S 2 - 40m      | I VOA's (ph<2) |
| SAMPLED BY   | B. Waz                                |         | -            |                                           |               | Anions, Alkalinit | y,TDS 1-50 | Oml HDPE         |               | COD 1 - 1L HE      | DPE (ph<2)     |
| RECORDED     | BY: B. Waz                            |         |              |                                           |               | BOD 1 - 1L HD     | PE         |                  |               | TSS 1 - 1L HDF     | PE             |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet           | PUMP    | PURGE RATE   | CUM. VOLUME<br>PURGED                     | H20<br>TEMP C |                   | рН         | ORP/Eh           | D. O.<br>mg/L | TURBIDITY<br>NTU's | COMMENTS       |
| 1410         | 19.35                                 | 94.7    | 400          | 1 gallon                                  | 11.98         | 1300              | 6.34       | see note         | 100.2         | 12.6               |                |
| 1415         | 19,35                                 | 96.2    | 900          | 1.00                                      | 12.59         | 1325              | 6.45       | below            | 100.2         | 8.1                |                |
| 1418         | 19.35                                 | 96.2    | 900          | 2 gallon                                  | 12.83         | 1322              | 6.45       | 1                | 100.2         | 5.8                |                |
| 1421         | 19.35                                 | 96.2    | 900          | 3 gallon                                  | 12.73         | 1324              | 6,46       |                  | 100.2         | 6.7                |                |
| 1424         | 19.35                                 | 96.2    | 900          |                                           | 12.76         | 1323              | 6.47       |                  | 100.2         | 4.1                |                |
| 1427         | 19.35                                 | 96.2    | 900          | 4 gallon                                  | 12.74         | 1321              | 6.47       |                  | 100.2         | 3.3                |                |
| 1430         | 19.35                                 | 96.2    | 900          |                                           | 12.78         | 1324              | 6.47       |                  | 100.2         | 1.8                |                |
| 1433         | 19.35                                 | 96.2    | 900          | 5 gallon                                  | 12.83         | 1324              | 6.47       |                  | 100.2         | 1.9                |                |
| 1436         | 19.35                                 | 96.2    | 900          |                                           | 12.74         | 1323              | 6.48       |                  | 100.2         | 1.9                |                |
| 1439         | 19.35                                 | 96.2    | 900          | 6 gallon                                  | 12.76         | 1324              | 6.48       |                  | 100.2         | 1.8                |                |
| 1442         | 19.35                                 | 96.2    | 900          | 1. A. | 12.78         | 1326              | 6.48       | · · · · · ·      | 100.2         | 1.8                |                |
| 1445         | 19.35                                 | 96.2    | 900          | 7 gallon                                  | 12.77         | 1327              | 6.48       | 1                | 100.2         | 1.6                |                |
| 1448         | 19.35                                 | 96.2    | 900          |                                           | 12.78         | 1328              | 6.48       |                  | 100.2         | 1.7                |                |
| 1451         | 19.35                                 | 96.2    | 900          | 8 gallon                                  | 12.80         | 1327              | 6.48       |                  | 100.2         | 1.3                |                |
| 1454         | 19.35                                 | 96.2    | 900          |                                           | 12.73         | 1327              | 6.48       |                  | 100.2         | 1.6                |                |
| 1457         | 19.35                                 | 96.2    | 900          | 9 gallon                                  | 12.74         | 1329              | 6.48       |                  | 100.2         | 1.7                |                |
|              |                                       |         |              |                                           |               |                   |            |                  |               |                    |                |
|              |                                       |         |              |                                           |               |                   |            |                  |               |                    |                |

SAMPLE TAKEN AT 1500

Note: Disregard ORP readings - it was later found that ORP probe was off.

YSI GROUP # 108

| GWM well   | #             | SHM-93-2    | 2C          |             |        | US A                                              | rmy Co     | rps of Er | ngineer | S            |                    |  |  |
|------------|---------------|-------------|-------------|-------------|--------|---------------------------------------------------|------------|-----------|---------|--------------|--------------------|--|--|
| SCREENED   | INTERVAL DEF  | TH:         | 124.3 - 134 | .3 feet     |        | Groundwater Sampling Log Sheet                    |            |           |         |              |                    |  |  |
| 120 LEVEL: | PRE PUMP IN   | SERTION     | 8.48 feet   |             |        | Project Name: Shepley's Hill Landfill, Devens, MA |            |           |         |              |                    |  |  |
|            | POST PU       | AP INSERTIC | N 7.05 feet |             |        | SAMPLE METHOD: EPA LOW STRESS METHOD              |            |           |         |              |                    |  |  |
| DEPTH SAM  | IPLED:        | 129 feet    |             |             |        | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)  |            |           |         |              |                    |  |  |
| DATE:      | 11/03/98      | TIME:       | 0848        |             |        | CYANIDE 1 - 500ml HDPE (ph>12) VOC'S 2 - 40ml VOA |            |           |         |              | Oml VOA's (ph<2)   |  |  |
| SAMPLED B  | Y: D. Wood    |             |             |             |        | Anions, Alkalinit                                 | y,TDS 1-50 | Oml HDPE  |         | COD 1 - 1L   | - 1L HDPE (ph<2)   |  |  |
| RECORDED   | BY: D. Wood   |             |             |             |        | BOD 1 - 1L HD                                     | PE         |           |         | TSS 1 - 1L H | DPE                |  |  |
| TIME       | WATER OPTH    | PUMP        | PURGE RATE  | CUM. VOLUME | H20    | SPECIFIC                                          | pH         | ORP/Eh    | D. O.   | TURBIDITY    | COMMENTS           |  |  |
| 24hr       | BELOW MP feet | SETTING     | mVmIn       | PURGED      | TEMP C | CONDUCTANCE                                       |            | vin       | mg/L    | NTU          |                    |  |  |
| 0958       | 7.97          | 65.5        | 70          |             |        |                                                   |            |           |         |              |                    |  |  |
| 1009       | 8.33          | 65.5        | 70          |             |        |                                                   |            |           |         |              |                    |  |  |
| 1012       | 8.49          | 65.5        | 50          |             | 11.63  | 0.635                                             | 7.56       | -66.7     | 4.41    |              |                    |  |  |
| 1017       | 8.53          | 65.5        | 30          |             | 11.80  | 0.637                                             | 7.52       | -72.2     | 4.41    |              |                    |  |  |
| 1025       | 8.91          | 67.8        | 420         | 1 gallon    |        |                                                   |            | 1         |         |              |                    |  |  |
| 1028       | 9.31          | 67.8        | 400         |             |        |                                                   | -          | )         |         |              |                    |  |  |
| 1031       | 9.49          | 67.0        | 50          |             | 10.82  | 0.714                                             | 7.55       | -101.3    | 4.20    | 1.7          |                    |  |  |
| 1036       | 9.52          | 66.3        | 50          | 1.1 gallon  | 10.76  | 0.715                                             | 7.56       | -110.9    | 4.20    | 1.5          |                    |  |  |
| 1042       | 9.54          |             |             |             | 10.71  | 0.716                                             | 7.56       | -113.4    | 4.20    |              | very slow recharge |  |  |
| 1054       | 9.83          | 69.2        | 230         |             |        |                                                   |            |           |         |              | (~ 50 ml/min)      |  |  |
| 1056       | 10.08         | 69.2        | 230         | 1.5 gallon  | 11.15  | 0.718                                             | 7,51       | -90.5     | 4.10    | 1.2          |                    |  |  |
| 1101       |               | 69.2        | 120         |             | 11.07  | 0.715                                             | 7.42       | -94.3     | 4.10    |              |                    |  |  |
| 1104       | 10.35         | 69,2        | 70          |             | 11.02  | 0.716                                             | 7.51       | -105.1    | 4.10    | 0.9          |                    |  |  |
| 1107       |               | 69.2        |             |             | 10.92  | 0.716                                             | 7.54       | -111.9    | 4.10    | 0.8          |                    |  |  |
| 1111       | 10.36         | 69.2        | 50          | 1.9 gallon  | 10.89  | 0.716                                             | 7.58       | -113.5    | 4.10    |              |                    |  |  |
| 1114       | 10.36         | 69.2        | 50          | 1.95 gallon | 10.84  | 0.716                                             | 7.58       | -114.0    | 4.10    | 1.0          |                    |  |  |
| 1117       | 10.37         | 69.2        | 50          |             | 10.82  | 0.716                                             | 7.58       | -113.2    | 4.10    | 0.9          |                    |  |  |
| 1124       | 10.39         | 69.2        | 50          | 2 gallons   | 10.92  | 0.716                                             | 7.59       | -109.7    | 4.10    | 1.0          |                    |  |  |
| 1130       | 10.39         | 69.2        | 50          |             | 10.97  | 0.716                                             | 7.59       | -106.5    | 4.10    | 1.0          |                    |  |  |
| 1135       | 10.39         | 69.2        | 50          | 2.1 gallons | 11.02  | 0.716                                             | 7.59       | -104.5    | 4.10    | 1.0          | samples taken      |  |  |

SAMPLE TAKEN AT 1135

YSI GROUP # 100

| GWM well #              | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | SHM-96-2 | 2B          |              |        | USA                                                     | rmy Co                                   | rps of E     | nginee     | rs            |                |  |  |
|-------------------------|-----------------------------------------|----------|-------------|--------------|--------|---------------------------------------------------------|------------------------------------------|--------------|------------|---------------|----------------|--|--|
|                         | TERVAL DEPT                             | TH:      | 62.7 - 92.7 | feet         |        | Groundwater Sampling Log Sheet                          |                                          |              |            |               |                |  |  |
| a of a printer watch of | PRE PUMP INS                            |          | 7.24 feet   |              |        | Project Name: Shepley's Hill Landfill, Devens, MA       |                                          |              |            |               |                |  |  |
| and subsets             |                                         |          | N 7.25 feet |              |        | SAMPLE METHOD: EPA LOW STRESS METHOD                    |                                          |              |            |               |                |  |  |
| DEPTH SAMP              |                                         | 70 feet  |             |              |        | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)        |                                          |              |            |               |                |  |  |
| DATE:                   | 11/03/98                                | TIME:    | 0745        |              |        | CYANIDE 1 - 500ml HDPE (ph>12) VOC'S 2 - 40ml VOA's (ph |                                          |              |            |               |                |  |  |
| SAMPLED BY              | D. Wood                                 |          |             |              |        | Anions, Alkalinity                                      | TDS 1- 500                               | COD 1 - 1L H | DPE (ph<2) |               |                |  |  |
| RECORDEDE               | Y: D. Wood                              |          |             |              |        | BOD 1 - 1L HD                                           | PE                                       |              |            | TSS 1 - 1L HD | PE             |  |  |
| TIME                    | WATER DPTH                              | PUMP     | PURGE RATE  | CUM VOLUME   | H20    | SPECIFIC                                                | pH                                       | ORP/Eh       | D. O.      | TURBIDITY     | COMMENTS       |  |  |
| 24hr                    | BELOW MP feet                           | SETTING  | milmin      | PURGED       | TEMP C | CONDUCTANCE                                             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | mv           | mg/L       | NTU's         |                |  |  |
| 0800                    | 7.24                                    |          |             |              |        |                                                         |                                          |              | 1          | 1             | initial        |  |  |
| 0811                    | 7.25                                    |          |             |              |        | 1 1 1                                                   |                                          |              |            |               | with pump      |  |  |
| 0816                    |                                         | 84.2     | 700         |              |        |                                                         |                                          |              |            | ·             |                |  |  |
| 0819                    | 7.27                                    | 84.2     | 700         |              |        | 11                                                      |                                          |              |            | 1             |                |  |  |
| 0822                    | 7.27                                    | 84.2     | 750         |              | 10.60  | 1.069                                                   | 8.52                                     | 322.0        | 5.63       | 5.0           |                |  |  |
| 0827                    | 7.27                                    | 84.2     | 750         | 2.2 gallons  | 10.91  | 1.070                                                   | 9.82                                     | 249.3        | 5.63       | 4.2           |                |  |  |
| 0831                    | 7.27                                    | 84.2     | 750         | 3.0 gallons  | 10.97  | 1.068                                                   | 9.96                                     | 227.3        | 5.43       | 4.1           |                |  |  |
| 0834                    | 7.27                                    | 84.2     | 750         | 3.3 gallons  | 10.97  | 1.069                                                   | 10.04                                    | 211.2        | 5.33       | 4.4           |                |  |  |
| 0837                    | 7.27                                    | 84.3     | 750         |              | 11.00  | 1,067                                                   | 10.09                                    | 198.0        | 5.33       | 4.4           |                |  |  |
| 0841                    | 7.27                                    | 84.3     | 750         | 4.5 gallons  | 11.01  | 1.064                                                   | 10.10                                    | 184.7        | 5.02       | 5.0           |                |  |  |
| 0845                    | 7.27                                    | 84.3     | 750         | 5.0 gallons  | 11.03  | 1.063                                                   | 10.14                                    | 173.4        | 5.02       | 5.3           |                |  |  |
| 0848                    | 7.27                                    | 84.3     | 750         | 6.0 gallons  | 11.06  | 1.064                                                   | 10.11                                    | 165.7        | 4.92       | 4.8           |                |  |  |
| 0851                    | 7.27                                    | 84.3     | 750         | 6.7 gallons  | 11.04  | 1.065                                                   | 10.13                                    | 157.0        | 4.92       | 4.3           |                |  |  |
| 0856                    | 7.27                                    | 84.3     | 750         | 7.4 gallons  | 11.09  | 1.068                                                   | 10.13                                    | 148.3        | 4.82       | 4.5           |                |  |  |
| 0900                    | 7.27                                    | 84.3     | 750         | 80 gallons   | 11.10  | 1.066                                                   | 10.14                                    | 140.1        | 4.82       | 4.2           |                |  |  |
| 0903                    | 7.27                                    | 84.3     | 750         |              | 11.10  | 1.067                                                   | 10.13                                    | 134.9        | 4.71       | 4.4           |                |  |  |
| 0909                    | 7.27                                    | 84.3     | 750         | 9.5 gallons  | 11.12  | 1.067                                                   | 10.15                                    | 125.1        | 4.71       | 4.8           |                |  |  |
| 0912                    | 7.27                                    | 84.3     | 750         |              | 11.12  | 1.000                                                   | 10.14                                    | 120.7        | 4.71       | 4.8           |                |  |  |
| 0918                    | 7.27                                    | 84.3     | 750         | 12.0 gallons | 11.17  | 1.071                                                   | 7.07                                     | -178.7       | 4.61       | 2.8           | major chang in |  |  |
| 0923                    | 7.27                                    | 84.3     | 750         |              | 11.19  | 1.083                                                   | 6.99                                     | -163.3       | 4.61       | 2.1           | color to green |  |  |

YSI GROUP # 100

TURBIDITY GROUP #75

SHEET 1 OF 2

| 11/03/98         TIM           0. Wood         D. Wood           D. Wood         WATER DPTH           SELOW MP         Feet           7.27         7.27           7.27         7.27           7.27         7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTION<br>INSERTION<br>D feet                                  | 62.7 - 92.7<br>7.24 feet<br>7.25 feet<br>0745<br>PURGE RATE<br>m/m/m<br>750 | CUML VOLUME<br>PURGED | H20    | Groun<br>Project N<br>SAMPLE METH<br>SAMPLE BOTL<br>CYANIDE 1 - 5<br>Anions, Alkalinity<br>BOD 1 - 1L HD | ame: Shep<br>IOD:<br>ES: METALS<br>00ml HDPE (<br>7,TDS 1-500 | ph>12)                                                               | dfill, Deven  | 2<br>VOC'S 2 - 40ml<br>COD 1 - 1L HD |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|--------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------|--------------------------------------|--------------|
| POST PUMP I<br>D: 70<br>11/03/98 TIM<br>D. Wood<br>D. Wood<br>WATER DPTH<br>SELOW MP feet<br>7.27<br>7.27<br>7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INSERTION<br>D feet<br>ME:<br>PUMP<br>SETTING<br>84.2<br>84.2 | N 7.25 feet<br>0745<br>PURGE RATE<br>million                                |                       | 1420   | Project N<br>SAMPLE METH<br>SAMPLE BOTL<br>CYANIDE 1 - 5<br>Anions, Alkalinity<br>BOD 1 - 1L HD          | ame: Shep<br>IOD:<br>ES: METALS<br>00ml HDPE (<br>7,TDS 1-500 | Diey's Hill Lan<br><u>EPA_LOW_STE</u><br>/hardnss 1 - 1L  <br>ph>12) | dfill, Deven  | 2<br>VOC'S 2 - 40ml<br>COD 1 - 1L HD |              |
| D: 70<br>11/03/98 TIM<br>D. Wood<br>D. Wood<br>WATER DPTH<br>SELOW MP feet<br>7.27<br>7.27<br>7.27<br>7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) feet<br>ME:<br>Римр<br>зеттича<br>84.2<br>84.2              | 0745<br>PURGE RATE<br>milmin                                                |                       | 1420   | SAMPLE BOTL<br>CYANIDE 1 - 5<br>Anions, Alkalinity<br>BOD 1 - 1L HD                                      | ES: METALS<br>00ml HDPE (<br>TDS 1-500                        | /hardnss 1 - 1L  <br>ph>12)                                          |               | VOC'S 2 - 40ml<br>COD 1 - 1L HD      |              |
| 11/03/98         TIM           0. Wood         D. Wood           D. Wood         WATER DPTH           SELOW MP         Feet           7.27         7.27           7.27         7.27           7.27         7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME:<br>PLIMP<br>SETTING<br>84.2<br>84.2                       | PURGE RATE<br>mi/min                                                        |                       | H20    | CYANIDE 1 - 5<br>Anions,Alkalinity<br>BOD 1 - 1L HD                                                      | 00ml HDPE (<br>TDS 1-500                                      | ph>12)                                                               | HDPE (ph<2)   | COD 1 - 1L HD                        |              |
| D. Wood<br>D. Wood<br>WATER DPTH<br>SELOW MP feet<br>7.27<br>7.27<br>7.27<br>7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pump<br>setting<br>84.2<br>84.2                               | PURGE RATE<br>mi/min                                                        |                       | H20    | Anions,Alkalinity<br>BOD 1 - 1L HD                                                                       | TDS 1- 500                                                    |                                                                      |               | COD 1 - 1L HD                        |              |
| D. Wood<br>WATER DPTH<br>SELOW MP feet<br>7.27<br>7.27<br>7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | setting<br>84.2<br>84.2                                       | ml/min                                                                      |                       | 1120   | BOD 1 - 1L HD                                                                                            |                                                               | ml HDPE                                                              |               |                                      | PE (ph<2)    |
| SELOW MP         feet           7.27         7.27           7.27         7.27           7.27         7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | setting<br>84.2<br>84.2                                       | ml/min                                                                      |                       | H20    | entoitic                                                                                                 |                                                               |                                                                      |               | TSS 1 - 1L HDP                       | E            |
| 7.27<br>7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.2                                                          | 750                                                                         |                       | TEMP C | CONDUCTANCE                                                                                              | рн                                                            | ORP/Eh                                                               | 0. 0.<br>mg/L | TURBIDITY                            | COMMENTS     |
| 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                             | 13.5 gallons          | 11.20  | 1.084                                                                                                    | 6.99                                                          | -160.0                                                               | 4.51          | 1.8                                  |              |
| and the second s | 94.2                                                          | 750                                                                         |                       | 11.23  | 1.072                                                                                                    | 6.99                                                          | -155.7                                                               | 4.41          | 1.6                                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04.2                                                          | 750                                                                         | 14.7 gallons          | 11.22  | 1.073                                                                                                    | 6.98                                                          | -153.3                                                               | 4.41          | 1.7                                  |              |
| 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.2                                                          | 750                                                                         | 15.3 gallons          | 11.23  | 1.073                                                                                                    | 6.97                                                          | -152.5                                                               | 4.31          | 1.5                                  |              |
| 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84.2                                                          | 750                                                                         |                       | 11.22  | 1.077                                                                                                    | 6.96                                                          | -150.8                                                               | 4.31          | 1.6                                  | sample taken |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                             |                       |        |                                                                                                          |                                                               |                                                                      |               |                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                             |                       |        |                                                                                                          |                                                               |                                                                      |               |                                      |              |

SAMPLE TAKEN AT 0940

YSI GROUP # 100

TURBIDITY GROUP #75

SHEET 2 OF 2

| GWM well     | #                           | SHL-22   |                    |                       |               | USA                                                    | rmy Co        | rps of En        | igineer       | S                  |          |  |  |
|--------------|-----------------------------|----------|--------------------|-----------------------|---------------|--------------------------------------------------------|---------------|------------------|---------------|--------------------|----------|--|--|
| CREENED      | INTERVAL DEP                | TH:      | 106 - 116 fe       | eet                   |               | Groundwater Sampling Log Sheet                         |               |                  |               |                    |          |  |  |
|              | PRE PUMP INS                |          | 7.37 feet          |                       |               | Project Name: Shepley's Hill Landfill, Devens, MA      |               |                  |               |                    |          |  |  |
|              |                             |          | N 7.20 feet        |                       |               | SAMPLE METHOD: EPA LOW STRESS METHOD                   |               |                  |               |                    |          |  |  |
| DEPTH SAM    |                             | 111 feet | ···· <u>······</u> |                       |               | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)       |               |                  |               |                    |          |  |  |
| DATE:        | 11/03/98                    |          | 0800               |                       |               | CYANIDE 1 - 500ml HDPE (ph>12) VOC'S 2 - 40ml VOA's (p |               |                  |               |                    |          |  |  |
| SAMPLED B    | Y: S. Acone                 |          |                    |                       |               | Anions, Alkalinit                                      | COD 1 - 1L HD | - 1L HDPE (ph<2) |               |                    |          |  |  |
| RECORDED     | BY: S. Acone                |          |                    |                       |               | BOD 1 - 1L HDI                                         |               |                  |               | TSS 1 - 1L HDF     | E        |  |  |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet | PUMP     | PURGE RATE         | CUM. VOLUME<br>PURGED | H20<br>TEMP C |                                                        | pН            | ORP/Eh           | D. O.<br>mg/L | TURBIDITY<br>NTU's | COMMENTS |  |  |
| 0812         | 7.72                        | 66.6     | 500                |                       | 10.41         | 711                                                    | 4.59          | see note         | 4.50          | 0.7                | clear    |  |  |
| 0817         | 7.90                        | 65.1     | 300                |                       | 10.43         | 942                                                    | 6.06          | below            | 8.50          | 0.5                |          |  |  |
| 0822         | 7.84                        | 65.1     | 325                |                       | 10.56         | 986                                                    | 6.45          |                  | 0.40          | 0.6                |          |  |  |
| 0827         | 7.84                        | 65.1     | 325                |                       | 10.62         | 1006                                                   | 6.59          |                  | 1.00          | 0.5                |          |  |  |
| 0832         | 7.84                        | 65.1     | 325                |                       | 10.66         | 1018                                                   | 6.67          |                  | 1.00          | 0.7                |          |  |  |
| 0837         | 7.84                        | 65.1     | 325                |                       | 10.74         | 1020                                                   | 6.49          |                  | 1.00          | 0.5                |          |  |  |
| 0842         | 7.84                        | 65.1     | 325                |                       | 10,76         | 1023                                                   | 6.61          |                  | 1.00          | 0.6                |          |  |  |
| 0847         | 7.84                        | 65.1     | 325                | 3 gallons             | 10.79         | 1034                                                   | 6.72          |                  | 0.92          | 0.7                |          |  |  |
| 0850         | 7.84                        | 65.1     | 325                |                       | 10.79         | 1037                                                   | 6.74          |                  | 0.96          | 0.7                |          |  |  |
| 0853         | 7.84                        | 65.1     | 325                |                       | 10.77         | 1031                                                   | 6.75          |                  | 0.94          | 0.6                |          |  |  |
| 0856         | 7.84                        | 65.1     | 325                | 1                     | 10.79         | 1030                                                   | 6.77          |                  | 0.93          | 0.7                |          |  |  |
| 0859         | 7.84                        | 65.1     | 325                | 1.000                 | 10.82         | 1030                                                   | 6.77          |                  | 0.91          | 0.7                |          |  |  |
| 0902         | 7.84                        | 65.1     | 325                |                       | 10.83         | 1032                                                   | 6.77          |                  | 0.89          | 0.6                |          |  |  |
| 0905         | 7.84                        | 65.1     | 325                | 5 gallons             | 10.82         | 1034                                                   | 6.77          |                  | 0.88          | 0.7                |          |  |  |
| 0908         | 7.84                        | 65.1     | 325                |                       | 10.84         | 1030                                                   | 6.78          |                  | 0.87          | 0.7                |          |  |  |
| 0911         | 7.84                        | 65.1     | 325                |                       | 10.86         | 1033                                                   | 6.78          |                  | 0.86          | 0.8                |          |  |  |
| 0914         | 7.84                        | 65.1     | 325                | 6 gallons             | 10.85         | 1033                                                   | 6.78          |                  | 0.87          | 0.6                |          |  |  |
| 0917         | 7.84                        | 65.1     | 325                |                       | 10.86         | 1033                                                   | 6.78          |                  | 0.86          | 0.7                |          |  |  |

SAMPLE TAKEN AT 0920

Note: Disregard ORP readings - it was later found that ORP probe was off.

YSI GROUP # 108

| GWM well   | #             | SHL-9      | a sector     |                   |        |                                                   |                 | rps of Er |               |               |                             |  |  |
|------------|---------------|------------|--------------|-------------------|--------|---------------------------------------------------|-----------------|-----------|---------------|---------------|-----------------------------|--|--|
| SCREENED   | INTERVAL DEPT | TH:        | 15 - 25 feet |                   |        | Groundwater Sampling Log Sheet                    |                 |           |               |               |                             |  |  |
| H2O LEVEL: | PRE PUMP INS  | SERTION    | 9.77 feet    |                   |        | Project Name: Shepley's Hill Landfill, Devens, MA |                 |           |               |               |                             |  |  |
|            | POST PUM      | P INSERTIO | 9.77 feet    |                   |        | SAMPLE METHOD: <u>EPA LOW STRESS METHOD</u>       |                 |           |               |               |                             |  |  |
| DEPTH SAM  | PLED:         | 20 feet    |              |                   |        | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)  |                 |           |               |               |                             |  |  |
| DATE:      | 11/03/98      | TIME:      | 1205         |                   |        | CYANIDE 1-5                                       | nl VOA's (ph<2) |           |               |               |                             |  |  |
| SAMPLED B  | Y: D. Wood    |            |              |                   |        | Anions, Alkalinit                                 | y,TDS 1-50      |           | COD 1 - 1L HI | DPE (ph<2)    |                             |  |  |
| RECORDED   | BY: D. Wood   |            |              |                   |        | BOD 1 - 1L HD                                     | PE              |           |               | TSS 1 - 1L HD | PE                          |  |  |
| TIME       | WATER DPTH    | PUMP       | PURGE RATE   | CUM. VOLUME       | H20    | SPECIFIC                                          | pH              | ORP/Eh    | D. O.         | TURBIDITY     | COMMENTS                    |  |  |
| 24hr       | BELOW MP feet | SETTING    | mi/min       | PURGED            | TEMP C | CONDUCTANCE                                       |                 | mv        | mg/L          | NTU's         |                             |  |  |
| 1200       | 9.77          |            |              |                   |        |                                                   |                 |           |               |               | initial                     |  |  |
| 1205       | 9.77          | 74.0       |              |                   |        | -                                                 |                 |           |               |               | start pump                  |  |  |
| 1214       | 9.93          | 71.8       | 380          |                   |        |                                                   |                 |           | -             |               |                             |  |  |
| 1219       | 9.93          | 71.8       | 380          |                   | 12.56  | 0.147                                             | 6.72            | 2.5       | 3.49          |               |                             |  |  |
| 1223       | 9.93          | 71.8       | 420          |                   | 13.06  | 0.155                                             | 6.70            | -11.2     | 3.49          |               |                             |  |  |
| 1226       | 9.93          | 71.8       | 420          | 1 gallon          | 13.37  | 0.161                                             | 6.70            | -21.0     | 3.49          | 0.9           |                             |  |  |
| 1229       | 9.93          | 71.8       | 420          |                   | 13,36  | 0.164                                             | 6.71            | -23.0     | 3.49          | 0.7           |                             |  |  |
| 1232       | 9.93          | 71.8       | 420          | 1.7 gallon        | 13.36  | 0.166                                             | 6.67            | -23.4     | 3.39          | 0.6           |                             |  |  |
| 1236       | 9.95          | 71.8       | 440          |                   | 13.35  | 0.167                                             | 6.68            | -25.1     | 3.39          | 0.5           |                             |  |  |
| 1240       | 9.95          | 71.8       | 440          | 2.4 gallon        | 13.34  | 0.168                                             | 6.69            | -25.3     | 3.39          | 0.6           |                             |  |  |
| 1243       | 9.95          | 71.8       | 440          | 3.0 gallon        | 13.41  | 0.168                                             | 6.69            | -27.5     | 3.39          | 0.5           |                             |  |  |
| 1245       |               |            |              | Procession of the |        |                                                   | S 200 1         |           |               |               | take sample                 |  |  |
|            | 1             |            | 1.1          |                   |        |                                                   |                 |           |               | 1             |                             |  |  |
|            |               |            |              |                   |        |                                                   |                 |           |               |               |                             |  |  |
|            |               |            | -            |                   |        |                                                   |                 | 1         |               |               | hard and have been a second |  |  |
|            | 1             |            |              |                   |        |                                                   |                 |           |               | 1             |                             |  |  |
|            | 11            |            |              |                   |        |                                                   |                 |           |               |               |                             |  |  |
|            |               |            |              |                   |        |                                                   |                 |           |               | 1             |                             |  |  |
|            | 1.            |            |              |                   |        |                                                   |                 |           |               | 11            |                             |  |  |
|            | 1             |            |              |                   |        |                                                   | 1.              |           |               | 1             |                             |  |  |

NOTES:

SAMPLE TAKEN AT 1245

YSI GROUP # 100

| GWM well     | #                                                                                                               | SHL-5       |               |             |               | USA                                               | rmy Co       | rps of Ei | nginee        | s                  |                 |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|-------------|---------------|-------------|---------------|---------------------------------------------------|--------------|-----------|---------------|--------------------|-----------------|--|
| SCREENED     | INTERVAL DEP                                                                                                    | TH:         | 5.1 - 15.1 fe | eet         |               | Groundwater Sampling Log Sheet                    |              |           |               |                    |                 |  |
| 120 LEVEL:   | PRE PUMP INS                                                                                                    | SERTION     | 4.60 feet     |             |               | Project Name: Shepley's Hill Landfill, Devens, MA |              |           |               |                    |                 |  |
|              | POST PUN                                                                                                        | IP INSERTIC | N 4.52 feet   |             |               | SAMPLE METHOD: <u>EPA LOW STRESS METHOD</u>       |              |           |               |                    |                 |  |
| DEPTH SAM    | the second se | 10.5 feet   |               |             |               | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)  |              |           |               |                    |                 |  |
| DATE:        | 11/03/98                                                                                                        | TIME:       | 1245          |             |               | CYANIDE 1-5                                       | 00ml HDPE    | (ph>12)   |               | VOC'S 2-40         | nl VOA's (ph<2) |  |
| SAMPLED B    | Y: D. Wood                                                                                                      |             |               |             |               | Anions, Alkalinit                                 | y,TDS 1- 500 | Dml HDPE  |               | COD 1 - 1L H       | OPE (ph<2)      |  |
| RECORDED     | BY: D. Wood                                                                                                     |             |               |             |               | BOD 1 - 1L HDI                                    | PE           |           |               | TSS 1 - 1L HD      | PE              |  |
| TIME<br>24br | WATER DPTH<br>BELOW MP feet                                                                                     | PUMP        | PURGE RATE    | CUM. VOLUME | H20<br>TEMP C |                                                   | pН           | ORP/Eh    | D. O.<br>mg/L | TURBIOITY<br>NTU's | COMMENTS        |  |
| 1245         | 4.60                                                                                                            |             |               |             |               |                                                   |              |           |               |                    | Initial         |  |
| 1255         | 4.52                                                                                                            |             | 1             |             |               | A                                                 |              |           |               |                    | with pump       |  |
| 1317         | 4.78                                                                                                            | 50.8        | 250           | 100000000   |               |                                                   |              | S         |               |                    | start pump      |  |
| 1324         | 4.79                                                                                                            | 50.8        | 250           | 0.3 gallon  | 12.58         | 0.127                                             | 5.70         | 95.4      | 3.39          |                    |                 |  |
| 1327         | 4.79                                                                                                            | 50.8        | 250           |             | 12.87         | 0.132                                             | 5.80         | 86.5      | 3.39          | 1.3                |                 |  |
| 1330         | 4.79                                                                                                            | 50.8        | 250           | 0.6 gallon  | 13.72         | 0.136                                             | 5.83         | 83.8      | 3.39          | 0.9                |                 |  |
| 1333         | 4.79                                                                                                            | 50.8        | 250           | 0.8 gallon  | 14.58         | 0.138                                             | 5.85         | 70.2      | 3.39          |                    |                 |  |
| 1336         | 4.80                                                                                                            | 50.8        | 250           | 1.0 gallon  | 14.88         | 0.139                                             | 5.85         | 67.4      | 3.29          | 0.8                | -               |  |
| 1339         | 4.81                                                                                                            | 50.8        | 250           | 1.1gallon   | 15.05         | 0.140                                             | 5.85         | 66.3      | 3.29          | 0.7                |                 |  |
| 1342         | 4.82                                                                                                            | 50.8        | 250           | 1.3gallon   | 15,11         | 0.141                                             | 5.85         | 66.9      | 3.29          | 0.6                |                 |  |
| 1345         | 4.82                                                                                                            | 50.8        | 200           | 1.4 gallon  | 15.07         | 0.142                                             | 5.85         | 62.7      | 3.39          | 0.6                |                 |  |
| 1348         | 4.83                                                                                                            | 50.8        | 200           | 1.5 gallon  | 15.24         | 0.142                                             | 5.86         | 61.3      | 3.39          | 0.5                | -               |  |
| 1350         |                                                                                                                 |             |               | 1.7 gallon  |               | 1                                                 |              |           |               |                    | sample taken    |  |
|              | 1                                                                                                               |             | -             |             |               |                                                   |              |           |               |                    |                 |  |
|              |                                                                                                                 |             |               |             |               |                                                   |              |           |               | 1                  |                 |  |
|              |                                                                                                                 |             |               | 1.000       |               |                                                   |              | 1         |               |                    |                 |  |
|              | -                                                                                                               |             |               |             |               |                                                   |              |           |               |                    |                 |  |
|              |                                                                                                                 |             |               |             |               |                                                   |              |           |               |                    |                 |  |
| 1 m m        |                                                                                                                 |             | -             |             |               |                                                   |              |           |               |                    |                 |  |
|              |                                                                                                                 |             | 1             |             |               |                                                   | 1            |           |               |                    |                 |  |

SAMPLE TAKEN AT 1350

YSI GROUP # 100

| SWM well     | #                           | SHM-96-5   | С                        |                       |               | US A                                                     | rmy Col | rps of Er                       | ngineer       | S                                         |                    |  |
|--------------|-----------------------------|------------|--------------------------|-----------------------|---------------|----------------------------------------------------------|---------|---------------------------------|---------------|-------------------------------------------|--------------------|--|
|              | INTERVAL DEP                |            | 50.8 - 60.8<br>5.95 feet | feet                  |               |                                                          |         | og Sheet<br>andfill, Devens, MA |               |                                           |                    |  |
|              | POST PUN                    | P INSERTIC | N 5.95 feet              |                       |               | SAMPLE METH                                              | IOD:    | <u>IOD</u>                      |               |                                           |                    |  |
| DEPTH SAM    | CONTRACTOR OF CONTRACTOR    | 55 feet    |                          |                       |               | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)         |         |                                 |               |                                           |                    |  |
| DATE:        | 11/04/98                    | TIME:      | 0915                     |                       |               | CYANIDE 1 - 500ml HDPE (ph>12) VOC'S 2 - 40ml V          |         |                                 |               |                                           | Oml VOA's (ph<2)   |  |
| AMPLED B     | Y: B. Waz<br>BY: B. Waz     |            |                          |                       |               | Anions, Alkalinity, TDS 1- 500ml HDPE<br>BOD 1 - 1L HDPE |         |                                 |               | COD 1 - 1L HDPE (ph<2)<br>TSS 1 - 1L HDPE |                    |  |
| TIME<br>24hr | WATER DPTH<br>BELOW MP feet | PUMP       | PURGE RATE               | CUM. VOLUME<br>PURGED | H20<br>TEMP C |                                                          | рН      | ORP/Eh                          | D. O.<br>mg/L | TURBIDITY<br>NTU's                        | COMMENTS           |  |
| 1035         | 6.00                        | 56.1       | 600                      | 1 gallon              | 10.18         | 1.025                                                    | 5.43    | 45.1                            | 47.1          | 1.4                                       | Water is very clea |  |
| 1038         | 6.00                        | 56.1       | 600                      |                       | 10.50         | 1.050                                                    | 6.10    | 40.0                            | 48.2          | 0.8                                       |                    |  |
| 1041         | 6.00                        | 56.1       | 600                      | 1                     | 10.67         | 1.055                                                    | 6.24    | -3.9                            | 48.2          | 0.7                                       |                    |  |
| 1044         | 6.00                        | 56.1       | 600                      | 2 gallon              | 10.84         | 1.063                                                    | 6.34    | -7.2                            | 48.2          | 0.4                                       |                    |  |
| 1047         | 6.00                        | 56.1       | 600                      |                       | 10.86         | 1.067                                                    | 6.38    | -8.6                            | 48.2          | 0.5                                       |                    |  |
| 1049         | 6.00                        | 56.1       | 600                      | 3 gallon              | 10.90         | 1.067                                                    | 6.41    | -10.2                           | 48.2          | 0.4                                       | 1110               |  |
| 1052         | 6.00                        | 56.1       | 600                      |                       | 10.90         | 1.065                                                    | 6.43    | -10.5                           | 47.1          | 0.5                                       |                    |  |
| 1055         | 6.00                        | 56.1       | 600                      | 4 gallon              | 10.90         | 1.066                                                    | 6.43    | -10.8                           | 47.1          | 0.4                                       |                    |  |
| 1058         | 6.00                        | 56.1       | 500                      |                       | 10.96         | 1.064                                                    | 6.44    | -10.9                           | 47.1          | 0.4                                       |                    |  |
| 1101         | 6.00                        | 56.1       | 500                      | 5 gallon              | 10.95         | 1.067                                                    | 6.45    | -10.0                           | 47.1          | 0.5                                       |                    |  |
| 1104         | 6.00                        | 56.1       | 500                      | 1                     | 10.98         | 1.067                                                    | 6.46    | -9.1                            | 47.1          | 0.4                                       |                    |  |
| 1107         | 6.00                        | 56.1       | 500                      | 6 gallon              | 10.97         | 1.066                                                    | 6,45    | -9.5                            | 46,1          | 0.4                                       | sample taken       |  |
|              |                             |            |                          |                       |               |                                                          |         |                                 |               |                                           |                    |  |
|              |                             |            |                          |                       |               |                                                          |         | 1                               |               |                                           |                    |  |
|              |                             |            |                          | -                     |               |                                                          | -       |                                 |               |                                           |                    |  |
|              | 1                           |            |                          |                       |               |                                                          |         |                                 |               |                                           |                    |  |

SAMPLE TAKEN AT 1107

YSI GROUP # 100

| GWM well     | #                     | SHM-96-5        | В            |                    |       | USA                                               | rmy Co        | rps of Er | ngineer      | S            |                 |  |
|--------------|-----------------------|-----------------|--------------|--------------------|-------|---------------------------------------------------|---------------|-----------|--------------|--------------|-----------------|--|
| CREENED I    | NTERVAL DEPT          | TH:             | 81.3 - 91.3  | feet               |       | Groundwater Sampling Log Sheet                    |               |           |              |              |                 |  |
| H2O LEVEL:   | PRE PUMP INS          | SERTION         | 6.49 feet    |                    |       | Project Name: Shepley's Hill Landfill, Devens, MA |               |           |              |              |                 |  |
|              | POST PUM              | P INSERTIC      | N 6.41 feet  |                    |       | SAMPLE METHOD: <u>EPA LOW STRESS METHOD</u>       |               |           |              |              |                 |  |
| DEPTH SAM    | PLED:                 | 86 feet         |              |                    |       | SAMPLE BOTLES: METALS/hardnss 1 - 1L HDPE (ph<2)  |               |           |              |              |                 |  |
| DATE:        | 11/04/98              | TIME:           | 1040         |                    |       | CYANIDE 1 - 500ml HDPE (ph>12) VOC'S 2 - 40ml VOA |               |           |              |              |                 |  |
| SAMPLED BY   | : B. Waz              |                 |              |                    |       | Anions, Alkalinit                                 | y, TDS 1- 500 |           | COD 1 -1LH   | IDPE (ph<2)  |                 |  |
| RECORDED     | BY: B. Waz            |                 |              |                    |       | BOD 1 - 1L HD                                     |               |           | TSS 1 - 1L H | OPE          |                 |  |
| TIME         | WATER DPTH            | PUMP            | PURGE RATE   | CUM. VOLUME        | H20   | SPECIFIC                                          | pН            | ORP/Eh    | D. O.        | TURBIDITY    | COMMENTS        |  |
| 24hr<br>1133 | BELOW MP feet<br>6.90 | SETTING<br>59.5 | m/min<br>600 | PURGED<br>1 gallon | 10.60 | 1.053                                             | 6.04          | 0.2       | mg/L<br>46,1 | NTU*<br>82.0 | Water is cloudy |  |
| 1136         | 6.90                  | 59.5            | 600          | i ganon            | 10.90 | 1.090                                             | 6.58          | -44.6     | 46.1         | 87.0         | water is cloudy |  |
| 1130         | 6.90                  | 59.5            | 600          |                    | 11.00 | 1.099                                             | 6.73          | -54.8     | 44.1         | 64.6         |                 |  |
| 1142         | 6.90                  | 59.5            | 600          | 2 gallons          | 10.95 | 1.114                                             | 6.77          | -57.3     | 45.1         | 48.2         |                 |  |
| 1142         | 6.90                  | 59.5            | 600          | 2 ganons           | 11.00 | 1.101                                             | 6.80          | -60.0     | 45.1         | 34.9         |                 |  |
| 1145         | 6,90                  | 59.5            | 600          | 3 gallons          | 11.05 | 1.106                                             | 6.81          | -61.0     | 45.1         | 26.6         |                 |  |
| 1151         | 6.90                  | 59.5            | 600          | o ganons           | 11.18 | 1.105                                             | 6.82          | -62.3     | 45.1         | 16.2         |                 |  |
| 1154         | 6.90                  | 59.5            | 600          |                    | 11.00 | 1.109                                             | 6.82          | -63.3     | 44.1         | 14.3         |                 |  |
| 1157         | 6.90                  | 59.5            | 600          | 4 gallons          | 10.94 | 1.107                                             | 6.82          | -63.8     | 45.1         | 11.6         |                 |  |
| 1200         | 6.90                  | 59.5            | 600          | ganone             | 10.96 | 1.108                                             | 6.83          | -63.8     | 42.0         | 11.8         |                 |  |
| 1203         | 6.90                  | 59.5            | 600          |                    | 10.96 | 1.109                                             | 6.83          | -61.8     | 44.1         | 7.3          |                 |  |
| 1206         | 6.90                  | 59.5            | 600          | 5 gallons          | 10.94 | 1.109                                             | 6.84          | -59.6     | 44.1         | 6.3          |                 |  |
| 1209         | 6.90                  | 59.5            | 600          |                    | 10.94 | 1.109                                             | 6.84          | -56.1     | 44.1         | 5.9          |                 |  |
| 1212         | 6.90                  | 59.5            | 600          |                    | 10.95 | 1.108                                             | 6.84          | -55.8     | 44.1         | 5.1          |                 |  |
| 1215         | 6.90                  | 59.5            | 600          | 6 gallons          | 10.96 | 1.109                                             | 6.84          | -55.3     | 44.1         | 4.0          |                 |  |
| 1218         | 6.90                  | 59.5            | 600          |                    | 10.96 | 1.110                                             | 6.84          | -56.7     | 44.1         | 3.9          |                 |  |
| 1221         | 6.90                  | 59.5            | 600          | 7 gallons          | 10.97 | 1.108                                             | 6.85          | -56.4     | 44.1         | 3.7          | sample taken    |  |
|              | 1                     |                 |              |                    |       |                                                   |               |           |              |              |                 |  |
|              |                       | 2               |              |                    |       |                                                   |               |           |              | 1            |                 |  |
| IOTES:       | 1                     |                 |              |                    |       | _                                                 |               |           |              | 1            |                 |  |

NOTES:

SAMPLE TAKEN AT 1224 QA AND DUPLICATE SAMPLES ALSO TAKEN

EQUIPMENT BLANK SAMPLES WERE TAKEN AFTER EQUIPMENT WAS DECONTAMINATED FOLLOWING THIS WELL

YSI GROUP # 100

# APPENDIX D

# CHAIN OF CUSTODY FORMS

|                     |               |       |      |                             | CHAI                                                  | N OF CUS              | TOD | Y R     | ECO              | RD        |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                | 5      |
|---------------------|---------------|-------|------|-----------------------------|-------------------------------------------------------|-----------------------|-----|---------|------------------|-----------|---------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|--------|
| PROJ. NO.<br>ED 776 | PROJEC<br>SHG |       |      | Hill LAN                    | Fill                                                  | NO.                   |     |         | 25 miles         | 0/3       | S/Sal   | 1      | Here a  | Linger Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |                                | 000005 |
| SAMPLERS: (SA       | <u>~~~</u>    | -     |      | Buan J.                     | Wing                                                  | OF<br>CON-<br>TAINERS |     | A. They | Melo             | all aller | and and | an all | Celle A | the state of the s |        | REMARKS                        | ,      |
| STA. NO. DATE       | TIME          | COMP. | GRAB | STATIO                      | ON LOCATION                                           | TAMENS                | Vis | 5/2     | An long          | 13        | 1       | 1      | al is   | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                | _      |
| 51148               | 1430          |       | X    | mw-sHL-                     | 56-98-01                                              | 8                     | 2   | 1       | 1                | 1         | 1       | 1      | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
| 5/11/48             | 1430          |       | X    | MW-SHL-S                    | B-98-01                                               | 8                     | 2   |         | 1                | -t        | 1       | 1      | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
| 511 98              | 1430          |       | X    | mw-SHL-DL                   | 10-98-01                                              | 8                     | 2   | 1       | 1                | l         | 1       | 1      | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |                                |        |
| PH 5/11/98 5/11/98  | 1430          | -     | K    | MW-SHL-5                    | 301-98-01                                             | 8                     |     | -       |                  |           | 11      | 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |                                |        |
| 511148              | 1550          |       | X    | MW-SHL- GI                  | 3-98-01                                               | 8                     | 2   | 1       | 1                | 1         | 1       | 1      | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | A                              |        |
| 5/1/48              |               |       | [4]  | TRIP BLAN                   | K                                                     | 1                     | r   |         |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
|                     |               | -     |      |                             |                                                       |                       |     |         |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
|                     | N             | 2     |      |                             |                                                       |                       |     |         |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
|                     |               | 1     |      |                             |                                                       |                       |     | 1100    |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
|                     | 1             |       |      |                             |                                                       |                       |     | -       |                  |           | 1       |        | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
| o di                | M             |       |      |                             |                                                       | 1                     |     | -       |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
| Pauloe              | 1/            |       |      |                             |                                                       | 1                     |     |         |                  |           |         | 1      | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
|                     |               |       | 1    |                             | 1                                                     |                       |     |         | 1                |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |
| V                   | ľ             |       |      |                             |                                                       | 1                     | 1   |         |                  |           |         |        |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                |        |
|                     |               |       |      |                             |                                                       |                       |     |         |                  |           |         |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1                              |        |
| Relinquished by     | : (Signat     | ure)  |      | Date / Time<br>5 11 98 1900 | Received by: (Signat<br>Federal Opprise<br>8024436017 |                       | Re  | linqu   | ished            | by: (S    | Signat  | ure)   |         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Time | Received by: <i>(Signature</i> | n)     |
| Relinguished by     | : (Signat     | ure)  |      | Date / Time                 | Received by: (Signat                                  |                       | Re  | linqu   | ished            | bγ: /3    | Signat  | ture)  |         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Time | Received by: (Signature        | )      |
| Relinguished by     | r: (Signat    | ure)  |      | Date / Time                 | Received for Laborat<br>(Signature)                   | ory by:               | 5   | 1       | te / T<br>/ 38 / |           |         | Rema   | arks    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                |        |

Distribution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2 to Coordinator Field Files

U.S. ARMY CORPS OF ENGINEERS

| U.S. ARMI        |          |       |                                         |        |              | CHAI                                                      | N OF CUS   | TOD   | YR         | ECO           | RD         |                |        |              |           |                                         | -                        | 906 |
|------------------|----------|-------|-----------------------------------------|--------|--------------|-----------------------------------------------------------|------------|-------|------------|---------------|------------|----------------|--------|--------------|-----------|-----------------------------------------|--------------------------|-----|
| E0776            |          | T NA  | ME<br>Y'S                               | HILL   | LF           |                                                           | NO.        |       |            | 1 and         | 200        | 200            | and is | 1 al         | \$ 100    | /                                       |                          | 000 |
| SAMPLERS: (Sigh  | ;        | -     | 1                                       | Bua    | n A.         | Way                                                       | OF<br>CON- |       | ed         | -74           | 6 0/       | 1000           |        | The R. Marth | Lie State |                                         | REMARKS                  |     |
| STA. NO. DATE    | TIME     | COMP. | GRAB                                    |        | statio       | N LOCATION                                                | TAINERS    | 1/5   | The Hed    | A Start Start | the second | and the second | 0/2    | 5/18         | - To -    |                                         |                          |     |
| 5/12/98          | 1320     |       | X                                       | mw-si  | 11-9-        | 98-01                                                     | 8          | 2     | I          | 1             | ι          | ı              | (      | 1            |           |                                         |                          |     |
| 5/12/48          | 1320     | -     | 1 m m                                   | mw-St  |              |                                                           | 8          | 2     | 1          | ι             | L          | 1              | L      | 1            |           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                          |     |
| SIJANS           | 1500     |       | 100000000000000000000000000000000000000 |        |              | 8-98-01                                                   | 8          | 2     | 1          | 1             | t          | C              | L.     | T            | 2         |                                         |                          | -   |
| 5/12/48          | 1500     |       | ×                                       | Mw-s   | 41-22        | -98-01                                                    | 8          | 2     | l          | 1             |            | L              | L      | 1            |           |                                         |                          |     |
| 5/12/48          | 1615     |       | 2.00                                    | 1000   |              | 20-98-01                                                  | 8          | 2     | i          | 1             | 1          | 1              | 1      | 1            |           |                                         |                          |     |
| 5/12/48          |          |       | 1                                       | TRIP   |              |                                                           | 1          | 1     |            |               |            |                |        | 1            |           |                                         |                          |     |
| ~                |          |       |                                         |        |              |                                                           |            |       |            |               |            |                |        |              |           |                                         |                          |     |
|                  |          |       |                                         |        |              |                                                           |            |       |            |               |            |                |        |              |           |                                         |                          |     |
|                  |          | T     | L                                       |        |              |                                                           |            | 1.00  |            |               |            | -              |        |              | -         |                                         |                          |     |
|                  | iver     | 1     |                                         | 1      |              |                                                           |            | 111.1 |            |               |            |                |        |              |           | _                                       |                          |     |
| your             | 1        |       |                                         |        | 1            |                                                           | -          |       |            |               |            |                | 1.1    |              |           |                                         |                          |     |
| 1                | 1        |       |                                         |        | -            | /                                                         |            |       |            |               |            | 1              | 1      |              | -         |                                         |                          |     |
|                  |          | 1.11  |                                         |        |              |                                                           |            |       |            | _             |            | -              | =      |              |           | _                                       |                          |     |
|                  |          |       |                                         |        |              |                                                           | -          |       | -          |               |            |                | -      |              | -         |                                         |                          |     |
| Relinguished by: | (Signati | ure)  | 5                                       | Date / | Time<br>1930 | Received by Signay<br>Fallent By Signay<br>B01443601814 - | MinBills   | Re    | linqu      | shed          | by: /3     | Signat         | ure)   | Т            | Date /    | Time                                    | Received by: (Signature, | ,   |
| Relinquished by: |          |       |                                         | Date / | Time         | Bo2443601903<br>Received by: (Signat                      | ure)       | Re    | lingu      | ished         | by: /3     | Signat         | ure)   |              | Date /    | Time                                    | Received by: (Signature, | ,   |
| Relinguished by: | (Signati | ure)  |                                         | Date / |              | Received for Laborat<br>(Signature)                       | tory by:   | 5     | ра<br>[13] | 18 T          | ime<br>092 |                | Rema   | arks         |           |                                         |                          |     |

ution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2 to

**Jinator Field Files** 

0520

| U.S.                                              | Y              | CORPS    | OF         | ENG | NEERS        | CHAIN                                                                           | OF CUS                       | TOD | YR      | ECO                                     | RD             |                        |              |             |             | 00000                           |
|---------------------------------------------------|----------------|----------|------------|-----|--------------|---------------------------------------------------------------------------------|------------------------------|-----|---------|-----------------------------------------|----------------|------------------------|--------------|-------------|-------------|---------------------------------|
| PROJ. NO.<br>E0776<br>SAMPLERS: (S<br>STA. NO. DA | Signat         |          |            |     | Burn A!      | Fill<br>Vary<br>LOCATION                                                        | NO.<br>OF<br>CON-<br>TAINERS | 1   | "heredi | 100 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Seal a strange | The state of the South | Star the man | To mere att | 2           | REMARKS                         |
| \$13                                              | 48 0           | 9900     |            | ×   | mw-SHL-20    | -98-01                                                                          | 8                            | 2   | 1       | 1                                       | h              | Í.                     | 1            | 1           |             |                                 |
| slid                                              | 98 C           | 0900     |            | x   | mw-sHL-20M   | 5-98-01                                                                         | 5                            | 2   | 1       | t                                       | 1              |                        |              |             |             |                                 |
| 5/13/                                             | 198 0          | 900      |            | x   | mw-sitt- 20m | 50-98-01                                                                        | 4                            | 2   | 1       | 1                                       |                |                        |              |             |             |                                 |
| 5/13                                              | 195 0          | 0910     |            | x   | mw-546-11-   | 98-01                                                                           | 8                            | 2   | 1       | 1                                       | 1              | 1                      | 1            | 1           |             |                                 |
| sh                                                | 18/18          | 1140     |            | ×   | MW-SHL-19-   | 98-01                                                                           | 8                            | 2   | 1       | 1                                       | 1              | X.                     | 1            | 1           |             |                                 |
| sli                                               | 3/18           | 1145     |            | ×   | mw-sitl-4.   | -98-01                                                                          | 8                            | 2   | 1       | 1                                       | 1              | 1                      | L            | 1           |             |                                 |
| 5/1                                               | 3/10/          | 430      |            | ×   | mw-sitl - 3. | 98-01                                                                           | 8                            | 2   | 1       | 1                                       | 1              | 1                      | 1            | 1           |             |                                 |
|                                                   |                | 1505     |            | X   | mw-SHL-10    | 6-98-01                                                                         | 8                            | 2   | 1       | 1                                       | ι              | U                      | 1            | 1           |             |                                 |
| 5/13                                              | 198            | 1530     |            | ×   | MW-5HL-10    | - 98-01                                                                         | 8                            | 2   | 1       | 1                                       | 1              | 1                      | 1            | 1           |             | -                               |
| 5/13                                              | 198            |          |            | ×   | TRIP BLAN    | ik                                                                              | 1                            | 1   |         | -                                       | -              | -                      |              |             |             |                                 |
| Paul                                              | for            | mg       |            |     |              | »                                                                               |                              |     |         |                                         |                |                        |              |             |             |                                 |
| Paul                                              | Jo Jo          | Signatu  | 11re)<br>4 |     | Date / Time  | Received by: (Signatu<br>FebGRAL EXANS A<br>COOLER 1-800991<br>COOLER 2-8009914 | 188011 #3<br>475304<br>75526 | Re  | linqu   | shed                                    | by: /S         | Signat                 | ure)         |             | Date / Time | Received by: (Signature)        |
| Relinquished                                      | ₿ <b>₩</b> : ( | Signati  | ire)       |     | Date / Time  | Received by: (Signatu                                                           | ire)                         | Re  | linqu   | shed                                    | by:/S          | Signat                 | ure)         |             | Date / Time | Received by: <i>(Signature)</i> |
| Relinquished                                      | by: /          | /Signatu | ire)       |     | Date / Time  | Received for Laborato<br>(Signature)                                            | eler                         | 5   | Da      | te / T                                  | ime<br>Ø3      | ø                      | Rema         | rks         |             |                                 |

Distribution: Original Accompanies Shipment; Copy 1 to Sample Custodian; Copy 2 to Coordinator Field Files

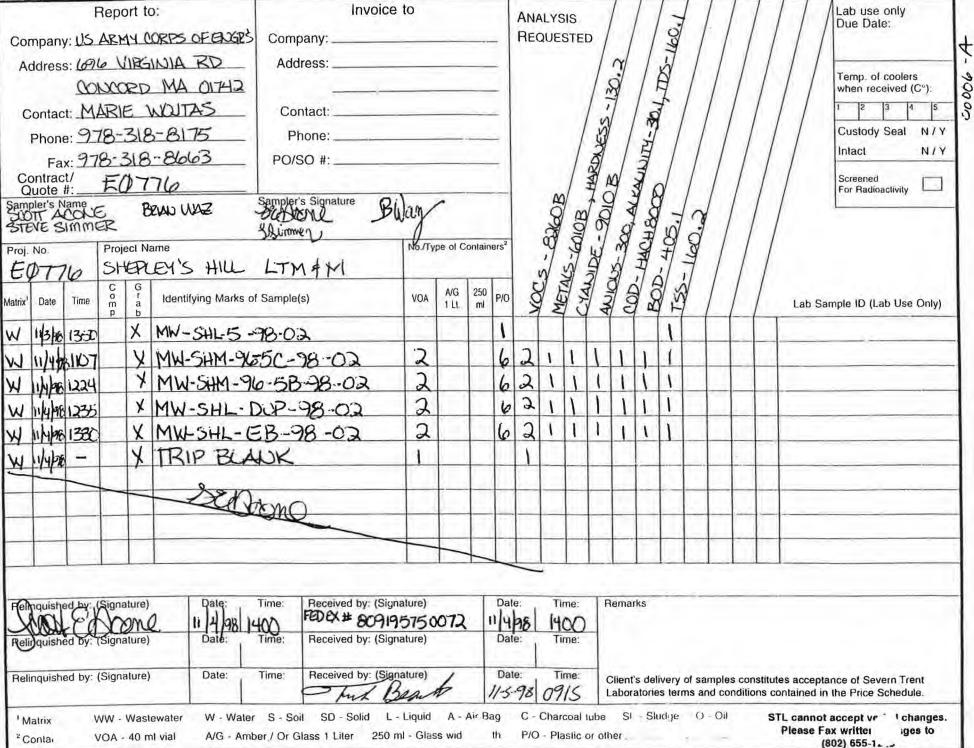
# Severn Trent Laboratories

55 South Park Drive, Colchester, VT 05446 Tel: (802) 655-1203

# CHAIN OF CUSTODY RECORD

٠

| 55 South Park Drive, Colcheste                     |                     |                    | -           | -         | -                | -       | -       | _             | _       | -           | -          | -          | _      | _     | CF      | IAIN    | OF C      | USTO              | DY RE                 | ECOR  |
|----------------------------------------------------|---------------------|--------------------|-------------|-----------|------------------|---------|---------|---------------|---------|-------------|------------|------------|--------|-------|---------|---------|-----------|-------------------|-----------------------|-------|
| Report to:                                         |                     | pice to            |             |           |                  | 1.00    |         | SIS           |         | 1           | 1          | 1:         | -      | 1     | 11      | 11      | 1         | Lab u<br>Due D    | se only<br>Date:      |       |
| Company: US ARMY (OCPS OF ENSES                    | Company:            |                    |             |           | -                | RE      | QUI     | ESTE          | ED      | /           | / /        | 19         | 4      | / )   | / /     | /       | / /       |                   | uio.                  |       |
| Address: 636 VIRGINIA RD                           | Address:            |                    |             |           | -                |         |         |               | /       | A           | 1          | The second |        | /     | 1       | 1       | / /       | -                 | 100                   |       |
| CONTORD MA 01742                                   |                     |                    |             |           | -                |         |         |               | 1       | đ           | 1          | 7          | 1      | 1     | /       | / /     | /         |                   | of coole<br>received  |       |
| Contact: MARIE WOJTAS                              | Contact:            |                    | _           |           |                  |         |         |               | 1       | 7           | 1          | Tran       | 1      | 1     | 11      | 1       | 1         | 1 2               | 3                     | 4 5   |
| Phone: 978-318-8175                                | Phone:              |                    |             |           | -                |         |         |               | 15      | Ý           | 1.         | 1          | /      | 1     | / /     | /       | /         | Custo             | dy Seal               | N/Y   |
| Fax: 978-318-8663<br>Contract/<br>Quote #:EØ776    | PO/SO #:            |                    |             |           | -                |         |         | /             | HARDES! |             | LIN        | ~          | /      | 1     | 1       | 11      | /         | Intact            |                       | N/Y   |
|                                                    | ampler's Signature  | -                  |             |           | -                |         |         | 1             | ₹.      | gy .        | \$         | a          | 1      | 1     | 1       | 11      |           | Screen<br>For Rad | ed<br>dioactivity     |       |
| ANDE B.WAZ                                         | Sampler's Signature | B. Way             | 3           | -         |                  |         | NO      | XX            | 78      | D.A.C.B.    | - HACH CAL | 9          | 1~     |       |         | /       |           | -                 |                       |       |
| j. No. Project Name                                | Same                | No /Ty             | pe of (     | Containe  | ers <sup>2</sup> |         | à       | 2             | ur      | 7           | A          | 4          | 2.001- | 1     |         | /       |           |                   |                       |       |
|                                                    | TM-1M               |                    |             |           |                  |         | 19      | 3             | 3       | 3           | 1          | 7          | F      | /     | /       | /       |           |                   |                       |       |
| x <sup>1</sup> Date Time C G<br>m a<br>P b         | Sample(s)           | VOA                | A/G<br>1 LL | 250<br>ml | P/O              | S       | No Biop | Curristicalor | ALINE   | AND JON AUB |            | Tech Tech  | Ś      | /     |         | 4       | Lab Sar   | nple ID (         | Lab Use               | Only) |
| 11/2# 1010 K MW-SHL=3-98                           | -02                 | 2                  |             |           | 4                | 2       | 1       | 1             | 1       | 1           | 1          | 1          |        |       | -       | T       |           |                   |                       | - 44  |
| 1/240 0755 X MW-5+1-93-1                           | 00-98-02            | 2                  |             |           | 6                | 2       | 1       | 1             | 1       | 1           | 1          | 1          |        |       | -       |         | 11-5      |                   |                       |       |
| 11/2/28 1120 K MW-SHL-10-7.                        | 5-02                | 2                  |             | 1         | 6                | 2       | 1       | 1             | 1       | 1           | 1          | T          |        |       |         | 1       |           |                   |                       |       |
| 4248 1203 × MW-SHL-19-98                           | -02                 | 2                  |             |           | 6                | 2       | 1       | 1             | 1       | 1           | 1          | 1          |        |       |         | -       |           |                   |                       |       |
| 11/2/48 1210 X MW-SHL-19-MS                        | -98-02              | 2                  |             |           | 3                | 2       | 1       | 1             | 1       |             |            |            |        | -     |         |         |           |                   |                       |       |
| 1/2/08/1210 10 MW-SHL19-MS                         |                     | 2                  |             |           | 2                | 3       | 1       | 1             |         | 1           |            | -          |        | ÷     | -       | -       |           |                   |                       |       |
| 11/2/18/1347 × MW-SHL-4-98                         |                     | 2                  | 1           |           | 6                | 2       | 1       | 1             | 1       | 1           | 1          | 1          |        | 0     |         |         |           |                   |                       |       |
| 1/2/201405 × MW-SHL-11-9                           | 8-02                | 2                  |             |           | 6                | 3       | 1       | T             | 1       | 1           | 1          | 1          |        | -     |         |         |           |                   |                       |       |
| 11/2/18/1500 × MW-SHL-20-9                         |                     | 2                  |             |           | 6                | 2       | 1       | i             | 1       | 1           | i          | t          | -      | -     | -       |         |           |                   |                       |       |
| 11/2/12 - N TRIP BLANK                             |                     | I                  |             |           | -                | ĩ       | -       | -             | 1       | -           | -          | -          | -      |       | -       |         |           |                   |                       |       |
|                                                    |                     | -1                 |             | 1         | -                |         |         | -             | -       |             |            | -          | 10 M   | _     |         | -       |           |                   |                       |       |
| inquished by (Signature) Pate: Ti                  | me: Received by: (S | ignature) <b>F</b> | 00          |           | Date             |         | Tir     | no            |         | emarl       |            |            |        |       |         |         |           |                   |                       | _     |
| tothe lippe 191                                    |                     |                    |             |           | zþ               | Geo 116 | 54      |               |         |             |            | m          | PD     | 5     | SHI     | PPE     | 5         |                   |                       |       |
|                                                    | me: Received by: (S | ignature)          |             |           | Dale             |         |         | ne:           |         | 5           | u          | in         |        |       | 201     | rrc     | V         |                   |                       |       |
| elinguished by: (Signature) Date: Ti               | me: Received by: (S | igenure            | 1           | -         | 14               | 2       | Tir     | ne            |         |             |            |            |        |       |         |         |           |                   |                       |       |
| Contract of the Contraction of the Contract of the | 11/1                | 11.                |             | 124       | 3/9              | 101     |         | 30            | C       | lient's     | deliv      | very o     | of sar | nples | constit | ules ac | ceptan    | ce of Sev         | vern Trer<br>Schedule | nt    |
|                                                    | 001                 | / / .              |             | 1011      | 2 11             | 0       | IM      | in            | 1 4     | autora      | tones      | stern      | is an  | u con | allions | COntair | hed in it | 10 Prince         | Schodul               |       |


| antel lu    | 340151   | 55       | Sout  | h Pa    | rk Drive, Colchester, VT 05446 Tel: (802) E                                                                    |           |             |           | -                |        | _   | _          |              | r    | -              | -         | T T   |      | HAI    | NOF     | CUST     |                           | ECORI    |
|-------------|----------|----------|-------|---------|----------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|------------------|--------|-----|------------|--------------|------|----------------|-----------|-------|------|--------|---------|----------|---------------------------|----------|
|             |          | F        | lepc  | ort to  | o: Invoid                                                                                                      | ce to     |             |           |                  | ANA    | LYS | IS         | 1            |      | 11             | -         | 1     | 1    | 1      | 11      |          | use only<br>Date:         |          |
| Соп         | pany     | USA      | Rm    | 4.00    | PROFENSES Company:                                                                                             |           |             |           | - 1              | REQ    | UES | STED       | >/           | 1    | /              | Traffican |       | /    | 11     | / /     | /        |                           |          |
| Ad          | dress    | : 69k    | s VI  | RGI     | NIA RD Address:                                                                                                |           |             |           | - 1              |        |     |            | 1            | N    | 1.             | I.        | 1     | 11   | / /    | 1       |          | a of some                 |          |
|             |          | CON      | 00    | PD      | MA 01742                                                                                                       |           |             |           | - 1              |        |     |            | 1 N          | 217  | / E            | 7         | / /   | 1    | 1      | 11      |          | p. of coole<br>n received |          |
| C           | ontac    | t: MA    | RIE   | , v     | Contact:                                                                                                       |           |             |           | -1               |        |     | 1          | 1            | 1    | 310,1          | r,        | / /   | /    | 1      | 11      | 1        | 2 3                       | 4 5      |
| F           | hone     | :97      | 8-3   | 318     | -8175 Phone:                                                                                                   |           | _           | -         | - 1              |        |     | 1          | S            | 1    | m              | /         | 1     | 1    | 11     |         | 1.1      | tody Seal                 |          |
|             |          |          |       |         | - 8603 PO/SO #:                                                                                                |           |             |           | -1               |        |     | 1          | OR DES       | 1    | E/             | 1         | 1     | / /  |        | /       | Inta     | cl                        | N/Y      |
| Co          | ntrac    |          |       |         | 76                                                                                                             |           |             |           |                  |        |     | 1          | 7 m          |      | 2/0            |           | 11    | /    | /      | /       |          | ened<br>Radioactivit      | , D      |
| mp          | er's N   | ame      |       |         | Samplar's Signatura                                                                                            | 9.4200    | Q           |           |                  |        | W   | m          | 19           | KEV  | 18             | 1         | 11    | /    |        | /       |          |                           |          |
| 45          | Solution | ier      |       | 3       | summers                                                                                                        |           |             |           |                  |        | 8   | g          | 3            | đ    | H              | J         | N     | 1    | 1      | /       |          |                           |          |
| oj. I       |          | _        |       | ect Na  | ame                                                                                                            | No./Ty    | pe ol C     | ontain    | ers <sup>2</sup> | 0      | ð   | A.         | 2.           | M.   | ¥ :            | Tigg      | ġ     | /    |        |         |          |                           |          |
| 20          | 771      | 0        |       | G       | LEYS HILL LTMAM                                                                                                |           | 1.57        |           |                  | v.     | 1   |            | E E          |      | 1              |           | 7 1   | / /  |        |         |          |                           |          |
| trix"       | Date     | Time     | Comp  | G r a b | Identifying Marks of Sample(s)                                                                                 | VOA       | A/G<br>1 LL | 250<br>ml | P/0              | VOCSAD | Met | CYAN TO DB | AUGA - JOIDE | 19   | BOD. THAN ECON | N         |       |      | 1      | Lab     | Sample I | D (Lab Us                 | se Only) |
| 1           | 1/3/18   | ORDO     |       | X       | MW-5HL-22-98-02                                                                                                | 2         |             |           | 6                | 2      | 1   | 1          | 1            | 1    | 1              | 1         |       |      |        | 1       |          |                           |          |
|             |          | 0740     |       | x       | MW-54M-96-22B-98-02                                                                                            | 2         |             |           | 6                | 2      | 1   | 1          | 1            | 1    | 1              | 1         |       |      |        | -       |          |                           |          |
|             |          | 1135     |       | X       | MW-5HM-93-220-98-02                                                                                            | 2         |             |           | 6                | 2      | 1   | 1          | 1            | 1    | 1              | 1         |       |      |        |         |          |                           |          |
|             |          | 1245     |       | ¥       | MW-5HL-9-78-02                                                                                                 | 2         |             | 1         | 0                | 2      | 1   | 1          | 1            | 1    | 1              | 1         | 0.111 |      |        | -       |          |                           |          |
|             |          | 1350     |       | x       | MW-SHL-5-98-02                                                                                                 | 2         |             |           | 5                | 2      | i   | 1          | 1            | 1    | 1              | Ĩ         |       |      |        |         |          |                           |          |
| - C - L - L | in the   |          |       | X       | TRIP BLANK                                                                                                     | 1         |             |           |                  | 1      |     |            |              |      |                |           |       |      |        |         |          |                           |          |
| *           | Pit      |          |       |         | The second s |           |             |           |                  |        | -   |            |              |      |                |           |       |      |        |         |          |                           |          |
| -           |          |          | -     | -       | Sconne                                                                                                         |           |             |           |                  |        |     |            |              |      |                |           |       | -    |        |         |          |                           |          |
| -           | -        |          |       |         | serve                                                                                                          |           |             | 1         |                  |        |     |            |              |      |                |           |       |      |        |         |          |                           |          |
| -           | -        |          | -     | 1       |                                                                                                                | -         | 1           |           |                  |        |     | -          |              |      |                |           |       |      |        | 1       |          |                           |          |
| -           |          | -        |       | -       |                                                                                                                | _1>       | 4           | -         | -                |        | -   | -          | -            |      |                | -         | L     | -4-  | -      | 1       |          |                           |          |
|             |          |          | -     |         |                                                                                                                |           |             |           | 0.1              |        | T   |            | 1.0          |      | 6.92           |           |       |      |        |         |          |                           |          |
| Reli        | nquish   | ed by:   | Signa | Alure)  | Date: Time: Received by: (S<br>11/398/15/5 #-809/95                                                            |           |             | ×         | Dale             |        | Tir |            | H            | emar | KS 1           |           | 00    |      |        |         |          |                           |          |
| AL.         | nquish   | ed by:   | Signa | ature)  |                                                                                                                |           | 4           |           | Date             |        |     | me:        |              |      |                |           | 0     | OL   | E      | 2       |          |                           |          |
|             |          |          |       |         |                                                                                                                |           |             | _         | 1                |        |     |            |              |      |                |           |       |      |        |         |          |                           |          |
| Reli        | nquish   | ed by: ( | Sign  | ature   | Date: Time: Received by: (S                                                                                    | ignature) | 6           |           | Dat<br>//-4-     |        |     | me:<br>15  |              |      |                |           |       |      |        |         |          | I Severn Trice Sche       |          |
|             | _        |          |       |         | - Link                                                                                                         | w         | /           | Air Bi    |                  | C - (  | _   | 10         | 1            |      |                |           |       | Sond | nona ( | Somamer |          | nce Sche                  |          |



## Severn Trent Laboratories

Severn Trent Laboratories 55 South Park Drive, Colchester, VT 05446 Tel: (802) 655-1203

#### CHAIN OF CUSTODY RECORD



# APPENDIX E

# QUALITY ASSURANCE REPORTS

Chemical Quality Assurance Report Spring 1998

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-110998

PREPARED BY THE ENVIRONMENTAL ENGINEERING AND GEOLOGY SECTION ENGINEERING/PLANNING DIVISION

DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

**NOVEMBER 9, 1998** 

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-110998

# TABLE OF CONTENTS

| Paragraph | Title                                                      | Page |
|-----------|------------------------------------------------------------|------|
|           | Executive Summary                                          | 1    |
|           | Table 1- Data Comparison Summary                           | 2    |
|           | Table 2 - Analyses Performed by QA Laboratory              | 3    |
| 1.        | QA sample shipping and chain-of-custody deficiencies       | 4    |
| 2.        | Data comparison for volatiles by Method 8260               | 4-5  |
| 3.        | Data comparison for metals by Method 6010 and 7470         | 5    |
| 4.        | Data comparison for cyanide by Method 9010B                | 6    |
| 5.        | Data comparison for anions by Method 300.0                 | 6    |
| 6.        | Data comparison for COD and BOD by Method 410.4 and 405.1  | 6-7  |
| 7.        | Data comparison for alkalinity by Method 310.1             | 7    |
| 8.        | Data comparison for hardness by Method 130.2               | 7-8  |
| 9.        | Data comparison for TDS and TSS by Methods 160.1 and 160.2 | 8    |
| 10.       | References                                                 | 8    |
|           | Appendix A - Key to comments on Data Comparison Code       |      |
|           | Appendix B - Data Comparison Tables                        |      |
|           | Appendix C - Custody Documentation                         |      |

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-110998

### **Executive Summary**

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 81 target analyte determinations. The data report from ITS (Intertek Testing Services) Environmental Laboratories, Inc., dated 04 June 1998 was used in the comparison. In 28 of these determinations analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 9a). The primary and QA samples agreed overall in 80 (99%) of the comparisons. Primary and QA samples agreed quantitatively in 27 out of 28 (96%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. There were major discrepancies between results from the primary and QA samples in 1 (1.2%) of the comparisons and no minor discrepancies in any of the comparisons. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's QC data contained all of the necessary information and a complete evaluation was performed. All of the data comparisons for Methods VOA's-8260, TAL Metals-6010, CN, Anions, COD, Alkalinity, Total Hardness, TDS and TSS were in 100% overall and quantitative agreement. The only major discrepancy that occurred in sample MW-SHL-5BQA-98-01 in which the QA laboratory reported BOD at 150 mg/L and the primary laboratory reported < 2.0 mg/L. The only explanation why there was such a major difference in the BOD levels could possibliy be due to contamination of the low flow sampling pump with isopropyl aclohol during the decontamination process. The pump is rinsed with isopropyl alcohol and then flushed with deionized water prior to sampling a new well. Trace amounts of isopropyl alcohol could have elevated the BOD result. Besides the BOD discrepancy, the quantitative results compared almost identically for all of the target analytes that were reported as hits.

The primary laboratory's data report contained all of the necessary information and a complete evaluation was performed. There were 47 volatile compounds that were analyzed by both laboratories. The comparison of the volatile target analytes detected by both laboratories was excellent in 14 out of 14 cases. The primary laboratory was requested to check their BOD data for a possible error, but no obvious errors were noted.

QA analyses were performed by Quanterra Environment, Services, West Sacramento, CA (see Table 2 for analyses performed by the QA lab). The primary laboratory was Intertek Testing Services Environmental Laboratories, Colchester, VT.

# <u>Table 1</u> <u>Quality Assurance Split Sample</u> <u>Data Comparison Summary</u>

# Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts

| Test       | Overall<br>Agreement | : (1)   | Quantitati<br>Agreemen |         |
|------------|----------------------|---------|------------------------|---------|
| Parameter  | Number               | Percent | Number                 | Percent |
| voc        | 47/47                | 100     | 6/6                    | 100     |
| METALS     | 23/23                | 100     | 14/14                  | 100     |
| CYANIDE    | 1/1                  | 100     | 1/1                    | 100     |
| ANIONS     | 4/4                  | 100     | 2/2                    | 100     |
| COD        | 1/1                  | 100     | 1/1                    | 100     |
| BOD        | 0/1                  | 0       | 0/1                    | 0       |
| ALKALINITY | 1/1                  | 100     | 1/1                    | 100     |
| HARDNESS   | 1/1                  | 100     | 1/1                    | 100     |
| TDS        | 1/1                  | 100     | 1/1                    | 100     |
| TSS        | 1/1                  | 100     | 1/1                    | 100     |
| Total      | 80/81                | 99      | 27/28                  | 96      |

## NOTES:

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

# TABLE 2

i.

# QA ANALYSES PERFORMED

| SAMPLE ID         | MATRIX | SAMPLE DATE | ANALYSIS                                                  |
|-------------------|--------|-------------|-----------------------------------------------------------|
| MW-SHL-5BQA-98-01 | WATER  | 05/11/98    | VOC,METALS,CN,ANIONS,<br>COD,BOD,ALK,HARDNESS,<br>TDS,TSS |
| TRIP BLANK        | WATER  | 05/11/98    | VOC                                                       |

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

## CHEMICAL QUALITY ASSURANCE REPORT No. E0776-110998

## **QA** Findings

## 1. QA sample shipping and chain-of-custody deficiencies.

One shipment of QA samples was received by Quanterra Environmental Services on 05/12/98. Proper sample handling protocols were followed for this shipment except there was no cooler receipt form provided.

A copy of the chain-of-custody form document is appended to this report for reference.

## 2. Data comparison for volatiles (VOC) by Method 8260.

There were 47 volatile determinations. In six of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 47 (100%) of the cases and quantitative agreement in six out of six (100%) of the cases. No major or minor data discrepancies were noted.

The QA laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank and the trip blank were free of contamination above the reporting limit for all of the target analytes. All of the samples, LCS/LCSD's, method blank, and trip blank's surrogates recoveries were within the acceptance limits. All of the LCS/LCSD's target analytes were also within the acceptance limits for accuracy and precision. The QA laboratory only spiked five of the target analytes into the LCS/LCSD. All of the samples were analyzed within the required holding times.

The primary laboratory QC data contained all the necessary information and a complete evaluation was performed. The method blank and the trip blank were free of contamination above the laboratory reporting limit for all of the target analytes. The surrogates for both the samples and the laboratory QC were all within the acceptance limits. The primary laboratory reported that the MS/MSD's performed on sample MW-SHL-20-98-01 were within the acceptance limits for all 70 target analytes and only two out of 140 target analytes recoveries were outside the acceptance limits. Only the compound 2-chloroethyl vinyl ether, was outside the acceptance limit in the MS/MSD. This analyte was not found in any of the samples. All of the target analytes in the LCS were also within the acceptance limits. All of the sample were analyzed within the required holding times. The primary laboratory was also requested by the

USACE project chemist Marie Wojtas, to report the presents of tentatively identified compounds (TIC's) and report the sample ID and the number of TIC's in the case narrative. The following samples had tentatively identified compounds (TIC's):

| MW-SHL-5B  | 2 early TIC's              |
|------------|----------------------------|
| MW-SHL-DUP | 2 early TIC's              |
| MW-SHL-EB  | 1 TIC's, isopropyl alcohol |
| MW-SHL-22B | 1 early TIC                |
| MW-SHL-22  | 2 early TIC's              |
| MW-SHL-20  | 2 early TIC's              |
| MW-SHL-11  | 1 early TIC                |

The only QA sample, MW-SHL-5B-98-01, was reported to contain two early TIC's in the total ion chromatogram. These two tentatively identified compounds would need further qualitative investigation by GC/MS to give a possible mass spectral library identification. Isopropyl alcohol in the MW-SHL-EB-98-01 (equipment blank) was most likely due to the field decontamination process.

#### 3. Data comparison for TAL metals by Method 6010 and mercury by Method 7470.

There were 23 metals determinations. In 14 of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 23 (100%) of the cases and quantitative agreement in 14 out of 14 (100%) of the cases. No major or minor data discrepancies were noted.

The primary laboratory's QC data report contained all of the necessary QC information and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The primary laboratory reported that the LCS recoveries were within the acceptance limits for all of the target analytes. All of the spike levels were appropriately indicated on the all of the QC reports. All of the samples were analyzed within the required holding times.

The QA laboratory's QC data were within the acceptance limits for all the target analytes and a complete evaluation was performed. The method blanks for both the water and the soil matrices were free of contamination above the reporting limits. The QA laboratory reported that the LCS/LCSD were within the acceptance limits for both accuracy and precision. All of the spike levels were appropriately indicated on all of the QC reports. The QA laboratory reported all of the metals by Method 6010 Trace-ICP, except for mercury which was analyzed by Method 7470-Hg Cold Vapor. All of the samples were analyzed within the required holding times.

#### 4. Data comparison for total cyanide by Method 9010B.

There was one cyanide determination. There was 100% overall agreement in that cyanide was not detected by either laboratory. No major or minor data discrepancies were noted.

The primary laboratory's QC data were within the acceptance limits for cyanide and a complete evaluation was performed. The method blank was free of contamination above the laboratory reporting limit. The LCS's recovery was within the acceptance limits. The primary laboratory reported that the recovery of the low level independent calibration verification, at 77 percent, was below the laboratory control limits of 90 to 110 percent. This may indicate some low bias to the results. The sample was analyzed within the required holding time.

All of the QA laboratory's QC data were within acceptance limits and a complete evaluation was performed. The method blank was free of contamination above the laboratory's reporting limit. The LCS's recovery was within the acceptance limits. The QA laboratory analyzed the sample by modified Method 9012B, instead of Method 9010B as indicated on the chain of custody. The sample was analyzed within the required holding time.

#### 5. The data comparison for anions by Method 300.0.

There were four anion determinations. In two of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in two out of two (100%) of the cases. No major or minor data discrepancies were noted.

The QA laboratory's QC data were all within the acceptance limits and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The LCS/LCSD were within the acceptance limits for both accuracy and precision and the spiking levels were also indicated. The MS/MSD were also within the acceptance limits for accuracy and precision for chloride, nitrate and sulfate. All of the samples were analyzed within the required holding times.

The primary laboratory's QC data were all within the acceptance limits and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The LCS recoveries were within the acceptance limits. The primary laboratory did not report any MS/MSD results. All of the samples were analyzed within the required holding times.

# 6. Data comparison for COD by Method 410.4 and BOD by Method 405.1.

There was one COD and one BOD determination. In the COD determination, there was 100% overall and quantitative agreement. In the BOD determination there was zero out of one (0%) agreement and 0% quantitative agreement. The major BOD discrepancy occurred in sample

MW-SHL-5BQA-98-01 in which the QA laboratory reported the BOD result at 150 mg/L and the primary laboratory reported < 2.0 mg/L.

The primary laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank was free of contamination for both the COD and BOD results above the laboratory reporting limit. The LCS recoveries for COD and BOD were both within the acceptance limits. The primary laboratory did not report any MS/MSD's results. The samples were analyzed within the required holding times.

The QA laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The LCS/LCSD's were within the acceptance limits for both accuracy and precision. All of the samples were analyzed within the required holding times of 48 hours. The QA laboratory's contracted lab (CLS Labs) reported a high result that may possibly be due to contamination of the low flow sampling pump with isopropyl alcohol during the decontamination process. Isopropyl alcohol was also detected as a TIC in a non-QA equipment rinse sample in the VOC analysis. This may be a possible explanation for this major discrepancy.

## 7. The data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. In this one determination there was 100% overall and 100% quantitative agreement. No major or minor discrepancies were noted.

The QA laboratory's QC data was within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The QA laboratory reported that the LCS/LCSD's and the MS/MSD's were within the acceptance limits for both accuracy and precision. All of the samples were analyzed within the required holding times.

The primary laboratory's QC data was within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The primary laboratory reported that the LCS was within the acceptance limits. There was no MS/MSD data reported and no evaluation could be made on precision and accuracy. All of the samples were anlayzed within the required holding times.

#### 8. Data comparison for total hardness by Method 130.2.

There was one hardness determination. In this one determination, there was 100% overall and 100% quantitative agreement. No major or minor discrepancies were noted.

The QA laboratory's QC data was within the acceptance limit for hardness and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The QA laboratory reported that the LCS/LCSD's and the MS/MSD's were

within the acceptance limits for both accuracy and precision. All of the samples were analyzed within the required holding times.

The primary laboratory's QC data was within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The primary laboratory reported that the LCS was within the acceptance limits. There was no MS/MSD data reported and no evaluation could be made on precision and accuracy. The primary laboratory analyzed for total hardness by method 314A instead of method 130.2 that was requested on the chain of custody. All of the samples were anlayzed within the required holding times.

## 9. Data comparison for TDS by Method 160.1 and TSS by Method 160.2.

There was one TDS and one TSS determination. In both the TDS and TSS determinations, there was 100% overall and quantitative agreement. No major or minor data discrepancies were reported.

The primary laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The LCS recoveries for TDS and TSS were both within the acceptance limits. The samples were analyzed within the required holding times.

The QA laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blanks for TDS and TSS were free of contamination above the laboratory reporting limit. The LCS/LCSD's were within the acceptance limits for both accuracy and precision. The QA laboratory reported that the matrix spike and the matrix duplicate for TDS were within the acceptance limits. Only a matrix duplicate was reported for the TSS and the replicates were within the acceptance limits. All of the samples were analyzed within the required holding times.

## 10. References.

a. Data Report for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by, Intertek Testing Services, dated 4 June 1998.

b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.

# APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

0 - Data agrees if any one of the following apply:

- both values are less than respective detection limit (N<MDL)

- N1<MDL1 and N2>MDL2 but <MDL1\*

- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in soil: <2X difference

For **all** other **soil** analyses: ≤4X difference

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

3 - Minor data discrepancy, disagreement not serious, if any one of the following apply:

-  $N_1$ <MDL<sub>1</sub> and  $N_2$ >MDL<sub>2</sub> and the difference between values  $N_2$  \* does not exceed the upper limit (described below) defining a minor data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil: 2X<difference≤3X

For **all** other **soil** analyses: 4X<difference≤5X

4 - Major data discrepancy, disagreement serious, if any one of the following apply:

-  $N_1 < MDL_1$  and  $N_2 > MDL_2$  and the difference between values  $N_2$  and  $MDL_1^*$  exceeds the limit (described below) defining a major data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil: >3X difference • For all other soil analyses: >5X difference

MDL = Method Detection Limit
N = Analytical result
\* - not all < values are MDLs. Values which are not MDLs will be noted.</li>

Key to data qualifiers:

B - detected in method blank
DO - Diluted out
J - estimated value, above MDL but below practical quantitation limit
NA - Not analyzed
ND - Not detected
NR - Not reported

QA SAMPLE NO .: QA FIELD ID: QA ANALYSIS DATE: ANALYSIS METHOD: QA LABORATORY:

63

099120-0001-SA MW-SHL-5BQA-98-01 5-24-98 8260B QUANTERRA

PRIMARY LAB ID NO .: 357538 CONTRACTOR'S FIELD ID: PRIMARY LAB'S ANALYSIS DATE: 5-20-98 ANALYSIS METHOD: 8260B PRIMARY LABORATORY: ITS

DEATE TO

MW-SHL-5B-98-01

| MATERIAL DESCRIPTION: | WATER   |
|-----------------------|---------|
| DATE SAMPLED:         | 5-11-98 |
| UNITS:                | ug/L    |

----

|                            |              | RESULT | S                   | RESULTS     | 1                  |
|----------------------------|--------------|--------|---------------------|-------------|--------------------|
| PARAMETER                  | QA LAB<br>RL | QA LAI | 3 PRIMARY LAB<br>RL | PRIMARY LAB | COMPARISON<br>CODE |
| Dichlorodifluoromethane    |              | 1.5    | < 5.0               |             | 0                  |
| Chloromethane              | < 1.0        |        | < 5.0               |             | 0                  |
| Vinyl chloride             | < 1.0        |        | < 5.0               |             | 0                  |
| Bromomethane               | < 1.0        |        | < 5.0               |             | 0                  |
| Chloroethane               |              | 2.4    | < 5.0               |             | 0                  |
| Trichlorofluoromethane     | < 1.0        |        | < 5.0               |             | 0                  |
| Acrolein                   | NR           |        | < 10                |             |                    |
| Feron TF                   | NR           |        | < 5.0               |             |                    |
| 1,1-Dichloroethene         | < 1.0        |        | < 5.0               |             | 0                  |
| Acetone                    | < 10         |        | < 10                |             | 0                  |
| Methyl Iodide              | NR           |        | < 10                |             |                    |
| Carbon disulfide           | NR           |        | < 5.0               |             |                    |
| Allyl Chloride             | NR           |        | < 10                |             |                    |
| Methylene Chloride         | < 1.0        |        | < 5.0               |             | 0                  |
| Acrylonitrile              | NR           |        | < 10                |             |                    |
| trans-1,2-Dichloroethene   | < 1.0        |        | < 5.0               |             | 0                  |
| 1,2-Dichloroethene (total) | NR           |        |                     | 3.0 J       |                    |
| Methyl-t-Butyl Ether       | NR           |        |                     | 1.8 J       |                    |
| 1,1-Dichloroethane         |              | 2.5    |                     | 2.7 J       | 0                  |
| Vinyl acetate              | NR           |        | < 10                |             |                    |
| Chloroprene                | NR           |        | < 10                |             |                    |
| cis-1,2-Dichloroethene     |              | 3.3    |                     | 2.9 J       | 0                  |
| 2-Butanone                 | < 10         |        | < 10                |             | 0                  |
| Propionitrile              | NR           |        | < 10                |             |                    |
| Methacrylonitrile          | NR           |        | < 5.0               |             |                    |
| Bromochloromethane         | < 1.0        |        | < 5.0               |             | 0                  |
| Tetrahydrofuran            | NR           |        | < 250               |             |                    |
| Chloroform                 | < 1.0        |        | < 5.0               |             | 0                  |
| 1,1,1-Trichloroethane      | < 1.0        |        | < 5.0               |             | 0                  |
| Carbon Tetrachloride       | < 1.0        |        | < 5.0               |             | 0                  |
| Isobutyl Alcohol           | NR           |        | < 250               |             |                    |
| Benzene                    |              | 1.4    |                     | 1.5 J       | 0                  |
| 1,2-Dichloroethane         | < 1.0        |        | < 5.0               |             | 0                  |
| Trichloroethene            | < 1.0        |        | < 5.0               |             | 0                  |
| 1,2-Dichloropropane        | < 1.0        |        | < 5.0               |             | 0                  |
| Methyl Methacrylate        | NR           |        | < 5.0               |             |                    |
| Dibromomethane             | < 1.0        |        | < 5.0               |             | 0                  |
| 1,4-Dioxane                | NR           |        | < 250               |             |                    |
| Bromodichloromethane       | < 1.0        |        | < 5.0               |             | 0                  |
| 2-Chloroethyl Vinyl Ether  | NR           |        | < 10                |             |                    |
| cis-1,3,-Dichloropropene   | < 1.0        |        | < 5.0               |             | 0                  |
| 4-Methyl-2-pentaone        | < 10         |        | < 10                |             | 0                  |
| Toluene                    | < 1.0        |        | < 5.0               |             | Ő                  |
| trans-1,3-Dichloropropene  | < 1.0        |        | < 5.0               |             | Ő                  |
| Ethyl Methacrylate         | NR           |        | < 10                |             |                    |
| 1,1,2-Trichloroethane      | < 1.0        |        | < 5.0               |             | 0                  |

#### COMPARISON OF QA & CONTRACTOR RESULTS- continued page 2. PROJECT: Project No. E0776. Shepley's Hill Landfill

QA SAMPLE NO.: QA FIELD ID: QA ANALYSIS DATE: ANALYSIS METHOD: QA LABORATORY: 099120-0001-SAPRIMARY LAB ID NO.:357538MW-SHL-5BQA-98-01CONTRACTOR'S FIELD ID:MW-SHL-5B-98-015-24-98PRIMARY LAB'S ANALYSIS DATE:5-20-988260BANALYSIS METHOD:8260BQUANTERRAPRIMARY LABORATORY:ITS

|                             |              | L DESCRIPTIO<br>ATE SAMPLED<br>UNITS: |                   |                        |                    |
|-----------------------------|--------------|---------------------------------------|-------------------|------------------------|--------------------|
| PARAMETER                   | QA LAB<br>RL | RESULTS<br>QA LAB                     | PRIMARY LAB<br>QL | RESULTS<br>PRIMARY LAB | COMPARISON<br>CODE |
| Tetrachloroethene           | < 1.0        |                                       | < 5.0             |                        | 0                  |
| 2-Hexanone                  | NR           |                                       | < 10              |                        | - C                |
| Dibromochloromethane        | < 1.0        |                                       | < 5.0             |                        | 0                  |
| 1,2-Dibromoethane           | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Chlorobenzene               | < 1.0        |                                       | < 5.0             |                        | 0                  |
| 1,1,1,2-Tetrachloroethane   | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Ethyl Benzene               | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Xylene (total)              | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Styrene                     | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Bromoform                   | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Isopropylbenzene            | < 1.0        |                                       | < 5.0             |                        | 0                  |
| cis-1,4-Dichloro-2-butene   | NR           |                                       | < 5.0             |                        |                    |
| 1,1,2,2-Tetrachloroethane   | < 1.0        |                                       | < 5.0             |                        | 0                  |
| 1,2,3-Trichloropropane      | < 1.0        |                                       | < 5.0             |                        | 0                  |
| trans-1,4-Dichloro-2-butene | NR           |                                       | < 5.0             |                        |                    |
| 1,3-Dichlorobenzene         | < 1.0        | 1.2                                   | < 5.0             |                        | 0                  |
| 1,4-Dichlorobenzene         |              | 1.2                                   | < 5.0             |                        | 0                  |
| 1,2-Dichlorobenzene         | < 1.0        |                                       | < 5.0             |                        | 0                  |
| 1,2-Dibromo-3-Chloropropane | < 1.0        |                                       | < 10              |                        | 0                  |
| 1,2,4-Trichlorobenzene      | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Hexachlorobutadiene         | < 1.0        |                                       | < 5.0             |                        | 0                  |
| Naphthalene                 | < 1.0        |                                       | < 5.0             |                        | 0                  |

| SURROGATE RI      | ECOVERIES (%)     |     |                                 |         |  |
|-------------------|-------------------|-----|---------------------------------|---------|--|
|                   |                   | QA  | 19                              | PRIMARY |  |
| 1,2-Dichloroethar | ue-d4 (75-121)    | 110 | Toluene D8 (88-110)             | 100     |  |
| Toluene-d8        | (85-111)          | 108 | 1.2-Dichloroethane-d4 (72-141)  | 96      |  |
| p-Bromofluorobe   | nzene (81-117)    | 96  | Bromofluorobenzene (72-122)     | 104     |  |
|                   | COLORIDA NEW YORK |     | 1.2-Dichlorobenzene-d4 (69-124) | 96      |  |

SEE APPENDIX A FOR KEY TO COMMENTS \* = SURROGATE RECOVERY OUTSIDE ACCEPTABLE RANGE NR= NOT REPORTED

QA SAMPLE NO.: QA FIELD ID: QA ANALYSIS DATE: ANALYSIS METHOD: QA LABORATORY: 099120-0001-SA MW-SHL-5BQA-98-01 5-14-98;Hg-5-18-98 6010;Hg-7470 QUANTERRA PRIMARY LAB ID NO.: 33 CONTRACTOR'S FIELD ID: M PRIMARY LAB'S ANALYSIS DATE: 55 ANALYSIS METHOD: 66 PRIMARY LABORATORY: 1

357538 MW-SHL-5B-98-01 5-15-98 6010;Hg-7470 ITS

|           | 1. 1. T. D. T. D. T. | L DESCRIPTIO<br>ATE SAMPLED<br>UNITS: |                   |             |                    |
|-----------|----------------------------------------------------------|---------------------------------------|-------------------|-------------|--------------------|
|           |                                                          | RESULTS                               |                   | RESULTS     |                    |
| PARAMETER | QA LAB<br>RL                                             | QA LAB                                | PRIMARY LAB<br>RL | PRIMARY LAB | COMPARISON<br>CODE |
| Aluminum  | < 100                                                    |                                       |                   | 49.2        | 0                  |
| Antimony  | < 5.0                                                    |                                       | < 10.7            |             | 0                  |
| Arsenic   |                                                          | 4100                                  |                   | 4300        | 0                  |
| Barium    |                                                          | 61                                    |                   | 63.5        | 0                  |
| Beryllium | < 2.0                                                    |                                       | < 0.30            |             | 0                  |
| Cadmium   | < 2.0                                                    |                                       | < 0.70            |             | 0                  |
| Calcium   |                                                          | 104000                                |                   | 108000      | 0                  |
| Chromium  | < 5.0                                                    |                                       |                   | 3.3         | 0                  |
| Cobalt    |                                                          | 17                                    |                   | 16.6        | 0                  |
| Copper    | < 10                                                     |                                       | < 3.4             |             | 0                  |
| Iron      |                                                          | 35900                                 |                   | 39700       | 0                  |
| Lead      | < 3.0                                                    |                                       | < 2.6             |             | 0                  |
| Magnesium |                                                          | 15600                                 |                   | 16400       | 0                  |
| Manganese |                                                          | 11000                                 |                   | 10100       | 0                  |
| Mercury   | < 0.20                                                   |                                       | < 0.10            |             | 0                  |
| Nickel    |                                                          | 18                                    |                   | 18.3        | 0                  |
| Potassium |                                                          | 9800                                  |                   | 10600       | 0                  |
| Selenium  | < 5.0                                                    |                                       |                   | 5.1         | 0                  |
| Silver    | < 5.0                                                    |                                       | < 2.6             |             | 0                  |
| Sodium    |                                                          | 42600                                 |                   | 45700       | 0                  |
| Thallium  | < 10                                                     |                                       | < 6.7             |             | 0                  |
| Vanadium  | < 5.0                                                    |                                       | < 5.2             |             | 0                  |
| Zinc      |                                                          | 32                                    |                   | 39.9        | 0                  |

| QA SAMPLE NO.:<br>QA FIELD ID:<br>QA ANALYSIS DATE:<br>ANALYSIS METHOD:<br>QA LABORATORY: | 099120-0001<br>MW-SHL-51<br>5-14-98<br>9012 Modifi<br>QUANTERF | BQA-98-01<br>ed                          | PRIMARY LAB ID NO.:<br>CONTRACTOR'S FIELD ID:<br>PRIMARY LAB'S ANALYSIS DATE:<br>ANALYSIS METHOD:<br>PRIMARY LABORATORY: |                    |  | 357538<br>MW-SHL-5B-98-01<br>5-13-98<br>9010B<br>ITS |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|--|------------------------------------------------------|--|
|                                                                                           |                                                                | L DESCRIPTION:<br>ATE SAMPLED:<br>UNITS: | WATER<br>5-11-98<br>ug/L                                                                                                 |                    |  |                                                      |  |
| PARAMETER                                                                                 | QA LAB<br>RL                                                   | RESULTS<br>QA LAB                        | PRIMARY LAB<br>RL                                                                                                        | RESULTS<br>PRIMARY |  | COMPARISON<br>CODE                                   |  |
| Total Cyanide, CN                                                                         | < 10                                                           |                                          | < 5.0                                                                                                                    |                    |  | 0                                                    |  |

| QA SAMPLE NO .:      | 099120-0001  | 1-SA           | PRIMARY L         | AB ID NO .:     | 35753   | 8                  |  |
|----------------------|--------------|----------------|-------------------|-----------------|---------|--------------------|--|
| QA FIELD ID:         | MW-SHL-51    | BQA-98-01      | CONTRACTOR'S      | FIELD ID:       | MW-S    | SHL-5B-98-01       |  |
| QA ANALYSIS DATE:    | 5-12-98      |                | PRIMARY LAB'S ANA | LYSIS DATE:     | 5-13-98 |                    |  |
| ANALYSIS METHOD:     | Anions by 30 | 0.00           | ANALYSIS          | Anions by 300.0 |         |                    |  |
| QA LABORATORY:       | QUANTERI     | RA             | PRIMARY LABO      | ORATORY:        | ITS     |                    |  |
|                      | MATERIA      | L DESCRIPTION: | WATER             |                 |         |                    |  |
|                      | DA           | TE SAMPLED:    | 5-11-98           |                 |         |                    |  |
|                      |              | UNITS:         | mg/L              |                 |         |                    |  |
|                      |              | RESULTS        |                   | RESULTS         | -       | C. C. Cont         |  |
| PARAMETER            | QA LAB<br>RL | QA LAB         | PRIMARY LAB<br>RL | PRIMARY         | LAB     | COMPARISON<br>CODE |  |
| Chloride, Cl         |              | 62.0           |                   | 64.3            |         | 0                  |  |
| Nitrate, as N        | < 0.050      |                | < 0.1             |                 |         | 0                  |  |
| Orthophosphate, as P | < 0.20       |                | < 0.1             |                 |         | 0                  |  |
| Sulfate, SO4         |              | 3.1            |                   | 3.1             |         | 0                  |  |
|                      |              |                |                   |                 |         |                    |  |

|             | 18.8                                                                      |                                                                                                                                           | 29                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RL          |                                                                           | RL                                                                                                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | CODE                                                                                                                                                                                                                                                                                                                                                                         |  |
| QA LAB      | QA LAB                                                                    | PRIMARY LAB                                                                                                                               | PRIMARY                                                                                                                                                                                                                          | LAB                                                                                                                                                                                                                                                                                                                                      | COMPARISO                                                                                                                                                                                                                                                                                                                                                                    |  |
|             | RESULTS                                                                   | Construction Street Construction                                                                                                          | RESULTS                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          | Construction and the                                                                                                                                                                                                                                                                                                                                                         |  |
|             | UNITS:                                                                    | mg/L                                                                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |  |
| DA          |                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |  |
|             |                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |  |
| MATERIAL    | DESCRIPTIO                                                                | NI. WATED                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |  |
| QUANTERR    | A                                                                         | PRIMARY LAP                                                                                                                               | BORATORY:                                                                                                                                                                                                                        | ITS                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                              |  |
|             |                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | -COD                                                                                                                                                                                                                                                                                                                                                                         |  |
|             |                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          | The second se                                                                                                                                                                                                                                                              |  |
|             | SQA-98-01                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                  | MW-SHL-5B-98-01                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |  |
| 099120-0001 | -SA                                                                       | LAB ID NO .:                                                                                                                              | 35753                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                              |  |
|             | MW-SHL-5E<br>5-15-98<br>410.4-COD<br>QUANTERR<br>MATERIAI<br>DA<br>QA LAB | MW-SHL-5BQA-98-01<br>5-15-98<br>410.4-COD<br>QUANTERRA<br>MATERIAL DESCRIPTIO<br>DATE SAMPLED:<br>UNITS:<br>RESULTS<br>QA LAB<br>RL<br>RL | MW-SHL-5BQA-98-01 CONTRACTORS<br>5-15-98 PRIMARY LAB'S AN<br>410.4-COD ANALYSIS<br>QUANTERRA PRIMARY LAB<br>MATERIAL DESCRIPTION: WATER<br>DATE SAMPLED: 5-11-98<br>UNITS: mg/L<br>RESULTS<br>QA LAB QA LAB PRIMARY LAB<br>RL RL | MW-SHL-5BQA-98-01     CONTRACTOR'S FIELD ID:       5-15-98     PRIMARY LAB'S ANALYSIS DATE:       410.4-COD     ANALYSIS METHOD:       QUANTERRA     PRIMARY LABORATORY:       MATERIAL DESCRIPTION:     WATER       DATE SAMPLED:     5-11-98       UNITS:     mg/L       RESULTS       QA LAB     QA LAB       PRIMARY LAB     PRIMARY | MW-SHL-5BQA-98-01     CONTRACTOR'S FIELD ID:     MW-S       5-15-98     PRIMARY LAB'S ANALYSIS DATE:     5-14-5       410.4-COD     ANALYSIS METHOD:     410.4       QUANTERRA     PRIMARY LABORATORY:     ITS       MATERIAL DESCRIPTION:     WATER       DATE SAMPLED:     5-11-98       UNITS:     mg/L       RESULTS     RESULTS       QA LAB     QA LAB       RL     RL |  |

### SEE APPENDIX A FOR KEY TO COMMENTS

.

÷ .

|     |                        |               | 4.1                                                                                                              |                  | Section 201  |                 |                         |  |
|-----|------------------------|---------------|------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----------------|-------------------------|--|
|     | QA SAMPLE NO .:        | 099120-0001   | I-SA                                                                                                             | PRIMARY          | LAB ID NO .: | 35753           | 8                       |  |
|     | QA FIELD ID:           | MW-SHL-5H     | 3QA-98-01                                                                                                        | CONTRACTOR'S     | S FIELD ID:  | MW-SHL-5B-98-01 |                         |  |
|     | QA ANALYSIS DATE:      | 5-14-98       |                                                                                                                  | PRIMARY LAB'S AN | ALYSIS DATE: | 5-19-9          | 98                      |  |
|     | ANALYSIS METHOD:       | 310.1 Total A | Alkalinity as Ca                                                                                                 | CO3 ANALYSI      | S METHOD:    | 310.1           | Total Alkalinity as CaC |  |
|     | QA LABORATORY:         | QUANTERF      | and the second | PRIMARY LAI      | BORATORY:    | ITS             |                         |  |
|     |                        | MATERIA       | L DESCRIPTIO                                                                                                     | N: WATER         |              |                 |                         |  |
|     |                        | DA            | TE SAMPLED                                                                                                       | 5-11-98          |              |                 |                         |  |
|     |                        |               | UNITS:                                                                                                           | mg/L             |              |                 |                         |  |
|     |                        |               | RESULTS                                                                                                          |                  | RESULTS      |                 | 1000                    |  |
|     | PARAMETER              | QALAB         | QA LAB                                                                                                           | PRIMARY LAB      | PRIMARY      | LAB             | COMPARISON              |  |
|     |                        | RL            |                                                                                                                  | RL               |              |                 | CODE                    |  |
| Tot | al Alkalinity as CaCO3 |               | 375                                                                                                              |                  | 358          |                 | 0                       |  |

22

4

.

| UNITS:<br>RESULTS                                                   | mg/L<br>RE                                                          | ESULTS<br>IMARY LAB                                                                                                             | COMPARISON<br>CODE                                                                                                                                           |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                     |                                                                     |                                                                                                                                 |                                                                                                                                                              |  |  |
| MATERIAL DESCRIPTION<br>DATE SAMPLED:                               | : WATER<br>5-11-98                                                  |                                                                                                                                 |                                                                                                                                                              |  |  |
| MW-SHL-5BQA-98-01<br>5-14-98<br>314A Hardness as CaCO3<br>QUANTERRA | PRIMARY LAB'S ANALYSIS<br>ANALYSIS METHO                            | DATE: 5-15-<br>DD: 130.2                                                                                                        | 130.2 Total Hardness as CaCo                                                                                                                                 |  |  |
| 099120-0001-SA                                                      | PRIMARY LAB ID N                                                    | IO.: 3575                                                                                                                       | 38                                                                                                                                                           |  |  |
|                                                                     | MW-SHL-5BQA-98-01<br>5-14-98<br>314A Hardness as CaCO3<br>QUANTERRA | MW-SHL-5BQA-98-01CONTRACTOR'S FIELD I5-14-98PRIMARY LAB'S ANALYSIS314A Hardness as CaCO3ANALYSIS METHOQUANTERRAPRIMARY LABORATO | MW-SHL-5BQA-98-01CONTRACTOR'S FIELD ID:MW-5-14-98PRIMARY LAB'S ANALYSIS DATE:5-15-314A Hardness as CaCO3ANALYSIS METHOD:130.2QUANTERRAPRIMARY LABORATORY:ITS |  |  |

|                                                                                                                 | RL         |               | RL                  |          |            | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------|---------------|---------------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PARAMETER                                                                                                       | QA LAB     | QA LAB        | PRIMARY LAB         | PRIMARY  | LAB        | COMPARISON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                 |            | RESULTS       |                     | RESULTS  | -          | and the state of t |  |  |
|                                                                                                                 |            | UNITS:        | mg/L                |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                 | DA         | ATE SAMPLED:  | 5-11-98             |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                 |            |               |                     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                 | MATERIA    | L DESCRIPTION | WATER               |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| QA LABORATORY:                                                                                                  | CLS-LABS   |               | PRIMARY LABORATORY: |          |            | ITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| ANALYSIS METHOD:                                                                                                | NA         |               | ANALYSIS            |          | 405.1-BOD5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| - 2011년 1월 2 |            |               |                     |          | 100000     | Salara Cara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| OA ANALYSIS DATE:                                                                                               | 5-18-98    | DUN-20-01     | PRIMARY LAB'S ANA   |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| QA FIELD ID:                                                                                                    | MW-SHL-51  |               | CONTRACTOR'S I      |          |            | SHL-5B-98-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| OA SAMPLE NO .:                                                                                                 | 099120-000 | 1-54          | PRIMARY LA          | BID NO . | 35753      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                 |            |               |                     |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

| QA SAMPLE NO.:<br>QA FIELD ID:<br>QA ANALYSIS DATE:<br>ANALYSIS DATE:099120-0001-SA<br>MW-SHL-5BQA-98-01PRIMARY LAB ID NO.:<br>CONTRACTOR'S FIELD ID:<br>PRIMARY LAB'S ANALYSIS DATE:<br>5-12-98 and 5-18<br>ANALYSIS METHOD:<br>QA LABORATORY:099120-0001-SA<br>MW-SHL-5BQA-98-01PRIMARY LAB ID NO.:<br>CONTRACTOR'S FIELD ID:<br>MW-SHL-5B-98<br>PRIMARY LAB'S ANALYSIS DATE:<br>5-12-98 and 5-18<br>ANALYSIS METHOD:<br>I 60.1 (TDS) and 160.2 (TSS)<br>QUANTERRA<br>MATERIAL DESCRIPTION:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>mg/LPRIMARY LABORATORY:<br>MATER<br>S-11-98<br>UNITS:<br>MATERIAL<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>MATER<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>UNITS:<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLED:<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>DATE SAMPLE<br>S-11-98<br>MATER<br>SAMP | 3-98     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| QA ANALYSIS DATE:       5-15-98       PRIMARY LAB'S ANALYSIS DATE:       5-12-98 and 5-18         ANALYSIS METHOD:       160.1 (TDS) and 160.2 (TSS)       ANALYSIS METHOD:       160.1 (TDS) and 5-18         QA LABORATORY:       QUANTERRA       PRIMARY LABORATORY:       160.1 (TDS) and 160.2 (TSS)         MATERIAL DESCRIPTION:       WATER       DATE SAMPLED:       5-11-98         UNITS:       mg/L       RESULTS       RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-98     |
| ANALYSIS METHOD: 160.1 (TDS) and 160.2 (TSS) ANALYSIS METHOD: 160.1 (TDS) and<br>QA LABORATORY: QUANTERRA PRIMARY LABORATORY: ITS<br>MATERIAL DESCRIPTION: WATER<br>DATE SAMPLED: 5-11-98<br>UNITS: mg/L<br>RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| QA LABORATORY: QUANTERRA PRIMARY LABORATORY: ITS<br>MATERIAL DESCRIPTION: WATER<br>DATE SAMPLED: 5-11-98<br>UNITS: mg/L<br>RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160.2 (T |
| QA LABORATORY: QUANTERRA PRIMARY LABORATORY: ITS<br>MATERIAL DESCRIPTION: WATER<br>DATE SAMPLED: 5-11-98<br>UNITS: mg/L<br>RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| DATE SAMPLED: 5-11-98<br>UNITS: mg/L<br>RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| UNITS: mg/L<br>RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| RESULTS RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| PARAMETER QA LAB QA LAB PRIMARY LAB PRIMARY LAB COMPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RISON    |
| RL RL CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DE       |
| Total Dissolved Solids (TDS by 160.1) 548 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0        |
| Total Suspended Solids (TSS by 160.2) 63.0 76.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |

. . . .

## SEE APPENDIX A FOR KEY TO COMMENTS

. . .

U.S. A ' CORPS OF ENGINEERS WH ENU

# CHAIN OF CUSTODY RECORD

| PROJ.<br>このカフィ<br>SAMPLER | 3<br>BSp/Sign                                            | atural        | ley  | 's    | Hill                  | (AND)                                                           | 511                                | NO.<br>OF       |         | 1.       | 1 stor         | the Con    | 200 200                  | They are   | AND A   | 6 1 C 03 | 4    | DEMARKS                  |  |
|---------------------------|----------------------------------------------------------|---------------|------|-------|-----------------------|-----------------------------------------------------------------|------------------------------------|-----------------|---------|----------|----------------|------------|--------------------------|------------|---------|----------|------|--------------------------|--|
| STA. NO.                  | DATE                                                     | ATE TIME      |      | GRAB  | STATION LOCATION      |                                                                 |                                    | CON-<br>TAINERS | 1       | ed - Rey | - merete Store |            | ALL ALL                  | P. S. Mell | TSS TEH |          |      | REMARKS                  |  |
|                           | 5/11/98                                                  | 1430          |      | X     | 13111) - 4            | 541-51                                                          | X04-98-01                          | 8               | 2       | 1        | 1              | 1          | 1                        | 1          | 1       |          |      |                          |  |
|                           | 5/11/48                                                  | 1150          |      | ×     | TRIP                  | BLAN                                                            | K<br>K                             | 1               | 1       |          |                |            |                          |            |         |          |      |                          |  |
|                           | ~                                                        |               |      |       |                       |                                                                 |                                    | -               |         |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          |               |      |       |                       |                                                                 |                                    |                 | -       |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          |               |      | 1     |                       |                                                                 |                                    | _               |         |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          |               |      |       | $\left \right\rangle$ | 1                                                               |                                    |                 |         |          |                |            |                          |            |         |          |      |                          |  |
| _                         | - 6                                                      | Sul           | You  | ng    | -                     |                                                                 |                                    |                 |         |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          | 0             |      | 1     |                       |                                                                 | /                                  |                 |         |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          |               |      |       |                       |                                                                 | /                                  |                 |         |          |                |            |                          |            |         |          |      |                          |  |
|                           |                                                          |               |      |       |                       |                                                                 |                                    |                 |         |          |                |            |                          |            |         |          |      |                          |  |
| 00                        | shed by:                                                 | (Signatu<br>M | ire) | 4     | Date /                | e / Time Received by: (Signa<br>Federal Expre<br>1900 902443601 |                                    | AIRBIL          | Re      | linqui   | shed b         | oy: (S     | Signati                  | ure)       |         | Date     | Time | Received by: (Signature) |  |
| Relinqui                  | quished by: (Signature) Date / Time Received by: (Signat |               |      | Relin |                       | Relinquished by: (Signa                                         |                                    |                 | nature) |          | Date /         | Time       | Received by: (Signature) |            |         |          |      |                          |  |
| Relinqui                  | shed by :                                                | (Signatu      | ire) | -     | Date /                | Time                                                            | Received for Labora<br>(Signature) | atory by:       | Tor     | Dat      | e/Ti           | me<br>11 2 | 20                       | Remai      | ks      |          |      |                          |  |

| CHAIN-OF-CUSTODY       | PYDOU | 1 |
|------------------------|-------|---|
| <br>oralli, or ocorobr |       | í |

| PROJECT NAME:<br>US ARMY CORPS   | QUANTER                   |           |       | 0 MAY 98<br>Cal Lab Srycs              |            |     | ANALYSES |     |            |
|----------------------------------|---------------------------|-----------|-------|----------------------------------------|------------|-----|----------|-----|------------|
| PO NUMBER:<br>CONTACT PM         |                           | CES       | 32    | 249 Fitzgerald Ro<br>lancho Cordova, ( |            |     |          |     |            |
| PROJECT MANAGER:<br>Diana Brooks | West Sacramento, CA 95605 |           |       |                                        |            |     |          |     |            |
|                                  | Phone #: (916) 37         | 4-4362    |       |                                        |            |     |          |     |            |
| Constant and the                 |                           |           |       |                                        |            | BOD |          |     | REMARKS/   |
| SAMPLE DESCRIPTION               | LAB ID                    | DATE      | TIME  | MATRIX                                 | CONTAINERS | ă   |          |     | SPCL INSTR |
| MW-SHL-5BQA-98-01                | 099120-0001 SA            | 11 MAY 98 | 14:30 | AQUEOUS                                | PB         | X   |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     | 1          |
|                                  |                           |           |       | 1                                      |            |     |          |     | -          |
|                                  |                           | -         |       |                                        |            |     |          | +++ |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     | -          |
|                                  |                           | -         |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       | (a                                     |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |
|                                  |                           | -         |       |                                        |            |     |          | +   |            |
|                                  |                           |           |       |                                        |            |     |          |     |            |

| * SIGNATURE                 | PRINT NAME    | COMPANY/TITLE | DATE     | TIME  |
|-----------------------------|---------------|---------------|----------|-------|
| Retinquished by: A. C. Data | Mauridias ,   | Quantera WS   | 057298   | 1300  |
| Received by                 | Mike White    | QES           | 5.12.98  | 1305  |
| Relinquished by:            | Mike White    | QES           | 5.12-98  | 13.00 |
| Received by: MC M           | MARI THIMOSON | CLS           | 5-12-784 | 1350  |

Comments: PLEASE CONTACT DIANA BROOKS IF YOU HAVE ANY QUESTIONS. LOG 463D

QA373 4/96 CMD

Chemical Quality Assurance Report Fall 1998

.

.

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS

CHEMICAL QUALITY ASSURANCE REPORT No. E0776-031299

#### NOVEMBER 4, 1998 SAMPLING EVENT

# PREPARED BY THE ENVIRONMENTAL ENGINEERING AND GEOLOGY SECTION ENGINEERING/PLANNING DIVISION

# DEPARTMENT OF THE ARMY NEW ENGLAND DISTRICT, CORPS OF ENGINEERS CONCORD, MASSACHUSETTS

MARCH 12, 1999

# SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS NOVEMBER 4, 1998 SAMPLING EVENT

# CHEMICAL QUALITY ASSURANCE REPORT No. E0776-031299

# TABLE OF CONTENTS

| Paragraph | Title                                                      | Page |
|-----------|------------------------------------------------------------|------|
|           | Executive Summary                                          | 1    |
|           | Table 1- Data Comparison Summary                           | 2    |
|           | Table 2 - Analyses Performed by QA Laboratory              | 3    |
| 1.        | QA sample shipping and chain-of-custody deficiencies       | 4    |
| 2.        | Data comparison for volatiles by Method 8260               | 4-5  |
| 3.        | Data comparison for metals by Method 6010 and 7470         | 5    |
| 4.        | Data comparison for cyanide by Method 9010B                | 5-6  |
| 5.        | Data comparison for anions by Method 300.0                 | 6    |
| 6.        | Data comparison for COD and BOD by Method 410.4 and 405.1  | 6-7  |
| 7.        | Data comparison for alkalinity by Method 310.1             | 7    |
| 8.        | Data comparison for hardness by Method 130.2               | 7    |
| 9.        | Data comparison for TDS and TSS by Methods 160.1 and 160.2 | 8    |
| 10.       | References                                                 | 8    |
|           | Appendix A - Key to comments on Data Comparison Code       |      |
|           | Appendix B - Data Comparison Tables                        |      |
|           | Appendix C - Custody Documentation                         |      |

## SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS NOVEMBER 1998 SAMPLING EVENT

## CHEMICAL QUALITY ASSURANCE REPORT No. E0776-031299

### Executive Summary

QA samples from one shipment for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts were analyzed by the QA laboratory, resulting in a total of 92 target analyte determinations. The shipment contained two QA water samples and was received in good condition. The data report from STL (Severn Trent Laboratories), dated 07 December 1998 was used in the comparison. In 21 of these determinations analytes were detected by one or both laboratories. Results from the analysis of QA samples were compared with results from analysis of the corresponding primary samples (Reference 10A). The primary and QA samples agreed overall in 92 (100%) of the comparisons. Primary and QA samples agreed quantitatively in 21 out of 21 (100%) of the comparisons. Quantitative agreement represents only those determinations where an analyte was detected by at least one laboratory. There were no major or minor discrepancies between results from the primary and QA samples in any of the comparisons. Refer to Table 1 for a QA split sample data comparison summary.

The QA laboratory's QC samples contained all of the necessary information and a complete evaluation was performed. All of the data comparisons for Methods VOA's-8260, TAL Metals-6010, CN, Anions, COD, BOD, Alkalinity, Total Hardness, TDS and TSS were in 100% overall and quantitative agreement. There were no major or minor data discrepancies noted in any of the analyzes performed. The quantitative results compared almost identically for all of the target analytes that were reported as hits. There was no bias to any of the sample results and the data appears to be complete and useable.

The primary laboratory's data report contained all of the necessary information and a complete evaluation was performed. As stated above, all of the data comparisons for all analyzes were in 100% overall and quantitative agreement. Several of the MS/MSD target analytes were slightly outside the acceptable limits for volatiles, but all of the LCS target analytes were within the acceptance limits. Since none of these matrix spike compounds were detected in the sample, it would have no impact on the sample results.

QA analyses were performed by Quanterra Environment, Services, West Sacramento, CA and CLS Labs, Rancho Cordova, CA (see Table 2 for analyses performed by the QA lab). The primary laboratory was Severn Trent Laboratories, Colchester, VT.

## <u>Table 1</u> <u>Quality Assurance Split Sample</u> Data Comparison Summary

## Project: Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts

| Test       | Overall<br>Agreement | t (1)   | Quantitati<br>Agreemer |         |
|------------|----------------------|---------|------------------------|---------|
| Parameter  | Number               | Percent | Number                 | Percent |
| VOC        | 63/63                | 100     | 5/5                    | 100     |
| METALS     | 18/18                | 100     | 9/9                    | 100     |
| CYANIDE    | 1/1                  | 100     | NA                     | NA      |
| ANIONS     | 4/4                  | 100     | 2/2                    | 100     |
| COD        | 1/1                  | 100     | 1/1                    | 100     |
| BOD        | 1/1                  | 100     | NA                     | NA      |
| ALKALINITY | 1/1                  | 100     | 1/1                    | 100     |
| HARDNESS   | 1/1                  | 100     | 1/1                    | 100     |
| TDS        | 1/1                  | 100     | 1/1                    | 100     |
| TSS        | 1/1                  | 100     | 1/1                    | 100     |
| Total      | 92/92                | 100     | 21/21                  | 100     |

NOTES:

(1) Represents the number and percentage agreement of all determinations including analytes not detected by either laboratory.

(2) Represents the number and percentage agreement of only those determinations where an analyte was detected by at least one laboratory.

## TABLE 2

## QA ANALYSES PERFORMED

| SAMPLE ID            | MATRIX | SAMPLE DATE | ANALYSIS                                                  |
|----------------------|--------|-------------|-----------------------------------------------------------|
| MW-SHM-96-5BQA-98-02 | WATER  | 11/4/98     | VOC,METALS,CN,<br>ANIONS,COD,BOD,ALK,<br>HARDNESS,TDS,TSS |
| TRIP BLANK           | WATER  | 11/4/98     | VOC                                                       |

.

## SHEPLEY'S HILL LANDFILL LONG TERM MONITORING DEVENS, MASSACHUSETTS NOVEMBER 1998 SAMPLING EVENT

## CHEMICAL QUALITY ASSURANCE REPORT No. E0776-110998

### QA Findings

### 1. QA sample shipping and chain-of-custody deficiencies.

One shipment containing two QA water samples was received by Quanterra Environmental Services, West Sacramento, CA, on 11/5/98. Proper sample handling protocols were followed for this shipment except there was no cooler receipt form provided.

A copy of the chain-of-custody form document is appended to this report for reference.

### 2. Data comparison for volatiles (VOC) by Method 8260.

There were 63 volatile determinations. In five of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 63 (100%) of the cases and quantitative agreement in five out of five (100%) of the cases. No major or minor data discrepancies were noted.

The QA laboratory's QC samples were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank and the trip blank were free of contamination above the laboratory's reporting limit for all of the target analytes. All of the samples, LCS/LCSD's, method blank, and trip blank surrogates recoveries were within the laboratory's acceptance limits. All of the LCS/LCSD's target analytes were also within the acceptance limits for accuracy and precision. The QA laboratory only spiked five of the target analytes into the LCS/LCSD. The QA laboratory was not requested to perform MS/MSD's and no evaluation of matrix effects could be determined. All of the samples were analyzed within the required holding times.

The primary laboratory's QC samples contained all the necessary information and a complete evaluation was performed. The method blanks and the trip blanks were free of contamination above the laboratory reporting limit for all of the target analytes. The surrogates for both the samples and the laboratory's QC samples were all within the acceptance limits. The primary laboratory reported that the MS/MSD's performed on sample MW-SHL-19-98-02 were within the acceptance limits for all 84 target analytes for precision and twelve out of 168 target analytes recoveries were outside the acceptance limits for accuracy. All of the target analytes in

the LCS were recovered within the acceptance limits. All of the sampleS were analyzed within the required holding times. The primary laboratory was also requested by the USACE project chemist, Marie Wojtas, to report the number of tentatively identified compounds (TIC's) found in each sample and report the findings in the case narrative. The single QA sample had the following tentatively identified compounds:

MW-SHM-96-5B-98-02 ether and chlorofluoromethane

### 3. Data comparison for TAL metals by Method 6010 and mercury by Method 7470.

There were 18 metals determinations. In nine of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in 18 (100%) of the cases and quantitative agreement in nine out of nine (100%) of the cases. No major or minor data discrepancies were noted.

The primary laboratory's QC data report contained all of the necessary QC information and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The primary laboratory reported that the LCS recoveries were within the acceptance limits for all of the target analytes. The primary laboratory performed a matrix spike and a matrix duplicate on sample SHL-19-98-02. The matrix spike recoveries were all within the acceptance limits of 75-125% and the RPD's of the matrix duplicate were less than 20%. All of the spike levels were appropriately indicated on the all of the QC reports. All of the samples were analyzed within the required holding times.

The QA laboratory's QC data were within the acceptance limits for all the target analytes and a complete evaluation was performed. The method blanks for both the water and the soil matrices were free of contamination above the reporting limits. The QA laboratory reported that the LCS/LCSD were within the acceptance limits for both accuracy and precision. All of the spike levels were appropriately indicated on all of the QC reports. The QA laboratory reported all of the metals were analyzed by Method 6010 Trace-ICP, except for mercury, which was analyzed by Method 7470-Hg Cold Vapor. All of the samples were analyzed within the required holding times.

### 4. Data comparison for total cyanide by Method 9010B.

There was one cyanide determination. There was 100% overall agreement in that cyanide was not detected by either laboratory. No major or minor data discrepancies were noted.

The primary laboratory's QC data were within the acceptance limits for cyanide and a complete evaluation was performed. The method blank was free of contamination above the laboratory's reporting limit. The LCS's recovery was within the laboratory's acceptance limits. The matrix spike was recovered within the acceptance limits at 89.8%. The matrix duplicate and the original sample were reported below the laboratory's reporting limit. The sample was analyzed within the required holding time.

All of the QA laboratory's QC data were within acceptance limits and a complete evaluation was performed. The method blank was free of contamination above the laboratory's reporting limit. The LCS/LCSD's were within the acceptance limits for both accuracy and precision. The QA laboratory analyzed the sample by modified Method 9012B, instead of Method 9010B as indicated on the chain of custody. The sample was analyzed within the required holding time.

### 5. The data comparison for anions by Method 300.0.

There were four anion determinations. In two of these determinations, target analytes were detected by one or both laboratories. There was overall agreement in four (100%) of the cases and quantitative agreement in two out of two (100%) of the cases. No major or minor data discrepancies were noted.

The QA laboratory's QC data were all within the acceptance limits and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The LCS/LCSD were within the acceptance limits for all of the target analytes for both accuracy and precision and the spiking levels were also indicated. All of the samples were analyzed within the required holding times.

The primary laboratory's QC data were all within the acceptance limits and a complete evaluation was performed. The method blanks were free of contamination above the reporting limit for all of the target analytes. The LCS recoveries were within the acceptance limits. The primary laboratory reported that the matrix spike and the matrix duplicate were within the acceptance limits for both accuracy and precision. All of the samples were analyzed within the required holding times.

## 6. Data comparison for COD by Method 410.4 and BOD by Method 405.1.

There was one COD and one BOD determination. In both the COD and BOD determinations, there was 100% overall and quantitative agreement. There were no major or minor data discrepancies noted.

The primary laboratory's QC samples were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank was free of contamination for both the COD and BOD results above the laboratory's reporting limit. The LCS recoveries for COD and BOD were both within the laboratory's acceptance limits. The primary laboratory did not report any MS/MSD's results. The samples were analyzed within the required holding times.

The QA laboratory's QC samples were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The LCS/LCSD's were within the acceptance limits for both accuracy and precision. The QA sample was analyzed within the required holding times of 48 hours. The QA laboratory's contracted lab (CLS Labs) performed the BOD analysis.

### 7. The data comparison for alkalinity by Method 310.1.

There was one alkalinity determination. In this determination, there was 100% overall and 100% quantitative agreement. No major or minor discrepancies were noted.

The QA laboratory's QC samples were within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The QA laboratory reported that the LCS/LCSD's and were within the acceptance limits for both accuracy and precision. There were no MS/MSD's performed for alkalinity and no evaluation of matrix effects could be determined. All of the samples were analyzed within the required holding times.

The primary laboratory's QC samples were within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The primary laboratory reported that the LCS was within the acceptance limits. There were no MS/MSD's performed for alkalinity and no evaluation of matrix effects could be determined. All of the samples were analyzed within the required holding times.

### 8. Data comparison for total hardness by Method 130.2.

There was one hardness determination. In this determination, there was 100% overall and 100% quantitative agreement. No major or minor discrepancies were noted.

The QA laboratory's QC samples were within the acceptance limit for hardness and a complete evaluation was performed. The method blank was free of contamination above the laboratory's reporting limit. The QA laboratory reported that the LCS/LCSD's were within the laboratory's acceptance limits for both accuracy and precision. All of the samples were analyzed within the required holding times.

The primary laboratory's QC samples were within the acceptance limit for alkalinity and a complete evaluation was performed. The method blank was free of contamination above the reporting limit. The primary laboratory reported that the LCS was within the laboratory's acceptance limits. There was no MS/MSD data reported and no evaluation of matrix effects could be determined. The primary laboratory analyzed for total hardness by method 314A instead of method 130.2 that was requested on the chain of custody. The different methodology performed did not appear to affect the comparison of the data. All of the samples were analyzed within the required holding times.

## 9. Data comparison for TDS by Method 160.1 and TSS by Method 160.2.

There was one TDS and one TSS determination. In both the TDS and TSS

determinations, there was 100% overall and quantitative agreement. No major or minor data discrepancies were reported.

The primary laboratory's QC samples were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The LCS recoveries for TDS and TSS were both within the laboratory's acceptance limits. The samples were analyzed within the required holding times.

The QA laboratory's QC data were within the acceptance limits for all of the target analytes and a complete evaluation was performed. The method blanks for TDS and TSS were free of contamination above the laboratory's reporting limits. The LCS/LCSD's were within the acceptance limits for both accuracy and precision. The QA laboratory did not perform a MS/MSD and no evaluation of matrix effects could be determined. All of the samples were analyzed within the required holding times.

### 10. References.

a. Data Report for Shepley's Hill Landfill Long Term Monitoring, Devens, Massachusetts, prepared by Severn Trent Laboratories, dated 7 December 1998.

b. EM 200-1-6, Chemical Quality Assurance for Hazardous, Toxic and Radioactive Waste (HTRW) Projects, dated 10 October 1997.

## APPENDIX A KEY TO COMMENTS ON DATA COMPARISON TABLES

0 - Data agrees if any one of the following apply:

- both values are less than respective detection limit (N<MDL)

-  $N_1$  < MDL<sub>1</sub> and  $N_2$  > MDL<sub>2</sub> but < MDL<sub>1</sub>\*

- both values are above respective detection limit (N>MDL) and difference between two values satisfies conditions below

For all analyses in a water matrix and for metals analysis in soil: <2X difference

For all other soil analyses: <4X difference

1 - Minor contamination by laboratory contaminant

2 - Not tested by both laboratories

3 - Minor data discrepancy, disagreement not serious, if any one of the following apply:

-  $N_1$  < MDL<sub>1</sub> and  $N_2$  > MDL<sub>2</sub> and the difference between values  $N_2$  \* does not exceed the upper limit (described below) defining a minor data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil: 2X<difference<3X

For **all** other **soil** analyses: 4X<difference<5X

4 - Major data discrepancy, disagreement serious, if any one of the following apply:

-  $N_1 < MDL_1$  and  $N_2 > MDL_2$  and the difference between values  $N_2$  and  $MDL_1^*$  exceeds the limit (described below) defining a major data discrepancy

- both values are above respective detection limit (N>MDL\*) and conditions described below apply to the difference between the two values

For all analyses in a water matrix and for metals analysis in soil: >3X difference For all other soil analyses: >5X difference

MDL = Method Detection Limit
N = Analytical result
\* - not all < values are MDLs. Values which are not MDLs will be noted.</p>

Key to data qualifiers:

B - detected in method blank
DO - Diluted out
J - estimated value, above MDL but below practical quantitation limit
NA - Not analyzed
ND - Not detected
NR - Not reported

## APPENDIX B

## DATA COMPARISON TABLES

.

Page 1 of 2

QA SAMPLE No.: QA FIELD ID: QA ANALYSIS DATE: QA LABORATORY: EXTRACTION METHOD: ANALYSIS METHOD: 302523-0001-SA MW-SHM-96-5BQA-98-02 11/18/98 QUANTERRA 5030B 8260B CONTRACTORS SAMPLE No.: CONTRACTORS FIELD ID: CONTRACTOR'S ANALYSIS DATE: CONTRACTOR'S LABORATORY: EXTRACTION METHOD; ANALYSIS METHOD:

- 14

370932 MW-SHM-96-5B-98-02 11/6/98 STL 5030B 8260B

#### MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: ug/L

| PARAMETER                  | QA LAB<br>LRL | RESULTS<br>QA LAB | CONTRACTOR<br>LRL | RESULTS<br>CONTRACTOR | COMPARISO<br>CODE |
|----------------------------|---------------|-------------------|-------------------|-----------------------|-------------------|
| 1. 1. 18 March 19          |               |                   |                   |                       |                   |
| Dichlorodifluoromethane    | < 1.0         |                   | < 5.0             |                       | 0                 |
| Chloromethane              | < 1.0         |                   | < 5.0             |                       | 0                 |
| Vinyl Chloride             | < 1.0         |                   | < 5.0             |                       | 0                 |
| Bromomethane               | < 1.0         |                   | < 5.0             |                       | 0                 |
| Chloroethane               |               | 2.6               |                   | 3.8 J                 | 0                 |
| Trichlorofluoromethane     | < 1.0         |                   | < 5.0             |                       | 0                 |
| Acrolein                   | NR            |                   | < 5.0             |                       |                   |
| Freon TF                   | NR            |                   | < 5.0             |                       |                   |
| 1,1-Dichloroethene         | < 1.0         |                   | < 5.0             |                       | 0                 |
| Acetone                    | < 1.0         |                   | < 5.0             |                       | 0                 |
| Methyl Iodide              | NR            |                   | < 5.0             |                       |                   |
| Carbon Disulfide           | NR            |                   | < 5.0             |                       |                   |
| Allyl Chloride             | NR            |                   | < 5.0             |                       |                   |
| Methylene Chloride         | < 1.0         |                   | < 5.0             |                       | 0                 |
| Acrylonitrile              | NR            |                   | < 5.0             |                       |                   |
| trans-1,2-Dichloroethene   | < 1.0         |                   | < 5.0             |                       | 0                 |
| 1,2-Dichloroethene (total) | NR            |                   |                   | 3.2 J                 |                   |
| Methyl-t-Butyl Ether       | NR            |                   | < 5.0             |                       |                   |
| 1,1-Dichloroethane         |               | 2.5               |                   | 2.6 J                 | 0                 |
| Vinyl Acetate              | NR            |                   | < 5.0             |                       |                   |
| Chloroprene                | NR            |                   | < 5.0             |                       |                   |
| cis-1,2-Dichloroethene     |               | 2.8               |                   | 3.0 J                 | 0                 |
| 2-Butanone                 | < 1.0         |                   | < 5.0             |                       | 0                 |
| Proionitrile               | NR            |                   | < 20              |                       |                   |
| Methacrylonitrile          | NR            |                   | < 5.0             |                       |                   |
| Bromochloromethane         | < 1.0         |                   | < 5.0             |                       | 0                 |
| Tetrahydrofuran            | NR            |                   | < 50              |                       |                   |
| Chloroform                 | < 1.0         |                   | < 5.0             |                       | 0                 |
| 1,1,1-Trichloroethane      | < 1.0         |                   | < 5.0             |                       | 0                 |
| Carbon Tetrachloride       | < 1.0         |                   | < 5.0             |                       | 0                 |
| Isobutyl Alcohol           | NR            |                   | < 250             |                       |                   |
| Benzene                    |               | 1.0               | < 5.0             |                       | 0                 |
| 1.2-Dichloroethane         | < 1.0         |                   | < 5.0             |                       | 0                 |
| Trichloroethene            | < 1.0         |                   | < 5.0             |                       | 0                 |
| 1,2-Dichloropropane        | < 1.0         |                   | < 5.0             |                       | 0                 |
| Methyl Methacrylate        | NR            |                   | < 5.0             |                       |                   |
| Dibromomethane             | < 1.0         |                   | < 5.0             |                       | 0                 |
| 1.4-Dioxane                | < 1.0         |                   | < 250             |                       | 0                 |
| Bromodichloromethane       | < 1.0         |                   | < 5.0             |                       | 0                 |
| 2-Chloroethyl Vinyl Ether  | NR            |                   | < 5.0             |                       | •                 |
| cis-1,3-Dichloropropene    | < 1.0         |                   | < 5.0             |                       | 0                 |

Page 2 of 2

| QA SAMPLE No .:    | 302523-0001-SA       | CONTRACTORS SAMPLE No.:     | 370932             |
|--------------------|----------------------|-----------------------------|--------------------|
| QA FIELD ID:       | MW-SHM-96-5BQA-98-02 | CONTRACTORS FIELD ID:       | MW-SHM-96-5B-98-02 |
| QA ANALYSIS DATE:  | 11/18/98             | CONTRACTOR'S ANALYSIS DATE: | 11/6/98            |
| QA LABORATORY:     | QUANTERRA            | CONTRACTOR'S LABORATORY:    | STL                |
| EXTRACTION METHOD: | 5030B                | EXTRACTION METHOD:          | 5030B              |
| ANALYSIS METHOD:   | 8260B                | ANALYSIS METHOD:            | 8260B              |
|                    |                      |                             |                    |

#### MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: ug/L

| PARAMETER                    | QA LAB<br>LRL | RESULTS<br>QA LAB | CONTRACTOR<br>LRL | RESULTS<br>CONTRACTOR | COMPARISON<br>CODE |
|------------------------------|---------------|-------------------|-------------------|-----------------------|--------------------|
| Contraction of Contract      |               |                   |                   |                       |                    |
| 4-Methyl-2-pentanone         | < 1.0         |                   | < 5.0             |                       | 0                  |
| Toluene                      | < 1.0         |                   | < 5.0             |                       | 0                  |
| trans-1,3-Dichloropropene    | < 1.0         |                   | < 5.0             |                       | 0                  |
| Ethyl Methacrylate           | NR            |                   | < 5.0             |                       |                    |
| 1,1,2-Trichloroethane        | < 1.0         |                   | < 5,0             |                       | 0                  |
| Tetrachloroethene            | < 1.0         |                   | < 5.0             |                       | 0                  |
| 2-Hexanone                   | NR            |                   | < 5.0             |                       |                    |
| Dibromochloromethane         | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2-Dibromoethanc            | < 1.0         |                   | < 5.0             |                       | 0                  |
| Chlorobenzene                | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,1,1,2-Tetrachloroethane    | < 1.0         |                   | < 5.0             |                       | 0                  |
| Ethylbenzene                 | < 1.0         |                   | < 5.0             |                       | 0                  |
| Xylene (total)               | < 1,0         |                   | < 5.0             |                       | 0                  |
| Styrene                      | < 1.0         |                   | < 5.0             |                       | 0                  |
| Bromoform                    | < 1.0         |                   | < 5.0             |                       | 0                  |
| lsopropylbenzene             | < 1.0         |                   | < 5.0             |                       | 0                  |
| cis-1,4-Dichloro-2-butene    | NR            |                   | < 5.0             |                       |                    |
| 1, 1, 2, 2-Tetrachloroethane | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2,3-Trichloropropane       | < 1.0         |                   | < 5.0             |                       | 0                  |
| trans-1,4-Dichloro-2-butene  | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,3-Dichlorobenzene          | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,4-Dichlorobenzene          | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2-Dichlorobenzene          | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2-Dibromo-3-Chloropropane  | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2,4-Trichlorobenzene       | < 1.0         |                   | < 5.0             |                       | 0                  |
| Hexachlorobutadiene          | < 1.0         |                   | < 5,0             |                       | 0                  |
| Naphthalene                  | < 1.0         |                   | < 5.0             |                       | 0                  |
| 2,2-Dichloropropane          | < 1,0         |                   | < 5.0             |                       | 0                  |
| I,1-Dichloropropene          | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,3-Dichloropropane          | < 1.0         |                   | < 5.0             |                       | 0                  |
| Bromobenzene                 | < 1.0         |                   | < 5.0             |                       | 0                  |
| n-Propylbenzene              | < 1.0         |                   | < 5.0             |                       | 0                  |
| 2-Chlorotoluene              | < 1.0         |                   | < 5.0             |                       | 0                  |
| 4-Chlorotoluene              | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,3,5-Trimethylbenzene       | < 1.0         |                   | < 5.0             |                       | 0                  |
| tert-Butylbenzene            | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1,2,4-Trimethylbenzene       | < 1.0         |                   | < 5.0             |                       | 0                  |
| sec-Butylbenzene             | < 1.0         |                   | < 5.0             |                       | 0                  |
| 4-Isopropyltoluene           | < 1.0         |                   | < 5.0             |                       | 0                  |
| n-Butylbenzene               | < 1.0         |                   | < 5.0             |                       | 0                  |
| 1.2.3-Trichlorobenzene       | < 1.0         |                   | < 5.0             |                       | 0                  |

SURROGATE RECOVERIES (%)

1,2-Dichloroethane-d4 (75-121) Toulene-d8 (85-111)

p-Bromofluorobenzene (81-117)

QA

97 101

95

#### PRIMARY

| 98  |
|-----|
| 94  |
| 92  |
| 100 |
|     |

SEE APPENDIX A FOR KEY TO COMMENTS NR=NOT REPORTED \* = Surrogates outside of acceptable limits

QA SAMPLE No.: QA FIELD ID: QA ANALYSIS DATE: QA LABORATORY: EXTRACTION METHOD: ANALYSIS METHOD: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 MW-SHM-96-5BQA-98-02 MW-SHM-96-5B-98-02 CONTRACTORS FIELD ID: 11/17/98 11/8/98 CONTRACTOR'S ANALYSIS DATE: QUANTERRA STL CONTRACTOR'S LABORATORY: 3010A EXTRACTION METHOD: 3010A 6010B,Hg-7470A 6010, Hg-7470 ANALYSIS METHOD:

#### MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: ug/L

| PARAMETER  | QA LAB<br>LRL | RESULTS<br>QA LAB | CONTRACTOR<br>LRL | RESULTS<br>CONTRACTOR | COMPARISON<br>CODE |
|------------|---------------|-------------------|-------------------|-----------------------|--------------------|
|            |               |                   |                   |                       |                    |
| Antimony   | < 5.0         |                   | < 6.1             |                       | 0                  |
| Arsenic    |               | 2700              |                   | 3080                  | 0                  |
| Barium     |               | 52.0              |                   | 53.5 B                | 0                  |
| Beryllium  | < 2.0         |                   | < 0.10            |                       | 0                  |
| Cadmium    | < 2.0         |                   | < 0.30            |                       | 0                  |
| Chromium   | < 5.0         |                   |                   | 3.7 B                 | 0                  |
| Colbolt    |               | 15.0              |                   | 16.2 B                | 0                  |
| Copper     | < 10.0        |                   |                   | 2.4 B                 | 0                  |
| Iron       |               | 25300             |                   | 27600                 | 0                  |
| Lead       | < 3.0         |                   | < 2.0             |                       | 0                  |
| Manganese  |               | 12400             |                   | 13300                 | 0                  |
| Mercury    | < 0.20        |                   | < 0.10            |                       | 0                  |
| Molybdenum | < 40.0        |                   |                   | NR                    |                    |
| Nickel     |               | 18.0              |                   | 12.4 B                | 0                  |
| Selenium   | < 5.0         |                   | < 4.6             |                       | 0                  |
| Silver     | < 5.0         |                   | < 1.2             |                       | 0                  |
| Thallium   | < 10.0        |                   | < 5.2             |                       | 0                  |
| Vanadium   | < 5.0         |                   | < 2.3             |                       | 0                  |
| Zinc       |               | 39.0              |                   | 41.3                  | 0                  |

QA SAMPLE No .: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 CONTRACTORS FIELD ID: QA FIELD ID: MW-SHM-96-5BQA-98-02 MW-SHM-96-5B-98-02 QA ANALYSIS DATE: 11/11/98 CONTRACTOR'S ANALYSIS DATE: 11/8/98 QA LABORATORY: QUANTERRA CONTRACTOR'S LABORATORY: STL EXTRACTION METHOD: EXTRACTION METHOD: NA NA 9010B ANALYSIS METHOD: 9012 Modified ANALYSIS METHOD:

> MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: ug/L

| PARAMETER    | QA LAB | RESULTS | CONTRACTOR | RESULTS    | COMPARISON |
|--------------|--------|---------|------------|------------|------------|
|              | LRL    | QA LAB  | LRL        | CONTRACTOR | CODE       |
| Cyanide (CN) | < 10.0 |         | < 5.0      |            | 0          |

QA SAMPLE No.: QA FIELD ID: QA ANALYSIS DATE: QA LABORATORY: EXTRACTION METHOD: ANALYSIS METHOD: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 MW-SHM-96-5BQA-98-02 CONTRACTORS FIELD ID: MW-SHM-96-5B-98-02 11/5/98 CONTRACTOR'S ANALYSIS DATE: 11/12/98 QUANTERRA CONTRACTOR'S LABORATORY: STL NA EXTRACTION METHOD: NA 300.0 ANALYSIS METHOD: 300.0

MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: mg/L

| PARAMETER                             | QA LAB<br>LRL | RESULTS<br>QA LAB | CONTRACTOR<br>LRL | RESULTS<br>CONTRACTOR | COMPARISON<br>CODE |
|---------------------------------------|---------------|-------------------|-------------------|-----------------------|--------------------|
| Chloride,CL                           |               | 60.1              |                   | 65.0                  | 0                  |
|                                       | < 0.050       |                   | < 0.3             |                       | 0                  |
| Nitrate, as N                         |               |                   |                   |                       |                    |
| Nitrate, as N<br>Orthophosphate, as P | < 0.20        |                   | < 0.3             |                       | 0                  |

QA SAMPLE No .: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 QA FIELD ID: MW-SHM-96-5BQA-98-02 CONTRACTORS FIELD ID: MW-SHM-96-5B-98-02 QA ANALYSIS DATE: 11/11/98 CONTRACTOR'S ANALYSIS DATE: 11/11/98 QA LABORATORY: QUANTERRA CONTRACTOR'S LABORATORY: STL EXTRACTION METHOD: NA EXTRACTION METHOD: NA ANALYSIS METHOD: 410.4-COD ANALYSIS METHOD: 410.4-COD

MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: mg/L

| PARAMETER                    | QA LAB | RESULTS | CONTRACTOR | RESULTS    | COMPARISON |
|------------------------------|--------|---------|------------|------------|------------|
|                              | LRL    | QA LAB  | LRL        | CONTRACTOR | CODE       |
| Themical Oxygen Demand (COD) |        | 21.0    |            | 26         | 0          |

.

| QA SAMPLE No .:    | 302523-0001-S | A             | CONTRACTORS      | SAMPLE No .:          | 370932            |
|--------------------|---------------|---------------|------------------|-----------------------|-------------------|
| QA FIELD ID:       | MW-SHM-96-5   | BQA-98-02     | CONTRACTO        | ORS FIELD ID:         | MW-SHM-96-5B-98-0 |
| QA ANALYSIS DATE:  | 11/10/98      |               | CONTRACTOR'S ANA | LYSIS DATE:           | 11/4/98           |
| QA LABORATORY:     | CLS Labs      |               | CONTRACTOR'S LA  | ABORATORY:            | STL               |
| EXTRACTION METHOD: | NA            |               | EXTRACTI         | ON METHOD:            | NA                |
| ANALYSIS METHOD:   | 405.1 BOD5    |               | ANALY            | SIS METHOD:           | 405.1 BOD5        |
|                    | MATERIAL DE   | ESCRIPTION: V | VATER            |                       |                   |
|                    | DAT           | E SAMPLED: 1  | 1/4/09           |                       |                   |
|                    | DAI           | C SAIVIT LED. | 1/4/30           |                       |                   |
|                    | DAI           |               | mg/L             |                       |                   |
|                    |               |               |                  |                       |                   |
|                    |               |               |                  | RESULTS               | COMPARISON        |
| PARAMETER          | QA LAB<br>LRL | UNITS:        |                  | RESULTS<br>CONTRACTOR | COMPARISO<br>CODE |

.

QA SAMPLE No .: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 QA FIELD ID: MW-SHM-96-5BQA-98-02 CONTRACTORS FIELD ID: MW-SHM-96-5B-98-02 QA ANALYSIS DATE: 11/10/98 CONTRACTOR'S ANALYSIS DATE: 11/9/98 QA LABORATORY: QUANTERRA CONTRACTOR'S LABORATORY: STL EXTRACTION METHOD: NA EXTRACTION METHOD: NA ANALYSIS METHOD: 310.1 Total Alkalinity as CaCO3 ANALYSIS METHOD: 310.1 Alkalinity as CaCO3 MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: mg/L RESULTS RESULTS COMPARISON PARAMETER QA LAB QA LAB CONTRACTOR CONTRACTOR CODE LRL LRL Total Alkalinity as CaCO3 390 384 0

۰.

.

| QA SAMPLE No .:    | 302523-0001-SA  |                        | CONTRACTORS      | SAMPLE No.:   | 370932                 |
|--------------------|-----------------|------------------------|------------------|---------------|------------------------|
| QA FIELD ID:       | MW-SHM-96-5     | BQA-98-02              | CONTRACTO        | ORS FIELD ID: | MW-SHM-96-5B-98-02     |
| QA ANALYSIS DATE:  | 11/17/98        | (                      | CONTRACTOR'S ANA | LYSIS DATE:   | 11/9/98                |
| QA LABORATORY:     | QUANTERRA       |                        | CONTRACTOR'S LA  | ABORATORY:    | STL                    |
| EXTRACTION METHOD: | NA              |                        | EXTRACTI         | ON METHOD:    | NA                     |
| ANALYSIS METHOD:   | 314A Hardness a | us CaCO3               | ANALY            | SIS METHOD:   | 130.2 Hardness as CaCO |
|                    | MATERIAL D      | ESCRIPTION: W          | ATER             |               |                        |
|                    |                 | TE SAMPLED: 1          |                  |               |                        |
|                    |                 | 17 T T T T T T T T T T | mg/L             |               |                        |
|                    |                 |                        |                  |               |                        |
|                    |                 | RESULTS                | -                | RESULTS       | COMPARISON             |
| PARAMETER          | QA LAB          | QA LAB                 | CONTRACTOR       | CONTRACTOR    | CODE                   |
|                    | 4               | 4                      |                  |               |                        |
|                    | LRL             |                        | LRL              |               |                        |
|                    | LRL             |                        | LRL              |               |                        |

SEE APPENDIX A FOR KEY TO COMMENTS NR=NOT REPORTED

14

2.9

QA SAMPLE No.: QA FIELD ID: QA ANALYSIS DATE: QA LABORATORY: EXTRACTION METHOD: ANALYSIS METHOD: 302523-0001-SA CONTRACTORS SAMPLE No .: 370932 MW-SHM-96-5BQA-98-02 MW-SHM-96-5B-98-02 CONTRACTORS FIELD ID: 11/9/98 11/9/98 CONTRACTOR'S ANALYSIS DATE: QUANTERRA STL CONTRACTOR'S LABORATORY: NA NA EXTRACTION METHOD: 160.1 and 160.2 160.1 and 160.2 ANALYSIS METHOD:

MATERIAL DESCRIPTION: WATER DATE SAMPLED: 11/4/98 UNITS: mg/L

| PARAMETER                           | QA LAB<br>LRL | RESULTS<br>QA LAB | CONTRACTOR<br>LRL | RESULTS<br>CONTRACTOR | COMPARISON<br>CODE |
|-------------------------------------|---------------|-------------------|-------------------|-----------------------|--------------------|
| Total Dissolved Solids (TDS by 160. | 1)            | 542               |                   | 521                   | 0                  |
| Total Suspended Solids (TSS by 160  |               | 51.0              |                   | 50.8                  | 0                  |

aisei

## APPENDIX C

## SAMPLE RECEIPT & CUSTODY DOCUMENTATION

LANGUARDING STRANG

## Chain of Custody Record



| Client                                                                                      |                                                                       | Project Ma | nager    |         |         |                               | -            | -     |         |                  |       |           |        |         | 1        | Dale        |       |                       |              | Chain of     | Custody Nu  | mber      |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|----------|---------|---------|-------------------------------|--------------|-------|---------|------------------|-------|-----------|--------|---------|----------|-------------|-------|-----------------------|--------------|--------------|-------------|-----------|
| US ARMY CORDS OF BUGES                                                                      | MARIE MENTAS<br>Telephone Number (Area Code)/Fax Number               |            |          |         |         |                               |              |       | 11/4 98 |                  |       |           |        | 1054/   |          |             |       |                       |              |              |             |           |
| Address                                                                                     | Telephone Number (Area Code)/Fax Number<br>978-318-8175 FAX 978-318-1 |            |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             |           |
| WINGINIA RD                                                                                 |                                                                       | 978-       | 318      | -8      | 175     | 5                             |              |       | 91      | 5-3              | 18.   | 80        | 06     |         | _        |             | 1     | 1.0.00                |              | Page_        |             | of        |
| City State Zip Con<br>CONCORD WA OF                                                         | 742                                                                   | Site Conta |          | -       |         | 1.0                           | Conla        |       | 200     | ~~~              | -     |           |        |         |          |             |       | ch list if<br>needed) |              |              |             |           |
| Project Name                                                                                | मिञ्                                                                  | Carrier/Wa |          |         |         | DU                            | DIANA BROOKS |       |         |                  | -     | 00        |        | ol      |          |             |       |                       |              |              |             |           |
| SHEPLEY'S HILL LIMIM                                                                        |                                                                       | 8050       | 336      | 690     | 55      | 2                             |              |       |         | m                | 13.2  | BORGS     | 19     | 9.      | - 0      |             |       |                       | Special Ir   | structions/  |             |           |
| Contract/Purchase Order/Quote No.                                                           |                                                                       | Matrix     |          |         |         | Containers &<br>Preservatives |              |       | R       | B.W.             |       |           | Ĩ      |         |          |             | (     | Conditions            | s of Receipt |              |             |           |
| Sample I.D. No. and Description<br>(Containers for each sample may be combined on one line) | Date                                                                  | Time       | Acueous  | Sed.    |         | Linares.                      | -            | 5     | -       | ZnAc/            | LUDBA | NOC-52/03 | 1,8000 | CHANIDE | 30,310.1 | COL HALFACT |       | 1 1 1                 |              |              |             |           |
| MW-SHM-96-5BQA-98-02                                                                        | 11/4/98                                                               |            | X        |         |         | 3                             | 1            | -     | 21      |                  |       | 2         | 1      | 1       | 1        |             | 1     |                       |              |              | Perer       | ved in go |
| TRIP BLANK                                                                                  | 11/4/98                                                               | -          | X        |         |         |                               |              |       | I       | H)T              |       | 1         |        |         |          |             | 1     |                       |              |              | Con         | ved in go |
|                                                                                             |                                                                       |            |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       |                       | 1913         | 1            |             | MED       |
|                                                                                             |                                                                       |            |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             | .100      |
| - la                                                                                        |                                                                       |            |          |         |         |                               |              | 11    |         |                  |       |           | 11     |         |          |             |       |                       |              |              |             |           |
| - All                                                                                       | b                                                                     |            |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             | -         |
|                                                                                             | tene                                                                  |            |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       | 212                   |              |              | -           |           |
|                                                                                             |                                                                       | K          |          |         |         |                               |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             |           |
|                                                                                             |                                                                       |            |          |         | _       |                               |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             |           |
| A                                                                                           |                                                                       |            |          |         | 1       | 1                             |              |       |         |                  |       |           |        |         |          |             |       |                       |              |              |             |           |
|                                                                                             |                                                                       | 0          |          |         |         |                               |              | -     |         |                  |       |           |        |         |          |             |       | 10/12                 |              |              |             |           |
|                                                                                             |                                                                       |            |          |         |         |                               |              |       |         | -                | +     |           |        |         |          |             |       |                       |              |              |             |           |
| Possible Hazard Identification                                                              |                                                                       |            | 1.000    | ole Dis |         |                               |              |       | -       |                  | -     | *         | 1      |         |          |             |       |                       | nay be as    | ssessed if s | samples are | relained  |
| Non-Hazard                                                                                  | Poison B                                                              | Unknown    |          | elurn   | To Clie | nt                            | , ac         |       |         | / Lab<br>ents (! | -     |           | hive F | or _    | -        | ^           | fonth | s longer ti           | nan 3 mo     | onths)       |             |           |
| 24 Hours 48 Hours 7 Days 14 Day                                                             | s 🗌 21 Days                                                           | D Other    | <u> </u> |         |         | _                             |              |       |         |                  |       | ~         |        |         |          |             |       |                       |              |              |             |           |
| 1. Relinquished By                                                                          |                                                                       | Date       | 98,      | Tim     | e       | _                             | 100          | h r   | ved B   | Or.              | V-C   | 21        | 1.0    | ne      | 5-       | ,           |       |                       |              | Date         | 9           | Time      |
| 2 Relingvished By                                                                           |                                                                       | Date       | 10       | Tim     | OF      | 2                             | 2.1          | idren | NCH F   | "Cl              | 5     | No        | 20 1   | 05      | 130      | •           | -     |                       |              | Date         |             | Time      |
|                                                                                             |                                                                       |            |          |         | _       |                               | 6            | 1     | 11      | U                | 5     | ga        | 2      | -       |          |             | _     |                       |              |              | 0598        | 10:15     |
| 3 Relinquished By                                                                           |                                                                       | Date       |          | , Tin   | 10      |                               | 135          | Recei | word F  | W                | 1     |           |        |         |          |             |       |                       |              | Dale         |             | , Time    |

DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

## CHAIN-OF-CUSTODY

|                                  |                                       |                 |       | P                        | 798        | 9   |      |   |   |                        |
|----------------------------------|---------------------------------------|-----------------|-------|--------------------------|------------|-----|------|---|---|------------------------|
| PROJECT NAME:<br>USACOE          | QUANTEI                               | RRA<br>ONMENTAL |       | 3 NOV 98<br>al Lab Srves |            |     | ANAL |   |   |                        |
| PO NUMBER:<br>CONTACT PM         | 880 Riverside Parl                    |                 |       |                          |            |     |      |   |   |                        |
| PROJECT MANAGER:<br>Diana Brooks | West Sacramento,<br>Phone #: (916) 37 | CA 95605        |       |                          |            |     |      |   |   |                        |
|                                  | Thone #. (910) 37                     | 4-4302          |       | 9                        |            |     |      |   |   |                        |
| SAMPLE DESCRIPTION               | LAB ID                                | DATE            | TIME  | MATRIX                   | CONTAINERS | BOD |      |   |   | REMARKS/<br>SPCL INSTR |
| MW-SHM-96-5BQA-98-02             | 302523-0001 SA                        | 04 NOV 98       | 12:35 | AQUEOUS                  | 18         | X   |      |   | 1 |                        |
|                                  |                                       |                 |       |                          | -          |     |      | - |   |                        |
|                                  |                                       |                 |       |                          |            |     |      |   |   |                        |
|                                  |                                       |                 |       | 1                        |            |     |      |   |   |                        |
|                                  |                                       |                 |       | -                        |            |     |      |   | - |                        |
|                                  |                                       |                 |       |                          | 1          |     |      |   |   |                        |
|                                  |                                       | -               | 2     |                          |            |     |      |   |   |                        |
| 1000 C                           |                                       | -               | -     |                          | -          |     |      |   |   |                        |
|                                  |                                       |                 |       |                          |            |     |      |   |   |                        |
|                                  | -                                     | -               | -     |                          |            |     |      | _ |   |                        |
| 1                                |                                       | -               | -     |                          |            |     |      |   |   |                        |
|                                  |                                       | 1               |       |                          |            |     |      |   |   |                        |
|                                  |                                       | -               |       |                          | -          | -   |      |   |   |                        |
|                                  |                                       |                 | 1     |                          |            |     |      |   |   |                        |

| SIGNATURE                        | PRINT NAME    | COMPANY/TTL | DATE | TIME    |      |
|----------------------------------|---------------|-------------|------|---------|------|
| Relinquished by:<br>Received by: | Diana Porotks | Chuamlema 1 | Pm   | 11 5 98 | 1340 |
| Relinquished by                  | M. u.h.te.    | QIES        |      | 11-5-98 | 1415 |
| Received by: Mr M                | M THOM PSOL   | CLS         |      | 12-98   | INIS |

Comments: PLEASE CONTACT DIANA BROOKS IF THERE ARE ANY QUESTIONS.

373 4/96 CMD

|                   | ARMY CORS                               | 1. 2                | HEPLEY'S HILL  | AD17/       | 2      |
|-------------------|-----------------------------------------|---------------------|----------------|-------------|--------|
| PROJECT# (LIMS ID | » <u> </u>                              | 525                 | PROJECT COPIED | MAK         | /      |
| LOCATION(S)       | W2                                      | OB VU               |                | Initials    | Date   |
| DATE RECEIVED     | 110598                                  | _ TIME RECEIVED     | 0945           | <u>ncco</u> | _1105% |
| ·                 | FEDEX<br>AIRBORNE<br>UPS<br>QES COURIER | CA OVERNIGHT        |                | . c -       |        |
| CUSTODY SEAL STA  |                                         |                     | BROKEN 🗆 N/A   |             |        |
| SHIPPPING CONTAI  | Arrest and a second second second       | 1/                  |                |             |        |
| TEMPERTURE RECC   |                                         | 11                  |                |             |        |
| COC #(S)          |                                         | 10544               |                | X           |        |
| TEMPERATURE BLA   |                                         | NA                  |                |             |        |
| AMBIENT TEMPERA   |                                         | SC .                |                |             |        |
| OH MEASURED       | YE                                      |                     | .Y 🗆 N/A       | mio         |        |
| LABELED BY        |                                         |                     |                | MEG         |        |
| LABELS CHECKED B  | Y                                       |                     |                |             |        |
| SHORT HOLD TEST   | NOTIFICATION                            | SAM                 | IPLE RECEIVING | V           |        |
|                   |                                         | WET                 |                | N-          |        |
|                   | D OF FILTER/PRE                         | SERVE VIA VERBAL &  |                | mole        |        |
|                   |                                         | N GOOD CONDITION V  |                |             |        |
|                   |                                         | URE EXCEEDED (2 °-6 |                |             | t      |
|                   |                                         |                     | (              | V           |        |
| WET ICE           | BLUE ICE                                |                     |                |             |        |

LEAVE NO SPACES BLANK. USE "N/A" IF NOT APPLICABLE. INITIAL AND DATE ALL "N/A" ENTRIES.

è.

## APPENDIX F

## GROUNDWATER ANALYTICAL DATA

-

APPENDIX G REFERENCES

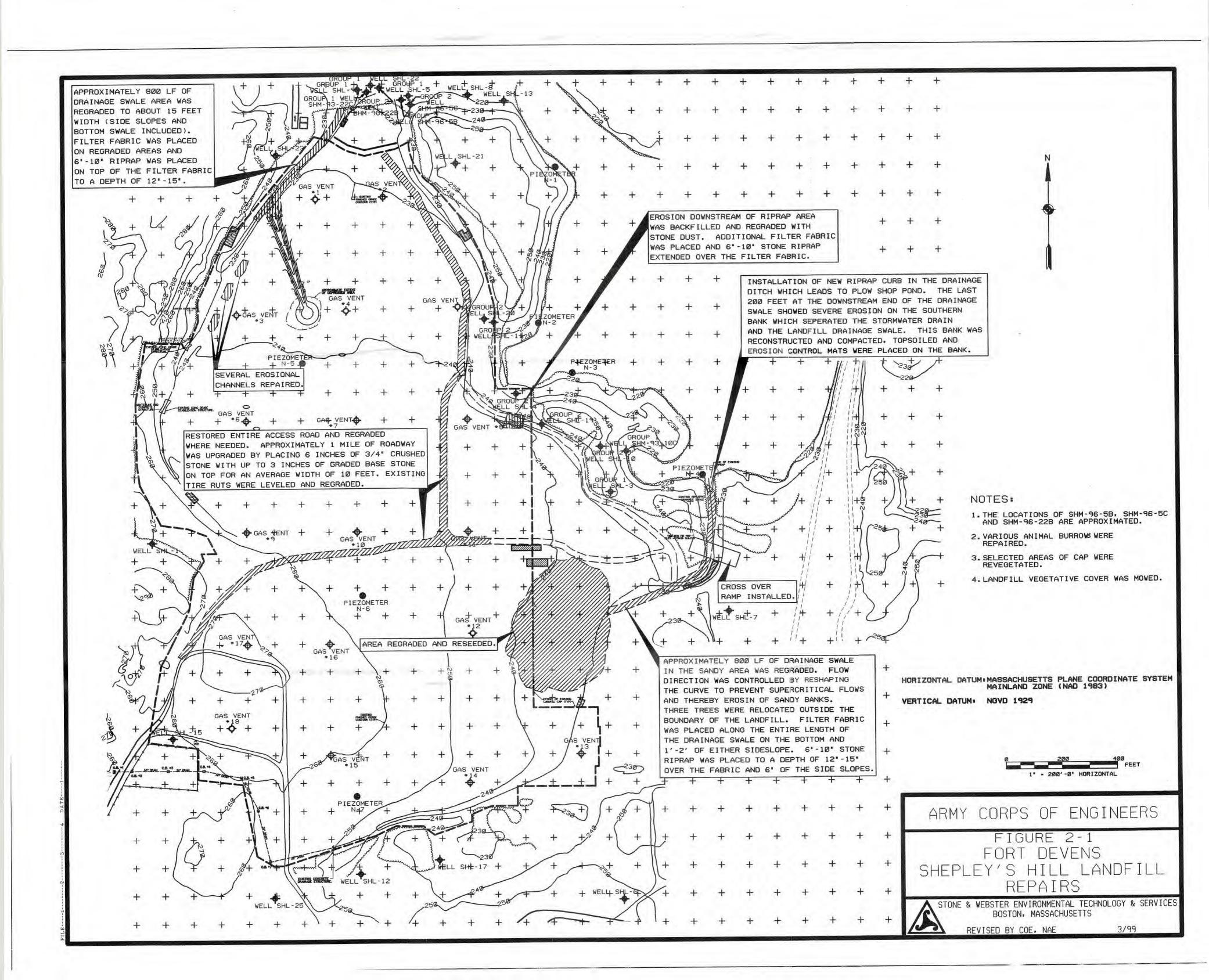
### APPENDIX G

#### REFERENCES

Stone & Webster Environmental Technology & Services, 1996. Long Term Monitoring and Maintenance Plan, Shepley's Hill Landfill, Fort Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. March.

Stone & Webster Environmental Technology & Services, 1997. Shepley's Hill Landfill, Annual Report 1996, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England Division. April

Stone & Webster Environmental Technology & Services, 1998. Final Five Year Review, Shepley's Hill Landfill, Long Term Monitoring, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. August


Harding Lawson Associates, 1999. Final Work Plan – Supplemental Groundwater Investigation at Shepley's Hill Landfill, Devens Reserve Forces Training Area, Devens, Massachusetts. Prepared for the U.S. Army Corps of Engineers, New England District. February

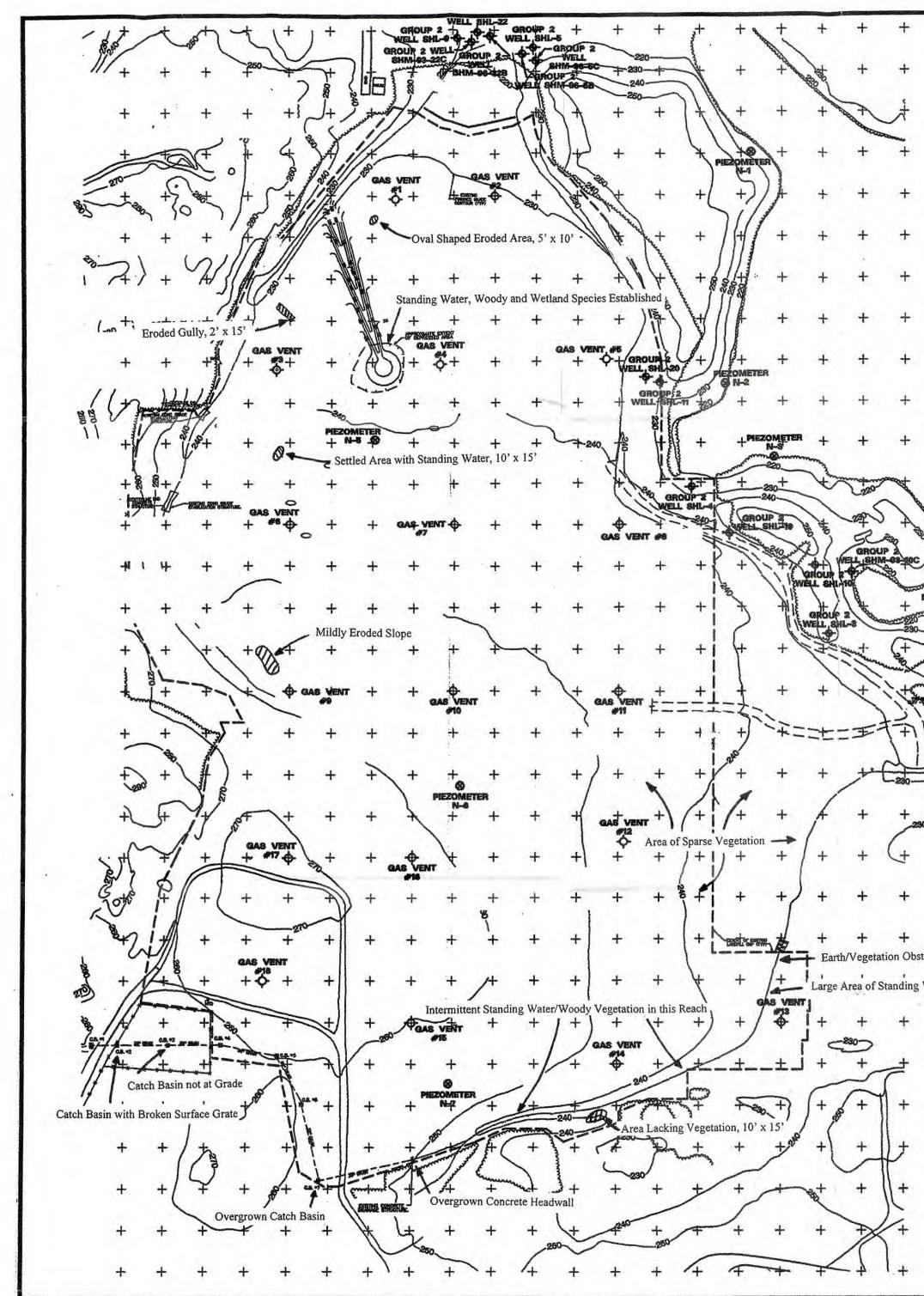

U.S. Environmental Protection Agency (USEPA) Region 1, 1996. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples From Monitoring Wells, SOP #: GW 0001, Revision 2. July 30.

ABB Environmental Services, Inc. (ABB-ES), 1993. Final Remedial Investigation Addendum Report, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. December.

ABB Environmental Services, Inc. (ABB-ES), 1995a. Final Feasibility Study, Shepley's Hill Landfill Operable Unit, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.

ABB Environmental Services, Inc. (ABB-ES), 1995b. Record of Decision, Shepley's Hill Landfill Operable Unit, Fort Devens Feasibility Study for Group 1A Sites. Prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland. Portland, Maine. September.





| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
|-------------------------|-----|----------------|-----------|-----------------|-------|-------|-------|------------|----------------|--------------------------------------------------------|
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              | Ň                                                      |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | •+             |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              | U.                                                     |
| +                       | +   | +              | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +,             | +         | +               | +     | +     | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | +     |       | t     | 200+       | /              |                                                        |
| +                       | +   | +              | +         | +               | t     |       | +     | +          | +              |                                                        |
| +                       | +   | +              | +         | +               | H     | 11-08 | +     | +          | +              |                                                        |
| 1                       | +   | +              | +         | +               | 14    | it    | +     | +          | +              |                                                        |
| N-1.9                   |     | and the second | t         | I,              | #+    | 11+5  | 240   | <b>*</b> + | +              |                                                        |
| T                       | H   | +              | +         | 1+ 1            | // +  | 11+9  | +)    | 1+         | +              |                                                        |
| And and                 |     | matin          | +         | +               | +     |       | -250t | 230        | 1              |                                                        |
| ++                      |     | +              | +         | +;;             | +     |       | Y     | A          | -              |                                                        |
|                         | +   | +              | +         | //<br>#/        | +     | 11    | 250 + | ]+         | +              |                                                        |
| ++                      | +   | +              | +         | 14              | +/    | :+2   | ) f   | Notes:     |                | nt to Gas Vents 1, 2, 3, 7, 8, 11, 15.                 |
| +                       | 11+ | +              | +         | // <sub>+</sub> | +"    | + /   | 2007  |            |                | curity fence missing sections and gates.               |
| +                       | +   | +              | +         | +               | +     | +     | +     |            |                | tory condition following repair work performed in 1998 |
| +                       | +   | ÷              | +         | +               | +     | +     | +     |            | FITICAL DATUM: | MAINLAND ZONE (NAD 1983)<br>NGVD 1929                  |
| ruction in<br>Water/Est |     |                | and Wetla | ,<br>and Veget  | ation | +     | +     |            | -              |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     |            |                |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     |            |                | 0 200 400<br>FEET<br>1" = 200'-0" HORIZONTAL           |
| +                       | +   | +              | Ť         | +               | +     | +     | +     | -          | ADAAV          |                                                        |
| +                       | +   | +              | +         | +               | +     | +     | +     |            | ANIVIT         | CORPS OF ENGINEERS                                     |
| +                       | +   | +              | +         | +               | +     | +     | +     |            | OUTN           | FORT DEVENS                                            |
| +                       | +   | +              | +         | +               | +     | +     | +     | a*-a(r)    | SUEL           | LEY'S HILL LANDFILL<br>FIGURE 3-1                      |
| +                       | +   | +              | +         | +               | +     | +     | +     | FINI       | DINGS OF INS   | SPECTION CONDUCTED 26 OCTOBER 1998                     |
|                         |     |                |           |                 |       |       |       | At-        |                |                                                        |

+ + + -13 5HL - 21 VENT VENT + 28/88 6-00 GAS VENT ZOMETER 280 PIEZO +PIEZOMETER + 4 GROU GROUF GAS VENT GAS VENT PIEZOMETER N-6 + + + + GAS VENT GAS VENT + + + + + + Set + + 114 + + + + + + + + + 10 + + + + + + + + + + + enterson A + + GAS VENT 2600 3/ECT + + + + + + + + GAS VENT 2003 GAS VENT + + + + 0.8.43 GAS VENT + + ±. 240 (C) ALANCE. A-238+) Ter + + + + 4 + + WELL SHE-17 + + + + + + MILL SHL-12 WELL SHL - OF + + WELL SHL-25 + + + + + + + + + 1+ + + F

|         |            | -             |              |        |             | ·     |                 |                                                                                    |
|---------|------------|---------------|--------------|--------|-------------|-------|-----------------|------------------------------------------------------------------------------------|
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | · + +                                                                              |
|         | +          | +             | +            | +      | +           | +     | +               | · + + N                                                                            |
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | · + +                                                                              |
|         | +          | +             | +            | +      | +           | +     | .+              | + +                                                                                |
|         | +          | +             | +            | +      | +           | +     | +               | + +                                                                                |
|         | +          | +             | +            | +      | + //        | 们     | t               | 230+++                                                                             |
|         | +          | +             | +            | +      | +           | 日     | +               | + +                                                                                |
|         | +          | +             | +            | +      | It          | 220   | +               | + +                                                                                |
|         | +          | +             | .+           | +      | +++         | ItL   | +               | + +                                                                                |
| MA THE  | U.S.       | 1 the         | t            | 1      | / <b>/+</b> | 1+7   | 240             | j}}+ + +                                                                           |
| T-      | THE A      | +             | +            | /+ /   | <b>;</b> +  | -249- | と               | 1. THE LOCATIONS OF SHM-96-58, SHM-96-5C                                           |
| 2394    | If.        | and a service | 5            | +//    | +           | 111   | 25              | AND SHM-96-22B ARE APPROXIMATED.                                                   |
| and the | Ĭ          | +             | " +          | */     | +           | 156   | 50 <sup>5</sup> | 548<br>528                                                                         |
| 1248    | +          | +             | +            | #      | +           | 八     | +               | /+) +                                                                              |
| 1       | WELC       | SHE-7         | +            | 14     | +//         | /+2   | t               |                                                                                    |
|         | +          | +             | +            | /:+    | +11         | + ~   | -oet            |                                                                                    |
|         | +          | +             | +            | +      | +           | +     | +               | HORIZONTAL DATUM MASSACHUSETTS PLANE COORDINATE SYSTEM<br>MAINLAND ZONE (NAD 1983) |
|         | +          | +             | +            | +<br>+ | T<br>L      | т<br> | т<br>_          | VERTICAL DATUM: NGVD 1929                                                          |
|         | +          | +             | +            | +      | +           | +     | +               |                                                                                    |
|         | +          | +             | +            | +      | +           | +     | +               | 6 200 400 FEET                                                                     |
|         | +          | +             | +            | +      | +           | +     | +               |                                                                                    |
|         | +          | +             | +            | +      | +           | +     | +               | ARMY CURPS OF ENGINEERS                                                            |
|         | +          | +             | +            | +      | +           | +     | +               | FORT DEVENS                                                                        |
|         | +          | +             | +            | +      | +           | +     | +               | SHEPLEY'S HILL LANDFILL                                                            |
|         | +          | +             | +            | +      | +           | +     | +               | STONE & WEBSTER ENVIRONMENTAL TECHNOLOGY & SERVICES<br>BOSTON, MASSACHUSETTS       |
|         | 1.10000000 |               | Construction |        |             |       |                 | REVISED BY COE, NAE 3/99                                                           |